
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-21-2018

The Thermal-Constrained Real-Time Systems
Design on Multi-Core Platforms -- An Analytical
Approach
SHI SHA
Florida International University, ssha001@fiu.edu

DOI: 10.25148/etd.FIDC004089
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer and Systems Architecture Commons, Hardware Systems Commons, Other
Computer Engineering Commons, and the Power and Energy Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
SHA, SHI, "The Thermal-Constrained Real-Time Systems Design on Multi-Core Platforms -- An Analytical Approach" (2018). FIU
Electronic Theses and Dissertations. 3713.
https://digitalcommons.fiu.edu/etd/3713

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3713?utm_source=digitalcommons.fiu.edu%2Fetd%2F3713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

THE THERMAL-CONSTRAINED REAL-TIME SYSTEMS DESIGN ON

MULTI-CORE PROCESSORS – AN ANALYTICAL APPROACH

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Shi Sha

2018

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Shi Sha, and entitled The Thermal-Constrained Real-
Time Systems Design on Multi-Core Processors – An Analytical Approach, having
been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Arif Selcuk Uluagac

Nezih Pala

Raju Rangaswami

Wujie Wen

Gang Quan, Major Professor

Date of Defense: March 21, 2018

The dissertation of Shi Sha is approved.

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2018

ii

c© Copyright 2018 by Shi Sha

All rights reserved.

iii

DEDICATION

This dissertation is dedicated to my always encouraging, ever faithful parents

and other family members. I also want to remember my grandparents. May you

find peace and happiness in Paradise! Last but not least, I am grateful to my

teachers, colleagues, friends, who assisted, advised and supported my research and

efforts over the years.

iv

ACKNOWLEDGMENTS

I wish to express my deepest appreciation to my major advisor, Dr. Gang Quan, who

inspires and guides me by his encouragement, support and patience. His professional

attitude and the passion to science and research have deeply impacted me.

I am grateful to all my Ph.D. committee members, Dr. Wujie Wen, Dr. Arif

Selcuk Uluagac, Dr. Nezih Pala and Dr. Raju Rangaswami. Each of the members

of my Dissertation Committee has provided me extensive personal and professional

guidance and suggestions in improving the quality of this dissertation.

My Ph.D. research was supported in part by US National Science Foundation

(NSF) grants CNS-0969013, CNS-0917021 and CNS-1018108.

v

ABSTRACT OF THE DISSERTATION

THE THERMAL-CONSTRAINED REAL-TIME SYSTEMS DESIGN ON

MULTI-CORE PROCESSORS – AN ANALYTICAL APPROACH

by

Shi Sha

Florida International University, 2018

Miami, Florida

Professor Gang Quan, Major Professor

Over the past decades, the shrinking transistor size, benefited from the advance-

ment of IC technology, enabled more transistors to be integrated into an IC chip,

to achieve higher and higher computing performances. However, the semiconductor

industry is now reaching a saturation point of Moore’s Law largely due to soaring

power consumption and heat dissipation, among other factors. High chip temper-

ature not only significantly increases packing/cooling cost, degrades system perfor-

mance and reliability, but also increases the energy consumption and even damages

the chip permanently. Although designing 2D and even 3D multi-core processors

helps to lower the power/thermal barrier for single-core architectures by explor-

ing the thread/process level parallelism, the higher power density and longer heat

removal path has made the thermal problem substantially more challenging, sur-

passing the heat dissipation capability of traditional cooling mechanisms such as

cooling fan, heat sink, heat spread, etc., in the design of new generations of com-

puting systems. As a result, dynamic thermal management (DTM), i.e. to control

the thermal behavior by dynamically varying computing performance and workload

allocation on an IC chip, has been well-recognized as an effective strategy to deal

with the thermal challenges.

vi

Different from many existing DTM heuristics that are based on simple intuitions,

we seek to address the thermal problems through a rigorous analytical approach,

to achieve the high predictability requirement in real-time system design. In this

regard, we have made a number of important contributions. First, we develop a

series of lemmas and theorems that are general enough to uncover the fundamental

principles and characteristics with regard to the thermal model, peak temperature

identification and peak temperature reduction, which are key to thermal-constrained

real-time computer system design. Second, we develop a design-time frequency and

voltage oscillating approach on multi-core platforms, which can greatly enhance the

system throughput and its service capacity. Third, different from the traditional

workload balancing approach, we develop a thermal-balancing approach that can

substantially improve the energy efficiency and task partitioning feasibility, espe-

cially when the system utilization is high or with a tight temperature constraint.

The significance of our research is that, not only can our proposed algorithms on

throughput maximization and energy conservation outperform existing work signifi-

cantly as demonstrated in our extensive experimental results, the theoretical results

in our research are very general and can greatly benefit other thermal-related re-

search.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 The Increasing Power Consumption and Power Density of IC Chips . . . 3
1.2 The Temperature Issue on Multi-Core Processors 5
1.3 Research Problems and Our Contributions 7
1.4 Structure of the Dissertation . 10

2. BACKGROUND AND RELATED WORK 13
2.1 Real-Time Systems . 13
2.2 Power Consumption . 15
2.2.1 Dynamic Power Reduction . 15
2.2.2 Leakage Power Reduction . 16
2.3 Thermal Management . 18
2.3.1 The Need for Thermal Management 18
2.3.2 Related Works on Power and Thermal Management 19
2.4 Summary . 23

3. FUNDAMENTALS ON MULTI-CORE THERMAL-AWARE REAL-TIME
SCHEDULING . 24

3.1 Preliminaries . 24
3.1.1 System Model . 25
3.1.2 Thermal Model . 26
3.2 The Properties of the Thermal Model . 30
3.3 Peak Temperature Identification and Bounding 35
3.3.1 Related Works . 36
3.3.2 Motivation Example . 37
3.3.3 Bounding the Peak Temperature . 39
3.4 Experimental Results . 48
3.4.1 Properties of Step-Up Schedules . 48
3.4.2 Bounding Peak Temperature using Step-Up Schedules 50
3.5 Summary . 52

4. PEAK TEMPERATURE MINIMIZATION AND THROUGHPUT MAXI-
MIZATION ON MULTI-CORE PLATFORMS 53

4.1 Related Work . 53
4.2 Peak Temperature Minimization and Throughput Maximization 56
4.2.1 Choose Two Neighboring Running Modes 58
4.2.2 M-Oscillating Schedule on Multi-Core Platforms 63
4.3 Throughput Maximization Using Frequency Oscillation 73
4.4 Experimental Results . 77
4.4.1 Peak Temperature Minimization for m-Oscillating Schedule 77

viii

4.4.2 Performance Comparison of Different Approaches and Speed Levels . . 81
4.4.3 Computation Time Comparison . 84
4.5 Conclusions . 84

5. ENERGY REDUCTION ON MULTI-CORE PLATFORMS 86
5.1 Related Works . 87
5.2 Preliminaries . 90
5.2.1 Power/Thermal Model . 90
5.2.2 Energy Model . 91
5.2.3 Problem Formulation . 92
5.3 Temperature-Constrained Energy Minimization on Multi-core Platforms 93
5.3.1 The Energy Consumption Lower Bound 93
5.3.2 The Leakage-Aware Load-Balancing Approach 94
5.3.3 The Thermal-Balancing Approach . 96
5.4 Task Partitioning via Bin Packing Approaches 101
5.4.1 Task Partitioning by Variable-Sized Bin Packing Approach 101
5.4.2 The Enhanced Bin-Packing Method . 105
5.5 Experimental Results . 107
5.5.1 Lower Bound of Energy Efficiency (WPJ) Comparison 108
5.5.2 The Feasibility Comparison for Different Heuristics 111
5.5.3 The Computational Time Comparison 113
5.5.4 Energy Efficiency (WPJ) and Feasibility When Packing Tasks 114
5.6 Conclusion . 116

6. CONCLUSIONS AND FUTURE WORK 118
6.1 Summary . 118
6.2 Future work . 120

BIBLIOGRAPHY . 123

VITA . 140

ix

LIST OF TABLES

TABLE PAGE

3.1 Summary of Notations . 25

3.2 Motivation Example Task Sets . 37

3.3 Different settings for testing peak temperature variations by different
phases (tp = 6s) on a 3-core platform. 51

3.4 Peak temperature variations (in ◦C) by different m for case 1 of Table 3.3. 52

4.1 Performance of different approaches . 57

4.2 Peak temperature Tpeak (◦C) monotonically decreases as m 77

4.3 Different numbers of modes with different voltages. 81

4.4 Computation time comparisons with different cores and voltage levels
(Seconds). 85

5.1 Computation time comparison (Seconds) 113

x

LIST OF FIGURES

FIGURE PAGE

1.1 (a) The “Moore’s Law” doubles transistor per chip roughly every two
years. The chip’s clock speed also increases until 2004 when the
speed scaling meets the barrier of the thermal limit. (b) As the
IC power and size scaling, each generation of new electronic device
emerges about every 10 years. [96] 4

1.2 (a) The power density increases exponentially with the IC feature size
and its is comparable with a nuclear reaction. [Source: Intel Corp.]
(b) Emerging new electronic devices results in power density in-
creases chronologically [21] . 11

1.3 A global view of cooling power v.s. total power in the data center
industry [31] . 12

3.1 A HotSpot Thermal Model for a 4-core platform [55]. (Our model adds
lateral thermal resistors on the chip level for core-to-core heat transfer.) 27

3.2 Temperature trace of different schedules on a 9-core platform. 38

3.3 Step up schedule proof illustration for Theorem 3.3.3 42

3.4 Lemma 3.3.5 illustration. 44

3.5 (a) Speed schedule on a 3-core platform. (b) Temperature trace in the
stable status. (c) Temperature trace starting from Tamb = 35◦C. . . . 49

3.6 (a) An N-core schedule with shifting phase. (b,c,d) Peak temperature
changes differently according to the phase (xi) with settings in Ta-
ble 3.3. 50

4.1 Illustration of temperature traces of different approaches. 58

4.2 Illustration for Theorem 4.2.1. 59

4.3 Illustration for Theorem 4.2.2. 62

4.4 (a) Core 1 and core 3 run at 1.3V within [0, 1.2]s and 0.6V within
[1.2, 2.4]s; Core 2 runs at 0.6V within [0, 1.2]s and 1.3V within
[1.2, 2.4]s. (b) Core 2 doubles its oscillating frequency from sched-
ule in Fig.4.4(a). (c) Stable status temperature trace for schedule
in Fig. 4.4(a). (d) Stable status temperature trace for schedule in
Fig. 4.4(b). 64

4.5 The peak temperature monotonically decreases with m. 65

4.6 Illustration of m-Oscillating schedule. 65

4.7 Illustration for Theorem 4.2.5 Proof. 67

xi

4.8 Real-time calculus illustration of Theorem 4.2.7: the bounded-delay ap-
proximation shows a higher service capacity of S(m2, t) than S(m1, t),
if m2 ≥ m1 > 0. 72

4.9 (a) Speed adjustment on corei when consider speed transition overhead.
(b)(c)(d) Peak temperature varies differently when transition over-
head τs are different. 78

4.10 Performance comparisons with different numbers of cores and voltage
levels, when Tmax = 55 ◦C. 79

4.11 Performance comparisons with different numbers of cores and different
Tmax on 2 speed-level platforms. 80

4.12 AO method on a 4-core platform with Tpeak = 70 ◦C (a) Power trace (b)
Temperature trace . 83

5.1 (a) Different cores exhibit different stable state temperature, when all
cores are with the same amount of load. (b) Different cores have
different maximal allowed power, when all the cores reach the tem-
perature threshold contemporarily. 96

5.2 WPJ comparison for different core configurations and different number
of available speed levels . 109

5.3 Feasibility comparison when system utilization lies (a) between 0% and
50%; (b) between 50% and 100% . 112

5.4 Average Energy Efficiency (WPJ) Comparison on large volumn of ran-
dom cases . 115

5.5 Feasibility comparison when packing actual tasks for system utilization
lies (a) between 0% and 50%; (b) between 50% and 100% 116

xii

CHAPTER 1

INTRODUCTION

As a broad range of innovative applications emerge quickly, such as intelligent

transportation systems, Internet of Things (IoT), artificial intelligence (AI) and be-

yond, the computational demands grow quickly. The explosive increments of data

volume and complex workloads also urge the IC industry to create the next com-

puting performance breakthrough in high-performance computing systems (HPC).

Nowadays, real-time computing (RTC) has been widely adopted in scientific and

industrial areas, e.g. real-time traffic control and medical device operations, etc. A

real-time computing system with strict timing constraints in many mission-critical

applications also call for guaranteed computing/service capacity, and should be ro-

bust enough to cope with unprecedented events and dynamic environments. All

these drastically increased computational demands are driving computing systems

to achieve a higher and higher computational capability, facing challenges from soft-

ware complexity, system expansion, and hardware integration, etc.

To achieve a higher performance, the advancement of the IC technology enables

more transistors to be integrated into a chip by shrinking the transistor size follow-

ing the so-called “Moore’s Law,” i.e. the number of transistors in an IC doubles

approximately every two years. Consequently, the power consumption on chip is in-

creasing with the transistor count. Since increasing power consumption can directly

translate to the raising temperature, both power and heat dissipations are becoming

major obstacles in technology scaling. High temperature can degrade system perfor-

mance [124], reliability [91], and even damage the chip permanently. For example, it

has been reported that every 10−15◦C temperature increment could result in a 50%

reduction in the device’s lifespan [140] and triple the hardware failure rate [161].

1

To alleviate the power/thermal barrier, multi-core processors, by taking advan-

tage of thread or process-level parallelism, have become one of the promising so-

lutions to achieve a better computational efficiency with a slower pace of power

increment than single-core architecture. However, as the increasing number of cores

continuously push the power density to a higher and higher level, the runtime ther-

mal environment deteriorates, which becomes worse on 3D architectures [84]. The

3D IC technology stacks layers of cores vertically on top of each other to take ad-

vantage of shorter wires, higher data throughput, and larger memory bandwidth

in comparison with 2D design [89]. However, the higher power density and longer

heat removal path has made the thermal problem substantially more challenging

than its 2D counterpart [85]. The thermal problem is a critical issue that limits the

development of high-performance computing systems [57].

To mitigate the thermal crisis, some mechanical solutions have been explored,

such as building heat sinks, heat spreaders, cooling fans or other advanced cooling

mechanisms (e.g. embedded micro-channel liquid cooling on 3D processors [141]

or using phase change coolant [29]). However, designing such a heat dissipation

package is uneconomical if not infeasible [131], and it is unsuitable for hand-held

devices [119]. More important, solely relying on the heat dissipation package cannot

guarantee the temperature constraints. The violations of the temperature threshold

may degrade the system throughput performance and cause real-time violations.

Thus, it is not sufficient to be utilized in the real-time computing systems design.

To this end, a variety of research efforts have been applied on different abstraction

levels, including circuit-level, logic-level, architectural-level and the system-level.

Our research employs real-time scheduling techniques on the system level. In par-

ticular, by properly controlling the computational behavior by dynamically varying

computing performance and workload distribution on an IC chip, different design-

2

optimization goals can be achieved under the thermal constraint, e.g. energy reduc-

tion, reliability enhancement and throughput maximization, etc. In what follows, we

first introduce the crisis caused by soaring power and energy consumption in mod-

ern computing systems design. We then discuss the opportunities and challenges in

addressing the thermal/power issue. Next, we introduce our research problem and

our contributions. At last, we describe the organization of the dissertation.

1.1 The Increasing Power Consumption and Power Density

of IC Chips

In the era of awaiting the ultra-low power of superconducting electronics for Quan-

tum Computing, the pace of pursuing the next generation of high-performance de-

vices never stops. Beyond the conventional technologies and architectures, on one

hand, portable and implanted electronic devices, e.g. smartphones and user ter-

minal of Internet of Things (IoT), call for a self-contained functionality within the

scope of a small carbon area. On the other hand, high-performance computing de-

vices, e.g. servers used in data centers, drive stationary computers to improve their

performances to the next higher level of realizing supercomputing.

Both increasing the computational capability and decreasing the chip sizes, drive

the semiconductor industry to keep on increasing the transistor count and transistor

density. For example, cellphone application processors have increased the transistor

count from 1 Billion in A5 to 2 Billion for A6 to 3 Billion for A6X. It is projected

that the upcoming A9 will range from 2.7 to 4.5 Billion [31]. Although the shrink-

ing feature sizes and FinFET technique can realize faster switching and lower the

minimal power consumption of transistor operation, the chipset power and power

density are still rapidly escalating to silicon limitations.

3

“The road map was an incredibly interesting experiment,” says
Flamm. “So far as I know, there is no example of anything like this in
any other industry, where every manufacturer and supplier gets together
and figures out what they are going to do.” In effect, it converted Moore’s
law from an empirical observation into a self-fulfilling prophecy: new
chips followed the law because the industry made sure that they did.

And it all worked beautifully, says Flamm — right up until it didn’t.

HEAT DEATH
The first stumbling block was not unexpected. Gargini and others had
warned about it as far back as 1989. But it hit hard nonetheless: things
got too small.

“It used to be that whenever we would scale to smaller feature size,
good things happened automatically,” says Bill Bottoms, president of
Third Millennium Test Solutions, an equipment manufacturer in Santa
Clara. “The chips would go faster and consume less power.”

But in the early 2000s, when the features began to shrink below about
90 nanometres, that automatic benefit began to fail. As electrons had
to move faster and faster through silicon circuits that were smaller and
smaller, the chips began to get too hot.

That was a fundamental problem. Heat is hard to get rid of, and no
one wants to buy a mobile phone that burns their hand. So manufac-
turers seized on the only solutions they had, says Gargini. First, they
stopped trying to increase ‘clock rates’ — how fast microprocessors
execute instructions. This effectively put a speed limit on the chip’s
electrons and limited their ability to generate heat. The maximum clock
rate hasn’t budged since 2004.

Second, to keep the chips moving along the Moore’s law performance
curve despite the speed limit, they redesigned the internal circuitry so
that each chip contained not one processor, or ‘core’, but two, four or
more. (Four and eight are common in today’s desktop computers and
smartphones.) In principle, says Gargini, “you can have the same output
with four cores going at 250 megahertz as one going at 1 gigahertz”. In
practice, exploiting eight processors means that a problem has to be
broken down into eight pieces — which for many algorithms is dif-
ficult to impossible. “The piece that can’t be parallelized will limit your
improvement,” says Gargini.

Even so, when combined with creative redesigns to compensate for
electron leakage and other effects, these two solutions have enabled
chip manufacturers to continue shrinking their circuits and keeping
their transistor counts on track with Moore’s law. The question now is
what will happen in the early 2020s, when continued scaling is no longer
possible with silicon because quantum effects have come into play. What
comes next? “We’re still struggling,” says An Chen, an electrical engineer
who works for the international chipmaker GlobalFoundries in Santa
Clara, California, and who chairs a committee of the new road map that
is looking into the question.

That is not for a lack of ideas. One possibility is to embrace a
completely new paradigm — something like quantum computing,
which promises exponential speed-up for certain calculations, or
neuro morphic computing, which aims to model processing elements
on neurons in the brain. But none of these alternative paradigms has
made it very far out of the laboratory. And many researchers think that
quantum computing will offer advantages only for niche applications,
rather than for the everyday tasks at which digital computing excels.
“What does it mean to quantum-balance a chequebook?” wonders
John Shalf, head of computer-science research at the Lawrence Berkeley
National Laboratory in Berkeley, California.

MATERIAL DIFFERENCES
A different approach, which does stay in the digital realm, is the quest
to find a ‘millivolt switch’: a material that could be used for devices at
least as fast as their silicon counterparts, but that would generate much
less heat. There are many candidates, ranging from 2D graphene-like
compounds to spintronic materials that would compute by flipping
electron spins rather than by moving electrons. “There is an enormous
research space to be explored once you step outside the confines of the
established technology,” says Thomas Theis, a physicist who directs the
nanoelectronics initiative at the Semiconductor Research Corporation
(SRC), a research-funding consortium in Durham, North Carolina.

Unfortunately, no millivolt switch has made it out of the laboratory
either. That leaves the architectural approach: stick with silicon, but
configure it in entirely new ways. One popular option is to go 3D.
Instead of etching flat circuits onto the surface of a silicon wafer, build
skyscrapers: stack many thin layers of silicon with microcircuitry
etched into each. In principle, this should make it possible to pack
more computational power into the same space. In practice, however,
this currently works only with memory chips, which do not have a
heat problem: they use circuits that consume power only when a
memory cell is accessed, which is not that often. One example is the
Hybrid Memory Cube design, a stack of as many as eight memory
layers that is being pursued by an industry consortium originally

1960
10–2

1

102

104

106

108

1010

1974 1988 2002 2016

1950
0.1

1

10

100

103

104

105

106

107

108

109

1010

1012

1011

1013

1960

S
iz

e
(m

m
3)

1970 1980 1990 2000 2010 2020

MOORE’S LORE

For the past five decades, the number of transistors per microprocessor
chip — a rough measure of processing power — has doubled about every
two years, in step with Moore’s law (top). Chips also increased their ‘clock
speed’, or rate of executing instructions, until 2004, when speeds were
capped to limit heat. As computers increase in power and shrink in size, a
new class of machines has emerged roughly every ten years (bottom).

Transistors per chip

Clock speeds (MHz)

Mainfra
me

Minico
mputer

Perso
nal

computer

Laptop

Smartp
hone

Embedded

processo
rs

SO
U

R
C

E:
 T

O
P,

 IN
TE

L;
 B

O
TT

O
M

, S
IA

/S
R

C

1 4 6 | N A T U R E | V O L 5 3 0 | 1 1 F E B R U A R Y 2 0 1 6

FEATURENEWS

© 2016 Macmillan Publishers Limited. All rights reserved

(a)
“The road map was an incredibly interesting experiment,” says

Flamm. “So far as I know, there is no example of anything like this in
any other industry, where every manufacturer and supplier gets together
and figures out what they are going to do.” In effect, it converted Moore’s
law from an empirical observation into a self-fulfilling prophecy: new
chips followed the law because the industry made sure that they did.

And it all worked beautifully, says Flamm — right up until it didn’t.

HEAT DEATH
The first stumbling block was not unexpected. Gargini and others had
warned about it as far back as 1989. But it hit hard nonetheless: things
got too small.

“It used to be that whenever we would scale to smaller feature size,
good things happened automatically,” says Bill Bottoms, president of
Third Millennium Test Solutions, an equipment manufacturer in Santa
Clara. “The chips would go faster and consume less power.”

But in the early 2000s, when the features began to shrink below about
90 nanometres, that automatic benefit began to fail. As electrons had
to move faster and faster through silicon circuits that were smaller and
smaller, the chips began to get too hot.

That was a fundamental problem. Heat is hard to get rid of, and no
one wants to buy a mobile phone that burns their hand. So manufac-
turers seized on the only solutions they had, says Gargini. First, they
stopped trying to increase ‘clock rates’ — how fast microprocessors
execute instructions. This effectively put a speed limit on the chip’s
electrons and limited their ability to generate heat. The maximum clock
rate hasn’t budged since 2004.

Second, to keep the chips moving along the Moore’s law performance
curve despite the speed limit, they redesigned the internal circuitry so
that each chip contained not one processor, or ‘core’, but two, four or
more. (Four and eight are common in today’s desktop computers and
smartphones.) In principle, says Gargini, “you can have the same output
with four cores going at 250 megahertz as one going at 1 gigahertz”. In
practice, exploiting eight processors means that a problem has to be
broken down into eight pieces — which for many algorithms is dif-
ficult to impossible. “The piece that can’t be parallelized will limit your
improvement,” says Gargini.

Even so, when combined with creative redesigns to compensate for
electron leakage and other effects, these two solutions have enabled
chip manufacturers to continue shrinking their circuits and keeping
their transistor counts on track with Moore’s law. The question now is
what will happen in the early 2020s, when continued scaling is no longer
possible with silicon because quantum effects have come into play. What
comes next? “We’re still struggling,” says An Chen, an electrical engineer
who works for the international chipmaker GlobalFoundries in Santa
Clara, California, and who chairs a committee of the new road map that
is looking into the question.

That is not for a lack of ideas. One possibility is to embrace a
completely new paradigm — something like quantum computing,
which promises exponential speed-up for certain calculations, or
neuro morphic computing, which aims to model processing elements
on neurons in the brain. But none of these alternative paradigms has
made it very far out of the laboratory. And many researchers think that
quantum computing will offer advantages only for niche applications,
rather than for the everyday tasks at which digital computing excels.
“What does it mean to quantum-balance a chequebook?” wonders
John Shalf, head of computer-science research at the Lawrence Berkeley
National Laboratory in Berkeley, California.

MATERIAL DIFFERENCES
A different approach, which does stay in the digital realm, is the quest
to find a ‘millivolt switch’: a material that could be used for devices at
least as fast as their silicon counterparts, but that would generate much
less heat. There are many candidates, ranging from 2D graphene-like
compounds to spintronic materials that would compute by flipping
electron spins rather than by moving electrons. “There is an enormous
research space to be explored once you step outside the confines of the
established technology,” says Thomas Theis, a physicist who directs the
nanoelectronics initiative at the Semiconductor Research Corporation
(SRC), a research-funding consortium in Durham, North Carolina.

Unfortunately, no millivolt switch has made it out of the laboratory
either. That leaves the architectural approach: stick with silicon, but
configure it in entirely new ways. One popular option is to go 3D.
Instead of etching flat circuits onto the surface of a silicon wafer, build
skyscrapers: stack many thin layers of silicon with microcircuitry
etched into each. In principle, this should make it possible to pack
more computational power into the same space. In practice, however,
this currently works only with memory chips, which do not have a
heat problem: they use circuits that consume power only when a
memory cell is accessed, which is not that often. One example is the
Hybrid Memory Cube design, a stack of as many as eight memory
layers that is being pursued by an industry consortium originally

1960
10–2

1

102

104

106

108

1010

1974 1988 2002 2016

1950
0.1

1

10

100

103

104

105

106

107

108

109

1010

1012

1011

1013

1960

S
iz

e
(m

m
3)

1970 1980 1990 2000 2010 2020

MOORE’S LORE

For the past five decades, the number of transistors per microprocessor
chip — a rough measure of processing power — has doubled about every
two years, in step with Moore’s law (top). Chips also increased their ‘clock
speed’, or rate of executing instructions, until 2004, when speeds were
capped to limit heat. As computers increase in power and shrink in size, a
new class of machines has emerged roughly every ten years (bottom).

Transistors per chip

Clock speeds (MHz)

Mainfra
me

Minico
mputer

Perso
nal

computer

Laptop

Smartp
hone

Embedded

processo
rs

SO
U

R
C

E:
 T

O
P,

 IN
TE

L;
 B

O
TT

O
M

, S
IA

/S
R

C

1 4 6 | N A T U R E | V O L 5 3 0 | 1 1 F E B R U A R Y 2 0 1 6

FEATURENEWS

© 2016 Macmillan Publishers Limited. All rights reserved

(b)

Figure 1.1: (a) The “Moore’s Law” doubles transistor per chip roughly every two
years. The chip’s clock speed also increases until 2004 when the speed scaling meets
the barrier of the thermal limit. (b) As the IC power and size scaling, each generation
of new electronic device emerges about every 10 years. [96]

Instead of integrating more transistors and increasing the running frequency

on a monolithic single-core to pursue a higher performance, designing multi-core

and many-core platforms, by exploring the thread/process level parallelism, help

to lower the frequency and power consumption. The multi-core and many-core

architecture approaches the “saturation point” of Moore’s Law in a slower pace

than single-core architecture. For example, the parallel execution scheme lowered

the frequency scaling from 41% per year in 2001 to nearly 4% per year in 2011 [72],

which substantially mitigated the exponential increments of power consumptions (in

Figure 1.1(a)). However, the fast scaling of the processing core count and shrinking

size (in Figure 1.1(b)) lead to soaring runtime temperature, which negatively impact

system performance, reliability and increase the packaging and cooling cost. It is

reported that near the year of 2029, the number of cores used in a data center can

reach 10602, which is 30-fold of year 2015 [31]. To this end, the effective power and

thermal-aware design methodologies are urgently demanded on multi-core platforms.

4

1.2 The Temperature Issue on Multi-Core Processors

In a multi-core regime, leveraging the system integration is widely adopted to achieve

a higher performance, but building a larger SoCs/ NoCs with more processing cores

results in thermal issues. For example, the emerging 3D multi-core architecture is

recognized as one of the most promising solutions to achieve less delay and lower

power consumptions by stacking layers of cores vertically on top of each other to

take advantage of shorter wires, higher data throughput, and larger memory band-

width in comparison with 2D design. However, the higher power density and longer

heat removal path made the thermal problem substantially more challenging than a

2D design. As reported in [84], the vertical heat transfer rate of a 3D processor can

be 16× that of the lateral one and the longer heat removal path in a 3D architecture

may increase its core temperature by 17◦C − 20◦C compared with its 2D counter-

part. As shown in Figure 1.2, the power density beyond the 100nm technology node

is comparable with a nuclear reactor, and the power density of future electronics is

still increasing. As multi-/many-core systems continuously grow to the level that is

limited by the first advent of chip power budget or temperature limit, “dark/grey

silicon” leaves a fraction of on-chip processing cores inactive. Then, the resource uti-

lization is developed upon building an effective run-time workload mapping strategy,

through a different patterning approach to seek a proper subgroup of active cores,

such that thermal and power budget can be fully exploited. As reported in [37],

at 22 nm technology node, 21% of a fixed-size chip must be powered off, and at 8

nm, this number grows to more than 50%. Essentially, temperature has become a

first-class design constraint in modern computing systems design.

Besides the thermal crisis resulting from soaring transistor/power densities, the

thermal management on multi-core processors is also challenged by non-uniformly

5

distributed workload in both temporal and spatial dimensions. For example, on an

Intel Xeon E5-2699 v3 CPU [12], the intra-die temperature difference can be up

to 10◦C and 24◦C under balanced and unbalanced workload scenarios, respectively.

The high local heat fluxes (known as “hotspot”) on multi-core platforms make the

thermal management more complicated and urgent, because local hotspots may trig-

ger the self-protection schemes and cause an unpredicted shut down of the processor.

Thermal crisis has become one of the primary concerns in modern microprocessor de-

sign, because high temperature can substantially degrade system performance [124],

reliability [91], and even damage the chip permanently. Every year, a tremendous

amount of cooling cost has been spent in the IT industry. For example, as re-

ported in ITRS2015 [31], the power consumption of data centers enters hundreds of

Megawatts range. The global cooling power demands for the data center industry

raise from 55.02 MkWh of 2017 to 482.56 MkWh around 2029, which takes averagely

55.6% total power in the data center industry in the 10-year holistic view, with the

peak percentage of 72.7% at 2021.

To protect the hardware from overheating hazards, modern CPUs are featured

with digital thermal sensors to monitor the temperature fluctuations. If the chip

temperature exceeds the pre-defined temperature thresholds, it will trigger the au-

tomatic shut down scheme, which adversely degrades the system performances. To

address the thermal crisis, some mechanical solutions have been explored, such as

building heat sinks, heat spreaders, cooling fans or other advanced cooling mech-

anisms. For example, a 3D liquid tree-like cooling system has been proved to be

favorable for minimizing the pumping power in [23]. A channel width modulation

methodology has been proposed to enhance the cooling energy efficiency in [116].

The two-phase 3D liquid cooling systems has been studied in [29, 107]. However,

such mechanical cooling solutions are expensive and not suitable for the mobile

6

devices. More important, the mechanical cooling methods cannot guarantee the

runtime temperature staying in a safe range.

To manage the runtime temperature and improve the thermal profile, Dynamic

Thermal Management (DTM) is also developed on the system-level, which can be

realized by adjusting the processing speeds using dynamic voltage/frequency scaling

(DVFS) or turning off the unused cores using dynamic power management (DPM).

Significant work has been done for DTM strategies, but many of them are based

on simple heuristics or intuitions, such as thermal-balancing [100], “hot-and-cold”

job swapping [115], allocating hot tasks to cores closer to the heat sink [84], etc.

Some other works utilize reactive approaches to dynamically adjust the runtime

system settings for upcoming system loads [44, 53, 46]. Although these approaches

may work well for some application cases, they either lack of peak temperature

guarantee or cannot ensure system performances. Thus, these methods cannot be

safely utilized in the real-time systems design.

In this research, we adopt the real-time scheduling methodology and use a

proactive DTM approach to guarantee the pre-defined peak temperature constraint.

Meanwhile, we also aim to achieve different design optimization goals and ensure the

required throughput under the peak temperature constraint at the same time. Fur-

thermore, our rigorous analytical approach intends to have a better understanding

of the interplay among different design factors/constraints, which helps to develop

more effective thermal management policies.

1.3 Research Problems and Our Contributions

Due to both economic and physical challenges in IC design, power and thermal

issues on multi-core platforms call for effective and cost-efficient solutions in devel-

7

oping next-generation computing systems. In this dissertation, we study the real-

time computing system design with power/thermal-awareness. In particular, our

research aims to develop a variety of design optimization algorithms (e.g. through-

put maximization, energy reduction, peak temperature minimization, etc.) based on

the state-of-the-art computer architecture. The research incorporates system-level

DTM techniques and takes leakage-temperature dependency and multi-core ther-

mal interference into account. Different from many existing DTM heuristics that

are based on simple intuitions, we seek to address the thermal-related optimiza-

tion problems through a rigorous analytical approach, which intends to understand

the fundamental thermal/power-aware design principles. The significance of our re-

search is that, our design emphasizes the guaranteed throughput performance and

response time in developing different optimization strategies, which can be safely

employed in the real-time system design. Meanwhile, not only our proposed algo-

rithms can outperform existing work significantly as demonstrated in the extensive

experimental results, but also the theoretical results in our research are very general

and can greatly benefit other thermal-related research.

The contributions of this dissertation are summarized as follows:

1. We analytically prove a series of fundamental principles in the forms of theo-

rems and lemmas for thermal modeling, peak temperature identification and

peak temperature reduction, which are key to thermal-constrained computer

system design, that based on the well-known multi-core RC-thermal model,

which accounts for the temperature-leakage dependency and multi-core heat

transfer. These principles are general enough to be applied on 2D and 3D

multi-core platforms, and form the theoretical basis for a more rigorous ana-

lytical study, which can be used for other thermal-related problems.

8

2. Based on the thermal characteristics on multi-core platforms, we analytically

study the throughput maximization problem under the peak temperature con-

straints. To take advantage of thermal heterogeneity of different cores for per-

formance improvement, we propose to run each core with multiple speed levels

and develop a schedule based on two novel concepts, i.e. the step-up sched-

ule and the m-Oscillating schedule, for multi-core platforms. The proposed

methodology can ensure the peak temperature guarantee with a significant

improvement in computing throughput, up to 89% with an average improve-

ment of 11%. Meanwhile, the computational time reduces orders of magnitude

compared to the traditional exhaustive search-based approach.

3. Although energy minimization is closely related to temperature reduction, the

most energy efficient method may not be the most effective one to meet the

temperature constraints, and vice versa. We then study the problem of how to

partition periodic hard real-time tasks on a multi-core platform to maximize

the overall energy efficiency under a peak temperature constraint. Different

from the traditional load-balancing approach, we use a thermal-balancing ap-

proach to improve the overall system energy efficiency, especially when the

temperature constraints are tight. We further identify the lower bound for en-

ergy consumption by this approach, and then transform the task partitioning

problem to a variable sized bin packing problem. We further use an enhanced

algorithm to optimize the task partitioning results. Our simulation results

show that the proposed thermal-balancing approach can greatly improve the

energy efficiency and task partitioning feasibility for real-time systems with

high system utilizations and tight temperature constraints.

9

1.4 Structure of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the

pertinent background to this dissertation and discuss existing works that are closely

related to our research. In Chapter 3, we formally prove a series of thermal prop-

erties on multi-core platforms and study a temperature bounding method, which

overturns the traditional peak temperature identification methods that use worst-

case execution time to compute peak temperature directly from a given schedule.

In Chapter 4, we focus on the throughput maximization problem of multi-core plat-

forms and study a frequency oscillating methodology to fully use the “headroom”

of the temperature threshold and enhance the throughput performance and service

capability. In Chapter 5, we investigate how to partition periodic hard real-time

tasks on a multi-core platform to maximize the overall energy efficiency under a

peak temperature constraint. Finally, in Chapter 6, we conclude this dissertation

and discuss possible future works.

10

Korea Univ38(a)

“Energy Crisis” on Chip
• Scaling o increasing power density
• Low-power design and multi-core introduced
• Beyond-CMOS devices for low-power solution?

0

20

40

60

1970 1980 1990 2000 2010 2020

Po
w

er
 d

en
si

ty
 (W

/c
m

2)

Year

Suppliers: AMD,
Intel, SPARC

Symbol size = # of cores

Courtesy of Jonas Wei-ting Chan, Andrew Kahng (UCSD)

Processor peak power density

Beyond-CMOS?

Source: Bernard S. Meyerson (IBM)

6

(b)

Figure 1.2: (a) The power density increases exponentially with the IC feature size
and its is comparable with a nuclear reaction. [Source: Intel Corp.] (b) Emerging
new electronic devices results in power density increases chronologically [21]

11

38.99 55.02 86.13
237.31 264.26 307.03 374.89

482.56

61.5157 110.899
225.429

326.358
405.167

530.204

728.573

1043.334

2015 2017 2019 2021 2023 2025 2027 2029

Power	Consumed	by	Facility	Cooling

Total	Power	in	Data	Center	(MkWh)

Figure 1.3: A global view of cooling power v.s. total power in the data center
industry [31]

12

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter covers the background of this research. We first introduce several im-

portant concepts on power/energy consumption commonly used in IC design. Then,

we introduce several thermal management techniques at different design stages. We

further conduct a more specific survey on power, thermal and energy-aware schedul-

ing techniques, which are closely related to our research topic.

2.1 Real-Time Systems

Real-time systems are widely used in the computing systems design, e.g. multi-

media systems, embedded automotive electronics, etc.. In a real-time system, the

correctness of the system behavior depends not only on the logical results of the com-

putations, but also on the physical instant at which these results are produced [35].

The real-time systems adjust the operating state as a function of physical time. The

instant that the result is required to be delivered is called deadline.

Real-time systems can be largely categorized into hard real-time and soft real-

time systems. Hard real-time’s response time requirement is firm and the violation

of such type of deadline can result in a catastrophe. In contrast, a soft real-time

system, e.g. multimedia or online reserving systems, is used in non-critical situations

that the deadline is met at the best effort. Missing deadline only degrades the quality

of service (QoS).

Further, hard real-time scheduling can be categorized into two types: static

and dynamic. The static scheduling makes a decision at the compile time according

to the tasks’ parameters, e.g. execution time, precedence, deadlines, etc. Since the

schedule is generated off-line, static scheduling may tolerate a higher computational

13

cost. In contrast, the dynamic scheduling makes the decision at the runtime. Al-

though it is more flexible and adaptive to different workload scenarios, creating a

runtime schedule steals the computational resources and may cause a large overhead.

There are several uniprocessor real-time scheduling policies. For example, earli-

est deadline first (EDF) policy always assign the highest priority to the task with

the nearest current deadline. In addition, the EDF algorithm can achieve 100%

utilization [87]. Rate monotonic (RM) assign the highest execution priority to the

task with the shortest period. RM has been proved that a feasible schedule can

always be found under the utilizations of ln2 (69.3%) [48].

On multi-core platform, the traditional scheduling policies for uniprocessors, e.g.

EDF and RM, may not always lead to the best scheduling results. As the design

space becomes larger, judiciously considering the utilization trade-offs that exists in

multi-core systems are necessary. For example, according to the degree of allowed

task migration, global schedule store all the ready tasks in a single priority-ordered

queue and execute the highest priority one in sequence. In contrast, the partitioning

approach allows each task only assign to one dedicated core, and join the task ready

queue specified on this core. The research shows that some “middle approach” of a

combination of global and partitioning methods may be a better choice on multi-core

platforms [17].

Real-time has also been been applied in other system settings and architectures.

For example, in a distributed real-time systems (DRTS), improving the schedula-

bility by assigning local optimal end-to-end deadline has been explored in [59]. For

discrete-event systems, the real-time calculus studied the temporal properties on

queuing theory to provide service for incoming task requests [134].

14

2.2 Power Consumption

In this section, we first introduce the sources of power consumption in digital inte-

grated circuits. Then, we discuss a number of existing power reduction techniques

at the system level. The total power consumption in CMOS digital ICs consists

of dynamic power and static power.

P = Pdyn + Pleak, (2.1)

2.2.1 Dynamic Power Reduction

The dynamic power closely relates to the switching activities of the transistor, which

is a quadratic function of supply voltage and proportional to the frequency.

Pdyn = Cv2f, (2.2)

where C is the equivalent parasitic capacitance. Term v and f are the supply voltage

and clock frequency (execution speed), respectively. Modern processors are usually

featured with several discrete running modes and for each mode v ∝ f . Thus,

dynamic power can be simplified as

Pdyn = γ(v) · v3, (2.3)

where γ is a constant for different running modes.

There are a number of system-level techniques and multi-core designs used to

minimize the active power consumption [15]. For example,

Clock Gating is selectively shutting off the clock for a circuit to prevent any toggle

activity of the clocks or registers to reduce the power dissipation.

Dynamic Voltage and Frequency Scaling (DVFS) is to exploit the opportu-

nity to scale down the voltage and frequency for power saving, when perfor-

mance requirements can be satisfied in a low loading condition.

15

Voltage Island is to realize “Multi-Supply Voltage” (MSV) techniques, that can

reduce power consumption of SoCs, when not requiring all blocks to operate

at maximum speeds at all times.

On-Die Voltage Regulator provides a faster response than off-chip modules for

adjusting the voltage and current supply in different active states.

3D-IC utilizes Through Silicon Via (TSV) to connect several layers of processors

and/or memories over a silicon interposer, which provide a low capacitance

signal interconnect between die, thus reducing the I/O active power.

Since total power is a combination of dynamic power and leakage power. In what

follows, we introduce the fundamentals for leakage power as well as its optimization

strategies.

2.2.2 Leakage Power Reduction

The leakage power, also called static power consumption, is caused by a small

amount of current flow from power to the ground. The leakage power can be for-

mulated as [86]

Pleak = Ngate · Ileak · vdd, (2.4)

where Ngate represents the number of gates, vdd is the voltage level, and Ileak is the

leakage current. Ileak varies with both temperature and supply voltage and can be

calculated by a circuit-level non-linear and high-order equation. Since leakage cur-

rent depends on both supply voltage and temperature [10], for system-level analysis

with a tolerable complexity, leakage power on the system-level can be approximated

as

Pleak = α(v) + βT (t), (2.5)

16

where α is a constant for different running modes. T (t) is the temperature at time t.

β is a constant. Further, the leakage and temperature correlation can be captured

by a piece-wise linear function [64], with an average of 0.3% derivation from the

circuit level formulation [153, 86]. Some existing static power saving strategies are

listed as below [15].

Power Gating saves leakage power by shutting off the current to the blocks of

the circuit that are standby. However, power gating needs to be applied with

caution, because it causes more time delay than clock gating.

Multi-Threshold CMOS reduces leakage power by swapping of nominal thresh-

old voltage gates with higher threshold voltage gates. In CMOS the sub-

threshold leakage is inversely proportional to the threshold voltage. Careful

trade-off analysis needs to be done to achieve optimal leakage savings and

mitigate delay effects.

Active Back-Bias is an approach that increases the bias voltage of the substrate

nodes in CMOS gates to reduce the leakage current. This biasing technique

essentially increases the threshold voltage of a unit or the entire chip during

standby modes, hence decreasing the leakage power.

Some other techniques are exploit for power saving purpose. For example, as

the feature size continues to shrink in each technology node, the voltage scaling

approaches a threshold that dynamic and leakage power has a trade-off around the

threshold voltage (Vt). The optimum operating point is usually slightly above Vt

and is called the near-threshold operating point.

17

2.3 Thermal Management

In previous section, we introduced that the total power in digital ICs is a com-

bination of dynamic and leakage power consumption with a brief introduction of

their optimization methodologies. Since high power consumption leads to the high

temperature directly, thermal problem becomes one of the first class constraints in

computing systems design. In this section, we first show thermal management is an

indispensable part in computing systems design, followed by thermal/power-related

works.

2.3.1 The Need for Thermal Management

Temperature, a long-lasting concern, is rooted in every stage of IC design and pen-

etrates to every corner of human lives. For large-scale computing infrastructure,

e.g. data centers and servers, the advancement of thermal management saves a

tremendous cooling cost globally each year, and it is also an effective way to reduce

the environmental impact for green computing purpose. For stationary computers,

e.g. desktop or laptop computers, the application driven factors, e.g. internet surf-

ing, video streaming and gaming, encourage IC industry to develop more aggressive

thermal control methodologies to meet the application market needs as well as user

satisfactory. For portable devices, e.g. mobile phones, implanted electronics and

user terminals of IoT, the ultra-low-power design requires effective thermal control

strategies either because a thermal-sensitive environment, or due to power/energy

concern. For example, every 1◦C of temperature increment of implanted devices

may cause permanent tissue change. The mobile phone and tablets also need to

consider the heat dissipation coming from the battery discharge along with the heat

18

generated from mobile computing itself; meanwhile, these portable devices need to

save the thermal-related leakage power to maintain the battery mission cycle.

However, the soaring power density along with the uncertainty of the work-

load, the temporal and spacial non-uniformity of power distribution and the large

variation of power dissipations among different applications challenge the thermal

controllability in modern computing systems design at the same time. In all perspec-

tives, the research to rethink and explore different ways to improve the effectiveness

of the system resources with thermal awareness is indispensable in each design stage.

2.3.2 Related Works on Power and Thermal Management

There have been extensive research efforts for thermal related optimizations on

multi-core platforms, including throughput maximization (e.g. [145, 124, 40, 101]),

power/energy reduction (e.g. [106, 157, 117]), peak temperature reduction (e.g. [84,

115, 156, 42]) and reliability enhancement (e.g. [138]), etc. Essentially, these works

aim at optimizing the resource usage in design of high performance, low power/energy

and highly reliable computing systems with chip temperature either as an optimiza-

tion goal or a design constraint. Based on their approaches, the existing work can

be largely categorized into the following three categories.

First, many existing researches are based on simple heuristic or intuitions. For

example, for peak temperature minimization purpose, interleaving the hot/cool

tasks in 3D platforms temporally and spatially is proposed in [84], properly as-

signing slacks to split hot tasks is proposed in [156] and assigning hot tasks to cool

cores is proposed in [12]. However, in these approaches, to determine the accurate

and strongly justifiable metrics to classify hot/cool tasks/cores can be difficult. In

addition, without solid analytical analyses, to make other design tradeoffs in the

19

meantime, such as task migration overhead v.s. scheduling interval length can be

challenging. Although these heuristic/intuition methods may work in some applica-

tion scenarios, it becomes extremely difficult, if not impossible at all, to guarantee

the system performance and design constraints such as timing and peak tempera-

ture.

Second, some other approaches resort to traditional control techniques or opti-

mization methods, such as machine learning, mathematical programming, or meta-

heuristic searching methods, to deal with thermal issues. For example, using feed-

back control technique on multi-core platform, Fu et al. [44] proposed a framework

that enforce the desired temperature and CPU utilization bounds of embedded real-

time systems through DVFS. Hanumaiah et al. [53] developed a closed-loop con-

troller to predict the desired voltage/frequency settings to achieve maximum energy

efficiency without violating the thermal limitations. Xie et al. [147] developed a

look-up table based DTM method on a thermal coupled processor/battery model,

which considered the space limitation of mobile devices. Machine learning is also

explored to learn and make predictions on temperature variations. For example,

Ge et al. [46] proposed a machine learning technique to capture the correlation

between temperature change and workload switching pattern, and, thus, choose

the proper management policy considering performance-temperature tradeoff dur-

ing runtime. These approaches help to uncover deeper rationales in temperature

management better than simple intuitions. However, it is still difficult to employ

these approaches to ensure strong guarantee to the temperature and other design

constraints.

To this end, mathematical programming methods are also adopted to optimize

resource allocation under temperature and other design constraints. For example,

Wang et al. [145] proposed an integer linear programming-based approach (ILP)

20

for throughput maximization on a temperature-constrained multi-core platform.

Murali et al. [101] used a convex optimization method by a two-phase iterative

approach to approximate the solution. When considering discrete processor speed

levels, Hanumaiah et al. [56] formulated the task allocation and processor DVFS

setting problem as a convex optimization problem to minimize the task comple-

tion time. Chantem et al. [19] proposed an optimal ILP method for thermal-aware

task assignment and scheduling problem to minimize the peak temperature under a

given workload. Singh et al. [129] used ILP methodology for an application-driven

approach that considered the communication overhead of video streaming to mini-

mize the peak temperature and energy contemporarily. These approaches based on

mathematical programming usually can identify the optimal solution for the given

problem and can guarantee that all constraints are satisfied. There are two major

drawbacks of these approaches: (i) The solution itself, if it can be obtained, does

not provide deep insight to the reasonings and rationales of the problems; (ii) The

computational cost increases too fast and can be prohibitive as the system scale

becomes larger.

To deal with the computational cost problem, many approaches used meta-

heuristic searching algorithms. For example, using genetic programming approach,

Saha et al. [117] proposed to minimize the energy for periodic tasks under a peak

temperature constraint on heterogeneous systems. Fan et al. [40] proposed a meta-

heuristic approach to boost system performance in a small interval by supplying

additional power to the system without exceeding the temperature and power sup-

ply limit. For these approaches, to maintain a high quality of the result with a

manageable computational cost can be a challenging issue. Also, it is difficult to

employ these approaches to unveil the cause-and-effect relations within a complex

system.

21

The third type of approaches (e.g. [42, 106, 124, 147, 130]) intend to ensure strong

guarantee to thermal constraints based on formal and analytical thermal analysis,

to uncover underlying correlations among different design parameters quantitatively

and not qualitatively. This is particularly useful in design of real-time systems, where

predictability is critical and complicated resource management policies (such as pri-

ority, preemption, resource sharing, etc) cannot be easily formulated in mathemati-

cal programming. For example, Fisher et al. [42] formulated a series of schedulability

and feasibility conditions for an online thermal-aware global scheduling algorithm

for sporadic task sets on homogeneous multi-core platforms. Pagani et al. [106]

proposed a new multi-core power budget index, so called thermal safe power (TSP),

which can guarantee peak temperature constraints and result in a safer and higher

throughput capacity than traditional thermal design power (TDP). Sha et al. [124]

proved a series of theorems for peak temperature identification, speed selection,

oscillating frequency principles, and based on which, they presented a frequency os-

cillating method to maximize the throughput with a guaranteed peak temperature

on a multi-core platform. To check the thermal-aware feasibility, Ahmed et al. [4]

derived a series of necessary and sufficient conditions on a temperature-constrained

platform, which considered the performance/temperature trade-off based on dif-

ferent topologies. Assisted with rigorous mathematical analysis, these approaches

usually can achieve the goal of strong thermal guarantee without suffering from

prohibitive computational cost in mathematical programming approach. Also they

help to uncover fundamental principles for more efficient and effective thermal-aware

design, which would be otherwise unavailable.

22

2.4 Summary

In this section, we present the essential pertinent of our research and review some

closely related works in the literature. We first introduce the basic concepts and

different source of power consumption. Existing power reduction techniques are dis-

cussed. Then, we present the need for thermal management on multi-core platforms

with an extensive literature review of current technologies. Based on the above dis-

cussions, we can see that thermal-aware scheduling under a variety of constraints

still poses a tremendous challenge for both academia and industry. Studying the

interplay of different design constraints in a comprehensive and systematic way is

becoming more and more critical.

In this dissertation, the goal of our research is to develop effective and efficient

scheduling methods on multi-core platform to provide deterministic guarantees of

thermal constraints under different design objectives, e.g. energy reduction, peak

temperature reduction and throughput maximization, etc. In the following chapters,

i.e. Chapter 3, 4 and 5, we present our contributions on this subject. We then

conclude this dissertation in Chapter 6.

23

CHAPTER 3

FUNDAMENTALS ON MULTI-CORE THERMAL-AWARE

REAL-TIME SCHEDULING

To study the power/thermal management on multi-core platform, the first prior-

ity is to build a better understanding of the thermal models, which helps to develop

more effective thermal management policies. However, when considering the in-

terdependency between the leakage power and temperature and core-to-core heat

transfer, the thermal analysis on multi-core platform becomes substantially complex.

To facilitate rigorous analytical thermal analysis, it is our intention to develop some

general and provable principles/fundamentals on characteristics of heat dissipation

for ease of formal verification and analysis in real-time system design.

The rest of this chapter is organized as follows. Section 3.1 introduces the pre-

liminaries on system model and thermal model used in this research. Section 3.2

utilizes a series of provable lemmas and theorems to unveil the characteristics of

the well-known RC-thermal model. Section 3.3 shows that directly using tasks’

worst-case execution time to capture the peak temperature can be misleading. To

this end, we introduce the new concept of worst-case execution time-based “step-up

schedule” and show it can bound the peak temperature not only for an arbitrary

real-time schedule with given worst-case execution time, but it is also effective when

the schedule’s actual execution time varies. Section 3.4 shows the experimental

results and Section 3.5 concludes this chapter.

3.1 Preliminaries

We present the models for our multi-core systems. The bold characters represent

the vectors and matrices and non-bold characters are used for ordinary variables

24

and coefficients. All the matrices/vectors/values are in the real number domain.

The notations in Table 3.1 are used in the dissertation.

Table 3.1: Summary of Notations

Symbol Meaning

S(t) A periodic multi-core schedule;

Iq The qth state interval in S(t) with time interval [tq−1, tq];

lq The interval length of Iq, i.e. lq = tq − tq−1;

T0 The starting temperatures;

Tss(t) The stable status temperatures at time t;

1N×1 An (N × 1) matrix with all elements being 1;

0N×1 An (N × 1) matrix with all elements being 0;

max(X) Find the maximum scalar value from matrix/vector X;

Given two matrices X and Y with the same dimensions (e.g. N1 × N2),
operators > , < , ≥ and ≤ are defined as element-wise scalar comparisons.
For example, X ≤ Y means that Xi,j ≤ Yi,j, ∀i ∈ [1, N1] and ∀j ∈ [1, N2].

3.1.1 System Model

We consider a multi-core platform N contains Nc number of cores, N = {coreκ : κ =

1, · · · , Nc}. Each core is DVFS-independent. Also, each core has different running

modes and each running mode is characterized by a pair of parameters (v, f), where

v is the supply voltage and f is the working frequency (v ∝ f). For an inactive

core, we assume v = f = 0. In this paper, for ease of presentation, we use supply

voltage v to denote the processing speed (amount of work performed within a unit

time) when there is no confusion.

As different cores may execute in different running modes at different times, a

multi-core platform can be regarded as running on a sequence of scheduling intervals,

in each of which each core runs only in a unique mode. We call such an interval,

e.g. [tq−1, tq], as a state interval.

25

Consider a multi-core periodic schedule S(t) = {I1, · · · , Iz}, where Iq = [tq−1, tq],

the performance of the multi-core platform can be represented by the average com-

pleted workload on each core divided by the length of one hyper-period. The per-

formance (THR) is

THR =

∑z
q=1 THRq

N
∑z

q=1 lq
=

∑z
q=1

∑N
i=1 fi,q · lq

N
∑z

q=1 lq
, (3.1)

where fi,q is the running frequency of the i th core within the q th state interval. lq

is the length of the q th state interval.

3.1.2 Thermal Model

The thermal model, similar to that in [138, 144, 52], is built upon the duality between

heat transfer and electrical phenomena as an RC-lumped circuit. Specifically, the

RC-model consists of three vertical, conductive layers for the die, heat spreader, and

heat sink, and a fourth vertical, convective layer for the sink-to-air interface. Heat

generated from the active silicon device layer is conducted through the silicon die

to the thermal interface material, heat spreader and heat sink, then convectively

removed to the ambient air [131].

The thermal nodes on die layers are active nodes, which represent the processing

cores with non-zero power consumptions. In contrast, thermal nodes on other layers

are called inactive nodes, since they do not consume power. Assume the thermal

nodes in the system are Π = {Πi, i = 1, · · · , N}, in which the first Nc elements

represent the active nodes. Let Πi ∈ ΠHSK if the thermal nodes lay on the heat

sink layer and Rconv represents the thermal resistance from the heat sink to ambient

air.

26

HANUMAIAH et al.: PERFORMANCE OPTIMAL ONLINE DVFS AND TASK MIGRATION TECHNIQUES 1679

differences between the die and the package thermal time
constants; 2) neglecting the effect of leakage dependence
on temperature [3], [4], [14] (at high temperatures, leakage
power can increase power consumption by ten-fold); and 3)
undermining the importance of voltage scaling [14], [15], [27]
(DVFS provides cubic power reduction). These assumptions
may severely underestimate the throughput of processors.

This paper advances the existing work in DTM of multicore
processors in three ways: 1) it gives a precise formulation of
the problem of optimal speed and voltage control with task-
to-core allocation, that includes accurate power and thermal
models; 2) it presents an optimal solution in the form of
an optimal policy; and 3) it introduces approximations that
are based on minimal realistic simplifications, which lead
to efficient computational procedures for solving the DTM
online.

II. Model Description

A. Power and Thermal Models

The task model consists of q tasks which are scheduled
to run on an n core processor. Each core is capable of
executing a single task and each task is assumed to execute
independently of other tasks, which means that there is no
inter-task communication. The speed and voltage of a core c

are denoted by sc and vc, and are assumed to be continuous
functions of time normalized over [0, 1]. A task j consists
of Ij number of instructions and its instruction per cycle is
denoted by IPCj .

The thermal model used in this paper is based on HotSpot-
4 [33]. Using an analogy from electrical networks, HotSpot-4
represents the thermal characteristics and interactions between
various thermal blocks as an RC network, with power inputs
modeled as current sources, while heat spreading and storing
capacities modeled through resistors and capacitances, respec-
tively. Fig. 3 shows the HotSpot thermal model for a typical
four core processor. Each core is divided into m thermal blocks
on the die and the thermal interface material (TIM) layers. The
package, which includes the heat spreader and the heat sink, is
modeled with 5 and 9 thermal blocks, respectively. Together,
the total number of thermal blocks is N = 2nm + 14.

The thermal model can be expressed using state-space
models [34] as follows:

dT(t)
dt

= AT(t) + BP(s, v, T, t) (1)

where T and P are temperature and power vectors1 of di-
mension N × 1, respectively. Since only the die units of chip
generate heat, only the first nm units of P are non-zero. The
dimensions of s and v are n × 1, where n is the number of
cores. A and B are constant matrices of size N × N and this
makes the thermal system a time-invariant system. Note the
cyclical dependency between P and T in (1).

P represents the total power, which is the sum of the
dynamic power Pd and the leakage power Pl. The dynamic

1All vectors are considered as column vectors, unless mentioned explicitly.
Matrices and vectors are represented in bold.

Fig. 3. HotSpot-4 thermal model for a four-core processor.

power varies linearly with the speed and quadratically with
the voltage. The components of the dynamic power vector are
expressed as

Pd,c,b(t) = Pmax
d,c,b(t)sc(t)v2

c(t) (2)

where Pmax
d,c,b is the dynamic power dissipated by block b

of core c when the core is at the maximum speed and
voltage. Pmax

d,c,b is obtained by profiling the time-varying power
consumption of the task to be run on core c.

The leakage power is given by the following empirical
model [12]:

Pl,c,b(t) = k1vc(t)T 2
c,b(t)e

αvc (t)+β
Tc,b(t) + k2e

(γvc(t)+δ). (3)

k1, k2, α, β, γ , and δ are parameters that depend on circuit
topology, size, technology, and design. The non-linear leakage
power dependence on temperature and voltage (LDTV), as
well as the cyclic dependency between the leakage power
and the temperature, complicates the analysis and the solu-
tion to various optimization problems. Without any further
simplification, one can only resort to numerical solutions for
general non-linear optimization problems. To make any further
progress and to develop computationally efficient solutions,
this relation needs to be approximated by linear models.

B. Piece-Wise Linear Approximation (PWL) to LDTV

The leakage power described in (3) can be represented as
a 3-D surface with voltage and temperature axis as shown
in Fig. 4. This surface can be linearized w.r.t. temperature
and voltage to any desired accuracy. The leakage power for
an approximated linear section is expressed by the following

Figure 3.1: A HotSpot Thermal Model for a 4-core platform [55]. (Our model adds
lateral thermal resistors on the chip level for core-to-core heat transfer.)

The thermal behavior of a multi-core platform within a state interval can be

formulated as
dT(t)

dt
= AT(t) + B(v), (3.2)

where T(t) vector represents node temperatures at time t. Coefficient matrix A =

[Ai,j]N×N is an architectural-related constant, thus the system is time invariant.

A depends only on the thermal capacitance matrix C = diag{C1, · · · , CN} and

thermal resistance matrix G = [Gi,j]N×N as A = −C−1G, where Ci is the thermal

27

capacitance of the i-th thermal node, Ci > 0 and

Gi,j =


∑

θ 6=i
1

Ri,θ
+ ξi

1
Rconv

, if i = j,

− 1
Ri,j

, otherwise,

(3.3)

in which ξi = 1 when Πi ∈ ΠHSK; otherwise, ξi = 0. Ri,i (or Ri,j) denotes the

thermal resistance of the i-th thermal node to itself (or the j-th thermal node). The

upper left Nc×Nc sub-matrix of A and G contribute to the cores. Existing studies

show that matrix G has following properties:

Property 3.1.1. Matrix G has following properties:

1. G is a quasi-positive matrix with all of its entries being non-negative except

for those on the main diagonal [52];

2. G is strictly diagonal dominant, real symmetric and nonsingular (Lemma 1

in [144]);

Both C and G are N × N square matrices. Since C only contains non-zero

elements on the diagonal, it is invertible. Moreover, G is also invertible, because it

is nonsingular. Then, since A ·A−1 = −C−1G · (−C−1G)−1 = C−1GG−1C = I, A

is invertible. A is neither symmetric nor diagonal dominant.

Coefficient vector B = [Bi]N×1, a power-related vector, depends on not only the

thermal capacitances of the multi-core platform but also the running mode of each

core. Assume ∀v1 ≥ v2 leads to B(v1) ≥ B(v2).

When running a multi-core processor under a constant supply voltage v long

enough (i.e. t → ∞), it will eventually reach a constant temperature T∞(v) =

−A−1B(v) as dT(∞)/dt = 0. For schedules that consist of multiple state intervals,

the state intervals may not be long enough for the temperature to be constant. As

shown in [52], the transient temperature at time t within a state interval (e.g. the

28

q-th interval [tq−1, tq]) can be formulated as

T(t) = eA(t−tq−1)T(tq−1) + (I− eA(t−tq−1))T∞q , (3.4)

where tq−1 ≤ t ≤ tq and T(tq−1) is the temperature vectors at the beginning of the

q-th interval. T∞q is the constant temperature when running processor using supply

voltage vq long enough and I is an identity matrix.

For a periodic schedule S(t) with z state intervals and period tp, let tq−1 and tq

be the starting time and ending time of the q-th state interval, respectively. Let

lq = tq − tq−1, and from (3.4), we can derive the temperature at tp through the

temperature at each consecutive scheduling point in the first period as

T(t1) = eAl1T0 + (I− eAl1)T∞1 = (I− eAl1)T∞1 + eAl1T0;

T(t2) = eAl2T(t1) + (I− eAl2)T∞2

=
2∑
q=1

eA
∑2
θ=q+1 lθ(I− eAlq)T∞q + eA

∑2
θ=1 lθT0;

· · ·

T(th) = eAlhT(th−1) + (I− eAlh)T∞h

=

h∑
q=1

eA
∑h
θ=q+1 lθ(I− eAlq)T∞q + eA

∑h
θ=1 lθT0;

· · ·

T(tp) =
z∑
q=1

eA
∑z
θ=q+1 lθ(I− eAlq)T∞q + eA

∑z
θ=1 lθT0.

(3.5)

When repeating a periodic schedule with multiple state intervals long enough, the

temperature eventually enters the thermal stable status, in which the temperature

trace exhibits a repeat pattern. Specifically, for a periodic schedule S(t) with z state

intervals and period tp, let tq−1 and tq be the starting time and ending time of the

q-th state interval, respectively. The transient temperature in the stable status can

29

be formulated as [52]

Tss(tq) = T(tq) + Kq(I−K)−1(T(tp)−T(0)), (3.6)

in which T(tq) and Tss(tq) are the temperature at time tq in the first period and in

the thermal stable status, respectively. T(0) is the starting temperature for the first

period and equals to T0. The θ-th state interval size lθ = tθ − tθ−1, Kq = eA
∑q
θ=1 lθ

and K = eA
∑z
θ=1 lθ = eAtp .

3.2 The Properties of the Thermal Model

In this section, we focus on some inherent properties related to the multi-core RC

thermal model itself. The thermal model in (3.2) is a linear time-invariant (LTI)

system, which captures the thermal dynamics by N first-order differential equations

involving N state variables. The system matrix A plays an important role in tem-

perature dynamics before and when a multi-core platform reaches its temperature

stable status, because A relates how the current temperature affects the temper-

ature change dT(t)/dt [52] and T∞. Moreover, the property of A determines the

system stability [13], and its transformations, such as −A−1, eAl or (I− eAl)−1 etc,

are closely related to other properties of a system. In this section, we first present

some properties related to matrix A.

Lemma 3.2.1. Matrix A has all negative real eigenvalues.1

Proof. Since C = diag{C1, · · · , CN} and Ci > 0, we have C1/2 = diag{
√
C1, · · · ,

√
CN}

and C−1/2 = diag{1/
√
C1, · · · , 1/

√
CN} and they are nonsingular. The transpose

of C1/2 and C−1/2 equal to themselves, respectively.

1Similar conclusion was mentioned in [13].

30

G is positive definite, because a symmetric diagonally dominant matrix with real

non-negative diagonal entries is positive definite [92]. Thus, there exists a Y 6= 0

such that YTGY > 0. Let Y = C−1/2X, X 6= 0 and XT denotes the trans-

pose of X. Then, we have YTGY = (C−1/2X)TGC−1/2X = XTC−1/2GC−1/2X =

XT (C−1/2GC−1/2)X = XTΩX > 0, where Ω = C−1/2GC−1/2 and it is symmetric.

Thus, Ω is positive definite, and its eigenvalue must be positive real numbers (The-

orem 7.2.2 and Theorem 7.3.2 in [7]).

Since there exists a nonsingular matrix C1/2 such that the similarity transforma-

tion (page 506 in [95]) of−A = C−1G = C−1/2C−1/2G = C−1/2(C−1/2GC−1/2)C1/2 =

(C1/2)−1ΩC1/2, −A is similar to Ω and sharing all the eigenvalues (page 508 in [95]).

Thus, all the eigenvalues of A are negative real numbers.

In control theory, since all the eigenvalues of A are strictly negative real values,

it is asymptotically stable [16]. Moreover, all the asymptotically stable systems are

also bounded-input, bounded-output (BIBO) stable, which means the output will

be bounded for every input to the system that is bounded. In other words, there

always exists a peak temperature for any schedule executed on a given platform,

with its power supply stay below the maximal threshold.

Lemma 3.2.2. Matrix A is diagonalizable.

Proof. Let Ã = C1/2AC−1/2 and ÃT be the transpose of Ã. Then, we have ÃT =

(C1/2AC−1/2)T = −(C−1/2GC−1/2)T = −(C−1/2)TGT (C−1/2)T = −C−1/2GC−1/2 =

Ã, which means Ã is symmetric.

Since Ã is real and symmetric, it is diagonalizable (Theorem 7.2.1 in [7]). Thus,

there exists an invertible matrix Q such that QÃQ−1 = Γ, in which Γ is a diagonal

matrix. We can see A = C−1/2ÃC1/2 = C−1/2Q−1ΓQC1/2 = (QC1/2)−1ΓQC1/2.

31

There exists an invertible matrix QC1/2 such that (QC1/2)A(QC1/2)−1 = Γ is a

diagonal matrix, so A is diagonalizable (Page 303 Definition 2 in [7]).

Since A is diagonalizable and all of its eigenvalues are negative (Lemma 3.2.1), we

can easily calculate its eigenvalues. Let −λi be the i-th eigenvalue of A and λi > 0,

we have A = WDW−1, where D = diag{−λ1, · · · ,−λN} and W = [~w1, · · · , ~wN].

~wi is the independent eigenvectors associated with −λi. The matrix exponential of

eAl can be diagonalized as

eAl =
∞∑
h=0

lh(WDW−1)h

h!
= W

(∞∑
h=0

lhDh

h!

)
W−1 = WeDlW−1, (3.7)

where eDl = diag{e−λ1l, · · · , e−λN l} and e−λil is the i-th eigenvalue of eAl.

Lemma 3.2.3. Matrix A is constant and all the entries of −A−1 = [Ai,j]N×N are

positive real numbers and Ai,j > 0.

Proof. Let Bi be the i-th element of vector B. Since T∞ = −A−1B(v), the stable-

state temperature of the i-th thermal node is T∞i =
∑N

j=1 Ai,jBj . If the µ-th node

non-decreasingly changes its power and remain all other nodes’ power unchanged,

we have B̃µ ≥ Bµ. Let T̃∞i be the stable state temperature of the i-th node after

changing the power; then, we have

T̃∞i − T∞i =
N∑
j=1

Ai,j(B̃j −Bj)

=
N∑
j=1
j 6=µ

Ai,j(B̃j −Bj) + Ai,µ(B̃µ −Bµ).

(3.8)

Since B̃j = Bj when j 6= µ, we have
∑N

j=1
j 6=µ

Ai,j(B̃j −Bj) = 0.

By contradiction, assume Ai,j ≤ 0, because B̃µ − Bµ ≥ 0, we can infer that

T̃∞i < T∞i , which means by non-decreasingly changing the µ-th node’s power con-

sumption, while other nodes remain unchanged, results in a non-increasing stable

32

state temperature on the i-th node, which is not realistic. Thus, we can conclude

Ai,j > 0.

With Lemma 3.2.3, we can easily prove the following lemma.

Lemma 3.2.4. Given two constant supply voltage profiles v1 ≥ v2 running infinitely

long, we have T∞(v1) ≥ T∞(v2).

Proof. From (3.2), we have T∞(v1)−T∞(v2) = −A−1[B(v1)−B(v2)]. Since B(v1)−

B(v2) ≥ 0 when v1 ≥ v2, and −A−1 contains all positive entries (Lemma 3.2.3),

we have T∞(v1) ≥ T∞(v2).

As shown in (3.6), matrix K plays an important role in determining the stable

status temperature of a periodic schedule. Specifically, for matrix K, we have the

following lemma and theorem, which are keys for late proofs.

Lemma 3.2.5. All the elements in matrix (I−K)−1 are positive and each entry

monotonically decreases with l, where K = eAl, l > 0.

Proof. [Part 1]: Prove (I−K)−1 > 0.

Let ρ(eAl) denote the spectral radius of eAl, we have ρ(eAl) = max|eλil| (page

497 in [95]). Because for all λi > 0, we have for all 0 < e−λil < 1 and |eλil| < 1, so

ρ(eAl) < 1. Since ρ(eAl) < 1, we have limH→∞(eAl)H = 0.

We adopt the Neumann Series (page 618 in [95]) by geometric series formula for

matrices version, which can be proved similarly as the geometric series formula for

numbers, i.e.
∑H

h=0 Kh = (I−KH+1)(I−K)−1. Thus, we have (I−K)−1 =
∑∞

h=0 Kh.

Since all the elements of eAl are positive (Lemma 1 in [52]), we can conclude

(I− eAl)−1 only contains positive elements.

[Part 2]: Prove each element in (I−K)−1 monotonically decreases with l.

33

Let Kk,j, µk,j and φk,j be the element on the k-th row and j-th column of

(I − K)−1, W and W−1, respectively, k, j ∈ {1, · · · , N}. Diagonalize (I − K)−1

by (3.7), we have

(I− eAl)−1 = (I−W · eDl ·W−1)−1

=(W ·W−1 −W · eDl ·W−1)−1

=(W · (I− eDl) ·W−1)−1 = W · e(I−Dl)−1 ·W−1

=W · diag{(1− e−λ1l)−1, · · · , (1− e−λN l)−1} ·W−1.

(3.9)

Thus, we have Kk,j =
∑N

i=1 µk,i · φi,j · (1 − e−λil)−1. To prove Kk,j monotonically

decreases with l while µk,j and φk,j are constants, since Kk,j > 0, we need to prove

each eigenvalue (1− e−λil)−1 monotonically decreases with l.

Since −λi < 0 and l > 0, e−λil monotonically decreases with l and 0 < e−λil < 1.

Then, (1 − e−λil) monotonically increases with l and 0 < 1 − e−λil < 1. Thus,

(1− e−λil)−1 > 0 and it monotonically decreases with l.

Theorem 3.2.6. Let l > 0 and 0 ≤ T ≤ (T∞(vmax) − T∞(vmin)), then (I −

K)T ≥ 0, where K = eAl, vmax = [vmax,i]N×1 and vmin = [vmin,i]N×1. vmax,i and

vmin,i denote the maximum and minimum available supply voltage on the i-th node,

respectively.

Proof. Consider a state interval Iq = [tq−1, tq] starts at T0 = T∞(vmax) and runs at

the mode with supply voltage v. Since v ≤ vmax, we have T∞(vmax) − T∞(v) ≥

0 (Lemma 3.2.4). Because given a multi-core platform and a state interval, the

temperature on each core must monotonically decrease if all the cores’ starting

temperature is higher than the running mode’s stable state temperature (Theorem

5 in [52]), we have ∀t ∈ [tq−1, tq], T(t) ≤ T∞(vmax). Thus, from (3.4), T(t) can be

34

expressed as

eA(t−tq−1)T∞(vmax) + (I− eA(t−tq−1))T∞(v) ≤ T∞(vmax)

⇒ (I− eA(t−tq−1))(T∞(vmax)−T∞(v)) ≥ 0

(3.10)

In contrary, if T0 = T∞(vmin), and the system executes at v with v ≥ vmin, the

temperature must monotonically increase (Theorem 5 in [52]). Thus, we have

eA(t−tq−1)T∞(vmin) + (I− eA(t−tq−1))T∞(v) ≥ T∞(vmin)

⇒ (I− eA(t−tq−1))(T∞(v)−T∞(vmin)) ≥ 0

(3.11)

Since vmin ≤ v ≤ vmax, we have T∞(vmin) ≤ T∞(v) ≤ T∞(vmax), which both

satisfy (3.10) and (3.11) contemporarily. Thus, (I−K)T ≥ 0 holds throughout our

problem and 0 ≤ T ≤ (T∞(vmax)−T∞(vmin)).

According to Theorem 3.2.6, as long as the temperatures of all thermal nodes

(i.e. T) stay within the feasible range for the given supply voltages (not by external

factors), we always have (I−K)T > 0 for any arbitrary T. With the knowledge of

these properties, we are ready to introduce the peak temperature bounding method.

3.3 Peak Temperature Identification and Bounding

Peak temperature is usually a primary concern when designing a real-time comput-

ing system. On single-core platforms, it is straightforward to understand that the

peak temperature always occurs at the end of the high-speed interval in two-speed

schedules [20]. However, on multi-core platforms, peak temperature identification

and bounding become more complicated, because different components may follow

different speed schedules, and the power densities vary intricately in one chip, which

results in that the peak temperature may not always occurs at a scheduling point.

35

3.3.1 Related Works

There are a few approaches proposed to identify the peak temperature for a multi-

core platform. For example, one approach is to search the peak temperature by

splitting the execution interval into smaller ones, and assuming each interval has

the same power consumptions (e.g. [131, 113, 126]). This kind of approach is com-

putationally expensive and its accuracy heavily depends on the checking granularity.

To reduce the computational cost, some approximations are applied, e.g. without

considering the lateral heat transfer [101] or simply assuming thermal nodes can im-

mediately reach the stable state temperature [156]. However, these approximations

can lead to large error margins, which either caused thermal violation or wasted

precious thermal resources. Schor et al. [122] proposed a peak temperature bound-

ing method, which considered all possible scenarios of task arrivals for the critical

set of cumulative workload trace. However, this method significantly overestimated

the peak value and its computational complexity for profiling the workload demand

trace can be high. Since the peak temperature does not necessarily occur at the

scheduling point, several analytical solutions are also proposed for interval-wise peak

temperature checking in [104] and [52] with a tighter bound for maximal tempera-

ture and less computational cost than [122]. All the approaches introduced above

assume that task execution times are given. When task execution times can be

variable, it is a common practice to bound the worst-case scenarios by adopting the

worst-case execution time (WCET) of each task. However, the thermal analysis has

its uniqueness and using WCET directly in thermal analysis can be misleading in

bounding the peak temperature.

Next, we use a motivation example to show how using WCET directly to capture

the peak temperature cannot guarantee the thermal constraints.

36

Table 3.2: Motivation Example Task Sets

S(t) based on WCET S̃(t) based on Varied-ET

τa = {6ms, 3ms, 1.3V } τ̃a = {6ms, 3ms, 1.3V }
τb = {4ms, 2ms, 0.6V } τ̃b,1 = {4ms, 2ms, 0.6V }

τ̃b,2 = {4ms, 0.1ms, 0.6V }
τ̃b,3 = {4ms, 2ms, 0.6V }

* τ̃b,k denotes the k-th instance of task τ̃b.
* τ ={period, execution time (ET), supply voltage}.

3.3.2 Motivation Example

While it is a common practice to use WCET-based test to bound the worst-case

scenarios in a real-time system, the peak temperature for the WCET-based sched-

ule may not be able to bound the worst-case peak temperature. Consider a 3-core

platform with each core executing a task set, with their periods equal to the dead-

lines, as shown in Table 3.2. Let the system use a non-preemptive earliest deadline

first (EDF) policy and assume all the tasks/jobs arrive at the beginning of the

hyperperiod.

We simulated this motivation example on HotSpot-5.02 [131] at the 65nm tech-

nology node. The total power consumption (P) is composed of dynamic power and

leakage power [52]. Dynamic power is proportional to the cubic of supply voltage

and leakage power depends linearly on temperature T as Pleak = α(v) + βT (t). The

total power of the κ-th core is Pκ(t) = α(vκ) + βTκ(t) + γ(vκ)v
3
κ, where α and γ

are positive constants within the interval that coreκ runs at supply voltage vκ. β

is a constant. Power parameters were abstracted from the McPAT simulator [82]

(Details can be seen in [124] and [52]). Figure 3.2(a) shows the schedule with all

the tasks/jobs execute their WCETs; its peak temperature is 82.519◦C at t = 10s,

as shown in Figure 3.2(d). However, when task τb runs with shorter execution time

37

Speed Schedule

0 Time (S)2 5 7 8 10 12

(a) Worst-case execution time schedule S(t)

Speed Schedule

0 Time(S)122 55.1 8.1 10.1

(b) Varied-execution-time schedule S̃(t)

Speed Schedule

0 Time (S)6 12

Task !_H
Task !_L

Deadline of !_L
Deadline of !_H

(c) Step-up schedule Su(t)

0 5 10 150

50

100

Student Version of MATLAB

Temperature(C)

Time(S)

(d) Period = 12s, Tpeak(S(t)) = 82.5190◦C,
tpeak(S(t)) = 10s

0 5 10 150

50

100

Student Version of MATLAB

Time(S)

Temperature(C)

(e) Period = 12s, Tpeak(S̃(t)) = 86.2872◦C,

tpeak(S̃(t)) = 8.1s

0 5 10 1520

40

60

80

100

 core 1
core 2
core 3
core 4
core 5
core 6
core 7
core 8
core 9

Student Version of MATLAB

Time (s)

Temperature (C)

(f) Period = 12s, Tpeak(Su(t)) = 86.6975◦C,
tpeak(Su(t)) = 12s

Figure 3.2: Temperature trace of different schedules on a 9-core platform.

38

than its WCET as Figure 3.2(b), it exhibits a 3.7682◦C higher peak temperature as

86.2872◦C at t = 8.1s in Figure 3.2(e).

The motivation example shows that the schedule built upon WCETs may not be

able to successfully bound the peak temperature. This is because the peak temper-

ature depends more on power density rather than the overall energy consumption

(i.e. the integration of overall power consumption).

3.3.3 Bounding the Peak Temperature

In practical scenarios, since the actual execution time deviates from WCET, it is

impossible to know the actual execution time until the task has been completed.

Lacking the information of the actual execution time becomes a major obstacle for

thermal guarantee. As shown in our motivation example, simply plugging in the

WCETs in a schedule cannot guarantee the peak temperature constraint. To this

end, in this section, we introduce a new concept of “step-up schedule”, which can be

used to effectively bound the peak temperature in terms of: (1) The multi-core peak

temperature may not always occur at a scheduling point; (2) The actual execution

time may be missing.

Specifically, in this section, we introduce a new concept of WCET-based step-up

schdule (Definition 3.3.1) and show that its peak temperature can be easily identified

in Theorem 3.3.3. Then, we prove that step-up schedules can effectively bound the

peak temperature in Theorem 3.3.2-3.3.7.

Definition 3.3.1. Let multi-core voltage schedule S(t) contain z state intervals,

with vq being the voltage vector for the qth state interval Iq. Then S(t) is called a

step-up schedule if vq ≤ vq+1, ∀q ∈ {1, · · · , z − 1}.

39

According to Definition 3.3.1, the voltage for each core is monotonically non-

decreasing from the first to the last state interval in a step-up schedule. Note that,

the concept of “step-up schedule” was first introduced in our earlier work [20] on

single core platforms. The characteristics of a step-up schedule for a multi-core

platform become substantially more complicated due to the heat transfer problems

as shown below.

First, we prove that the starting temperature of a multi-core schedule does not

influence its stable status temperature.

Theorem 3.3.2. Let S(t) = {Iq : q = 1 · · · z} be a periodic multi-core schedule.

Then, the stable-state temperature Tss(t) is independent of the initial temperature

T0.

Proof. Let t0, t1, · · · , t(z−1) be the starting time for interval I1, I2, · · · , Iz, respec-

tively. In addition, let lq = tq − tq−1 and assume that processor runs voltage profile

vq within interval Iq, where q ∈ {1, 2, · · · , z}. Based on (3.6), we have

Tss(t0) = T0 + (I−K)−1(T(tp)−T0)

= T0 + (I−K)−1[K ·T0 + F−T0]

= (I−K)−1 · F

(3.12)

in which T(tp) is the ending temperature of the first execution period; F = eA
∑z
θ=2 lθ(I−

eAl1)T∞1 +· · ·+(I−eAlz)T∞z ; K = eA(
∑z
θ=1 lθ) = eAtp . Since neither K nor F depends

on T0, Tss(t0) does not depend on the starting temperature T0.

Theorem 3.3.2 shows that when identifying peak temperature in the stable status,

we can assume any starting temperature, e.g. T0 = 0, to ease the presentation. For

example, when T0 = 0, for schedule S(t) = {I1, · · · , Iz} contains z state intervals

and Iq = [tq−1, tq], the temperature at each consecutive scheduling point from (3.4)

40

can be expressed as

T(t1) = eAl1T0 + (I− eAl1)T∞1 = (I− eAl1)T∞1 ;

T(t2) = eAl2T(t1) + (I− eAl2)T∞2

=

2∑
q=1

eA
∑2
θ=q+1 lθ(I− eAlq)T∞q ;

· · ·

T(th) = eAlhT(th−1) + (I− eAlh)T∞h

=

h∑
q=1

eA
∑h
θ=q+1 lθ(I− eAlq)T∞q ;

· · ·

T(tp) =

z∑
q=1

eA
∑z
θ=q+1 lθ(I− eAlq)T∞q .

(3.13)

In this paper, to ease the presentation, we assume temperature starts from T0 = 0

otherwise specified.

In addition, for a step-up schedule, its peak temperature always occurs at the

end of the period, as stated in the following theorem.

Theorem 3.3.3. The peak temperature when repeating a step-up schedule S(t) pe-

riodically from the ambient temperature occurs at the end of the schedule when the

temperature reaches the stable status.

Proof. Assume step-up schedule S(t) is of period tp and contains z state intervals

with scheduling points t0, t1, · · · , tz. Let lq = tq − tq−1. Also, let tx be an arbitrary

time instant within the hth interval, i.e. tx ∈ [th−1, th] and ∆tx = tx − th−1. Based

on (3.6), we have
Tss(tp) = T(tp) + K(I−K)−1T(tp) = (I−K)−1T(tp)

Tss(tx) = T(tx) + Kx(I−K)−1T(tp)

= (I−K)−1[(I−K)T(tx) + KxT(tp)],

(3.14)

41

core_N

core_N

v1 v2 vh
… …

v2
…

core_N

…
…

vz
core_1

core_1

v1 v2 …

0 tpth… …tx

…core_1

t(h-1)

vh

Time

Speed

v1 vh

Figure 3.3: Step up schedule proof illustration for Theorem 3.3.3

in which K = eAtp and Kx = eA(∆tx+
∑q−1
θ=1 lθ). Since (I −K)−1 contains all positive

elements (Lemma 3.2.5), to prove Tss(tp) ≥ Tss(tx), we want to prove T(tp)− [(I−

K)T(tx) + KxT(tp)] ≥ 0, which is equivalent to prove

T(tp)− [(I−K)T(tx) + KxT(tp)]

=(I−Kx)(I−K)[(I−K)−1T(tp)− (I−Kx)−1T(tx)] ≥ 0.

(3.15)

Since (I − Kx)(I − K)T ≥ 0, if T ≥ 0 (Theorem 3.2.6), we need to prove that

(I −K)−1T(tp) − (I −Kx)
−1T(tx) ≥ 0. From (3.6), (I −K)−1T(tp) is the stable

status temperature at time tp of schedule S(t), and (I − Kx)
−1T(tx) is the stable

status temperature at time tx for the S′(t) that consists of all state intervals of S(t)

within interval [0, tx].

To prove S(t) has a higher peak temperature than S′(t), we define an interme-

diate schedule S̃(t) with period tp, which consists of all the state intervals of S′(t)

within interval [0, th−1], and keeps constant voltage vh within [th−1, tp], as shown in

Figure 3.3. Then we need to prove Tss(S(tp)) ≥ Tss(S̃(tp)) ≥ Tss(S′(tx)).

First, we prove Tss(S(tp)) ≥ Tss(S̃(tp)), in which Tss(S(tp)) = (I−K)−1T(S(tp))

and Tss(S̃(tp)) = (I−K)−1T(S̃(tp)) from (3.6). K is identical for both schedule S(t)

and S̃(t) because their periods are the same. Then, we need to prove T(S(tp)) ≥

T(S̃(tp)), which are the ending temperatures of the first period.

42

Let vq and ṽq be the supply voltage of the q-th interval of schedule S(t) and

S̃(t), respectively. Let T∞q = T∞(vq) and T̃∞q = T̃∞(ṽq). We know vq = ṽq and

T∞q = T̃∞q when q ∈ {1, · · · , h}; vq ≥ ṽq and T∞q ≥ T̃∞q when q ∈ {h + 1, · · · , z},

since S(t) is a step-up schedule (Definition 3.3.1). Then, from (3.13), we have

T(S(tp))−T(S̃(tp)) =
h∑
q=1

(
eA

∑z
θ=q+1 lθ(I− eAlq)(T∞q − T̃∞q)

)
+

z∑
q=h+1

(
eA

∑z
θ=q+1 lθ(I− eAlq)(T∞q − T̃∞q)

)
= 0 +

z∑
q=h+1

(
eA

∑z
θ=q+1 lθ(I− eAlq)(T∞q − T̃∞q)

)
.

(3.16)

Since eA
∑z
θ=q+1 lθ contains all positive elements (Lemma 1 in [52]), we need to

prove (I − eAlq)(T∞q − T̃∞q) ≥ 0 when q ∈ {h + 1, · · · , z}. Since T∞q ≥ T̃∞q when

q ∈ {h+ 1, · · · , z}, the conclusion is proved (Theorem 3.2.6).

Next, we prove Tss(S̃(tp)) ≥ Tss(S′(tx)). Starting from the same temperature,

if we can prove that for each consecutive period the ending temperature of S̃(t)

is greater than the one of S′(t), we are able to claim that in the stable status

Tss(S̃(tp)) ≥ Tss(S′(tx)). To prove T(S̃(tp)) ≥ T(S′(tx)) for the first execution

period, we know in [0, tx], S̃(t) and S′(t) are the same, so T(S̃(tx)) = T(S′(tx)).

Then, within [tx, tp] the temperature of schedule S̃(t) is monotonically non-decrease

because it is a step-up schedule, so we have T(S̃(tp)) ≥ T(S̃(tx)). Then, for the

second period, the starting temperature of S̃(t) is greater than S′(t), so we have

T(S̃(tx)) ≥ T′(S(tx)). Therefore for any time within [0, tx] of the second period,

T(S̃(t)) ≥ T(S(t)). Similarly, since in [tx, tp] the temperature of schedule S̃(t) is

monotonically non-decrease, we have T(S̃(tp)) ≥ T(S̃(tx)). So on and so forth, we

prove Tss(S̃(tp)) ≥ Tss(S′(tx)).

Based on (3.4) and (3.6), we can quickly identify the peak temperature with

linear complexity. Furthermore, the peak temperature of a step-up schedule can be

43

used to bound the peak temperature of an arbitrary schedule. Before we introduce

this conclusion, we first introduce the following definition.

Definition 3.3.4. Given an arbitrary periodic schedule S(t), the corresponding

step-up schedule (denoted as Su(t)) is the periodic schedule that, for each core, the

schedule consists of the same scheduling intervals as that in S(t), but these intervals

are ordered according to a non-decreasing order of their supply voltages.

To prove that a step-up schedule can help to bound the peak temperatures, we

first introduce the following lemma.

Lemma 3.3.5. Let S(t) and S̃(t) be two periodic schedules, with the same period

tp, and all cores run with the same constant supply voltages/frequencies, except for

corei during h-th and (h + 1)-th state interval. For S(t), corei uses the mode with

voltage vL (vH , resp.) for the h-th ((h+ 1)-th, resp.) state interval and vH ≥ vL. In

S̃(t), corei exchanges the h-th and (h + 1)-th state intervals of S(t). Let Tss(S(t))

(Tss(S̃(t)), resp.) denote the temperature at t when running schedule S(t) (S̃(t)),

resp.) in the stable status. Then, we have Tss(S(tp)) ≥ Tss(S̃(tp)).

core_i
Speed

core_j

t0 Timetpth-1 th th+1

lH
lL

(a) S(t)

core_i
Speed

core_j

t0 Timetp~th-1th th+1

lH
lL

(b) S̃(t)

Figure 3.4: Lemma 3.3.5 illustration.

Proof. To prove Tss(S(tp)) = (I −K)−1T(S(tp)) is greater than Tss(S̃(tp)) = (I −

K)−1T(S̃(tp)), where K = eAtp are the same, we need to prove for the first period

44

T(S(tp)) ≥ T(S̃(tp)). Since the supply voltage in t ∈ [th+1, tp] are the same for S(t)

and S̃(t), we then need to prove T(S(th+1)) ≥ T(S̃(th+1)).

In the first period of S(t), based on (3.4), we have
T(S(th)) = eA·lLT(S(th−1)) + (I− eA·lL)T∞L

T(S(th+1)) = eA·lHT(S(th)) + (I− eA·lH)T∞H ,

(3.17)

where T∞L and T∞H are the constant temperatures when corei runs low-speed mode

vL and vH long enough, respectively, while other cores keep constant mode. Then,

combine T(S(th)) and T(S(th+1)) in (3.17), for S(t) we have

T(S(th+1)) =eA·lHeA·lLT(S(th−1)) + eA·lH (I− eAlL)T∞L

+ (I− eA·lH)T∞H .

(3.18)

Similarly, for S̃(t) we have

T(S̃(th+1)) =eA·lHeA·lLT(S(th−1)) + eA·lL(I− eAlH)T∞H

+ (I− eA·lL)T∞L .

(3.19)

Since S(t) and S̃(t) start from the same temperature and run the same schedule

in [0, th−1], we can infer T(S(th−1)) = T(S̃(th−1)). Thus, to prove T(S(th+1)) ≥

T(S̃(th+1)), we need to prove

T(S(th+1))−T(S̃(th+1)) = (I− eAlH)(I− eAlL)(T∞H −T∞L) ≥ 0 (3.20)

Since vH ≥ vL, we have T∞H −T∞L ≥ 0, and, thus T(S(th+1)) ≥ T(S̃(th+1)) (The-

orem 3.2.6). Then, since S(t) and S̃(t) run at same speeds within t ∈ [th+1, tp], we

can infer T(S(tp)) ≥ T(S̃(tp)).

Lemma 3.3.5 indicates that, as a high-speed interval moves toward the end of a

periodic schedule, it tends to increase the temperature at the end of the schedule

45

during the stable status. With the help of the lemma, we are now ready to introduce

the following theorem.

Theorem 3.3.6. Given an arbitrary periodic schedule S(t) and its corresponding

step-up schedule Su(t) with period of tp, let Tpeak(S(t)) and Tpeak(Su(t)) be the peak

temperature during the stable status. Then, Tpeak(S(t)) ≤ Tpeak(Su(t)).

Proof. This theorem can be proved based on the facts that both S(t) and Su(t)

are periodic and the multi-core thermal model presented in (3.2) is a linear time-

invariant system [122, 4], following the superposition principle: (1) The thermal

impact at one time instant is the sum of the thermal impact by each core; (2) The

thermal impact of each core is the sum of the impact by each state interval in

the schedule. With the assistance of Lemma 3.3.5, Theorem 3.3.6 can therefore be

proved.

For periodic tasks with variable execution times, we can then bound the worst-

case peak temperature by constructing the WCET-based step-up schedule, and its

peak temperature is guaranteed to be no lower than the peak temperature in any

run-time scenarios. This conclusion is stated in the following Theorem.

Theorem 3.3.7. Given a periodic schedule S(t) for a task set with fixed peri-

ods, deadlines but variable execution times, the corresponding WCET-based step-up

schedule bounds the peak temperature for S(t) at different run-time scenarios.

Proof. Consider a WCET-based step-up schedule S̃(t) and its corresponding varied

execution time schedule S(t), assume S̃(t) processing the workload for l̃h length in

the h-th interval, while S(t) processing the workload for the length of la and idle

for the length of lb (la + lb = l̃h and la, lb ≥ 0). Let T̃(t) and T(t) denote the

46

temperature at time t for S̃(t) and S(t), respectively. Then, since S̃(t) and S(t) are

the same within [0, th−1 + la], we have T̃(th−1 + la) = T(th−1 + la).

Since the processor consumes less power between [th−1 + la, th] than [th−1, th−1 +

la], we have T∞b ≤ T∞h , where T∞b denotes the stable state temperature as consuming

the same power of interval [th−1 + la, th]. Aaccording to (3.4), we have
T̃(th) = eAlbT̃(th−1 + la) + (I− eAlb)T∞h

T(th) = eAlbT(th−1 + la) + (I− eAlb)T∞b

(3.21)

Then, we have

T̃(th)−T(th) = (I− eAlb)(T∞h −T∞b) (3.22)

Since T∞h ≥ T∞b , we can infer T̃(th) ≥ T(th) (Theorem 3.2.6). Then, for the next

state interval [th, th+1], we have
T̃(th+1) = eAlh+1T̃(th) + (I− eAlh+1)T∞h+1

T(th+1) = eAlh+1T(th) + (I− eAlh+1)T∞h+1

(3.23)

and

T̃(th+1)−T(th+1) = eAlh+1(T̃(th)−T(th)) (3.24)

Since all the elements of eAlh+1 are positive (Lemma 1 in [52]), we can conclude

T̃(th+1) ≥ T(th+1). So on and so forth, for all the later consecutive intervals, the

WCET-based step-up schedule’s temperature is no lower than that of the varied

execution time schedule, so the theorem is proved.

With Theorem 3.3.2-3.3.7, we can finally bound the peak temperature when schedul-

ing a periodic task sets with variable execution times, as formulated below.

Corollary 3.3.8. Given a periodic schedule S(t), if the corresponding WCET-based

step-up schedule Su(t) satisfies the Tmax constraint, then, S(t) must satisfy the Tmax

constraint, when tasks do not take their worst-case execution time.

47

In other words, a feasible periodic schedule—with regard to deadline constraints—

is also thermally feasible if its corresponding WCET-based step-up schedule can

satisfy the peak temperature constraint.

3.4 Experimental Results

In this section, we validate a series of theorems and simulate the characteristics of

the proposed step-up schedules.

The proposed algorithm is tested on hypothetical multi-core configurations of

Alpha 21264 processors, with topologies of 2 × 1, 3 × 1, 3 × 2 and 3 × 3 layout, of

4mm×4mm core size. The processing cores consist of several conductive layers, e.g.

die layer, heat spreader, heat sink and heat-to-air interface, etc. Since we study the

system-level temperature-related problems, we, therefore, simplify the floor-plan to

the core-level. In particular, when calculating the temperature, the power of each

core in the simplified floor-plan is equal to the sum of the power of all the blocks of

the original Alpha 21264 floor-plan that is constrained by this core. The thermal-

related parameters, such as thermal capacitance and resistance are abstracted from

HotSpot-5.02 [131] at 65nm technology node. The power consumption of each core

is computed by the models shown in (2.1) and the power parameters are abstracted

from the McPAT simulator [82]. We assumed that the available supply voltages

for each core are in the range of [0.6V, 1.3V] with a 0.05V step size. The ambient

temperature was set to be Tamb = 35 ◦C, unless otherwise specified.

3.4.1 Properties of Step-Up Schedules

By randomly selecting periods and creating non-decreasing speed levels within one

period, we generate a large set of random step-up schedules and collect the temper-

48

Time(S)
0

Sp
ee
d/
Vo

lta
ge core_1

core_2

core_3

0.17

0.2
0.55

0.68
1.0

0.490.95V 1.05V
1.15V

1.3V

0.65V0.6V

0.85V
0.9V

(a)

0 0.2 0.4 0.6 0.8 145

50

55

60

65

70

75

Time (S)
Te

m
pe

ra
tu

re
(C

)

core 1
core 2
core 3

(b)

0 1 2 3 4 530

40

50

60

70

80

Time (S)

Te
m

pe
ra

tu
re

(C
)

core 1
core 2
core 3

(c)

Figure 3.5: (a) Speed schedule on a 3-core platform. (b) Temperature trace in the
stable status. (c) Temperature trace starting from Tamb = 35◦C.

49

core_N

t0…

Speed

Time

xi

tp

core_1

core_i
Si,L
Si,Hli,H

li,L -xi

…0

(a)

0
1

2
3

4
5

6

0
1

2
3

4
5

6
70

75

80

85

x2x3

Student Version of MATLAB

HighestT_overall_peak=84.1299 x2 = 3.00 x3 = 3.00

LowestT_overall_peak =71.2224 x2 = 0.60 x3 = 4.20

hyperperiod = 6
R_H_1 = 0.50
R_H_2 = 0.50
R_H_3 = 0.50
H1 = 15
L1 = 1
H2 = 15
L2 = 1
H3 = 15
L3 = 1

x2 (S)x3 (S)

Temperature(C)

0 11 0

3 3
5

5
70

75

80

85

(b) case 1

0
1

2
3

4
5

6

0
1

2
3

4
5

6
70

72

74

76

78

80

82

84

x2(s)x3(s)

Student Version of MATLAB

HighestT_overall_peak=83.4173 x2 = 4.80 x3 = 1.80

LowestT_overall_peak =71.0797 x2 = 5.40 x3 = 0.30

hyperperiod = 6
R_H_1 = 0.50
R_H_2 = 0.20
R_H_3 = 0.70
H1 = 15
L1 = 1
H2 = 15
L2 = 1
H3 = 15
L3 = 1

84

78

70

0 1
3

5

1
3

5

x2(s)x3(s)

Temperature(C)

(c) case 2

0
1

2
3

4
5

6

0
1

2
3

4
5

6
64

65

66

67

68

69

70

x2(s)x3(s)

Student Version of MATLAB

HighestT_overall_peak=69.0676

x2 = 4.80

x3 = 1.80

LowestT_overall_peak =64.7403

x2 = 3.20

x3 = 5.00

hyperperiod = 6
R_H_1 = 0.50
R_H_2 = 0.20
R_H_3 = 0.70
H1 = 5
L1 = 1
H2 = 12
L2 = 5
H3 = 15
L3 = 7

70

67

64

0 1
3

5

1
3

5

Temperature(C)

x3(s) x2(s)

(d) case 3

Figure 3.6: (a) An N-core schedule with shifting phase. (b,c,d) Peak temperature
changes differently according to the phase (xi) with settings in Table 3.3.

ature traces using HotSpot. Fig. 3.5(a) shows a sample step-up schedule on a 3-core

platform. The period of the schedule is set to be 1 second and each core has up to

3 different intervals. As we can see from Fig. 3.5(c) and 3.5(b), when starting from

the ambient temperature, the temperature of each core monotonically increases and

reaches its peak value at the end of the period, which conforms to Theorem 3.3.3.

3.4.2 Bounding Peak Temperature using Step-Up Schedules

Note that, in our approach, we use the corresponding step-up schedule to bound the

peak temperature of a schedule. The question is how tight the peak temperature

50

Table 3.3: Different settings for testing peak temperature vari-
ations by different phases (tp = 6s) on a 3-core platform.

Case coreID li,H(s) Si,H Si,L Tmaxpeak Tminpeak(
◦C)

case 1
core 1 3.0 1.3 0.6

84.1299 71.2224core 2 3.0 1.3 0.6
core 3 3.0 1.3 0.6

case 2
core 1 3.0 1.3 0.6

83.4173 71.0797core 2 1.2 1.3 0.6
core 3 4.2 1.3 0.6

case 3
core 1 3.0 0.8 0.6

69.0676 64.7403core 2 1.2 1.15 0.8
core 3 4.2 1.3 0.9

* The processing speed Si,H and Si,L are denoted by their corresponding supply

voltages.

bound can be, since an overly pessimistic bound can compromise the throughput

maximization goal. We use experiments to study the potential impacts by comparing

the peak temperature of a step-up schedule with those from different non-step-up

schedules.

In our experiment, we randomly constructed a large number of test cases for

schedules on a 3-core platform with the settings shown in Table 3.3. We con-

structed the test cases such that they have different initial starting times for the

high/low-speed intervals (which we called phases), as shown in Fig. 3.6(a). Specif-

ically, we let core1’s x1 be fixed at the length of its low-voltage mode, but vary

x2 of core2 and x3 of core3 by a 0.1 second step size from 0 to the lengths of

their low-voltage intervals. In the last column of Table 3.3, Tmaxpeak and Tminpeak de-

note the maximum/minimum peak temperature among different x2 and x3 selec-

tions, respectively. Fig. 3.6(b), 3.6(c), 3.6(d) also show the peak temperature vari-

ations of different x2 and x3 selections. We can observe that in Fig. 3.6, due to

the variation of the high/low-speed ratios and speed levels, the peak temperature

changes in different patterns and the temperature differences can be significant, e.g.

51

Tmaxpeak − Tminpeak = 12.9075◦C in case 1, which takes 26.27% of the temperature mar-

gin between Tamb and Tmaxpeak . This difference also varies with the hyperperiod of

the schedule. Table 4.2 shows the maximum possible peak temperature differences

when the time scaling is applied to the schedule. As we can see from Table 3.4, as

tp decrease with out change the running mode within each interval, the hyperperiod

of the schedule decreases, and the maximum possible peak temperature differences

decrease significantly. Note that, when tp = 0.5s, the maximum difference is only

1.8314◦C. This shows that using step-up schedules to bound the peak temperature,

coupled with the m-Oscillating scheduling scheme in our approach, is not only highly

efficient, but also very effective.

Table 3.4: Peak temperature variations (in ◦C) by different m for case 1 of Table 3.3.
tp 6s 2s 1s 0.5s
Tmaxpeak 84.1299 80.9767 73.8299 63.2497
Tminpeak 71.2224 69.2141 67.8739 61.4183

3.5 Summary

In this chapter, based on the well-known multi-core RC-thermal model, we ana-

lytically prove a series of fundamental and provable principles for thermal model,

peak temperature identification and bounding methods, which are key to thermal-

constrained computer system design. These conclusions emphasize thermal guar-

antees and they are general enough to be applied on 2D, 3D multi-core platforms and

other linear-time-invariant (LTI) systems that may be of interest from a temperature-

aware standpoint.

52

CHAPTER 4

PEAK TEMPERATURE MINIMIZATION AND THROUGHPUT

MAXIMIZATION ON MULTI-CORE PLATFORMS

In the previous chapter, we introduced the well-known RC-thermal model on multi-

core platform, and studied the a series of fundamental principles based on the charac-

teristics of the system matrix. Then, we proved a WCET-based “step-up schedule”

can effectively bound the peak temperature on any arbitrary case, which provide

deterministic guarantee of thermal constraints. Based on these thermal-aware de-

sign guidelines, in this chapter, we investigate how to apply real-time scheduling

techniques to minimize the peak temperature and, therefore, maximize the system

throughput under a temperature threshold on multi-core processors.

The rest of this chapter is organized as follows. Section 4.1 discusses the related

work. Section 4.2 utilizes a searching algorithm for multi-core throughput maxi-

mization. Section 4.2.2 formally proves a serious of peak temperature minimization

on multi-core platforms. Section 4.3 presents an M-Oscillating schedule with non-

negligible overhead to maximize the system throughput. Experimental results are

presented in Section 4.4, and Section 4.5 concludes this chapter.

4.1 Related Work

Since temperature closely relates to power consumption, power metrics are com-

monly used as temperature control indexes. Some studies maximize the performance

under a power cap, such as [151], but cannot guarantee the temperature constraint.

To this end, thermal safe power (TSP) is proposed as a novel power budget in-

dex for a safer and higher throughput under a peak temperature constraint than

thermal design power (TDP) [106]. Later, Khdr et al. [74] transform the thermal

53

constraint to maximally allowed power density, by which the system performance can

be maximized without thermal violation on tiled heterogeneous multi-core proces-

sors. However, due to the non-linear correlations between power and temperature

and the possible occurrence of spatial and temporal power/thermal unbalancing,

power-indexed thermal management is overly pessimistic for multi-core processors.

To mitigate the thermal crisis, some packaging-aware thermal control method-

ologies have been explored, such as building heat sinks, heat spreaders, cooling fans

or other advanced cooling mechanisms (e.g. embedded micro-channel liquid cooling

on 3D processors or using phase-changing cooling materials). However, designing

such a heat dissipation package is uneconomical if not infeasible [131], and it is

unsuitable for hand-held devices [119].

Alternatively, operating system level mechanisms, e.g. dynamic thermal man-

agement (DTM), is exploited by adjusting the processing speeds using dynamic

voltage/frequency scaling (DVFS) or turning off the unused cores using dynamic

power management (DPM). For example, “hot-and-cold” job swapping [115], the

feedback control scheme [151], and other techniques such as those in [119, 111, 126]

belong to this category. Based on different design stages, the proactive approaches,

such as [126], develop their solutions during the design time, which can tolerate a

higher computational overhead and use more accurate power or thermal models. On

the contrary, the reactive approaches, such as [74, 119, 111], make decisions online.

Although online approaches can be flexible and adaptive, the results are often de-

graded or cannot guarantee the given thermal constraints due to large uncertainty

of program execution and the simplified models adopted for cost reason.

In this chapter, we develop a proactive DTM scheme to optimize the throughput

while ensuring the peak temperature constraint. Different from existing work, such

as sprinting the speed to boost a transient performance [114, 40], our work focuses

54

on the periodic schedules that can deliver a steady and sustainable performance in

the stable status. There are a few papers published [101, 56, 71, 145, 18] with re-

search closely related to our work. Under peak temperature constraints, Mutapcic et

al. [101] applied a convex optimization method to solve the throughput maximiza-

tion problem. However, there exist two problems with this approach. First, this

work assumed that the working frequency can be instantaneously and continuously

varied, which may not be realistic in practice. Second, the heat transfer among dif-

ferent processing units has been ignored, which may render a suboptimistic solution

and violate the temperature constraint when it is applied. Hanumaiah et al. [56]

solved a multi-core task-mapping problem with speed control on different cores to

minimize the latest completion time. However, this work simply assumed the peak

temperature always occurred at a scheduling point (the time instant when at least

one core changes its running mode), which may not always be the case [124, 104].

Other approaches are also proposed, e.g. machine learning approach in [71], integer

linear programming approach (ILP) in [145] or analytical study in [18]. However,

these works either ignore temperature dynamics, e.g. [71, 18], or the computational

overhead does not scale well with the problem size, e.g. [145].

In this chapter, we extend the concept of the “m-Oscillating schedule,” originally

defined for single-core schedule [63], to multi-core platforms, to maximize computing

performance without violating the peak temperature constraint.

Based on the system and thermal models presented in Chapter 3, the problem

to solve in this chapter can be formulated as follows.

Problem 4.1.1. Given a multi-core platform N and its peak temperature threshold

Tmax, set a running mode to each core and repeat the settings periodically to maxi-

mize the chip-wide throughput with the peak temperature below Tmax all the time.

55

4.2 Peak Temperature Minimization and Throughput Max-

imization

Before presenting our approach, we first show a motivation example. The studies

of [101, 56] solved the multi-core throughput maximization problem by assuming

the speed of each core can be continuously and instantaneously varied, which is not

always possible in practice. In our research, we adopt a more realistic model that

each processor features discrete running modes (supply voltage/frequency).

Given the existing work, an intuition is to round down the speed to the available

discrete one (as an extension of Section VI-D in [56]) to maintain the peak tem-

perature constraint. We call this approach as the lower neighboring speed (LNS)

method. This approach can guarantee the peak temperature constraint since if the

running mode is not higher than the speed profile that leads to Tmax, the temper-

ature will never exceed Tmax (Theorem 9 and Definition 3 in [52]). However, the

results might become overly pessimistic when the available speed levels are limited.

To improve the results, we can exhaustively search all the speed combinations on

different cores that can maximize the performance without exceeding the temper-

ature threshold. We call this approach the exhaustive search (EXS), as shown in

Algorithm 1.

Algorithm 1 assumes each core runs at one unique discrete mode and, thus, the

temperature eventually reaches the constant value T∞. However, its complexity

increases exponentially with the problem size as O(size(f)N), where size(f) denotes

the total number of discrete speed levels. Moreover, since each core in LNS and

EXS can only execute one single speed, the temperature “headroom” cannot be

filled by raising the speed of any core to the next higher level due to the possible

56

Algorithm 1 Exhaustive Search Method (EXS).

1: Input: multi-core platform N = {corei|i = 1 · · ·N} and Tmax
2: Output: THRmax; fffoptimal

3: fff = [f1, · · · , fN] and THRmax = 0;
4: for f1 = flowest to fhighest do
5: · · ·
6: for fN = flowest to fhighest do
7: if (max(T∞) ≤ Tmax)&&(sum(fff) ≥ THRmax) then
8: THRmax ← sum(fff);
9: fffoptimal = fff ;

10: end if
11: end for
12: · · ·
13: end for
14: return THRmax and fffoptimal

violation of Tmax. Is it possible to use more than one speed on each core to achieve

a better performance with temperatures staying below Tmax?

Table 4.1: Performance of different approaches

Cores
Continuous
speed (V)

Discrete speed schedule settings (0.6V:1.3V)
LNS EXS tp = 20mstp = 20mstp = 20ms 10ms10ms10ms 5ms5ms5ms

core 1 1.2085 1: 0 1: 0 0.83: 0.17 0.77: 0.23 0.73: 0.27
core 2 1.1748 1: 0 1: 0 0.18: 0.82 0.18: 0.82 0.18: 0.82
core 3 1.2085 1: 0 0: 1 0.83: 0.17 0.77: 0.23 0.73: 0.27

THR 1.1972 0.6 0.83 0.87 0.90 0.92

* Assume discrete speeds with supply-voltage of 0.6V and 1.3V
are available. The settings for continuous speed show the supply
voltage for each core. The settings with two available discrete
speed levels show the ratio of interval lengths when these two
modes (0.6V and 1.3V) are applied to each core.

Consider a 3-core processor with Tmax = 65◦C, whose power and thermal models

are further detailed in Chapter 3. We can observe from Table 4.1 that when contin-

uous speeds are available, the single-speed performance (short for Perf.) can be as

high as 1.1972 in the second column. In practical scenarios, if only discrete speeds

are available, e.g. speeds with supply voltages of 0.6V and 1.3V, LNS and EXS

methods exhibit pessimistic performances as 0.6 and 0.83, respectively. Alterna-

57

tively, if we use two speeds interchangeably as shown in column 5 to 7 in Table 4.1

and Fig. 4.1, it utilizes the temperature “headroom” more efficiently to improve the

performance. In addition, as the period of two-speed schedules become smaller, i.e.

when tp changes from 20ms to 5ms in Table 4.1, the overall performance improves.

LNSContinuous	variable
single-speed	schedule

Tmax

Two-speed	
Schedule

Temperature

Time

Time

Speed

0

(S)

(S)

(C)

Figure 4.1: Illustration of temperature traces of different approaches.

4.2.1 Choose Two Neighboring Running Modes

Theorem 3.3.6 can be employed to bound the peak temperature for arbitrary periodic

multi-core schedules, which helps to ensure that the peak temperature constraint

is not violated. To maximize the performance without exceeding the given peak

temperature constraint, it is desirable that a periodic schedule can lead to the peak

temperature as low as possible while maintaining the same throughput. Specifically,

we have the following theorem.

58

t0 tpth-1 th+1
… …

ve
core_i

Time

Speed

th

vH

vL

x 1-x

Figure 4.2: Illustration for Theorem 4.2.1.

Theorem 4.2.1. Let Su1(t) and Su2(t) be two periodic step-up schedules with period

tp, that are exactly the same except for corei. For Su1(t), corei uses a constant mode

with voltage ve throughout the period, but for Su2(t), corei uses the mode with voltage

vL for lL seconds followed by vH for lH seconds (lL + lH = tp) such that

(lL + lH) · ve = lL · vL + lH · vH . (4.1)

Let Tpeak(Su1(t)) denote the peak temperature when running schedule Su1(t) periodi-

cally. Then, we have Tpeak(Su1(t)) ≤ Tpeak(Su2(t)).

Proof. [Part 1] According to Theorem 3.3.3, we have Tpeak(Su1(tp)) = max
(
Tss(Su1(tp))

)
and Tpeak(Su2(tp)) = max

(
Tss(Su2(tp))

)
. Thus, we want to prove Tss(Su1(tp)) ≤

Tss(Su2(tp)). Assume the schedule starts from T0 = T(0) = 0, from (3.6), we have
Tss(Su1(tp)) = (I−K)−1T(Su1(tp))

Tss(Su2(tp)) = (I−K)−1T(Su2(tp)),

(4.2)

where K = eAtp . Since (I−K)−1 contains all positive elements [109], we only need

to prove in the first period T(Su1(tp)) ≤ T(Su2(tp)). Since Su1(t) and Su2(t) are com-

pletely the same within [t0, th−1] and [th+1, tp], we only need to prove T(Su1(th+1)) ≤

T(Su2(th+1)).

Using the superposition principle, without loss of generality, we assume all cores,

except for corei, have no power consumptions. To ease the presentation, let th+1 −

59

th−1 = 1, x = th − th−1 and 1 − x = th+1 − th (0 ≤ x ≤ 1), as shown in Fig. 4.2.

From (3.4), then, we have

T(Su1(th+1)) =eAT(Su1(th−1)) + (I− eA)T∞e

T(Su2(th+1)) =eAT(Su2(th−1)) + eA(1−x)(I− eAx)T∞L

+ (I− eA(1−x))T∞H

=eAT(Su2(th−1)) + (eA(1−x) − eA)T∞L

+ (I− eA(1−x))T∞H ,

(4.3)

where T∞e , T∞L and T∞H are the constant temperature when corei runs in the mode

with ve, vL and vH long enough while all the other cores keep idle, respectively. Since

Su1(t) and Su2(t) are completely the same with [t0, th−1], we have T(Su1(th−1)) =

T(Su2(th−1)). Then, compare T(Su2(th+1)) to T(Su1(th+1)), we have

T(Su2(th+1))−T(Su1(th+1))

=(I− eA) ·
[
(I− eA)−1(eA(1−x) − eA)T∞L

+ (I− eA)−1(I− eA(1−x))T∞H −T∞e
]

=(I− eA) · [ρρρT∞L + (I− ρρρ)T∞H −T∞e],

(4.4)

where ρρρ = (I− eA)−1(eA(1−x) − eA) and I− ρρρ = (I− eA)−1(I− eA(1−x)). According

to (Lemma 3 in [52]), to prove T(Su2(th+1)) − T(Su1(th+1)) ≥ 0, we need to prove

[ρρρT∞L + (I− ρρρ)T∞H −T∞e] ≥ 0.

[Part 2] Consider an intermediate function xT∞L + (1−x)T∞H , we need to prove

T∞e ≤ xT∞L + (1− x)T∞H ≤ ρρρT∞L + (I− ρρρ)T∞H (4.5)

First, we prove T∞e ≤ xT∞L +(1−x)T∞H , in which T∞(v) = −A−1C−1(Ψ(v)+δδδ).

Matrix −A−1 is constant, which contains all positive elements, because in practical

scenarios, without changing any factor, increasing the power (voltage) of one node

cannot decrease the temperature of other nodes. Moreover, since Ψ(v) = [ψ(vi)]N×1

60

and for each element ψi(vi) = α+γv3
i is a convex function (α and γ are constants for

a fixed vi), T∞(v) is a convex function [14]. Therefore, given the condition in (4.1),

we have v3
e ≤ x · v3

L + (1− x) · v3
H and T∞e ≤ x ·T∞L + (1− x) ·T∞H .

Second, we need to prove xT∞L + (1− x)T∞H ≤ ρρρT∞L + (I− ρρρ)T∞H , which can be

sufficiently proved by

x · I ≥ ρρρ. (4.6)

Since A is diagonalizable and all of its eigenvalues are negative [104], we can

easily calculate its eigenvalues. Let −λi be the i-th eigenvalue of A and λi > 0, we

have A = WDW−1, where D = diag{−λ1, · · · ,−λN} and W = [~w1, · · · , ~wN]. ~wi is

the independent eigenvectors associated with−λi. The matrix exponential of eAl can

be diagonalized as eAl =
∑∞

h=0
lh(WDW−1)h

h!
= W

(∑∞
h=0

lhDh

h!

)
W−1 = WeDlW−1,

where eDl = diag{e−λ1l, · · · , e−λN l} and e−λil is the i-th eigenvalue of eAl. Then, ρρρ

can be diagonalized as

ρρρ = (I− eA)−1(eA(1−x) − eA) = Wdiag{e
−λi(1−x) − e−λi

1− e−λi
}W−1 (4.7)

To prove (4.6), that is to prove

x · I ≥Wdiag{e
−λi(1−x) − e−λi

1− e−λi
}W−1

=⇒W−1x ·W ≥W−1Wdiag{e
−λi(1−x) − e−λi

1− e−λi
}W−1W

=⇒x · I ≥ diag{e
−λi(1−x) − e−λi

1− e−λi
}

=⇒x ≥ e−λi(1−x) − e−λi
1− e−λi

=⇒1− e−λi(1−x)

1− e−λi
− (1− x) ≥ 0.

(4.8)

Consider function Υ($) = (1 − e−λi$)(1 − e−λi)−1 − $, where 0 ≤ $ ≤ 1 and

λi ≥ 0. Function Υ($) is a concave function because Υ′′($) ≤ 0. In addition,

function Υ($) passes two points, i.e. (0, 0) and (1, 0) when Υ(0) = 0 and Υ(1) = 0.

Therefore, we have Υ($) ≥ 0 when 0 ≤ $ ≤ 1.

61

Su3 (vhi ,v’(h+1)i)

t0 tpth-1 th+1
… …th1

Su2(v’hi ,v’(h+1)i)

th2

Su1(vhi ,v(h+1)i)

core_i

Time

Speed

th3
Figure 4.3: Illustration for Theorem 4.2.2.

Theorem 4.2.1 indicates that using a constant speed is more desirable and can

result in a lower peak temperature than using two different speeds in a step-up

schedule. Furthermore, we show that if we have to use two different speeds, then

using two neighboring speeds is a better choice for lowing the peak temperature for

a step-up schedule, as stated in the following theorem.

Theorem 4.2.2. Let Su1(t) and Su2(t) be two periodic step-up schedules that are

exactly the same except for corei during interval [th−1, th+1]. Assume that in Su1(t),

corei uses two modes with voltages vi,h and vi,(h+1), while in Su2(t), corei uses v′i,h

and v′i,(h+1) such that (i) corei completes the same workload in both Su1(t) and Su2(t);

(ii) v′i,h ≤ vi,h ≤ vi,(h+1) ≤ v′i,(h+1). Then we have Tpeak(Su1(t)) ≤ Tpeak(Su2(t)).

Proof. As shown in Fig. 4.3, within interval [th−1, th+1] on corei we define a third

same throughput schedules Su3(vi,h, v
′
i,(h+1)) and let the hth interval of Su1(t), Su2(t)

and Su3(t) change their modes at th1, th2 and th3, respectively. Then, we have th1 ≤

th2 ≤ th3. Note that Su1(t) and Su3(t) are of the same modes within interval [0, th1];

however, Su3(t) uses two modes to complete the tasks within [th1, th+1], while Su1(t)

use a constant mode. From Theorem 4.2.1, we can conclude that T(Su3(th+1)) ≥

T(Su1(th+1)). Then, in the following intervals, the temperature of Su3(t) will always

be higher than Su1(t). Thus, we can conclude Tpeak(Su3(t)) ≥ Tpeak(Su1(t)). Sim-

62

ilar method can also be applied to prove Tpeak(Su2(t)) ≥ Tpeak(Su3(t)). Therefore,

Tpeak(Su2(t)) ≥ Tpeak(Su1(t)).

Theorem 4.2.2 indicates that choosing two neighboring modes can achieve higher

computational performances if the single mode with a constant supply voltage is not

available when constructing a multi-core schedule.

4.2.2 M-Oscillating Schedule on Multi-Core Platforms

With the method to bound the peak temperature for a periodic schedule and also

with the guidelines to choose the running modes in such a schedule as introduced

above, our next decision to make is to determine the length of the period for the

periodic schedule. Recall that the motivation example seems to indicate that for

a periodic two-speed step-up schedule, the smaller the period is, the higher the

throughputs it can achieve.

The m-Oscillating scheduling method, as introduced in [63] for single processor

platform, is the scheduling method that frequently changes processor running modes

between high and low voltage settings, while keeping the same workload within the

same period to reduce the peak temperature. In what follows, we show that simply

applying m-Oscillating scheduling method for each individual core on a multicore

platform cannot always reduce the peak temperature.

Under the similar platform settings as shown in Section 3.3.2, we set up a sched-

ule on a 3-core platform with the period of 2.4s; each core runs at equal times in

two processing modes, with high-voltage vH = 1.3V and low-voltage vL = 0.6V , as

shown in Fig. 4.4(a). Fig. 4.4(c) shows the stable status temperature trace within

one period, with a peak temperature of 70.83◦C. Next, we let core 2 double its

oscillating frequency and core 1 and core 3 keep the same schedule, as shown in

63

Fig. 4.4(b). In the stable status, as shown in Fig. 4.4(d), the peak temperature be-

comes 79.86◦C, which is higher than the previous one. This example clearly shows

…Core1

Core2

1.20 2.4

…

…

…

Speed

Time(s)

…

Core3

…

(a)

…Core1

Core2

1.20 2.4

…

…

…

Speed

Time(s)

…

Core3

…

0.6 1.8

(b)

0 1 2 340

60

80

Time (s)

Te
m

pe
ra

tu
re

 (C
)

core 1 core 2 core 3

Student Version of MATLAB

(c)

0 1 2 340

60

80

Time (s)

Te
m

pe
ra

tu
re

 (C
)

core 1 core 2 core 3

Student Version of MATLAB

(d)

Figure 4.4: (a) Core 1 and core 3 run at 1.3V within [0, 1.2]s and 0.6V within
[1.2, 2.4]s; Core 2 runs at 0.6V within [0, 1.2]s and 1.3V within [1.2, 2.4]s. (b) Core 2
doubles its oscillating frequency from schedule in Fig.4.4(a). (c) Stable status tem-
perature trace for schedule in Fig. 4.4(a). (d) Stable status temperature trace for
schedule in Fig. 4.4(b).

that the frequency oscillation scheme performed only on one core (asynchronized

oscillation) does not necessarily reduce the peak temperature in a multi-core plat-

form.

When all the cores oscillates their schedules in Figure 4.4(a) under a synchronized

manner, as defined in Definition 4.2.3, the peak temperature monotonically decreases

with the increase of the scaling factor m, as shown in Figure 4.5. In regard to this,

we formally define the m-Oscillating schedule for a multi-core platform as follows.

64

68.5
69
69.5
70
70.5
71
71.5

0 1 2 3

Temperature (C)

m

Figure 4.5: The peak temperature monotonically decreases with m.

Definition 4.2.3. Let S(t) be a periodic schedule on a multi-core platform. The

corresponding m-Oscillating schedule, denoted as S(m, t), is the one that scales

down the length of each state interval by m times without changing its running

modes.

tptp/m 2tp/m

…
tp

core_i

core_ j
core_i
Speed

core_ j
m

Time

Figure 4.6: Illustration of m-Oscillating schedule.

Figure 4.6 shows that S(m, t) is derived from S(t) by scaling down each interval

length by m times without changing the running modes.

65

For an m-Oscillating schedule with different m, the total dynamic energy con-

sumption remains constant and the average temperatures within one period of m-

Oscillating schedules do not change, as formulated in Lemma 4.2.4.

Lemma 4.2.4. Let Tavg(S(t)) and Tavg(S(m, t)) denote the average temperature

vector within one period of S(t) and S(m, t), respectively. Then, Tavg(S(t)) =

Tavg(S(m, t)).

Proof. Let S(t) = {Iq|q = 1 · · · z} be an arbitrary schedule contains z state intervals

with period tp and S(m, t) be the corresponding m-Oscillating schedule. According

to [38], the average temperature of a state interval Iq = [tq−1, tq] is

Tavg(Iq) =
1

lq

∫ tq

tq−1

T(t)dt

=− 1

lq
A−1[lqC

−1(Ψq + δδδ)− (T(tq)−T(tq−1))]

(4.9)

where lq = tq− tq−1. Thus, the average temperature within one period of S(t) in the

stable status is

Tavg(S(t)) =
1

tp

z∑
q=1

∫ tq

tq−1

T(t)dt

=− 1

tp

z∑
q=1

A−1[lqC
−1(Ψq + δδδ)− (T(tq)−T(tq−1))]

=− 1

tp
A−1[

z∑
q=1

lqC
−1(Ψq + δδδ)−

z∑
q=1

(T(tq)−T(tq−1))]

(4.10)

Since the former interval’s ending temperature equals to the next interval’s starting

temperature, and the starting temperature equals to its ending temperature in the

thermal stable status for one period. Thus, we have
∑z

q=1(T(tq)−T(tq−1)) = 0, so

Tavg(S(t)) = − 1
tp

A−1C−1
∑z

q=1 lq(Ψq + δδδ) = 1
tp

∑z
q=1 lq ∗T∞q .

66

In addition, the average temperature for schedule S(m, t) can be expressed as

Tavg(S(m, t)) =
1

tp/m

z∑
q=1

∫ tq/m

tq−1/m
T(t)dt

= − 1

tp/m
A−1C−1

z∑
q=1

lq
m

(Ψq + δδδ)

= − 1

tp
A−1C−1

z∑
q=1

lq(Ψq + δδδ) =
1

tp

z∑
q=1

lq ∗T∞q

(4.11)

Thus, Tavg(S(t)) = Tavg(S(m, t)) and m-Oscillating does not change the average

temperature in the stable status.

With the help of Lemma 4.2.4, we can readily prove that as m increases, the

peak temperature of an m-Oscillating schedule monotonically decreases.

Theorem 4.2.5. Let S(t) = {Iq : q = 1 · · · z} be a step-up schedule contains

z state intervals and S(m, t) be the corresponding m-Oscillating schedule. Then

Tpeak(S(m, t)) ≥ Tpeak(S(m+ 1, t)).

Tavg

Temperature

Time

Tpeak(S(m+1,t))
Tpeak(S(m,t))

Figure 4.7: Illustration for Theorem 4.2.5 Proof.

Proof. Consider an arbitrary schedule S(t) with period tp. According to Defini-

tion 4.2.3, S(m, t) is the corresponding m-oscillating schedule with period tp/m. For

each time point t/m of S(m, t), there exists a corresponding t/(m + 1) in schedule

S(m+ 1, t).

67

Let Tm(tp/m) and Tss
m(tp/m) be the ending temperature of S(m, t) in the first

period and in the stable status, respectively. Assume the schedule starts at temper-

ature T0 = 0. Then, according to (3.5), for the first period of S(m, t), we have

Tm(tp/m) =

z∑
q=1

eA$/m(I− eAlq/m)T∞q , (4.12)

where $ =
∑z

θ=q+1 lθ < tp. According to (3.6), in the stable status of S(m, t), we

have

Tss
m(tp/m) = (I− eAtp/m)−1Tm(tp/m)

= (I− eAtp/m)−1
z∑
q=1

eA$/m(I− eAlq/m)T∞q

=

z∑
q=1

Ṫss
m(tp/m),

(4.13)

where Ṫss
m(tp/m) = (I− eAtp/m)−1eA$/m(I− eAlq/m)T∞q .

To prove the peak temperature of S(m, t) is higher than the peak temperature

of S(m + 1, t), since the average temperature remains the same for different m

value (Lemma 4.2.4), it is to prove the temperature varying range for S(m, t) is no

smaller than S(m+ 1, t) in the stable status as shown in Fig. 4.7. Specifically, there

are two cases as: (1) Tss
m(t/m) ≥ Tss

m+1(t/(m+1)) ≥ Tavg(S(t)), and (2) Tss
m(t/m) ≤

Tss
m+1(t/(m + 1)) ≤ Tavg(S(t)), where Tavg(S(t)) = Tavg(S(m, t)) = Tavg(S(m +

1, t)) and from Lemma 4.2.4,

Tavg(S(t)) = 1/tp

z∑
q=1

lqT
∞
q =

z∑
q=1

Ṫavg(S(t)), (4.14)

where Ṫavg(S(t)) = lq/tp ·T∞q .

Essentially, it is to prove that the absolutely value of

|Tss
m(tp/m)−Tavg(S(t))| =

z∑
q=1

|Ṫss
m(tp/m)− Ṫavg(S(t))| (4.15)

monotonically decreases with m, which can be proved by showing for each q in (4.15),

|Ṫss
m(tp/m)− Ṫavg(S(t))| monotonically decreases with m.

68

Similar to the proof of Theorem 4.2.1, Ṫss
m(tp/m) and Ṫavg(S(t)) can be diago-

nalized as 
Ṫss

m(tp/m) = Wdiag{Υ1(m), · · · ,ΥN (m)}W−1T∞q ,

Ṫavg(S(t)) = lq/tp ∗W I W−1T∞q

(4.16)

in which

Υi(m) =
e−λi

$
m (1− e−λi

lq
m)

1− e−λi
tp
m

. (4.17)

To prove |Ṫss
m(tp/m) − Ṫavg(S(t))| = |Wdiag{|Υi(m) − lq/tp|}W−1T∞q | mono-

tonically decreases with m, it is to prove |Υi(m) − lq/tp| monotonically decreases

with m, in which W, W−1 and T∞q are constants.

We first prove Υi(m) monotonically decreases with m. Note that λi, $ lq and

tp are constants. Since e−λi$/m monotonically decreases with m, we then need to

prove 1−e−λilq/m
1−e−λitp/m monotonically decreases with m too.

Let F (ϕ) = 1−e−λilq/m
1−e−λitp/m = 1−e−σ1ϕ

1−e−σ2ϕ , where σ1 = λilq, σ2 = λitp and ϕ = 1/m.

To prove F (m) monotonically decrease with m, we need to prove F (ϕ) = 1−e−ϕσ1
1−e−ϕσ2

monotonically increase with ϕ, where ϕ > 0 and σ2 > σ1 > 0, which is equivalent

to prove

F ′(ϕ) =
(σ2 − σ1)e−(σ1+σ2)ϕ + σ1e

−σ1ϕ − σ2e
−σ2ϕ

(1− e−σ2ϕ)2
> 0. (4.18)

Let

F ′(ϕ)

F (ϕ)
=

σ1e
−σ1ϕ

1− e−σ1ϕ
− σ2e

−σ2ϕ

1− e−σ2ϕ
= ξ(σ1)− ξ(σ2) (4.19)

in which ξ(σ) = σe−σϕ

1−e−σϕ . Since F (ϕ) > 0, we need to prove ξ(σ) monotonically

decreases with σ, i.e. ξ′(σ) = e−σϕ(1−σϕ−e−σϕ)
(1−e−σϕ)2

< 0. Let H(ϕ) = 1 − σϕ − e−σϕ, we

can see H(0) = 0 and H ′(ϕ) = σ(−1 + e−σϕ) < 0 when ϕ > 0. Thus, we can infer

ξ′(σ) < 0.

Then, since Υi(m) monotonically decreases with m and limm→∞Υi(m) = 1, we

can infer that when m ≤ ∞, Υi(m) ≥ 1. In addition, since lq/tp ≤ 1 as defined in

69

the schedule, |Υi(m) − lq/tp| = Υi(m) − lq/tp ≥ 0 always holds. Thus, as Υi(m)

monotonically decreases with m, |Υi(m)− lq/tp| also monotonically decreases.

As m continues to grow and eventually approaches infinity, the resulting peak

temperature converges to a stable state temperature similar to that of using a sin-

gle constant speed for each core. This observation is formulated in the following

theorem.

Theorem 4.2.6. Given a step-up schedule S(t) = {Iq|q = 1, · · · , z} contains z

state intervals with period tp, let state interval Iq = [tq−1, tq] and interval length

lq = tq − tq−1. Let S(m, t) be the m-Oscillating schedule of S(t). When m → ∞,

the peak temperature converge to the temperature of that running a constant speed

profile veq = [veq,i]N×1, where veq,i = 3

√∑z
q=1

lq
tp
· v3

q,i.

Proof. Since a step-up schedule is able to bound the peak temperature for any arbi-

trary schedule (Theorem 3.3.6), we prove that the peak temperature for the step-up

schedule converges as m→∞. Based on (3.6), assume T0 = 0, we have

Tss(tp,m) = (I− eAtp/m)−1T(tp,m) (4.20)

in which T(tp,m) =
∑z

q=1 e
A
∑z
θ=q+1 lθ/m(I − eAlq/m)T∞q from (3.5). Let Θ = I −

eAtp/m. According to the L’Hospital’s Rule [76], we have

lim
m→∞

Tss(tp,m) = lim
m→∞

Θ−1T(tp,m) = lim
m→∞

(dΘ
dm

)−1dT(tp,m)

dm
(4.21)

in which

dT(tp,m)

dm
=

1

m2
A

z∑
q=1

(z∑
θ=q

lθ · eA
∑z
θ=q

lθ
m −

z∑
θ=q+1

lθ · eA
∑z
θ=q+1

lθ
m

)
T∞q

dΘ

dm
=

1

m2
Atpe

A
tp
m

(4.22)

70

Because lim
m→∞

eAlθ/m = I, we have

lim
m→∞

Tss(tp,m)

= lim
m→∞

∑z
q=1(

∑z
θ=q lθ · e

A
∑z
θ=q

lθ
m −

∑z
θ=q+1 lθ · e

A
∑z
θ=q+1

lθ
m)T∞q

tpe
A
tp
m

=

∑z
q=1(

∑z
θ=q lθ −

∑z
θ=q+1 lθ)T

∞
q

tp
=

z∑
q=1

lq
tp

T∞q

(4.23)

Thus, as m → ∞ the temperature of m-Oscillating schedules converges to the

temperature that equals the average temperature in Lemma 4.2.4.

Assume running a constant speed vector veq can reach the same temperature

profile when m→∞ in (4.23). Then, from (3.2), we can solve veq = [veq,i]N×1 as

T∞(veq) = −A−1C−1(Ψ(veq) + ηηη) =

z∑
q=1

lq
tp

T∞q

⇒−A−1C−1(Ψ(veq) + ηηη) = −A−1C−1
z∑
q=1

lq
tp

(Ψ(vq) + ηηη)

⇒Ψ(veq) =
z∑
q=1

lq
tp

Ψ(vq)

⇒α+ γv3
eq,i =

z∑
q=1

lq
tp

(α+ γv3
q,i)

⇒veq,i = 3

√√√√ z∑
q=1

lq
tp
· v3
q,i

(4.24)

Theorem 4.2.5 indicates that oscillating the processing speeds can effectively

reduce the peak temperature while completing the same throughput. Besides, the

m-Oscillating schedule also helps to improve the real-time service capability of a

schedule as formulated in the following theorem.

Theorem 4.2.7. For a periodic schedule S(t), assuming m2 ≥ m1 > 0, then the

corresponding m-oscillating schedule S(m2, t) is able to provide the service capability

that is no lower than S(m1, t).

71

0

t’p
t’i,Ht’i,L

ti,L
A’

B

service
capacity

A

bdf (Δ,ρ(A , B), l(0 , A))

bdf (Δ,ρ(A’ , B’), l(0 , A’))
guaranteed output service of S(m1, t)

guaranteed output service of S(m2,t)

B’

ti,H tp
time

Figure 4.8: Real-time calculus illustration of Theorem 4.2.7: the bounded-delay
approximation shows a higher service capacity of S(m2, t) than S(m1, t), if m2 ≥
m1 > 0.

Proof. As shown in Figure 4.8, without losing generality, S(t) is assumed to be a

two-speed schedule. Let ti,H and ti,L denotes the high-speed and low-speed length on

the i-th node within one period tp (as ti,H +ti,L = tp) of S(t), respectively. Then, the

bounded-delay function of the i-th node of S(m1, t) is bdf(∆, ρ(A,B), l(0, A)) [65],

which is defined by the slope ρ(A,B) and the bounded-delay l(0, A) (the distance

between 0 and point A) for interval length ∆. Similarly, bdf(∆, ρ(A′, B′), l(0, A′)) is

the bounded-delay function of the i-th node for S(m2, t).

To prove that S(m2, t) is able to provide the service capability no lower than

that of S(m1, t), we aim to prove l(0, A′) ≤ l(0, A) and ρ(A′, B′) ≮ ρ(A,B). Let

the slopes for the high and low-speed interval of the service output trace BG(∆) be

ρH and ρL, respectively. Then, for S(m1, t), we can express the slope factor ρ(A,B)

and delay factor l(0, A) as

ρ(A,B) =
ρLti,L/m1 + ρHti,H/m1

(ti,L + ti,H)/m1
=
ρLti,L + ρHti,H
ti,L + ti,H

(4.25)

l(0, A) =
(ρL − ρH) · ti,H/m1 · ti,L/m1

(ti,H + ti,L)/m1
=

(ρL − ρH) · ti,H · ti,L
(ti,H + ti,L)/m1

(4.26)

72

For S(m2, t), we have

ρ(A′, B′) =
ρLti,L + ρHti,H
ti,L + ti,H

(4.27)

l(0, A′) =
(ρL − ρH) · ti,H · ti,L

(ti,H + ti,L)/m2
(4.28)

It is not hard to see that ρ(A,B) = ρ(A′, B′) and since m2 ≥ m1 > 0, we have

l(0, A′) ≤ l(0, A).

Note that both Theorem 4.2.7 is established with the assumption that there is no

energy/timing overhead when switching the running mode. In practical scenarios,

the appropriate value of m needs to be judiciously selected, based on the actual

systems’ timing and energy overheads.

4.3 Throughput Maximization Using Frequency Oscillation

With the design principles and thermal characteristics presented above, we are now

ready to introduce our approach to solve the multi-core throughput maximization

problem.

The proposed approach contains three steps. First, we determine the ideal (con-

tinuously varied) speed for each core for throughput maximization under the peak

temperature constraint. Then, the corresponding two neighboring discrete speeds

are used to form a step-up schedule (Theorem 4.2.2), if the ideal speeds are not

available. Then, we develop the m-Oscillating schedule accordingly to reduce the

peak temperature (Theorem 4.2.5) with transition overhead taken into considera-

tion. Finally, we adjust the high/low-speed execution time ratio to satisfy the peak

temperature constraint. The detailed algorithm is illustrated in Algorithm 2.

As the starting point of our approach, we use a method similar to Hanumaiah

et al. [56] to find the single constant mode (with vconst) on each core to maximize

73

the throughput. Specifically, we assume the stable state temperature for each core

equals to Tmax, i.e. T∞(vconst) = [Tmax]N×1. The power consumption, therefore,

can be calculated by letting dT
dt

= 0 and T = [Tmax]N×1 in (3.2), and the optimal

voltage for each core can be calculated as vi = 3
√

(Pi − α(vi)− βTmax)/γ(vi). With

the knowledge of the single constant mode of vi defined for the ith core, the available

high-voltage vi,H and low-voltage vi,L and their execution time ratios ri,H and ri,L

that maintain the same throughput can be obtained by solving: (i) vi,H · ri,H + vi,L ·

ri,L = vi; (ii) ri,H + ri,L = 1.

Next, to construct the m-Oscillating schedule, we need to find a proper m value

to interleave the high/low-speed intervals to reduce the peak temperature (Theo-

rem 4.2.5). However, in practical scenarios, each DVFS transition stalls the program

execution for a small interval, which is unfavorable for the throughput maximiza-

tion. Assume the program execution halted τ during the DVFS transition, then,

each DVFS causes (vi,H+vi,L)τ performance loss on corei. To compensate the perfor-

mance loss, in general, we shift a small interval of δi =
(vi,H+vi,L)τ

vi,H−vi,L
from low-speed to

high-speed, as shown in Fig. 4.9(a). Meanwhile, the transition overhead introduces

an upper bound Mi = mi,max(τ), since the low-speed interval ti,L of corei should be

long enough to cover the DVFS transition. The upper bound of m is Mi = b ti,L
δi+τ
c

on corei. Since the peak temperature of a step-up schedule can be calculated with

a linear complexity, the computational cost for searching m is affordable.

As we use two running modes instead of one in the m-Oscillating schedule, it may

violate the peak temperature constraint, so it is necessary to adjust the high/low-

speed ratio to lower down the peak temperature. First, we order the cores by their

peak temperature, and the core with the highest peak temperature is selected to

reduce its temperature. Note that, due to the heat transfer among cores, reducing

the high-peed interval on any core can help to reduce its peak temperature. To find

74

the core that can most effectively reduce the peak temperature (e.g. corei), with the

minimum throughput loss, we define a metric called temperature performance trade-

off index for corei, denoted as TPTcorei . Specifically, TPTcorei(j) = ∆Ti
|vj,H−vj,L|×tunit

is the ratio of temperature reduction at corei to the throughput loss at corej when

changing the high-voltage interval to the low-voltage interval for one unit of time,

i.e. tunit, on corej. We iteratively modify the schedule for the core with the highest

TPTcorei until the temperature constraint is satisfied. The computational complex-

ity of Algorithm 2 is O(M + tp
tunit

N).

Algorithm 2 Algorithm of m-Oscillating for throughput maximization under peak
temperature constraints (AO).

1: Input: Multi-core platform N = {corei|i = 1 · · ·N};
Transition overhead parameters: τ ;
Tmax and Tamb;
Unit time: tunit

2: Output: The m-Oscillating schedule S(mopt, t) and throughput THR (equation 3.1)

3: mopt = 1;M = mmax(τ) // the largest possible value of m for a given τ
4: Set T∞(v) = [Tmax]N×1 to find the constant voltage for each core, e.g. vi for corei;
5: for 1 ≤ m ≤M do
6: Find modes (voltages) as well as their execution time ratios for each core, e.g. vi,H ,

ri,H , vi,L and ri,L for corei based on vi and τ ;
7: if (Tpeak(S(m, t)) > Tpeak(S(m+ 1, t))) then
8: mopt = m+ 1;
9: end if

10: end for
11: while (Tpeak(S(mopt, t) > Tmax) do
12: Select corei = the core with the highest peak temperature;
13: for corej ∈ N do
14: TPTcorei(j) = ∆Ti

|vj,H−vj,L|×tunit
15: end for
16: Select core k = the core with the highest TPTcorei(j);
17: Reduce vk,H interval by one tunit and increase vk,L interval by one tunit;
18: end while

Note that, in Algorithm 2, we require that each m-Oscillating schedule be a step-

up schedule. This decision is really a double-edged sword. A step-up schedule allows

us to quickly determine the highest temperature in a schedule to ensure that peak

75

temperature constraint is guaranteed. In the meantime, however, since temperature

varies with power density, the schedules that can interleave the intervals with high

and low-voltage modes, temporally and spatially, lead to peak temperature lower

than a step-up schedule. Accordingly we can design another algorithm that intends

to distribute the workload more evenly temporally, as illustrated in Algorithm 3.

Algorithm 3 Phase-Conscious Oscillating (PCO).

1: Input: Multi-core platform N = {corei|i = 1 · · ·N};
The m-Oscillating schedule SAO = S(mopt, t) from Alg. 2;
Tmax and Tamb;
Unit time: tunit;

2: Output: Phase-Conscious Oscillating SPCO and THR.

3: Initialize X = 0; // The phase vector X = [xi]N×1.
4: for all possible X = [xi] in which xi ∈ [0, tp] do
5: while ∃ Tpeak(corei) < Tmax, corei ∈ N do
6: Select core i = the core with the lowest peak temperature;
7: Compute TPTcorei(j) as Line 14 in Algorithm 2;
8: Select core k = the core with the lowest TPTcorei(j);
9: Reduce vk,L interval by one tunit and increase vk,H interval by one tunit;

10: end while
11: Repeat Line 11 to Line 18 in Algorithm 2;
12: Compute THR for current schedule;
13: end for
14: Output SPCO with the largest THR;

Specifically, Algorithm 3 iteratively constructs possible schedules that each core

has a different starting instant for the high-speed intervals (namely phase), based

on the resulted schedule from Algorithm 2. Then, for a fixed phase vector X,

to maximize the throughput under a peak temperature constraint, Algorithm 3

first chooses the core with the lowest TPT index to extend its high-speed interval

length, with the minimum overall peak temperature increment, as shown in Line 5

to Line 10. Then, to ensure the peak temperature, we have to judiciously cut off the

high-speed with the minimum throughput loss, which is the same as Line 11 to 18

in Algorithm 2. To measure the peak temperature, it requires to check each time

76

instant with step size of tunit, with the complexity of O(tp
tunit

). At last, we output

the schedule with the largest THR as the resulted SPCO. The overall complexity is

O((tp
tunit

)N · tp
tunit
· tp
tunit

N).

4.4 Experimental Results

In this section, we use experiments to test the effectiveness of the proposed M-

Oscillating methodology in peak temperature minimization and throughput maxi-

mization. The power and thermal models adopted in this experiment are the same

as Chapter 3.

4.4.1 Peak Temperature Minimization for m-Oscillating Sched-

ule

We verified Theorem 4.2.5 by using the schedule depicted in Fig. 3.5(a) as the

original schedule. Then, we adopted Definition 4.2.3 to construct the correspond-

ing m-Oscillating schedule for each m and profile the peak temperature for each

case. Table 4.2 shows that the peak temperature monotonically decreases when m

increases, exactly as predicted by Theorem 4.2.5.

Table 4.2: Peak temperature Tpeak (◦C) monotonically decreases as m
m 1 2 3 4 5 6

Tpeak 71.96 68.08 65.19 63.22 61.84 60.97

m 7 8 9 10 11 12

Tpeak 60.79 60.65 60.53 60.44 60.36 60.30

When considering the speed transition overhead as depicted in Section 4.3, we

conducted another experiment by assuming different transition overheads. As shown

in Fig. 4.9(b), Fig. 4.9(c) and Fig. 4.9(d), the transition overhead becomes smaller,

77

Time0

Original

tp

!δ
Adjusted

δ!

li,L

li,H

l’i,L
l’i,H

Speed

(a)

56

58

60

62

64

66

0 5 10 15 20

Temperature(C)

m

(b) τ = 5× 10−4s

56

56.1

56.2

56.3

56.4

56.5

0 10 20 30 40 50

Temperature (C)

m
(c) τ = 5× 10−5s

55.8
55.85
55.9
55.95
56

56.05
56.1
56.15

0 10 20 30 40

Temperature (C)

mm (X5)
(d) τ = 5× 10−6s

Figure 4.9: (a) Speed adjustment on corei when consider speed transition over-
head. (b)(c)(d) Peak temperature varies differently when transition overhead τs are
different.

and the best m value to minimize the peak temperature is 5, 12 and 51, respectively.

In general, a small transition overhead leads to a lower maximal temperature, be-

cause a small transition overhead results in a larger upper bound of m, by which it

is able to fully exploit the speed transition for peak temperature minimization, and

vice versa.

78

0

0.5

1

1.5

2 3 4 5

Performance

Speed Levels

(a) 2-core

0

0.5

1

1.5

2 3 4 5

Performance

Speed Levels

(b) 3-core

0

0.5

1

1.5

2 3 4 5

LNS EXS AO PCO
Speed Levels

Performance

(c) 6-core

0

0.5

1

2 3 4 5

LNS EXS AO PCO

Performance

Speed Levels

(d) 9-core

Figure 4.10: Performance comparisons with different numbers of cores and voltage
levels, when Tmax = 55 ◦C.

79

0

0.5

1

1.5

50 55 60 65

Performance

Temperature (C)

(a) 2-core

0
0.2
0.4
0.6
0.8
1

50 55 60 65

Performance

Temperature (C)
(b) 3-core

0
0.2
0.4
0.6
0.8
1

50 55 60 65

LNS EXS AO PCO

Performance

Temperature (C)

(c) 6-core

0
0.2
0.4
0.6
0.8
1

50 55 60 65

LNS EXS AO PCO
Temperature (C)

Performance

(d) 9-core

Figure 4.11: Performance comparisons with different numbers of cores and different
Tmax on 2 speed-level platforms.

80

Table 4.3: Different numbers of modes with different voltages.
Case Voltage Level Selection

2 levels {0.6V, 1.3V }
3 levels {0.6V, 0.8V, 1.3V }
4 levels {0.6V, 0.8V, 1.0V, 1.3V }
5 levels {0.6V, 0.8V, 1.0V, 1.2V, 1.3V }

4.4.2 Performance Comparison of Different Approaches and

Speed Levels

Next, we studied the performance of Algorithm 2. The experiment was conducted

on different multi-core configurations. The RC-model was abstracted by matrix

modeling method [145] from HotSpot-5.02 [131] and the transition overhead was set

as 5us. The maximum allowed temperature is Tmax = 55 ◦C.

There are four approaches in this experiment: (1) Lower neighboring speed

method (LNS) (i.e. choosing the lower neighboring speeds to guarantee the peak

temperature constraint, when the continuous speeds are not available); (2) Ex-

haustive search approach (EXS) (as depicted as Algorithm 1); (3) Aligned oscil-

lation (AO) is our proposed approach as shown in Algorithm 2; (4) The phase-

conscious oscillation (PCO), with the periodic schedule obtained by shifting the

initial starting time of the schedules obtained in AO, as introduced in Algorithm 3

in Section 4.3.

Fig. 4.10 compares the performances for different approaches on different number

of cores (2, 3, 6, 9 cores) and different numbers of available speed levels (Table 4.3).

The performance of EXS is better than LNS, because EXS checks all the possible

speed combinations and has a deeper exploration of the design space than LNS. The

proposed AO and PCO approaches always outperform EXS and LNS, especially

when the number of available discrete speeds is small. The reason is that LNS

81

and EXS are only allowed to use a single speed level for each core, which might be

over pessimistic to the ideal ones. As shown in the figure, for 2 voltage levels, the

average performance improvement by AO and PCO over EXS is 55.2%, and the

improvement becomes 24.8% when the number of available voltage levels is 5.

An interesting observation in this experiment is that the performances of AO

and PCO are quite close. Even though our simulation study in section 3.4.1 shows

large differences for schedules with different high-speed modes’ starting time, this

happens only when the period of the schedule is long, e.g. 6 seconds, for the results

in section 3.4.1. As both AO and PCO adopt the m-Oscillating schemes, the

scheduling periods are significantly reduced and, therefore, the differences become

really insignificant, as shown in Fig. 4.10.

A similar conclusion can be drawn from our experimental results by changing

the temperature threshold, as shown in Fig. 4.11. By varying the maximal allowed

temperature Tmax from 50 ◦C to 65 ◦C with 5 ◦C step size and two available speeds,

we can see the throughput increases as the Tmax increases. Note that all three

approaches have the same performances on a 2-core platform when Tmax is greater

than 55 ◦C. The reason is that all the cores can use their highest speeds without

violating the peak temperature constraint. For a 2-core platform in Fig. 4.11(a),

when Tmax = 50 ◦C, AO and PCO have an improvement over EXS as high as

89.6%. For a 6-core platform in Fig. 4.11(c) when Tmax = 65 ◦C, AO and PCO

have an improvement over EXS by 40.4%. For all the possible configurations with

speed levels in Table 4.3, Tmax from 50 ◦C to 65 ◦C with 5 ◦C step size, and on 2,3,6,9

core platforms, the average performance improvement of AO and PCO over EXS

in is 11%.

We have also tested m-Oscillating apporach (AO) on a 4-core platform of a

2 × 2 topology, with application chosen from MiBench benchmark [50] and the

82

0

2

4

6

8

10

12

core1 core2 core3 core4

Power(Watt)

0.2 0.4 0.6 0.8 1.0 1.2 Time (S)
X10e-2

(a)

35
40
45
50
55
60
65
70

core1 core2 core3 core4
Time (S)

Temperature(C)

0.2 0.4 0.6 0.8 1.0 1.2 1.6
X10e-2

1.4

(b)

Figure 4.12: AO method on a 4-core platform with Tpeak = 70 ◦C (a) Power trace
(b) Temperature trace .

power dynamics were abstracted from PTScalar. The temperature threshold is set

to Tpeak = 70 ◦C with 2 speed levels. The workloads of cjpeg, djpeg, h263 and mpeg2

were partitioned in the order of core 1 to core 4. The high and low frequency

operation were set to 3GHz and 1.8GHz, respectively. In Figure 4.12, the power

and temperature have been abstracted with performance gain over LNS and EXS

of 80% and 13.6%, respectively.

83

4.4.3 Computation Time Comparison

We then compare the computational costs of different approaches. Since EXS out-

performs LNS, we select EXS to compare with AO and PCO. For each core

configuration, we tested 2, 3, 4, 5 speed levels. For each setting, we run up to 100

cases and take the average CPU time to fill in Table 4.4.

In general, the computational cost increases as the number of cores or the avail-

able voltage level increases. When the design space is small, e.g. on 2 or 3 cores, the

proposed AO and PCO take longer computation time than EXS. However, as the

number of cores and the available speeds increases, the computational cost of EXS

increases exponentially with the design space. For example, when searching 9 cores

with 5 speed levels, EXS takes more than 2 hours, while AO only takes 1.55s. In

addition, the computational time of PCO is larger than AO because the PCO

method needs to search the best phase as shown in Section 3.4.2 on different cores.

Overall, the proposed AO method is computationally efficient in performance max-

imization problem under peak temperature constraints.

4.5 Conclusions

Due to the advancement of IC technology, high power density leads to high tem-

peratures, which becomes a primary concern in design of high-performance sys-

tems. In this chapter, we developed a novel frequency oscillation-based technique

to maximize the throughput performance of multi-core platforms under the max-

imally allowed temperature constraints. The proposed analytical approaches are

built upon two concepts: step-up schedule and m-Oscillating schedule, and a num-

ber of well-formulated and proved theorems. The experimental results showed that

our proposed method can effectively enhance the overall throughput by 11% on

84

Table 4.4: Computation time comparisons with different cores and voltage levels
(Seconds).

Scheme 2 levels 3 levels 4 levels 5 levels

2 cores
AO 0.13 0.08 0.08 0.16
PCO 0.27 0.17 0.16 0.30
EXS 0.01 0.01 0.01 0.01
LNS 0.0008 0.0008 0.0008 0.0008

3 cores
AO 3.07 2.86 2.62 2.55
PCO 9.11 25.94 40.97 19.41
EXS 0.01 0.01 0.02 0.03
LNS 0.001 0.0011 0.0013 0.0012

6 cores
AO 3.13 2.89 2.29 2.54
PCO 27.76 31.32 31.68 43.08
EXS 0.13 1.36 8.01 28.22
LNS 0.0016 0.0015 0.0016 0.0016

9 cores
AO 2.59 1.96 1.81 1.55
PCO 120.99 118.38 135.92 106.10
EXS 1.53 43.36 581.14 >2-hours
LNS 0.0025 0.0025 0.0023 0.0025

average with a reduced computational cost of orders of magnitudes compared to

the traditional exhaustively search method. More important, the fundamental prin-

ciples established in this chapter are also general to be applied for thermal-aware

design on 2D, 3D multi-core systems.

85

CHAPTER 5

ENERGY REDUCTION ON MULTI-CORE PLATFORMS

In previous chapter, we present a frequency oscillating methodology to reduce the

peak temperature and maximize the system throughput on multi-core platforms. In

this chapter, we study the problem of how to improve the energy efficiency when

scheduling a set of hard periodic real-time tasks on a multi-core platform under

a given peak temperature constraint. The complexity of the multi-core energy

reduction problem lies in the fact that multi-core energy consumptions relate to

the task-to-core partitioning, tasks’ execution speeds, the subset of active cores on

multi-core platforms under the requirements of system throughput performance and

temperature/power limitations.

To address the energy reduction problem, we first establish the theoretical upper

bound for the energy efficiency by formulating the problem as a convex optimization

problem. We then develop two heuristic approaches, i.e. the leakage-aware load-

balancing approach and the thermal-balancing approach, and algorithms to bound

the energy efficiency for these two approaches. Next, we transform the multi-core

task partitioning problem to the bin packing problem. Specifically, we formulate

our thermal-balancing approach as a variable sized bin-packing problem (VSBP)

and develop a polynomial time task partitioning algorithm. We prove that our

algorithm can obtain an approximation ratio of 3/2 over the optimal partitioning

solution. Last, we develop an enhanced algorithm to continue improving the energy

efficiency of the task partitions in our thermal-balancing approach.

The rest of this chapter is organized as follows. Section 5.1 presents the related

work. Section 5.2 introduces preliminary and the problems. Section 5.3 and Sec-

tion 5.4 discussed our proposed energy efficient algorithm. Experimental results are

shown in Section 5.5, and Section 5.6 concludes the chapter.

86

5.1 Related Works

Energy minimization has long been a research problem that has been extensively

studied. Due to the quadratic relationship between the dynamic power and pro-

cessor speed, it has been a well-known principle to employ a constant processor

speed and also lower the processor speed as much as possible to save energy con-

sumption [148, 80]. This makes the workload balancing a good heuristic approach

for energy minimization on multi-core or multi-computer platforms [69, 132]. As

leakage power increases dramatically, there is a need to balance the dynamic and

leakage power consumption, which leads to the approach of employing “the critical

speed” [68, 70] to balance the dynamic energy reduction and leakage energy incre-

ment to minimize the overall energy consumption. There are many other works

presented in the literature, but most of them, if not all, follow the same principles.

However, these principles were established without considering thermal impacts.

Earlier work has been focused on dynamic energy conservation, which can be

minimized by using the slowest constant executing speed either on single-core [148]

or multi-core architectures [80]. As the IC industry enters the deep sub-micro do-

main, the leakage power becomes more and more prominent to the degree that is

comparable or even surpasses the dynamic counterpart. Thus, monotonically de-

creasing the execution speed causes an increasing leakage energy consumption due

to the extended completion time, which may increase the total energy consumption.

Therefore, the idea of “the critical speed” [68, 70] has been developed to balance

the dynamic power reduction and leakage power increment to minimize the overall

energy consumption.

There are many other works presented in the literature [160, 139, 102, 9]. They

differ by system models, design constraints, and computer architectures, but most

87

of them, if not all, follow the same principles for energy optimization. For example,

among some of these works, Chen et al. [24] proposed a greedy task mapping strategy

for periodic task sets and proved a worst-case performance bound by searching the

task allocation that each computing unit can be assigned more tasks with less energy

consumption. Pagani et al. [103] proposed energy minimization for a set of periodic

tasks assigned on different voltage islands using the lowest voltage/frequency that

satisfied the timing constraints. Li et al. [80] proposed a Relaxation-Based Iter-

ative Rounding Algorithm (RIRA) to minimize the energy consumption for non-

preemptive tasks. However, the rounding-based mapping strategy may degrade the

optimality in comparison with the ILP method in [24]. Lee et al. [79] explored the

energy trade off when using the overabundant cores for parallel processing with a

lower frequency, with the assumption that the tasks can split. Chen et al. [22] used

mixed integrated linear programming (MILP) method to seek the optimal combina-

tion of DVFS and DPM for periodic-dependent tasks on multi-core platforms, but

the complexity is too high. However, none of the approaches in [24, 80, 79, 22, 103]

take the temperature constraint into consideration.

Nowadays, the exponentially increased transistor count in the IC chip has made

the power density and heat dissipation a tremendous challenge in the design of com-

puting systems, which exhibit even worse thermal impacts in 3D architectures. As

the violation of the thermal constraint can automatically shut down the system for

self-protection cooling purpose, it becomes necessary to consider the temperature

constraint in design of real-time systems, e.g. [42, 2, 124, 78]. While energy con-

sumption and temperature are closely related, as shown in [39], energy minimization

and temperature reduction are not necessarily always in sync with each other. Due

to the convex correlation between the running speed and the total energy consump-

tion [54], an ideal energy-favored solution usually intends to let all the processing

88

cores run at a uniformed speed. Since each core has a different heat removal path,

they are thermally heterogeneous. Thus, taking the thermal factor into considera-

tion along with energy awareness is crucial for the feasibility reason, especially when

the system utilization is high or the temperature constraint is tight.

There are a few approaches on the temperature-constrained energy optimization

problems. For example, when taking the peak temperature constraint into consid-

eration, Saha et al. [117] proposed a genetic approach, essentially a meta-heuristic

search algorithm, to minimize the energy under a pre-defined temperature thresh-

old. Later, Hanumaiah et al. [54] formulated an integer linear programming method

(ILP) for a task-to-core optimal assignment and fan speeds, to achieve the energy

reduction under a given temperature constraint. They assumed that the peak tem-

perature of a core must occur at a scheduling pint, which was not necessarily true, as

indicated in the existing work (e.g. [39, 104, 124]). In addition, both [117] and [54]

are computationally expensive as the design space becomes larger and/or when they

are incorporated in other optimization loops. Barrefors et al. [11] formulated the

task partitioning as a knapsack problem to minimize the energy under a thermal

constraint. However, it ignored the heat transfer among cores and, thus, it is overly

optimistic, especially for 3D-ICs. Zhou et al. [156] proposed an offline iterative

approach to minimize the energy consumption when running real-time tasks on a

heterogeneous multi-core platform under a temperature limit. The algorithm con-

sists of two stages: the first stage of the algorithm intends to minimize the dynamic

power consumption among the cores by allocating tasks to cores such that the over-

all dynamic energy consumption is minimized, and the second stage distributes the

possible slack to tasks on each core in a way that the peak temperature is minimized.

For homogeneous multi-core platforms, this approach is simply reduced to be the

traditional load-balancing approach.

89

5.2 Preliminaries

We present the system model and formulate our research problem in this chapter. A

similar multi-core model as Chapter 3 has been employed, i.e. multi-core platform N

has N cores and each core is DVFS independent. Each running mode is denoted by

(v, f). By applying the power gating techniques, the idle cores (denoted by Ndark)

without any task assignment can be shut down to avoid leakage power consumptions.

Other active cores with task assignments belong to Nactive, as Nactive = N \Ndark.

We assume a periodic task set with M tasks, ΓΓΓ = {τ1, · · · , τM}. Each task is de-

fined by its inter-arrival time (Period) and the worst-case-execution-time (WCET)

at the maximum speed, i.e. τk = {Periodk,WCETk}. Each task’s deadline equals

to its period. Since earliest deadline first (EDF) policy is optimal to schedule mul-

tiple periodic tasks on a core, in this chapter, we assume all tasks are scheduled by

EDF policy.

5.2.1 Power/Thermal Model

Similar power model as Chapter 2 has been employed, the total power of the i-th

core is 
Pi(t) = α(vi) + β · Ti(t) + γ(vi) · v3

i , if corei ∈ Nactive;

Pi(t) = 0, if corei ∈ Ndark,

(5.1)

where α and γ are positive constants within the interval that corei runs at supply

voltage vi. β is a constant.

When employing the power model in Equation 5.1 to the aforementioned multi-

core thermal model in Equation 3.2, the thermal dynamic is

dT(t)

dt
= AT(t) + C−1(Ψ(v) + ηηη), (5.2)

90

where Ψ(v) = [α(vi) + γ(vi)v
3
i]N×1; ηηη = [Tamb

Rii
]N×1 are constants, and Rii is the

thermal resistance of corei to itself. When running a multi-core processor under a

constant supply voltage profile v long enough (i.e. t→∞), it will eventually reach

a constant temperature T∞ = T(∞) = −A−1C−1(Ψ(v) + ηηη) as dT(∞)
dt

= 0. (A is

nonsingular [144] Lemma 1).

5.2.2 Energy Model

Consider a periodic schedule S(t) = {Iq : q = 1 · · · z} with z state intervals in one

hyperperiod [t0, tp], which starts at t0 and ends at tp. The energy consumption

vector of the q-th state-interval Iq = [tq−1, tq], which starts at tq−1 and ends at tq,

can be formulated as [39]

E(tq−1, tq) = (I−ΦA−1C−1)lqΨq − lqΦA−1C−1ηηη + ΦA−1[T(tq)−T(tq−1)], (5.3)

where lq = tq − tq−1; Φ = diag{β}N×N ; Ψq is the power-related factor of the q-th

interval; I is an identity matrix. For interval Iq, the total energy is Etotal(Iq) =∑
Ei(tq−1, tq), in which Ei(tq−1, tq) is the i-th entry of E(tq−1, tq).

When repeating S(t) long enough, the system enters its thermal stable status,

with the starting temperature equals to the ending temperature in one period. Thus,

the energy consumption in one period in the stable status is

Ess(t0, tp) =(I−ΦA−1C−1)

z∑
q=1

lqΨq − tpΦA−1C−1ηηη, (5.4)

and the total energy consumption in S(t) is Etotal(t0, tp) =
∑

Nactive
Ess,i(t0, tp),

where Ess,i(t0, tp) is the ith entry of Ess(t0, tp)

To evaluate the energy efficiency of a periodic schedule in the stable status, we

adopt the concept of “workload-per-Joule” (WPJ) [54], which is defined as the ratio

of the total completed workload and the total amount of energy consumed in one

91

period. Specifically, for a schedule that contains z state intervals with period tp,

the energy efficiency is WPJ = W/Ess(t0, tp), where in one period, W denotes the

total workload as W =
∑z

q=1

∑N
i=1 vilq. A larger WPJ value indicates that more

workload can be completed with each unit of energy consumption, which means a

better energy efficiency.

5.2.3 Problem Formulation

With the models introduced above, our problem can be formulated as follows.

Problem 5.2.1. Given a periodic hard real-time task set ΓΓΓ = {τk|k = 1, · · · ,M}

scheduled on a multi-core platform N = {corei|i = 1, · · · , N} with maximum allowed

temperature (Tmax), find the task-to-core assignment matrix (ΘN×M) and the speed

for each task (SM×1), to maximize the overall energy efficiency (WPJ) in the thermal

stable status.

Max : WPJ ;

St :
M∑
k=1

Θi,k = 1 ;

0 ≤ SM×1 ≤ 1 ;

Tpeak ≤ Tmax ;

Utilizationcorei ≤ 1 ,

(5.5)

where Θi,k = 1, if task τk assigned to the corei; otherwise Θi,k = 0; SM×1 is the

speed vector for all the tasks; Utilizationcorei represent corei’s utilization. In this

chapter, we consider the energy minimization problem for a periodic task set that

runs long enough in the stable status.

92

5.3 Temperature-Constrained Energy Minimization on Multi-

core Platforms

In this section, we first establish a theoretical lower bound for the energy consump-

tion under a given temperature constraint on a multi-core platform. We then present

two heuristics and study their energy efficiency potentials.

5.3.1 The Energy Consumption Lower Bound

The energy minimization problem can be formulated as a convex optimization prob-

lem [54], with the control variable as core-level processing speed to maximize the

overall energy efficiency under the throughput requirements and the peak temper-

ature constraint. Specifically, given a task set ΓΓΓ = {τ1, · · · , τM}, and an N -core

platform N with a temperature constraint Tmax, the speed setting for each core that

can lead to the minimum energy consumption can be found by solving the following

convex optimization problem

Min :
N∑
i=1

Pi, corei ∈ Nactive ; (5.6a)

St :
∑

task k∈ΓΓΓ

ETk
Periodk

≤
∑

core i∈Nactive

vi ; (5.6b)

T∞i ≤ Tmax ; vmin ≤ vi ≤ vmax ; (5.6c)

While the above formulation can lead to the solution with optimal energy con-

sumption, as the problem size (i.e. the number of cores and tasks) increases, the

computational cost becomes extremely high. To this end, in what follows, we seek to

reduce the computational complexity with two different heuristics, i.e. “the leakage-

aware load-balancing approach” and “the thermal-balancing approach”.

93

5.3.2 The Leakage-Aware Load-Balancing Approach

Due to the convex correlation of the dynamic power and the processing speed, it is

the most effective way to reduce the dynamic energy to balance the workload among

multiple cores and use the processor speed as low as possible. Recall that the total

energy consumption of an IC chip consists of both the dynamic and leakage part, and

the leakage power consumption increases rapidly with the scaling of feature size to

the degree that is comparable or even surpasses the dynamic power consumption [39].

While balancing workload among more cores can reduce core speeds and thus the

dynamic energy consumption, the reduced dynamic energy consumption may not

be able to offset the increase of the leakage power consumption for activating more

cores. It is therefore a reasonable approach to make the appropriate tradeoff between

the turning off of cores and reducing the core speeds when completing a given

workload. In this regard, we can search for the proper subgroup of active cores

and balance the workload among these cores in such a way that the temperature

constraint can be satisfied and the overall energy consumption can be optimized. We

call this approach the Leakage-Aware Load-Balancing Approach (LALB), as shown

in Algorithm 4.

Algorithm 4 enumerates all the possible core configurations with different num-

bers of active cores. For each active core configuration, we can readily obtain the

balanced workload for each core. Then, we can compute the corresponding WPJ

index and choose the best solution that is feasible. When dealing with the dis-

crete speed level cases, we can simply round up the speed to the upper neighboring

level (after line 12 of Algorithm 4). Since there are totally N different numbers of

active core scenarios, the complexity of Algorithm 4 is 2N .

LALB explores all possible active core configurations and searches the optimal

one that can balance the dynamic and leakage power consumption to achieve the

94

Algorithm 4 Leakage-aware load-balancing approach (LALB)

1: Input: Multi-core platform N = {corei|i = 1 · · ·N};
2: Peak temperature constraint Tmax;
3: Total utilization size(ΓΓΓ) =

∑
ΓΓΓ

ETk
Periodk

;
4: Output: Active core subset Nactive, speeds Sactive;
5: Overall energy-efficiency criteria WPJ;

6: for each possible Nactive with 1 ≤ number(Nactive) ≤ N do
7: speed = size(ΓΓΓ)/number(Nactive);
8: if speed < vmin then
9: speed = vmin;

10: else if speed > vmax then
11: return infeasible;
12: end if
13: Compute WPJ and check real-time/thermal feasibility;
14: end for
15: Output the highest WPJ solutions;

overall energy efficiency. It works well when temperature constraint is not a concern.

However, balancing the workload among the active cores is not always a good choice

to optimize the energy consumption under a given temperature constraint, especially

when the temperature constraint is tight.

To better understand the limitation of the LALB approach, we first consider the

thermal characteristics of multiple cores when all cores run at the same speed to

complete the same workload. As shown in Figure 5.1(a), even though the workload is

uniformly distributed among multiple cores, their temperatures are not uniform. By

enforcing load balancing on the active cores, LALB can only choose the maximum

speed such that the hottest core does not exceed its temperature threshold. This

would result in activating more cores when the given temperature constraint is tight

or system utilization is high and hence possibly degrade the energy efficiency. Under

such scenarios, we believe that a thermal balanced approach can better utilize the

temperature “head space” and achieve a better energy efficiency.

95

1
2

3
4

1

2

3

4

0

50

100

150

Temperature(C)

(a)

1
2

3
4

1

2

3

4

0

5

10

15Power
(Watt)

cores
cores

(b)

Figure 5.1: (a) Different cores exhibit different stable state temperature, when all
cores are with the same amount of load. (b) Different cores have different maximal
allowed power, when all the cores reach the temperature threshold contemporarily.

5.3.3 The Thermal-Balancing Approach

The LALB approach in Section 5.3.2 can be conservative by restricting all active

cores to use a uniform execution speed. As explained before, this can lead to de-

graded energy efficiency when the temperature constraint is tight and/or the task

set utilization is high, or some other factors (such as when only a few discrete speed

levels are available.) Under such circumstance, we believe that a thermal balanced

approach, as illustrated in Figure 5.1(b), which can adopt different processing speeds

for different cores with different heat dissipation capability, can potentially better

utilize the temperature head space to improve the energy efficiency. A necessary con-

dition for thermal feasibility of executing a periodic task set on a multi-core platform

has been developed in [5]; however, it did not take energy reduction into consider-

ation. In what follows, we first formally define the concept of “thermal-balancing

state” and show its interesting characteristics. We then introduce our proposed

thermal-balancing algorithm for energy minimization on a multi-core platform un-

der the given temperature constraint [125].

96

Definition 5.3.1. Given a multi-core platform with n active cores, the multi-core

platform achieves the thermal-balancing state at Tm, if all active cores maintain the

same constant temperature Tm.

When a multi-core platform achieves its thermal balance state, it can maximize

the throughput under the given peak temperature constraint. This property is

formulated in the following theorem.

Theorem 5.3.2. Given a multi-core platform (n active cores) and the maximal

allowed temperature of Tmax, the overall throughput of the platform is maximized, if

the multi-core platform achieves the thermal-balancing state at Tm = Tmax.

Proof. Let T∞i be the i-th element of T∞ and Ai,j be the element of −A−1 on the

position of the i-th row and j-th column. The problem depicted in Theorem 5.3.2

is

Max :

N∑
i=1

vi, corei ∈ Nactive;

St : T∞i =

N∑
j=1

Ai,jC
−1
j (α+ γv3

j +
Tamb
Rjj

);

T∞i ≤ Tmax;

vmin ≤ vi ≤ vmax ;

(5.7)

Let ξ1,i, ξ2,i and ξ3,i be the Lagrange multipliers associated with (5.7). The

optimal solution to the linear problem by Karush-Kuhn-Tucker (KKT) optimality

conditions [14] satisfies

ξ1,i

[N∑
j=1

Ai,jC
−1
j (α+ γv3

j +
Tamb
Rjj

)− Tmax
]

= 0 (5.8)

ξ2,i(vi − vmin) = 0, ξ3,i(vmax − vi) = 0 (5.9)

ξ1,i ≥ 0, ξ2,i ≥ 0 and ξ3,i ≥ 0 (5.10)

97

In addition, the Lagrangian function is

L(vi, ξ1,i, ξ2,i, ξ3,i) = −
N∑
i=1

vi + ξ1,i

[N∑
j=1

Ai,jC
−1
j (α+ γv3

j +
Tamb
Rjj

)− Tmax
]

+ ξ2,i(vi − vmin) + ξ3,i(vmax − vi)

(5.11)

Then, the supply voltage of the i-th core in the optimal solution should also

satisfy

∂L
∂vi

= −1 + ξ1,iAi,iC
−1
i γ3v2

i + ξ2,i − ξ3,i = 0 (5.12)

Consider in an optimal solution, the stable state temperature of the i-th core

is lower than the temperature threshold, i.e. T∞i < Tmax, we can infer ξ1,i = 0

from (5.8). So, (5.12) can be written as −1 + ξ2,i − ξ3,i = 0.

If not the case that all the active cores run at vmax the peak temperature still

stays below Tmax, there must be at least one core, e.g. the k-th core satisfies T∞k =

Tmax, so ξ1,k 6= 0. Further, we can infer ξ2,k = 0, because vk 6= vmin. Thus, the

k-th core in the optimal solution should satisfy −1 + ξ1,kAk,kC
−1
k γ3v2

k − ξ3,k = 0 by

(5.12).

Overall, to maximize the overall throughput, each active core should either run

at the maximal speed or reach the temperature threshold.

As shown in Theorem 5.3.2, when a multi-core platform reaches the thermal-

balancing state, its throughput is maximized for the given temperature constraint,

which helps to reduce the number of active cores to minimize leakage energy con-

sumption. Note that, under thermal-balancing state, even though all cores have the

same temperature, their running speeds are different. To determine the speeds of ac-

tive cores, we can use the following technique. Specifically, for each corei ∈ Nactive,

98

let their stable state temperatures be uniformly defined as Ti = Tm. In the mean-

time, for corei ∈ Ndark, we have vi = 0. Note that, with given Tm and Nactive

(and thus Ndark), the supply voltage vi for each corei ∈ Nactive and Tj for each

corej ∈ Ndark are uniquely defined, which is formulated as follows.

Without losing generality, assume the first h cores are turned off and the rest

n cores are activated, where n + h = N . We have [125] T = [Th,Tn]N×1 and

Ψ = [Ψh,Ψn]N×1, in which Th = [T1, · · · , Th]h×1; Tn = [Tm, · · · , Tm]n×1; Ψh =

[α0, · · · , α0]h×1; Ψn = [Ψh+1, · · · ,ΨN]n×1. Since Ψi = α(vi) + γ(vi)v
3
i , when vi = 0, the

power-related factor becomes a constant as Ψi = α(0) = α0. Let U = −A−1C−1

and Ω = Ψ + ηηη. Then, according to Equation (5.2), we haveTh

Tn

 =

U0 U1

U2 U3


Ωh

Ωn

 and

Ωh

Ωn

 =

Ψh + ηηηh

Ψn + ηηηn

 (5.13)

where ηηηh = [ηi]h×1 and i = 1, · · · , h; ηηηn = [ηi]n×1 and i = h + 1, · · · , N . In

Equation (5.13), the dimensions for U0, U1, U2 and U3 are h× h, h×n, n× h and

n × n, respectively. Note that, matrices/vectors Tn, U0 to U3, Ψh, ηηηh and ηηηn are

determined once the power and thermal characteristics of the multi-core platform

are given. Accordingly, Th and Ψn can be solved as follows.
Th = U0Ωh + U1Ωn

Tn = U2Ωh + U3Ωn

⇒


Th = U0Ωh + U1Ωn

U3Ωn = Tn −U2Ωh

⇒

I 0

0 U3


Th

Ωn

 =

0 U1

0 0


Th

Ωn

+

 U0Ωh

Tn −U2Ωh


⇒

Th

Ωn

 =

I −U1

0 U3


−1  U0Ωh

Tn −U2Ωh



(5.14)

After solving for Ωn and Ψn, we can then obtain the supply voltage (vi) for

each active core, so that they can maintain their temperatures at Tm. The detailed

algorithm is shown in Algorithm 5.

99

Algorithm 5 Thermal-balancing approach (TB)

1: Input: Multi-core platform N = {corei|i = 1 · · ·N};
2: Peak temperature constraint Tmax;
3: Total utilization

∑
ΓΓΓ

ETk
Periodk

, task k ∈ ΓΓΓ;
4: Output: Active core subset Nactive, speeds Sactive;
5: Overall energy-efficiency criteria WPJ;

6: for each possible Nactive with 1 ≤ number(Nactive) ≤ N do
7: Solve Eq. (5.13) and (5.14);
8: Binary search the lowest Tm ∈ [Tamb, Tmax] that satisfy Eq. (5.6b);
9: end for

10: Output the highest WPJ solutions;

Algorithm 5 enumerates all the possible subsets of active core combinations. For

each active core’s topology, the lowest Tm and core speed are determined in line 7

and line 8. When there are only a limited number of discrete speeds available, we

can round down the continuous speed value to the lower neighboring discrete one.

Then, we can iteratively determine the core speed. The highest WPJ can thus

be found by exhaustively searching different configurations (with different numbers

of active cores, different active core combinations, and different thermal-balance

temperatures) that satisfy the performance requirement.

On an N-core platform, for each active core subset, Algorithm 5 employs the

binary search method to find the lowest thermal-balancing temperature (Tm) that

can make the given task set feasible, with a complexity of ln(Tmax−Tamb). Then, we

iteratively determine the core-speed one by one from solving Eq. (5.13) and (5.14),

so it needs 2N iterations. Overall, the complexity of Algorithm 5 is 2N ·N · ln(Tmax−

Tamb).

For both LALB in Algorithm 4 and TB in Algorithm 5, to reduce the complexity

that enumerates 2N subset of active core combinations, we can also adopt the pat-

terning approach in [73] to balance the power density across the chip by activating

100

different number of cores at different locations. The reduced complexity of LALB

and TB are N and N2 · ln(Tmax − Tamb), respectively.

5.4 Task Partitioning via Bin Packing Approaches

It is worthy of mentioning that both Algorithm 4 and Algorithm 5 assume that

real-time tasks can be freely divided according to the processing capability of each

core. Therefore, the outputs from Algorithm 4 and Algorithm 5 are in fact the upper

bound for the energy efficiency. In reality, real-time tasks cannot be split arbitrarily,

and mapping real-time tasks to multiple cores is itself an NP-hard problem [160].

One common heuristic approach for multi-core task partitioning is to transform

it into a bin packing problem [30]. In the LALB approach, once the optimal choice of

the group of active cores and their processing speeds are determined, the bin capacity

is determined. Then, the problem is to pack objects (tasks), each of which has a

different size (utilization), to bins such that the required bin is no more than the

available one. Note that in LALB approach, each core is running at the same speed,

which implies that all the available bins (active cores) have the same capacity. For

the TB approach, however, different cores may have different speeds, we therefore

need to pack tasks into a series of bins with different bin capacities.

5.4.1 Task Partitioning by Variable-Sized Bin Packing Ap-

proach

Consider the thermal constraint, the maximal allowed supply voltages across the

multi-core platforms are different, which can be translated to each core having differ-

ent “capacities,” i.e. the maximum total task utilizations that can be accommodated

101

in that core, as shown in Figure 5.1(b). To this end, we transform Problem 5.2.1

into the following variable-sized-bin-packing problem (VSBP) [30]. Then, the task

partitioning problem can be transformed to a VSBP problem as follows:

Problem 5.4.1. Given a set of objects ΓΓΓ = {τk|k = 1, · · · ,M} with each item size

ETk
Periodk

, and a set of bins N = {corei|i = 1, · · · , N} of capacities {ci|i = 1, · · · , N},

pack ΓΓΓ into N such that the total cost (proportional to the total bin size) is minimized.

The optimization goal of Problem 5.4.1 is to minimize the total cost, actually

the total active cores’ capacities, used for packing the task set to the given platform,

assuming the larger space used for packing the task set, the more energy the task

set consumes.

Different from typical VSBP packing problems, such as the one in Section 4

of [43], assuming there are an unlimited number of bins for each bin type, we only

have a limited number of bins for each type. Therefore, in our approach, we develop

an iterative algorithm built upon the general principle of Algorithm A1 in [150],

which has a proven approximation ratio of 3/2. Specifically, it clusters items into

four size ranges as (0, 1
3
), (1

3
, 1.5

3
), (1.5

3
, 2

3
), (2

3
, 1); then, by matching different objects

from different clusters, Algorithm A1 in [150] ensures that each allocated bin is at

least 2/3 full or there must be a matching bin in the optimal solution using less

capacity. Additional details for this approach can be found in [150]. Algorithm 6

depicts the details of our solution to Problem 5.4.1.

The rationale behind Algorithm 6 is assuming that the energy consumption is

proportional to the total core-capacity (bin sizes), so we are seeking the lowest total

core capacity that can hold the given task set. The feasible total core capacity must

be larger than the total utilization of the task set but no greater than the maximal

allowed throughput of the given platform. Since we adopt the Algorithm A1 [150],

which can ensure that each bin can be filled at least 2/3 of its bin-capacity except

102

Algorithm 6 Variable-Sized-Bin-Packing (VSBP) method

1: Input: Multi-core platform N = {corei|i = 1 · · ·N};
2: Peak temperature constraint Tmax;
3: Task set ΓΓΓ = {τk|k = 1 · · ·M}, τk = {Periodk, ETk};
4: Output: Task allocation matrix Θ;
5: Task speeds vector S;
6: Overall energy-efficiency WPJ;

7: Solve Eq. (5.7) for the max throughput THRmax under Tmax;
8: Ub = min{THRmax, 3/2 ∗ size(ΓΓΓ)};
9: Lb = size(ΓΓΓ);

10: while (1) do
11: Determine active core topology/capacity by Algorithm 5 based on throughput re-

quirement THR=(Ub+Lb)/2;
12: for each core type in Nactive do
13: Cluster and order core types decreasingly by capacities ;
14: Nµ = The number of available cores in the µ-th type;
15: Packing tasks according to Algorithm A1 [150] assuming there is unlimited num-

ber of cores in this type;
16: if succeed then
17: Save workload assignment of first Nµ cores to Θ;
18: else
19: Return (Task set is not schedulable!);
20: end if
21: ΓΓΓ′ = workload in first Nµ cores of current type;
22: ΓΓΓ = ΓΓΓ−ΓΓΓ′;
23: end for
24: Binary search the lowest THR ≥ size(ΓΓΓ), break if Ub− Lb ≤ ε;
25: end while
26: Return the best WPJ solution;

103

for the last one, the upper bound of the searching range should be the larger value

between maximal allowed throughput and the 3/2 times total core capacity. Specif-

ically, in Algorithm 6, we first determine the system capacity that can maximize the

feasibility and compute core capacities (line 11). The cores are then categorized to

different types based on their capacities and sorted in a decreasing order (line 13).

Then, we pack tasks to each core type using Algorithm A1 [150] by assuming an un-

limited number of cores available in this type. This ensures that, except for the last

core, each core is filled at least 2/3 full of its capacity, except the last one core of the

last core type. Then, we save the task assignment for the first Nµ cores (line 17), due

to the limitation of available cores of that type. Algorithm 6 iteratively improves the

task partitioning results. At the end of each iteration, the lowest system throughput

performance that can ensure the timing constraints for the tasks allocated to that

core and the peak temperature based on the task partitioning results are searched.

For bin-packing approaches, the absolute approximation ratio, which is defined as

the ratio of the number of bins produced by a heuristic over the minimum number of

bins required to pack all the items, indicates the performance of a packing heuristic.

It is not difficult to prove that Algorithm 6 has the following property.

Theorem 5.4.2. Assuming there exists a feasible solution in Algorithm 6, the ab-

solute approximation ratio of Algorithm 6 is 3/2, and the bound is tight.

Proof. Consider there are total Ω different core types, the µ-th core type is repre-

sented by Bµ and size(Bµ) denotes the capacity. Let cont(Bµ) denote the contents

that filled in one core of Bµ core type. Let OPT be the optimal packing fashion,

i.e. all the used cores have been fully filled. We define H(Γ) as the total space used

in Algorithm 6.

Assume Algorithm 6 successfully packs task set Γ in the first w core types (w ≤

Ω). The last core type uses $ cores ($ < Nµ). For each consecutive core type,

104

except for the last core of the last core type Bw, we have

cont.(B1)N1 ≥
2

3
size(B1)N1

· · · · · · · · · · · ·

cont.(Bw−1)Nw−1 ≥
2

3
size(Bw−1)Nw−1

cont.(Bw)($ − 1) ≥ 2

3
size(Bw)($ − 1)

(5.15)

Note that, besides the bins listed in (5.15), the contents in the last bin of the last

bin type may not be larger than 2/3 of the bin size, i.e. there exists at most one bin

that cont.(Bw) may be smaller than 2
3
size(Bw). Then, according to the definition,

we have

OPT (Γ) =
w−1∑
µ=1

cont.(Bµ)Nµ + cont.(Bw)($ − 1) + cont.(Bw)

H(Γ) =

w−1∑
µ=1

size(Bµ)Nµ + size(Bw)($ − 1) + size(Bw)

(5.16)

Then, we have

OPT (Γ)

H(Γ)
=

∑w−1
µ=1 cont.(Bµ)Nµ + cont.(Bw)($ − 1) + cont.(Bw)∑w−1
µ=1 size(Bµ)Nµ + size(Bw)($ − 1) + size(Bw)

≥
∑w−1

µ=1 2/3size(Bµ)Nµ + 2/3size(Bw)($ − 1) + 2/3size(Bw) + ∆∑w−1
µ=1 size(Bµ)Nµ + size(Bw)($ − 1) + size(Bw)

= 2/3 +
∆∑w−1

µ=1 size(Bµ)Nµ + size(Bw)($ − 1) + size(Bw)

(5.17)

in which ∆ = cont.(Bw) − 2/3 ∗ size(Bw). Since for the last core, we have

cont.(Bw) ≤ size(Bw) ≤ min(B1 · · ·Bw) �
∑w−1

µ=1 size(Bµ)Nµ, we can infer

∆/(
∑w−1

µ=1 size(Bµ)Nµ + size(Bw)($ − 1) + size(Bw)) ≈ 0. Thus, we have OPT (Γ)
H(Γ)

≥

2/3.

5.4.2 The Enhanced Bin-Packing Method

A major drawback of Algorithm 6 is that it does not consider the task’s character-

istics when it determines the capacity (running speed) of a bin. For example, on

105

a 3-core platform with Tmax = 50◦C, the maximum supply voltage for each core

is determined as [0.64, 0.51, 0.64]V . Assume there is a task set including a task

τ = {Period = 10ms,ET = 7.5ms} with utilization of 0.75. Item size 0.75 is larger

than all the bin sizes, so Algorithm 6 cannot partition the task set no matter how

small the total utilization of this task set can be. On the other hand, if we turn

off both core 2 and core 3, the maximum voltage of core 1 becomes 0.81, and thus

this task can be feasibly scheduled without violating the given thermal constraint.

Therefore, judiciously choosing the active core sets based on task’s utilization char-

acteristics may help to improve the feasibility and energy efficiency performance

when partitioning tasks.

Algorithm 7 Enhanced Varialbe-sized-bin-packing (En-VSBP) method

1: Input: N, ΓΓΓ, Tmax;
2: Output: Θ, S, WPJ;

3: Θ = ∅;
4: while ΓΓΓ 6= ∅ do
5: Pack tasks by Algorithm 6;
6: if fail then
7: Move ΓΓΓ′ back to ΓΓΓ in Algorithm 6 line 22;
8: for each unpackable τk do
9: Pack heavy task τk;

10: if failed then
11: Return current best solution;
12: else
13: ΓΓΓ = ΓΓΓ− τk;
14: end if
15: end for
16: end if
17: end while
18: Return Θ, S, WPJ;

Considering the limitation caused by “heavy tasks,” we develop an Enhanced

VSBP (En-VSBP) heuristic for the TB approach in Algorithm 7. One major dif-

ference between En-VSBP (Algorithm 7) and VSBP (Algorithm 6) is how to sched-

ule heavy task, i.e. the task with utilization higher than any available utilization in

106

any type. For VSBP, if a heavy task cannot fit in any type, it simply claims failure

for the task partitioning. For En-VSBP, if a task cannot fit in any available type

of core, we check if there is any idle core (with no task assignment) in the available

active core set. If such a core does exist, we can turn other cores off (to be an inac-

tive core), which potentially leads to a higher capacity for this core to accommodate

the heavy task. Otherwise, there is no way we can assign the task without violating

the peak temperature constraint (line 9).

The computational complexity of Algorithm 7 depends on how many iterations

the algorithm needs to go through, which can be controlled using a threshold to

limit the difference of peak temperatures for two consecutive iterations. Within

each iteration, the complexity to compute core capacity is O(N2 · ln(Tmax− Tamb)),

the bin packing (line 8-15) has a complexity of O(MN), and temperature calculation

has a complexity of O(N3 ∗M). Therefore, the overall computational complexity is

O(N3 ∗M).

5.5 Experimental Results

In this section, we first compare the energy efficiency, feasibility ratio and com-

putational cost for the ideal cases, assuming all tasks can be arbitrarily split, in

Section 5.5.1, Section 5.5.2 and Section 5.5.3, respectively. Then, for partitioning

real-time tasks that are not arbitrarily divisible, we compare the energy efficiency

and feasibility in Section 5.5.4.

The thermal and power parameters are abstracted from HotSpot 5.02 [66] and the

McPAT simulator [82]. The ambient temperature is Tamb = 35◦C, unless otherwise

specified. There are four multi-core configurations: 2 × 3, 3 × 3, 3 × 4 and 4 × 4

corresponds to 6, 9, 12,16 cores, respectively. Each core size is 4 × 4mm2 and

107

DVFS independent. In our experiments, we assumed the processing cores with

either continuous variable speed between 0.6V to 1.3V or discrete speed levels, e.g.

3 levels as {0.6V, 0.95V, 1.3V } or 5 levels as {0.6V, 0.775V, 0.95V, 1.125V, 1.3V }.

We first compare the energy consumption lower bound of four different herustics:

(1) Convex solver-based approach (CVX) (see Section 5.3.1). (2) Leakage-aware

load-balancing approach (LALB) (see Section 5.3.2). (3) Thermal-balancing ap-

proach (TB) (see Section 5.3.3). (4) Traditional load-balancing approach (LB),

in which all the cores are turned on and running at a uniform speed. Specifically,

assuming the speeds for processing cores are continuously variable, the formulation

of CVX in Equation (5.6) is a disciplined convex program (DCP), which can be

solved by the convex solver (CVX) [14]. When only a limited number of discrete

supply voltages/speeds are available, this problem can be solved by mixed integer

disciplined convex programs (MIDCPs) with MOSEK or Gurobi [47] package in a

combination with the convex solver.

5.5.1 Lower Bound of Energy Efficiency (WPJ) Comparison

To compare the lower bound of energy consumption in Section ??, we select different

core configurations with different numbers of cores and different numbers of available

discrete speed levels. For each method, the continuous speed mode bounds the WPJ

value of discrete speed cases. Figure 5.2 shows the energy-efficiency comparison on

6, 9, 12 and 16-core, with continuous variable speeds, 3-speed-level and 5-speed-level

scenarios.

The lower bounds of the energy efficiencies are similar for different approaches,

when the continuous speeds are available. For example, in the continuous vari-

able speeds scenario in Figure 5.2(a), 5.2(d) 5.2(g) and 5.2(j), the energy efficiency

108

0

0.01

0.02

0.03

0.04

0 50 100
CVX TB LALB LB

Utilization (%)

WPJ

(a) 6-core, Tmax = 65◦C,
continuous speed

0
0.005
0.01
0.015
0.02
0.025
0.03

0 50 100
CVX TB LALB LB

Utilization (%)

WPJ

(b) 6-core, Tmax = 65◦C, 3
speeds

0
0.005
0.01
0.015
0.02
0.025
0.03

0 50 100
CVX TB LALB LB

Utilization (%)

WPJ

(c) 6-core, Tmax = 65◦C, 5
speeds

0

0.01

0.02

0.03

0.04

0 50 100
CVX TB LALB LB

Utilization (%)

WPJ

(d) 9-core, Tmax = 75◦C,
continuous speed

0
0.005
0.01
0.015
0.02
0.025
0.03

0 50 100
CVX TB LALB LB

Utilization (%)

WPJ

(e) 9-core, Tmax = 75◦C, 3
speeds

0
0.005
0.01
0.015
0.02
0.025
0.03

0 50 100
CVX TB LALB LB

Utilization (%)

WPJ

(f) 9-core, Tmax = 75◦C, 5
speeds

0

0.01

0.02

0.03

0.04

0 50 100
CVX TB LALB LB

Utilization (%)

WPJ

(g) 12-core, Tmax = 85◦C,
continuous speed

0
0.005
0.01
0.015
0.02
0.025
0.03

0 20 40 60 80
CVX TB LALB LB

Utilization (%)

WPJ

(h) 12-core, Tmax = 85◦C, 3
speeds

0
0.005
0.01
0.015
0.02
0.025
0.03

0 20 40 60 80
CVX TB LALB LB

Utilization (%)

WPJ

(i) 12-core, Tmax = 85◦C, 5
speeds

0
0.005
0.01
0.015
0.02
0.025
0.03

0 20 40 60 80
CVX TB LALB LB

Utilization (%)

WPJ

(j) 16-core, Tmax = 85◦C,
continuous speed

0
0.005
0.01
0.015
0.02
0.025
0.03

0 20 40 60 80
CVX TB LALB LB

Utilization (%)

WPJ

(k) 16-core, Tmax = 85◦C, 3
speeds

0
0.005
0.01
0.015
0.02
0.025
0.03

0 20 40 60 80
CVX TB LALB LB

Utilization (%)

WPJ

(l) 16-core, Tmax = 85◦C, 5
speeds

Figure 5.2: WPJ comparison for different core configurations and different number
of available speed levels

109

of CVX, TB and LALB are very close, because each method is very flexible to

choose its own energy-favored voltages/speeds by selecting any continuous value in

the valid range with respect to different algorithms.

However, when only a limited number of voltage levels/speeds are available,

the energy efficiencies for different approaches become more obvious. Specifically,

when the number of available voltages/speeds is small, LALB can be slightly better

than TB. When the number of available voltage/speeds becomes larger, the energy

efficiency of each approach grows quickly, and the TB approach benefits more from

the increases of available voltage levels. For example, on a 3 discrete speed-level

platform, as shown in Figure 5.2(b), 5.2(e) and 5.2(h), the average WPJ of LALB

exceeds TB by 1.8%, 1.5% and 2.7%, respectively. When it increases to 16 cores

with 3 discrete speed levels, the average WPJ of TB exceeds LALB by 2.2%, as

shown in Figure 5.2(k). As more discrete speeds become available, e.g. 5 speed levels

in Figure 5.2(c), 5.2(f) 5.2(i) and 5.2(l), the average WPJ of TB exceeds LALB

by 4.6%, 1.4%, 5.8% and 4.1%, respectively. It is worth noting that the more

discrete speeds are available, the higher the WPJ index will be for each method.

More discrete speeds favor the TB method even more, because TB is more likely to

achieve the thermal-balancing status. When less speed levels are available, LALB

is better than the TB method, because LALB enumerates all the possible active

core topologies to maximize the searching space. In addition, all the scenarios have

shown that the LB method results in the lowest WPJ, especially when the system

utilization is low. The reason is that the LB method requires all the cores be

activated and at least running at their lowest speed, even though the workload is

light.

Overall, for each configuration, the proposed CVX method results in the optimal

energy efficiency (WPJ). Our proposed TB slightly degrades from CVX results by

110

1.2%, and it is better than LALB by 1.8% on average based on a large number of

random tests. In the meantime, there are significant differences in terms of system

feasibility by different approaches, especially when the system utilization is high, as

shown below.

5.5.2 The Feasibility Comparison for Different Heuristics

In this section, we compare the feasibilities of different heuristics. For each method,

we randomly generate up to 100 random cases and count the number of feasible

cases. Then, we normalize the results to the TB result, as shown in Figure 5.3. To

capture the feasibility characteristics by different workload requirements, we define

the system utilization as the required throughput divided by the highest achievable

throughput with all the processing cores run at their full speeds. Then, we conduct

the experiments based on both low utilization and high utilization, which is defined

as 0%− 50% and 50%− 100%, respectively. We did not profile the feasibility ratio

for 12 and 16-core cases in Figure 5.3, since their computation time is too long, as

shown in Table 5.1 of Section 5.5.3.

When the system utilization is low, our proposed method TB shows a similar

or slight degradation, when compared with the CVX and the LALB method.

For example, in Figure 5.3(a) with system utilizations fall between 0 and 50%,

the average feasibility ratio of CVX, TB and LALB are quite similar (102.1%,

100%, and 101.0%, respectively), which all outperform the LB method (80.0%)

significantly. The reason is that LB always requires all the cores be activated and

wastes a big portion of energy to execute at the minimum active speed, even though

some redundant throughputs might be delivered. In some cases, e.g. 6-core and

9-core with 3 speeds, the TB method shows slight degradation from the LALB

111

0

0.5

1

1.5

CVX TB LALB LB
3 5 cont. 3 5 cont. 3 5 cont. 3 5 cont.

Feasibility	Ratio

Speeds

Feasibility	RatioFeasibility	Ratio
6 core 9 core 12 core 16 core

(a)

0

0.5

1

1.5

CVX TB LALB LB
3 5 cont. 3 5 cont. 3 5 cont. 3 5 cont.

Feasibility	Ratio

Speeds

Feasibility	RatioFeasibility	RatioFeasibility	RatioFeasibility	Ratio
6 core 9 core 12 core 16 core

(b)

Figure 5.3: Feasibility comparison when system utilization lies (a) between 0% and
50%; (b) between 50% and 100%

approach. The reason is that in Algorithm 5, we use a patterning approach to

determine the active cores and iteratively determine the running speed for each core

in line 7 to save the computational cost, which degrades the result’s quality of TB.

When the system utilization is high, the TB approach exhibits a higher feasibility

ratio than LALB and LB. For example, when system utilizations are between 50%

and 100%, Figure 5.3(b) shows the feasibility ratio ranked as CVX>TB> LALB> LB (e.g.

105.9%, 100%, 90.9% and 78.7%, respectively). It is not difficult to understand

that CVX has the highest feasibility because the convex solver provides the op-

timal solution within the validation range. The feasibility of TB exceeds LALB

when the system utilization is high, because the “thermal-balancing” heuristic in-

tends to maximize the system throughput under a given temperature constraint, as

shown in Theorem 5.3.2. Therefore, when the peak temperature constraint is tight

112

Table 5.1: Computation time comparison (Seconds)
6 core 9 core 12 core 16 core

Speeds 3 5 cont. 3 5 cont. 3 5 cont. 3 5 cont.

CVX 28.03 27.87 27.77 220.14 219.85 216.84 ≈ 30min ≈ 30min ≈ 30min >5hours >5hours >5hours

TB 0.72 0.72 0.60 1.82 1.81 1.61 5.13 3.83 3.99 7.08 7.26 6.29

LALB 0.03 0.04 0.03 0.09 0.08 0.09 0.06 0.07 0.07 0.13 0.12 0.14

LB 0.003 0.001 0.001 0.002 0.002 0.002 0.05 0.03 0.01 0.13 0.13 0.13

or the system utilization is high, the TB method is still able to seek a valid solution.

Overall, the feasibility of TB exceeds LALB by 9.14% and exceeds LB by 21.29%.

5.5.3 The Computational Time Comparison

We also compare the computational efficiency of different heuristics in Section ??.

Specifically, for different core configurations and numbers of available speeds, we

randomly generate up to 100 cases under each configuration. From Table 5.1, we

can see the the computational cost varies significantly with the number of cores, but

does not change much with different number of speeds. For different approaches,

the CVX method always needs the longest computation time and consumes approx-

imately 30 minutes for 12-core platforms and more than 5 hours for 16-cores plat-

forms. The TB method uses a polynomial computational time, as the design space

becomes larger with the number of cores. number of tasks, etc. Although LALB

and LB methods use a shorter time than TB, their average energy efficiencies and

feasibilities are very poor.

113

5.5.4 Energy Efficiency (WPJ) and Feasibility When Pack-

ing Tasks

In this section, we compare the energy efficiency (WPJ) and feasibility when packing

the actual tasks by thermal-balancing (TB), leakage-aware load-balancing (LALB)

and traditional load-balancing (LB) approaches. Under each heuristic, two differ-

ent packing methods are applied and compared in Algorithm 6 line 15: (1) First-Fit

Decreasing (FFD) orderes tasks by their utilization before performing the first-fit

packing; (2) 2/3-VSBP represents Algorithm 6 line 15 with the 2/3 approxima-

tion heuristic. Thus, there are six combined approaches, including LALB+FFD,

LALB+2/3, TB+FFD, TB+2/3, LB+FFD, LB+2/3. The last one En-

VSBP is the Enhanced VSBP algorithm, as illustrated in Algorithm 7, which is

built upon the thermal-balancing (TB) heuristic and the 2/3-VSBP bin packing

approach. The experiment runs on a randomly selected number of cores, number of

tasks, number of speed levels, system utilizations and peak temperature constraints

for 100 times.

First, we evaluate the energy efficiency (WPJ) by profiling the results that all the

methods are feasible, as shown in Figure 5.4. It is worth noting that different packing

heuristics do not influence on the energy efficiency much, and thus, FFD and 2/3-

VSBP-based packing methods have similar energy efficiency results. However, the

heuristics for the bin-size determination plays an important role in energy-saving

purposes. For example, the experimental results show that LALB and TB-based

methods have similar energy efficiency (WPJ), which is higher than the LB-based

methods by 8.5% and 9.4%, respectively. The reason is that LB-based methods

fail to consider the energy savings from turning off redundant cores, so LB-based

methods’ energy efficiency is extremely low, which conforms to the results in Sec-

114

tion 5.5.1. The energy efficiency of En-VSBP is the same as the TB-based ap-

proach, because En-VSBP determines the bin capacity based on the TB heuristic.

In the meantime, different bin-size determination methods exhibit very different

feasibility ratios as shown below.

0

0.001

0.002

0.003

0.004

0.005

LALB+FFD LALB+2/3 TB+FFD TB+3/2 LB+FFD LB+3/2 Enhanced

Axis	Title

Feasibility	Ratio

Different Approaches

Feasibility	RatioAverageWPJ

Figure 5.4: Average Energy Efficiency (WPJ) Comparison on large volumn of ran-
dom cases

Next, we study the “heavy task” impacts on the feasibility. To this end, we var-

ied the number of tasks in a given task set with a predefined system utilization. The

smaller the task number is, the more likely “heavy tasks” will be generated. From

Figure 5.5(a) and 5.5(b), we can see that the En-VSBP method always has the

highest feasibility ratio in different configurations. The reason is that (1) The En-

VSBP method considers the influence of “heavy tasks,” which other approaches

cannot pack successfully. (2) En-VSBP adopts the TB heuristic to determine the

bin-sizes, which has a better average feasibility ratio than LALB, TB, as shown in

Section 5.5.2. For example, the feasibility of En-VSBP exceeds the LALB, TB

and LB-based approaches by 39.22%, 31.58% and 64.92%, respectively, when sys-

tem utilization is between 50% and 100%. We also find that different bin-packing

heuristics, e.g. FFD and 2/3-VSBP, have similar feasibility ratios, which means

that the feasibility of 2/3-VSBP is not inferior to the FFD heuristic. Overall,

the bin-size determination heuristic TB is better than LALB and LB, and the En-

115

0

0.5

1

1.5

LA
LB
+F
FD

LA
LB
+2
/3

TB
+F
FD

TB
+3
/2

LB
+F
FD

LB
+3
/2

En
ha
nc
ed

LA
LB
+F
FD

LA
LB
+2
/3

TB
+F
FD

TB
+3
/2

LB
+F
FD

LB
+3
/2

En
ha
nc
ed

LA
LB
+F
FD

LA
LB
+2
/3

TB
+F
FD

TB
+3
/2

LB
+F
FD

LB
+3
/2

En
ha
nc
ed

1 2 3
Axis	Title

Feasibility	Ratio

Task Num. Index

Feasibility	RatioFeasibility	RatioFeasibility	Ratio

Task Num. Index

Feasibility	RatioFeasibility	Ratio

(a)

0

0.5

1

1.5

LA
LB
+F
FD

LA
LB
+2
/3

TB
+F
FD

TB
+3
/2

LB
+F
FD

LB
+3
/2

En
ha
nc
ed

LA
LB
+F
FD

LA
LB
+2
/3

TB
+F
FD

TB
+3
/2

LB
+F
FD

LB
+3
/2

En
ha
nc
ed

LA
LB
+F
FD

LA
LB
+2
/3

TB
+F
FD

TB
+3
/2

LB
+F
FD

LB
+3
/2

En
ha
nc
ed

1 2 3
Axis	Title

Feasibility	Ratio

Task Num. Index

Feasibility	RatioFeasibility	Ratio

(b)

Figure 5.5: Feasibility comparison when packing actual tasks for system utilization
lies (a) between 0% and 50%; (b) between 50% and 100%

VSBP approache has the highest feasibility and energy efficiency for a large number

of random cases.

5.6 Conclusion

As the IC industry enters a multi-core and many-core era, the energy efficiency

becomes a more prominent criterion in the design of real-time schedules. In this

chapter, we present a novel technique to schedule a real-time task set with maximized

energy efficiency under a given peak temperature constraint. Our techniques are

built upon the thermal-balancing heuristic and use the variable-sized-bin-packing

116

method to maximally utilize system resources under a peak temperature constraint

for energy minimization purposes. The validation results show that the thermal-

balancing approach leads to significant improvement on energy efficiency and task

partitioning feasibility, especially when the given temperature constraint is tight or

the system utilization is high.

117

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, we first summarize our contributions presented in this dissertation.

We then discuss the possible directions for our future research work.

6.1 Summary

The advancement of IC technology enables confining more transistors within a single

chip, as predicted by “Moore’s Law”. However, the consequent soaring power density

and heat dissipation are two major obstacles in technology scaling. While multi-core

architectures help to lower the power/thermal barrier for single core architectures,

power/thermal issues are still the primary limiting factors to improve the system

throughput. High temperature can negatively impact the system performance, de-

grade the system reliability and even permanently damage the chip. In addition,

the heat flux and local hotspot on multi-core platforms worsen the thermal environ-

ment and make thermal management more complicated. The thermal/power-aware

computing system design is urgently demanded in modern IC industry.

In this dissertation, my research deploys system-level real-time control technics

on multi-core platforms to realize different design optimization goals (e.g. peak

temperature reduction, throughput maximization and energy reduction, etc.) under

a variety of system constraints (e.g. temperature threshold, power cap, etc.).

First, we introduce a set of provable fundamentals and principles for thermal-

aware design based on the well-known multi-core RC-thermal model. Then, we

develop an effective approach to identify and safely bound the peak temperature

on multi-core platform, so-called “step-up schedule”. We show that the traditional

WCET-based peak temperature prediction is inaccurate. Instead, we formally prove

118

that translating the given schedule to a step-up schedule can effectively bound the

peak temperature, especially when the actual execution time varies from WCET.

These principles are general enough to be applied on 2D and 3D multi-core plat-

forms, and form the theoretical basis for a more rigorous analytical study of multi-

core thermal problems.

We next solve the throughput maximization problem based on the step-up sched-

ule and a frequency oscillating method. We found that oscillating on one/part of

the multi-core platform cannot always reduce the peak temperature. Instead, syn-

chronously oscillating all the cores monotonically reduces the peak temperature,

when not considering the transition overhead. Further, we proposed design-time

frequency/voltage oscillating approach on multi-core platforms incorporating the

switching overhead.

Finally, we study the problem on how to reduce the energy consumption for a

periodic real-time system under a given peak temperature constraint. We observed

that evenly distributes the workload on all the processing cores no longer maximize

the energy efficiency when the leakage power becomes significant. To this end,

we propose a thermal-balancing approach to improve the overall system energy

efficiency, especially when the temperature constraints are tight. We first identify

the lower bound for energy consumption by this approach, and then transform the

task partitioning problem to a variable sized bin packing problem. We further

propose an enhanced algorithm to optimize the task partitioning results.

In sum, as technology scaling is becoming prohibitively expensive, seeking novel

computing system design methodologies with real-time reconfigurability is an effec-

tive way to achieve different optimization goals. The undergoing research intends to

understand the fundamentals through rigorous analytical formal methods, with an

emphasis on the guaranteed performance and thermal constraints in the design of

119

next generation of computing systems. More important, our system-level approaches

can strictly guarantee the peak temperature constraint on multi-core platforms and

they are general enough to be applied on other 2D and 3D multi-core thermal-aware

design.

6.2 Future work

In the long term, the radical changes that involve completely different ways to

compute will certainly happen, e.g. quantum, neuromorphic or mobile comput-

ing, etc. What is more, the way people use computing devices, e.g. smartphone

or smart drive, and the new type of workload features, e.g. in visual processing,

big data, AR/VR or cryptography technologies, challenge the semiconductor in-

dustry in many fronts. For example, the system scope, from single device to the

system-of-systems, serves as a catalyst to accelerate the system innovation, both

from architecture and system design perspectives. In addition, the real-time analy-

sis and prediction becomes more complicated in consideration of human interference

and environmental dynamics [98, 99, 83, 41, 60, 49, 61, 62]. My research aims to

design adequate methodologies to predict/optimize the system behavior from the re-

source management standpoint to cope with the full complexity of future computing

systems [146, 121, 94, 90, 143, 137, 155, 97, 152]. In particular, my future research

aims to (1) design/optimize the computing systems that can better utilize system re-

sources for performance improvement, (2) enhance the system power/thermal pred-

icability with dynamic environment, (3) develop more aggressive and smart heat

removal packages and methodologies.

3D IC Design From the hardware design perspective, 3D IC, integrating tran-

sistors vertically in three-dimension is a promising solution to achieve higher com-

120

puting performance for future generations of IC chips. However, it becomes insuffi-

cient to use the traditional cooling techniques, such as cooling fan and heat sink, to

remove the tremendous heat in a high power density and longer heat removal path.

The thermal problem has become the bottleneck in the design of future generations

of high-performance computing systems [116, 112, 33, 32, 116, 149, 23, 123, 29, 107,

128, 135].

The new liquid-based cooling method attracts researchers’ and industrials’ at-

tention; however, the different thermal characteristics and controllability of liquid

coolant raise new challenge in 3D processor design, e.g. the coolant tempera-

ture/heat removal capacity is quite different near the microchannel inlet and outlet,

which exaggerates the thermal/performance imbalance across the chip [58, 75, 147,

129, 8, 108, 105, 159, 77, 120, 142, 3, 154, 67, 110, 34, 1]

One of my research interests is to build a more aggressive and finer granularity

cooling infrastructure, that can be incorporated into the task allocation strategy,

such that the cooling itself is a dynamic and a smart self-adjustable mechanism. The

research can be conducted from two directions: (1) hardware innovation: design-

ing a non-uniformed microchannel with different pipe widths/densities/topologies to

mitigate the 3D thermal gradient in nature; (2) hardware and software co-schedule:

developing coolant speed control schedules that match the task-assignment and exe-

cution speed control strategies [93, 88, 26, 27, 81]. The design outcomes are expected

to enhance the existing 3D temperature prediction accuracy and response time, and

deliver a higher system performance/reliability, etc.

Cyber-Physical Systems (CPS) Cyber-Physical Systems (CPS) links physical

and computational counterparts to realize a smarter and seamless integration of

computing, communication and control systems, and it drives innovative view of

human and societal activities, including intelligent traffic monitoring, healthcare and

121

agriculture, etc. However, how to enhance the system utilization to improve the CPS

real-time responsibility and controllability is a major concern. The challenge lies in

the fact that: (1) A large scale of different devices and systems are connected in a

complex network. (2) The distributed configurations may rapidly change, which, in

turn, challenge the real-time feasibility and controllability.

It is worth to study the spatial, temporal and hierarchical distribution charac-

teristics in CPS system by capturing the coupled correlations on the system level

to re-evaluate the system performance, reliability and power/energy from a statis-

tical view. For example, many of the existing performance and power prediction

tools are built upon the worst-case execution time, which is over pessimistic in a

large dynamic distributed environment. To capture the reality of the system be-

havior, the statistical Quality-of-Service (QoS) on CPS need to be improved of

its real-time schedulability. The future CPS system is also expected to deliver a

higher service capacity to cope with “big data” and “Internet-of-Thing” for real-

time control and adaptation. Since many applications exhibit large data volumes,

the response time or energy in data storage, movement and processing dominates

the system performance [136, 133, 45, 127, 25, 97, 118, 51]. I would like to con-

duct research on the memory-centric design, e.g. 3D memory stacking, processing

in memory (PIM) [6, 36, 28, 158], etc, to enable future data processing beyond the

state-of-the-art.

122

BIBLIOGRAPHY

[1] July 1975.

[2] M. Ahmed, N. Fisher, S. Wang, and P. Hettiarachchi. Minimizing peak tem-
perature in embedded real-time systems via thermal-aware periodic resources.
Sustainable Computing: Informatics and Systems, 1(3):226 – 240, 2011. The-
oretical aspects of Sustainable Computing.

[3] R. Ahmed, P. Huang, M. Millen, and L. Thiele. On the design and application
of thermal isolation servers. ACM Trans. Embed. Comput. Syst., 16(5s):165:1–
165:19, Sept. 2017.

[4] R. Ahmed, P. Ramanathan, and K. Saluja. Necessary and sufficient conditions
for thermal schedulability of periodic real-time tasks. In ECRTS, pages 243–
252, 2014.

[5] R. Ahmed, P. Ramanathan, and K. K. Saluja. Necessary and sufficient condi-
tions for thermal schedulability of periodic real-time tasks under fluid schedul-
ing model. ACM Trans. Embed. Comput. Syst., 15(3):49:1–49:26, May 2016.

[6] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA), pages
105–117, June 2015.

[7] H. Anton. Elementary Linear Algebra, Applications Version 11E with Wiley-
Plus Card. John Wiley & Sons, Incorporated, 2014.

[8] K. Baati and M. Auguin. Temperature-aware dvfs-dpm for real-time appli-
cations under variable ambient temperature. In 2013 8th IEEE International
Symposium on Industrial Embedded Systems (SIES), pages 13–20, June 2013.

[9] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. Energy-aware
scheduling for real-time systems: A survey. ACM Trans. Embed. Comput.
Syst., 15(1):7:1–7:34, Jan. 2016.

[10] M. Bao, A. Andrei, P. Eles, and Z. Peng. On-line thermal aware dynamic volt-
age scaling for energy optimization with frequency/temperature dependency
consideration. In 2009 46th ACM/IEEE Design Automation Conference, pages
490–495, July 2009.

123

[11] B. Barrefors, Y. Lu, S. Saha, and J. S. Deogun. A novel thermal-constrained
energy-aware partitioning algorithm for heterogeneous multiprocessor real-
time systems. In 2014 IEEE 33rd International Performance Computing and
Communications Conference (IPCCC), pages 1–8, Dec 2014.

[12] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini. Cooling-aware node-
level task allocation for next-generation green hpc systems. In 2016 Interna-
tional Conference on High Performance Computing Simulation (HPCS), pages
690–696, July 2016.

[13] F. Beneventi, A. Bartolini, A. Tilli, and L. Benini. An effective gray-box
identification procedure for multicore thermal modeling. IEEE Transactions
on Computers, 63(5):1097–1110, May 2014.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[15] R. W. Brodersen. Minimizing power consumption in digital cmos circuits.
2004.

[16] W. L. Brogan. Modern Control Theory. Ergodebooks, Richmond, TX, second
edition, 1985.

[17] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah.
A categorization of real-time multiprocessor scheduling problems and algo-
rithms. In HANDBOOK ON SCHEDULING ALGORITHMS, METHODS,
AND MODELS. Chapman Hall/CRC, Boca, 2004.

[18] T. Chantem, X. S. Hu, and R. P. Dick. Online work maximization under a
peak temperature constraint. In ISLPED, pages 105–110, 2009.

[19] T. Chantem, X. S. Hu, and R. P. Dick. Temperature-aware scheduling and
assignment for hard real-time applications on mpsocs. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 19(10):1884–1897, Oct 2011.

[20] V. Chaturvedi, H. Huang, S. Ren, and G. Quan. On the fundamentals of
leakage aware real-time dvs scheduling for peak temperature minimization.
Journal of Systems Architecture, 58(10):387–397, 2012.

[21] A. Chen. International technology roadmap for semiconductors, emerging
research devices workshop. 2015.

124

[22] G. Chen, K. Huang, and A. Knoll. Energy optimization for real-time mul-
tiprocessor system-on-chip with optimal dvfs and dpm combination. ACM
Trans. Embed. Comput. Syst., 13(3s):111:1–111:21, Mar. 2014.

[23] G. Chen, J. Kuang, Z. Zeng, H. Zhang, E. F. Y. Young, and B. Yu. Minimizing
thermal gradient and pumping power in 3d ic liquid cooling network design. In
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6, June 2017.

[24] J. J. Chen and L. Thiele. Task partitioning and platform synthesis for energy
efficiency. In RTCSA, pages 393–402, Aug 2009.

[25] M. Chen, X. Zhang, H. Gu, t. wei, and Q. Zhu. Sustainability-oriented eval-
uation and optimization for mpsoc task allocation and scheduling under ther-
mal and energy variations. IEEE Transactions on Sustainable Computing,
PP(99):1–1, 2017.

[26] Y.-J. Chen, C.-L. Yang, P.-S. Lin, and Y.-C. Lu. Opportunities of syner-
gistically adjusting voltage-frequency levels of cores and drams in cmps with
3d-stacked drams for efficient thermal control. SIGAPP Appl. Comput. Rev.,
16(1):26–35, Apr. 2016.

[27] W. K. Cheng, R. Y. Wang, and X. L. Li. 3d architecture exploration on ther-
mal effect of dram refresh. In 2016 11th International Microsystems, Packag-
ing, Assembly and Circuits Technology Conference (IMPACT), pages 285–288,
Oct 2016.

[28] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. Prime:
A novel processing-in-memory architecture for neural network computation in
reram-based main memory. In Proceedings of the 43rd International Sympo-
sium on Computer Architecture, ISCA ’16, pages 27–39, Piscataway, NJ, USA,
2016. IEEE Press.

[29] H.-W. Chiou and Y.-M. Lee. Thermal simulation for two-phase liquid cooling
3d-ics. Journal of Computer and Communications, (4):33–45, 2016.

[30] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin
Packing Approximation Algorithms: Survey and Classification, pages 455–531.
Springer New York, New York, NY, 2013.

[31] S. R. Corporation. International technology roadmap for semiconductors.
2015.

125

[32] A. K. Coskun, D. Atienza, T. S. Rosing, T. Brunschwiler, and B. Michel.
Energy-efficient variable-flow liquid cooling in 3d stacked architectures. In
2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010),
pages 111–116, March 2010.

[33] A. K. Coşkun, J. L. Ayala, D. Atienza, and T. S. Rosing. Thermal Model-
ing and Management of Liquid-Cooled 3D Stacked Architectures, pages 34–55.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[34] Y. Cui, W. Zhang, V. Chaturvedi, and B. He. Decentralized thermal-aware
task scheduling for large-scale many-core systems. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 24(6):2075–2088, June 2016.

[35] R. I. Davis and A. Burns. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comput. Surv., 43(4):35:1–35:44, Oct. 2011.

[36] P. Emma, A. Buyuktosunoglu, M. Healy, K. Kailas, V. Puente, R. Yu, A. Hart-
stein, P. Bose, and J. Moreno. 3d stacking of high-performance processors.
In 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), pages 500–511, Feb 2014.

[37] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger.
Power limitations and dark silicon challenge the future of multicore. ACM
Trans. Comput. Syst., 30(3):11:1–11:27, Aug. 2012.

[38] M. Fan, R. Rong, S. Liu, and G. Quan. Energy calculation for periodic multi-
core scheduling in system thermal steady state with consideration of leakage
and temperature dependency. The Journal of Supercomputing, 71(7):2565–
2584, 2015.

[39] M. Fan, R. Rong, S. Liu, and G. Quan. Energy calculation for periodic multi-
core scheduling in system thermal steady state with consideration of leakage
and temperature dependency. J. Supercomput., 71(7):2565–2584, July 2015.

[40] S. Fan, S. M. Zahedi, and B. C. Lee. The computational sprinting game.
In Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’16,
pages 561–575, New York, NY, USA, 2016. ACM.

[41] X. Feng. Design of Real-time Virtual Resource Architecture for Large-scale
Embedded Systems. PhD thesis, 2004. AAI3127085.

126

[42] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele. Thermal-aware global real-time
scheduling and analysis on multicore systems. J. Syst. Archit., 57(5):547–560,
May 2011.

[43] D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM J.
Comput., 15(1):222–230, Feb. 1986.

[44] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos. Feedback thermal
control of real-time systems on multicore processors. In Proceedings of the
Tenth ACM International Conference on Embedded Software, EMSOFT ’12,
pages 113–122, New York, NY, USA, 2012. ACM.

[45] B. Gaudette, C. J. Wu, and S. Vrudhula. Improving smartphone user expe-
rience by balancing performance and energy with probabilistic qos guarantee.
In 2016 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 52–63, March 2016.

[46] Y. Ge and Q. Qiu. Dynamic thermal management for multimedia applications
using machine learning. In Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pages 95–100, June 2011.

[47] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 2.1, Mar. 2014.

[48] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor schedul-
ing with liu and layland’s utilization bound. In 2010 16th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 165–174, April
2010.

[49] C. Guo, X. Hua, H. Wu, D. Lautner, and S. Ren. Best-harmonically-fit peri-
odic task assignment algorithm on multiple periodic resources. IEEE Trans-
actions on Parallel and Distributed Systems, 27(5):1303–1315, May 2016.

[50] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark
suite. In Proceedings of the Fourth Annual IEEE International Workshop
on Workload Characterization. WWC-4 (Cat. No.01EX538), pages 3–14, Dec
2001.

[51] M. Halpern, Y. Zhu, and V. J. Reddi. Mobile cpu’s rise to power: Quan-
tifying the impact of generational mobile cpu design trends on performance,

127

energy, and user satisfaction. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 64–76, March 2016.

[52] Q. Han, M. Fan, O. Bai, S. Ren, and G. Quan. Temperature-constrained
feasibility analysis for multi-core scheduling. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, PP(99):1–1, 2016.

[53] V. Hanumaiah, D. Desai, B. Gaudette, C.-J. Wu, and S. Vrudhula. Steam:
A smart temperature and energy aware multicore controller. ACM Trans.
Embed. Comput. Syst., 13(5s):151:1–151:25, Oct. 2014.

[54] V. Hanumaiah and S. Vrudhula. Energy-efficient operation of multicore pro-
cessors by dvfs, task migration, and active cooling. IEEE Transactions on
Computers, 63(2):349–360, 2014.

[55] V. Hanumaiah, S. Vrudhula, and K. Chatha. Performance optimal online
dvfs and task migration techniques for thermally constrained multi-core pro-
cessors. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 30(11):1677–1690, Nov 2011.

[56] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. Performance optimal online
dvfs and task migration techniques for thermally constrained multi-core pro-
cessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(11):1677–1690, 2011.

[57] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon
in servers. IEEE Micro, 31(4):6–15, 2011.

[58] S. M. Hassan and S. Yalamanchili. Understanding the impact of air and mi-
crofluidics cooling on performance of 3d stacked memory systems. In Proceed-
ings of the Second International Symposium on Memory Systems, MEMSYS
’16, pages 387–394, New York, NY, USA, 2016. ACM.

[59] S. Hong, T. Chantem, and X. S. Hu. Local-deadline assignment for distributed
real-time systems. IEEE Transactions on Computers, 64(7):1983–1997, July
2015.

[60] X. Hua, C. Guo, H. Wu, D. Lautner, and S. Ren. Schedulability analysis for
real-time task set on resource with performance degradation and dual-level
periodic rejuvenations. IEEE Transactions on Computers, PP(99):1–1, 2016.

128

[61] X. Hua, Z. Li, H. Wu, C. Guo, and S. Ren. Periodic resource integration.
Journal of Systems and Software, 110:193 – 204, 2015.

[62] X. Hua, Z. Li, H. Wu, and S. Ren. Scheduling periodic tasks on multiple
periodic resources. 2014 The Fourth International Conference on Advanced
Communications and Computation (INFOCOMP), PP:35–40, 2014.

[63] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu. Throughput maxi-
mization for periodic real-time systems under the maximal temperature con-
straint. ACM Trans. Embed. Comput. Syst., 13(2s):70:1–70:22, Jan. 2014.

[64] H. Huang, G. Quan, and J. Fan. Leakage temperature dependency modeling
in system level analysis. In Quality Electronic Design (ISQED), 2010 11th
International Symposium on, pages 447–452, March.

[65] K. Huang, L. Santinelli, J. J. Chen, L. Thiele, and G. C. Buttazzo. Periodic
power management schemes for real-time event streams. In Proceedings of the
48h IEEE Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, pages 6224–6231, Dec 2009.

[66] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotspot: a compact thermal modeling methodology for early-stage
vlsi design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 14(5):501–513, May 2006.

[67] A. Iranfar, M. Kamal, A. Afzali-Kusha, M. Pedram, and D. Atienza. Thespot:
Thermal stress-aware power and temperature management for multiprocessor
systems-on-chip. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, PP(99):1–1, 2017.

[68] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. ACM Trans.
Algorithms, 3(4), Nov. 2007.

[69] H. Izakian, A. Abraham, and V. Snasel. Comparison of heuristics for schedul-
ing independent tasks on heterogeneous distributed environments. In CSO,
volume 1, pages 8–12, April 2009.

[70] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling
for real-time embedded systems. In DAC, pages 275–280, 2004.

[71] M. Kadin and S. Reda. Frequency planning for multi-core processors under
thermal constraints. In ISLPED, pages 213–216, 2008.

129

[72] A. B. Kahng. The itrs design technology and system drivers roadmap: Process
and status. In Proceedings of the 50th Annual Design Automation Conference,
DAC ’13, pages 34:1–34:6, New York, NY, USA, 2013. ACM.

[73] A. Kanduri, M. H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, and
H. Tenhunen. Dark silicon aware runtime mapping for many-core systems: A
patterning approach. In Computer Design (ICCD), 2015 33rd IEEE Interna-
tional Conference on, pages 573–580, Oct 2015.

[74] H. Khdr, S. Pagani, . Sousa, V. Lari, A. Pathania, F. Hannig, M. Shafique,
J. Teich, and J. Henkel. Power density-aware resource management for hetero-
geneous tiled multicores. IEEE Transactions on Computers, 66(3):488–501,
March 2017.

[75] E. Kim, K. G. Shin, and J. Lee. Real-time battery thermal management
for electric vehicles. In Cyber-Physical Systems (ICCPS), 2014 ACM/IEEE
International Conference on, pages 72–83, April 2014.

[76] Z. Kishka, M. Abul-Ez, M. Saleem, and H. Abd-Elmageed. Lhospital rule for
matrix functions. Journal of the Egyptian Mathematical Society, 21(2):115 –
118, 2013.

[77] C. Krishna and I. Koren. Thermal-aware management techniques for cyber-
physical systems. Sustainable Computing: Informatics and Systems, 15(Sup-
plement C):39 – 51, 2017.

[78] K. Lampka, B. Forsberg, and V. Spiliopoulos. Keep it cool and in time:
With runtime monitoring to thermal-aware execution speeds for deadline con-
strained systems. Journal of Parallel and Distributed Computing, 95:79 – 91,
2016. Special Issue on Energy Efficient Multi-Core and Many-Core Systems,
Part I.

[79] W. Y. Lee. Energy-efficient scheduling of periodic real-time tasks on lightly
loaded multicore processors. IEEE Transactions on Parallel and Distributed
Systems, 23(3):530–537, March 2012.

[80] D. Li and J. Wu. Minimizing energy consumption for frame-based tasks on
heterogeneous multiprocessor platforms. IEEE Transactions on Parallel and
Distributed Systems, 26(3):810–823, March 2015.

[81] D. Li, K. Zhang, A. Guliani, and S. Ogrenci-Memik. Adaptive thermal man-
agement for 3d ics with stacked dram caches. In Proceedings of the 54th Annual

130

Design Automation Conference 2017, DAC ’17, pages 3:1–3:6, New York, NY,
USA, 2017. ACM.

[82] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi. Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. In MICRO, pages 469–480, 2009.

[83] Y. Li, A. M. K. Cheng, and A. K. Mok. Regularity-based partitioning of
uniform resources in real-time systems. In Proceedings of the 2012 IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’12, pages 368–377, Washington, DC, USA, 2012. IEEE
Computer Society.

[84] C. H. Liao and C. H. P. Wen. Thermal-constrained task scheduling on 3-d
multicore processors for throughput-and-energy optimization. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 23(11):2719–2723, Nov
2015.

[85] C. H. Liao, C. H. P. Wen, and K. Chakrabarty. An online thermal-constrained
task scheduler for 3d multi-core processors. In DATE, pages 351–356, 2015.

[86] W. Liao, L. He, and K. M. Lepak. Temperature and supply voltage aware per-
formance and power modeling at microarchitecture level. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 24(7):1042–
1053, July 2005.

[87] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20:46–61, January 1973.

[88] W. H. Lo, K. z. Liang, and T. Hwang. Thermal-aware dynamic page allocation
policy by future access patterns for hybrid memory cube (hmc). In 2016
Design, Automation Test in Europe Conference Exhibition (DATE), pages
1084–1089, March 2016.

[89] G. H. Loh and Y. Xie. 3d stacked microprocessor: Are we there yet? IEEE
Micro, 30(3):60–64, 2010.

[90] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A statistical response-time
analysis of real-time embedded systems. In Real-Time Systems Symposium
(RTSS), 2012 IEEE 33rd, pages 351–362, Dec 2012.

131

[91] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu. Improving system-level lifetime
reliability of multicore soft real-time systems. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, PP(99):1–11, 2017.

[92] M. Marcus and H. Minc, editors. A Survey of Matrix Theory and Matrix
Inequalities. Allyn and Bacon, Boston, MA, USA, 1964.

[93] M. D. Marino. Abat-fs: Towards adjustable bandwidth and temperature via
frequency scaling in scalable memory systems. Microprocessors and Microsys-
tems, 45(Part B):339 – 354, 2016.

[94] D. Maxim, O. Buffet, L. Santinelli, L. Cucu-Grosjean, and R. I. Davis. Op-
timal priority assignment algorithms for probabilistic real-time systems. In
19th International Conference on Real-Time and Network Systems, RTNS’11,
Nantes, France, September 29-30, 2011. Proceedings, pages 129–138, 2011.

[95] C. D. Meyer, editor. Matrix Analysis and Applied Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[96] M. Mitchell Waldrop. The chips are down for moore’s law. Nature News,
530:144, 02 2016.

[97] M. Mohaqeqi, M. Kargahi, and K. Fouladi. Stochastic thermal control of a
multicore real-time system. In 2016 24th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP), pages 208–
215, Feb 2016.

[98] A. K. Mok and X. Alex. Towards compositionality in real-time resource parti-
tioning based on regularity bounds. In Real-Time Systems Symposium, 2001.
(RTSS 2001). Proceedings. 22nd IEEE, pages 129–138, Dec 2001.

[99] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time systems. In
Real-Time Technology and Applications Symposium, 2001. Proceedings. Sev-
enth IEEE, pages 75–84, 2001.

[100] F. Mulas, D. Atienza, A. Acquaviva, S. Carta, L. Benini, and G. D. Micheli.
Thermal balancing policy for multiprocessor stream computing platforms.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 28(12):1870–1882, Dec 2009.

132

[101] A. Mutapcic, S. Boyd, S. Murali, D. Atienza, G. D. Micheli, and R. Gupta.
Processor speed control with thermal constraints. IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, 56(9):1994–2008, Sept 2009.

[102] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre. A survey on techniques
for improving the energy efficiency of large-scale distributed systems. ACM
Comput. Surv., 46(4):47:1–47:31, Mar. 2014.

[103] S. Pagani and J. J. Chen. Energy efficiency analysis for the single frequency
approximation (sfa) scheme. In RTCSA, pages 82–91, Aug 2013.

[104] S. Pagani, J. J. Chen, M. Shafique, and J. Henkel. Matex: Efficient transient
and peak temperature computation for compact thermal models. In DATE,
pages 1515–1520, 2015.

[105] S. Pagani, H. Khdr, J. J. Chen, M. Shafique, M. Li, and J. Henkel. Ther-
mal safe power (tsp): Efficient power budgeting for heterogeneous manycore
systems in dark silicon. IEEE Transactions on Computers, PP(99):1–1, 2016.

[106] S. Pagani, H. Khdr, J. J. Chen, M. Shafique, M. Li, and J. Henkel. Thermal
safe power (tsp): Efficient power budgeting for heterogeneous manycore sys-
tems in dark silicon. IEEE Transactions on Computers, 66(1):147–162, Jan
2017.

[107] P. R. Parida, A. Sridhar, A. Vega, M. D. Schultz, M. Gaynes, O. Ozsun,
G. McVicker, T. Brunschwiler, A. Buyuktosunoglu, and T. Chainer. Thermal
model for embedded two-phase liquid cooled microprocessor. In 2017 16th
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems (ITherm), pages 441–449, May 2017.

[108] L. Piga, I. Paul, and W. Huang. Performance boosting opportunities under
communication imbalance in power-constrained hpc clusters. In 2016 45th
International Conference on Parallel Processing (ICPP), pages 31–40, Aug
2016.

[109] G. D. Poole. Generalized m-matrices and applications. Mathematics of Com-
putation, 29(131):903–910, 1975.

[110] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel. Improv-
ing mobile gaming performance through cooperative cpu-gpu thermal man-
agement. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, June 2016.

133

[111] M. Pricopi and T. Mitra. Task scheduling on adaptive multi-core. IEEE
Transactions on Computers, 63(10):2590–2603, Oct 2014.

[112] D. Qiu, L. Cao, Q. Wang, F. Hou, and X. Wang. Experimental and numerical
study of 3d stacked dies under forced air cooling and water immersion cooling.
Microelectronics Reliability, 74(Supplement C):34 – 43, 2017.

[113] R. Rao and S. Vrudhula. Fast and accurate prediction of the steady-
state throughput of multicore processors under thermal constraints. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(10):1559–1572, Oct 2009.

[114] A. Rezaei, D. Zhao, M. Daneshtalab, and H. Wu. Shift sprinting: Fine-
grained temperature-aware noc-based mcsoc architecture in dark silicon age.
In Proceedings of the 53rd Annual Design Automation Conference, DAC ’16,
pages 155:1–155:6, New York, NY, USA, 2016. ACM.

[115] M. M. Sabry, A. K. Coskun, D. Atienza, T. . Rosing, and T. Brunschwiler.
Energy-efficient multiobjective thermal control for liquid-cooled 3-d stacked
architectures. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(12):1883–1896, Dec 2011.

[116] M. M. Sabry, A. Sridhar, J. Meng, A. K. Coskun, and D. Atienza. Green-
cool: An energy-efficient liquid cooling design technique for 3-d mpsocs via
channel width modulation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(4):524–537, April 2013.

[117] S. Saha, Y. Lu, and J. S. Deogun. Thermal-constrained energy-aware par-
titioning for heterogeneous multi-core multiprocessor real-time systems. In
RTCSA, pages 41–50, 2012.

[118] O. Sahin and A. K. Coskun. Qscale: Thermally-efficient qos management
on heterogeneous mobile platforms. In Proceedings of the 35th International
Conference on Computer-Aided Design, ICCAD ’16, pages 125:1–125:8, New
York, NY, USA, 2016. ACM.

[119] O. Sahin, P. T. Varghese, and A. K. Coskun. Just enough is more: Achieving
sustainable performance in mobile devices under thermal limitations. In 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 839–846, Nov 2015.

134

[120] B. Salami, H. Noori, F. Mehdipour, and M. Baharani. Physical-aware pre-
dictive dynamic thermal management of multi-core processors. Journal of
Parallel and Distributed Computing, 95(Supplement C):42 – 56, 2016. Special
Issue on Energy Efficient Multi-Core and Many-Core Systems, Part I.

[121] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared resource load
for the performance analysis of multiprocessor systems. In 2010 Design, Au-
tomation Test in Europe Conference Exhibition (DATE 2010), pages 759–764,
March 2010.

[122] L. Schor, H. Yang, I. Bacivarov, and L. Thiele. Worst-case temperature analy-
sis for different resource models. IET Circuits, Devices Systems, 6(5):297–307,
Sept 2012.

[123] C. Serafy, A. Bar-Cohen, A. Srivastava, and D. Yeung. Unlocking the true
potential of 3-d cpus with microfluidic cooling. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 24(4):1515–1523, April 2016.

[124] S. Sha, W. Wen, M. Fan, S. Ren, and G. Quan. Performance maximization
via frequency oscillation on temperature constrained multi-core processors.
In 2016 45th International Conference on Parallel Processing (ICPP), pages
526–535, Aug 2016.

[125] S. Sha, W. Wen, S. Ren, and G. Quan. A thermal-balanced variable-sized-
bin-packing approach for energy efficient multi-core real-time scheduling. In
Proceedings of the on Great Lakes Symposium on VLSI 2017, GLSVLSI ’17,
pages 257–262, New York, NY, USA, 2017. ACM.

[126] S. Sharifi, D. Krishnaswamy, and T. . Rosing. Prometheus: A proactive
method for thermal management of heterogeneous mpsocs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 32(7):1110–
1123, July 2013.

[127] H. F. Sheikh, I. Ahmad, and D. Fan. An evolutionary technique for
performance-energy-temperature optimized scheduling of parallel tasks on
multi-core processors. IEEE Transactions on Parallel and Distributed Sys-
tems, 27(3):668–681, March 2016.

[128] L. Siddhu and P. R. Panda. Thermal aware runtime management of 3d mem-
ory architecture. CSI Transactions on ICT, 5(2):129–134, Jun 2017.

135

[129] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Analysis and mapping
for thermal and energy efficiency of 3-d video processing on 3-d multicore pro-
cessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(8):2745–2758, Aug 2016.

[130] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras. Predictive dynamic thermal
and power management for heterogeneous mobile platforms. In 2015 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 960–965,
March 2015.

[131] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan. Temperature-aware microarchitecture: Modeling and implementa-
tion. ACM Transactions on Architecture and Code Optimization, 1(1):94–125,
2004.

[132] W. Sun and T. Sugawara. Heuristics and evaluations of energy-aware task
mapping on heterogeneous multiprocessors. In IPDPSW, pages 599–607, May
2011.

[133] T.-C. Tang and Y.-S. Chen. Thermal-aware mapreduce real-time scheduling in
heterogeneous server systems. In Proceedings of the International Conference
on Research in Adaptive and Convergent Systems, RACS ’16, pages 207–212,
New York, NY, USA, 2016. ACM.

[134] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Circuits and Systems, 2000. Proceedings. ISCAS
2000 Geneva. The 2000 IEEE International Symposium on, volume 4, pages
101–104 vol.4, 2000.

[135] T.-H. Tsai and Y.-S. Chen. Thermal-throttling server: A thermal-aware real-
time task scheduling framework for three-dimensional multicore chips. Journal
of Systems and Software, 112(Supplement C):11 – 25, 2016.

[136] S. K. S. Tyagi, D. K. Jain, S. L. Fernandes, and P. K. Muhuri. Thermal-aware
power-efficient deadline based task allocation in multi-core processor. Journal
of Computational Science, 19(Supplement C):112 – 120, 2017.

[137] I. Ukhov, P. Eles, and Z. Peng. Probabilistic analysis of power and temperature
under process variation for electronic system design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 33(6):931–944,
June 2014.

136

[138] I. Ukhov, P. Eles, and Z. Peng. Temperature-centric reliability analysis and
optimization of electronic systems under process variation. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 23(11):2417–2430, Nov 2015.

[139] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani, J. Li,
L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Y. Zomaya, C.-Z. Xu,
P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D. Kliazovich, and P. Bouvry. An
overview of energy efficiency techniques in cluster computing systems. Cluster
Computing, 16(1):3–15, Mar. 2013.

[140] R. Viswanath, W. Vijay, A. Watwe, and V. Lebonheur. Thermal performance
challenges from silicon to systems. In Intel Technology Journal, Q3, 2000.

[141] W. Wahby, L. Zheng, Y. Zhang, and M. S. Bakir. A simulation tool for
rapid investigation of trends in 3-dic performance and power consumption.
IEEE Transactions on Components, Packaging and Manufacturing Technol-
ogy, 6(2):192–199, Feb 2016.

[142] J. Wang, Z. Lu, Y. Li, Y. Fu, and J. Guo. A high-level thermal model-based
task mapping for cmps in dark-silicon era. IEEE Transactions on Electron
Devices, 63(9):3406–3412, Sept 2016.

[143] T. Wang, L. Niu, S. Ren, and G. Quan. Multi-core fixed-priority scheduling
of real-time tasks with statistical deadline guarantee. In Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition, DATE
’15, pages 1335–1340, San Jose, CA, USA, 2015. EDA Consortium.

[144] Z. Wang and S. Ranka. A simple thermal model for multi-core processors and
its application to slack allocation. In IPDPS, pages 1–11, 2010.

[145] Z. Wang and S. Ranka. Thermal constrained workload distribution for maxi-
mizing throughput on multi-core processors. In IGCC, pages 291–298, 2010.

[146] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time
problem—overview of methods and survey of tools. ACM Trans. Em-
bed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[147] Q. Xie, J. Kim, Y. Wang, D. Shin, N. Chang, and M. Pedram. Dynamic
thermal management in mobile devices considering the thermal coupling be-

137

tween battery and application processor. In 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 242–247, Nov 2013.

[148] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages
374–382, Oct 1995.

[149] P. Zajc, C. Maj, and A. Napieralski. Peak temperature reduction by optimizing
power density distribution in 3d ics with microchannel cooling. Microelectron-
ics Reliability, 2017.

[150] A. N. Zehmakan. Bin packing problem: Two approximation algorithms. 2015.

[151] H. Zhang and H. Hoffmann. Maximizing performance under a power cap: A
comparison of hardware, software, and hybrid techniques. In Proceedings of
the Twenty-First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’16, pages 545–559,
New York, NY, USA, 2016. ACM.

[152] K. Zhang, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, and P. Beck-
man. Minimizing thermal variation across system components. In Parallel and
Distributed Processing Symposium (IPDPS), 2015 IEEE International, pages
1139–1148, May 2015.

[153] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.
Hotleakage: A temperature-aware model of subthreshold and gate leakage
for architects. Technical report, 2003.

[154] J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan, and Y. Ma. Re-
liability and temperature constrained task scheduling for makespan minimiza-
tion on heterogeneous multi-core platforms. Journal of Systems and Software,
133(Supplement C):1 – 16, 2017.

[155] J. Zhou and T. Wei. Stochastic thermal-aware real-time task scheduling with
considerations of soft errors. Journal of Systems and Software, 102:123 – 133,
2015.

[156] J. Zhou, T. Wei, M. Chen, J. Yan, S. Hu, and Y. Ma. Thermal-aware task
scheduling for energy minimization in heterogeneous real-time mpsoc systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, PP(99):1–1, 2015.

138

[157] J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu, and Y. Ma. Thermal-aware task
scheduling for energy minimization in heterogeneous real-time mpsoc systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 35(8):1269–1282, Aug 2016.

[158] Y. Zhu, B. Wang, D. Li, and J. Zhao. Integrated thermal analysis for pro-
cessing in die-stacking memory. In Proceedings of the Second International
Symposium on Memory Systems, MEMSYS ’16, pages 402–414, New York,
NY, USA, 2016. ACM.

[159] Z. Zhu, V. Chaturvedi, A. K. Singh, W. Zhang, and Y. Cui. Two-stage
thermal-aware scheduling of task graphs on 3d multi-cores exploiting appli-
cation and architecture characteristics. In 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 324–329, Jan 2017.

[160] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Survey
of energy-cognizant scheduling techniques. IEEE Transactions on Parallel and
Distributed Systems, 24(7):1447–1464, July 2013.

[161] C. Zweben. Ultrahigh-thermal-conductivity packaging materials. In
STHERM, pages 168–174, 2005.

139

VITA

SHI SHA

2007 B.S., Electrical Engineering
Beihang University
Beijing, China

2010 M.S., Telecommunications Systems Management
Murray State University
Kentucky, USA

2018 Ph.D. candidate, Electrical and Computer Engineering
Florida International University
Florida, USA

PUBLICATIONS

Shi Sha, W. Wen, S. Ren and Gang Quan, ”M-Oscillating: Performance Maximiza-
tion on Temperature-Constrained Multi-Core Processors”, IEEE Transactions on
Parallel and Distributed Systems (TPDS), 2018 (conditionally accepted).

Shi Sha, G. A. Chaparro-Baquero, W. Wen and Gang Quan,“On the Fundamentals
of thermal analysis on Multi-core Platforms”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2018 (under review).

Shi Sha, W. Wen, S. Ren and Gang Quan,“Thermal-Constrained Energy Effi-
cient Real-Time Scheduling on Multi-Core Platforms”, Journal of Parallel Com-
puting (PARCO), 2018 (under review).

G. A. Chaparro-Baquero, Shi Sha, S. Homsi, W. Wen, Gang Quan, “Thermal-Aware
Joint CPU and Memory Scheduling for Hard Real-Time Tasks on Multi-Core 3D
platforms”, 8th International Green and Sustainable Computing Conference (IGSC),
Orlando, FL 2017.

Shi Sha, W. Wen, S. Ren and Gang Quan, “A Thermal-Balanced Variable-Sized-
Bin-Packing Approach for Energy Efficient Multi-Core Real-Time Scheduling”, 2017
International Great Lakes Symposium on VLSI (GLSVLSI), Banff, Alberta, Canada,
May 10-12, 2017.

140

G. A. Chaparro-Baquero, Shi Sha, S. Homsi, Gang Quan, “Process/Memory Co-
scheduling Using Periodic Resource Server for Real-Time Systems Under Peak Tem-
perature Constraints”, 18th International Symposium on Quality Electronic Design
(ISQED), Santa Clara, CA 2017.

Shi Sha, W. Wen, M. Fan, S. Ren and Gang Quan, “Performance Maximization via
Frequency Oscillation on Temperature Constrained Multicore Processors”, Interna-
tional Conference on Parallel Processing (ICPP) 2016, Philadelphia, PA, August
16-19, 2016.

T. Wang, Q. Han, Shi Sha, W. Wen, Gang Quan and M. Qiu, “Fixed-Priority Pe-
riodic Real-Time Tasks with Explicit Deadlines”, IEEE/ACM Design Automation
Conference (DAC) 2016, Austin, TX, June 5-9, 2016.

M. Fan, V. Chaturvedi, Shi Sha and Gang Quan, “An analytical solution for multi-
core energy calculation with consideration of leakage and temperature dependency,” In-
ternational Symposium on Low Power Electronics and Design (ISLPED), Beijing,
2013, pp. 353-358.

Shi Sha; J. Zhou; C. Liu; Gang Quan, “Power and energy analysis on intel Single-
Chip Cloud Computer system,” IEEE SoutheastCon 2012, Orlando, FL, March 15-
18, 2012.

141

	Florida International University
	FIU Digital Commons
	3-21-2018

	The Thermal-Constrained Real-Time Systems Design on Multi-Core Platforms -- An Analytical Approach
	SHI SHA
	Recommended Citation

	The Thermal-Constrained Real-Time Systems Design on Multi-Core Processors – An Analytical Approach

