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ABSTRACT

User satisfaction is pivotal to the success of mobile applications. At the same time, it

is imperative to maximize the energy efficiency of the mobile device to ensure optimal

usage of the limited energy source available to mobile devices while maintaining the

necessary levels of user satisfaction. However, this is complicated due to user inter-

actions, numerous shared resources, and network conditions that produce substantial

uncertainty to the mobile device’s performance and power characteristics. In this

dissertation, a new approach is presented to characterize and control mobile devices

that accurately models these uncertainties. The proposed modeling framework is a

completely data-driven approach to predicting power and performance. The approach

makes no assumptions on the distributions of the underlying sources of uncertainty

and is capable of predicting power and performance with over 93% accuracy.

Using this data-driven prediction framework, a closed-loop solution to the DEM

problem is derived to maximize the energy-efficiency of the mobile device subject to

various thermal, reliability and deadline constraints. The design of the controller im-

poses minimal operational overhead and is able to tune the performance and power

prediction models to changing system conditions. The proposed controller is imple-

mented on a real mobile platform, the Google Pixel smartphone, and demonstrates

a 19% improvement in energy efficiency over the standard frequency governor imple-

mented on all Android devices.
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Chapter 1

INTRODUCTION

In recent years, there has been an explosive growth in the use of mobile devices–

especially smartphones–becoming ubiquitous for everyday computing needs. These

devices serve as a pervasive platform in which business can implement services and

applications to directly interact with end users. However, pivotal to the success of the

mobile system is user satisfaction–a general term used in business and marketing to

encompass the overall satisfaction a user has with a product. This user satisfaction is

an amalgamation of many factors such as application interface, feature set, and quality

of service (QoS). QoS is some quantifiable measure of the application or system’s

performance. This can refer to the response time of an application (e.g. loading a

web page), a rate of processing (e.g. the frames per second of a video decoder), or

any other measure directly associated with the user’s satisfaction of the application

and device. In this dissertation, QoS is considered as the primary feature of ensuring

user satisfaction since it is a quantifiable attribute which is controllable by the mobile

system.

To highlight the importance of high QoS consider a recent survey [1] of e-commerce

shoppers using mobile devices as shown in Figure 1.1. The study found that 19% of

the users would abandon a mobile web page requiring more than 5 seconds to load and

49% of the users would abandon the page after 10 seconds. Perhaps worse than this,

79% of the participants stated that if they are dissatisfied with their user experience,

they are less likely to use the application again. By extrapolating this data, the

study concluded that “[i]f an e-commerce application is making $100,000 per day,

a one second page delay could potentially cost you $2.5 million in lost sales every

1
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Figure 1.1: The Results of a survey of mobile web users asking how long they would
be willing to wait for a web site to load. Recreated from [1].

year.” From this perspective, it is imperative to ensure user satisfaction even at the

cost of additional power; however, due to finite energy capacity and lack of active

cooling mechanisms, it is not typically optimal for mobile platforms to sustain high

performance states.

This dissertation addresses the issue of managing mobile processors to efficiently

balance high quality of service and low energy consumption. This is complicated due

to (1) the large number of interactions between system elements (Figure 1.2) and (2)
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Figure 1.2: A cut-away diagram displaying numerous system components present
in mobile devices.

the presence of system non-determinisms. This dissertation provides two frameworks

to accurately model and predict QoS and power in the presence of numerous system

non-determinisms. The first, applicable to offline analysis and provides mechanisms

for insightful design space exploration. The second is a light-weight, black box ap-

proach which can be learned and evaluated in real-time with minimal difference in

error compared to the offline approach. A major contribution of this dissertation is

the consideration that QoS is a non-deterministic value – an important attribute pre-

viously neglected by previous dynamic energy management systems. The modeling

frameworks provide comprehensive methods of analyzing variations in QoS subject

to various controllable and uncontrollable parameters. Finally, this additional knowl-

edge of QoS variation is leveraged to introduce new dynamic energy management

techniques. These techniques are software controlled at the operating system level to

achieve various objectives such as maximizing QoS, energy-efficiency and battery life
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subject to thermal, energy, and deadline constraints.

1.1 Non-determinisms in Mobile Devices

As discussed in the previous section, designing and operating mobile devices to

ensure high levels of user satisfaction is vital to the success of the system. In order

to properly predict the power and QoS of an application, an accurate prediction

framework is needed. However, this is complicated in the presence of numerous

sources of non-determinisms. In this section, the challenges of modeling QoS of

mobile systems are briefly discussed.

For desktop and server processors, mechanistic modeling methods have proven

to be an effective mechanism to model system performance [2, 3, 4, 5]. Mechanistic

methods relate a set of deterministic system observables to the modeled quantity of

interest. These methods relay on underlying assumptions of the system architecture

and the software design in order to correctly capture the mathematical form of the

model. These models begin to lose fidelity should system uncertainties be introduced,

such as architectural delays, network conditions, and input complexity. In this section

(and more formally in Chapter 2), this dissertation will argue that a key difference

between the desktop/server environment and the mobile environment is the high level

of system uncertainty and, as such, mechanistic models lack the flexibility needed to

be applicable to mobile systems.

One can think of variations in an application’s execution as a sequence of inter-

ruptions from various sources in the normal flow of computation. These interruptions

are defined as intervals of idle periods, whose endpoints are random points in time,

and whose lengths are random variables. The cause and severity of these variations

are numerous, dependent on the application, the user, and the mobile system. To

illustrate that variations are significant on mobile applications and devices consider
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a simple use case of web browsing. As input, the web browser receives an address of

a web page from the user, either directly or by evaluating a link. The browser must

then establish a connection with the remote server which stores the page in order

to download its assets. As the assets are downloading, the page must evaluate the

HTML code and render the resulting web page.

The first and perhaps most obvious source of variation is the delay due to network

conditions. Unlike, server and desktop environments in which the network conditions

are relatively static (i.e. a wired or singular wifi connection), mobile devices utilize

numerous types of networks, each with their own delay characteristics. Figure 1.3

depicts the distributions of network delay for two types of connections, wifi and 3G

based on the recents results of [6]. One can see in the case of a 3G connection,

there exists significant variations in the delay ranging from 200ms to 450ms with

approximately uniform distribution. In comparison the wifi network provides a more

normal-like and tighter distribution between 50ms and 150ms. It should be noted that

5



0

5

10

15

0 50 100

P
D

F
 (

%
)

Delay due to Branch Instructions (ms)

Figure 1.4: The probability density function of delay due to branch instructions
when loading a web page.

as network bandwidth and delay improve, the majority of the application overhead

is shifted to the performance of the mobile processor rather than the network [7].

A less obvious source of variation is due to the architectural events of the mobile

processor such as the number of cache misses, page faults, tlb misses, branch miss-

predictions and so on. While any one given occurrence of these delays may only result

in an interruption of several processor cycles, these events occur in large quantities

especially on the more simplistic architectures seen in low power mobile devices.

Figure 1.4 shows an example of the delay caused by branch instructions while decoding

a video file and demonstrates just how severe these architectural delays can be. This

shows that from run-to-run, the the interruptions due to architectural events can vary

greatly; in the case of branch miss-predictions this variance can be between 50 and

70 ms. Ultimately, all of these sources of variation combine to create a large variation

in the processing time of the video stream (i.e. the QoS).
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In order to understand the likelihood of achieving any given QoS and power com-

bination as well as providing a measure of prediction uncertainty, it is necessary to

relate the parameters of the distribution to the control variables, input characteristics,

and system states. For instance, one could capture the severity of architectural delays

using on-chip performance monitoring counters. Additionally, the application could

provide hints about the complexity of the input. For example, with web browsing

one could include quantifiable characteristics of the web page such as the number of

Uniform Resource Identifiers (URIs) and the types of objects in the URIs that affect

the execution time. In this way, the modeling of execution time of a web browser in

processing a web page can be made sensitive to the complexity of the web page along

with the system states. Such a model provides a simple and effective means to relate

the distribution function of the execution times to the processor core frequencies for

dynamic energy management.

1.2 Optimal Control of Mobile Devices Subject to Non-deterministic Operation

To illustrate the importance of considering the likelihood of satisfying constraints,

and the potential trade-offs, once more consider the example, mobile web browsing.

Suppose that a processor allows multiple frequency settings, f1-f6. Figure 1.5(a)

shows a hypothetical plot of the average load time (dotted curve) for a given web

page (which involves loading, processing, and rendering the web page) over multiple

invocations, at different frequency settings. As stated earlier, the different invocations

at a fixed frequency lead to different load times due to various factors such as the non-

deterministic nature of the system states. The vertical bars at each frequency indicate

the observed minimum and maximum load times. Figure 1.5(b) shows the average

energy efficiency, expressed as performance per watt (PPW) of the application at

each frequency.
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Figure 1.5: Conceptual plots of mean execution time and PPW of an application
running at various clock frequencies, with error bars depicting range of variation, and
probability of meeting a given deadline at each frequency.

The QoS here is a composite measure of how stringent the deadline is for loading

a web page, as well as the likelihood of meeting that deadline. Suppose that in order

to satisfy a high QoS target the web page must be loaded within 3 seconds. Let ∆3

denote this deadline (see Figure 1.5(a)). To meet this deadline with a likelihood of

99.9% will require running the processor at frequency f6. However, at this frequency

the average energy efficiency or PPW will be very low. This may result, for instance,

in substantially reducing the residual battery charge, raising the possibility of an

inoperable phone until the next charging opportunity. However, if the user is willing

to wait additional time for the web page to load for a longer lasting battery, then

the deadline can be increased to 5 seconds (∆5). Then the phone can be operated at
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f4, at which the energy efficiency is maximum, with a near certainty of meeting the

looser deadline.

Due to the stochastic nature of mobile workloads, this energy efficiency to perfor-

mance trade off becomes a non-deterministic analysis of determining the likelihood

of the system’s performance and power characteristics. As such, this type of analy-

sis can only be achieved by modeling the numerous sources of variations within the

mobile systems and workloads.

1.3 State-of-the-Art in Dynamic Energy Management

Over the past decade, a large body of research has been published on optimiz-

ing energy efficiency of computing devices. Energy-efficient and low-power comput-

ing aims at reducing power wastage via circuit, architectural and algorithmic-level

techniques such as stand-by mode, clock-gating, and dynamic voltage and frequency

scaling (DVFS). However, due to the high power density of modern processors, high

processor temperatures have become a critical issue, causing device failures, increased

leakage power, and throttling performance if left unchecked. For mobile devices, the

thermal issue is further exasperated by the lack of active cooling devices (e.g. fans)

which are typically present in desktops and laptops. Thus dynamic thermal man-

agement (DTM) and dynamic energy management (DEM) techniques are even more

imperative in the mobile domain.

One of the earliest and simplest DEM methods is the stop-and go policy [8]. This

policy simply states that for a given maximum temperature threshold, shut off the

processor if the processor temperature exceeds the threshold and allow it to cool to a

predefined value before starting up again. This scheme will certainly address thermal

issues raised earlier; however, it does so at significant performance penalties.

To reduce the impact on performance, DVFS techniques were introduced. DVFS
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allows for either discrete or continuous control over the operational voltage and fre-

quency of the processor. As a result, up to cubic savings in power can be achieved

for linear reduction in performance.

1.3.1 Classification of Related Work

This section primarily focuses on energy management techniques that operate at

the operating system level. These techniques are primarily software-based approaches

that use built-in hardware support to alter the power, performance, and thermal char-

acteristics of the processor to optimize a given objective while ensuring all constraints

are satisfied. The related techniques are categorized broadly into three main topics:

optimization goals, controlling mechanisms, and modeling and prediction.

Every energy management problem starts with a specification of optimization

goals and constraints that need to be met. While the nuances of these goals can vary

wildly, these goals can typically categorize them into one of three types: maximizing

performance, minimizing energy, or maximizing energy-efficiency.

In order to achieve the optimization goal and constraints, control mechanisms are

needed. Typical control knobs include dynamic voltage and frequency scaling, task

migration, and task scheduling. Dynamic voltage and frequency scaling as the name

suggests, allows for the alteration of cpu-core voltage and frequency; thereby affecting

performance, power consumption, and temperature. Task migration is the process

of moving tasks between computational units. This provides a better matching of

workload to cores for performance and power. In the event of heterogeneous archi-

tecture, the effect of task migration is magnified. Task scheduling is the ordering of

which tasks to execute. By intelligently determining the task schedule, the controller

is capable of shaping the power, temperature, and performance time-profile of the

processor.
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In order to solve DEM optimization problems efficient and accurate modeling

techniques are needed to capture the relationship between the system environment,

control knobs, and the given objectives and constraints. These methods can be model

equations provided a priori by manufactures, or derived by correlating the output

measurements with input control values. Modeling and prediction mechanisms play

a very crucial role in determining the quality of the solutions and the complexity of

the resulting DEM implementation, and for this reason, choosing the right power and

thermal models is the most challenging aspect in a DEM optimization. However, most

if not all of the works have assumed that the underlying execution time quantities are

deterministic. In modern systems, outside sources of influences such as cache misses,

branch mispredictions, OS scheduling, and so-on cause numerous uncertainties to

system performance.

A summary of the classification of DEM techniques is shown in Figure 1.6. The

following sections briefly compare the existing techniques in each of the above DEM

categories.

1.3.2 Optimization Goals

Over the years, researchers have expanded the scope of DEM to many objective

functions. One of the earliest and still most attractive is the maximizing of perfor-

mance. Performance is an ambiguous term and as such its meaning can vary from

work to work. One such performance metric is processor throughput represented by

instructions-per-cycle (IPC) or instructions-per-second (IPS). There has been an ex-

tensive amount of literature on this subject. [9, 10, 11] considers the case when the

system is constrained by power or energy budgets, [12, 13, 8, 14, 15, 16] addresses

thermal limitations, and [17] considers task deadline constraints.

Another form of performance comes to us in Quality of Service (QoS) and user
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satisfaction. QoS metrics are specific to the application domain, for example in

video playback the frames-per-second rendered to the display is a measure of QoS

or for network communication the data bandwidth (after packet loss) could also be

considered a metric of QoS. In [18], the effect of DVFS on the load time of web

pages was examined. The authors present a static frequency scheduling algorithm to

determine performance optimal operation subject to deadline constraints.

The performance-per-watt (PPW) metric has been studied by several researchers.

It represents a systems energy-efficiency and serves as a means of balancing perfor-

mance and power consumption. The authors of [19] formulated the non-linear opti-

mization problem for a thermally constrained, leakage-dependent multi-core proces-

sor. They then proposed a greedy based DVFS-based controller which outperformed

traditional Linux governors by a 20 to 30%.

12



While most of the prior works focus on optimizing system energy efficiency for the

application domain of CMPs, a few more recent works started examining and design-

ing energy efficiency optimization algorithms for user-centric, interactive smartphone

applications. Egilmez et al. [15] specifically aimed at improving user satisfaction

through DVFS-based control knobs to maintain a low and comfortable device skin

temperature. Singla et al. [16] developed power and thermal models for a modern

mobile platform and proposed a closed loop thermal control to adjust processor fre-

quencies.

1.3.3 Control Mechanisms

Of all the control mechanisms that exist for DEM, DVFS is the most prevalent.

DVFS provides up to cubic reduction in power consumption for a linear performance

penalty. In [20] the DVFS problems is proposed using a constrained convex optimiza-

tion formulation; however, due to the complexity of the formulation, the solution was

presented only for offline calculations. In [13], the authors simplified the solution by

providing the optimal zero slack control policy which is efficient enough to calculate

at run time.

DVFS has also been applied to application specific QoS optimizations as well.

In [21] the authors characterized the tradeoffs between power management and tail

latency for server applications. From this analysis they determined that the com-

monly used service techniques were not sufficient to reach the stringent server QoS

requirements and did not provide the most energy efficient method of service either.

Instead they suggest a careful, workload specific frequency scaling policy.

Another popular control mechanism is task migration. In this problem, the task

to core allocation and scheduling is determined in order to achieve the objective and

constraints. In homogeneous processors, this technique is primarily used for altering
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the temperature gradient across the die of a processor [22]; however, heterogeneous

processors allow for stark power/performance tradeoffs when using task migration [23,

24, 25]. Typically, context switching between heterogeneous components comes at a

large overhead; therefore a poorly designed task scheduler can have severe impact to

performance and power.

1.3.4 Modeling and Prediction

Modeling methods can vary widely in accuracy and by extension, computational

complexity. It is common to represent the performance of tasks bound to processing

elements as a collection of linear equations based on the expected throughput of each

task [26, 27, 28]. These methods are advantageous in their simplicity; however, they

typically overlook crucial characteristics of the system and application which can lead

to inaccurate results. To overcome some of the limitations caused by the use of linear

equations, Bogdan et al. [29] proposed a performance prediction model which lever-

aged fractional calculus. This extension proved to be effective in deterministic routing

systems. Another common methodology for performance analysis involves sampling.

Similar to the problem setup of this paper, Wernsing and Stitt [30] suggested that

the execution time of a task is a function of some work metric or characteristic. In

this case the authors limited this function to a deterministic, monotonically non-

decreasing function which is determined via regression analysis. From these models,

the expected function execution time is directly predicted based on the work metric

and proved to be an effective means of performance prediction in systems with low

execution time variance.

To model pipelined parallel applications, scenario-aware dataflow models offer an

accurate albeit, complex solution [31]. Real-time calculus and network calculus [32]

offer an alternative which provides some solutions to the complexities of scenario-
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aware dataflow modeling. For example, a round robin scheduler which used real-time

calculus for data flow prediction was developed for image processing on multiprocessor

system-on-chip [33]. Qian et al. proposed a network calculus performance model for

a general multi-router system with contention [34]. However, these prior network

calculus-based works assumed that the system is a deterministic queuing system.

Power and thermal models share similar implementation methodologies. Icepak [35]

is a thermal modeling method using Finite-element methods (FEM) to represent the

spatial thermal-power response of an SoC. It is one of the most accurate methods avail-

able however it can take hours or even days to simulate several seconds of an SoC’s

operation. A more computationally efficient methodology is proposed by HotSpot [36]

via compact thermal modeling (CTM). In CTM the SoC is represented as a circuit

schematic where nodes may represent processing blocks (e.g. FPUs, CPUs, memory,

etc.) and between nodes are interconnects of resistors and capacitance representing

the thermal properties of the SoC. In [37] this formulation was represented as a linear

state model and computation time was reduced to the point necessary for dynamic

control.

1.4 Novelty and Paper Structure

In this section a brief autobiographical sketch is provided, covering my research

areas, publications, and patents while attending Arizona State University. Following

this, an outline of the dissertation structure is provided which details both the flow

of the this document as well as the novelty of this research.

1.4.1 Publications, Patents, and Research

I began my study at Arizona State University in 2006 while seeking a bachelors of

science and engineering in computer systems engineering. In 2009, I began working
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with Dr. Sarma Vrudhula, investigating the applications of renewable energy in

wireless sensor networks. Along with another undergraduate student, Eric Munson,

we developed a prototype sensor node which could be used to monitor water conditions

in areas difficult to travel to. The node was completely self-sufficient, utilizing a solar

panel to harvest and store energy.

This work later evolved into the research area of my Master’s thesis. During

this time, I developed algorithms to manage a distributed network of solar-powered

wireless sensor nodes which (1) would actively manage each sensor’s sensing range to

maintain maximum coverage of some region and (2) maintain connectivity to some

centralized node for data collection. Condition (1) was presented in my very first

publication at IEEE INFOCOM 2012 [38] while (2) was added to the journal article

published in ACM Transactions on Sensor Networks (TOSN) [39].

As I transitioned from Master’s to PhD, I began my study of energy management

of computing systems – following the work of a former PhD student, Vinay Hanumiah.

Dr. Hanumiah researched DVFS control of multi-core desktop processors, developing

a control algorithm named STEAM [19]. As a co-author of this work, I provided the

implementation of the algorithm in C on an Intel Sandybridge processor and aided

in the data collection and evaluation. This work was awarded a US patent [40].

As covered in this dissertation, I extended Dr. Hanumiah’s research into the

mobile domain, where system non-determinisms play a much larger role in power,

performance, and energy efficiency. As a first step, a formalization of the energy

management problem of smartphones was presented at the 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA) [41]. This work

used heuristic arguments to justify that the distribution of execution times for a

given mobile application follows the gamma distribution function. Additionally, the

work provided a methodology to calculate the execution time distributions of mulit-

16



threaded applications which could be used to evaluate different control strategies in an

offline manor. However, this work was limited by several factors: (1) the assumption

of a known distribution and (2) the overhead of the workload analysis. These factors

are rectified in the latest work (covered in Chapters 4 and 5) using polynomial chaos

theory to represent the power and performance of mobile applications. This work has

been submitted to IEEE Transactions on Mobile Computing (TMC) for publication.

1.4.2 Dissertation Outline

In this dissertation, a complete framework for DEM in mobile systems is pre-

sented. This dissertation features various methodologies to model and predict system

power and QoS in the presence of numerous sources of non-determinisms–a defin-

ing condition of mobile workloads. The provided methods allow system designers to

perform detailed offline system state exploration or online system control in a com-

putationally efficient manner. In addition, an architecture independent closed loop,

energy-aware controller is presented along with a practical implementation for most

modern smartphones. The models are highly accurate, reducing prediction error by

a factor of 3X over state-of-the-art methods. Thanks to this the proposed controller

achieves a 19% improvement in energy-efficiency over the stock Android governors.

The following outlines the topics covered in this dissertation (see also Figure 1.7).

� Chapter 2 presents an overview of the challenges around modeling QoS, thermal,

and power for mobile systems. This chapter provides the motivation for the need

to model performance and power of mobile applications as a stochastic quantity

will be used by the prediction frameworks and the DEM controller presented in

later chapters.

� Chapter 3 presents the formulation of an offline QoS analysis framework. The
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Figure 1.7: Outline of topics covered in this dissertation.
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proposed approach provides a means to improve mobile user experience by bal-

ancing performance and energy with probabilistic guarantee of QoS. The chap-

ter first hypothesizes, and then experimentally validates a closed form model

to represent the execution times of single threaded mobile applications. The

model parameters are functions of the control variables (e.g., voltage and fre-

quency), as well as characteristics of the data being processed (e.g., complexity

of the web page component being processed). The single-threaded model is

then extended to several multi-threaded configurations including independent

parallel execution and dependent sequential/pipelined execution. The proposed

statistical models are used in the formulation of an optimization problem, the

solution to which is a static, lightweight controller that optimizes energy effi-

ciency of mobile applications, subject to constraints on the likelihood that the

application execution time meets given deadlines.

� Chapter 4 proposes an efficient and accurate means of estimating QoS subject

to numerous sources of uncertainty, suitable for online system control and fea-

ture learning. The proposed method constructs a QoS model and learns its

parameters directly from the data, making no assumptions of the underlying

distributions of performance. A demonstration of the versatility of the model

is presented by developing QoS prediction techniques for the interactive mobile

workload, web browsing. Additionally, a general model is proposed to predict

system performance (instructions per second) for a wide variety of mobile work-

loads. Additionally, an online mechanism to dynamically tune our prediction

models is derived, requiring little to no offline training. Finally, the models

are used to provide a system analysis to generate per-frequency distributions

of system energy efficiency – allowing one not only to determine the expected
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energy efficiency as a function of frequency, but also the likelihood that this

energy efficiency is achieved.

� Chapter 5 proposes a robust, architecture independent, closed-loop controller.

This controller is capable of handling various objectives and constraints includ-

ing thermal, QoS, delay, and energy. In addition, a formulation is given to

estimate power consumption as a function of the SoC thermal process. This is

especially critical in the mobile domain where power sensors are rarely included

or provide updates too infrequently to be applied to DEM controllers. The con-

troller design includes state-of-the-art error reduction techniques to learn both

the system dynamics and user usage patterns.

� The dissertation is concluded with a summary of contributions and major find-

ings. Additionally, a brief survey of open problems is presented as potential

future research topics.
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Chapter 2

SOC SYSTEM MODELS

As shown in Figure 2.1, the thermal, performance, and power characteristics of

mobile computing devices have a strong interaction with one another. User demands

place expectations on the mobile device. In order to service these expectations, the

mobile device must alter its working conditions. For example, the device may increase

its cpu clock frequency in order to achieve the highest possible quality of service.

However, in doing so, the device will have to consume additional energy to met

this demand. Because of the limited energy storage available to mobile devices,

increasing the device performance arbitrarily high is not possible. Additionally, high

power consumption results in increased thermal conditions do to circuit inefficiencies

(1) User demands and 
expectations require 
high performance.

(2) High performance requires high energy 
consumption. Mobile devices are energy 
constrained by batteries.

(3) High power consumption 
leads to high thermal 
conditions.

(4) Excessive thermal conditions damage the mobile 
device.  Therefore, performance must be throttled.

Figure 2.1: Illustration of the interaction between performance, power, and temper-
ature for mobile computing devices.
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which result in heat generation. Excessive thermal conditions may lead to unreliable

operating conditions and even damage the device or the user. Therefore, the thermal

characteristics of the device further limit the maximum possible performance draw.

While prior work in desktop and server energy management has considered the

effects of these interactions; the limitations of mobile devices have not been adequately

explored. This dissertation proposes the following advancements to performance,

power, and thermal modeling for mobile devices:

1. Prior work in performance and power modeling has been developed with desk-

top and server workloads in mind. That is, workloads are assumed to have long,

steady periods of activity. In the mobile domain, this is not true. Rather, work-

load characteristics are highly variable over time and stochastic in nature due

to numerous system non-determinisms. This dissertation, proposes a modeling

framework to accurately capture the effect of these variabilities.

2. Power prediction methods presented in literature assume the availability of ac-

curate, real-time power sensors for each major component within the comput-

ing device. Mobile devices lack this granularity of power sensing. Instead this

dissertation proposes utilizing knowledge of the thermal characteristics of the

device to deduce prior power consumption values. This will act as a surrogate

to power sensors and make it possible to train the proposed stochastic models.

2.1 QoS, Performance, and Execution Time Models

As discussed in the previous chapter, user satisfaction of mobile applications and

devices hinges on several factors–the most important of which being quality of service.

While QoS is a rather ambiguous term, here it is specifically defined as a quantifi-

able/enumerable measure of user satisfaction. Depending on the application, this can
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be represented as the response time (e.g. execution time) of an application/task or

some measure of throughput (e.g. frames per second or instructions per second). The

following section provides a general mathematical representation of QoS while the

specifics of modeling this quantity is given in Chapters 3 and 4.

Consider an SoC with n processing elements and q tasks which need to be ex-

ecuted. Each processing element is assumed to be able to execute a single task at

any given time and has several controllable parameters which affect the QoS of the

task. For the purposes of this dissertation, the controllable parameters of operating

speeds/frequencies s(t) as well as operating voltages v(t) are considered. In practice,

these two quantities are often dependent upon one another and cannot be changed

independently. Therefore, unless otherwise noted this dissertation will discuss only

s(t) as the controllable parameter. Note that symbols in bold denote vectors or

matrices, and all vectors are considered column vectors.

In regards to computer architecture, the most fundamental representation of per-

formance is the rate at which instructions are processed by a computing system.

Specifically, the efficiency of task j running on processing element i can be charac-

terized by the instructions per cycle IPCi,j(t). Note, although IPC is presented here

as only a function in time, in reality it is an unknown function of many param-

eters including operating frequency, workload characteristics, architectural events

and so on [2]. Additionally, this representation is only true assuming negligible

parallelism. Should tasks be dependent upon one another or if the effects of co-

scheduling are to great, the IPCi,j is also a function of IPCk,l∀k 6= i, l 6= j. Given

an accurate representation of IPCi,j(t), the performance of the SoC is defined by∑n
i=1

∑q
j=1 wi,j(t)IPCi,j(t)si(t) where wi,j is zero in the case that task j is not run-

ning on processing element i at time t otherwise it is some specified weighting factor.

This weighting factor can be used to give priority to a given task or task-processing
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unit combination. In the case that wi,j = 1,∀i, j this reduces to the throughput of

the system in terms of instructions per second.

With knowledge of the number of instructions of task j along with its computa-

tional efficiency, it is possible to determine the task’s execution time. That is, for a

given task with which successful completion requires Ij instructions to be executed,

one can define the execution time as the smallest value τj such that

Ij =

∫ ∞
τj

n∑
i=1

IPCi,j(t)si(t)dt (2.1)

holds true. In practice this becomes an extremely difficult quantity to determine

due to system non-determinisms which cause IPCi,j(t) and even Ij to be stochastic

quantities.

As stated earlier, during the course of execution, flow of computation will be

subjected to numerous interruptions, which contribute to its execution time. To

better understand the sources of interruptions, an experiment was carried out on an

Intel SNB processor1 in which the architectural sources of interrupts were monitored

using the available on-chip performance counters [42]. The Firefox web browser was

executed, along with the eleven most visited web pages from the BBench suite [43],

including Amazon, BBC, CNN, Craigslist, eBay, ESPN, Google, MSN, Slashdot,

Twitter, and YouTube. Because the performance of webpage rendering was the focus

of this study, network delay was not included in this specific experiment2. The loading

and rendering of the webpages was repeated 1,500 times, and the execution times

1The Intel SNB processor was selected over other platforms due to the availability of advanced

performance counters to measure the numerous sources of delays. While the mobile platforms may

have some performance counters, the available information is not sufficiently detailed as that given

by the Intel SNB processor. Although the parameters of the distributions may change from platform

to platform, the underlying distributions will not.
2It should be noted that network delay is not necessarily the dominating factor on mobile phones.

A study from [44] showed that under a 2Mbps network connection halving the CPU frequency results
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and the associated delays incurred in the processor and the memory subsystem were

recorded. Figures 2.2(a-h) show the histograms of the durations of each monitored

source of interruption. The data clearly demonstrates a substantial variation in the

durations of different types of interruptions. In particular, the standard deviation of

the total execution time (0.2117) is about 38% of the mean.

These interruptions to the execution flow can be viewed as intervals of idle periods,

whose endpoints are random points in time, and whose lengths are random variables.

Thus the total execution time may be viewed as the some of some minimum execution

time (not random, but unknown) and the total duration of all the interruptions. Thus,

QoS is said to follow sum distribution function fτ(s)(x) which is, in part, parameterized

by the operating frequency of the SoC. Chapter 3, proposes a standard form (the

three-parameter gamma distribution) for single core applications and extends it to

various multicore applications. Chapter 4 extends this further to accommodate any

arbitrary distribution.

Since QoS should be considered a random quantity for mobile devices, a new

perspective on energy management must be considered. For example, a common ap-

proach to balancing battery lifetime and performance is optimizing energy efficiency,

also referred to as performance-per-watt, denoted by E (PPW (s)), where E(·) de-

notes the expected value. PPW is the ratio of performance to power, and performance

is simply the reciprocal of execution time. The measure of performance depends on

a specific application, but is in general, a function of all the core frequencies s. In

the case of a video playback, PPW (s) would denote the average number of frames

rendered per second (fps) per Watt, and in the case of a web browser, it would be

the number of webpages displayed per second per Watt. Hence, PPW denotes the

in a 50%-100% increase in the page load times, thus the bottleneck becomes the client CPU. To

avoid the correlation between cores, all but one application processor core is disabled.
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number of items processed per joule of energy. Let ∆ denote a deadline and Q ∈ (0, 1)

denote a lower bound on the likelihood of satisfying the given deadline.

2.2 Thermal Model

Due to circuit inefficiencies, executing any workload results in heat generation

within the mobile SoC. In general, in order for the device to increase the performance

output of an application, additional power consumption is required and by extension,

a greater amount of heat is generated. Excessive thermal conditions may lead to

decreased device reliability, or even permanent damage to the device. Additionally,

mobile devices lack active cooling mechanisms and thus are far more susceptible

to high thermal conditions. For this reason it is vital to understand the thermal

characteristics of mobile devices.

One of the most classical methods for thermal models used for computer systems

is based on the thermo-electrical analogy. This analogy suggests that the effects

of heat storage and spreading can be equivalently represented as some circuit using

resistors and capacitors. More precisely, consider a slab of thickness t and area A,

which is heated on one side with uniform heat flux P as shown in Figure 2.3. Then

the temperature difference across the sides of the slab due to heat conduction is given

by ∆T = Pt/(kA) where k is the heat capacity of the slab. This equation is similar

to Ohm’s law (V = IR) where the thermal resistance is given by R = t/(kA) and

I = P . Additionally, according to the thermal energy equations developed by James

Joule, the energy stored in the slab is equivalent to E =
∫
Pdt = (ρAtc)∆T where ρ

and c denote the density and thermal capacity of the slab respectively. Once more,

this relationship draws many parallels to the electrical charge storage equations for

electrical capacitors (Q =
∫
Idt = CV ) such that the thermal capacitance is given by

C = ρAtc.
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Figure 2.3: Electrical analogy for thermal conduction.

Perhaps the most well known example of thermo-electrical modeling is the HotSpot

thermal model [45]. The granularity of the thermal model is defined by functional

blocks which can be as fine-grain as a singular transistor or as course-grain as an

entire chip or processor. Figure 2.4 shows the HotSpot thermal model for a typical

four core desktop processor.

As discussed in more detail in the next section, the power dissipation of each

block is dependent on the speed, voltage, and thermal state of the block, along with

workload characteristics. Given this the vector of thermal profiles for each block,

T (t), can be expressed using a state space model

dT (t)

dt
= −C−1GT (t) +C−1P (s,v,T , t) (2.2)

where P , s, and v are vectors comprised of each block’s total power dissipation,

speed, and voltage at time t respectively. G and C are N ×N matrices relating the

thermal conductance and capacitance between any two pairs of the N blocks. This

equation can be written more succinctly by substituting B = C−1 and A = −BG

thus

dT (t)

dt
= AT (t) +BP (s,v,T , t). (2.3)

It is important to note that P represents the total power of each block (i.e. the sum

of the dynamic power Pdyn and the leakage power Plkg. The following section will

detail a mechanistic method of determining these quantities.
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Figure 2.4: HotSpot thermal model for a four core processor. Figure copied
from [46].
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2.3 Power Model

Power modeling, simulation, and prediction of computing workloads have been

studied extensively in the past [47, 19, 48, 49, 50, 51]. In these prior works, the power

consumption of a singular block within the processor is typically model as

Pb(t) = Pdyn,b(t) + Plkg,b(t) + Pbase,b(t), (2.4)

where Pdyn,b(t), Plkg,(t), Pbase,b(t) are functions describing the dynamic, temperature-

dependent leakage, and baseline or static power components respectively for a given

block, b. The total system power consumption can then be represented as a sum of

the power consumptions for all B blocks on the system.

Psys(t) =
∑
b∈B

Pb(t). (2.5)

2.3.1 Dynamic Power

Dynamic power is known to vary linearly with clock frequency, sb(t) and quadrat-

ically with operating voltage, vb(t). That is, the dynamic power of block b at time t

can be modeled by the following:

Pdyn,b(t) = ab(t)sb(t)vb(t)
2,∀b, t (2.6)

where ab(t) represents the activity factor of block b. In practice this value changes over

time in relation to the workload characteristics. For example, a workload performing

a large number of memory operations will exhibit a different power profile than a

workload with purely ALU based operations. However, it is challenging to determine

the form of ab(t) in practice, and more-so to predict the value of ab(t) in the future.

Prior literature typically simplifies the issue by assuming a static form such as a
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Figure 2.5: Dynamic CPU current draw vs. IPC for selected workloads. Battery
voltage held constant at 4.33V.

constant value (ab(t) = Ab,∀t) or proportional to the instructions-per-cycle of the

block (ab(t) = AbIPC(t)). However, such a simplistic form does not properly capture

the variations between different workloads [48].

To illustrate this deficiency, the power and performance characteristics of several

workloads were examined running on an actual mobile device – the Google Pixel

housing the Qualcomm MSM8996 Pro system on chip. The frequency was fixed at

1.2864GHz and the operating temperatures of the cores where verified to be approxi-

mately the same (between 40°C and 45°C). The system current draw is monitored and

recorded at a rate of 5000 samples per second using the Monsoon Power Monitor and

averaged the samples over the course of the workloads execution. Additionally, the

instructions per cycle were recorded using on-chip performance counters. Figure 2.5

shows the relationship between IPC and current draw. From this it can clearly be

seen that dynamic power is not simply proportional to IPC alone and thus a more

sophisticated prediction mechanism is needed to accurately capture the workload’s

power characteristics. In Chapter 4, a novel methodology is presented to represent

a(t) as a stochastic value based on workload characteristics visible via hardware and

software performance counters and on chip-temperature sensors.
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2.3.2 Leakage Power

The second component of power consumption, leakage power, is exponentially

dependent on the temperature conditions of the SoC. The exact equation to represent

leakage power is hard to derive analytically; however, many works have attempted to

produce a surrogate approximation model that can be fitted using simulation. In the

case of 65nm technology, the authors of [52] propose the following empirical model:

Plkg,b(t) = k1
bvb(t)T

2
b (t)e

αbvb(t)+βb
Tb(t) + k2

be
(γbvb(t)+δb),∀b, t. (2.7)

where k1
b , k

2
b , αb, βb, γb, and δb are parameters that depend on circuit topology, size,

technology and design.

Along with the non-linearity of this leakage model and the difficulty of fitting the

model parameters, a major limitation of (5.5) is the cyclical relationship with (2.3) in

regards to temperature. In order to solve (2.3) and (5.5) directly, numerical solutions

for non-linear analysis are necessary therefore making temperature and power predic-

tion computationally inefficient and difficult to use in practice. Alternatively, one may

de-couple the thermal dependency by representing leakage power as a piecewise-linear

model in temperature and voltage [12]

Pb,lkg(t) = P 0
b,lkg +GT

b Tb(t) + kvbvb(t),∀b, t (2.8)

where GT
b is the temperature coefficient associated with temperature T and kvb is the

voltage coefficient associated with voltage v. P 0
b,lkg represents the leakage power for

block b such that Tb = 0 and vb = 0 (i.e. the ambient temperature and the minimum

voltage). Therefore, (2.3) can be rewritten as

dT (t)

dt
= ÂT (t) +BP̂ (s,v,T , t) (2.9)

32



where

Â = A+ B̂GT , (2.10)

P̂ (s,v, t) = P (s,v,T , t)−GTT (t) (2.11)

and GT is a vector comprised of each block’s GT
b value. Thus the cyclical dependency

between power and temperature is removed. Evaluation of the temperature and

leakage power can be done efficiently as both are represented using a set of linear

equations.
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Chapter 3

AN OFFLINE APPROACH TO IMPROVING SMARTPHONE USER

EXPERIENCE BY BALANCING PERFORMANCE AND ENERGY WITH

PROBABILISTIC QOS GUARANTEE

As discussed in Chapter 1, user satisfaction is pivotal to the success of a mobile ap-

plication. It has been shown that 49% of users would abandon a web-based application

if it failed to load within 10 seconds. At the same time, it is imperative to maximize

energy efficiency to ensure maximum usage of the limited energy source available to

smartphones. In Chapter 2 the concept of non-deterministic execution times was

introduced. This is an important factor to consider, that has been previously ne-

glected by prior literature. When considering system non-determinisms, modeling

frameworks must take special considerations to the various stochastic quantities. Ad-

ditionally, this changes the nature of the objective function and the constraints of the

underlying optimization problem. In this chapter, an approach is presented for the

optimal energy control of mobile applications running on modern smartphone devices,

focusing on the need to ensure a specified level of user satisfaction. The proposed

approach uses a novel framework in which statistical models are used to address both

single and multi-stage applications. These models are then used for offline system

analysis and in the formulation of an optimization problem, the solution to which is a

static, lightweight controller that optimizes energy efficiency of mobile applications,

subject to constraints on the likelihood that the application execution time meets

a given deadline. The proposed models and corresponding optimization method are

validated using three common mobile applications running on a real Qualcomm Snap-

dragon 8074 mobile chipset. The results show that the proposed statistical estimates

34



of application execution times are within 99.34% of the measured values. Addition-

ally, on the actual Qualcomm Snapdragon 8074 mobile chipset, the proposed control

scheme achieves a 29% power savings over commonly-used Linux governors while

maintaining an average web page load time of 2 seconds with a likelihood of 90%.

3.1 Problem Background: The Need For QoS Aware Control of Mobile Devices

Over the past decade, a large body of research has been published on optimizing

energy efficiency [53, 54, 10, 8, 55, 56, 57, 58, 59, 60]. However, most, if not all

of the work, have assumed that the underlying quantities (e.g., execution times)

are deterministic. In [11], Isci et al. considered voltage and frequency (DVFS) as a

means to dynamically tune a processor’s power consumption based on an application’s

computation and memory characteristics. Others considered thermal constraints and

leakage power when optimizing energy efficiency [61, 62, 63, 64, 14, 17].

While most of the prior works focus on optimizing system energy efficiency for the

application domain of chip-multiprocessors (CMPs), a few more recent works have

proposed energy efficiency optimization algorithms for user-centric, interactive smart-

phone applications. Egilmez et al. [15] and Singla et al. [16] proposed temperature-

aware energy efficiency optimization while Zhu et al. [18] focused on meeting interac-

tive application QoS. Egilmez et al. [15] specifically aimed at user satisfaction through

DVFS-based control knobs to maintain a low and comfortable temperature. Singla

et al. [16] developed power and thermal models for a modern mobile platform and

proposed a closed loop thermal control to adjust processor frequencies. Zhu et al. [18]

proposed eQoS to improve the energy efficiency of web browsers for smartphones

while meeting certain QoS constraints.

Although the problems addressed in the existing literature are complex in and of

themselves, they have assumed that the execution time of an application is determin-
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istic. In reality, execution times vary substantially, depending on the continuously

varying states of the system. This is due to factors such as operating system (OS)

preemption events, page faults, system interrupts, processor pipeline stalls, branch

prediction, cache misses, context switches, data input variations, network delays, etc.

While considering only the average case may result in higher energy efficiency on aver-

age, not accounting for the variations in execution time can lead to situations where

user satisfaction is poor. For these reasons, the execution time of an application

must be modeled as a stochastic value, whose distribution ideally should depend on

the control variables (voltage and frequency) and other parameters that capture the

characteristics of the data and the computing devices. With this paradigm change,

the constraints in the optimization problem can no longer be simply viewed as being

satisfied or not being satisfied, but instead must be expressed as a likelihood of being

satisfied.

3.2 Problem Statement and Novelty

In this dissertation, a novel approach is presented which aims to improve mobile

user experience by balancing performance and energy with a probabilistic guarantee

of QoS. The approach is based on modeling the execution time of applications as

stochastic quantities. Each application consists of some number of computational

segments or basic units of computation (UoC), with each UoC being mapped to a

core. Variations in execution times are due to different sources of interruptions in

the normal flow of computation, as well as intrinsic variations in the complexity of

the data being processed. Note that the notion of a UoC varies among applications.

First, a hypothesize is presented providing a closed form representation (distribution

function) of the execution times of UoCs, and then experimentally validated. The

hypothesized model parameters are functions of the control variables (e.g., voltage
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and frequency), as well as characteristics of the data being processed (e.g., complexity

of the web page component being processed); a necessary condition for application-

aware dynamic energy management.

The model of the total execution time of an application depends on how its con-

stituent UoCs are mapped to the cores. For example, some applications have indepen-

dent UoCs executing in parallel on separate cores, while in others, the UoCs interact.

This leads to different ways of modeling the total execution time for different applica-

tions. The proposed statistical models are used in the formulation of an optimization

problem, the solution to which is a static, lightweight controller that optimizes en-

ergy efficiency of mobile applications, subject to constraints on the likelihood that the

application execution time meets given deadlines.

The statistical models for single and multi-stage applications and the design of

the controller are demonstrated on three commonly used smartphone applications:

web browsing, image similarity search, and video playback. This is performed on

two different real platforms: an Intel Quad-Core Sandy-Bridge (SNB) processor and

a Qualcomm Snapdragon 8074 chipset-based mobile device. The results show that

the proposed statistical estimates of application execution times are within 99.34%

of the measured values. Next, an application case study is presented for which these

estimates are applied to select the frequency setting when accounting for device energy

efficiency and an execution time deadline. Our proposed optimization achieved a 29%

power savings over commonly-used Linux governors while maintaining an average

web page load time of 2 seconds with a likelihood of 90%—a quality that the Linux

governors do not consider. This dissertation achieves similar findings for the other

mobile applications: image similarity search and video playback.

In summary, this dissertation proposes an accurate execution time model that

provides a quantative measure of the likelihood of meeting a deadline – an overlooked
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dimension of execution time modeling. To demonstrate the importance of the devel-

oped model, a model is built for a modern, high-performance real smartphone device

to improve user experience while providing a probabilistic guarantee on QoS. By do-

ing so, on average the QoS is improved by 2.18x at a cost of a 25% degradation in

power efficiency when compared to the optimal energy efficiency setting.

3.3 Problem Description

In this section, some basic terminologies are introduced and a precise statement of

the optimization problem is made. Then, two different scenarios are described which

fit into the general optimization framework, but with different models of execution

time.

An application consists of a collection of basic UoCs, each of which is mapped

to a core. For instance, a web browser receives an HTML document that consists of

a number of URIs (Uniform Resource Index). The URIs are queued, processed and

ultimately displayed on screen. Therefore, in this instance, a UoC would simply be

a URI or a collection of URIs. In a video playback, a UoC refers to a single video

frame that undergoes several stages of processing before it is displayed.

The execution time of a UoC on a single core is a random variable τ , with a

distribution function Fτ (x | s) = Prob(τ ≤ x | s), where s represents the core

frequency. In general, the distribution function can also include a set of uncontrollable

parameters that affect the execution time, reflecting the complexity of the data being

processed. Examples of such parameters would be number of URIs or the complexity

of URIs in a webpage as well as the operating frequencies of each processor core. Note

that in general the core voltage setting is determined by the frequency, and hence this

dissertation considers only the core frequency as the main control variable.

This dissertation limits its study to the situation where only one foreground ap-
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plication is being executed at a given time. Currently, this seems to be the most

common application use case on smartphones; however, Fτ (x | s) can be extended to

handle multiple applications with enough training to expose the variability caused by

the interfering applications. For example in [65] (deterministic) the execution time is

parameterized as a function of the memory interference due to concurrently running

applications. Similarly, one could define the execution time pdf parameters to be

functions of the memory interference.

A given dataset (e.g., a webpage or a video frame) is a collection of UoCs,

U1, U2, · · · , Un, whose corresponding individual execution times are independent ran-

dom variables τ1, τ2 · · · τn, with distribution function Fτ . In a CMP with n cores, let

Zn(s) denote the total execution time of an application, where s denotes the vector

of core frequencies. The relation between Zn(s), and the execution time of the UoCs

that make up the application depends on the application and how they are mapped

onto the cores. For instance, if all its UoCs execute concurrently and independently,

then Zn(s) would be the maximum of the individual execution times, whereas in the

case of a single core Zn(s) would be the sum of the individual execution times.

The objective function to be maximized is energy efficiency, also referred to as

performance-per-watt, denoted by E (PPW (s)), where E(·) denotes the expected

value. PPW is the ratio of the performance to power, and performance is simply the

reciprocal of the execution time. The measure of performance depends on the specific

application, but is in general, a function of all the core frequencies s. In the case of a

video playback, PPW (s) would denote the average number of fps per Watt, and in

the case of a web browser, it would be the number of webpages displayed per second

per Watt. Hence, PPW denotes the number of items processed per joule of energy.

Let ∆ denote a deadline and Q ∈ (0, 1) denote a lower bound on the likelihood of

satisfying the given deadline. Then, with these notations, the optimization problem
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can be stated as follows:

max
s

E (PPW (s)) (3.1)

s.t. FZn(s)(∆|s) = Prob(Zn(s) ≤ ∆) ≥ Q. (3.2)

A naive approach to solving the above optimization problem would be to experi-

mentally evaluate the application program at all combinations of per-core frequencies.

Given the large number of available frequency settings in modern processors and the

increasing number of cores in the application processor, a brute force evaluation for

identifying the optimal frequency combination for all cores is infeasible. For example,

there are fourteen available frequency settings per core in the Qualcomm Snapdragon

chipset (ranging from 300MHz to 2.15GHz). For an Octa-core application processor,

it requires 148 experiments to determine the frequency combination that maximizes

system energy efficiency for any application. For this reason, the more sophisticated

modeling mechanisms presented herein, are needed. The proposed approach addresses

two distinct scenarios, one where all the cores are operating concurrently and inde-

pendently, and the other where there are interactions among the cores. These two

scenarios require a different approach to modeling the execution times.

While this dissertation only examined core frequencies due to the lack of control

over other SoC components (GPU, DSP, etc.), incorporating accelerators will require

no changes to the models presented. It is only necessary to monitor the runtime of

the code segment(s) offloaded and develop probability distributions as a function of

their controls.
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Figure 3.1: Illustrations of three types of application to core mappings: (a) single-
thread, single core; (b) parallel computations, independent cores; (c) parallel compu-
tations, interacting cores.

3.4 Execution Time Models

3.4.1 Computations on a Single Core

To begin this section, evidence will be provided that supports the need to model

execution times as random variables. As stated earlier, during the course of execution,

flow of computation will be subjected to numerous interruptions, which contribute to

its execution time. To better understand the sources of interruptions, consider the ex-

periment briefly discussed in Chapter 2. That is, an experiment was conducted on the

Intel SNB processor1 in which the architectural sources of interrupts were monitored

using the available performance counters on the processor [42] (the complete method-

ology is detailed in Section 3.6). It is important to note, that the severity of each

source of delay can vary greatly. The focus of this dissertation is on the performance

of web page rendering (web pages are loaded offline) and thus network delay is not

1The Intel SNB processor was selected over other platforms due to the availability of advanced

performance counters to measure the numerous sources of delays. While the mobile platforms may

have some performance counters, the available information is not sufficiently detailed as that given

by the Intel SNB processor. Although the parameters of the distributions may change from platform

to platform, the underlying distributions will not.
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Figure 3.3: An illustration of the effect of interruptions to the execution flow of an
application.

included. That said, network delay is not necessarily the dominating factor on mobile

phones. A study from [44] showed that under a 2Mbps network connection halving

the CPU frequency results in a 50%-100% increase in the page load times, thus the

bottleneck becomes the client CPU. To avoid the correlation between cores, all but

one application processor core is disabled. The Firefox web browser was executed,

along with the eleven most visited web pages from the BBench suite [43], includ-

ing Amazon, BBC, CNN, Craigslist, eBay, ESPN, Google, MSN, Slashdot, Twitter,

and YouTube. The various sources of delays were monitored during the course of

the eleven webpage loads. This was repeated 1,500 times, and the execution times

and the associated delays incurred in the processor and the memory subsystem were

recorded. Table 3.1 shows the statistical information gathered from the experiment,

and Figures 3.2(a-h) show the histograms of the durations of each of the monitored

sources of interruptions. The data clearly demonstrates a substantial variations in

the durations of different types of interruptions. In particular, the standard deviation

of the total execution time (0.2117) is about 38% of the mean.

The interruptions to the execution flow can be viewed as intervals of idle pe-

43



Table 3.1: Summary of Sources of Delays
Mean Std. Deviation Min

Execution Time (s) 0.5532 0.2117 0.2862

Source of delay Mean Std. Deviation Min

L2 Cache Stalls (s) 0.0828 0.0048 0.0276

L1 Cache Stalls (s) 0.1651 0.0095 0.0546

LB Stalls (s) 0.0012 0.0001 0.0003

SB Stalls (s) 0.0063 0.0005 0.0020

Full IQ Stalls (s) 0.0326 0.0021 0.0116

FPU Stalls (s) 8.80E-8 6.71E-9 3.51E-8

ROB Stalls (s) 0.0008 0.0002 0.0007

Branch Stalls (s) 0.0858 0.0049 0.0280

riods, whose endpoints are random points in time, and whose lengths are random

variables. Thus the total execution time may be viewed as the sum of the minimum

execution time (not random, but unknown) and the total duration of all the inter-

ruptions. A model for sum of random interval lengths often used in the literature is

the Gamma distribution [66]. Figure 3.4 shows the histogram of the total execution

of the web browser compared to a 3-parameter Gamma distribution. It shows that

the Gamma distribution provides an adequate model to explain the variations in the

total execution time for this application on a single core. Note that the dependence

of the probability distribution function (pdf) on the core frequency will be modeled

by relating it to the parameters of the Gamma distribution.

The pdf of the Gamma is given by

fX(s)(x) = Gamma(x;K(s), θ(s), λ(s))

=
1

θ(s)Γ(K(s))

(
x− λ(s)

θ(s)

)K(s)−1

, (3.3)

s is the core frequency, K(s) is the shape parameter, θ(s) is the scale parameter, and

λ(s) is the left endpoint or minimum value of X(s). The mean µ(s) and variance

σ2(s) of the distribution are given by: µ(s) = K(s)θ(s) and σ2(s) = K(s)θ2(s).
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Figure 3.4: Histogram of execution times of an application running on a single core,
compared to a pdf of a 3-parameter Gamma pdf.

It is important to note that the parameters K(s), θ(s), and λ(s) are modeled as

functions of the core frequencies s. This provides a simple and effective means to relate

the distribution function of the execution times to the core frequencies. In addition,

it is also possible to make K and θ depend on application specific parameters. For

instance, for web browsing we could include quantifiable characteristics of the web

page such as the number of URIs and the types of objects in the URIs that affect

the execution time. In this way, the execution time of a browser in processing a web

page can be made sensitive to the complexity of the webpage.

3.4.2 Parallel Computations, Independent Cores

In this section, the execution time model of an application in which the UoCs

are executed in parallel, and independently on multiple cores is described. Although

the description is based on a specific multi-threaded web browser, it is easily made
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applicable to other browsers and data parallel applications.

To load a web page, a browser must process a collection of URI elements. The web

browser analyzes the collection of URI elements in a page and determines a subset

of elements to be serviced by a secondary instance of the browser, assuming it deems

the subset of elements to be “sufficiently complex”. The servicing of this subset of

URIs mapped to an application processor core denotes a unique UoC with its own

execution time distribution. This process can be repeated until all URI elements are

assigned a UoC. In practice the web pages of most web sites are partitioned to 1 or

3 UoCs.

With this view, the total time to load a page will be the latest completion time

among all the UoCs. Thus if a page results in N UoCs, each mapped to a core, and

the execution time of UoC n is a random variable τn, whose distribution function at

a given core frequency sn is given by (3.3), the total execution time will be ZN(s) =

maxNn=1τn(sn), where sn is the core frequency at which UoC n is processed. The

distribution function of ZN(s) is given by

FZ(s)(z) =
N∏
n=1

Fτn(sn)(z). (3.4)

3.4.3 Parallel Computations, Interacting Cores

The previous sections described how the execution time of independent UoCs

can be accurately modeled as simple functions of one or more independent random

variables. While this is perfectly suitable to model many applications, there are many

others in which UoCs possess a pipelined data flow structure such as image similarity

search and video playback. In this section, it is described how to model the execution

time of a collection of UoCs constituting an application, running in parallel on a

network of interacting cores, where the network is a cascade of stages.

The naive approach is to model the total execution time of the application as
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the sum of execution times of the stages. This leads to very pessimistic results

(demonstrated in Section 4.5, see Figure 3.7) due to the fact that it doesn’t accurately

model the temporal dependencies among stages. A more appropriate model is the

mathematical framework of Network Calculus [32] that can be used to describe the

computation as flows of data through a network. With nodes exhibiting statistical

variations in their execution times, the flows, which are represented by functions of

time, are now stochastic processes (as opposed to simple random variables). Here it

is described how the combination of network calculus and probability calculus can be

used to predict the execution time of parallel interacting tasks.

In its original formulation, Network Calculus (NC) was aimed at modeling deter-

ministic queuing systems for computer networks and is analogous to system theory

used in circuit analysis and other domains. It captures the intricacies associated with

buffering systems and pipelining in networked systems. The fundamental distinguish-

ing feature of NC is the use of min-plus algebra as the basis for its calculations. As

such, data flows are modeled as non-decreasing functions of time.

NC works on the notion of an observable node or system, S, and derives properties

(e.g., backlog, delay, etc.) based on the flow of data entering, exiting, and being

serviced by the node. S in the present case is a cascade of one or more nodes. The

flows are represented by the non-decreasing functions I(t), O(t), and S(t) which are

defined as follows.

� I(t) – the total amount of data which has entered S during the interval [0, t).

� O(t) – the total amount of data which has exited S during the interval [0, t).

� S(t) – the service curve of system S. This curve represents a lower bound on

the total amount of data which could be serviced during the interval [0, t).

The goal of this section is to provide a method to compute the pdf of O(t), the

throughput of a system, denoted by fO(t)(x). In the case of a pipelined computation
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𝐼 𝑡 =  
𝑟𝐼𝑡 + 𝑏, 𝑡 ≤ 𝑇1

𝑋𝑀𝐴𝑋,    𝑡 > 𝑇1
 

𝑆 𝑡 = 𝑟𝑂𝑡 

𝑂 𝑡 = 𝑥 𝑡 ⊗ 𝑆(t) 

=  
𝑟𝑂𝑡,      𝑡 ≤ 𝑇2

𝑋𝑀𝐴𝑋, 𝑡 > 𝑇2
 

𝐼 𝑡  𝑆 𝑡  𝑂 𝑡  

time 

data 

𝑇1 

𝑋𝑀𝐴𝑋 

𝑇2 

𝑇2 = 𝑋𝑀𝐴𝑋/𝑟𝑂 

Figure 3.5: A classical network calculus example, the leaky bucket. The leaky
bucket drains water via a hole in the bottom at a constant rate, rO (i.e. the service
characteristics of the system). The system receives an input flow of rIt+ b until time
T at which time no more flow is received. The output flow can therefore be calculated
via min-plus convolution of the service curve and the input curve.

flow, this would be the pdf of the output curve of the last stage. The output flow of

a system with a given service curve and input flow is given by

O(t) = I(t)⊗ S(t), (3.5)

where ⊗ represents the min-plus convolution operation, defined by

O(t) = inf
0≤τ≤t

(I(s) + S(t− τ)). (3.6)

Figure 3.5 illustrates a classical example of this operation.

NC provides an algebraic representation of concatenation of simple systems to

form a complex networked system. As in system theory, this greatly simplifies the

calculation of flows between multiple connected systems. Consider the situation in

which two systems S1 and S2 possess service curves S1(t) and S2(t) respectively.

Additionally, S1 has input flow I1(t) and output flow O1(t) while S2 has input flow
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I2(t) and output flow O2(t). The outflow of the cascade of S1 and S2 is given by

O2(t) = I1(t)⊗ S1(t)⊗ S2(t). (3.7)

Distribution of the Service Process S(t)

In deterministic systems, a service process is a monotonic function which describes

the potential cumulative output of the system given that the system is never starved

for input. In other words, it is akin to the impulse response function in system

theory. When extending into systems with non-determinism, a single service curve

no longer represents the system. More precisely, it is a stochastic process, which is

an infinite, non-denumerable set of service curves, as illustrated in Figure 3.6. At

each fixed time t, the sampled space of outcomes are the points on all the curves at

time t, representing the random variable S(t). The objective now is to compute the

distribution of the output variable O(t) given by Equation 3.6, in terms of the input

random variables I(t) and the service random variable S(t). One may view this as

pdfs being propagated through the network to finally compute the pdf of the number

of UoCs processed at the system output for each t.

Let S(t | s) denote the service curve of some stage, which represents the number

of UoCs processed in the interval [0, t). It is assumed that a stage is synonymous with

a core, whose frequency is s. Let Tn(s) denote the time to process n UoCs by a stage.

Tn(s) is equal to the sum of the times to process each UoC. Then using the previous

notation, let X(s) be the random variable that represents the time to process one

UoC by the given stage. The pdf of X(s) is given by Equation (3.3). The the pdf of

Tn(s) is then given by

fTn(s)(t | n, s) = fX(s) ∗ fX(s) ∗ . . . ∗ fX(s)︸ ︷︷ ︸
n-fold convolution

. (3.8)

Distribution of the Output Process O(t)
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Figure 3.6: An illustration of Service curve S(t) being a stochastic process. Each
trial represents the algorithm being executed under the same input and system con-
trols; however due to random system variations, the service times can vary, thus the
observed output process can vary from trial to trial. At each t, the set of points on
all the possible (infinite) curves represents the sample space of the random variable
S(t).

Consider the situation of a single UoC running on a core at frequency s, with an

input flow, I(t), service curve, S(t | s), and output flow, O(t | s). The computation

of O(t | s) given by Equation 3.6 is approximated by partitioning the time interval

into a discrete set of time points (0, t1, t2, . . . tr = t).

O(t | s) = min
τ∈(0,t1,t2,...tr)

I(τ) + S(t− τ | s) (3.9)

= min {I(0) + S(t), I(t1) + S(t− t1 | s),

· · · , I(ti−1) + S(t− ti−1 | s)}

The density of each sum within the min, i.e. I(tk) +S(t− tk | s), is computed by the

convolution of the individual densities. The density of the minimum of some n random

variables, is approximated by iteratively computing the density of the minimum of
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pairs of random variables, which is given by

fmin(U,V )(x) = fU(x) + fV (x)

− fU(x)FV (x)− FU(x)fV (x). (3.10)

For an N stage pipeline, the distribution of the output process of the Nth stage,

namely ON(t | s), is of interest. Equation 3.9 is expanded, with the output process of

the stage i serving as the input process for stage i+ 1. Then the resulting expression

will be the minimum among a potentially large number of service curves, along with

the distribution of the initial I(t), which is assumed to be known. The distribution

function of such a minimum has to be computed numerically, using the approximation

given in Equation 3.10.

In summary, estimation of execution times is done by numerically computing its

distribution using Equation 3.3 or computing fON (t)(x | s) using the approximation

given in Equation 3.10, depending on whether it is a collection of independent UoCs

running on cores or a pipeline computation.

3.5 Power Model

A vital part of the optimization process is accurate power models. This is dis-

cussed in Chapter 2; however, is summarized below for completeness’ sake. Power is

represented as the sum of the dynamic power Pdyn, the leakage power Plkg and static

system power Pstc. While Pstc represents a constant offset, the dynamic power varies

linearly with the clock frequency, as a circuit is operated only when the clock is high,

while dynamic power varies quadratically with the voltage, as power of a transistor

is the product of transistor current and voltage, and current of a transistor is also a

function of voltage. The components of the dynamic power vector are expressed as

Pdyn,c,b(t) = Pmax
dyn,c,b(t)sc(t)v

2
c (t), ∀c, b, t (3.11)
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where Pmax
dyn,c,b is the dynamic power dissipated by block b of core c when the core is

at the maximum speed and voltage. Pmax
dyn,c,b is obtained by profiling the time-varying

power consumption of the task to be run on core c.

The leakage power is known to have exponential dependence on the die temper-

ature and supply voltage. The exact equation is hard to derive analytically. Hence

it is usually derived based on data fitting of the simulated power values for various

components like adders, multipliers, memories, etc. An example empirical equation

for leakage power in 65 nm is given [52].

Plkg,c,b(t) = k1
c,bvc(t)T

2
c,b(t)e

αc,bvc(t)+βc,b
Tc,b(t) +

k2
c,be

(γc,bvc(t)+δc,b),∀c, b, t. (3.12)

k1
c,b, k

2
c,b, αc,b, βc,b, γc,b, and δc,b are parameters that depend on circuit topology, size,

technology and design. It should be noted that (3.12) can be simplified to a piece-wise

linear approximation as shown in [55]. Thus, the following model is used to estimate

leakage power for each core/block on the processor.

Plkg,c,b(t) = Plkg0,c,b +GT
c,bTc,b(t) + kvc,bvc(t),∀c, b, t. (3.13)

where GT
c,b and kvc,b represent the temperature and the voltage coefficients. Plkg0,c,b

represents the leakage power for block b in core c corresponding to Tc,b = 0 and vc = 0

(i.e. the ambient temperature and minimum voltage).

3.6 Experimental Setup

The proposed models and methodology were evaluated on real platforms. In this

section, the setup is presented for the experiments and the validation results for the

execution time and power models, evaluated on real platforms.
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3.6.1 Real-Device Experimental Platform

The experiments were conducted on two different platforms: the Intel Quad-

Core SNB processor and a DragonBoard development board based on the Qualcomm

Snapdragon 8074 chipset. The Intel SNB processor includes four cores, each of which

has a private L1 instruction cache (32KB), a private L1 data cache (32KB), and a

private unified L2 cache (256KB). All four cores share the last-level cache of 6144KB.

The frequency settings available in the Intel SNB processor range from 0.8GHz to

2.1GHz in steps of 100MHz. Since this processor is not a mobile chipset, it is only

used in the event when detailed performance counters are needed (see Section 3.4).

On the other hand, the Qualcomm Snapdragon 8074 chipset, which is in the US

versions of Samsung Galaxy S5 smartphones and many other modern smartphone

devices, is used for all results presented in the evaluation section (Section 3.7). It has

four 2.15GHz cores with independent frequency control. Each core hosts a private

L0-cache (4KB) and L1-cache (16KB). All cores share a 2MB L2 cache. Since the

Dragonboard offers no onboard power sensors, an NI DAQ unit was used with a 1MHz

sampling rate for current and voltage measurements. The readings were taken after

AC to DC conversion.

Table 3.2: Parameters for the DragonBoard Experimental Platform.

Cortex-A15

Architecture ARM v7, Krait

Frequency 0.3-2.15GHz

L0 Cache Size 4KB I & 4KB D

L1 Cache Size 16KB I & 16KB D

L2 Cache Size 2MB
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The experimental platforms run a rooted Android 4.4 KitKat OS. The applications

of interest web browsing [67], image similarity search [68], video playback [69], were

written in C and cross-compiled on the host machine with the ARM-Android NDK

toolchains [70]. The binary is pushed to the device and is launched from the host

machine via the adb terminal.

3.6.2 Benchmark Applications

Three applications common to the mobile domain were evaluated. The first is

web browsing. Following [71], a web page is viewed as a collection of elements (or

URIs) which are then serviced by the browser’s threads. Each thread is treated as an

independent server and acts in parallel with other threads. The specific web browser

was Firefox. Minor modifications were made to the source code in order to observe the

service time of each web page and each URI, to compute the empirical distributions.

The BBench 2.0 benchmark [43] was used as it contains a collection of the eleven

most widely viewed webpages. It should be noted that this benchmark is limited to

offline browsing due to the limitations of implementing timing analysis code into the

web pages. Although not explored in this dissertation, it is possible to capture the

effects of network delay by either (1) decreasing the value of δ by the expected value

of the network delay or (2) model the network as UoC cascading into the remainder

of the stages. Effectively this creates an arrival process for the web browser. The

second approach is explored in more detail in [72]. That said, network delay is not

necessarily the dominating factor on mobile phones.

The second application was image similarity search, which is an image similarity

ranking algorithm from the PARSEC benchmark suite [68]. The algorithm is used

for content-based similarity search of feature-rich data, such as images or videos, and

is an important building block for many image recognition and augmented reality
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Apps running on modern smartphones or Google Glass-like devices. The algorithm

consists of six stages of processing. Given an image, image similarity search searches

a database of images to find the closest match. After the image is loaded, it is

first fragmented into segments based on its contents. Then the feature extraction

stage assigns each fragment a numerical feature vector. Finally this feature vector is

compared against a central database and the most similar results are produced as the

output. Minimal source code modifications were made to control binding of specific

threads to cores in order to reduce variability in testing and to ensure that the proper

cluster of cores were being tested. The load/input, feature extraction, and output

stages were bound to the same core due to their relatively light computation, whereas

the segmentation, indexing, and ranking stages were each mapped to an individual

core. The application was run with the sim-large input set.

The third application, was a video playback, implemented as a data parallel stream-

ing application. The open source VLC video player is used after making minor modi-

fications to the source code in order to observe the per-frame service time and to con-

struct the empirical distributions. The workload was selected from MobileBench [73].2

Hardware acceleration was disabled so that all video decoding was done by the ap-

plication processor. The choice was made for two reasons: (1) reaching 30 fps with

GPU assisted acceleration would be trivial, and (2) the platforms provide a greater

level of control over the application processor, including per-core DVFS in the case

of the Snapdragon chipset.

2Although all input files were evaluated, only results for big buck bunny 720p stereo.avi is

reported as these are the few formats that require significant amount of rendering time (i.e. obtaining

60 FPS was not trivially done at the lowest speed).
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3.6.3 Validation of Execution Time and Power Models

This section demonstrates the appropriateness and value of NC model for modeling

the execution time of a pipeline that involves interacting cores. Figure 3.7 plots the

expected execution time for image similarity search that was obtained using the

proposed statistical models in combination with NC, and the actual measured values

on the Intel SNB processor. It also shows the results of the naive approach, which is

simply the sum of the execution times of each stage. The experiment demonstrates

the value and accuracy of the proposed approach. The naive approach is a significant

overestimate of the actual execution time, which would result in a suboptimal solution

of core frequencies when attempting to maximize performance or energy efficiency. It

is due to the fact that a simple summation does not account for the overlapping of

computations involving different data sets. On average, difference between the model

predicted execution times and the observed values were less than 0.66%. The average

error using the naive approach was 26%.

The parameters of the model of power described in Section 3.5, were estimated

using data gathered from synthetic benchmarks aimed to stress the various portions

of the microarchitectural and memory components. 2000 samples of power data were

collected while running image similarity search. The average difference between the

model predicted power and measured values was 1.72%.

3.6.4 Optimal Selection of Core Frequencies

The key component of the model creation is that only the independent tasks are

characterized. This avoids a full experimental exploration of the state space such that

each core only needs to be evaluated at each frequency (rather than evaluating the

system at every possible frequency-core combination). This was used to construct the
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Figure 3.7: Predicted versus measured execution time of the image similarity search
application on Intel SNB quad core processor.

individual densities fτ(s)(x;K(s), θ(s)) (Equation 3.3) for each of the service threads.

With each fτ(s)(x;K(s), θ(s)), the statistical model was used to compute the joint

distribution of multiple random variables, where each corresponds to a core at an

individual frequency. For the web browser and video playback, the joint distribution

was computed using Equation 3.4. For image similarity search the joint distributions

were computed using the NC approach described in Section 3.4.3.

To find the appropriate optimal frequency combination to solve Equations 3.1–3.2

an exhaustive enumeration of the operating frequencies was performed. The problem

can then be resolved for various levels of QoS and stored in a table. This table is then

used at run time to select the optimal frequency. While this a fairly heavy overhead

(in our case 4 cores, 14 frequencies), it is a one-time static analysis which can bring

significant improvements in energy efficiency (see Section 3.7).
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Figure 3.8: PPW scores of all frequency governors. Higher is better.

In terms of practicality, our current method is very similar to characterizing a

standard cell for a VLSI library. For minor application updates or platform differ-

ences, the old models could be used. However, the exact loss of efficiency is difficult

to quantify. Additionally, much like a standard cell needs to be re-characterized for

different process technologies, our model needs to be constructed on a per-device ba-

sis or given significant application changes. While this is a limitation, the authors

of this dissertation believe that the resulting increase in energy efficiency makes the

process worthwhile. That said, one of our current efforts is to adapt the methodology

to different platforms.

3.7 Case Study of Balancing Performance and Energy with Probabilistic

Guarantee of QoS

In this section, the results of using the proposed methodology to maximize the

PPW are compared against several standard schedulers available on Android OS:

powersaver, performance, and interactive [74]. As stated earlier, the QoS = (∆, Q), is

a composite metric that includes both the deadline ∆ and the likelihood Q (see Equa-

tion 3.2). For the following experiments, to ensure a high level of user satisfaction, Q

is set to 0.9. That is, the selected frequencies should be such that the probability of

meeting the deadline ∆ is at least 0.9. For this set of experiments, since Q is fixed,

QoS is effectively the same as the deadline ∆. For each application two levels of QoS
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Table 3.3: Performance of several frequency governors on various mobile applica-
tions.

Web Browsing

Governor Req. QoS Freq. Vector Obs. QoS Power PPW

Lower is better Lower is better

Powersave — 300MHz, 300MHz, 300MHz, 300MHz 7.55 Sec 0.90 W 0.15

Performance — 2.15GHz, 2.15GHz, 2.15GHz, 2.15GHz 0.97 Sec 4.99 W 0.21

Interactive — varies over time 1.52 Sec 3.56 W 0.20

High QoS 2.0 Sec 1.72GHz, 1.57GHz, 1.57GHz, off 1.36 Sec 2.76 W 0.27

Low QoS 4.0 Sec 1.26GHz, 960MHz, 960MHz, off 2.12 Sec 1.61 W 0.29

Max Energy Eff. — 960MHz, off, off, off 4.24 Sec 0.75 W 0.32

Image Similarity Search

Governor Req. QoS Freq. Vector Obs. QoS Power PPW

Higher is better Higher is better

Powersave — 300MHz, 300MHz, 300MHz, 300MHz 0.84 Images/Second 0.85 W 0.99

Performance — 2.15GHz, 2.15GHz, 2.15GHz, 2.15GHz 6.06 Images/Second 5.42 W 1.12

Interactive — varies over time 6.05 Images/Second 4.96 W 1.22

High QoS 4 Images/Second 652MHz, 422MHz, 422MHz, 1.49GHz 4.22 Images/Second 3.32 W 1.28

Low QoS 2 Images/Second 422MHz, 422MHz, 300Mhz, 960MHz 2.05 Images/Second 1.94 W 1.39

Max Energy Eff. — 422MHz, 422MHz, 300MHz, 960MHz 2.05 Images/Second 1.94 W 1.39

Video Playback

Governor Req. QoS Freq. Vector Obs. QoS Power PPW

Higher is better Higher is better

Powersave — 300MHz, 300MHz, 300MHz, 300MHz 22.4 FPS 0.95 W 23.9

Performance — 2.15GHz, 2.15GHz, 2.15GHz, 2.15GHz 39.2 FPS 5.15 W 7.61

Interactive — varies over time 39.1 FPS 5.03 W 7.77

High QoS 30 FPS 1.72GHz, 1.72GHz, 1.72GHz, 1.72GHz 31.7 FPS 2.81 W 11.3

Low QoS 20 FPS 652MHz, 652MHz, 652MHz, 652MHz 23.3 FPS 1.00 W 23.2

Max Energy Eff. — 300MHz, 300MHz, 300MHz, 300MHz 22.4 FPS 0.95 W 23.9

were selected to represent a high and low state. Additionally, an unconstrained solu-

tion is explored as well—Maximum Energy Efficiency (Max Energy Eff.). Together

these three points can represent different tradeoffs between energy efficiency and user

satisfaction, as shown in Figure 3.8 and Table 3.3.

For web browsing and image similarity search, the selected levels of QoS (high,

low, and unconstrainted) resulted in greater energy efficiency than the linux governors.
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The frequency governor, interactive, tends to over-react to processor utilization and

attempts to set the processor to the highest available frequency (i.e. assumes it is

most energy efficient to finish the job as quickly as possible and then slow/disable

the processor). As shown in Table 3.3, the proposed optimization method determines

independent frequency levels for each application processor core. This is due to

imbalances in the workloads between the cores. For example in the case of web

browsing the first core receives a significant portion of the total number of URIs

which constitute that core’s UoC. Therefore its frequency is set to be the highest of

1.72GHz. In contrast, the other cores receive very few URIs which are typically not

too computationally demanding. Thus the frequency of these latter cores are reduced.

Because there was never a case when four UoCs were simultaneously being executed,

the last application processor core’s frequency was set to zero, i.e., automatically

disabled, to minimize power consumption. This agrees with the observation made in

a recent mobile device utilization study [75]—the processor utilization of web browsing

has peaks and valleys between one to three cores of a four-core application processor

with an average utilization to be below two cores. Similarly, for the image similarity

search application, one see that the optimization determines frequencies based on

the imbalances in the application pipeline. Specifically, it can be observed that the

most computationally demanding stage is mapped to the fourth core and thus always

requires a substantially larger frequency than the first three cores.

An interesting situation occurred in the case of video playback. As seen in Fig-

ure 3.8 and Table 3.3, the lowest frequency setting (i.e. Powersave Governor) results

in the optimal PPW point for the system. The unconstrained optimal point of op-

eration occurs at the same frequency setting. For this reason it is very tempting to

choose a very slow speed to yield the highest energy efficiency; however, the data

shows that the QoS would dramatically drop (given a Q value of 0.9). Thus the video
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would be playing at 10 fps or lower with a likelihood of at least 90%. It is quite

reasonable to assume this to be intolerable for a large user base. This issue highlights

the importance of adding constraint (3.2) to the PPW optimization problem.

From these results, it is possible to see that there exists a strong non-linear relation

between PPW and QoS (∆). This is most prominent in video playback. Table 3.3

shows that increasing the required fps from unconstrained to 20 fps only degrades

PPW by 2.9%, whereas increasing it from 20 to 30 fps degrades PPW by 51.3%. This

must be considered when balancing user experience and energy savings.

To reiterate, the key points found in our analysis are:

� The unconstrained (no consideration to user satisfaction) optimization problem

results in the highest possible energy efficiency.

� Including a QoS constraint reduces the possible optimal energy efficiency. Alter-

natively, reducing ∆ (i.e. requiring the application to finish earlier) or increas-

ing Q (i.e. requiring a larger spread of execution times to achieve the chosen

deadline) requires a greater amount of power thus reducing energy efficiency.

Next, the accuracy or tightness of the likelihood constraint given in Equation 3.2

is examined. To do so, the observed or actual value of Q is plotted versus the required

or specified value of Q. This is shown in Figure 3.9, using web browsing as an example.

The Firefox web browser was repeatedly executed 100 times with Q set to 0.1, 0.5,

and 0.9, and ∆ = 2.0s. Then the number of page loads that exceeded ∆ (2 second

load time) was recorded. Since the specified value of Q is a lower bound on the

likelihood, and the observed Q is simply a sample estimate of the likelihood, all the

points in the plot should be at or above the y = x line. The observed results are very

consistent with the expected, and show that the constraint on the likelihood does

indeed restrict the set of optimal solutions.

To highlight the strengths of the proposed approach, the tradeoff analysis is pre-
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Figure 3.9: Observed Q versus specified Q (lower bound on likelihood), showing
tightness of constraint in Equation 3.2.

sented. Specifically, web browsing is explored in greater detail to better demonstrate

the benefits of modeling execution time as a non-deterministic value. Figure 3.10(b)

presents the energy efficiency of web browser at the corresponding frequency settings.

The green circles in Figure 3.10(a) represent the average execution time needed to

load the web page. The range for each point represents the statistical distribution of

the execution time for web browsing in the various frequency settings.

In addition to the expected load times of the web browser, the proposed framework

also provides a quantitative measure for the likelihood of performance guarantee. This

is shown in Figure 3.10(c) where a deadline on the web page load times is set to 2

seconds. The likelihood of reaching this deadline at a frequency setting of 1.728GHz

is represented by the grey shaded area under the distribution, and the likelihood of

meeting that deadline is 95.48%. The data also presents tradeoffs between likelihood

and PPW. While a frequency of 1.728GHz provides a high likelihood of satisfying the
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Figure 3.10: (a) Execution time, (b) energy efficiency results at all available frequen-
cies for web browsing on the Dragonboard. (c) Example calculation of the probability
of meeting the specified deadline.
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deadline, it is suboptimal in terms of PPW (see figure 3.10(b)). If the a frequency of

960 MHz was selected, the likelihood is much less (55%) but the PPW is close to the

optimal (0.315). The reduced likelihood implies the possibility of the image quality

being degraded.

Figure 3.11 shows this result. It is clear that as the frequency increases, the

variance in web page load times decreases, and the difference in mean execution time

reduces. There are diminishing returns on average web page load time; however, the

likelihood of reaching any given deadline increases as well. When coupled with the

non-linear power model, the data shows that the optimal point may not necessarily

be one which gives a necessary level of QoS.

3.8 Chapter Summary

This dissertation provides a new and necessary step toward developing a method-

ology for optimizing energy efficiency subject to user satisfaction. A statistical frame-

work is developed for characterizing, profiling, and predicating the execution time of

parallel applications running on mobile platforms.

The proposed statistical framework provides additional and valuable informa-

tion that can be used to guide the control of voltage/frequency settings available

on modern processors. This is particularly helpful for today’s energy-constrained

smartphones that execute real-time apps with execution time constraints. With the

detailed performance and energy efficiency characterization on web browsing, it was

shown how the proposed statistical framework is used to consider the energy efficiency

for smartphones while accounting for a probabilistic guarantee on QoS.

Specifically, the optimization method creates a set of static tables containing fre-

quencies corresponding to optimal energy efficiency, subject to specified QoS levels.

Once the application is started, the processor state is altered based on the desired
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QoS level. This is an important first step towards ensuring user experience in non-

deterministic workloads. However, this is limited to offline analysis of stochastic

workloads while the most desirable use case would be to dynamically tune the pro-

cessor based on the changing characteristics of the user, input, background task noise,

and other system state. In the following chapter, an efficient and accurate modeling

technique is presented to accomplish exactly that use case.
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Chapter 4

A DATA-DRIVEN, MOMENT BASED FRAMEWORK FOR PREDICATING

PERFORMANCE AND POWER IN REAL TIME

The success of mobile devices and applications is directly linked to a user’s satis-

faction of the quality of service – a metric used to denote the user’s perception of the

quality of an application. The first and necessary building block to manage user sat-

isfaction is to establish accurate performance and power models which are sensitive to

the mobile device’s controllable features such as scalable voltage and frequency. Tradi-

tionally, performance and power models have been developed with server and desktop

workloads in mind; assuming long term, stable operating conditions. However, this is

insufficient for mobile workloads, which are subject to many sources of variability (e.g.

user interactions, network delay, architectural stalls, etc.) leading to unpredictable

phases of computation. As such, modern energy management algorithms tend to use

overly simplistic modeling techniques which provide little to no insight into the level

of confidence of the model estimations, potentially resulting in large errors, wasted

energy, missed user satisfaction targets, and sub-optimal system control. This work

establishes the importance and value of modeling the many sources of variations in

mobile workloads. A completely data-driven approach is presented which is capable

of accurately predicting the workload’s statistical characteristics which may follow

any arbitrary distribution. The method is light-weight allowing for real-time model

evaluation and update.
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4.1 Problem Background

Mobile computing devices have become ubiquitous in everyday life. These devices

serve as the platforms in which services and applications may interact directly with

users. Paramount to the success of any given application is the application’s quality

of service (QoS) – a quantifiable metric used to capture a user’s satisfaction with the

mobile device and application. For example, QoS could represent the load time of a

web page, the frame rate of video playback, or the response time of an application

after receiving a command from the user. Logically, one would assume, to produce

the highest level of user satisfaction, it is best to operate the device at its maximum

frequency. However, this comes at the cost of high power consumption: something not

sustainable for mobile devices with limited energy sources such as rechargeable Li-Ion

batteries. A recent survey of smartphone consumers demonstrates the importance of

long battery life, ranking it as the most important factor in deciding which phone to

purchase [76]. Thus, in order to successfully control a mobile device, one must find a

balance between maximizing QoS and minimizing energy consumption.

To maintain high user satisfaction, mobile devices employ various energy manage-

ment techniques. One such method is online management of controllable parameters

such as voltage and frequency, in order to trade-off between power consumption and

system performance. Critical to the success of these management techniques is to

properly predict future power and performance values. However, quantifying QoS is

a non-trivial task as QoS is application specific and thus cannot be generalized to

all workloads. As a proxy to QoS, many prior works utilize processor performance

or instructions per second (IPS) since it provides a loose measure of the rate of

progress towards completing a task – the completion time reflecting the user’s satis-

faction [3, 4, 5]. IPS has the benefit of being application independent, requiring no
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information from the application itself. However, with additional context provided

by the application, QoS can be defined as a more relevant parameter such as the

response time of the workload or the rate at which requests are processed [77, 78]. As

a matter of convenience, this paper will use the term performance to represent both

application performance metrics (i.e. QoS) and processor performance metrics (i.e.

IPS) since both values can be related to user satisfaction.

In regards to performance and power prediction, a major limitation of prior work

is the assumption of steady state workload characteristics - leading to deterministic

values of performance and power. While this might be applicable to many server

and desktop applications, mobile workloads are subject to numerous sources of un-

certainty. One such source of uncertainty is due to the interactive nature of mobile

workloads. User actions induce interruptions into the system’s steady state behav-

ior at random times by making various workload requests. Other causes of system

variations include interference by co-scheduled and background applications [65] or

processor stalls [41], etc.

Ultimately, these sources of uncertainty cause performance and power to be stochas-

tic quantities. Traditionally, prior works have treated power and performance as

deterministic quantities, providing no insight into the statistical distribution of pos-

sible values [2, 3, 4, 5, 77, 78]. This is not sufficient for the mobile domain due

to the high level of system uncertainty present. Estimation of this likelihood is ex-

tremely valuable as it provides a measure of uncertainty when making performance

prediction. For example, prior studies have demonstrated that for highly interactive

workloads such as interactive games, latencies of about 100 milliseconds are required

to maintain satisfactory user experience. Additionally, latencies of less than 50 mil-

liseconds are undetectable by users, thus providing no benefit to the overall user

experience [79, 80, 81]. With knowledge of the distribution of possible performance
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and power values, energy management techniques may tune the system to maximize

the likelihood of achieving a response time between 50 and 100 milliseconds while

minimizing energy consumption

In this chapter, a prediction framework is proposed to determine non-deterministic

workload power and performance characteristics. The proposed framework is built

upon arbitrary polynomial chaos – representing performance and power as functions

of statistically varying system parameters such as architectural delays, network con-

ditions, application input variations, and so-on. Unlike regression based modeling

techniques which require a known distribution of input and output parameters, the

proposed framework is entirely data-driven, thus capable of optimally capturing the

effects of any arbitrary distribution. This is a necessary feature to accurately capture

the statistical characteristics of mobile workloads as shown in Section 4.2. The mod-

els are both computationally efficient and accurate, reducing performance prediction

error by 2.91X and 1.70X respectively over prediction methods used by the Android

frequency governors at an increase in overhead of 0.0016%.

4.2 Problem Definition and Related Works

The problem of predictive modeling is one of determining a function y = f(X, s)

where y is the response variable, X is a set of observable system variables, and s is a

set of controllable variables.

To make predictive modeling tractable, some restrictions must be placed on f(X, s).

One approach is to construct a functional form (usually a polynomial) for f(X, s),

where X is heuristically selected based on detailed knowledge of processor architec-

tures [2, 3, 4, 5, 82]. For instance, in [82], an analytical performance model is built

using insights into the ARM Cortex-A8 processor architecture. The model calculates

the total number of execution cycles needed to evaluate any given application based on
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a linear combination of (1) the number of instructions comprising an application and

(2) the penalty to execution time due to pipeline stalls caused by various architectural

events such as miss events, inter-instruction dependencies, and functional unit limi-

tations. These penalty functions take as input the counts of each architectural event

and are parameterized by the architectural characteristics of the processor (pipeline

width and depth, instruction latency, etc.). By breaking the performance into these

components, the contribution of performance from each architectural event can be

determined and performance bottlenecks can be identified. However, this method

requires extensive knowledge of both the platform’s architecture, as well as workload

characteristics such as inter-instruction dependencies. Acquiring such information

can be costly, requiring detailed analysis of the application and system. Furthermore,

any modifications to the assumed system state (e.g. adding background tasks which

cause resource contention) would require complete re-analysis of the system.

An alternative is to take a parametric approach [83, 84, 85, 86, 77, 65, 87] which

restricts f(X, s) to a known class of functions f(X, s, p), whre p is a set of unknown

parameters. For instance, f could be a multivariate polynomial in X and s, and p

would be the coefficients. The parameters p are estimated by collecting sample data

(y,X) and solving argminpE(y, f(X, s, p)), where E denotes some error functions

(e.g. quadratic) and argmin returns the parameters, p, which correspond to the

minimum point of E. Among these prior works, [77, 65, 87] are most closely related

to our approach. In [77], Zhu and Reddi proposed the use of input characteristics

along with performance counters to estimate the application specific performance

metrics of the web browser. The study assumed a linear model for the web browser’s

performance, but the accuracy was low (about 66%). Shingari et al. [65] extended

these models to account for variations due to co-scheduled tasks and shared memory

contention. The reduced order model was constructed via offline experimentation of

70



the web browser loading the 50 most frequently visited web pages along with numerous

combinations of interfering applications. One method to increase accuracy of web

page load time is to annotate the HTML documents with additional information

reflecting the page’s complexity [87]. However, this requires significant modification

to the HTML code of every webpage, making this impractical for energy management.

A limitation of the previously discussed prior works is the assumption of determin-

istic systems. This is rarely the case in computing systems, especially mobile systems

in which both X and y exhibit statistical variations. Reference [41] was one of the

first to demonstrate the stochastic nature of execution times in mobile applications,

and identified the numerous sources of variations, including branch mispredictions,

cache misses, various types of interrupts, and co-scheduled background applications

competing for resources. Based on heuristic arguments, the execution time was mod-

eled as a gamma distribution, whose parameters had to be estimated from sample

data. As is often the case in modeling, distributional assumptions are made for con-

venience, and cannot be physically justified. For these reasons there has been a shift

towards data driven methods of uncertainty quantification [88].

4.3 Demonstrating the Non-deterministic Nature of Mobile Workloads

To substantiate the need for a more robust selection of execution time distribu-

tion, we executed 10 mobile applications1 100 times each and recorded the associated

performance power values. To eliminate the variation caused by the control param-

eters, frequency selection and input complexity, each trial was conducted at a fixed

frequency under the same input set. Figures 4.1 and 4.2 depict the distributions of

performance and power respectively.

It is evident that no single, common model of a parametric distribution would

1See Section 5.4.2 for full details of the experimental platform and workloads.
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explain all the data sets. Examining the power and performance distributions of aes,

bzip2, and sha in particular show multi-modal distributions. Additionally, certain

workloads such as 2048, ferret, GNU Go, and mcf appear to have quite varied distri-

butions. As such we conclude that a more robust modeling mechanism is needed to

accurately capture performance and power distributions.

Modeling uncertainties is necessary for effective control of user-centric workloads.

To see how this might be useful: consider the gaming AI application, GNU Go.

After a user input, this application must evaluate a set of possible “moves” and

determine the best possible move to make. This process is repeated until the game’s

conclusion. As stated earlier, it is important to maintain a response time between 50

and 100 milliseconds to ensure user satisfaction. Therefore, we need to understand

the performance and power characteristics of this application not only to ensure

satisfactory user experience, but also to maximize the performance-per-watt (i.e. the

energy efficiency) of the system – extending the system’s battery life.

We begin by analyzing the system at a fixed operating frequency of 1.4GHz and

record the number of cycles needed to process the response along with the associated

power values. In the interest of space we do not display the results for each frequency;

however, this analysis would be necessary to understand the relationship between the

control variable, frequency, and the resulting power and performance metrics. Fig-

ure 4.3 shows the frequency histograms of the response time, the power consumption,

and the energy efficiency of this application at a fixed processor frequency. Given such

distributions for each operating frequency, it is possible to evaluate (1) the frequency

corresponding to the highest energy efficiency on average and (2) the likelihood of each

frequency producing a response time between 50 and 100 milliseconds. In the case

of GNU Go, there is approximately a 27% likelihood that the input will be serviced

within 100 milliseconds. Therefore, the mobile device should increase the operating
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Figure 4.3: (a) The measured distribution of performance values for the GNU Go
workload – a gaming AI which responds to user inputs – at a fixed CPU frequency
of 1.4GHz. (b) Measured distribution of power values seen when running GNU Go.
(c) The resulting distribution for energy efficiency.
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Table 4.1: Summary of Advantages and Disadvantages of Various Prediction Meth-
ods

Prediction

Method
Accuracy

Conver-

gence

Compl-

exity
Random

Last Observed

[78]
Low Low Low —

Static Value

[41]
Low Low Low —

Regression

[77, 83, 84, 85, 86]
High Moderate Moderate Gaussian

Proposed
High High Moderate Arbitrary

Offline Simulation

[89, 90]
Very High — Very High Arbitrary

frequency to improve the likelihood of meeting quality of service expectations.

Based on the real system’s performance and power characterization results, we

propose a framework to construct a stochastic model to represent performance and

power of a mobile device. The framework is able to learn its parameters directly

via data collection, making no assumptions of the underlying distributions. This

technique has been shown to provide faster convergence over traditional Gaussian ap-

proaches [88], thus requiring fewer data samples and lower model order to accurately

approximate the system response. To summarize, this paper proposes an efficient and

accurate means of estimating power and performance subject to numerous sources of

uncertainty. The approach treats the values as stochastic responses such that ran-

domness is caused by variations in the underlying system state observables (e.g. cache

hit ratio, context switches, input characteristics). The benefits of this data-driven,

learning-based algorithm are summarized in Table 4.1. With marginal increase in

complexity, our prediction framework achieves higher accuracy and convergence rate

than traditional regression modeling techniques by considering the stochastic nature

of operating a mobile system.
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Table 4.2: Input Variables for the IPS Prediction

System Events

x1 L1 data cache misses per cycle

x2 Branch misses per cycle

x3 Shared L2 cache misses per cycle

x4 Bus accesses per cycle

x5 Page faults per cycle

x6 CPU Temperature

Controls

x6 Power Oriented CPU cluster frequency

x7 Performance Oriented CPU cluster frequency

x8 GPU frequency

x9 Memory bus frequency

4.4 A QoS Prediction Framework using Polynomial Chaos Expansion

4.4.1 Overview

In order to maintain coherency, this section provides a brief explination of poly-

nomial chaos expansion (PCE); however, readers should view Appendix A for a more

complete tutorial of PCE. PCE provides a mechanism to relate a stochastic character-

istic of the application, y(t), to a collection of randomly varying system observables,

X(t). To model QoS, this work elects to use an X defined by Table 4.2 as these have

shown to have strong correlation to IPS and power in prior works [41, 2]; however,

the proposed methodology is general enough to accommodate any composition of X

and merely use Table 4.2 as an example.
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As mentioned earlier, mobile applications and their QoS are subject to numerous

sources of non-determinisms ranging from architectural variations (e.g. memory ac-

cess rates and delays), system level variation (e.g. co-scheduled applications utilizing

the same shared resources), and application level variation (e.g. input complexity

such as the composition of a webpage for the web browser or the number of objects

in an image for image recognition algorithms). As such, to accurately and efficiently

model the relationship between the response and the sources of variation, statistical

information of these values must be known. For example, classical model regression

methods such as least squares error minimization rely on deterministic data samples

or data samples with Gaussian noise [91]. These methods lose their optimality and

convergence rates when data samples follow different random distributions. Instead,

this work proposes to utilize polynomial chaos expansion (PCE) to represent QoS.

PCE presents an effective means to correct these deficiencies and improve conver-

gence rates by decomposing X(t) to a set of orthogonal polynomials with little to no

effect on the computation time needed to evaluate the model.

4.4.2 A Brief Background to Polynomial Chaos Expansion

Consider a system with inputs X(t) = {x1(t), x2(t), · · · , xM(t)}, and output y =

f(X(t)). Often, as in this present situation, f is unknown and must be estimated

from data. One common approach is to assume a specific form for f . For example,

in the case of deterministic values of X, linear regression may be used which assumes

ŷ = f(X(t)) =
∑
cixi(t)) such that the unknown coefficients, ci, must be estimated

using samples of input-output pairs obtained by some means, either by measurements

on a real system, or by simulation of a model. The optimal coefficients are obtained

by minimizing an error norm ‖|ŷ − y||.

How can one proceed in the case that X(t) is a stochastic process? The answer is
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very similar to the deterministic case outlined above, and is referred to as polynomial

chaos expansion (PCE) [92]. The PCE expansion, originally referred to as Homoge-

nous Chaos [93], expresses a Gaussian process y(t) in terms of an infinite collection

of independently varying random variables:

y(t) =
∞∑
i=0

ci(t)φi(x1, x2, · · · ), (4.1)

where (x1, x2, · · · ) denotes an infinite collection of independent, standard Gaussian

random variables, and the basis functions {φi(·), i = 0, 1, · · ·∞} are orthogonal Her-

mite polynomials for all (i.e. infinite) orders. The equality expressed in equation (4.1)

is in the limit, and in the mean-square. Intuitively what all this says is that for each t,

the right hand side of (4.1) can be used (in theory) to generate the random variables

y(t) for each t. In practice, the maximum order of the polynomials will be fixed, as

well the number of random variables X.

PCE is not restricted to Gaussian processes and has been generalized for other

standard distributions [92]. Table 4.3 outlines the optimal orthonormal basis functions

for some common distributions. This method of creating PCE models under the

assumption of known distributions for X(t) is commonly referred to as generalized

polynomial chaos expansion or gPCE for short.

4.4.3 Polynomial Chaos Expansion for Arbitrary Distributions

A limitation of gPCE is the reliance on knowledge of the underlying distributions

of the input variables. To address this issue, Oladyshkin and Nowak ([88]) proposed

a data-driven alternative to gPCE called arbitrary polynomial chaos expansion

(aPCE). Much like gPCE, the result of aPCE is a truncated series of orthogonal basis

functions,

ŷ(t) = c0(t) +
R∑
j=1

cj(t)φj(X(t)), (4.2)
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Table 4.3: Optimal Polynomials for Various Probability Spaces.

Variable Distribution Polynomial Class

Continuous Gaussian Hermite

Log-normal Hermite

Gamma Laguerre

Beta Jacobi

Uniform Legendre

Discrete Poisson Charlier

Binomial Krawtchouk

Negative Binomial Meixner

Hypergeometric Hahn

representing the estimated response surface, ŷ(t), as a weighted summation of R

multi-variate orthogonal polynomials. The derivation of the aPCE basis functions is

briefly discussed here; however, readers should consult ([88]) for the full derivation.

To determine the form of the multi-variate basis functions one must utilizing the

work of Ghanem and Spannos ([94]) which states: given the M -dimensional input vec-

tor X(t) such that all parameters within X(t) are independent, the multi-dimensional

basis functions, φi, ∀i = 1, . . . , R, can be constructed as the product of the corre-

sponding univariate polynomials, P
(k)
j (xj). That is,

φi(X) =
M∏
j=1

P
(αij)

j (xj),
M∑
j=1

αij ≤ K, i = 1 . . . R, (4.3)

where K is the order of the aPCE function, R = (K + M)!/(K!M !) is the total

number of multivariate polynomials of degree less than or equal to K and αij is a

multivariate index which is capable of enumerating all possible products of individual

univariate basis functions.

80



Therefore, the problem reduces to determining theM sets of univariate polynomial

basis functions

P
(k)
j (xj) =

k∑
i=0

p
(k)
i,j xj, k = 0 . . . K, j = 0 . . .M. (4.4)

where all polynomial coefficients, p
(k)
i,j , must be derived. To do so, a collection of k

equations is constructed using the definition of orthogonality:∫
xj

P
(k)
j (xj), P

(l)
j (xj)dΓ(xj(t)) = 0, ∀k 6= l (4.5)

where Γ(xj(t)) is the probability density of xj(t). Given that the ith moment of xj(t)

is µi =
∫
xj(t)

xj(t)
kdΓ(xj(t)), these equations can be simplified to the following closed

system of equations:

k∑
i=0

p
(k)
i µi = 0

k∑
i=0

p
(k)
i µi+1 = 0

... (4.6)

k∑
i=0

p
(k)
i µi+k−1 = 0

p
(k)
k = 1.

Thus, it is possible to determine the optimal orthogonal univariate polynomials as a

function of the 0th to 2kth moments of xj(t). As an example, the univariate polyno-

mials of order 0, 1, 2, 3 are given below

order 0: P (0)(xj(t)) = 1

order 1: P (1)(xj(t)) = xj(t)− µ1

order 2: P (2)(xj(t)) = xj(t)
2 +

µ3 − µ1µ2

µ2
1 − µ2

xj(t) +
µ2

2 − µ1µ3

µ2
1 − µ2

order 3: P (3)(ξ) = ξ3
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+
−µ5µ
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+
−µ2
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+
−µ5µ

2
2 + 2µ2µ3µ4 − µ3

3 + µ1µ5µ3 − µ1µ
2
4

µ4µ2
1 − 2µ1µ2µ3 + µ3

2 − µ4µ2 + µ2
3

.

A critical result of [88] is the convergence rate of aPCE in relation to regression

techniques and gPCE modeling. The results indicate that exponential reduction of

model error is achieved utilizing aPCE with increasing model order and data sample

size when compared to gPCE methods.

4.4.4 Evaluating Expected Value and Probability Constraints

Thus far, a mathematical function has been derived which relates a collection

of random variables, X(t), to some stochastic response variable, y(t), via aPCE.

However, it is desirable to determine the probability distribution function of y(t) in

order to evaluate the expected value, or the likelihood of achieving some range of

values of y(t). For example, if y(t) represents the response time of a user-centric

application it is desirable to know what the likelihood of y(t) being less than 1/30

seconds2 is under any given control policy, s(t).

To do so, two requirements are needed: first the aPCE representation of y(t) must

be derived and second, the (empirical) distribution of each X(t) must be known. In

order to determine the polynomial basis functions of the aPCE model, the statistical

moments of X(t) must be determined. One method of doing so is via data collection

and estimating the moments via empirical methods:

µi ≈
1

N

N∑
n=1

x
(n)
j (t)i (4.7)

21/30 or 1/60 of a second represents a minimum response time before which users can conceptu-

alize poor quality of service.
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where N is the number of data samples and x
(n)
j (t) is the nth data sample of input

xj(t). Assuming N is sufficiently high, a frequency histogram can be collected at the

same time to represent the distribution of each element within X(t).

With this empirical distributions of X(t), both requirements are meet to determine

the distribution of y(t). First, an artificial sampling of X(t) must be created, this is a

simple matter with the empirical distributions of X(t) already collected. A uniform

random variable can be utilized to index into the “buckets” of the histogram. These

artificial samples are then used to evaluate the aPCE model assuming a fixed control

policy, s(t). The result is a collection of histograms representing the distributions of

power, performance, and energy efficiency as shown in Figure 4.4. From this, it is a

simple mater of determining any statistical quantity needed for the DEM controller.

4.4.5 Offline QoS Model Learning

A common approach in computing ŷ is to perform a random sampling of y(t)

and X(t) through simulation of f(·). These approaches generate N data samples

and response labels, {X(t1), y(t1)}, {X(t2), y(t2)}, . . . , {X(tN), y(tN)}. Therefore,

there exists an N -by-M matrix, X, which contains a vector of N samples of X.

Additionally, the corresponding N samples of the QoS responses are stored in a

vector, y, of length N . It is possible to determine the model coefficients of (4.2) by

solving for the unkown vector c in the following linear equation

y = cφ(X), (4.8)

where φ(X) is a N -by-R matrix containing the transform for each sample of X into R

orthogonal polynomials (see the Appendix A for details), and c is a vector containing

the aPCE model coefficients.

Given (4.8) it is possible to estimate the performance (response) for any input
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Figure 4.4: Illustrations of the empirical distributions of power, performance, and
energy-efficiency used to represent the actual probability distributions.
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Algorithm 1: Online Performance Prediction

c = 1;

n = 1;

while Application is still running do

Estimate: X̂(tn+1);

Predict: ŷ(tn+1) = cφ(X̂(tn+1)) ;

Wait: δ time until the actual IPS value is ready;

Read: y(tn+1) and X(tn+1) from the PMUs;

Update: c = c− 2η
(cTx(tn+1)−y(tn+1))

cT c
;

n = n+ 1;

combination of X. Equivalently, one can determine the coefficients ci for each aPCE

basis function φi(X) using least squares error minimization over a training set. That

is, the argument of

min
c

N∑
n=1

(y(tn)− ŷ(tn))2 (4.9)

s.t. ŷ(tn) = c0 +
R∑
i=1

ciφi(X(tn)), (4.10)

must be solved

In the event that higher order models are needed, regularization techniques will

be required to prevent overfitting. For example, the error minimization problem (4.9)

can be replaced by the LASSO optimization problem [95] combined with validation

methodologies (e.g. N-fold cross validation [96]).
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4.4.6 Online QoS Model Learning

The model learning technique presented in the previous section serves as an opti-

mal means of determining the coefficients to the QoS prediction model. However, this

method requires a sampling of X such that all sources of variability are exposed. In

practice this may result in a large number of experiments which may require an ex-

cessive amount of time. This work therefore proposes an online prediction algorithm

which tunes the prediction model for the current system status. The proposed online

prediction algorithm is based on stochastic gradient descent techniques such as the

Wiener filter which is commonly used in system response modeling [97]. Algorithm 1

outlines this procedure.

The algorithm begins by assuming the initial value of the coefficients, c, are set

to 1; however, any vector of real values is permitted. Next, while the application

is running, the algorithm produces a sequence of predictions at times t1, t2, . . ., tn,

. . . such that the time between any two consecutive time samples is δ. However, the

aPCE model requires knowledge of X(tn), the model inputs at time tn, in order to

predict the performance response y(tn) for the same period. Since this value will not

be available until time tn+1, the algorithm must compute an estimate X̂(tn) of X(tn).

This work examines four choices to perform this estimate. The simplest of which is

Last Observed in which x̂(tn+1) = X(tn). Next, this work evaluates the Linear

method which uses the previous two samples of X to estimate the rate at which X(tn)

is changing. That is X̂(tn+1) = 2X(tn)−X(tn−1). The final two methods, Moving

Average and LMS Filter utilize a window of the past 5 data samples in order

to predict the next sample. As the name Moving Average suggests, X̂(tn+1) is

estimated by averaging the last 5 samples of X. Similarly, LMS Filter also averages

the past 5 samples; however, it assigns a weight to each of these samples using steepest
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descent method [98].

With X̂ estimated, the algorithm derives estimates of performance value, ŷ, for

the next time interval using the aPCE model with the current estimate of c. Once

the time interval has passed, the algorithm reads the actual values of X(tn+1) and

y(tn+1) and use this information to update the estimate of c, using the normalized

gradient of the least squares minimization objective in (4.9) along with a learning

rate parameter η ∈ (0, 1]. This learning rate parameter offers a mechanism of how

responsive the model update is to recent samples. For the experiments discussed in

this work, a learning rate parameter of 0.9 is used. This was determined as a good

choice for the system through trial and error; however, methods exist to determine the

optimal learning rate [95]. This process is repeated until the application terminates.

Note that, for all experiments, the online learning method is used unless otherwise

noted.

4.5 Experimental Setup

In this section, we describe the setup of the experiments and the validation results

for the execution time and power models, evaluated on real platforms.

4.5.1 Real-Device Experimental Platform

Platform Specifications

The experiments were conducted on a Google Pixel Smartphone [99] housing Qual-

comm’s MSM8996pro chipset [100]. The phone features 6 on-chip performance mon-

itoring units (PMU). The 6 PMU’s can be programmed to observe various hardware

events such as L2 cache misses, branch mispredictions, and main memory page faults.

We sample these PMU’s at a rate of 10 samples per second. The power sensors and

PMU’s are sampled every 10ms. The MSM8996pro offers a heterogeneous architec-
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Table 4.4: Parameters for the Pixel Smartphone and Qualcomm MSM8996pro chip-
set.

Power Cluster Performance Cluster

Number of Cores 2 2

Architecture Kyro Kyro

Instruction Set ARM v8a ARM v8a

Frequency 0.3-1.59GHz 0.3-2.15GHz

L1 Cache Size 32KB I & 32KB D 32KB I & 32KB D

L2 Cache Size 512KB 1.5MB

L3 Cache Size 4MB

ture with 2 cores tuned for high performance and 2 cores tuned to low power. The two

cores within a cluster share a common L2 cache and both clusters share a common

L3 cache. Table 5.1 lists the architectural specification of the device.

The Google Pixel’s battery was removed and replaced with a constant voltage

source via the Monsoon power monitoring unit [101]. The unit measures the total

system’s voltage and current at a rate of 5000 samples per second.

The experimental platform runs a rooted Android 7.2 OS. The applications of

interest were written in C and cross-compiled on the host machine with the ARM-

Android NDK toolchains [70]. The binary is pushed to the device and is launched from

the host machine via a wireless connection using the android debug bridge terminal.

Simulating Random User and Network Requests

Typically, mobile applications are responsive in nature–providing a quick burst of

computation after a service request is received from either the user or the network.

To implement the bursty nature of mobile applications, we constructed a testing
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Table 4.5: Parameters for Various Distributions Used to Determine Inter-Arrival
Time of Workload Requests in Section 4.8.

Distribution 3G 4G

Constant 2250ms 250ms

Uniform [1000ms, 3500ms] [0ms, 500ms]

Exponential mean=2250ms mean=250ms

framework in which a client program runs on an external desktop and, via a wireless

network connection, sends workload requests to the mobile platform – the response

time of which is a random quantity determined by the selected workload. The testing

framework allows us to manually adjust the delay between workload requests. We

generate delay values according to three distributions, the parameters of which are

determined by typical network round trip time’s seen in 3G and 4G networks [7].

These parameters are outlined in Table 4.5.

4.5.2 Benchmark Applications

In order to provide a good breadth of mobile applications, we evaluate a number of

applications which (1) have been utilized in prior works for predicting the performance

of mobile and interactive workloads [81, 41, 18, 79, 65] and (2) represent workloads

which may be present on future smartphones.

Interactive Workloads for QoS Prediction

User satisfaction is the driving force of how successful a mobile application will be;

however, to estimate the applications QoS, additional information or hints can be

propagated by the application itself to determine data input complexity and the

complexity of servicing this data.
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Web Browser and HTML Viewer – The web browser serves as one of the

most utilized applications on modern smartphones. A user’s satisfaction with a web

page is directly related to the time needed to load and render the page [1]. We

therefore explicitly denote QoS as the time required to load and render the page after

the request has been made. Additionally, many modern applications are constructed

using HTML as it allows applications to be updated with more ease. We utilize

the Google Webview [102] framework to load offline webpages. These webpages are

selected from the 10 most viewed webpages according to the Alexia service [103]. The

composition of a web page is determined by its DOM tree – a structure whose nodes

are labeled by a unique tag describing the node’s function (e.g. java scripts, images,

links, etc.) along with multiple attribute fields providing additional information for

the node (e.g. the dimensions of an image to display). We modify the browser’s

source code to record the load time of each web page as well as record the count of

each tag type and attribute which represents the page’s complexity of the web page

according to [18].

Workloads for IPS and Power Prediction

In order to properly predict the QoS of an application, additional effort by the appli-

cation designer is needed to propagate important information to the QoS prediction

algorithm. Instead we demonstrate that our performance prediction framework can

be used to estimate the instructions-per-second of the processor with only informa-

tion from the on-chip performance monitoring units, requiring no interaction with

the fore-ground application. We examine the following mobile workloads.

Security/Communication Benchmarks – A common task in smartphones is

the transmission of data via a wireless/radio network. This data is encrypted to

mitigate packet snooping. We examine two common algorithms used in secured data
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transmission: sha and aes [104]. These workloads also serve as a comparison point

with prior works in mobile performance monitoring [81].

Interactive Gaming – On modern mobile processors, gaming applications are

common place. In this work we examine the CPU portion of these gaming applications

– the AI which is responsible for responding to user’s request and interactions. The

first is 2048 [105], a puzzle game with extremely limited computational overhead and

who’s response time is largely dictated by IO requests. The second is gnu go [106]

which incorporates computationally heavy AI techniques such as breadth first search

and decision trees.

Compression – Due to limited storage and expensive data transmission it is com-

mon for applications to first compress data. We examine the bzip2 [107] benchmark

under several different inputs such as text files, images, videos, programs, and file

systems.

4.6 Analyzing the Load Time of Mobile Web Browsing

Web browsers and HTML viewers serve as some of the most significant applications

on mobile devices. In fact, since 2014, the number of mobile users who access web

pages have surpassed the number of desktop users [108]. These applications are highly

interactive and thus user satisfaction is vital to maintain a website’s user base [1].

Specifically, the QoS of the web browser is defined as the time needed to load and

render a webpage. It is therefore necessary to specify some deadline ∆ such that

the webpage QoS will meet the deadline and ensure user satisfaction. Although

smartphones have limited control over network conditions, mobile devices can adjust

the web page load and render times by dynamically scaling the CPU frequency [41, 18].

While increasing the CPU frequency will reduce load times, doing so can increase the

total energy consumption resulting in reduced battery lifetimes.
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Figure 4.5: The prediction error (%) when using the proposed aPCE modeling
framework and two state-of-the-art prediction methods. Lower is better.

The HTML representation of any given website can be defined by its document

object model, often called the DOM tree. The DOM tree is a hierarchy of the various

objects within the website (e.g. links, images, scripts, etc.) while each object is

categorized by a tag and given a list of attributes, both of which are defined by the

HTML language. The total website load time is thus a function of the computational

complexity of each of these objects. Zhu and Reddi [18] proposed utilizing a linear

model, based on counts of each specific tag and attribute within a given webpage.

However, this methodology fails to consider the effect of run-to-run variations, which

can significantly contribute to variations on the performance of mobile applications.

In [41], to model the performance of each webpage, a sample distribution of the load

times were observed offline for each CPU frequency. These distributions are then used

to determine the likelihood of loading a webpage within a specified deadline for each

given frequency. While this method captures the statistics of run-to-run variations,

it fails to predict the load time for any specific execution of the web browser.

This work proposes to combine these two approaches, by constructing an aPCE

model such that the input parameters are a composite of the architectural events of the

mobile device along with webpage characteristics. This will provide an estimate of the

load time sensitive to run-to-run variations as well as input complexity. The proposed

92



QoS prediction framework is compared against two prior works which represent the

state-of-the-art.

� Proposed – The aPCE based QoS prediction framework proposed in this manuscript.

This work proposes a collection of system features as shown in Table 4.2 along

with application specific characteristics to represent a set of stochastically vary-

ing system parameters which dictate the load time of the web page. In addition,

for web browsing, the compositions of the DOM tree representing a given web-

page is considered.

� Gaudette et al. [41] – A statistical distribution parametrized by the CPU fre-

quency is modeled for each application/input combination. These distributions

are then leveraged to determine the likelihood of producing a specific QoS at a

given frequency.

� Zhu et al. [18] – A QoS prediction framework specifically for the web browser.

The authors propose utilizing a linear model where the inputs are only the

counts of each specific tag and attribute within a given webpage.

A series of experiments was conducted which loaded the top 10 most visited web-

pages 10 times each and at each possible CPU frequency (total of 900 experiments).

The pages were stored offline in order to remove the non-measurable effects of net-

work delay. Each of the considered models are constructed using the method of least

squares to determine the model coefficients using half of the experiments chosen ran-

domly, and then verified the model’s accuracy using the other half. Figure 4.5 shows

the the proposed model’s prediction error and the comparison with the methods

from [41] and [18]. It can be seen that for 8 out of the 10 webpages (except youtube

and taobao), the proposed prediction model outperforms both of the state-of-the-

art alternatives–in part due to the additional information which was gathered about
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the system state via performance counters. On average, the proposed methodology

reduces prediction error by 42.7%.

4.7 IPS Performance Prediction

In the previous section, an exploration of modeling QoS specific to the web browser

was given. In that scenario, the application was able to define its own QoS metric and

also provide hints (additional model parameters) to improve overall user satisfaction.

However, this places an extra burden on the application designer and may not always

be available. Instead, QoS can be generalized to be instructions per second (IPS)

of the processor – a measure of the rate of progress the processor is making toward

completing some fixed number of instructions.

4.7.1 Offline Construction of Performance Modeling Using aPCE

This section demonstrates the appropriateness and value of utilizing aPCE models

to predict system performance with changing system conditions. For this experiment,

the set of observable inputs is limited to non-intrusive values only. That is, this input

set can be constructed with no modification of the applications or even knowledge of

the application running (i.e. the values in Table 4.2). For each application, several

time traces of the actual performance value along with the observable inputs are

recorded. The model was then trained on half of the samples chosen at random while

the other half was used to determine the testing error.

Both a first and second order aPCE model was constructed using this data; how-

ever, it was observed that a second order aPCE model produces no benefit in terms

of accuracy. Thus, this work only presents the first order aPCE model.
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This work compares the proposed aPCE based prediction method against two

commonly used prediction methods. The first is simply assuming the last observed

performance value as the current value. Such methods are used in processor frequency

control mechanisms such as the Ondemand and Interactive frequency governors – the

default governors used by the Android OS. Additionally, the proposed method of

prediction is compared against an offline analysis technique which would provide a

single IPS value for the workload based on the average IPS seen in the training set (i.e.

pre-characterization of the workload such as suggested by [41]). This is denoted as

Static. The prediction errors are presented in Figure 4.6. By incorporating additional

information into the model (i.e. the performance counters), the aPCE model is able to

better adapt to changing and uncertain system conditions. Additionally, since aPCE

outperforms Ondemand by a factor of over 25X, one can conclude that utilizing the

last observed value as a means of prediction is insufficient for mobile workloads.

Overall, the aPCE prediction framework performs far better than either Ondemand

or Static.

4.7.2 Online IPS Prediction

A common application of IPS prediction models is use in dynamic energy manage-

ment techniques. These techniques aim to minimize the energy used by the system

or equivalently, to maximize the systems energy efficiency. These techniques must be

agnostic to the applications which are running and as such must learn the current

system characteristics quickly in order to make effective control decisions. In this en-

vironment, it is impractical to assume each application is analyzed offline beforehand

to construct the prediction models.

In this section, the effectiveness of the purposed online learning algorithm (Sec-

tion 4.4.6) is presented. Like the offline analysis, the online learning utilizes a first
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order aPCE model and the same set of performance monitoring events as in Table 4.2.

This work evaluates the effectiveness of the performance prediction technique subject

to various methods of determining X̂(tn) – described in detail in Section 4.4.6. Ad-

ditionally, this work compares against the prediction method used by the Ondemand

frequency governor. Finally, this work observes the case in which a static IPS value

is assigned to each application by averaging all observed values from prior executions

of the program. Figure 4.6 shows the prediction error for each of these schemes.

For all applications, every aPCE modeling technique outperforms the Ondemand

and Static prediction methods. Additionally, one can see that even utilizing naive

methods of modeling X̂(tn) result in better prediction accuracy than Ondemand and

static.

4.8 Power Prediction using aPCE

Thus far, it has been demonstrated that the proposed framework is effective

predicting performance metrics; now it will be shown that the proposed modeling

methodology is capable of capturing power variations as well. The defacto power pre-

diction method for computing systems is the last observed value. This method has

nearly zero overhead and has proven to be sufficient for a wide variety of server and

desktop workloads where power fluctuations are relatively small to the mean power

value [109, 110, 111]. However, mobile applications exhibit much larger power fluctu-

ation due to bursty computation phases, high levels of system non-determinism, and

are much more sensitive to the external environment such as ambient temperature,

network conditions, and so on. Thus, it is expected that the last observed value will

be inaccurate for the mobile platform.

To implement the bursty nature of mobile applications, a testing framework was

constructed in which a client program runs on an external desktop and, via a wireless
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network connection, sends workload requests to the mobile platform – the response

time of which is a random quantity determined by the selected workload. The testing

framework allows us to manually adjust the delay between workload requests. Delay

values were generated according to three distributions, the parameters of which are

determined by typical network round-trip time’s seen in 3G and 4G networks [7].

These parameters are outlined in Table ??.

A second order aPCE model using the same input parameters as for the IPS pre-

diction was determined to be sufficient to accurately predict the power every 100ms.

Figure 4.7 shows the results for 5 workloads which are likely to be repetitively exe-

cuted in a bursty manner. First, the stable case is analyzed. That is each workload is

continuously executed with no interruptions. One can see that while the aPCE mod-

eling framework produces lower prediction error (2.11% on average), last observed

still maintains a relatively small prediction error of 7.47% on average.

Once interruptions are introduced into the workload, last observed value begins to

exhibit much greater errors – up to 49.8% depending on the workload and interruption

rate. This is largely due to the fact that last observed value does not take into

account any of the system conditions for the next cycle. In contrast, the aPCE

prediction framework maintains a relatively constant error despite the workload and

the interruption rate due to the fact that the model is constructed such that system

conditions are utilized. Overall, the aPCE prediction framework reduces the average

prediction error by a factor of 9.78X and maintains an error of less than 6%.
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4.9 Energy Efficiency Analysis of Mobile Devices

Using the aPCE models created in Sections 4.7 and 4.8, now an in-depth analysis of

the performance, power, and energy efficiency of a mobile workload can be performed.

A major benefit these models provide is the additional information regarding the

distribution of performance and power values as a function of the processor frequency.

This section limits itself to a single example application, GNU Go, to highlight the

importance and usefulness of having the knowledge of the performance and power

distributions .

Once the aPCE models have been constructed for performance and power (Sec-

tion 4.4), the associated distribution functions can be recreated using knowledge of

the distributions of the input parameters – these distributions are easy to estimate

via the same moments used to construct the polynomials. From these distributions,

samples of X are generated and then feed to the aPCE model inorder to determine

the corresponding y values. With this information, it is possible to evaluate the effect

of any given set of operation conditions. For example, given a soft-deadline, energy

management algorithms can utilize the distribution of application run-time to deter-

mine the likelihood of reaching a given deadline target for any given control policy.

If the deadline is relatively unimportant, then the algorithm can relax the likelihood

requirement to potentially save energy [41]. It should be noted that while [41] pro-

vided the first step to model the QoS distributions, it relies on an assumed form of

the distribution (gamma) which is not accurate.

Alternatively, it is possible to analyze the PPW also known as the energy effi-

ciency of the system – the ratio between performance and power which equivalently

determines the number of instructions which can be evaluated per joule of energy.

This value is useful when trying to optimize both battery life and performance.
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The distributions of energy efficiency for five operating frequencies are constructed

using the aPCE models. Approximately a 4% error exists between the measured and

the calculated distributions. The relationship between frequency and energy efficiency

is plotted. Each of the distributions is overlaid with their associated frequency. This

plot will help us understand not only the expected energy efficiency as a function of

frequency, it will also allow us to determine the range of possible energy efficiency

values at each frequency. Figure 4.8 shows this plot. For this workload, the op-

timal operating frequency turns out to be 1.1GHz on average. However, at lower

frequency, variation in energy efficiency is higher, implying that any given level of

energy efficiency is more likely to be achieved at higher frequencies.

The system can leverage this information in various ways. For example, consider

the case in which a mobile device’s battery is critically low. While on average it is most

energy efficient to operate at 1.1GHz the likelihood of reaching this energy efficiency

is lower than at higher frequencies. Moreover, there is much greater uncertainty at

1.1GHz and below. Therefore, operating at a higher frequency may result in greater

efficiency more often. The controller could leverage this statistical information to use

a higher operating frequency such that there is a greater assurance the application

will complete within the remaining battery lifetime.

4.10 Summary of Contributions

In this chapter a new prediction framework is presented which is used to deter-

mine the quality of service and power consumption for mobile applications. The key

contributions of this framework are summarized below:

� A QoS and power prediction framework is demonstrated which is able to capture

the fast changing, dynamic workloads with sources of uncertainty – a common

environment to mobile devices.
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� This framework can be customized based on hardware specific features such as

those visible from on-chip performance counters, as well as application specific

features such as image complexity for the image similarity search algorithm.

� The proposed prediction method is independent of input distributions. Instead

the framework determines the optimal form for any arbitrary distribution. This

provides improved convergence properties over prior works which assume a stan-

dard distribution [41].

� An important property of the framework is the orthogonality of the polynomial

basis functions used to represent a QoS response surface. This allows for models

to increase model order without re-computing lower order coefficients.

4.11 Conclusion

In this chapter, a framework is presented to predict QoS (performance and power)

for mobile devices. The framework captures the effects of user-induced interruptions

along with run-to-run variations within these quantities, and constructed accurate

models for these quantities. The models are constructed using various system events

such as cache misses, page faults, and TLB refills which can easily be recorded on

modern mobile processors. The models where constructed using arbitrary polyno-

mial chaos expansions which approximates stochastic systems by a set of orthogonal

polynomial bases. These polynomials are constructed using only sample moments

of the system events, requiring significantly less computation than with traditional

techniques. To demonstrate the proposed approach, performance and power models

were developed for numerous mobile workloads running on actual hardware. The

proposed approach was shown to reduce the error by a factor of 6.1X and 9.4X for

performance and power estimates respectively, over the prediction method used by
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Android frequency governors. Finally, a use case of how to utilize the additional in-

formation concerning uncertainty is provided. This chapter showed how to construct

the probability density functions corresponding to performance, power, and energy

efficiency and leverage this additional information to better select the optimal CPU

frequency operating point for mobile workloads.
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Chapter 5

A ROBUST CONTROLLER OF MOBILE DEVICES: MAXIMIZING

ENERGY-EFFICIENCY

In recent years, mobile devices have become more and more ingrained in everyday

life. As a result, users place higher and higher expectations on these devices, requiring

a large number of different types of applications to be serviced in a relatively quick

period of time. These workloads are often bursty in nature and exhibit a large amount

of variability in performance and power from run to run. To better service these

demands, mobile SoC’s have introduced a slew of heterogeneous processing elements

such as GPU, DSPs, and additional CPU cores. However, due to high importance

of user satisfaction, the limited energy resources available to mobile devices, and the

lack of active cooling mechanisms, there is a strong need to develop practical dynamic

energy management techniques.

Existing DEM techniques have primarily been developed with desktop and server

workloads in mind. Such workloads often have very stable power and performance

profiles, and thus do not capture the highly variable and user centric nature of mobile

workloads. This chapter proposes a closed loop controller aimed at improving the

energy efficiency of mobile devices. The controller is unique compared to all others as

it takes into consideration the distributions of QoS and power – a vital and necessary

feature to accurately predict the non-deterministic mobile workloads. The proposed

controller is implemented on an actual smartphone device running the Android oper-

ating system. Able to effectively acclimate to the non-deterministic conditions of the

system, the proposed controller improved the energy efficiency of the mobile device

by 19% over the existing governor implemented on Android devices.
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5.1 Introduction

As mobile devices become more and more ubiquitous to daily life, greater demands

and expectations are placed on these devices – multitasking, higher screen resolutions,

and faster frame rates just to name a few. To service these demands, SoC’s have in-

troduced a wide array of complex, heterogeneous interacting components; however,

this strategy comes at a price of increased system complexity and power demand. Un-

fortunately, despite these improvements the potential performance of these devices

is often limited by several factors. For example, the maximum possible temperature

the SoC or the user can tolerate. High temperatures lead to significantly reduced

operational lifetimes and increased power dissipation, thus, it is vital to properly

manage the thermal state of the mobile device. Additionally, shared resource con-

tention between the SoC components can degrade overall system performance while

potentially over exerting the finite energy available to the mobile device. Therefore,

to ensure high performance levels (and by extension high user satisfaction) it is vital

to understand the complex interactions between the various system components as

well as system characteristics such as power, performance, and temperature.

In order to overcome the thermal and shared resource limitations of the mobile

device it is necessary to improve the energy efficiency of the SoC. While this can

be addressed at various hardware design stages, the need for system level, dynamic

control of the heterogeneous components will always be needed. Dynamic control is

able to provide further energy efficiency improvements by optimally tuning the system

components to adapt to the changing usage conditions of the device. Such runtime

techniques are referred to as Dynamic Energy Management (DEM) and is the focus

of this work.

A common metric for gauging energy efficiency is performance per watt (PPW)
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which equivalently measures the the number of instructions which can be executed per

Joule of energy. Alternatively, with additional information provided by the applica-

tion layer, we can determine energy efficiency by QoS per watt (QPW). For example,

in video decoding and rendering, one can measure the frames per second per watt –

a more direct measure relating to user satisfaction.

DEM for heterogeneous SoCs is an extremely challenging issue which involves solv-

ing a complex multidimensional, non-linear optimization problem of a multi-input,

multi-output (MIMO) system. Often this is tackled by reducing the problem space

in order to simplify the problem. For example, dynamic voltage and frequency scal-

ing (DVFS) is one of the most common mechanisms to perform DEM. Rather than

consider every controllable parameter on the SoC, DVFS simply modifies the opera-

tional voltage and frequency of the various system components in order to increase

performance at the cost of increased power consumption. Despite the pervasiveness

of mobile systems, most DEM mechanisms are still based on methods developed for

desktop and server platforms – relaying on deterministic and stable workload pat-

terns. However, this is not the case for mobile systems which are often subjected to

numerous sources of non-determinisms as well as bursty computation phases. As a

result, the previously used techniques for desktops and servers are highly sub-optimal

on mobile devices. A DEM controller for mobile devices must determine globally

optimal frequency settings for each processing element while accounting for cross-PE

performance, power, and temperature interactions. It must be flexible enough to

accommodate the changing demands placed on the system by the user while guaran-

teeing QoS under a finite energy budget. Being a non-deterministic MIMO system,

the design of a DEM controller for mobile devices with the aforementioned charac-

teristics while assuring stability and robustness is a much more challenging task than

its desktop counterpart.
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Figure 5.1: Structure of the closed-loop controller with its various components.

In this chapter we describe the design of a closed-loop controller for DEM of

mobile systems. The controller is smart enough to predict upcoming performance, and

thermal conditions in the presence of numerous sources of system non-determinisms as

to make optimal voltage and frequency decisions in an informed manor. The controller

is intelligent as it is capable of tuning the prediction models using a Kalman-based

stochastic learning technique. Figure 5.1 illustrates the controller’s structure. The

DEM optimizer determines the optimal DVFS states for the next time interval based

on the computed power and thermal models, and workload characteristics. A Kalman-

based stochastic gradient descent filter (kSGD) is used to reduce the prediction error

caused by model inaccuracies or by sensor noise.

To predict the optimal voltage/frequency setting in real time, the controller incor-

porates detailed power and thermal models which consider inter-device interference

and numerous system non-determinisms such as memory contention and other archi-

tectural delays. These models are “black box” in nature, tunable to most any system

regardless of the system complexity. Additionally, the controller utilizes temperature

aware power models to accurately determine the leakage power component and adapt

to poor thermal conditions.
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The controller is implemented and evaluated on an actual Android-based system–

the Google Pixel. This device houses Qualcomm’s MSM8996pro SoC along with

numerous thermal and performance sensors. Our experimental results on maximizing

energy efficiency demonstrates a 19% over the existing governor implemented on

Android devices.

Overall, the proposed controller described in this article advances DEM for mobile

processors in the following ways:

� it achieves better QoS, power, and temperature prediction over existing con-

troller models by taking into account dynamic, stochastic workload character-

istics;

� the prediction method is computationally efficient as it employs simple yet ac-

curate polynomial chaos models;

� the controller is able to estimates per-component power consumption without

the aid of power sensors – something that many SoCs lack.

5.2 Model Identification and Learning

In this section a discussion on the formulation of the various thermal, power,

performance, and QoS models is given. This is done to ensure that this chapter is

self-contained; however, readers should address Chapters 2 and 4 for more detailed

information.

5.2.1 Identification of Thermal Model

Compact thermal models are among the simplest mechanism to characterize a

processor’s power-temperature relationship with sufficient accuracy. The compact

thermal models use the electro-thermal analogy relating heat generation, spreading
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and storing to the electrical circuits concepts of current sources, resistors and capac-

itors, respectively. This work employs a simplified version of the HotSpot compact

thermal model [36] which assumes each processing element (i.e. cpu core, gpu, dsp,

etc.) and the package temperature is represented by one thermal node. Additionally,

it is assumed that the thermal capacitance associated with the die thermal nodes

are ignored, as the die thermal constants are usually within a few milliseconds and

are not noticeable when sensors have very low sampling rate (30 ms or more). We

summarize these assumptions along with the model as shown in Figure 5.2.

Each processing element of the SoC has a power source Pi. This power varies

over time based on the workload characteristics along with the thermal conditions

of the processing element. Each core is connected to the package through a vertical

resistance and to every adjacent core through a horizontal/lateral resistance. Com-

bined these form a symmetric resistance matrix R where Rij denotes the resistance

between processing elements i and j. The package is lumped into a single thermal

node connected to the external skin temperature of the device and finally to the am-

bient. It is assumed that each processing element poses a thermal sensor such that

Ti is observable along with the package, Tp, and skin, Ts.

As discussed in more detail in Section 5.2.2, the power dissipation of each block is

dependent on the speed, voltage, and thermal state of the block, along with workload

characteristics. Given this the vector of thermal profiles, T (t), can be expressed using

a state space model

dT (t)

dt
= −C−1GT (t) +C−1P (s,v,T , t) (5.1)

where P , s, and v are a vector comprised of each block’s total power dissipation,

speed, and voltage at time t respectively. G and C are n × n matrices relating the

thermal conductance and capacitance between any two pairs of the n blocks. We can
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Figure 5.2: Compact thermal model used in this work.
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write this equation more succinctly by substituting B = C−1 and A = −BG thus

dT (t)

dt
= AT (t) +BP (s,v,T , t). (5.2)

The coefficient matrices A and B can be derived mechanistically given sufficient

information of the thermal capacitance and resistance of the SoC layout and fabrica-

tion material. Alternatively, these values can be determined analytically by observing

a time series of T and P values and utilizing least mean squares fitting techniques.

5.2.2 Identification of Power Model

As discussed in the prior section, this work assumes that the SoC processor can

be segmented into seperate logical blocks (e.g. arithmetic units, floating point units,

caches, etc). In this section, we will show how well established power models for

CMOS logic can be translated into the aPCE framework discussed in Chapter 4. It

has been well studied that the power consumption of a singular block within the

processor is typically modeled as

Pi(t) = Pdyn,i(t) + Plkg,i(t) + Pbase,i(t), (5.3)

where Pdyn,i(t), Plkg,i(t), Pbase,i(t) are functions describing the dynamic, temperature-

dependent leakage, and baseline or static power components respectively for a given

block b. The sum of power consumption of each of the B blocks within the system

constitutes the total system power consumption:

Psys(t) =
∑
i∈B

Pi(t). (5.4)

Leakage Power

For any given block, Leakage power is known to have an exponential dependence on

the block’s temperature and supply voltage. The exact equation is difficult to derive
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analytically, hence it is usually derived via simulations and data fitting. The authors

of [52] provide the leakage power for 65 nm.

Plkg,b(t) = kb,1vb(t)T
2
b (t)e

αbvb(t)+βb
Tb(t) + kb,2e

(γbvb(t)+δb),∀b, t (5.5)

such that kb,1, kb,2, αb, βb, γb, and δb are parameters that depend on circuit topology,

size, technology, and design.

Due to the non-linearity of this leakage model, paramterizing kb,1, kb,2, αb, βb,

γb, and δb becomes a challenging task. Additionally, a major limitation of (5.5) is

the cyclical relationship with (2.3) in regards to temperature. In order to solve (2.3)

and (5.5) directly, numerical solutions for non-linear analysis are necessary therefore

making temperature and power prediction computationally inefficient and difficult

to use in practice. Alternatively, one may de-couple the thermal dependency by

representing leakage power as a piecewise-linear model in temperature and voltage [12]

Plkg,b(t) = P 0
lkg,b +GT

b Tb(t) + kvbvb(t),∀b, t (5.6)

where GT
b is the temperature coefficient associated with temperature T and kvb is the

voltage coefficient associated with voltage v. P 0
lkg,b represents the leakage power for

block b such that Tb = 0 and vb = 0 (i.e. the ambient temperature and the minimum

voltage). We can therefore rewrite (2.3) as

dT (t)

dt
= ÂT (t) +BP̂ (s,v,T , t) (5.7)

where

Â = A+ B̂GT , (5.8)

P̂ (s,v, t) = P (s,v,T , t)−GTT (t) (5.9)

and GT is a vector comprised of each block’s GT
b value. Thus the cyclical dependency

between power and temperature is removed. Evaluation of the temperature and
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leakage power can be done efficiently as both are represented using a set of linear

equations.

Dynamic Power

Dynamic power captures the active power of a given block. It is well established that

dynamic power of traditional CMOS based technology varies quadratically with the

operating voltage of the block. Furthermore, since the dynamic power is only con-

sumed while the clock is high, dynamic power varies linearly with the clock frequency.

Therefore, dynamic power of block b can be expressed as

Pdyn,b(t) = ab(t)sb(t)v
2
b (t),∀b, t (5.10)

where sb(t) and vb(t) are the time varying speed (frequency) and voltage profiles of

block b while ab(t) represents the activity factor of block b at time t. In practice this

value changes over time in relation to the workload characteristics. For example, a

workload performing a large number of memory operations will exhibit a different

power profile than a workload with purely ALU based operations. However, it is

challenging to determine the form of ab(t) in practice, and more-so to predict the value

of ab(t) in the future. Prior literature typically simplifies the issue by assuming a static

form such as a constant value (ab(t) = Ab,∀t) or proportional to the instructions-per-

cycle of the block (ab(t) = AbIPC(t)). However, such a simplistic form does not

properly capture the variations between different workloads [48].

To illustrate this deficiency, we executed several workloads on an actual mobile

device – the Google Pixel housing the Qualcomm MSM8996 Pro system on chip. The

frequency was fixed at 1.2864GHz and the operating temperatures of the cores where

verified to be approximately the same (between 40degC and 45degC). We recorded the

system current draw at a rate of 5000 samples per second using the Monsoon Power
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Figure 5.3: Dynamic CPU current draw vs. IPC for selected workloads.

Monitor and averaged the samples over the course of the workloads execution. Addi-

tionally, the instructions per cycle were recorded using on-chip performance counters.

Figure 5.3 shows the relationship between IPC and current draw. From this we can

clearly see that dynamic power is not simply proportional to IPC alone and thus a

more sophisticated prediction mechanism is needed to accurately capture the work-

load’s power characteristics. In the following section we present a novel methodology

to represent a(t) as a stochastic value based on workload characteristics visible via

hardware and software performance counters and on chip-temperature sensors.

Representing Psys with aPCE Models

Thus far, we have provided known mathematical form for system power; however,

these formulas where derived using heuristic methods. They also rely on the assump-

tion of known fixed values for many parameters such as the leakage parameters (Gb,

kb, and P 0
lkg,b) as well as the activity factor (ab). However, these parameters are of-

ten difficult to derive and may vary over the course of the mobile device’s lifetime.

Therefore, this work proposes the use of arbitrary polynomial chaos expansion to

represent system power as a function of observable system state parameters such as

architectural events, device temperature, and device voltage/frequency (see Chapter
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4). The aPCE representation will be tuned over time to reflect the current workload

and system characteristics. This method will be discussed in detail with the controller

design in Section 5.3.

5.2.3 Definition of Performance Model

In this work, we assume that performance is some observable and quantifiable

quantity dependent on controllable system parameters such as operating frequency.

For example, the time needed to render and display a web page or the frames per

second decoded by a video player can represent QoS in the context of specific appli-

cations. More generally and without the need of application visibility, performance

can be related to the IPS of the processor. That is an application or task can be

considered as a finite sequence of instructions which must be executed, the speed at

which these instructions are executed dictate the level response time of the applica-

tion and by extension some function of performance. However, it has been shown in

prior literature [41] that the flow of execution is halted due to numerous sources –

the start time and length of these delays being stochastically random variables. As

such, we can utilize aPC methods to model QoS in much the same manner as power.

Please refer to Chapter 4 and Appendix A for more information.

5.2.4 Definition of QoS for Mobile Devices

Quality of service is a metric used to relate the user’s satisfaction to the system’s

performance metric. This work assumes that performance and user satisfaction are

positively correlated values. However, the issue of evaluating QoS is non-trivial in the

mobile domain as performance becomes a non-deterministic value. Thus, QoS must

be represented as a probability:

QoS(s,X,∆) = Prob {Perf(s,X) ≥ ∆} (5.11)
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where ∆ is some performance target set to ensure user satisfaction. Therefore, the

best we can do is to ensure that system performance is at least some specified value

∆, with likelihood Q ∈ [0, 1], where ∆ and Q are design parameters that must be

choose to ensure desired levels of user satisfaction.

5.3 A Dynamic Energy Management Controller for Mobile Devices

One of the most practical applications of power and performance prediction is

in the design of dynamic control algorithms for computer systems. These control

algorithms can typically be generalized by a straightforward execution flow in which

the algorithm (1) observes the current workload and system characteristics, (2)

learns from this observation by updating the prediction model and reducing its error,

and (3) adapts to the current system condition by determining the optimal control

parameters which optimize some given objective. These three steps are repeated

periodically as the system executes its workload. In the following section, we describe

an implementation of a QoS-aware DEM controller, starting with the formulation of

the optimization problem needed for the adapt stage.

5.3.1 Formulation of the Optimization Problem

The general role of any DEM optimizer is to determine the optimal trajectory of

control parameters such that some given objective is optimized while ensuring that all

specified constraints are satisfied. In this work, the objective function to be optimized

is energy efficiency, which is defined as performance per watt (PPW). Additionally,

it is desirable to ensure high levels of user satisfaction. This can be accomplished by

constraining the optimization problem such that some minimum level of performance,

∆, is always produced. For example, for the use case of video playback, users expect

a minimum playback rate of 30 frames-per-second, anything less would result in sub-
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optimal user experience. However, as shown in this work, performance should not

be considered as a deterministic value for mobile devices. Therefore, the minimum

performance constraint must be reformulated into a quality of service constraint by

including a likelihood parameter, Q, such that the probability that performance is at

least ∆ is greater than Q. Therefore, we propose the following optimization problem

to maximize energy efficiency of mobile devices subject to user satisfaction conditions:

max
s(t)

PPW (s(t), X(t)) =
E [Perf(s(t), X(t))]

E [Psys(s(t), X(t))]
(5.12)

such that Perf(s(t), X(t)) =

∞∑
i=0

cPerf,i(t)φi(s(t), X(t)), (5.13)

Psys(s(t),v(t), X(t)) =

∞∑
i=0

cP,i(t)φi(s(t),v(t), X(t)), (5.14)

smin ≤ s(t) ≤ smax, (5.15)

dT (t)

dt
= AT (t) +BE (P (s,v,T , t)) , (5.16)

T (t) ≤ Tmax (5.17)

Prob {Perf(s(t), X(t)) ≥ ∆} > Q (5.18)

where Perf(s(t), X(t)) and Psys(s(t), X(t)) represents the prediction models of perfor-

mance and total system power respectively. These are aPCE functions, parameterized

by the coefficients, cPerf,i(t) and cPerf,i(t). As described in Section 5.4.3, the optimal

basis functions φi are determined beforehand by randomly sampling X(t) to generate

the necessary sample moments.

The objective function (5.12), represents the expected value of the systems energy-

efficiency as a function of operating frequency s(t). For any given frequency, this

expected value can be determined by evaluating (5.13) and (5.14) with the expected
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value of X(t).

Constraint (5.18) provides the quality of service constraint to ensure that system

performance is at least some specified value ∆, with likelihood Q.1 To evaluate

this constraint, the distribution of X(t) must be known. In the event that X(t)

follows an arbitrary distribution, this distribution can be estimated by randomly

sampling X(t) and constructing a histogram to estimate the distribution of X(t).

With the distribution of X(t) known, the distribution of Perf(s(t), X(t)) for any given

value of s(t) can be estimated using the aPCE model. First, randomly generate N

samples of X(t) from its distribution where N is some large number. Next, evaluate

Perf(s(t), X(t)) for each of these samples and construct the associated cumulative

mass function (CMF) for performance. Let Fs(t)(δ) represent this CMF where δ is

some performance value. Constraint (5.18) can therefore be determined by evaluating

1− Fs(t)(∆).

Furthermore, mobile systems are often thermally constrained due to the lack of

active cooling. Thus, we consider the thermal properties of the mobile device by

creating a Hotspot model [36] in the form of the state space equation defined in (5.16).

The coefficient matrices, A and B are determined beforehand by experimentally

stressing the system (see Section 5.3.3 for details of how to experimentally derive

A and B). Constraint (5.17) ensures that the thermal condition of all components

remains under a specified maximum, Tmax often set at 100◦C.

The controller’s tunable parameters include per-component frequency, s(t) ∈

[smin, smax]; however, most mobile systems only allow the frequency to be selected

from a discrete set of options.. It should be noted that while this work limits the ex-

amined constraints to (5.13–5.18); other additional constraints can also be examined

1Note that although not considered in this work, it is possible to add a similar constraint for

power consumption.
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such as deadline and quality management requirements.

5.3.2 Error Correction Mechanisms

The model parameters, cPerf,i(t) and cP,i(t), need not be static and can be

learned/updated periodically based on the changing operating conditions of the mo-

bile device. Moreover, the necessary order truncation of the polynomial chaos model

induces errors and servers only as an approximation of the actual power and perfor-

mance values. As such, the predictions can be inaccurate under certain untrained

scenarios and thus a feedback of past measurements can be used to correct for future

predictions. This work proposes the use of an intelligent learning technique based

on the Kalman-based Stochastic Gradient Descent algorithm [112] to minimize the

impact of model error.2

Kalman-based Stochastic Gradient Descent (kSGD) – Kalman-based stochas-

tic gradient descent (kSGD) [112] offers a mechanism for learning model parameters

of statistically varying systems. For online learning, kSGD acts as an adaptive filter

which determines the model coefficients via a minimization of mean square error of a

sequence of data points such that each data-point is weighted according to the vari-

ance of the system. The advantage of kGSD over traditional filtering techniques such

as recursive least squares and traditional gradient descent is the fast convergence of

the model parameters along with its robustness – it is not sensitive to the condition

number of the problem.

Algorithm 2 summarizes one iteration of the kSGD procedure which is performed

independently for the two models, Perf(·) and Psys(·). Let c(k) represent the esti-

mated model parameters at time k (either for the performance or power model). To

improve the estimate of c, the kSGD algorithm determines two factors: the direction

2Although any online technique to reduce model error could be used.
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Algorithm 2: kSGD(c(k),M(k),φ, X(k), y(k))

Input: c(k) – current estimate of model parameters;

M(k) – current estimate of the input covariance matrix;

φ – the set of aPCE basis functions;

X(k) – measured values of model input;

y(k) – measured values of model output;

1. Compute: v = M(k)φ(X(k)) ;

2. Compute: s = γ2 + φ(X(k))Tv;

3. Update: c(k + 1) = c(k) + v(y − φ(X(k))Tc(k))/s;

4. Update: M(k + 1) = (I − vφ(X(k))
s

)M(k);

of the improvement and the magnitude of this improvement. First, as shown in Line

1 of Algorithm 2, a vector v is calculated based on the estimated covariance matrix,

M(k), along with the basis functions, φ, evaluated with a observed input vector X(k).

This is similar to the a-posteriori update stage of Kalman-filter which minimizes the

effects of model inaccuracies via the inner-product between the sample data point and

its covariance matrix. Next, a scaling factor, s, is determined in Line 2. This factor is

determined using a hyperparameter, γ2, and is designed to mitigate issues involving

the condition number of the problem. Finally, the model update occurs in Lines 3 and

4. Much like other Gauss-Newton methods, the direction of the model improvement

is determined by the gradient of the error function (minimize the L2-norm of model

error). This process is repeated at every point in time in which a new data point is

available.
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5.3.3 Power Prediction via Thermal Workload Characterization

To learn the performance and power prediction coefficients in (5.13) and (5.14),

a time trace of the workload’s power and performance characteristics must be either

derived or measured. This is a non-trivial task due to limitations on-chip power

sensors. Most modern mobile SoCs lack the fine grain power monitors needed to

view the power of each processing element which can then be used to calculate the

platform power consumption. Instead, these devices have at best a single monitor

to measure the battery current. Instead, a collection of thermal sensors at different

locations within the chip are offered. For the Qualcomm MSM8996 pro, over 25

on-chip sensors are available including temperature sensors for the per-core alu, the

per-core L1 cache, the per-cluster L2 cache, the shared L3 cache, the GPU, and

the package. Instead of reading a power sensor directly, we propose to utilize the

knowledge of the mobile device’s thermal characteristics to infer the per-component

power consumption of the device. In other words, the collection of thermal sensors

will act as a surrogate for the power sensors needed to characterize Equation (5.14).

Prior work has demonstrated that the temperature sensors can be used to obtain

information about the power dissipation at various locations in the processor. One

such work proposes to use blind identification techniques [113]. Alternatively, the

thermal model can be constructed via experimental evaluation and model fitting.

This procedure is outlined below.

1. Establish a baseline condition such that no workload is running and all power

sources are either disabled or set to the lowest power settings (e.g. minimum

frequency and voltage). Record the steady state temperature vector and total

power consumption.

2. For each processing element/power source one at a time, assign a workload to
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the element and vary the power setting over time. Record the time trace of

temperature and total power. Assume that the difference between the total

power and the baseline power is the power dissipated by the specific element

under stress.

3. Use state space fitting methods such as LMS to determine A and B.

With A and B determined offline, we can now estimate the per-component power

consumption, P̂ (t), using thermal readings only.

P̂ (s,v,T , t) = B−1

(
dT (t)

dt
−A

)
(5.19)

dT (t)

dt
≈ T (t)− T (t−∆)

ts
(5.20)

where, ts is the time between reading two concurrent thermal readings are obtained.

It is then assumed that Psys is approximately the sum of the components of P̂ .

5.3.4 Controller Implementation

A summary of the procedure to maximize energy efficiency using the proposed

closed loop controller is described in Algorithm 3 and implemented on the experi-

mental platform using C. The controller design is simplistic enough to be portable to

most mobile platforms. As we will show, it is also robust enough to achieve significant

energy-efficiency improvements. The inputs of this controller are the aPCE perfor-

mance and power models, specifically, the set of basis functions, φ , as well as the

initial estimates of the model coefficients, cPPerf(0) and cPP (0). Additionally, the

state-space matrices, A and B, for the thermal model defined in (5.19) are needed.

The flow of the controller follows a simple procedure of observe, learn, and

adapt.

Observe: First, the current values of performance, y(k), temperature, T (k), and

sources variation, X(k) are measured using on-chip sensors (Line 2 of Algorithm 3).
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Following this, the power consumption during the previous update window, P (k), is

estimated using (5.19–5.20) as described in Line 3.

Learn: With the measured system information available, the performance (Line

4) and power (Line 5) models are updated using the kSGD method described in

Section 5.3.2.

Adapt: Finally, in Line 6, the optimization problem detailed in (5.12–5.17) is

solved using convex optimization techniques. This optimization represents adapta-

tion portion of the controller, leveraging the estimated power and performance pre-

diction models to determine the resulting system characteristics at various voltage

and frequency settings, v and s.

The controller, then waits a specified amount of time before making the next

iteration. In order to be compatible with most mobile operating systems, it is assumed

that control decisions occur at a fixed frequency where the time between updates is

ts ∈ [10 ms, 100 ms]. For this work, a value of 100 ms is used.

5.4 Experimental Methodology

In this section, a description of the experimental setup is provided. An essential

condition for the experimental methodology developed for this work is to accurately

represent real world use of smartphone devices. A commercially available smartphone

was selected as the experimental platform along with realistic mobile workloads.

5.4.1 Real-Device Experimental Platform

The experiments were conducted on a Google Pixel Smartphone [99] housing Qual-

comm’s MSM8996pro chipset [100]. The phone features on-chip performance mon-

itoring units (PMU). The six PMU’s can be programmed to observe various hard-

ware events such as L2 cache misses, branch mispredictions, and main memory page
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Algorithm 3: DEM-Controller

Input: ts – controller update period;

cPerf (0), φ,MPerf (0) – initial estimate of performance model parameters and

covariance matrix;

cP (0), φ,MP (0) – initial estimate of power model parameters and covariance

matrix;

A, B – coefficients to the power-temperature state space model (5.16);

1. Initialize: k = 0;

while Device is running do

2. Read: y(k), T (k), and (X(k));

3. Calculate: P (k) using (5.19–5.20);

4. Update: cperf (k + 1) = kSGD(cperf (k),Mperf (k),φ, X(k), y(k)) via

Algorithm 2;

5. Update: cP (k + 1) = kSGD(cP (k),MP (k),φ, X(k), y(k)) via

Algorithm 2;

6. Solve: s(k) and v(k) using convex or non-linear methods on (5.12–5.17);

7. Increment: k = k + 1;

8. Wait: ts time.

faults. We sample these PMU’s at a rate of 10 samples per second. Additionally,

The MSM8996pro offers a heterogeneous architecture with two CPU cores tuned for

high performance and two CPU cores tuned for low power. The two cores within a

cluster share a common L2 cache and both clusters share a common L3 cache. Unless

otherwise noted, all experiments were conducted on the performance oriented cluster

since at lower operating frequency settings, performance and power oriented clusters

exhibit similar power and performance characteristics (i.e. the operational character-
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Table 5.1: Parameters for the Pixel Smartphone and Qualcomm MSM8996pro Chip-
Set.

Low High

Power Cluster Performance Cluster

Number of Cores 2 2

Architecture Kyro Kyro

Instruction Set ARM v8a ARM v8a

Frequency 0.3-1.59GHz 0.3-2.15GHz

L1 Cache Size 32KB I & 32KB D 32KB I & 32KB D

L2 Cache Size 512KB 1.5MB

L3 Cache Size 4MB

istics of the power oriented cluster is a subset of the performance oriented cluster).

Table 5.1 lists the important architectural specification of the device.

A common limitation of commercially available mobile devices is the lack of real

time power measuring sensors and should they exist, typically provide coarse mea-

surements at a very low sample rate. To address these issues, the device’s battery

was removed and replaced with a constant voltage source via the Monsoon power

monitoring unit [101]. The unit can measure the total system’s voltage and current

at a rate of 5000 samples per second.

The experimental platform runs a rooted Android 7.2 OS. The applications of

interest were cross-compiled on a host machine with the latest ARM-Android NDK

toolchains [70]. The binary is pushed to the device and is launched from the host

machine via a wireless connection using the android debug bridge terminal.
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5.4.2 Benchmark Applications

In order to provide a good breadth of mobile applications, a number of applica-

tions were evaluated which (1) have been utilized in prior works for predicting the

performance of mobile and interactive workloads [81, 41, 18, 79, 65] and (2) represent

workloads which may be present on current or future smartphones.

Interactive Workloads for Application Specific Performance Prediction

User satisfaction is the driving force of how successful a mobile application will be;

however, to estimate an application’s performance metric, additional information or

hints can be propagated by the application itself to determine data input complex-

ity. Below are several interactive workloads considered in this work along with the

additional information passed to the prediction framework.

Web Browser and HTML Viewer – The web browser serves as one of the most

utilized applications on modern smartphones. A user’s satisfaction with a web page

is directly related to the time needed to load and render the page [1] and therefore,

performance denotes the webpage load time. We utilize the Google Webview [102]

framework to load various webpages. These webpages are selected from the 100

most viewed webpages according to the Alexia service [103]. The composition and

complexity of a web page is determined by its DOM tree – a structure whose nodes are

labeled by a unique tag describing the node’s function (e.g. java scripts, images, links,

etc.) along with multiple attribute fields providing additional information for the node

(e.g. the dimensions of an image to display). This information can be determined

quickly after the webpage request is made and is provided to the prediction framework

as a means to capture per-webpage complexity [18].

Image Recognition and Similarity Search – Ferret [114], is an image simi-
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larity ranking algorithm from the PARSEC benchmark suite [68]. The algorithm is

used for content-based similarity search of feature-rich data, such as images or videos,

and is an important building block for many image recognition and augmented reality

Apps running on modern mobile devices. The performance metric of this algorithm is

measured by the response time from when the image is given to the algorithm to when

the algorithm produces the similarity results at the output. We observe that Ferret’s

algorithmic complexity is related to three factors, the database size, the image size,

and the number of unique fragments in the image. However, since we assume that

Ferret is being applied to an augmented reality application, it is assumed that all

pictures have the same image size and the database size is constant; therefore, input

complexity is limited to the number of fragments per image.

Interactive Gaming – On modern mobile processors, gaming applications are

common place. In this work, we examine the CPU portion of these gaming appli-

cations which is responsible for responding to user’s request and interactions. The

first is 2048 [105], a puzzle game with extremely limited computational overhead and

who’s response time is largely dictated by IO requests. The second is GNU Go [106]

which incorporates computationally heavy search techniques such as breadth first

search and decision trees. The program flow for both of these applications is to wait

for a user’s input, respond to this input, and finally return control back to the user,

repeating the process. The performance metric of this application is the response time

from when the user inputs the request to when the application finishes the serving the

request. In the case of GNU Go this requires processing the user’s move, determining

the application’s move, and then render this information to the smartphone’s display.

In contrast, 2048 simply needs to process the user’s input.
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Workloads for General IPS Performance Prediction

While additional effort by the application designer provides a more direct measure

to improve user satisfaction it is also preferable to increase user satisfaction to all

types of applications–even those which are not specifically designed with QoS-aware

energy management in mind. To accomplish this we demonstrate that our perfor-

mance prediction framework can be used to estimate the instructions-per-second of

a processor with only information from the on-chip performance monitoring units,

requiring no interaction with the foreground application. We examine the following

mobile workloads.

Security/Communication Benchmarks – A common task in smartphones is

the transmission of data via a wireless/radio network. This data is encrypted to

mitigate packet snooping. We examine two common algorithms used in secured data

transmission: sha and aes [104]. These workloads also serve as a comparison point

with prior works in mobile performance monitoring [81]. Finally, we examine an

FTP client used to transfer files between the host machine and the mobile client.

This workload utilizes a wireless network as the communication medium between the

devices.

Office Benchmarks – Due to limited storage and expensive data transmission it

is common for applications to compress data. We examine the bzip2 [107] benchmark

under several different inputs such as text files, images, videos, programs, and file

systems. Additionally, we examine an implementation of the min-cost flow algorithm,

mcf, as applied to resource scheduling.

Video Decoding and Playback – The final application of interest is h264ref,

an algorithm allowing for the encoding or decoding of video files to the h264 specifi-

cations.
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Table 5.2: Input Variables for the Power and Performance Prediction

System Events

x1 L1 data cache misses per cycle

x2 Branch misses per cycle

x3 Shared L2 cache misses per cycle

x4 Bus accesses per cycle

x5 Page faults per cycle

x6 CPU Temperature

Controls

x7 Power Oriented CPU cluster frequency

x8 Performance Oriented CPU cluster frequency

x9 GPU frequency

x10 Memory bus frequency

5.4.3 Prediction Models for Mobile Workloads

To demonstrate the benefit of utilizing the proposed aPCE framework, two al-

ternative prediction schemes are examined: regression and last observed. These two

schemes are commonly implemented in literature and in industry; and serve as a

baseline for predictive model analysis. In the following section, the implementation

of all three prediction models is discussed.

aPCE Prediction Framework

As introduced in Chapter 4 and more thoroughly in Appendix A, the proposed aPCE

prediction models represent the response variable (i.e. performance or power) as the

weighted sum of a collection of orthogonal basis functions which take, as inputs, a
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collection of random variables denoted X = {x1, x2, . . .}. This has two major benefits

over alternative techniques such as regression modeling which directly uses the value

of X.

First is the orthogonality of the basis function. While not covered in this paper,

the orthogonality of the basis functions allows for incrementally modifying the model

complexity over time without the need to re-evaluate all coefficients [115]. For ex-

ample, consider the scenario in which a second order aPCE model is constructed. If

a designer feels that the model error is inadequate, they may increase the order of

the model or add additional model parameters. Without orthogonality, this would

require completely re-evaluating the model coefficients including those previously de-

rived from the second order model. However, the orthogonality principle allows the

new coefficients to be evaluated, independently from the prior ones. This can greatly

reduce model training overhead and allow for dynamic model construction.

Second, aPCE and PCE in general decompose the response variable into a set

of optimal3 orthogonal polynomials [92]. In other words, there exists no better rep-

resentation of the response variable as a function of the given input parameters X.

This ultimately results in faster convergence rates over any other modeling technique

when determining model parameters thus requiring less experimental design work.

The first step to developing the aPCE model is identifying the sources of varia-

tion within the system. In this work, the effects of architectural events are examined.

While it is theoretically possible to model all architectural events, in practice this is

not feasible. An excessive amount of model parameters may lead to over-determined

models. Additionally, the specification of the system may limit the amount of vari-

ables which can be observed at any given time. In the case of the Google Pixel

smartphone, only 6 architectural events may be observed at any given time. Thus,

3in the mean-square sense
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we limit our input to the most highly correlated architectural events as described in

Table 5.2

With the model input defined, the next step is to construct the optimal orthog-

onal basis functions. To do so, sample data must be available for the sources of

variation, X, as well as the corresponding system response, y. As an example, this

work constructs a second order aPCE model. As with regression modeling, this in-

volves determining the 0, 1st, and 2nd order terms for each input variable xi as well

as the cross-terms for each combination of (xi, xj), i 6= j. We begin by constructing

the univariate basis functions.

order 0: P (0)(xi) = 1

order 1: P (1)(xi) = xi − µ1(xi)

order 2: P (2)(xi) = x2
i +

µ3(xi)− µ1(xi)µ2(xi)

µ2
1(xi)− µ2(xi)

xi

+
µ2(xi)

2 − µ1(xi)µ3(xi)

µ1(xi)2 − µ2(xi)

where µj(xi) is the jth moment of input xi. We are able to calculate the sample

moments of xi by taking a random sampling of N data points of each performance

counter.

µk(xj) ≈ µ̂k(xj) =
1

N

N∑
i=1

xj(i)
k, ∀k = 1 . . . K, (5.21)

where xi(k) is the kth realization of the random variable, xi. Finally, we must deter-

mine the basis functions for the cross-terms (xi, xj), i 6= j. As long as xi and xj are

independent, these can be easily found by taking the product of the two univariate

basis functions [94]. That is,

P (2)(xi, xj) = P (1)(xi)P
(1)(xj), ∀i 6= j.

With the polynomial basis functions defined, it is now possible to define the aPCE

representation of the system response, y. For example a second order model for two
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input terms, x1 and x2 would be the following:

y =c0+

c1P
(1)(x1) + c2P

(1)(x2)

+ c3P
(2)(x1) + c4P

(2)(x2) + c5P
(1)(x1)P (1)(x2)

where, ci are the model coefficients which must be determined empirically.

Regression-based Prediction

Regression based modeling is among the most widely used modeling frameworks in

literature [77, 83, 84, 85, 86]. As with the aPCE method, a second-order model is

constructed for each of the ten workloads using the variables described in Table 5.2.

The difference, however, is that the variables are directly applied to the model rather

than being transformed via a set of basis functions. Equivalently, the regression model

requires that all coefficients, c0, cis and cjs be determined for the second order model:

y =c0 +
10∑
i=1

cixi +
10∑
i=1

10∑
j=1

ci,jxixj.

In comparison to aPCE, the regression model will demonstrate the effect of not con-

sidering X as a non-deterministic value.

Last Observed Prediction

The simplest prediction method examined in this work is Last Observed Value.

Thanks to its extremely low overhead, last observed prediction models are often

utilized by scheduling algorithms which must have negligible impact to system per-

formance [78]. The last observed value assumes that an ordered sequence of realiza-

tions of the response variable, y, is available. Let y(k) represent the kth element of
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sequence. Last observed value then states that y(k + 1) = y(k). As such no con-

sideration to the causes of system variation is given, rather the assumption is that

system dynamics are slowly moving. Last observed value represents a good reference

framework to evaluate the variability of system dynamics over time.

5.5 Prediction Accuracy of aPCE models for Application QoS and Power

Most modeling techniques currently utilized in the control of mobile systems ig-

nore the two basic characteristics of mobile applications considered in this paper –

namely, (1) the stochastic nature of an applications performance and power, and (2)

the arbitrary nature of their distributions. For example, many dynamic energy man-

agement algorithms simply assume that future power and performance values will be

approximately equal to the last observed value, thus ignoring the non-deterministic

nature of the system [78]. Additionally, more sophisticated modeling techniques such

as regression modeling are only optimal given the response variable follows a known

distribution such as Guassian [116].

In contrast, the aPCE model developed in this paper is data-driven, and does

not require any assumptions on the distribution of the random variables involved in

the model. This raises the question: how much does accounting for this arbitrary

non-determinism improve model accuracy?

To answer this question, the ten mobile workloads were executed 100 times at

each frequency setting. An aPCE, regression and last observed prediction model was

constructed for each application. Half of the data set was used to train the associated

aPCE and regression models while the other half was used for testing. Figures 5.4

and 5.5 show the test data set’s error in predicting performance and power respec-

tively, for our proposed prediction scheme along with two other commonly used pre-

diction frameworks. For all ten workloads aPCE outperforms all other techniques
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Figure 5.4: The performance prediction error of various modeling frameworks.
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Figure 5.5: The power prediction error of various modeling frameworks.

for both performance and power modeling. However, for workloads with stable per-

formance metrics, such as 2048, aes, bzip2, h264ref, we can see that the benefits

are minimal over the much more simplistic, last observed value method. Likewise,

the benefit for aPCE power modeling is most present in interactive workloads and

workloads that utilize numerous system resources such as ftp.

Overall, aPCE modeling produces a performance prediction error of 6.88% and

a power prediction error of 7.33%, reducing performance prediction error by 2.67X
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over regression and 2.91X over the simplistic last observed value. Additionally, the

power prediction error is reduced by 1.70X over both regression and last observed

value. This indicates that it is beneficial to consider system non-determinism when

constructing prediction models. However, this leads to two very important questions.

First, are these models light-weight such that the computational overhead is negligi-

ble? Low computational complexity is a major reason why prediction methods such

as last observed are still utilized rather than more accurate models. Second, exactly

how much energy efficiency gains can achieved by this increased in accuracy? These

questions are explored in the following section.

5.6 Model Viability for DEM of Mobile Systems

5.6.1 Modeling Overhead

In the prior section, it was demonstrated that modeling frameworks which consider

system non-determinism of arbitrary distributions provide a significant reduction in

prediction error. However, the viability of utilizing such a model is also determined

by the overhead needed to develop and evaluate the model.

Figure 5.6 illustrates the measured relationship between computational complex-

ity (in cycles) and the number of model terms along with the order of the model.

Predictably, much like the case of regression techniques, the order of the model de-

termines computational complexity. For the second order model with 10 variables as

used in prior analysis, a computational cost of approximately 475 cycles are needed

for each evaluation. When utilized in a DEM controller with periodic updates every

100ms, this equates to less than 0.0016% overhead per evaluation4.

4Note that the number of evaluations is largely dependent on the design and implementation

of the DEM controller. We therefore, leave this overhead metric as a function of the number of

evaluations
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Figure 5.6: The number of cycles needed to evaluate aPCE models of various orders
and input size.

Additionally, Figure 5.7 shows the measured energy overhead needed to evaluate

the model. This indicates that 9.73×10−7 mAh of energy is needed for each evaluation

of the model. Such an energy overhead is negligible in comparison to the idle current

draw (1̃00 to 300mAh) of smartphones such as the Google Pixel smartphone.

5.6.2 Sensitivity Analysis of Model Error on Energy Efficiency Curve

Another factor when applying aPCE modeling to DEM control techniques is the

sensitivity of the control parameters, i.e. frequency, on the objective function (energy

efficiency). It is reasonable to expect that model error will result in a sub-optimal

frequency selection leading to a loss of energy-efficiency. Furthermore, one would

expect that the larger modeling errors of the regression and last observed prediction

techniques should result in a greater loss of energy-efficiency when compared to the

proposed aPCE framework.

This loss of potential energy efficiency can be represented mathematically. That
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Figure 5.7: The energy needed to evaluate aPCE models of various orders and input
size.

is, consider the true (i.e. measured) energy efficiency curves (E(s)) to be equal to

E(s) = Q(s)/P (s) where Q(s) and P(s) are the application’s performance and power

as functions of operating frequency. The optimal frequency s∗ can therefore be deter-

mined by evaluating s∗ = argmaxsE(s). However, in practice, the true representa-

tions of Q(s) and P (s) are not available, thus prediction models, ˆQj(s) and ˆPj(s), are

used as estimates. That is, the energy efficiency curve given prediction method j is

estimated as Êj(s) = ˆQj(s)/ ˆPj(s) which suggests an optimal operating frequency of

ŝ∗j = argmax Êj(s). Depending on the magnitude of the discrepancy between the true

and the estimated functions, ŝ∗j may vary greatly from the actual operating frequency

thus leading to large losses of potential energy-efficiency improvements. This loss of

energy-efficiency due to the prediction model can be modeled as

Energy-Efficiency Loss = E(s∗)− E(ŝ∗j) (5.22)

For example, consider Figure 5.8 which shows part of the energy efficiency curve
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Figure 5.8: An illustration of model sensitivity on the energy efficiency of the FTP
application.

for the FTP workload. In this case either a model error of +7.78% in performance

prediction or -8.13% in power prediction can result in shifting the optimal frequency

selection one setting higher. However, the net result of this is only a 0.5% loss in

energy efficiency.

Figure 5.9 shows the average energy efficiency reduction when utilizing each of

the three prediction schemes discussed in Section 5.5. As expected the aPCE frame-

work results in the least wasted energy-efficiency (1.26% on average). This is a 3X

less wasted energy efficiency over regression based modeling techniques and an 8X

improvement over last observed value. Ultimately, this indicates that although ex-

tremely simple, last observed value is insufficient when applied to DEM controllers

and a more sophisticated technique, such as that proposed in this paper, is needed.
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Figure 5.9: The effect of modeling error on determining the optimal energy efficiency.

5.7 Energy Efficiency Improvements from aPCE-based DEM

To validate the effectiveness of our controller we compare it against three DEM

policies commonly found on modern smartphones: Performance, PowerSave, and In-

teractive [78]. As the name implies, the Performance policy attempts to achieve the

maximum performance by always running at the maximum frequency. The Powersave

policy aims to minimize the overall energy consumption by running the processor at

the minimum frequency. The Interactive policy reacts to the workload activity and

attempts to maximize performance, while minimizing energy consumption; aggres-

sively increasing the cpu frequency as the workload size increases. A major limitation

of these three DEM policies is the lack of consideration to performance requirements

(i.e. they do not consider constraint (5.18)). To maintain a fair comparison between

all four polices, the proposed controller will also not consider this constraint; however,

in the next section an analysis of the effect of the QoS constraint on energy efficiency

will be considered.

Figure 5.10 specifies the improved energy efficiency of the proposed controller over

the existing governors. Several conclusions can be drawn from these results. First,
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Figure 5.10: Comparison of the energy efficiency of the proposed controller against
the Performance, Interactive, and Powersave frequency governors. The proposed
controller exhibits negligible overhead as observable with the GNU Go and aes which
have an optimal control policy is equivalent to the Performance governor.

the proposed controller does better than Powersave in all metrics – energy consump-

tion, energy efficiency, and application performance. Additionally, on average, the

proposed controller produces substantially higher energy efficiency than all existing

DEM polices available on the smartphone. These results are thanks to the exis-

tence of an unique optimal operating frequency, which needs not be the maximum or

minimum frequency.

Additionally, this optimal frequency changes based not only on the application,

but also the phase of the application, co-scheduled tasks, and so-on. While the

Interactive governor does assume the existence of this unique optimal frequency, it

lacks the increased knowledge of process variability present in the proposed controller

and only bases workload intensity on the number of tasks available. This typically

leads to selecting a higher frequency than the optimal one. In contrast, the aPCE

models utilized by the proposed controller allows to optimally track the frequency

which can change based on the current workload and system conditions.

Furthermore, observing the aes and Gnu Go workloads, the optimal control strat-
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egy is approximately equal to the performance governor. The proposed controller

determines a similar control strategy and furthermore experiences negligible loss of

energy efficiency due to the light overhead.

Ultimately, these energy improvements prolong the battery life of the smartphone.

The aPCE framework improves energy efficiency by an average of 19% over the Inter-

active frequency governor. Additionally, the proposed framework has the benefit of

providing a methodology to not only evaluate the expected performance and power

conditions of mobile workloads, it also provides a mechanism to determine higher

order statistical characteristics – a necessary and vital trait for real time workloads

subject to user satisfaction requirements.

5.8 Ensuring User Satisfaction with Image Similarity Search

In the previous section, the QoS constraint (5.18) was ignored to maintain a fair

comparison between the four frequency governors. However, generally it is desirable

to include such a constraint to ensure high user satisfaction with the mobile device.

In this section we explore how incorporating this constraint effects the mobile device’s

energy efficiency. Due to space limitations, we will a single workload, ferret, however,

such analysis can be conducted for any workload in which performance has a mea-

surable impact on user satisfaction. Ferret is an image similarity search algorithm

which works in a manner such that an image is periodically provided by some source

(e.g. camera) and given to the image search algorithm for processing against a local

image database. The output of ferret is a ranking of the most similar images to the

input image.

To ensure high user satisfaction, ferret must process these images faster than

some given rate ∆. As ∆ increases, it is logical to assume that the system will

require faster processing frequencies in order to meet the QoS constraint; however,
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this comes at the cost of reduced energy-efficiency. Figure 5.11 shows the energy

consumption for three control polices: unconstrained, constrained, and performance.

The unconstrained policy represents the case in which the optimization problem in

Section 5.3.1 is solved without QoS constraint (5.18) while the constrained policy

includes this constraint with a Q value of 0.95. This Q value is selected to ensure

that the QoS constraint is upheld the majority of the time, thus it is unlikely that the

user will experience poor operating conditions. However, this value could be relaxed

in order to gain energy efficiency. As expected, decreasing ∆ results in reduced

difference between the unconstrained and constrained policies. Therefore, it becomes
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upto the system and application designers to determine the best value of ∆ to balance

the system’s performance with its energy efficiency.

Additionally, it is important to evaluate how well the controller is able to uphold

the QoS constraint. In other words, what is the number of avoidable QoS violations for

each control policy? By definition, the Performance governor should never violate the

QoS constraint if there exists a feasible solution. Additionally, the aPCE framework

was accurate such that the constrained policy resulted in less than 5% QoS violations,

within the tolerance specified by Q. In contrast, the unconstrained policy exhibits a

large amount of violations. Figure 5.12 shows this relationship. For high values of ∆,

excessive QoS violations will occur thus resulting in a poor user experience up to 50%

of the time. This demonstrates the importance of considering QoS constraints in the

optimization problem in order to maintain high user satisfaction from run-to-run.

5.9 Conclusion

In this paper we presented a framework to predict QoS (performance and power)

for mobile devices. We considered user induced interruptions along with run-to-run

variations within these quantities and constructed accurate models for these quanti-

ties. The models are constructed using various system events such as cache misses and

page faults which can easily be recorded on modern mobile processors. The models

were constructed using arbitrary polynomial chaos expansions which approximates

stochastic systems by a set of orthogonal polynomial bases. These polynomials are

constructed using only sample moments of the system events, requiring significantly

less computation than with traditional techniques. To demonstrate our approach,

we developed performance and power models for mobile workloads running on ac-

tual hardware. The proposed approach was shown to reduce the error by a factor of

2.67X and 1.7X for performance and power estimates respectively, over the regres-
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sion based modeling techniques. Additionally, the practicality of these models were

demonstrated by implementing a dynamic energy management controller on real mo-

bile hardware. Able to effectively acclimate to the non-deterministic conditions of the

system, the proposed controller improved the energy efficiency of the mobile device

by 19% over the existing governor implemented on Android devices.
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Chapter 6

CONCLUSION

The use of mobile systems has penetrated every facet of modern life – from pro-

viding entertainment via gaming, video playback, and web browsing to professional

use providing a email and network gateway, presentation editing, scheduling. How-

ever; the state-of-the-art in managing these systems is unfit to adapt to the highly

interactive and non-deterministic characteristics of mobile applications. This disser-

tation provides some of the first steps to address these limitations by investigating

several methods to accurately predict and analyze mobile workload characteristics

as a function of controllable device parameters all while the system is subject to

numerous sources of non-determinism. This is among the first work to provide an

optimal representation of the non-deterministic characteristics of QoS and power – a

necessary step to correct analysis/control of mobile systems. By utilizing the stochas-

tic models, this work was able to improve device energy efficiency while maintaining

specified user satisfaction levels both in an offline and online fashion. The offline,

approach presented in this work proposes the use of stochastic network calculus tech-

niques to conduct a state-space exploration of the mobile system – greatly reducing

the number of experiments needed to determine the optimal operating conditions.

The result of this is a light weight, static controller which may be bundled with any

given application. Finally, this work provides an online method capable of dynami-

cally adjusting to changing system conditions. This was accomplished through two

tasks: first, a computationally efficient and optimal representation of power and QoS

was constructed using polynomial chaos expansions; second, the design of closed-loop

DEM controller is presented. The DEM controller was implemented on actual mobile
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hardware and as such numerous implementation challenges were explored such as lack

of real-time power sensors. The proposed controller is capable of increasing energy

efficiency by more than 19% over existing Android governors.

6.1 Possible Extensions and Future Work

While this dissertation provides necessary steps to defining and solving the DEM

problem in the context of mobile systems; only a small subset of problems were

investigated. There are many challenges not yet addressed in literature or do not

have efficient solutions. Some of these challenges are outlined below.

6.1.1 Optimal Management for Hybrid Powered Systems

Historically, design practices for computing systems have focused primarily on

maximizing performance, leaving energy minimization as an afterthought. However,

in recent years the concept of sustainability has become mainstream. As such, com-

puting and electronic systems have begun to adapt their design philosophy to incor-

porate this paradigm shift. A prevalent example of this is hybrid electric vehicles.

In regards to high level system design, mobile devices and hybrid vehicles share

many commonalities. As illustrated in Figure 6.1, both systems contain multiple (un-

stable) energy producers and consumers with some type of energy buffer in between.

Examples of energy producers in hybrid vehicles are various renewable energy systems

(i.e. solar, regenerative brakes, etc.) as well as fossil fuel tanks and fuel cells. This is

analogous to mobile systems which also have non-consistent power sources via USB

or wall charging. In regards to power consumers, the main components for hybrid ve-

hicles are the gas and electric engines. Much like a heterogeneous architecture of cpu

cores found in mobile devices, these two engines have unique performance (torque)

and power characteristics.
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Figure 6.1: An illustration of the power flow and components in (a) a hybrid vehicle
and (b) a mobile phone.

A key difference between the two systems is the energy buffers. In mobile devices

this is typically a single lithium-polymer battery – designed with the goal of maxi-

mizing energy density. In contrast, the hybrid vehicle uses several different energy

buffers. The first being a bank of rechargeable batteries. These batteries are typically

manufactured with the goal of either maximizing cycle lifetime or minimizing recharge

time. Additionally, a ultra-capacitor bank may be utilized in order to provide quick,

large bursts of power to the electrical engine, something the battery banks are in-

capable of providing. As such the drive control logic can divert part of the battery

charge to the capacitor bank. A fuel tank provides additional energy storage which

can be converted to torque via the combustion engine. Unlike, mobile devices, hybrid

vehicles have a distinct separation between certain power consumers and producers,

thus multiple power flows must be considered when controlling the vehicle.

Finally, with hybrid vehicles, one must consider the energy loss due to drive-trains

and power conversion. In mobile systems, this type of power conversion is managed

by a collection of voltage regulators or the power management unit (PMU) which
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Table 6.1: Example Parameters for hybrid engine control.

Parameter Description

F Fuel tank level.

SoCi State of charge of the batteries within the battery bank.

Tch, ωch Torque applied by the electrical engine to recharge the battery bank.

Telec, ωelec Torque and angular applied by the electrical engine to power the wheels.

Tmech, ωmech Torque and angular applied by the mechanical engine to power the wheels.

Twheel, ωwheel Torque and angular velocities of speed.

typically has an efficiency of 95% or better. In contrast drive-trains have much worse

efficiency, with as low as 20% power loss for combustion engines and 80% for electric

engines [117]. This efficiency is largely related to the speed of the vehicle and thus,

power splitting and scheduling techniques are needed to reduce this deficiency.

To optimize these systems numerous control strategies have already been explored

including neural networks, dynamic programing, fuzzy rules, and even stochastic

control [118]. However, much like with mobile systems, these works assume standard

distributions to the sources of non-determinism as well as finite horizon conditions

on the stochastic quantities. Our aPCE framework can be applied to these types

of systems both for offline analysis and online control. Table 6.1 describes several

inputs and variables used in electric assist control strategies [119]. Additionally, the

formulation of the optimization problem is more complex than the case of mobile

devices. Vehicle control requires multi-objective optimization requiring battery and

fuel potentials as well as numerous other conditions to be maximized.
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6.1.2 Adaptive Network Offloading

In recent years, the computing behavior of users has shifted largely to mobile

devices. Mobile devices are now used in enterprise, information systems, gaming, ed-

ucational, entertainment, and health care domains. As such the demand and expecta-

tions placed on these devices has increased dramatically. Although these devices have

steadily become more and more powerful thanks to various design improvements and

DEM techniques, ultimately these devices are limited by a finite energy source and

provide less performance than their server/desktop counterparts. One method to min-

imize the effect of computation-intensive, power-hungry tasks is data/computation

offloading. That is, the mobile device must dynamically determine whether or not to

offload a given portion of a workload to some cloud computing network in order to

optimize some energy, battery, or performance objective.

Currently, most existing literature in this area assumes mechanistic and deter-

ministic workload power and performance characteristics. This typically results in a

simple logic based control such that deterministic models are used to calculate the

energy needed to compute the application versus offloading it. The device will then

simply choose the lesser of the two results. However, these works typically either

overlook or ignore any non-determinisms in the analysis of the mobile networks by

assuming the network delay follows standard distributions (primarily the exponen-

tial distribution). As such, these works fail to accurately represent general network

conditions along with the non-deterministic nature of mobile workload power and

performance.
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6.1.3 Task Migration

The primary focus of this work has been the development of frequency sensitive

QoS and power models in presence of numerous system non-determinisms and utilize

these models for DVFS. However; another viable control method to improve energy-

efficiency is task migration. As mobile devices become more and more heterogeneous

to service the numerous types of user demands, tasks will inherently become more

suited to specific processing elements. However, the overhead involved with task mi-

gration may not be insignificant. Additionally, due to shared resource contention,

task migration could hinder the performance of other running tasks. It is impossible

for application designers to pre-characterize their workload for all possible systems,

thus it becomes extremely important for the system to characterize the tasks to deter-

mine where/how to optimally execute them. From the system perspective, however,

this becomes a learning problem. While some literature has already explored this

issue, the non-deterministic nature of mobile workloads has been ignored. As such,

this changes the nature of the learning problem into a stochastic one.

6.1.4 Fairness

Fair allocation of resources is a fundamental requirement of operating systems.

Applications with similar priorities are expected to share equal resources (both time

and in the case of heterogeneous computing, the physical processing element). For

typical desktop and server systems, fairness is not an issue; however, systems which

implore DEM techniques often ignore fairness requirements.
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APPENDIX A

POLYNOMIAL CHAOS EXPANSION
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A.1 A brief history of Polynomial Chaos Theory

When analyzing dynamical systems, a key task is to understand the relationship
between the system’s inputs and the system’s output or response. In the event that
the system inputs are represented by random quantities such as random variables,
stochastic processes or random fields; the system response will also be a random
quantity. One of most popular methodologies to represent such a relationship is
polynomial chaos expansion or PCE for short.

Polynomial chaos expansion (also called Wiener-Hermite expansion or Fourier-
Hermite expansion) dates back to 1938 when Norbert Wiener examined the case in
which a system’s response could be represented by a collection of random variables
following Brownian Motion which he coined Homogeneous Chaos [93]. Utilizing his
prior harmonic’s equations, Wiener defined Homogeneous Chaos as the set of all
multiple integrals taken with respect to a multidimensional Wiener process. The
end result of his work was the derivation of Hermite polynomials which construct an
orthonormal random basis for his Homogeneous Chaos.

Several years later, Robert Cameron and William Martin refined Wiener’s work [120,
121]. They provided a more intuitive formulation for the Wiener-Hermite expansion
via a Fourier expansion of the brown motion process. Therefore, the actual system
response, yact can be represented by a system of random variables:

y(ξ) =
∞∑
j=0

cjHj(ξ), (A.1)

where cj are coefficients of each Hermite polynomial basis functions, Hj subject to
the random input vector, ξ = {ξ1ξ2 . . . ξm} – a multidimensional Brownian field.

Additionally, Cameron and Martin proved that the polynomial representation of
y of any distribution has optimal L2 convergence to the actual process y for the case
of ξ being a Brownian field. That is, given an infinite number of samples ξi and
corresponding response yact,i

lim
i→∞

E [yact,i − y(ξi)] = 0. (A.2)

A.2 Generalized Polynomial Chaos

For decades the works of Wiener, Cameron, and Martin served as the foundation
for all PC works. It has been applied to numerous domains such as modeling expand-
ing gases [122], biological ecosystems [123], and the effects of process variations on
circuit delay [124] to name a few. However, it was not until 2001 Dongbin Xiu and
George Karnidakis formally generalized the work of Cameron and Martin to various
continuous and discrete distributions. They called this the Generalized Polynomial
Chaos (gPC) framework [92].

Given a probability space (Ω, A,Γ) with sample space Ω, σ algebra A, and proba-
bility measure Γ; the goal of gPC is to find an optimal mapping of the system response
yact = f(ξ) to

y(ξ) =
∞∑
j=0

cjΦj(ξ), (A.3)
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where cj are the deterministic coefficients, ξ ∈ Ω are independent random variables1,
and Φj(ξ) are a collection of multi-dimensional orthogonal polynomials in the random
variables ξ. It should be noted that the collection of Φk constitutes an orthonormal
basis of an infinite dimensional Hilbert space. We denote this space Θ.

A Hilbert space provides a means of defining the inner product on a space of
random variables.

Definition A.2.1 (Hilbert Space). Let H be a vector space over some field F with

inner product 〈f, g〉 f, g ∈ H defined. The norm in H is ‖f‖ =
√
〈f, f〉, and the

metric is d(f, g) = ‖f − g‖. H is called a Hilbert space if it is complete as a metric
space.

Definition A.2.2 (Orthogonality). Two elements, x and y of an inner product space
are said to be orthogonal if 〈x, y〉 = 0. If in addition, ‖x‖ = ‖y‖ = 1, they are
orthonormal.

Definition A.2.3 (Orthonormal Basis). An orthonormal sequence {φk}∞k=1, in a
Hilbert space is called an orthonormal basis if the only element outside the basis
that is orthogonal to every element in the basis is the zero element. That is, an
orthonormal basis is a maximal subset of elements that are mutually orthogonal.

Lemma A.2.1. Let {φk}∞k=1 be an orthonormal basis of a Hilbert space. Then the
infinite series

∑∞
k=1 〈x, φk〉φk converges in the norm to x.

This lemma states that in order to obtain a convergent infinite series representation
of an element in Θ, we need to find an orthonormal basis. In a random space such
as Θ, the inner product of any two elements is the expectation of their product or in
other words the correlation between the two elements. Thus if we assume a probability
measure of Γ over the sample space Ω than the inner product on Θ is defined as

〈φi(ξ), φj(ξ)〉 = E[φi(ξ), φj(ξ)] =

∫
Ω

φi(ξ)φj(ξ)dΓ(ξ) (A.4)

As shown by [93], a Hermite polynomial is a valid function for φ when ξ is a collection
of zero mean, unit variance Gaussian random processes.

Definition A.2.4 (Hermite Polynomial). Let ξ1, ξ2, . . . , be an infinite collection of
unit Gaussian random variables. The Hermite polynomial of order k is defined as

Hk(i1, i2, . . . , ip) = (−1)je
ξT ξ

2
dj

dξ
e−

ξT ξ
2 . (A.5)

where ξ = [ξi1 , ξi2 , . . . ξik ] .

1If the input x is not independent, then it must be possible to decorrelate x into bmxi such
that the elements ξ are independent. This can be accomplished using methods such as principal
component analysis and Karhunen-Loeve expansion.
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Variable Distribution Polynomial Class

Continuous Gaussian Hermite
Log-normal Hermite

Gamma Laguerre
Beta Jacobi

Uniform Legendre

Discrete Poisson Charlier
Binomial Krawtchouk

Negative Binomial Meixner
Hypergeometric Hahn

Table A.1: Optimal Polynomials for Various Probability Spaces.

Note that any choice of k variables from {ξ1, ξ2, . . . , } is allowed, including repe-
titions. Thus if we truncate the infinite set {ξ1, ξ2, . . . , } to r variables, there will be
(k+ r− 1)!/k!(r− 1)! polynomials of degree k. As an example we provide the results
for a 2 variable polynomial of degrees 0, 1, 2, and 3.

order 0 : H0({}) = 1, (A.6)

order 1 : H1(1) = ξ1, H1(2) = ξ2, (A.7)

order 2 : H2(1, 1) = ξ2
1 − 1, H2(1, 2) = ξ1ξ2, (A.8)

H2(2, 2) = ξ2
2 − 1, (A.9)

order 3 : H3(1, 1, 1) = ξ3
1 − 3ξ1, (A.10)

H3(2, 1, 1) = ξ2
1ξ2 − ξ2, (A.11)

H3(2, 2, 1) = ξ1ξ
2
2 − ξ1, (A.12)

H3(2, 2, 2) = ξ3
2 − 3ξ2, (A.13)

The fact that the elements of ξ are Gaussian is not a restriction. Many previous
works have examined the optimal polynomial to use in the expansion for numerous
distributions of ξ. Table A.1 summarizes these polynomials. Additionally, these
polynomials can be mixed in the event that the elements of the input follow different
distributions. The process of constructing the mixed basis functions is outlined by
Ghanem and Spannos [94] and will be explored in Section A.3.2.

The unknowns in the expansion of the stochastic response as shown in Equation
(A.3) are the deterministic coefficients, cj. In practice, we truncate this expansion to
a finite number of basis functions, thus the number of unknowns to solve for are finite.
One method to determine these coefficients is based on the principle of orthogonality.

Given two finite dimensional inner products spaces V of dimension n and W of
dimension m < n, we wish to find the best approximation of v ∈ V by a vector
w ∈ W 2. The principle of orthogonality states that optimal w must be orthogonal to
the error v − w such that 〈v − w,w〉 = 0.

2Best is in the sense of minimizing the norm of the error, i.e. ‖v − w‖.
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Therefore to determine the coefficients αj where max value of j is truncated to r
thus we must solve a system of r equations

〈y(ξ)− f(ξ),Φj(ξ)〉 = 0, j = 0, 1, . . . , r. (A.14)

A.3 Arbitrary Polynomial Chaos

In the previous section we explored the case in which the actual system dynamics,
f(ξ) are known along with the distributions of each element of ξ; however in practice
you may not know the true distribution of ξ nor the true response function f(ξ). In
2011, Oladyshkin and Nowak developed arbitrary polynomial chaos (aPC) to handle
such situations [88]. Arbitrary polynomial chaos is a data-driven extension to the
gPC by estimating the probability measure ξ using a finite number of moments.

A.3.1 Single Variable aPC

To begin our examination of aPC we will only consider the one-dimensional case
(i.e. the size of ξ is one). Much like gPC, aPC considers a stochastic process in
the probability space (Ω, A,Γ) with space of events Ω, σ-algebra A and probability
measure Γ. Additionally it is assumed that the stochastic model yact = f(ξ) exists
with ξ ∈ Ω although it need not be known. Arbitrary polynomial chaos states that
f(ξ) may be expanded as

f(ξ) ≈
d∑
i=0

ciP
(i)(ξ) (A.15)

where d is the order of the expansion and ci are the expansion coefficients. The
polynomials P (k)(ξ), k = 0, . . . , d forms an orthogonal basis with respect to the
probability measure Γ. It is the goal of aPC to determine the values of all ci along
with the polynomial functions P (i)(ξ) and will do so using a moment-based analysis.

The structure of P (k)(ξ) is as follows

P (k)(ξ) =
k∑
i=0

p
(k)
i ξi, k = {0, . . . , d}, (A.16)

Where p
(k)
i are the coefficients of P (k)(ξ).

Applying the condition of orthonormality to the polynomial P (k)(ξ) results in the
condition ∫

ξ∈Ω

P (k)(ξ)P (l)(ξ)dΓ(ξ) = δkl ∀l = 0, . . . , d, (A.17)

where δkl is the Kronecker delta3.
If we assume instead of normality, the polynomials P (i)(ξ), i = 0, . . . , d are monic

we introduce the condition
p

(k)
k = 1 ∀k (A.18)

3The Kronecker delta function, δkl, is equal to 1 only if k = l; otherwise it is 0.
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Therefore a closed set of equations emerge to determine the coefficients of kth

polynomial. ∫
ξ∈Ω

p
(0)
0

[
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0

∫
ξ∈Ω

[
1∑
i=0

p
(1)
i ξi

][
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0

∫
ξ∈Ω

[
2∑
i=0

p
(2)
i ξi

][
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0 (A.19)

...∫
ξ∈Ω

[
k−1∑
i=0

p
(k−1)
i ξi

][
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0

p
(k)
k = 1.

We can simplify these equations by utilizing (A.18) along with substituting the
first equation into the second, the first and second into the third, and so-on.
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∫
ξ∈Ω

p
(0)
0︸︷︷︸
1

[
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0

∫
ξ∈Ω

k∑
i=0

p
(k)
i ξidΓ(ξ) = 0

(A.20)

∫
ξ∈Ω

[
1∑
i=0

p
(1)
i ξi

][
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0

∫
ξ∈Ω

p
(1)
1︸︷︷︸
1

ξ

[
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) +

∫
ξ∈Ω

p
(1)
0

[
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ)︸ ︷︷ ︸

by (A.20) this is equal to 0

= 0

∫
ξ∈Ω

k∑
i=0

p
(k)
i ξi+1dΓ(ξ) = 0

(A.21)

∫
ξ∈Ω

[
2∑
i=0

p
(2)
i ξi

][
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) = 0

∫
ξ∈Ω

p
(2)
2︸︷︷︸
1

ξ2

[
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ) +

∫
ξ∈Ω

p
(2)
1 ξ

[
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ)︸ ︷︷ ︸

by (A.21) this is equal to 0

+

∫
ξ∈Ω

p
(2)
0

[
k∑
i=0

p
(k)
i ξi

]
dΓ(ξ)︸ ︷︷ ︸

by (A.20) this is equal to 0

= 0

∫
ξ∈Ω

k∑
i=0

p
(k)
i ξi+2dΓ(ξ) = 0

(A.22)

...∫
ξ∈Ω

k∑
i=0

p
(k)
i ξi+k−1dΓ(ξ) = 0

(A.23)

p
(k)
k = 1.

(A.24)

Finally, we take notice that the ith moment of ξ’s distribution can be represented
by

µi =

∫
ξ∈Ω

ξidΓ(ξ) (A.25)
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Thus we can reduce (A.20-A.22) to be functions of moments

k∑
i=0

p
(k)
i µi = 0

k∑
i=0

p
(k)
i µi+1 = 0

k∑
i=0

p
(k)
i µi+2 = 0 (A.26)

...
k∑
i=0

p
(k)
i µi+k−1 = 0

p
(k)
k = 1

Therefore the coefficients of the kth polynomial basis can be solved using a system
of linear equations related to the 2k−1 moments of the random variable. The solutions
up to the third order polynomial are the following:

order 0: P (0)(ξ) = 1

order 1: P (1)(ξ) = ξ − µ1

order 2: P (2)(ξ) = ξ2 +
µ3 − µ1µ2

µ2
1 − µ2

ξ +
µ2

2 − µ1µ3

µ2
1 − µ2

order 3: P (3)(ξ) = ξ3

+
−µ5µ

2
1 + µ4µ1µ2 + µ1µ

2
3 − µ2

2µ3 + µ5µ2 − µ4µ3)

µ4µ2
1 − 2µ1µ2µ3 + µ3

2 − µ4µ2 + µ2
3

ξ2

+
−µ2

2µ4 + µ2µ
2
3 − µ1µ5µ2 − µ1µ3µ4 − µ5µ3 + µ2

4

µ4µ2
1 − 2µ1µ2µ3 + µ3

2 − µ4µ2 + µ2
3

ξ

−µ5µ
2
2 + 2µ2µ3µ4 − µ3

3 + µ1µ5µ3 − µ1µ
2
4

µ4µ2
1 − 2µ1µ2µ3 + µ3

2 − µ4µ2 + µ2
3

If we note that the moment generating function of zero mean, unit variance Gaus-

sian random variables is M(ξ) = e
ξ2

2 we can see that the (A.5) reduces to the above
polynomials with simple substitution.

Additionally it might be useful to find the orthonormal basis, Ψ(k), rather than
the monic. To do so we scale by the norm of P (k):

Φ(k) =
1

‖P (k)‖

k∑
i=0

p
(k)
i ξi (A.27)
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where ∥∥P (k)
∥∥2

=

∫
ξ∈Ω

[
k∑
i=0

p
(k)
i ξi

]
. (A.28)

Once again if we note (A.25) it is possible to reduce (A.28) to a function of the 2k
moments of ξ’s distribution.

This shows that the orthonormal basis functions can be constructed with only 2k
sample moments of ξ.

Finally, to solve for the coefficients we leverage the convergence theorem of PC
models. Given N samples of ξ and the corresponding measured response yact we solve
the linear least square minimization problem.

min
c0,c1,...,cd

N∑
n=1

(
yact,n −

d∑
i=0

ciP
(i)(ξn)

)2

. (A.29)

A.3.2 Multivariate aPC

Arbitrary polynomial chaos can also be applied to multi-input systems. To do so
we utilize the results of Ghanem and Spannos [94]. Given the M -dimensional input
vector ξ = [ξ1, ξ2, . . . , ξM ] such that all parameters within ξ are independent, the
multi-dimensional basis can be constructed as a simple product of the corresponding
univariate polynomials.

The procedure to determine Ψk, the multivariate basis of order k, can be summa-
rized as the following:

Using the set of equations shown in (A.26), determine the set of univariate poly-
nomials

P
(k)
j (ξj) =

k∑
i=0

p
(k)
i,j ξj, k = 0 . . . d, j = 0 . . .M. (A.30)

The multivariate polynomial can be solved as

Φi(ξ) =
M∏
j=1

P
(λij)

j (ξj),
M∑
j=1

αkj ≤ k, i = 1 . . . R, (A.31)

where R = (k+M −1)!/k!(M −1) is the total number of multivariate polynomials of
degree k and λij is a multivariate index which is capable of enumerating all possible
products of individual univariate basis functions. In other words, think of Λ as an
R ×M matrix such that the sum of each row of Λ is no more than k. The element
at row i, column j is λij ∈ {0, . . . , k} which indicates the degree of P

(i)
j . Figure A.1

illustrates an 2-variable, 3rd order example. The set {Φi(ξ)}Ri=1 will constitute the
multivariate basis, Ψk.
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Λ =

0 0
1 0
0 1
1 1
2 0
0 2
2 1
1 2
3 0
0 3

Φ0 𝝃 = 𝑃1
0 𝝃 𝑃2

0 (𝝃)

Φ1 𝝃 = 𝑃1
1
𝝃 𝑃2

0
(𝝃)

Φ2 𝝃 = 𝑃1
0 𝝃 𝑃2

1 (𝝃)

Φ3 𝝃 = 𝑃1
1
𝝃 𝑃2

1
(𝝃)

Φ4 𝝃 = 𝑃1
2 𝝃 𝑃2

0 (𝝃)

Φ5 𝝃 = 𝑃1
0
𝝃 𝑃2

2
(𝝃)

Φ6 𝝃 = 𝑃1
2 𝝃 𝑃2

1 (𝝃)

Φ7 𝝃 = 𝑃1
1
𝝃 𝑃2

2
(𝝃)

Φ8 𝝃 = 𝑃1
3 𝝃 𝑃2

0 (𝝃)

Φ9 𝝃 = 𝑃1
0
𝝃 𝑃2

3
(𝝃)

Order 0

Order 1

Order 2

Order 3

Ψ3 𝝃

Figure A.1: Third order example of multivariate aPC basis.
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