
ABSTRACT

Title of dissertation: MULTI-SCALE SCHEDULING TECHNIQUES FOR
SIGNAL PROCESSING SYSTEMS

Zheng Zhou, Doctor of Philosophy, 2013

Dissertation directed by: Shuvra S. Bhattacharyya (Chair/Advisor)
Professor
Department of Electrical and Computer Engineering,
and Institute for Advanced Computer Studies

Gang Qu (Co-Advisor)
Associate Professor
Department of Electrical and Computer Engineering

A variety of hardware platforms for signal processing have emerged, from distribut-

ed systems such as Wireless Sensor Networks (WSNs) to parallel systems such as Multi-

core Programmable Digital Signal Processors (PDSPs), Multicore General Purpose Pro-

cessors (GPPs), and Graphics Processing Units (GPUs) to heterogeneous combinations

of parallel and distributed devices. When a signal processing application is implemented

on one of those platforms, the performance critically depends on the scheduling tech-

niques, which in general allocate computation and communication resources for compet-

ing processing tasks in the application to optimize performance metrics such as power

consumption, throughput, latency, and accuracy.

Signal processing systems implemented on such platforms typically involve mul-

tiple levels of processing and communication hierarchy, such as network-level, chip-

level, and processor-level in a structural context, and application-level, subsystem-level,

component-level, and operation- or instruction-level in a behavioral context. In this thesis,

we target scheduling issues that carefully address and integrate scheduling considerations

at different levels of these structural and behavioral hierarchies. The core contributions of

the thesis include the following.

1. Considering both the network-level and chip-level, we have proposed an adaptive

scheduling algorithm for wireless sensor networks (WSNs) designed for event de-

tection. Our algorithm exploits discrepancies among the detection accuracies of

individual sensors, which are derived from a collaborative training process, to al-

low each sensor to operate in a more energy efficient manner while the network

satisfies given constraints on overall detection accuracy.

2. Considering the chip-level and processor-level, we incorporate both temperature

and process variations to develop new scheduling methods for throughput maxi-

mization on multicore processors. In particular, we study how to process a large

number of threads with high speed and without violating a given maximum temper-

ature constraint. We target our methods to multicore processors in which the cores

may operate at different frequencies and different levels of leakage. We develop

speed selection and thread assignment schedulers based on the notion of a core’s

steady state temperature.

3. Considering the application-level, component-level and operation-level, we develop

a new dataflow based design flow within the targeted dataflow interchange format

(TDIF) design tool. Our new multiprocessor system-on-chip (MPSoC)-oriented de-

sign flow, called TDIF-PPG, is geared towards analysis and mapping of embedded

DSP applications on MPSoCs. An important feature of TDIF-PPG is its capability

to integrate graph level parallelism and actor level parallelism into the application

mapping process. Here, graph level parallelism is exposed by the dataflow graph

application representation in TDIF, and actor level parallelism is modeled by a nov-

el model for multiprocessor dataflow graph implementation that we call the Parallel

Processing Group (PPG) model.

4. Building on Contribution 3, we formulate a new type of parallel task scheduling

problem called Parallel Actor Scheduling (PAS) for chip-level MPSoC mapping

of DSP systems that are represented as synchronous dataflow (SDF) graphs. In

contrast to traditional SDF-based scheduling techniques, which focus on exploit-

ing graph level (inter-actor) parallelism, the PAS problem targets the integrated

exploitation of both intra- and inter-actor parallelism for platforms in which indi-

vidual actors can be parallelized across multiple processing units. We address a

special case of the PAS problem in which all of the actors in the DSP application

or subsystem being optimized can be parallelized. For this special case, we devel-

op and experimentally evaluate a two-phase scheduling framework with two work

flows — particle swarm optimization with a mixed integer programming formula-

tion, and particle swarm optimization with a fast heuristic based on list scheduling.

MULTI-SCALE SCHEDULING TECHNIQUES FOR SIGNAL
PROCESSING SYSTEMS

by

Zheng Zhou

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctory of Philosophy

2013

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Gang Qu, Co-Advisor
Professor Steven Tretter
Professor Manoj Franklin
Professor Yang Tao, Dean’s representative

c© Copyright by
Zheng Zhou

2013

Dedication

To my parents, my wife and my son.

ii

Acknowledgments

I express my sincere thanks to my advisor Prof. Shuvra Bhattacharyya for his men-

toring, gudiance, and inspiration on my research. I am particularly grateful for letting

me become a member of the DSPCAD group where I worked on applicable projects and

enjoyed great freedom for my research interests. Professor Bhattacharyya taught me in

many ways how to become a good researcher. He gave me inspiring advice and insights

to broad the vision my the research. He used his expertise in field of Digital Signal Pro-

cessing to help me understand and solve the problems effectively and quickly in this field.

He carefully reviewed every sentence of my paper to improve the quality of the paper.

He generous shared with me the tips for the presentation. He introduced me excellent

opportunities to know and work with other great researchers. I will always feel thankful

for the time we working together.

I also want to express my deep gratitude to my co-advisor Prof. Gang Qu for

his patient guidance, enthusiastic encouragement and useful critiques on my research of

Wireless Sensor Network and Multicore Processor Low Power Design. I had not written

any scientific paper before working with him. He expressed a great deal of patience to

correct the mistakes I had made in my papers and carefully explained to me the good

writing style. The work experience with Prof. Gang Qu help to build a good foundation

for my research and future career path. I will be always grateful to him.

I am also thankful to other members of my PhD dissertation committee Prof. Steven

Tretter, Prof. Manoj Franklin, and Prof. Yang Tao for their comments , co-operation and

valuable feedback.

iii

I am very grateful to Karol Desnos at Institute of Electronics and Telecommunica-

tions Rennes (IETR). During his visit at DSPCAD group, he shared with me a lot about

his research experiences. I have learned a lot from him. The discussions between us lead

to a very good paper idea. His reviews on the paper was also greatly appreciated.

The memories at the Maryland DSPCAD group will be always cherished. I am so

thankful to the members of DSPCAD group, my colleagues and my friends—Dr. William

Plishker, Dr. Chung-Ching, Dr. George Zaki, Dr. Hsiang-Huang Wu, Inkeun Cho, llya

Chukhman, Lai-Huei Wang, Scott Kim, Kishan Sudusinghe and Shuoxin Lin for the in-

teresting discussions we had together. Especially, I want to thank Dr. Hsiang-Huang Wu

and Lai-Huei Wang for sharing their opinions on many interesting topics with me.

Thank you to the entire ECE Department at University of Maryland. Thank you

to all the staff and faculty that I worked with, especially that of Graduate Studies Office,

Payroll Offices, UMIACS Business Offices for their constant help, advice, and support.

I want to say thank you to my close friends I met at University of Maryland—

Changjiang Zhou, Xiaopeng Song, Kai Zhong, Dongquan Shen, Xinyi Chen, Qingtan

Wu, Yi Niu, Hao Chen, Qingzun Wu, Shichun Wu, Di Wu, Yirui Pan, Xuan Liu, Xing

Xu, Haoyu Wang, Tao Tao... I can not name everyone of them, but I will always remember

everyone. You made my stay at University of Maryland so enjoyable.

I want to thank Youngho Cho, a PhD student supervised by Prof. Gang Qu for his

valuable and constructive suggestions on my research works.

Finally and most importantly, my heartfelt appreciation goes to my parents Fulin

Zhou and Jibin Sun, my wife Wei, my son BiuBiu and every member of my family for

their unrequited love and continuous support. Mom and Dad, you are wonderful parents I

iv

will try to imitate. I would like to thank my wonderful wife Wei for her support, encour-

agement, patience and unwavering love. I also want to thank my little son BiuBiu who

is still behind mom’s belly for bringing me so much pleasure in the last year of my PhD

study.

The research underlying this thesis was supported in part by the Laboratory for

Telecommunications Sciences and Texas Instruments.

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Overview . 1
1.2 Contributions . 3

1.2.1 Scheduling Event Detection on Wireless Sensor Networks 4
1.2.2 Scheduling Multithread Applications on Multicore GPPs 5
1.2.3 Exposing Intra- and Inter-Actor Parallelism for Implementation

of DSP Applications . 6
1.2.4 Scheduling Parallelized Synchronous DSP Systems on Multicore

PDSPs . 8
1.2.5 A Cross-platform Design Flow for DSP Applications 9

1.3 Dissertation Organization . 10

2 Scheduling Event Detection on Wireless Sensor Networks 12
2.1 Introduction . 12
2.2 Related Works . 15
2.3 Proposed Adaptive Detection Scheme 17

2.3.1 Problem Statement . 17
2.3.2 Overview . 18
2.3.3 Training Process . 21
2.3.4 Local Decision Rule . 24
2.3.5 Final Decision Rule . 29
2.3.6 The Extensible Work . 30

2.4 Experiment Methodology . 31
2.4.1 Experimental Setups . 31
2.4.2 Energy Efficiency under One Set of Parameters 33
2.4.3 Impact of the Key Parameters 34

2.5 Summary . 38

3 Scheduling Multithread Application on Multicore GPPs 40
3.1 Introduction . 41

3.1.1 Related Work . 42
3.1.2 Main Contributions . 43

3.2 Motivation Example . 44
3.3 Preliminary . 45

3.3.1 Performance Analysis . 45
3.3.2 Processor Model . 46
3.3.3 Power and Thermal Model . 47
3.3.4 Problem Formulation . 48

3.4 Analytical Solutions . 49

vi

3.4.1 Steady State Throughput . 49
3.4.2 Local Optimal Frequency . 51

3.5 Scheduling Framework . 54
3.6 Experiment Results . 57

3.6.1 Experimental Setup . 57
3.6.2 The Throughput of Static and Dynamic Scheduling 58
3.6.3 Completion Time Reduction . 60

3.7 Summary . 60

4 Exposing Intra- and Inter-Actor Parallelism for Implementation of DSP Applica-
tions 63
4.1 Introduction . 64
4.2 Related Work and Background . 67

4.2.1 Core Functional Dataflow . 67
4.2.2 Targeted Dataflow Interchange Format 68
4.2.3 Related Work . 68

4.3 TDIF-PPG Design Flow . 70
4.4 Parallel Processing Group . 74

4.4.1 Model Description . 74
4.4.2 Application Programming Interfaces 76
4.4.3 PPG Static Execution Flow . 77
4.4.4 Examples . 79

4.4.4.1 FIR Filter . 79
4.4.4.2 FFT . 81

4.4.5 Discussions . 83
4.5 Experiments . 83
4.6 Summary . 89

5 Scheduling Parallelized Synchronous DSP Systems on Multicore PDSPs 91
5.1 Introduction . 92
5.2 Background . 95

5.2.1 Dataflow Interchange Format . 95
5.3 Problem Statement . 96
5.4 Mixed Integer Programming Solution 101

5.4.1 Computation Usage Graph . 102
5.4.2 Mixed Integer Programming Formulation 103

5.5 List Scheduling Solution . 105
5.5.1 Story Scheduling Overview . 106
5.5.2 Algorithm Description . 107
5.5.3 Example . 108

5.6 Two Phase Scheduling Framework . 109
5.7 Related Work . 112
5.8 Experiments . 114
5.9 Summary . 120

vii

6 A Cross-platform Design Flow for DSP Applications 121
6.1 Introduction . 122
6.2 Background . 124

6.2.1 Lightweight Dataflow . 124
6.3 From simulation to implementation . 126

6.3.1 Step 1: System Formulation . 126
6.3.2 Step 2: System Validation and Profiling 129
6.3.3 Step 3: System Optimization . 129
6.3.4 Step 4: System Verification and Instrumentation 132
6.3.5 Determining Buffer Sizes . 133
6.3.6 Discussion . 134

6.4 Case Study 1 - CPU/GPU . 135
6.4.1 Simulation . 137
6.4.2 Implementation . 139

6.5 Case Study 2 - Multicore PDSP . 144
6.5.1 Simulation . 145
6.5.2 Implementation . 147

6.5.2.1 Cross-Platform Implementation 148
6.5.2.2 Scheduling and Mapping 151

6.6 Summary . 154

7 Conclusions and Future Work 156
7.1 Distributed Signal Processing Systems 156
7.2 Parallel Signal Processing Systems . 157

7.2.1 Scheduling from Physical Aspects 157
7.2.2 Scheduling from Models of Computation 158

Bibliography 161

viii

List of Figures

2.1 Wireless sensor network for event detection. 13

2.2 The hybrid and adaptive detection schemes (dashed steps is for adaptive

scheme only). 20

2.3 Training process example. 23

2.4 Comparison of the average energy consumption per node per period over

100 independent trials. 34

2.5 Impact of node’s detection accuracy on performance. 36

2.6 Energy savings on systems with different ratio of non-communication en-

ergy in total energy consumption. 38

3.1 A WID Vth variation map for a 16-core processor in (a). The correspond-

ing fmax and Ps map in (b) [43]. 47

3.2 High-level thermal model of a multicore processor [63]. 51

3.3 Dynamic scheduling framework . 55

4.1 TDIF-PPG design flow. 71

4.2 Group owner FSM and state description table for static execution flow. . . 78

4.3 Group member FSM and state description table for static execution flow. . 79

4.4 Mapping data parallelism from an FIR filter to PPG-based actor design. . 80

4.5 PPGs in an FFT actor. 82

4.6 The mp-sched benchmark for SDR. 84

5.1 An example of an assignment-constrained FP-PAS instance. 99

ix

5.2 Solutions for the FP-PAS instance. 100

5.3 Result of applying the story scheduling algorithm on the example of Fig. 5.1.109

5.4 Two-phase scheduling framework for the FP-PAS problem. 111

5.5 Generated AAF and AAF
′

for actor 1. 116

6.1 Dataflow graph of an image processing application for Gaussian filtering. 136

6.2 A typical GPU architecture. 141

6.3 Block diagram of TI TMS320C6678 8-core PDSP device. 144

6.4 An illustration of the mp-sched benchmark. 145

6.5 Multithreaded FIR filter for PDSP implementation. 148

6.6 Parallel FFT actor implementation using TDIF. 151

x

List of Tables

2.1 Key parameters in our adaptive scheme. 19

2.2 Simulation results for different number of nodes K and observations T . . 37

2.3 Energy saving of different detection accuracy requirement. 37

3.1 Comparison of the three different strategies. 45

3.2 Optimal steady state throughput of 16-core processor for problems of d-

ifferent switching activity . 57

3.3 Dynamic scheduling average throughput for different problem size 57

3.4 Performance (completion time) gain with different F and number of cores. 62

4.1 Execution time comparison for sequential FIR filter and parallel FIR filter

implementation on different input sizes. 85

4.2 Execution time and latency comparison among sequential FFT, parallel

FFT using 2 cores and parallel FFT using 3 cores. The results are com-

pared for different input sizes. 86

4.3 Execution time and latency comparison among the 4 schedules. 89

5.1 Performance of both work flows on randomly generated SDF graphs. . . . 118

5.2 Performance of both TPFF work flows on an image registration application.120

6.1 Execution time of the gaussian filter (GF) actor and the Gaussian

filtering application (App) during simulation. 140

xi

6.2 Execution time of the gaussian filter (GF) actor and the Gaussian

filtering application (App) in simulation and GPU-accelerated implemen-

tation. 143

6.3 Execution time comparison between sequential FIR in simulation and par-

allel FIR implementations for different input sizes. 150

6.4 Execution time and latency comparisons between Seq-FFT in simulation,

and the two parallel FFT implementations Ia and Ib. 152

6.5 Execution time and latency comparisons among 3 different scheduling

and mapping schemes and simulation for the mp-sched benchmark. . . . 154

xii

Chapter 1

Introduction

1.1 Overview

As the landscape of signal processing technologies becomes increasingly diverse, a

wide variety of platforms, including General Purpose Processors (GPPs), Graphics Pro-

cessing Units (GPUs), multicore Programmable Digital Signal Processors (PDSPs), Wire-

less Sensor Networks (WSNs), and heterogeneous combinations of these platforms have

been emerging [4]. There are two major trends for the evolution of signal processing plat-

forms. One is distributed systems. A distributed system consists of multiple autonomous

computation nodes that communicate through a wired, wireless or hybrid wired/wireless

network. The computation nodes interact with one other in order to achieve a common

goal. The other one is parallel systems. In this context by a parallel system we mean a

system that involves one more parallel processing devices (PPDs), where by a PPD, we

mean a processor that includes multiple execution units (“cores”) on the same integrated

circuit. Performance gains from parallel systems have been coming more from increas-

ing the number of cores on a single die rather than from increasing the clock frequencies

of individual cores. Distributed systems and parallel systems are typically very different

in terms of hardware and operational structure, power consumption characteristics, and

computational capability.

At the same time, signal processing applications, such as video and audio pro-

1

cessing, wireless communication, environmental monitoring, etc., have been evolving

continually over the past decades: e.g., from H.264 [66] to H.265 [23], and from Global

System for Mobile (GSM) [48] to Long Term Evolution (LTE) [34], to name a few. Imple-

mentation constraints for such applications, such as those involving power consumption,

accuracy, latency and throughput, have been changing steadily as these applications have

evolved.

The development of signal processing systems involves implementation of the ap-

propriate algorithms using programming models that are dependent on (e.g., CUDA [65])

or independent of (e.g., MPI [20], OpenMP [13], Pthreads [49] and OpenCL [30]) of the

target hardware platforms. The programming model provides guidelines for the developer

to specify the computational tasks involved in the application along with the communica-

tion among tasks. In this context, a task can be viewed as a sequence of operations that

utilizes the hardware resources on the target platform.

A schedule is a mapping and ordering of the tasks onto the hardware resources of

the target platform. Scheduling has a strong influence on key implementation metrics,

including latency, throughput, and buffer memory requirements, and is therefore one of

the most critical parts in design flows for signal processing systems. The scheduling

problem is NP hard in many contexts (e.g., see [18]). In practice, heuristics or exact

algorithms are applied to derive scheduling solutions based on the the compilation time

budget and the level of schedule quality desired.

There are many different formulations of scheduling problems. In this thesis, we

first consider a general formulation, where an instance of the scheduling problem is de-

scribed as four terms M , P , N , and O. Here, M is an acyclic dataflow graph model of

2

the application, which specifies the partially ordered tasks in the algorithm, along with

the data dependencies among the tasks. P is the architecture model, which specifies the

type, functionality, quantity and organization of the hardware resources in the target plat-

form. N is a set of constraints that the signal processing system must be designed not to

violate. O is a set of optimization objectives, such as latency minimization or throughput

maximization, for the scheduling problem. Given an instance I = (M,P,N,O) of the

scheduling problem, a solution to the scheduling problem is a mapping and ordering of

tasks and dataflow graph edges in M onto the processing and communication resources

of P . Such a solution is said to be feasible if it satisfies N , and intuitively, the quality

of a feasible schedule is assessed based on how well it performance under the objectives

specified by O.

1.2 Contributions

Signal processing systems implemented on hardware platforms typically involve

multiple levels of processing and communication hierarchy, such as network-level, chip-

level, and processor-level in a structural context, and application-level, subsystem-level,

component-level, and operation- or instruction-level in a behavioral context. In this thesis,

we target scheduling issues that carefully address and integrate implementation consider-

ations at different levels of these structural and behavioral hierarchies.

3

1.2.1 Scheduling Event Detection on Wireless Sensor Networks

A wireless sensor network (WSN) consists of spatially distributed autonomous sen-

sors to monitor physical or environmental conditions, such as temperature, sound, pres-

sure, etc., and to cooperatively pass their data through the network to selected destina-

tions. Among the numerous applications of WSNs, event detection is important and of

wide interest. In a typical WSN for event detection, the sensor nodes are deployed in the

field of interest to monitor the occurrence of an event or the presence of a target so that

appropriate action can be taken.

In the class of event detection systems that we study in this thesis, there are three

main operations for the sensor nodes to perform: data collection, data processing and

data transmission. The sensor nodes collect data from the environment by utilizing their

sensing devices and then process the raw data to extract meaningful information before

transmitting it through the network to a fusion center (FC). At the FC, a final decision

is made on whether or not the event has occurred. This procedure is normally repeated

periodically, where the period is referred to as the detection period.

In our first contribution, we develop a detection scheme that schedules and maps

event detection applications on WSNs. We consider the impact of environment noise,

and other aspects, such as design variation and device ageing at the chip-level. We de-

sign a training process to measure the error probabilities of each sensor in the field. We

propose an energy efficient adaptive scheme for event detection at the network-level, con-

sidering the discrepancies among sensor nodes’ sensing error in a WSN. Specifically, we

configure each sensor node in the most energy efficient way subject to the constraint that

4

the detection requirement must be satisfied. As technology improves, the complexity and

computational capacity of sensor nodes are increasing. More and more intelligent systems

are expected to emerge with such advances in technology. Our adaptive scheme can be

viewed as an example of an intelligent system in a WSN for event detection. Simulation

results show that our simple approach saves significant amounts of energy when system

parameter settings vary.

1.2.2 Scheduling Multithread Applications on Multicore GPPs

Process variation becomes a major design challenge as technology scales. Manufac-

tured dies exhibit large differences in maximum operating frequency (fmax) and leakage

power — both die-to-die (D2D) and within die (WID). It is also expected that WID pro-

cess variations will manifest themselves as core-to-core (C2C) fmax and leakage power

variations when cores within a single die become small enough [43]. When multicore pro-

cessors are globally clocked, fmax is limited by the slowest core in the die and therefore

fails to reach the throughput potential when each core operates at its individual maximal

clock frequency.

Thermal issues are another limiting factor in the speed at which processor cores can

run. When hundreds or thousands of cores are put into a single die, they result in large

chip power density. High on-chip temperature not only increases the cost of packaging

and cooling, it also has a strong impact on circuit reliability, and may cause permanent

damage. Dynamic thermal management (DTM) techniques designed for single-core pro-

cessors do not work well for multicore processors due to spatial temperature variations

5

and thermal influences among cores.

We consider the impact of both temperature and process variations on the schedul-

ing problem for multicore processors, and we consider this detailed scheduling problem

at both the chip-level and processor-level. We formulate the problem and derive analyt-

ical solutions on how to select each core’s speed to minimize an application’s comple-

tion time. We propose an efficient dynamic scheduling strategy that can achieve 1.31X

speedup against conventional globally-synchronized systems, and we show that this level

of speedup — 1.31X — coincides with an upper bound on the achievable throughput.

1.2.3 Exposing Intra- and Inter-Actor Parallelism for Implementation of

DSP Applications

As multicore processor technology evolves, increasing numbers of processors are

integrated into system-on-chip (SoC) devices for signal processing system implementa-

tion. The trend towards multiprocessor SoCs (MPSoCs) is motivated by the performance

gain from efficient parallel execution of programs. This performance gain is determined

in part by the amount of parallelism exposed from the program.

In the third contribution of this thesis, we have introduced a new dataflow based

design flow, called TDIF-PPG, for integrating graph level parallelism and actor level par-

allelism in MPSoC software optimization for DSP applications. Our approach is based on

a new model, called the parallel processing group (PPG), for actor design, and an associ-

ated new plug-in to the targeted dataflow interchange format (TDIF) environment. This

plug-in allows designers to express parallelism within actor designs, and integrate such

6

intra-actor parallelism with the graph level parallelism that is already exposed in TDIF.

There are four layers in the TDIF-PPG design flow. Layer 1 is the system layer

(application-level): the given DSP application is modeled as a core functional dataflow

(CFDF) graph [54] using the DIF language. Layer 2 is the actor interface layer (component-

level): actor interface specifications, including information about input and output ports,

actor parameters, and CFDF modes, for individual actors are provided using the TDIF lan-

guage. Layer 3 is the platform-independent mode specification (PIMS) layer (operation-

level): the Parallel Processing Group (PPG) model [92] guides the programmer in expos-

ing actor level parallelism within the functional specification for each mode of an actor.

Layer 4 is the actor implementation layer (operation-level): generic actor specifications

from the PIMS layer are integrated with optimized platform-specific PPG API and run-

time implementations.

Additionally, we have motivated several directions for future work to help strength-

en the utility of PPG-based actor design and integration. These include exploration of

algorithms for automated scheduling of dataflow graphs that employ PPG-based parallel

actor implementations; accurate and efficient functional simulation of PPG-based designs

for early-stage DSP system validation; and experimentation on other kinds of state-of-

the-art digital signal processing platforms.

7

1.2.4 Scheduling Parallelized Synchronous DSP Systems on Multicore

PDSPs

Increases in computational power from clock frequency improvements have slowed.

The trend toward MPSoC devices is motivated by the performance gain from simulta-

neous utilization of multiple processors for parallel execution of software systems. An

application can be divided into tasks, each representing a piece of the computation per-

formed by the overall software system. By a parallel task in this context, we mean a task

that has some inner parallelism and whose execution can be performed by multiple pro-

cessors. Many techniques have been created for recognizing parallel tasks and exploiting

their inner parallelism (e.g., see [13, 50, 32]).

The performance of a software system composed of parallel tasks depends heavily

on the scheduling of those tasks onto the targeted MPSoC. Each task requires different

amounts of hardware resources for execution. The challenges of scheduling tasks effi-

ciently include allocating hardware resources for competing tasks in such a way that the

task demand is satisfied.

In our fourth contribution of this thesis, we formulate a new type of parallel task

scheduling problem called Parallel Actor Scheduling (PAS) for MPSoC mapping of DSP

systems that are represented as synchronous dataflow (SDF) graphs. This formulation is

developed as a natural extension of the work in Chapter 1.2.3. In contrast to traditional

SDF-based scheduling techniques, which focus on exploiting graph level (inter-actor) par-

allelism, the PAS problem targets the integrated exploitation of both intra- and inter-actor

parallelism for platforms in which individual actors can be parallelized across multiple

8

processing units.

We first address a special case of the PAS problem in which all of the actors in

the DSP application or subsystem being optimized can be parallelized. For this special

case, we develop and experimentally evaluate a two-phase scheduling framework with

two work flows — particle swarm optimization with a mixed integer programming for-

mulation, and particle swarm optimization with a fast heuristic based on list scheduling.

We demonstrate that our FP-PAS targeted scheduling framework provides a useful range

of trade-offs between synthesis time requirements and the quality of the derived solutions.

1.2.5 A Cross-platform Design Flow for DSP Applications

As embedded processing platforms become increasingly diverse, designers must

evaluate trade-offs among different kinds of devices such as GPPs, graphics processing

units (GPUs), multicore programmable digital signal processors (PDSPs), and field pro-

grammable gate arrays (FPGAs). The diversity of relevant platforms is compounded by

the trend towards integrating different kinds of processors onto heterogeneous multicore

devices for DSP (e.g., see [4]). Such heterogeneous platforms help designers to simulta-

neously achieve manageable cost, high power efficiency, and high performance for critical

operations. However, there is a large gap from the simulation phase to the final implemen-

tation. Simulation is used extensively in the early stage of system design for high-level

exploration of design spaces and fast validation. In contrast, in the implementation phase,

there is strong emphasis on platform dependent issues, performance centric optimization,

and tuning low-level implementation trade-offs. A seamless design flow is needed to help

9

designers effectively bridge this gap.

Based on Core Functional Dataflow (CFDF) [56] semantics, two complementary

tools have been developed in recent years. First, the lightweight dataflow (LWDF) pro-

gramming methodology [69] provides a “minimalistic” approach for integrating coarse

grain dataflow programming structures into DSP simulation for fast system formulation,

validation and profiling with arbitrary languages. Second, the targeted dataflow inter-

change format (TDIF) framework [71] provides cross-platform actor design support, and

the integration of (1) code generation for programming interfaces, and (2) low level cus-

tomization for implementations targeted to homogeneous and heterogeneous platforms

alike.

In the fifth contribution of this thesis, we present a novel dataflow-based design

flow that builds upon on both LWDF and TDIF to allow rapid transition from simulation

to optimized implementations on diverse platforms. We present this design flow, and

provide case studies to demonstrate its application.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we intro-

duce our low power event detection scheme for WSNs. In Chapter 3, we demonstrate

our scheduling framework for throughput optimization on multiprocessor system-on-chip

(MPSoC) devices under temperature and process variations. Our novel design flow for

exposing both graph and actor level parallelism in DSP application performance optimiza-

tion is presented in Chapter 4. In Chapter 5, a new scheduling problem associated with the

10

design flow proposed in Chapter 4 is defined, and solutions to this problem are developed.

In Chapter 6, multi-scale scheduling techniques are integrated in a new dataflow-based,

cross-platform design flow for DSP applications. Finally, we discuss conclusions and

directions for future work in Chapter 7.

11

Chapter 2

Scheduling Event Detection on Wireless Sensor Networks

In this chapter, we study scheduling issues at the network-level and chip-level in the

structural context of signal processing system design. Particularly, we propose a schedul-

ing technique for event detection on WSNs. Our proposed technique leverages chip-level

discrepancies in detection accuracy across different sensors in a WSN. In our proposed

design methodology, we characterize such discrepancies through a collaborative training

process, and we apply the resulting characterizations to optimize communication among

sensor nodes (network-level communication). Such optimization is performed to enhance

energy efficiency while guaranteeing overall detection accuracy. Material in this chapter

was published in preliminary form in [94].

2.1 Introduction

Event detection is one of the compelling applications of wireless sensor networks

Figure. 2.1. Detection is of interest for habitat monitoring, security, surveillance and other

defence application. The goal is determine whether a target is present or absent within a

period in sensing field. Among the numerous applications of the wireless sensor network

(WSN), event detection is very popular and important. In a typical WSN for event detec-

tion, the sensor nodes are deployed in the field of interest to monitor the occurrence of

an event or the presence of a target so further action can be taken. In the event detection

12

Figure 2.1: Wireless sensor network for event detection.

task, there are three main operations for the sensor node to perform: data collection, data

process and data transmission. The sensor node collects data from the environment by

utilizing its sensing device and then processes the raw data to extract meaningful infor-

mation before transmitting it to a fusion center (FC) through the network. At the fusion

center, a final decision is made on whether the event has happened or not. This procedure

is normally repeated periodically, and the period is referred to as the detection period.

Normally, a detection scheme specifies (1) how each sensor node collects and pro-

cesses data locally, (2) how the data is transmitted to the fusion center, and (3) how the

fusion center makes the final decision. In the design of detection scheme for event detec-

tion on WSN, there are two essential aspects to be considered: one is the energy efficiency

for the longer battery life, and the other one is the event detection accuracy which spec-

ifies a threshold that the error probability of the final result at the fusion center can not

13

exceed. Intuitively, these two aspects are against each other. Since a high detection ac-

curacy requires more data to be collected, processed with and transmitted, resulting in a

high energy consumption. Therefore, we need to consider the tradeoff between the two

aspects in designing a good detection scheme.

In [87] two simple detection schemes are presented to explore this tradeoff in the

scenario, where the data transmission energy dominates the sensor’s total energy con-

sumption which is a common situation in WSN. In a centralized scheme, at each sensor

node, all the raw data without processing are transmitted back to the fusion center. This

enables the fusion center to make the most accurate decision at the cost of large trans-

missions. In a distributed scheme, each sensor node is allowed to make a local decision

first and then transmits its decision to the fusion center. The distributed scheme is energy

efficient but looses much accuracy. Hence, how to reduce the data transmission energy

while maintain the detection accuracy becomes an interesting problem.

Yu et al. [86] proposed a hybrid scheme that trades the detection accuracy for the

data transmission energy saving. In their approach, each sensor node will send a local

result (like the distributed scheme) if the sensor has a confidence on its local decision;

otherwise the node will transmit all its collected and processed data to the fusion center

(like the centralized scheme). Their simulation results showed that the hybrid scheme is

the most energy efficient scheme to provide a required level of detection accuracy among

three detection schemes. However, the hybrid scheme is based on the assumption that

all individual sensor nodes in the system have the same sensing error probability, which

could not be true in reality due to the environment noise [10, 27] and other aspects such as

the imperfection (design variation) and the natural ageing process of the sensing device.

14

We investigate the same problem of how to design a detection scheme to minimize

the energy consumption of WSN while maintain the system detection accuracy. But our

work is based on a realistic model that sensor node may have variable false positive and

false negative error probability. Our proposed adaptive scheme can leverage the discrep-

ancy among individual sensor’s detection accuracy, which is obtained from a collaborated

training process, to allow each sensor to operate at its most energy efficient manner while

guarantee the overall detection accuracy. A comprehensive set of simulations demon-

strate that significant amount of energy (more than 60% on large scale WSN) can be

saved compared with the best existing scheme.

The rest of chapter is organized as follows: Section 4.2 summaries existing works

in wireless sensor network for event detection; Section 2.3 states the basic problem, de-

scribes our adaptive scheme, and compares it with the hybrid scheme; Section 2.4 discuss-

es the experiment methodology adopted to prove the efficiency of our adaptive scheme;

Section 5.9 concludes that our adaptive scheme is a simple intelligent system which is

more energy efficient than the existing schemes.

2.2 Related Works

Before we elaborate our work, we briefly survey other works on the broad spectrum

of research interests on WSN for event detection. In [73] multiple event detection prob-

lem is studied and solved by an collaborative network of binary sensor, which is capable

of processing the information of multiple events simultaneously. In [80], the problem of

coverage area extension has been investigated. The spatial diversity information from sen-

15

sor reading is gathered. A collaborative signal processing method is proposed to reduce

the environment noise, and improvements are achieved on both the reliability of detection

and the reliable sensing region. A general coverage analysis model is built in [84], and

applied on several simple decision fusion-based collaborative mechanisms, with the cons

and pros being discussed. In [89], Zahedi et al. proposed a common modular analysis

framework for sensor network from existing analysis models. Their method can speed

up the process of design of a required sensor network. In [3], the problem of optimal

node density analysis in detection region is inspected. A solution is explored on a sensor

network in Gauss-Markov random field. In [45], Luo et al considers the sensor fault and

environment noise in sensor network. An individual sensor node is allowed to communi-

cate with its n neighbours and use their binary decisions to correct its own decision. The

authors also propose a detection scheme with an optimal value of n to conserve power.

The above studies take advantages of collaboration among the sensor nodes to im-

prove the detection reliability, coverage, and fault tolerance. However, they introduce,

sometimes large, communication overhead. This will transfer to energy consumption

overhead particularly in the scenario when communication energy dominates the sen-

sor node’s total energy consumption. In [87, 86], the authors assume that each sensor

node performs event detection independently and only relies on each other during the

multi-hop transmission. They formulate and investigate the energy related problems in

WSNs deployed for event detection. In [87], they study the relationship between de-

tection scheme’s performance and its energy efficiency with focus on two representative

detection schemes: the distributed scheme which consumes the least amount of commu-

nication energy but the most computation energy; and the centralized scheme that does

16

the opposite. In [86], they propose a hybrid scheme, which is the most energy efficien-

t scheme to guarantee a given detection accuracy. However, their approach requires all

the sensor nodes to have the same sensing error in the sensing field, which is unrealistic.

In this chapter, we show not only how to remove this assumption, but also how further

energy can be reduced when this assumption can be removed.

The advantages of collaboration among the sensor nodes have been demonstrated

in [5,6,7,8,9,10] for improving the detection reliability, coverage, and fault tolerance, but

it is not a energy efficient method due to the communication overhead. Therefore the

sensor node is required to work independently in [1,2], and the energy saving comes from

the tradeoff between the detection accuracy and the energy consumption. Our adaptive

detection scheme is more related to [1,2], but our work is based on a realistic model that

individual sensor has different sensing error in the field of interest.

2.3 Proposed Adaptive Detection Scheme

2.3.1 Problem Statement

We consider the field where an event of interest happens with a prior probability p.

Let H = H1 and H = H0 denote the event happens and does not happen, respectively.

A WSN of K sensor nodes is deployed in the field to detect periodically whether the

event has happened or not. Each sensor node will independently collect data and convert

each sensing sample to a 0 or a 1. For sensor i, there are two sensing error probabilities

associated with this conversion: false positive error probability p1i is the probability that

node i senses a 1 when the event has not happened; false negative error probability p0i is

17

the probability that node i senses a 0 when the event has happened. During each period, a

sensor node can collect up to T samples, process them if necessary, and then transmit the

sample data to the fusion center through the WSN. The fusion center will make a decision,

H ′, on whether the event has happened (H ′ = H1) or has not happened (H ′ = H0) during

this period. The detection is accurate if H ′ = H and otherwise a detection error occurs.

A detection scheme includes two decision rules. At each sensor node, a local deci-

sion rule will guide the sensor node to determine the number of samples to be collected

during each period and how to process the sensing data to information that will be trans-

mitted to the fusion center. At the fusion center, a final decision rule will evaluate the

information from all the sensor nodes and reach a decision on whether the event hap-

pened during each period. The WSN’s detection accuracy is measured by its detection

error probability, the probability that a final decision error occurs. We study the fol-

lowing problem: how to design a detection scheme to minimize the WSN’s total energy

consumption while satisfying a given detection accuracy requirement.

2.3.2 Overview

After the sensor deployment and the network setup, each sensor’s sensing error

probabilities p1i and p0i are measured by a training process in our adaptive detection

scheme. Together with top four known parameters in Table I, the parameters N0i and N1i

for each sensor node are calculated by a probability analysis framework at fusion center. It

is designed to satisfy the system accuracy requirement. N0i andN1i are used to determine

when sensor node i will stop collecting and processing data, and make a local decision,

18

Table 2.1: Key parameters in our adaptive scheme.

K The total number of the sensor node in the field of interest.

T The maximum samples collected in the field of interest for each sensor node.

δ The upper bond of final decision error probability.

p The prior probability the event happens.

p1i,p0i The error probabilities of a sensor node i’s sensing.

N1i,N0i The parameters for sensor node i to decide its local decision.

ξ1i,ξ0i The error probabilities of the local decision of sensor node i.

and then transmit it back to the fusion center. For example, when sensor node i samples 1

for N1i times, it will stop collecting and processing data and report one bit 1 as the local

decision, indicating that the event has happened during the detection period, and when

sensor node i samples 0 for N0i times, it reports the event has not happened by sending

back one bit 0 to the fusion center, Otherwise, it will report its total T observations in

terms of the number of 1′s (ni) it has observed by transmitting dlog nie bits to the fusion

center. When the fusion center receives the data from all sensor nodes, it makes a final

decision on whether the event has happened in the detection period.

Although the adaptive detection scheme is similar to the hybrid detection scheme

[86] in the parameter names and the analysis methods, they are based on totally differ-

ent models. As can be observed in Figure. 2.3.2, the hybrid detection scheme [86] does

not consider the impact of environment noise, and other aspects such as design varia-

19

Figure 2.2: The hybrid and adaptive detection schemes (dashed steps is for adaptive

scheme only).

20

tion and device ageing. It makes an unrealistic assumption that sensor’s p0 and p1 are

known before deployment, and have the same values for all sensor nodes. As a result

the system detection accuracy can not be guaranteed or energy more than necessary will

be consumed. In either case, it fails to minimize the WSN’s energy consumption with a

guaranteed detection accuracy.

However, the training process in our adaptive scheme consumes extra energy other

than energy for event detection. So how to design a training process to obtain accurate p1i

and p0i while consuming an acceptable amount of energy is critical. The other important

part of our adaptive scheme is the probability analysis framework, which is essential to

assure the required system detection accuracy under the condition that the sensor node

has variable p1i and p0i. It is divided into the local decision rule of how the sensor node

makes the local decision, and the final decision rule of how the fusion center makes the

final decision on whether the event has happened or not. In the rest of this section, we

will elaborate the training process, the local decision rule, the final decision rule, the

extensible work and the probability theories behind them.

2.3.3 Training Process

The training process is one of the most important constituent parts in our adaptive

detection scheme. It is used to obtain the sensing error probabilities p1i and p0i of sensor

nodes, which is the essential information for developing the local decision rule and the

final decision rule. We now elaborate it step by step.

In the first step, after being deployed, the sensor nodes are required to transmit all

21

collected T samples in a detection period to the fusion center. The fusion center makes

its decision on each observation by comparing the number of 1 and the number of 0 in the

columns as the Fig 2.3.3 shows. We make here an assumption that the individual sensor

node has the higher probability of getting a correct sample (0 < p0i, p1i < 0.5). It implies

that the majority of the sensor nodes will make correct samples in the most cases if K is

large.

In the second step, the result from the fusion center is considered as a reference

(shadowed part in Fig 2.3.3), and the transmitted data of each sensor is compared to the

corresponding element of the reference. The number of 1′s in the transmitted data of

sensor node i while in the reference a 0 at the same observation point is denoted as S1i,

and the number of 0′s in transmitted data of sensor node i while in the reference a 1 at the

same observation point is denoted as S0i. The ratios S0i/T and S1i/T are considered as

the measurement samples for p0i and p1i, respectively. The true values of p0i and p1i are

the expected values of their measurements.

In the third step, we constructs confidence intervals [14] to estimate the true values

of p0i and p1i. Equation 2.1 is the general method to construct confident intervals. In

Equation 2.1, n is the population size, c is the half length of the interval, Mn(X) is the

sample mean, E(X) is the expected value of random variable X , and V ar[X] is the

variance of random variable X .

P [Mn(X)− c < E(X) < Mn(X) + c] ≥ 1− V ar[X]

nc2
(2.1)

In our case, the distributions of measurements of p0i and p1i are assumed to be

22

normal. Totally 500 measurement samples are recorded. Large population size is chosen

for squeezing the confidence intervals and mitigating any error introduced in previous

steps. Then the 99% confidence intervals for p0i and p1i of each node are constructed.

The upper bond values of the intervals are chosen to represent the actual p0i and p1i to

assure system detection accuracy.

Figure 2.3: Training process example.

Since all the sensor nodes will transmit all the collected data to the fusion center

during the training process, this may incur a large amount of energy consumption. It

should be applied carefully and only when necessary. One common scenario that a train-

ing process is recommended is when the sensor nodes in the WSN may have very different

operating environment. For example, when detecting wild fire, data from a temperature

sensor exposed to the sunshine will be much higher than the temperature information

collected by a sensor in the shade of a tree. Similarly, the data collected by the same

sensor may vary as the time changes. Temperature around noon will be higher in general

23

than temperature at midnight. We focus on such spatial variation in this chapter. Oth-

er applicable scenario are discussed in Section III-F. Our experimental results show that

the energy overhead of training process can be considered negligible compared with the

energy saving from the proposed adaptive detection scheme.

2.3.4 Local Decision Rule

From the above training process, the information of each sensors node’s p0i and p1i

are obtained. Based on this, the local decision rule is to determine (N0i, N1i) for each

sensor i, such that when sensor node i samples 1 for N1i times or 0 for N0i times, it will

send back 1-bit local decision, otherwise it will transmit all T observations to the fusion

center. We elaborate the calculation of (N0i, N1i) in the following.

First we define the error probabilities (ξ1i, ξ0i) of the local decision bi made by

the sensor node i. ξ1i = P [bi = 1|H0] is the probability that sensor node makes the

local decision of one bit 1 indicating the event has happened while the event has not

happened. Based on the local decision rule, this occurs when the sensor collects N1i error

1′s, which should be 0 if correct. Therefore, we have Equation 2.2 for ξ1i. Similarly, let

ξ0i = P [bi = 0|H1] be the probability that the sensor node makes the local decision of

one bit 0 indicating the event has not happened while the event has happened. And we

have the Equation 2.3 for ξ0i.

ξ1i =
T∑

n=N1i

(n−1
N1i−1)(1− p0i)

n−N1ip0i
N1i (2.2)

24

ξ0i =
T∑

n=N0i

(n−1
N0i−1)(1− p1i)

n−N0ip1i
N0i (2.3)

Theorem 1. the ξ1i increases as the N1i decreases and the ξ0i increases as the N0i

decreases.

[Proof] Let N and N + 1 are two possible values of N1i, then we have following

equations:

ξ1i(N + 1) =
T∑

n=N+1

(n−1
N)(1− p0i)

n(
p0i

1− p0i

)N+1 (2.4)

ξ1i(N) =
T∑

n=N

(n−1
N−1)(1− p0i)

n(
p0i

1− p0i

)N (2.5)

From Equation 3.14, we know that ξ1i(N) has one more element in its sum than ξ1i(N +

1), so we can rewrite it as:

ξ1i(N) = IN +
T∑

n=N+1

(n−1
N−1)(1− p0i)

n(
p0i

1− p0i

)N (2.6)

where IN is the first element in the sum of ξ1i(N). Next we compares ξ1i(N) and ξ1i(N+

1) by subtraction:

ξ1i(N)− ξ1i(N + 1) = IN+

T∑
n=N+1

[(n−1
N−1)− (n−1

N)(
p0i

1− p0i

)](1− p0i)
n(

p0i

1− p0i

)N (2.7)

25

In Equation 2.7, all coefficients are greater than zero except for [(n−1
N−1)− (n−1

N)(
p0i

1− p0i

)].

We can not decide its value right now, but we know that (n−1
N−1) =

(n− 1)!

(N − 1)!(n−N)!
and

(n−1
N) =

(n− 1)!

(N)!(n−N − 1)!
, so we have the following equation:

[(n−1
N−1)− (n−1

N)(
p0i

1− p0i

)] =

(n− 1)!

(N − 1)!(n−N − 1)!
[

1

n−N
− 1

N

p0i

1− p0i

] (2.8)

where 0 < p0i < 0.5, so
p0i

1− p0i

< 1, meanwhile n ≤ T , so
1

n−N
≥ 1

T −N
. As a

result, we have:

[
1

n−N
− 1

N

p0i

1− p0i

] >
1

T −N
− 1

N
(2.9)

where as long as N ≥ T/2,
1

T −N
− 1

N
≥ 0, so ξ1i(N)− ξ1i(N + 1) > 0. Apparently

N ≥ T/2 becauseN andN+1 must be the possible values ofN1i andN1i is the threshold

to make the local decision. Evidently at least T/2 + 1 samples must be made before the

sensor node can make its local decision. So we prove that the ξ1i increases as the N1i

decreases. Similarly, we can prove that the ξ0i increases as the N0i decreases. So we

prove Theorem 1 is right.

Hence, the bigger (N0i, N1i) is, the more accurate the final decision is. Here we are

interested in finding the optimal (N0i, N1i) in order to just meet the the detection accuracy

requirement.

The system accuracy requirement requires Pe ≤ δ, where Pe is the system error

probability or the final decision error probability. We know that the system error proba-

bility can be calculated by

26

Pe = (1− p) ∗ P [H ′ = H1|H0] + p ∗ P [H ′ = H0|H1] (2.10)

where P [H
′

= H1|H0] is the probability that the final decision considers the event has

happened while actually the event has not happened, P [H
′

= H0|H1] is the probability

that the final decision considers the event has not happened while actually the event has

happened. p is the prior probability that the event happens. Since 0 ≤ p, 1 − p ≤ 1,

to meet the system accuracy requirement, it suffices to set P [H ′ = H1|H0] = δ and

P [H ′ = H0|H1] = δ. In other words, our (N0i, N1i) needs to satisfy the two requirements

at the same time. In order to find the optimal (N0i, N1i), we first assume (N0i, N1i) is

known, such that the sensor node i can decide to make its local decision or send back

all T observations. Generally, we assume that among all sensor nodes, some of them

send their local decisions, and the rest send back their T observations, with the error

probability of the final decision being Pe. If we reduce the (N0i, N1i) to let every sensor

node make its local decision, the error probability of the final decision will increase. In

other words, if we can find (N0i, N1i) to make sure Pe ≤ δ when every sensor node makes

its local decision, the system accuracy requirement is satisfied in any other situations. The

(N0i, N1i) is what we need.

In the scenario where the final decision is made merely on the local decisions, the

probabilities P [H
′

= H0|H1] and P [H
′

= H1|H0] are only related to the ξ1i and ξ0i

of each sensor node. But if each sensor node is allowed to have different ξ1i and ξ0i, it

would be too complicated to derive any analytical solution on the meaningful estimation.

So we make a simplification here that all sensor nodes have the same (ξ0, ξ1). In this case

27

we can use the binary hypothesis testing [60] to make the final decision by the following

equations:

P [H ′ = H1|H0] =
K∑

k=dΓDe

(Kk)ξ1
k ∗ (1− ξ1)K−k = δ (2.11)

P [H ′ = H0|H1] =
K∑

k=dK−ΓDe

(Kk)ξ0
k ∗ (1− ξ0)K−k = δ (2.12)

ΓD =

ln
1− p
p

+K ln
1− ξ1

ξ0

ln
(1− ξ1)(1− ξ0)

ξ1ξ0

(2.13)

When the number of 1 among the local decisions exceeds ΓD, the final decision is made

that the event has happened (H ′
= H1), otherwise the event has not happened.

In three Equations 2.11-2.13, we have three unknown variables {ξ1,ξ0,ΓD}. How-

ever, those equations of higher degree are hard to be solved directly. So the first two

equations are changed to the inequalities P [H ′ = H1|H0] ≤ δ and P [H ′ = H0|H1] ≤ δ.

And then the numerical method is adopted to find the optimal ξ1,ξ0 which maximizes

ξ1 + ξ0 while satisfies the above inequalities, since that the larger error probability on

the local result is allowed, the smaller N0i and N1i of sensor node i would be. Specif-

ically, we try the all combinations of ξ1,ξ0 in the range of (0, 0.5) with the precision of

0.01. Then from equations (1) and (2), we will be able to determine the {N0i,N1i} from

the {x0i,x1i}. For the same reason, the numerical method is adopted to find the optimal

{N0i,N1i} which minimizes N0i + N1i, since that the smaller N0i + N1i is, the larger

probability sensor node i will make a local decision and save the energy on data transmis-

sion. All the combinations of {N0i,N1i} in the range of [1, T] with the precision of 1 are

28

testified.

2.3.5 Final Decision Rule

The final decision rule determines how the fusion center makes the final decision. In

special cases when all sensor node makes its local decision, the binary hypothesis testing

[60] is used to make the final decision. In general cases, we assume among K sensor

nodes, s of them send local decisions of one bit 0, t send local decisions of one bit 1,

the rest K − s − t sensor nodes send their n′is, where s, t ≥ 0 and s + t < K. Let

Ω = n1, ..., nK−s−t; 0, ...1, ... denote the message transmitted to the fusion center from

the sensor nodes. For a given Ω, the optimal final decision rule is to choose H ′ = H1 if

P [H1|Ω] ≥ P [H0|Ω] (2.14)

We know that P [H1|Ω] = pP [Ω|H1]\P [Ω] and P [H0|Ω] = (1−p)P [Ω|H0]\P [Ω]

according to the Bayes’ theorem. So the inequality (2.14) can be derived to

P [Ω|H1]

P [Ω|H0]
≥ 1− p

p
(2.15)

Where the probabilities P [Ω|H1] and P [Ω|H0] can be calculated by:

P [Ω|H1] =
K−s−t∏
i=1

P [ni|H1] ∗ P [b = 0|H1]s ∗ P [b = 1|H1]t (2.16)

P [Ω|H0] =
K−s−t∏
i=1

P [ni|H0] ∗ P [b = 0|H0]s ∗ P [b = 1|H0]t (2.17)

So we can compute P [Ω|H1] \ P [Ω|H0]:

29

P [Ω|H1]

P [Ω|H0]
=

K−s−t∏
i=1

P [ni|H1]

P [ni|H0]
∗Bs

0 ∗Bt
1 (2.18)

where B0 = ξ0
1−ξ1 and B1 = 1−ξ0

ξ1
. And meanwhile we know that

P [ni|H0] = (Tni
)p1i

ni(1− p1i)
T−ni (2.19)

P [ni|H1] = (Tni
)(1− p0i)

nip1i
T−ni (2.20)

From above explanations, the calculation of the inequality (2.14) is known, so is

our final decision rule.

2.3.6 The Extensible Work

Although only the spatial variance in sensor node’s p0i and p1i is considered in

our adaptive scheme, our work can be easily extended to support temporal variance as

well. For that we can design a special training process for monitoring the history of the

transmitted data from sensor node to the fusion center. When we detect that some sensor

node’s data is consistently off the mark, an adjustment can be made on its N0 and N1

settings. For instance, if sensor node i keeps sending local decision of one bit 1 when the

final decision is 0, an increase of N1i will be made, and the new N1i will be sent back to

sensor node i for future detection; if sensor node i keeps sending local decision of one bit

0 when the final decision is 1, an increase of N0i will be made and new N0i will be sent

back; if sensor node i keeps sending multiple bits of dlog nie when the final decision is

1, a decrease of N1i will be made and new N1i will be sent back; if sensor node i keeps

30

sending multiple bits of dlog nie when the final decision is 0, a decrease of N0i will be

made and new N0i will be sent back. But for time limit, we have not implemented it in

our current framework. We consider it as the work we shall explore in the future.

2.4 Experiment Methodology

We perform simulations to demonstrate the effective of the proposed adaptive de-

tection approach in improving the energy efficiency of the hybrid scheme [86]. In this

section, we describe the experiment setting and report the experimental results.

2.4.1 Experimental Setups

As we have mentioned, the WSN’s total energy consumption of sensor node con-

sists of energy for sensing (or data collection), data processing, and data communication

in the wireless network. For comparison purpose, we adopt the parameters in [86] when-

ever possible.

For data collection energy, we assume the sensing device will be turn on and off

periodically to sample the data. For one sampling, we denote the energy consumed is

es = 10nJ as used in [86].

Data processing energy of sensor node depends on the amount of data to be pro-

cessed and the processing time. Let the ecyc be the energy consumption per cycle by the

microprocessor in sensor node. And necyc is the energy consumption when the data pro-

cess takes n cycles. In many applications, sleep mode is used when the system is idle to

save dynamic and static power. In that case, the energy overhead of waking up the system

31

also needs to be considered. We adopted the data processing energy for each observation

ep = 40nJ as used in [86].

Data communication energy is for transmitting and receiving data. It is proportional

to the amount of the data to be transmitted and the transmitting energy is directly related

to the distance between the sender and the receiver. We adopted er = 50nJ the energy

for receiving 1 bit data from a neighbour and et = 400nJ the energy of transmitting

one bit data over a unit distance [86]. A multi-hop communication is considered in our

network model, where a greedy perimeter stateless routing (GPSR) algorithm in [31] is

implemented.

More specifically, when sensor node i sends Wi bits of data to the fusion center, we

can calculate the total transmitting and receiving energy consumed on this path as

Etx−i =

li∑
j=1

et ∗ d2
j ∗Wi, Erx−i =

li∑
j=1

er ∗Wi

where li is the total length of the path, in number of hops, from node i to the fusion center,

and dj is the distance between the (j − 1)th node and the jth node on the path.

In our simulations, we consider the event of interest happening with probability

p = 0.2 in the field of a square shape, where a WSN of K, ranging from 8 to 128,

sensor nodes are deployed randomly. Each sensor will collect up to T samples, which

goes from 10 to 160, during each detection period. The sensor’s Type I and Type II error

probabilities p0 and p1 follow normal distributions with different parameters. And the

WSN’s detection accuracy requirement δ varies from 10−6 to 10−1.

32

2.4.2 Energy Efficiency under One Set of Parameters

We compare the average energy consumption per sensor node in one detection pe-

riod of the same WSN using the hybrid detection scheme [86] and our proposed adaptive

method, respectively. We first report the results on a representative parameter setting:

p = 0.2, δ = 10−4, K = 8, T = 40, and (p0, p1) follow normal distribution N0(0.2, 0.1)

and N1(0.2, 0.1), respectively. The impact of different parameters on the energy saving

will be discussed later.

First, we numerically find ξ0 and ξ1 for the given value of K, p, and δ based on

Equation 2.11-2.13. Then we randomly generate K = 8 pairs of (p0, p1) based on their

normal distribution models. For each (p0, p1) pair, we can obtain the value of N0 and

N1 from Equation 2.2 and 2.3. In the hybrid scheme, the largest values of N0 and N1

will be used on all sensors to guide their local decisions. In the adaptive approach, each

sensor will have a specific (N0, N1) pair computed by the fusion center based on its own

(p0, p1). Finally, we generate 4, 000, 000 observation points (or equivalently, 100,000 pe-

riods) where the event happens randomly with probability p = 0.2. For each observation

point, a sensor node’s collected data will be store as a 0 (event did not occur) or 1 (event

occurred) based on its (p0, p1).

Fig. 2.4 shows how the proposed adaptive detection scheme can improve the en-

ergy efficiency of the hybrid scheme from the data we obtained by repeating the above

procedure 100 times. X-axis indicates these 100 trials and the Y-axis gives the average

energy consumption per node per period in each trial. We see that on average, the hybrid

scheme requires 2.38×104nJ per node per period, while the adaptive approach need only

33

0.84 × 104nJ , a reduction of 64.4%. For the training process in the adaptive approach,

we assume that all the sensor nodes will collect 2000 observation points for the first 500

periods and send all raw data to the fusion center. This energy overhead is 1.06× 102nJ

per node per period and has been included in Fig. 2.4.

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

top: hybrid detection scheme
bottom: our adaptive approach

Figure 2.4: Comparison of the average energy consumption per node per period over 100

independent trials.

2.4.3 Impact of the Key Parameters

We now analyze the impact of various system parameters on the performance of

our adaptive approach in terms of energy saving. More specifically, we will consider

individual sensor’s detection accuracy (p0, p1), scale of the WSN (number of sensors in the

network K), observation points in each period (T), overall detection accuracy requirement

34

(δ), and weight of communication energy in total energy consumption.

Firstly, we vary the values of the mean and standard deviation for Type I and Type

II detection error at a sensor node (p0, p1). Figure. 2.4.3 reports the energy saving of the

adaptive approach over the hybrid detection scheme over 9 different settings, grouped

by the values of the means of p0 and p1. Let µp1 = 0.1, for given µp0 and µp1 , the

standard deviations are (µp1 − µp0)/10, (µp1 − µp0)/5, and (µp1 − µp0)/3, from left to

right. We see that as the mean of p0 decreases from 0.4 to 0.2, the energy saving decreases

as well. This is because a smaller mean of p0 will result in a small N0 plus the event

happens rarely p = 0.2, despite there is a deviation in N0, all sensor node probably will

make the local decision, leaving little advantage for the adaptive approach. Within each

group, when we increase the standard deviation of p0 and p1, the values of N0 and N1 for

different sensors will have larger difference. Therefore, the adaptive approach will give

more energy saving.

Secondly, for a fixed network setting, we increase the maximum number of obser-

vation points in each period, so the overall detection accuracy will increase at the cost

of energy consumption as indicated in the top half of Table I. However, we see that the

adaptive approach’s energy increment is at a much slower pace. That is, the energy sav-

ing becomes more and more significant, from 30.4% to 73.7% as T increases from 10

to 160, as shown in the last column of Table II. Similar phenomenon happens when we

increase the sensor nodes while keep the maximum number of observation points fixed

for each period. When there are more sensor nodes, the discrepancy among (p0, p1) pairs

and hence the (N0, N1) pairs becomes large, which will benefit the adaptive approach that

takes advantage of such discrepancy.

35

Figure 2.5: Impact of node’s detection accuracy on performance.

Thirdly, Table III shows the energy savings when the overall detection accuracy

requirement increases (or equivalently, when the overall detection error probability upper

bond goes down from 1.0 × 10−1 to 1.0 × 10−6). The reason behind this is that to reach

a higher detection accuracy, both N0 and N1 will increase for each node and become

closer to T , leaving less space for the discrepancy among them and therefore the adaptive

approach will be less effective. Nevertheless, we still have 53.1% energy saving in the

case when the highest detection accuracy is required.

Finally, we consider the impact of the three main energy sources (data collection

es, data processing ep, and data communication et and er). For each observation, the

data collection and data processing energy(updating the counters that keep track of the

number of 0’s and 1’s in the observed data, and comparing whether the threshold N0 and

36

Table 2.2: Simulation results for different number of nodes K and observations T .

K T Eadaptive (nJ) Ehybrid (nJ) saving

8 10 4.9e+03 7.00e+03 30.4%

8 20 5.64e+03 1.32e+04 40.2%

8 40 8.53e+03 2.39e+04 64.3%

8 80 1.25e+04 4.20e+04 70.1%

8 160 1.98e+04 7.57e+04 73.7%

8 40 8.53e+03 2.39e+04 64.3%

16 40 1.47e+04 4.73e+04 68.8%

32 40 9.46e+04 2.86e+05 69.1%

64 40 5.79e+05 1.93e+06 69.9%

128 40 1.16e+06 3.87e+06 70.7%

Table 2.3: Energy saving of different detection accuracy requirement.

δ 10−1 10−2 10−3 10−4 10−5 10−6

saving 74% 71.7% 66.8% 64.3% 55.2% 53.1%

37

N1 are reached) are roughly the same. So we consider the sum of es and ep as the non-

communication part. In Figure. 2.6, we vary the ratio of this non-communication energy

from 1% to 99% of the total energy consumption and report the energy saving obtained

from the adaptive approach. As a result, we see that we enjoy the most energy saving on

the left when the ratio is small. This means when communication energy dominates the

total energy consumption, our adaptive approach is more effective.

Figure 2.6: Energy savings on systems with different ratio of non-communication energy

in total energy consumption.

2.5 Summary

In this chapter, we introduced a class of event detection application for WSNs,

and for this class of applications, we defined a key scheduling problem whose objective

is to minimize sensor node energy while maintaining detection accuracy. In this work,

we focused on chip-level and network-level analysis of WSN structure. We developed a

38

novel detection scheme that efficiently maps the computation tasks and communication

tasks to sensor nodes. Comprehensive simulation results show that our adaptive scheme

can improve the energy efficiency of a state-of-the-art hybrid detection method by more

than 60% on large scale WSNs.

39

Chapter 3

Scheduling Multithread Application on Multicore GPPs

In this chapter, we address scheduling issues at the chip-level and processor-level

in a structural context. Particularly, we propose a novel scheduling framework for sci-

entific computing applications on multicore GPPs. Our framework determines the speed

at which each processor core operates and the number of threads assigned to each core.

These determinations are made in an optimized manner to maximize throughput while

taking into account chip temperature and process variations within the chip. Material in

this chapter was published in preliminary form in [93].

Chip temperature has become an important constraint for achieving high perfor-

mance on multicore processors with the popularity of dynamic thermal management tech-

niques such as throttling that slow down the CPU speed. Meanwhile, the within-die pro-

cess variation creates large discrepancy of maximum operating frequency and leakage

power among different cores across the chip. In this chapter, we incorporate both tem-

perature and process variations into the scheduling problem on multicore processor for

throughput maximization. In particular, we study how to complete a large number of

threads with the shortest time, without violating a given maximum temperature constrain-

t, on the multicore processor where each core may have different frequency and leakage.

We develop speed selection and thread assignment schedulers based on the notion of

core’s steady state temperature. Simulation results show that our approach is promising

40

to exploit the process and temperature variation for potential performance improvemen-

t on multicore processor. For a 16-core system, when the fully parallelized program’s

switching activity is less than 0.4 or the problem execution time is less than 6 seconds,

we are able to achieve 31% speed-up over the system that uses the slowest core’s speed

as the frequency; when the switching activity is larger than 0.5 and half of the program

can be parallelized our scheduler can reduce the total processing time by 4.3%.

3.1 Introduction

Technology scaling enables more and more processing cores accommodated within

a single die area. Currently, CUDA architecture Fermi with 512 cores, has been put into

market. The trend towards multicore processors is motivated by the performance gain

compared to single-core processors when a budget on power or temperature or both is

given. The performance is expected to further increase with the increasing number of

cores if thread-level parallelism (TLP) can be fully exploited.

Process variation becomes a big design challenge as technology scales. Manufac-

tured dies exhibit a large difference in maximum operating frequency (fmax) and leakage

power both die-to-die (D2D) and within die (WID). It is also expected that WID process

variations will manifest themselves as core-to-core (C2C) fmax and leakage power vari-

ations when cores within a single die becomes small enough [43]. When multicore pro-

cessors are globally clocked, fmax is limited by the slowest core in the die and therefore

fails to reach the throughput potential when each core operates at its individual maximal

clock frequency.

41

Thermal issue is another limiting factor for each core to run at its maximal speed.

When hundreds or thousands of cores are put into a single die, they make the chip pow-

er density increasingly high. High on-chip temperature not only brings up the cost of

packaging and cooling, it also affects severely reliability of the circuit and may cause per-

manent damage. Dynamic thermal management (DTM) techniques designed for single-

core processors do not work well for multicore processors due to the spatial temperature

variations and the thermal impact from core to core.

Applications that have high parallelism can benefit the most from multicore pro-

cessors. Especially for computation bounded applications, massive small tasks (threads)

are generated by the program with small data set and no data dependency among them,

thus the memory bandwidth is not a issue. The threads carrying each task need to be

assigned to cores for execution. The whole program is consider completed when the last

thread/task is finished. We focus on such applications and more details will be given in

Section 3.3.4.

3.1.1 Related Work

The impact of process variation on system throughput was first studied on through-

put maximization of single-core processors [9, 77], then the study was extended to mul-

ticore processors [8, 43]. The impact of process variation on the throughput of several

different multicore processors was analyzed and the sensitivities were compared in [8].

Lee et al. proposed a C2C variation model in multicore processor and studied how to

choose the active cores when number of threads is smaller than that of cores for through-

42

put maximization[43]. However, none of the works considers the temperature variation at

the same time.

On the other hand, thermal issue has also been widely studied on both single core

and multicore processors. The relationship between chip temperature and leakage power

on single-core processor was studied in [88]. Yeo et al. presented an analytical future

temperature prediction model for multicore processors, and developed a migration poli-

cy based on the prediction model [85]. [12] formulated the multicore temperature-aware

scheduling problem as an integer linear programming problem to minimize the hot spots

and temperature gradients of MPSoC, and proposed an online heuristic to schedule re-

al time tasks based on the core’s current temperature and temperature history. Rao et

al. investigated both steady state temperature and transient temperature’s impact on the

throughput of multicore processors [62]. Hanumaiah et al. proposed an optimal volt-

age and frequency control method for maximizing the throughput of multicore processors

[25]. The throttling and thread migration techniques are incorporated in [24]. Similarly,

none of the works mentioned above takes the process variation into consideration together

with temperature variation.

3.1.2 Main Contributions

We consider the impact of both temperature and process variations on the schedul-

ing problem on multicore processors. We formulate the problem and derive analytical

solutions on how to select each core’s speed to minimize the application’s completion

time. We propose an efficient dynamic scheduling strategy that can achieve 1.31 speedup

43

against the current globally synchronized system, which is the throughput upper bound.

3.2 Motivation Example

We demonstrate how a multicore processor performance, measured by throughput

per core, can be affected by different strategies that control each core operating frequency

and task assignment. We consider the simplest case of a 2-core processor model, where

core 1 maximal speed is 1.0 and the faster core 2 is 1.12; and the leakage of core 1 and

core 2 are 1.0 and 1.1, respectively. We assume that the highest temperature that the cores

can operate is 110oC. We now compute the throughput of this processor while executing

200 units of workload, e.g. 200 identical threads each requires one unit of CPU time at

the nominal speed 1.0.

First, strategy I runs both cores at the nominal speed 1.0 and assigns 100 threads

on each core. Both core will complete their assignment after 100 units of time and the

throughput is 1 thread per core per unit of time. Clearly we see that core 2 has the potential

to run faster and produce more.

This leads us to strategy II which runs both cores at their respective maximal speed.

94 threads are assigned to core 1 and 106 to core 2 based on the ratio of their speeds. Core

1 will finish its assignment in 94 units of time. However, core 2 reaches 110oC after it

completes 83 threads due to its higher dynamic and leakage power. The traditional ”heat

and run” method will then reduce core 2 speed by half to 0.56 and complete the remaining

23 threads. As a system, the 200 threads will be completed in 83
1.12

+ 23
0.56

= 115 units of

time, resulting a throughput of 200
2×115

= 0.87.

44

Table 3.1: Comparison of the three different strategies.

Core 1 speed Core 2 speed Completion Throughput

& workload & workload time speed up

I 1.0 & 100 1.0 & 100 100 1.00

II 1.0 & 94 0.92 & 106 115 0.87

III 1.0 & 97 1.06 & 103 97 1.03

Strategy II fails to improve throughput because it aggressively and statically assigns

more workload to the faster core. In strategy III, we propose to dynamically adjust the

core speed based on temperature and assign workload accordingly. For this example,

core 1 runs at its full speed, but core 2 will gradually reduce its speed. As a result, all the

workload will be complete in 97 units of time with 97 and 103 threads assigned to core 1

and core 2, respectively. The throughput is improved to 200
2×97

= 1.03.

Table 1 below summarizes the average speed and workload assignment to each

core, the completion time and throughput of the system according to the three different

strategies.

3.3 Preliminary

3.3.1 Performance Analysis

A general program consists of serial part F and parallel part 1− F , which are exe-

cuted separately by a single core and multicore processor respectively. So the program’s

45

execution time can be expressed by

time =
F

Sserial
+

1− F
Sparallel

where Sserial is the speed at which serial part of program is being executed and Sparallel is

the speed at which parallel part of program is executed.

With the single core speed (hence Sserial) increase has already stopped due to pow-

er/thermal limit, the above formula suggests that the speedup relies on the decrease of F

or the increase of Sparallel[79, 2]. In order to decrease F , the program needs to be rewrit-

ten by new parallel programming model to expose more parallelism inside the program.

Meanwhile more and more simple cores are put on one die to increase Sparallel. Our chap-

ter focuses on how to improve Sparallel with a fixed F , a problem that is equivalent to how

to minimize the completion time of a fixed number of threads. The key idea is to leverage

the process variation as described next.

3.3.2 Processor Model

Fig 3.1 depicts the process variation on a 16-core processor, where each core’s

maximum frequency fmax (normalized to the fmax of the slowest core) and leakage power

Ps (normalized to the Ps of the least leaky core) are given [43]. We can see that both fmax

and Ps have large variation from core to core. The fastest core is 0.65X faster than the

slowest core and the most leaky core is 2.3X leakier than the least leaky one. Normally

the WID process variation makes faster core also leakier.

We consider a processor with k cores, each core is independently clocked and can

adjust its own operating frequency to fjfmax,j , where fj is the scaling factor in the range

46

Figure 3.1: A WID Vth variation map for a 16-core processor in (a). The corresponding

fmax and Ps map in (b) [43].

of [0, 1]. We use clock gating technique to control frequency rather than voltage scaling,

because clock gating induces less activation overhead and has larger margin of adjusta-

bility. We assume that each thread will be assigned to one core and each core will run a

single thread at a time.

3.3.3 Power and Thermal Model

The circuit equivalent thermal model in Hotspot [44] is adopted in our work. As-

suming each of k cores has m function units, there are km blocks on the die and thermal

interface material layer (TIM). Along with extra 14 blocks in the package, the total block

number is M = km + 14. The multicore processor thermal model can be expressed as

the following differential equation:

d~T (t)

dt
= A~T (t) +B ~P , (3.1)

47

where ~P and ~T are M × 1 vectors denoting power and temperature of the blocks, A and

B are M ×M matrices determined by thermal parameters of a given processor layout.

The power on each block consists of dynamic power, which has a linear dependency

on operating frequency (recall that we don’t use voltage scaling), and leakage power.

We use a piecewise linear approximation model [63] to represent leakage of block i:

Ps,i = Ps0,i + ki,sTi, where Ps0,i is the static power for block i under ambient temperature

and ki,s is the slope the static power changes with temperature at time step s. So equation

(3.1) can be rewritten as:

d~T (t)

dt
= Ā~T (t) +B(~Pd(~f(t)) + ~Ps0) (3.2)

where Ā = A + BK, ~Pd(~f(t)) represents each core’s dynamic power at its operating

frequency. The package blocks does not generate power, so the package elements in

vector Pd, Ps0 are all zero. More details and discussion about this can be found in the

next section.

3.3.4 Problem Formulation

We first give a very restricted definition of the problem. After we solve the problem

in the next section, we discuss how each of the constraints in the following problem

formulation can be relaxed while our solution still remain valid.

Given N identical and independent threads, and a k-core processor, each core has

its leakage power Ps,i, maximal frequency fmax,i and can change its operate frequency

between 0 and fmax,i; determine the frequency for each core to minimize the completion

48

time of the N threads while keeping the temperature of each core under a given threshold

Tmax all the time.

Let fi(t) be the clock frequency of core i at time t normalized to its maximum

frequency fmax,i, tf be the completion time of all the N threads. As describe in the

thermal model, we partition each core into m blocks and let Ti(t) to be the temperature of

block i at time t, then the problem becomes to decide fi(t) such that tf will be minimized

under the following constraints:

k∑
1

∫ tf

0

fmax,ifi(t)dt = N (3.3)

Ti(t) ≤ Tmax∀i ∈ {1, 2, · · · , km}, 0 ≤ t ≤ tf (3.4)

min tf (3.5)

This an optimal control problem that can be solved by dynamic programming [16],

note that we will also need to include equation (2) to obtain the thermal information.

However, due to the large state space (N) and control space (k), the computation is not

affordable even for off-line scheduling. For the rest of the chapter, we focus on finding

analytical solutions that can be computed efficiently.

3.4 Analytical Solutions

3.4.1 Steady State Throughput

When N >> k, say when the completion time tf is much longer than the time

t0 needed for each core to reach its steady state temperature [62], the cores will execute

49

at their steady state temperatures for most of the time. Then the completion time of the

program will be mainly determined by the steady state throughput of each core. The

problem from Section 3.3.4 then becomes to find the speed vector ~Fss at the steady state

that maximize the steady state throughput. More specifically,

max
Fss

k∑
1

fifmax,i (3.6)

A ~Tss +B(~Pd(~fss) + ~Ps0) =
d ~Tss
dt

= 0 (3.7)

Tss,i ≤ Tmax∀i ∈ {1, 2, · · · , km} (3.8)

0 ≤ fi ≤ 1 (3.9)

where Tss,i is the steady state temperature for core i and equation (8) indicates that tem-

perature has reach steady state and will not change with time t. This is a linear system

with k variables fi, km linear constraints in (9), and 2k simple bound constraints in (10).

It can be solved in reasonable time.

Theorem 1. (Static scheduler) Suppose that at time t0, all the cores have reached

their respective steady state and have completed ni threads, then the minimum time to

complete all the N threads is t0 +
N−

∑k
1 ni∑k

1 fifmax,i
, where fi is the solution to the above linear

system.

[Proof] We construct the scheduler that achieves this minimum completion time.

On the arrival of the N threads, we keep on feeding each core thread until time t0. By that

time, the last core has reached its steady state temperature and core i has completed ni

threads. For the rest (N −
∑k

1 ni) threads, we assign (N −
∑k

1 ni)
fifmax,i∑k
1 fifmax,i

to core i and

set its speed to be fifmax,i. Therefore, all the cores will complete their assigned threads

50

Figure 3.2: High-level thermal model of a multicore processor [63].

by time N−
∑k

1 ni∑k
1 fifmax,i

. From the fact that fi is the solution to the above linear system, we

know that there is no other scheduler that can finish more threads by this time. Therefore,

this static scheduling strategy completes N >> k threads with the minimum complete

time t0 +
N−

∑k
1 ni∑k

1 fifmax,i
.

3.4.2 Local Optimal Frequency

When the completion time is not sufficiently larger than t0, the steady state approach

cannot be used and it becomes hard to find the optimal solution. We adopt the following

thermal model (shown in Figure 3.2)[63] and use an approximation technique to find a

local optimal solution.

From this equivalent thermal RC circuit, block i’s temperature satisfies the follow-

51

ing differential equations:

Ci
Ti(t)

dt
= −Ti(t)− Tp(t)

Ri

+ fiPdmax,i

+[Ps0,i − ki(Tmax − Ti)] (3.10)

Tp(t)

dt
= − Tp(t)

RpCp
+

1

Cp

M∑
i=1

Pi(t) (3.11)

Note that the time constant for the package and chip die block is of different order.

For example, in the Alpha 21264, the largest time constant for chip block is 10 ms while

the time constant of package is 60s [62]. Hence during ts, Tp can be considered as a

constant. This allows us to solve the above first order linear differential equation and

obtain

Ti(t) = Ti(0)e−βit + (αi/βi)(1− e−βit) (3.12)

where αi = (1/Ci)(Ps0,i−kiTmax+fiPdmax,i+Tp/Ri) and β = (1/Ci)(1/Ri−ki).

We assume that the chip is properly designed with ki < 1/Ri to avoid thermal runaway.

We now partition the execution interval [0, tf] into small subintervals of length ts. ts is

chosen to be of the order of 10RiCi so the block temperature will be in its steady state

[62, 25, 44]. The steady state temperature is given by

Ti = αi/βi = ζiTp + (P
′

s,i + fiP
′

d,i)Ri (3.13)

where ζi = 1/(1−kiRi), P ′
s,i = ζi(Ps0,i−kiTmax) and P ′

d,i = ζiPdmax,i. We assume

Tp can be obtained from the thermal sensor on the package, then the Ti is a linear function

of fi. The local optimal block frequency fi can be calculated by

52

fi = [(Tmax − ζiTp)/Ri − P
′

s,i]/P
′

d,i (3.14)

fi = 1, if (fi > 1)

Note that the core j optimal frequency over the timestep ts is subjected to the fre-

quency of the hottest block belonging to the core and calculated by

fj = min(fi) (3.15)

So if we can identify those hottest blocks, the speed computation will have a con-

siderable reduce. The equations can be reduced from mk to m. This job can be easily

done by analyzing the coefficients in Equation 3.13.

Theorem 2. (Dynamic scheduler) With single sensor reading Tp , the Eq. (14) and

(15) give the local optimal core frequency in timestep ts.

[Proof] In each timestep ts of dynamic scheduler, the core frequency is either max-

imum frequency fmax or the maximum frequency at which the core can leverage all ther-

mal headroom to maintain its temperature at Tmax. Any increase of the frequency results

in a thermal violation.

Note that the Equation 3.14 and 3.15 involve only simple calculations, so they can

be done very fast. For example, the local optimal core frequency selection of 16-core

system for one time step and the frequency legalization in next section together use less

than 1ms on single core Pentinum 4.

53

3.5 Scheduling Framework

Based on the solutions from previous section, we develop a scheduling framework

combining the static scheduler and dynamic scheduler to select speed for each core and

assign threads to them. The basic idea is to let the system user input the estimated com-

pletion time t∗f of the program, if t∗f ≥ 10t0, each core will execute at its optimal steady

state speed, and the thread assignment is based on the ratio of their speeds, and else if

t∗f < 10t0, feeding each core the right number of threads such that it can run at its local

optimal speed over the period ts. The static scheduling is very straightforward, so we

mainly introduce our dynamic scheduler in the following.

The local optimal solution allows the individual core frequency change to arbitrary

value in [0, fmax], which is impractical in real multicore processor. So a frequency legal-

ization approach in [72] is applied to legalize each core frequency f into r discrete levels.

Basically, we choose highest lower bounding frequency in r to replace the f in ts for each

core. The frequency legalization also needs to be applied on optimal steady state speed.

Fig 3.3 depicts the idea of the proposed dynamic scheduler. At the start of each

parallel processing of the program, the scheduler will fill up the thread queue for each

core and each core will run at its fmax,i. At the end of each period ts, the serial core,

which is supposed to be idle during the parallel processing phase, will read the current

package temperature from thermal sensor and the queue length of each parallel core’s

thread queue. Using the results from the previous section, the serial core will compute the

local optimal solution and do frequency legalization, and then instruct each parallel core

their respective speed during the next period of ts and fill up the thread queue accordingly.

54

Figure 3.3: Dynamic scheduling framework

This procedure repeats until all the parallel cores reach their steady state temperature.

At that time, the serial core will stop solving equations (14) and (15), it simply assigns

threads to parallel cores without changing their speeds.

We use a timer to help the serial core to decide whether all the system has reached

the steady state or not. The timer tracks the execution time of the current parallel pro-

cessing and once it reaches a pre-set value, the serial core knows that the steady state is

reached. The pre-set value can be chosen as the time for the slowest core to reach its

steady state temperature. Stopping the serial core from finding local optimal solution will

also save its energy consumption.

The run time overhead of this scheduler is hidden by two ways: first , we use the

serial core to control the scheduler; second, we select the thread queue length such that

55

it can hold threads for the fastest parallel core to complete in 2ts. Therefore, while the

serial core is computing, the parallel cores will not slow down or halt.

Discussion on the problem our scheduling framework targets:

Each thread requires same amount of computation. This assumption can be relaxed.

Indeed, in some of the experiment setting, we assume that thread’s computation require-

ment has mean g and the variation across threads is uniformly distributed in (0,v) [15].

When we allow a thread to be executed on different cores, our results all hold. If one

thread can only be run by one core, the completion time in Theorem 1 becomes a lower

bound and may not be achievable. Independence of the threads. When the threads have

data dependency, Theorem 1 provides a lower bound. The proposed dynamic scheduling

framework can be easily modified so a thread will not be scheduled before the completion

of threads it depends on. Computation bounded application. This enables us to ignore the

memory problem, which is a major concern in multi-core system. Our solution can be ex-

tended to memory bounded applications by adding the notion of ready time that indicates

the memory required for a thread to start is ready. However, the optimality of our result

will be lost. Dynamic voltage scaling. We use clock gating to reduce frequency. Dynam-

ic voltage scaling can be used in our framework, but it has time and energy overhead for

circuit to become stable at the new voltage.

56

Table 3.2: Optimal steady state throughput of 16-core processor for problems of different

switching activity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 throughput gain

WC 1.06 1.00 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.04 1.06 1.06 1.06 1.06 16.95 5.93%

NC 1.12 1.00 1.22 1.22 1.22 1.22 1.18 1.19 1.22 1.22 1.22 1.04 1.22 1.22 1.20 1.22 18.92 18.25%

BC 1.12 1.00 1.3 1.65 1.56 1.56 1.18 1.19 1.52 1.37 1.26 1.04 1.53 1.26 1.20 1.31 21.05 31.56%

Table 3.3: Dynamic scheduling average throughput for different problem size

Threads 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 throughput

1.0e6 0.9 1.00 0.77 0.51 0.54 0.54 0.85 0.84 0.66 0.73 0.8 0.97 0.66 0.8 0.84 0.77 15.59

1.0e5 1.09 1.00 1.22 1.38 1.33 1.33 1.07 1.11 1.30 1.24 1.18 1.01 1.34 1.16 1.09 1.27 19.12

5.0e3 1.12 1.00 1.3 1.65 1.56 1.56 1.18 1.19 1.52 1.37 1.26 1.04 1.53 1.26 1.20 1.31 21.05

3.6 Experiment Results

3.6.1 Experimental Setup

In this section, we describe how we simulate the power/thermal behavior of the

multi-core processor executing parallel threads. First, our dynamic scheduler reads the

package temperature Tp from the thermal sensor on the multi-core processor at the be-

ginning of a period of length ts. During simulation, we use Hotspot4 [44] with LDT

pairwise liberalization model (PWL) [63] to estimate the transient package temperature

Tp. The Tp information is passed to the scheduler and the serial core will use it to compute

the local optimal speed for each parallel core for that period; then Hotspot uses this speed

information to estimate the new Tp at the beginning of the next period.

57

We adopt a 16-core version of the Alpha 21264 floor plan in Hotspot and set the

thermal threshold Tmax to 110oC. The convection thermal resistance value R is con-

figured to be 0.4oC/W and the maximum dynamic power of the whole chip chipdmax

is set to be 120W . The maximum leakage power chipstatic at Tmax is set to be 75W .

The process variation fmax and Ps parameters from [43] are used to formulate different

thermal/power equivalent RC circuit for each core in Hotspot. The single thread mean

workload g and the variation v are defined by the execution time of the slowest core (

g = 10ms and v = 5ms) in the simulation. The length of the thread queue is set to be

32. We consider the scenario that different thread in same program has different switch

activity in the simulation. The thread j power dissipation on core i is given by ρjPd,i

where ρj represents thread j’s switch activity. We set ρj as a random variable with three

different uniform distributions Uw[1.0, 0.8], Un[0.7, 0.5], and Ub[0.4, 0.1] in the simulation

to represent the worst case, the normal case, and the best case that a program can have.

3.6.2 The Throughput of Static and Dynamic Scheduling

The traditional synchronized multi-core system will use the frequency of the slow-

est core, core 2, as its speed and the 16-core system’s throughput will be 16 normalized

to the throughput of the core 2.

For different switch activity distributions, we can calculate the optimal steady state

speed/frequency for each core from Theorem 1 using the upper bound of ρj , as presented

in the Table 3.2. The sum of all core’s steady state speed will be the throughput pro-

duced by the static scheduler, where we can see performance gain of 5.93%, 18.25%, and

58

31.56% in worst case, normal case and best case respectively. The throughput increases

from the decrease of switch activity is due to the fact that dynamic power is proportional

to switch activity where a low switch activity will allow the cores to run at a high speed,

which is shown clearly in each column in Table 3.2. A quick comparison with the core

information in Fig. 3.1 indicates that in best case, each core is able to run at its fmax,i

without violating the Tmax constraint.

For dynamic scheduler based on Theorem 2, we are more interested to know its

performance on different problem sizes (thread number) under normal switch activity. So

we use Un[0.7, 0.5] distribution for thread switch activity and simulated three differen-

t problem size (N=5.0e3, N=1.0e4, N=1.0e5) to represent small problem, middle-sized

problem, and large problem. Table 3.3 reports the average throughput of each single core

and the sum of all cores. All throughput is normalized to that of slowest core. The av-

erage throughput is 21.05, 19.12, and 15.59 in small problem, middle-sized problem and

large problem respectively. We can see that as the problem size increase, the throughput

produced by dynamic scheduler is decreasing. Spectacularly, for small problem, dynamic

scheduler is capable of proving the upper bound throughput; for middle-sized problem,

the dynamic scheduler beats the static scheduler with 1% more throughput; for large size

problem, the dynamic scheduler’s throughput is even lower than the traditional k-core sys-

tem. From Eqa. (14), we know that if the dynamic scheduler runs long enough (tf ≥ t0),

the package temperature Tp will eventually enter the steady state and no longer change

as well as the local optimal solution, which is the steady state throughput of dynamic

scheduler. It is less than the optimal steady state throughput from theorem 1. So when

tf ≥ 10t0 the average throughput of the program mainly depends on the steady state

59

throughput, the static scheduler should be applied, as in our scheduling framework.

3.6.3 Completion Time Reduction

Table ?? reports the completion time reduction of our proposed scheduling frame-

work over the traditional multi-core system that uses the slowest core’s speed, under nor-

mal switch activity and on middle-sized problem. tserial: serial execution time (s); N :

number of threads; tk,parallel: parallel execution time with traditional k-core (s); t′k,parallel:

parallel execution time with our scheduler (s); deltaparallel: parallel execution time re-

duction (%); deltatotal: total execution time reduction (%). We consider programs where

the serial part (the F values) counts for 10% to 50% of the total execution time. A low

percentage means high parallel computation capability. The number of cores varies from

16 to 8 and to 4. We can see the clear trends of (1) larger completion time reduction with

lower F value; (2) larger completion time reduction with more number of cores. For the

16-core system we take from Fig. 1, even with F = 0.5, which means that only half of the

program can be paralleled, our scheduler can reduce the total processing time by 4.3%.

3.7 Summary

At the chip-level, process variations can cause significant differences in frequency

and leakage characteristics across cores in a multicore processor. This trend is getting

worse as chip technologies scale to smaller dimensions. To realize the full potential of

multicore processors, such variations should be taken into account carefully throughout

the design process. At the same time, dynamic thermal management (DTM) plays an

60

important role in the operation of parallel programs on multicore processors due to the

large range of possible die temperatures. Considering process variations in DTM to max-

imize multicore processor throughput under thermal constraints is therefore an important

problem.

In this chapter, we have formulated this problem as a scheduling problem, and

demonstrated that this scheduling problem can be solved in reasonable time using dy-

namic programming techniques. We have also developed static and dynamic scheduling

heuristics and proposed a policy to choose between their static and dynamic configura-

tions to maximize the throughput. We have demonstrated that these static and dynamic

heuristics are suitable for online implementation. Our hybrid static/dynamic scheduling

method is the first to address multicore processor scheduling through an online solution

that takes into account both process and temperature variations.

61

Table 3.4: Performance (completion time) gain with different F and number of cores.

F 10% 20% 30% 40% 50%

tserial 33 66 99 132 165

N 90000 80000 70000 60000 50000

t16,parallel 56.1 50.0 43.7 37.5 31.2

t′16,parallel 43.5 37.8 32.2 27.2 22.6

deltaparallel 22.4% 24.4% 26.3% 27.5% 28.4%

deltatotal 14.1% 10.5% 8.05% 6.08% 4.3%

t8,parallel 112.2 100.0 87.4 75.0 62.4

t′8,parallel 96.2 85.8 74.9 64.3 53.5

deltaparallel 14.2% 14.2% 14.2% 14.2% 14.2%

deltatotal 10.9% 8.5% 6.6% 5.1% 3.9%

t4,parallel 224.4 200 174.8 150 124.8

t′4,parallel 205.3 183 159.9 137.2 114.2

deltaparallel 8.5% 8.5% 8.5% 8.5% 8.5%

deltatotal 7.4% 6.3% 5.4% 4.5% 3.6%

62

Chapter 4

Exposing Intra- and Inter-Actor Parallelism for Implementation of DSP

Applications

In this chapter, we tackle scheduling issues at multiple levels in a behavioral con-

text: application-level, component-level, and operation-level. In particular, we develop

a dataflow based design method for DSP applications, in which the applications are de-

scribed in layers to expose intra- and inter-actor parallelism. This exposed parallelism

is then exploited systematically in our design method for performance optimization on

multiprocessor system-on-chip (MPSoC) devices.

MPSoC technology is an important trend in the design and implementation of signal

processing systems. However, the design of efficient DSP software for MPSoC platform-

s involves complex inter-related steps, including data decomposition, memory manage-

ment, and inter-task and inter-thread synchronization. These design steps are challenging,

especially under strict constraints on performance and power consumption, and tight time-

to-market pressures. To facilitate these steps, we have developed a new dataflow based

design flow within the targeted dataflow interchange format (TDIF) design tool [71].

Our new MPSoC-oriented design flow, called TDIF-PPG, is geared towards anal-

ysis and mapping of embedded DSP applications on MPSoCs. An important feature of

TDIF-PPG is its capability to integrate graph level parallelism for DSP system flowgraphs

and actor level parallelism for DSP functional modules into the application mapping pro-

63

cessing. Here, graph level parallelism is exposed by the dataflow graph application repre-

sentation in TDIF, and actor level parallelism is modeled by a novel model for multipro-

cessor dataflow graph implementation that we call the parallel processing group (PPG)

model. We demonstrate our approach through actor and subsystem design for software

defined radio.

Material in this chapter was published in preliminary form in [92].

4.1 Introduction

As multicore processor technology evolves, increasing numbers of processors are

integrated into system-on-chip (SoC) devices for signal processing system implementa-

tion. The trend towards multiprocessor SoCs (MPSoCs) is motivated by the performance

gain from efficient parallel execution of programs. This performance gain is determined

in part by the amount of parallelism exposed from the program.

Digital signal processing (DSP) applications are often specified in terms of dataflow

graphs, which provide high level, model-based views of systems being designed (e.g.,

see [4]). The parallelism exposed from such high level dataflow representations includes

the following three forms.

1. Data parallelism: an actor (dataflow graph functional component) performs the

same computation on different units of data.

2. Control/task parallelism: multiple actors execute different tasks on the same or

different data.

64

3. Temporal parallelism (pipeline parallelism): multiple instances of the same actor

execute simultaneously, where the instances correspond to different iterations of

the enclosing dataflow graph.

These forms of dataflow modeling parallelism can all be viewed as graph level par-

allelism. A significant body of work has been developed to help expose and exploit graph

level parallelism from dataflow models [22, 75, 74]. Relatively less attention has been

given to exploiting parallelism within actors (actor level parallelism) within an enclosing

dataflow framework.

Actor level parallelism provides optimization opportunities for enhancing perfor-

mance beyond graph level parallelism. What is more challenging is the effective integra-

tion of graph level parallelism and actor level parallelism within an overall system-level

optimization framework. However, without suitable models and tools to facilitate this ex-

ploration, procedural language compiler techniques, such as data decomposition, memory

management, and inter-task and inter-thread synchronization, need to be developed from

scratch to effectively exploit both actor level parallelism and graph level parallelism. On

the other hand, general purpose parallel programming models, such as OpenMP and MPI,

are designed for use across arbitrary application domains. Such generality can enhance

convenience, but does not allow designers to thoroughly exploit specialized properties of

their targeted application areas, such as the coarse grain dataflow structure (i.e., the signal

processing flowgraph structure) of DSP applications [4].

In the DSP domain, dataflow models are widely used to specify, analyze, and simu-

late DSP applications. A variety of dataflow techniques have been developed for DSP ap-

65

plications to target problems such as buffer size optimization, scheduling, and cross plat-

form porting. In this chapter, we present a dataflow-based design flow, called TDIF-PPG,

for design and implementation of parallel software targeted to MPSoC devices. TDIF-

PPG extends the capabilities of the targeted dataflow interchange format (TDIF) [71]

design environment with methods for expressing intra-actor parallelism, and associat-

ed capabilities for platform independent design, and early-stage performance evaluation.

TDIF-PPG applies and systematically integrates both graph level parallelism and actor

level parallelism. As a key component of TDIF-PPG, we propose a novel actor design

technique called the parallel processing group (PPG).

TDIF-PPG provides a flexible design environment without compromising the types

of parallelism that can be exploited. TDIF-PPG achieves this by providing a breadth of

formal models spanning graph and actor level parallelism. This approach to actor and

system design allows the designer to exploit trade-offs among multiple factors, such as

the number of utilized cores, buffer usage, throughput, and latency. The features of TDIF-

PPG also provide schedulers more opportunities to achieve better system performance.

The remainder of this chapter is organized as follows. In Section 4.2, we review

background and related work. We then introduce our new PPG plug-in to TDIF in Sec-

tion 6.3. The PPG model, along with its application programming interfaces and execu-

tion flow, are discussed in Section 4.4. In Section 5.8, we discuss experiments in applying

TDIF-PPG on a Texas Instruments (TI) multicore DSP platform. Here, a software define

radio (SDR) application (MPSched) is used as a case study to demonstrate the features of

the TDIF-PPG design flow. Conclusions and directions for future work are then discussed

in Section 4.6.

66

4.2 Related Work and Background

4.2.1 Core Functional Dataflow

Core functional dataflow (CFDF) is a deterministic sub-class of enable-invoke dataflow

[57], which is a dynamic dataflow model that can express both static and data-dependent

dataflow behaviors. In CFDF, actors are specified as sets of modes, where each mode

has a fixed production and consumption rate associated with each actor output and input

port, respectively. On each CFDF firing (actor invocation), an actor operates based on a

unique current mode, which is maintained as part of the actor state. During each firing,

in addition to consuming input tokens and producing output tokens, the actor selects one

mode from it set of modes as the next mode, which will be applied as the current mode in

the next firing of the actor.

In CFDF, the separation of enable (firability checking) and invoke (firing) function-

ality is defined as a first class characteristic of the model. Each actor has an associated

enable function. This function, which can be called at any time between firings (e.g., by a

dynamic scheduler), returns a Boolean value indicating whether or not there is sufficient

data available on the actor input ports to fire the actor in its current mode. Since such an

isolated enable check is available, the invoke function of an actor assumes that sufficient

data is present, and reads its input data without blocking reads. When an actor is invoked,

it executes its current mode, produces and consumes data, and updates its current mode.

Since different modes of an actor can have different production and consumption rates,

dynamic dataflow can be modeled flexibly in CFDF.

67

4.2.2 Targeted Dataflow Interchange Format

TDIF [70] is a extension of the dataflow interchange format (DIF) [26] tool for

design and analysis of DSP-oriented dataflow graphs. TDIF adds to DIF features that

include dynamic dataflow software synthesis, cross-platform actor design support, and

dataflow-integrated instrumentation and tuning of implementations [70]. TDIF leverages

the power of dynamic dataflow models and provides automated code generation of actor

programming interfaces and low level customizations for implementations targeted to

heterogeneous platforms.

4.2.3 Related Work

Mapping an application to an MPSoC platform based on conventional methods is

an error prone and time consuming process involving multiple steps. These steps include

(1) decomposing a program into computational units and dividing these units into bal-

anced threads; (2) managing the resulting inter-task and inter-thread communication and

synchronization; and (3) handling resource management (memory, processors, intercon-

nection bandwidth, etc.). A variety of layered models have been proposed to help hide

hardware complexity from programmers, and allow advanced automation techniques to

take over parts of the burden in the design process.

Jerraya et al. [29] discuss a design methodology based on a hardware/software lay-

ered interface and suggest a three-layered interface. This interface includes the paral-

lel programming model, hardware dependent software, and hardware abstraction layer.

Ceng [11] proposes a novel compiler technique using the tightly-coupled thread (TCT)

68

model. This approach uses sequential C code as input, and automatically generates a par-

allel executable with minimal user guidance for a specialized architecture that supports

the TCT model. Mignolet et al. [47] develop an MPSoC mapping flow that takes sequen-

tial C code as input, and generates parallel code in terms of concurrent C threads. The user

is required to designate the segments of code that are to be selected for parallelization, the

number of threads that execute these segments, and a high level description of the mem-

ory hierarchy on the target platform. The resulting parallel C code is then compiled for

the target platform. Kwon [38] introduces the Common Intermediate Code (CIC) layer to

interface software and hardware. Software is first partitioned and then written in CIC us-

ing generic application programming interfaces (APIs) for inter-task communication and

synchronization. Later, the CIC translator translates the CIC code to platform-dependent

code with the required hardware information. After that, scheduling code for the different

processors is generated.

In contrast to prior work, the primary contribution of this chapter is a novel frame-

work for systematically integrating dataflow graph level parallelism and actor level paral-

lelism into the design and implementation process for multiprocessor DSP systems. Key

details on the novelty and utility of our contribution are as follows. (1) We provide a clear

separation between graph- and actor-level parallelism, which enables the utilization of d-

ifferent forms of DSP parallelism at different levels of abstraction (e.g., parallelism across

distinct filters versus parallelism across different taps of the same filter). At the graph lev-

el, dependencies between actors is loose and decoupled, while at the actor level, the syn-

chronization and communication is more tightly coupled to exploit features for exploiting

fine-grained parallelism in DSP-oriented processors. (2) Our proposed PPG model allows

69

DSP system designers to flexibly explore different combinations of data parallelism, task

parallelism and temporal parallelism within individual actors. (3) When both graph-level

parallelism and actor-level parallelism are exposed, our TDIF-PPG framework provides

comprehensive APIs to implement schedules that efficiently manage the resulting inter-

task and inter-thread communication and synchronization on the target platform. (4) Our

TDIF-PPG framework provides a unified abstraction layer of the underlying hardware

platform. This abstraction layer helps to hide hardware complexity from programmers,

and automatically generate code to handle resource management. Our efficient support

for such an abstraction layer is especially useful given the diversity of processor families

that are relevant for DSP system design.

4.3 TDIF-PPG Design Flow

The PPG plug-in adds two extra layers to the previous two layer TDIF design flow,

as shown in the four-layer design flow demonstrated in Fig. 4.1.

In layer 1 — the system layer — the given DSP application is modeled as a CFD-

F graph using the DIF language. The DIF parser takes the CFDF graph as input, and

constructs a corresponding model in the DIF intermediate representation, which helps to

expose graph level parallelism.

In layer 2 — the actor interface layer — actor interface specifications, including

information about input and output ports, actor parameters, and CFDF modes, for indi-

vidual actors are provided using the TDIF language. Then the TDIF compiler parses the

TDIF specifications for the actors, and generates equivalent actor API code in the tar-

70

Application

Representation in

Dataflow Graph

(DIF Language) DIF parser
DIF Intermediate

Representation

Actor Specification

(TDIF Language)

TDIF Compiler TDIFSyn Package

Actor API Dataflow Graph API Actor Schedule API

Generic Actor

Implementation

Platform-

dependent API

Implementation

Code Synthesis Engine

Actor Implementation

(Targeted Platform)

Actor Profiling Tool

Software Synthesis Engine

Run-time Library

(Actor/FIFO Design

Context)

Instrumentation

Operations &

Metrics

Schedule

Implementation

Software Implementation

(Targeted Platform)

System Profiling Tool

User-specified

Customizations

User-specified

Customizations Layer 1

Layer 2

Third Party Tools

Layer 4
Platform-

Dependent

Parameters

Generic PPG API PPG Schedule API

Performance Estimator

Layer 3

Actor Profiling Tool System Profiling Tool

Third Party Tools

Figure 4.1: TDIF-PPG design flow.

geted actor implementation language (C with optional extensions in the current version

of TDIF-PPG). The generated APIs provide prototypes for actor interface functions, in-

cluding functions for accessing the ports, modes, and parameters of each actor, as well as

invoking and testing firability of the actors.

In layer 3 — the platform-independent mode specification (PIMS) layer — the PPG

model guides the programmer in exposing actor level parallelism within the functional

specification for each mode of an actor. The programmer creates parallel threads for actor

modes, and describes the corresponding inter-thread communication and synchronization

using generic PPG APIs. This provides a generic implementation of the associated actor

71

that is not tied to any specific parallel platform, and thus, facilitates portability across

platforms.

In layer 4 — the actor implementation layer — generic actor specifications from

the PIMS layer are integrated with optimized platform-specific PPG API and run-time

implementations. This integration is performed automatically by the TDIF-PPG Code

Synthesis Engine. Third-party profiling tools are integrated in our design flow with layer

4 experimentation to provide measurements on final actor implementations, and associ-

ated feedback to help refine higher levels of the overall design flow. Note that multiple

feedback loops (the dashed lines in Fig. 4.1) are provided in the design flow to allow for

feedback at different levels with trade-offs between exploration speed and accuracy. The

feedback loop in layer 3 is much faster but less accurate than the feedback loop in layer

4.

To produce a complete system implementation, the TDIFSyn package takes the

DIF intermediate representation as input and generates the top-level C language imple-

mentation file and associated APIs for actor scheduling [71]. The automatically generated

top-level C file initializes the operational contexts of actors and FIFOs, configures actor

parameters, lays out the graph topology by instantiating connections between actor port-

s and their incident FIFOs and calls a user-defined scheduler that utilizes the APIs for

actor scheduling and PPG scheduling. It is the responsibility of this user-defined sched-

uler, which can be provided by a programmer or constructed by a tool, to utilize the

PPG scheduling APIs correctly, and ensure that the PPGs inside an actor are scheduled

correctly. In our present implementation of the TDIF-PPG design flow, we develop the

user-defined scheduler modules by hand (i.e., they are provided by a programmer). Inte-

72

grating tools into TDIF-PPG for automated schedule construction is a useful direction for

future work.

The given user-defined schedule along with the TDIF-PPG run-time library and the

actor implementations are integrated automatically through glue code that is synthesized

by the TDIF Software Synthesis Engine. System profiling tools can then be applied on

the generated implementations to validate whether or not system constraints are satisfied,

and provide feedback for tuning of the schedule or higher levels of the design hierarchy,

all the way up to the application model provided in layer 1.

In summary, the TDIF-PPG design flow enhances the retargetability of designs

across different platforms by allowing designers to provide platform independent actor

specifications, and automatically generating optimized implementations for different par-

allel platforms. Such retargetability is useful in efficiently exploring design options, and

porting designs across platforms — e.g., to upgrade to newer hardware generations or

provide alternative design versions that are targeted to different types of hardware, such

as alternative versions for low cost, and high performance. Also, the provisions in the

TDIF-PPG design flow for quick feedback across different design layers helps to reduce

total software development time. Furthermore, the TDIF-PPG design flow uniquely takes

both graph level parallelism and actor level parallelism into account for system optimiza-

tion.

73

4.4 Parallel Processing Group

4.4.1 Model Description

In an abstract sense, a PPG is a set of threads associated with computations within

a dataflow graph actor. A PPG either contains a single thread (single thread PPG) or

contains multiple threads that can be executed in parallel. Each thread in a PPG contains

a set of data objects and a single code segment (a task or function that implements the

thread). In a PPG, inter-thread synchronization and communication are restricted to three

basic methods: broadcast, barrier and point to point (P2P), which are discussed in Sec-

tion 4.4.2. We plan to extend support to other synchronization/communication methods

in our future work.

An actor can contain any non-negative number of PPGs. The PPGs inside an actor

are connected (in a logical sense) with FIFOs. SIMD and MIMD execution styles are both

supported by our concept of PPGs. In addition to the thread information (the data objects

and code segments), a PPG includes a PPG execution context for managing execution of

the contained threads. APIs for PPG-based actor design are introduced in Section 4.4.2,

and thread execution in PPGs is demonstrated in Section 4.4.3. In the remainder of this

section, we elaborate on the components that make up a PPG.

Thread information

• Readonly Shared Data Object: A PPG Data Object is an abstract data type that

specifies the start address of a data block and the byte length of the data block.

74

Each thread in a PPG can have a separate data object, or subsets of multiple threads

can share common data objects. When implementing PPG threads that share data

objects, it may be desirable (for enhanced performance) for each thread to maintain

a local copy of the object. Such optimization is supported in our proposed PPG-

based design flow.

• Input Data Object: Each thread in a PPG can have one or more input data objects.

Threads do not share input data objects. Input data objects are used to access any

data arriving from input ports of the enclosing dataflow actor, as well as any data

arriving from other PPGs associated with the same actor.

• Output Data Object: (analogous to an input data object) Each thread in a PPG can

have one or more output data objects. Threads do not share output data objects.

Output data objects are used to access any data that is sent to output ports of the

enclosing dataflow actor, as well as any data that is sent to other PPGs associated

with the same actor.

• Thread Function/Task: Each thread in a PPG has an associated reference to a com-

putational task (e.g., a function pointer in C-based actor implementation), which

provides the program code associated with the thread.

PPG Execution Context

• Group Input Manager: Each PPG has a group input manager. If group B reads

data from the output FIFO of group A, group A is called a predecessor group of

75

group B, while group B is called a successor group of group A. A group input

manager handles reading of data from any actor input FIFOs, as well as any output

FIFOs from predecessor groups that are referenced during group execution. The

group input manager performs data transfers to ensure that such “group input da-

ta” is transferred into local buffers associated with the group before such data is

operated on.

• Group Output Manager: Similarly, each PPG has a group output manager, which

handles the writing of processed results from the group’s local buffer to actor output

FIFOs, and input FIFOs of successor groups.

• Group Member: Each thread in a PPG has an associated group member, which is

the identifier (ID) for the processor that is to execute the thread. The group member

for a thread can in general be set and changed dynamically.

• Group Owner: Each PPG has a group owner (also a processor ID), which is in-

voked when the PPG is to be executed. Upon invocation, a group owner broadcasts

the PPG to all of its associated group members, and then waits for the comple-

tion of the PPG. The group owner for a PPG can in general be set and changed

dynamically.

4.4.2 Application Programming Interfaces

In our proposed design methodology, the PPG is the basic unit of functionality in an

actor. Our development of the the PPG model includes interface APIs for various classes

of key operations that are important for working with PPGs:

76

• Standardized interaction between PPGs in the actor and FIFOs of the actor;

• Standardized interaction between PPG threads and threads associated with data

movement;

• Construction and configuration of new PPGs;

• Scheduling PPG threads onto processors.

These APIs are “abstract” in the sense that they are developed independently of any

specific hardware platform, and can be retargeted across a variety of relevant platforms.

Our design of these APIs helps to free the actor designer from tedious platform-specific

details, and provides useful utilities for quick adoption of PPGs into his or her actor

designs. The APIs also provide a consistent interface with which the TDIF-PPG design

flow can be ported, fine tuned, and maintained on different platforms.

4.4.3 PPG Static Execution Flow

We describe a static execution flow for PPGs in this section. In such an execution

flow, the thread information and execution context for a PPG are specified when the PPG

is created. As demonstrated in the group owner finite state machine (FSM), illustrated

in Fig. 4.2, the group owner reads the PPG first and then reads the set of group members

from the PPG. After that, it calls the broadcastAPI to notify the group members about

the PPG. If the group owner is also a group member (for the same group), the group owner

calls the execute API and the barrier API, and then waits for all of the PPG threads

to complete; otherwise, it simply remains idle and waits for the other threads to complete.

77

Figure 4.2: Group owner FSM and state description table for static execution flow.

Concurrently, when a group member receives the associated PPG handler, as de-

picted in Fig. 4.3, it calls the execute function and then uses the barrier function

to synchronize with the other group members and with the group owner. If inter-thread

communication is necessary, it is specified by the P2P function. The barrier func-

tion can be implemented by incrementing or decrementing the value of a shared variable

called a synchronizer variable, and checking the value of this synchronizer variable upon

completion of relevant threads. If the value of this variable is equal to an appropriate

predefined value, then the group member interrupts the group owner to report that all of

the group members have completed their tasks under the current PPG invocation. When

the group owner receives the interrupt, it reorganizes the results (data reformation, data

relocation, and data merging) for any successor groups as needed.

78

Figure 4.3: Group member FSM and state description table for static execution flow.

4.4.4 Examples

In this section, we demonstrate the utility of our PPG model in expressing actor

level parallelism with two important examples of signal processing actors. As with graph

level parallelism, data parallelism (DP), control parallelism (CP), and temporal parallelis-

m (TP) can all be relevant to actor level parallelism. The difference in our proposed design

methodology is that at the actor level, all parallelism is described in terms of relationships

among threads. Since CP and DP are similar, we focus only on DP and TP in the exam-

ples of this section. In particular, DP is utilized in designing a Finite Impulse Response

(FIR) filter, and a combination of DP and TP is expressed in the design of a fast Fourier

transform (FFT) actor.

4.4.4.1 FIR Filter

The operation of the FIR filter is described by the following equation, which defines

the output sequence y[n] in terms of its input sequence x[n]:

79

X

Y

B

Input object for thread 0

Input object for thread 1

Output object for thread 0

Output object for thread 1

Read only shared object for threads 0 and 1

Figure 4.4: Mapping data parallelism from an FIR filter to PPG-based actor design.

y[n] = b0x[n] + b1x[n− 1] + . . .+ bMx[n−M]

=
M∑
i=0

bix[n− i] (4.1)

In our example of PPG-based FIR actor design, the input signal is first buffered so that

blocks of samples (dataflow tokens) can be processed together. We assume that N input

samples are buffered and then sent to an M th order FIR filter to produce (N −M) output

samples. This example provides a significant amount of DP. For demonstration purposes,

we map the DP onto two processor cores shown in Fig. 6.5. However, the retargetable

TDIF-PPG design flow can easily adapt the implementation of this actor to utilize more

cores if available.

In order to exploit DP using a PPG, the N input samples are divided into two

80

input data objects for two threads. One of these objects is derived from the samples

[x[0], x[1], . . . , x[N/2+M−1]], and the other object is derived from the samples [x[N/2], x[N/2+

1], . . . , x[N − 1]]. Similarly, the output samples are divided into two output data objects.

The coefficient vector B is shared by two threads and placed into a readonly shared data

object. Each thread executes the FIR calculation independently. This calculation is en-

capsulated in a function called fir, and the associated function address is set as the PPG

function for each thread. This provides a PPG-based implementation of the FIR filter with

two threads. Performance results from this implementation are examined in Section 5.8.

4.4.4.2 FFT

The radix-2 decimation-in-time (DIT) FFT is the simplest and most common for-

m of the Cooley-Tukey algorithm [19]. The radix-2 DIT FFT computes the DFTs of

the even-indexed inputs x2m (x0, x2, . . . , xN−2), and of the odd-indexed inputs x2m+1

(x1, x3, . . . , xN−1), and then combines the two results to produce the DFT of the whole

sequence. Then the same procedure is performed recursively to reduce the overall runtime

to O(N logN).

The recursive tree of the Radix-2 DIT FFT is illustrated in Fig. 6.6(a). The white

nodes in the figure calculate DFT results, where the corresponding numbers of points are

annotated next to these white nodes, and the black nodes merge pairs of smaller DFT

results together.

Both DP and TP from the recursive tree are utilized in the derived PPGs shown

in Fig. 4.5(b). With DP, each thread within G0 calculates half of the overall DFT (N)

81

(a) recursive tree for Radix-2 DIT (b) PPG construction on recursive tree

Figure 4.5: PPGs in an FFT actor.

(N point DFT), which is a DFT (N/2). This calculation is performed using the Cooley-

Turkey algorithm. Then a single thread in G1 merges the two results together to form a

DFT (N).

Two different implementations are provided here. In the first, G0 is assigned to

two cores, and G1 executes on one of these two cores after G0 completes. In the second

implementation, which exploits both DP and TP, G0 is assigned to two cores, and G1 is

assigned to another (third) core. The mapping is coordinated in such a way that G0 and

G1 execute in a software-pipelined fashion to exploit TP. Experimental results from these

two implementations are discussed in Section 5.8.

Through the FIR filter and FFT actor examples presented in this section, we have

shown concretely that the PPG can support a variety of different forms and combinations

of parallelism in actor design. Such actor level parallelism can be expressed naturally

using PPGs in a manner that is not tied to any specific hardware platform. The PPG

abstraction thus lets the programmer express actor level parallelism as part of the actor

design, while deferring to lower (more specialized) levels of the design flow the optimized

82

mapping of such parallelism to specific hardware platforms.

4.4.5 Discussions

The PPG is designed to facilitate efficient implementation of actors on a variety

of MPSoC platforms. Since the threads within PPGs are tightly coupled, the PPG ab-

straction presented in this chapter is geared mainly towards shared memory architectures.

Extension of our PPG design methodology to also accommodate distributed memory ar-

chitectures is a useful direction for future work.

In our initial implementation of the TDIF-PPG design flow, P2P is employed for

inter-thread communication in PPGs. This form of communication only supports Com-

bined Blocking (CB) interfaces [78]. Extension of inter-thread communication in PPGs

to allow other forms of interfacing, including Relative Blocking (RB), Relative Non-

blocking (RN), Direct Blocking In-order (DBI), Direct Non-blocking In-order(DNI), Di-

rect Blocking Out-of-order(DBO), and Direct Non-blocking Out-of-order(DNO) [78], is

also a useful direction for future work.

4.5 Experiments

In this section, we present experiments using TDIF-PPG. Our experiments involve

the two actor design examples presented in Section 4.4.4 (FIR filtering and FFT compu-

tation), and a synthetic benchmark, called mp-sched (which stands for “multiprocessor

scheduling”). The mp-sched benchmark is composed from FIR filtering and FFT com-

putations, and is representative of a class of subsystems of software defined radio (SDR)

83

(a) CFDF graph for mp-sched (b) Core computations in mp-sched

Figure 4.6: The mp-sched benchmark for SDR.

applications [59]. In our experiments, the mp-sched benchmark is modeled using CFDF

semantics. The core functionality for each actor in the CFDF representation is encapsu-

lated in a specific CFDF mode, called the process mode. In the process modes of the

actors, generic PPGs are used to express actor level parallelism.

In our experiments, we employ a Texas Instruments (TI) 6678L multicore pro-

grammable digital signal processor (PDSP) as the target platform. The TI 6678L has

8 PDSP cores, where each core runs at 1.25 Ghz, and has 32KB L1 data cache, 32 KB

L1 instruction cache, and 512KB L2 cache. The TI 6678L also has 4MB of shared S-

DRAM and 512MB of DDR3 DRAM. Using TI’s Code Composer Studio IDE, we used

the TI SYS/BIOS real-time operating system API and the TI Inter-Process Communica-

tion library API to implement the platform-dependent PPG APIs for these experiments.

These APIs along with the generic, PPG-based actor implementations are fed into the

TDIF-PPG Code Synthesis Engine to generate a complete parallel actor implementation.

To demonstrate the performance gain from PPG-based implementation, the actu-

al execution time of a sequential 79th − order FIR filter (Seq-FIR) implementation is

compared to that of our PPG-based parallel FIR filter (Par-FIR) implementation using the

84

Table 4.1: Execution time comparison for sequential FIR filter and parallel FIR filter

implementation on different input sizes.

Input Size 1079 10079 100079 1000079

Seq-FIR (s) 0.0036 0.0336 0.334 3.34

Par-FIR (s) 0.0017 0.015 0.147 1.47

Speedup 2.11 2.24 2.27 2.27

same inputs on the targeted TI platform. The results for multiple input sizes are demon-

strated in Table 4.1. The input size is in terms of the number of signal samples. The

execution time is the processing time. This reported execution time excludes the time re-

quired for reading from the input FIFO and writing to the output FIFO. The FIFO reading

and writing operations involve only pointer manipulations and no actual data movement,

and thus have negligible impact on actor performance. The speedup is defined by the ratio

between the execution time of Par-FIR and that of Seq-FIR.

The superlinear speedup is due to the VLIW feature of the employed PDSP cores.

As the amount of data to process increases, so does the amount of available instruction

level parallelism (ILP).

For the FFT, the execution time of the sequential FFT (Seq-FFT) implementation

is compared to that of two different parallel FFT implementations. One of these par-

allel implementations (Par-FFT2) utilizes only data parallelism using 2 cores, while the

other parallel implementation (Par-FFT3) utilizes both data parallelism and temporal par-

allelism using 3 cores. The execution time of Par-FFT3 is the time required to execute

85

Table 4.2: Execution time and latency comparison among sequential FFT, parallel FFT

using 2 cores and parallel FFT using 3 cores. The results are compared for different input

sizes.

Input Size 64 256 1024 4096

Seq-FFT (s) 0.00028 0.0016 0.0086 0.045

Par-FFT2 (s) 0.00021 0.001 0.005 0.255

Speedup 1.3 1.61 1.72 1.788

Par-FFT3 (s) 0.00023 0.00073 0.0039 0.021

Speedup 1.21 2.19 2.20 2.14

Latency (s) 0.00038 0.00118 0.00517 0.0257

its longest pipeline stage. The speedup is defined as the ratio between the execution time

of the parallel FFT implementation (Par-FFT2 or Par-FFT3) and that of Seq-FFT. The

latency is another important figure of merit. Here, the latency is defined by the elapsed

time between when the FFT actor reads the first token from its input FIFO and when it

writes the first result token to its output FIFO. The results are shown in Table 4.2. For

Seq-FFT and Par-FFT2, the latency is equal to the execution time, so the latency is not

shown separately.

From the results, we see that Par-FFT3 achieves more speedup than Par-FFT2 by

introducing more latency.

Fig. 4.6(a) shows the CFDF graph for the mp-sched benchmark. In this graph,

there are two paths from actor SRC to actor SNK, which represent two different signal

86

processing procedures on the incoming signal. In the upper path from SRC to SNK, the

signal is first filtered in the time-domain and then transformed to the frequency-domain. In

the lower path, the signal is first transformed to the frequency-domain and then filtered in

the frequency-domain. There are both graph level parallelism and actor level parallelism

in this application. We derive and experiment with four different schedules to demonstrate

the performance gain and trade-offs associated with the two different forms of available

parallelism.

The eight PDSP cores employed in these experiments are labeled as DSP0, DSP1,

. . . , DSP7. In the first schedule, all four actors are assigned to DSP0 and executed se-

quentially by the actor sequence FIR1, FFT2, FFT1, FIR2. Note that the two paths in

the graph are independent so that control parallelism can be used. Additionally, actors in

each path can be pipelined to make use of temporal parallelism in the graph. In the second

schedule, we again use sequential implementations for the individual actors. The actors

are manually scheduled onto 4 PDSP cores to take advantage of graph level parallelism.

FIR1 is assigned to DSP0; FFT1 is assigned to DSP1; FFT2 is assigned to DSP2; and

FIR2 is assigned to DSP3. FIR1 and FFT2 are fired simultaneously as pipeline stage 1,

and FFT1 and FIR2 are fired simultaneously after execution of pipeline stage 1 completes.

We could also schedule multiple graph iterations together to explore more temporal paral-

lelism at the graph level. However, this approach is not chosen in our experiments because

it increases the required buffer sizes.

By replacing the actor implementations with parallel versions, we derive two ad-

ditional schedules, which provide the third and fourth schedules for our experiments.

These schedules use two different combinations of actor level parallelism and graph level

87

parallelism based on the two different parallel FFT actor implementations discussed in

Section 4.4.4.2. In the third schedule, FIR1 is assigned to DSP0 and DSP1 using a PPG.

In similar ways, FFT1 is assigned to DSP2 and DSP3; FFT2 is assigned to DSP4 and

DSP5; and FIR2 is assigned to DSP6 and DSP7. FIR1 and FFT2 are fired simultaneously

as pipeline stage 1, and FFT1 and FIR2 are fired simultaneously after pipeline stage 1

completes execution.

In the fourth schedule, FIR1 is assigned to DSP0 using a PPG, and similarly, FFT1

is assigned to DSP1, DSP2, and DSP3; FFT2 is assigned to DSP4, DSP5, and DSP6;

and FIR2 is assigned to DSP7. FIR1 and PPG G0 of FFT2 (see Section 4.4.4.2) are fired

simultaneously as pipeline stage 1, PPG G1 of FFT2 and PPG G0 of FFT1 are fired si-

multaneously as pipeline stage 2, and PPG G1 of FFT1 and FIR2 are fired simultaneously

as pipeline stage 3. The different schedules with the associated actor implementation-

s are fed into the TDIF-PPG Software Synthesis Engine to generate the corresponding

complete software implementations for targeted TI platform.

Using an input size of 1024, we experiment with the four different mp-sched im-

plementations described above. The execution time, speedup and latency values for these

implementations are compared on the core computation shown in Fig. 4.6(b). The re-

maining actors (SRC and SNK) take only approximately 1.2% of the computation time

for sequential execution and thus do not have a significant impact on overall performance.

The execution time is taken to be the processing time in the core computation region de-

fined above. If pipelining is used, then the execution time is the time for the longest

pipeline stage. The latency is defined as the elapsed time during the first iteration of

graph execution between when the first input token enters the region and the time when

88

Table 4.3: Execution time and latency comparison among the 4 schedules.

Schedule Execution Time (s) Speedup Latency (s)

1 0.0243 1 0.0243

2 0.00878 2.77 0.0122

3 0.00517 4.7 0.0089

4 0.0041 5.9 0.0092

the first output token leaves the region. The results are shown in Table 6.5.

From the results, we see that exploiting graph level parallelism by itself reduces the

execution time by scheduling sequential actors on multiple PDSP cores, and combining

graph level parallelism and actor level parallelism further reduces the execution time.

For different design constraints, different combinations can be employed. For example,

schedule 3 has higher execution time but lower latency compared to schedule 4. If the

system has a tight latency constraint, then schedule 3 is preferable. Our approach provides

the designer with more optimization opportunities from both the actor level and graph

level to help satisfy the given system design requirements.

4.6 Summary

In this chapter, we have introduced a new dataflow based design flow for signal pro-

cessing systems. This design flow, called TDIF-PPG, takes into account multiple levels

in a behavioral context, and integrates graph level parallelism and actor level parallelism

in MPSoC software optimization for DSP applications. Our approach is based on a new

89

model, called the parallel processing group (PPG), for actor design, and an associated new

plug-in to the targeted dataflow interchange format (TDIF) environment. This plug-in al-

lows designers to express parallelism within actor designs, and integrate such intra-actor

parallelism with the graph level parallelism that is already exposed in TDIF.

TDIF-PPG provides useful new features in the TDIF environment, including retar-

getable parallel actor design, parallel actor scheduling, and early performance evaluation.

To demonstrate the utility of the PPG model and the TDIF-PPG design flow, we have p-

resented case studies involving FIR filter and FFT actor design and mp-sched application

implementation on a practical multicore programmable digital signal processor platform.

We have also examined useful trade-offs in the integration of graph level parallelism and

actor level parallelism.

Additionally, we have motivated several directions for future work to help strength-

en the utility of PPG-based actor design and integration. These include exploration of

algorithms for automated scheduling of dataflow graphs that employ PPG-based parallel

actor implementations; accurate and efficient functional simulation of PPG-based designs

for early-stage DSP system validation; and experimentation on other kinds of state-of-

the-art digital signal processing platforms.

90

Chapter 5

Scheduling Parallelized Synchronous DSP Systems on Multicore PDSPs

In this chapter, we formulate a new type of parallel task scheduling problem called

Parallel Actor Scheduling (PAS). Our formulation of PAS is targeted to MPSoC mapping

of DSP systems that are represented as synchronous dataflow (SDF) graphs. The devel-

opments of this chapter build directly on the techniques for actor design and modeling

that we developed in Chapter 4.

In contrast to traditional SDF-based scheduling techniques, which focus on exploit-

ing graph level (inter-actor) parallelism, the PAS problem targets the integrated exploita-

tion of both intra- and inter-actor parallelism for platforms in which individual actors

can be parallelized across multiple processing units. We address a special case of the

PAS problem in which all of the actors in the DSP application or subsystem being opti-

mized can be parallelized. For this special case, we develop and experimentally evaluate

a two-phase scheduling framework with two work flows — particle swarm optimization

with a mixed integer programming formulation, and particle swarm optimization with a

fast heuristic based on list scheduling. We demonstrate that our PAS-targeted scheduling

framework provides a useful range of trade-offs between synthesis time requirements and

the quality of the derived solutions.

91

5.1 Introduction

Increases in computational power from clock frequency improvements have slowed.

The trend toward multiprocessor system-on-chip (MPSoC) devices is motivated by the

performance gain from simultaneous utilization of multiple processors for parallel exe-

cution of software systems. An application can be divided into tasks, each representing

a piece of the computation performed by the overall software system. Tasks can have

different levels of granularity, e.g., ranging from simple arithmetic operations to higher

level digital signal processing (DSP) operations, such as FFT computations or adaptive

filters.

By a parallel task in this context, we mean a task that has some inner parallelism

and whose execution can be performed by multiple processors. Conversely, a sequential

task is a task that does not have parallelism or otherwise cannot be executed on multiple

processors in a given design context. Many techniques have been created for recognizing

parallel tasks and exploiting their inner parallelism (e.g., see [13, 50, 32]). In addition to

coming from individual software components, parallel tasks can also come from hierar-

chies of sequential tasks.

The performance of a software system composed of parallel tasks depends heavily

on the scheduling of those tasks onto the targeted MPSoC. Each task requires different

amounts of hardware resources for execution. The challenges of scheduling tasks effi-

ciently include allocating hardware resources for competing tasks in such a way that the

task demand is satisfied. The problem of deriving optimal schedules is known to be NP-

hard even for highly restricted versions, such as when all tasks are independent (i.e., the

92

tasks do not have data dependencies among them) [18].

This chapter targets DSP applications, such as those associated with audio and

video data stream processing, digital communications, and image processing (e.g., see [41,

67]). DSP applications usually require real-time processing capabilities and have crit-

ical performance constraints. Dataflow models of computation have been widely used

in the design and implementation of DSP applications. A dataflow model is a directed

graph, where vertices (actors) represent computational functions/tasks, and edges repre-

sent First-In-First-Out (FIFO) queues for storing data values (tokens) and imposing data

dependencies between actors. Dataflow actors respectively consume and produce data

tokens from their input edges and onto their output edges. Each actor executes as a se-

quence of discrete units of computation, called firings, where each firing depends on some

well-defined amount of data from the input edges of the associated actor [42].

Traditionally, in the use of DSP-oriented dataflow models of computation, the firing

of an actor is mapped to a unique processing element within the architecture running the

application, and the dataflow model is used to exploit parallelism across actor firings [41,

74, 53]. Following the terminology in [92], we refer to an actor whose execution requires

a mapping to a unique processing element as an Sequential Actor (SA). By contrast, a

Parallel Actor (PA) is an actor that embeds inner (intra-firing) parallelism, and whose

execution may be accelerated by use of multiple processing elements. In addition to data

parallelism, pipeline parallelism and task parallelism [41, 74] at the dataflow graph level,

parallel execution of PAs provides another way to optimize execution of dataflow models.

In this chapter, we consider two different forms of origin at design time for the

parallelism embedded in a PA:

93

1. The computations within the actor are described using multiple threads. The

main difference between running multiple actors (or actor firings) in parallel and running

multiple threads of the same actor firing in parallel is that threads belonging to the same

actor firing may flexibly share common variables, whereas executions of distinct actor

firings are independent, unless dependencies are explicitly specified with First In, First

Out queues (FIFOs) communication (including possible self-loop edges to implement

actor state variables — i.e., dependencies across multiple firings of the same actor).

2. The actor computation is described by a dataflow subgraph (nested dataflow

graph) rather than through a code module (“host language” module) that is based on a

platform-oriented or otherwise non-graphical language, such as C, C++ or Java.

The Dataflow Interchange Format (DIF) language [26] is a textual language used to

describe DSP applications as dataflow graphs. In DIF, a dataflow actor can be specified

either as an SA or a PA to distinguish the different kinds of possibilities for mapping these

kinds of actors onto target platforms.

We define the problem of scheduling an SDF graph with at least one PA onto an

MPSoC as the Parallel Actor Scheduling (PAS) problem. The PAS problem takes into

account intra-firing parallelism together with data dependencies and resource competition

among distinct actor firings.

In this chapter, we focus on a special case of the PAS problem, called the fully

parallelizable PAS (FP-PAS) problem, in which all actors in the given application are

PAs. This special case is satisfied commonly, for example, in image and video processing

applications. Furthermore, even if the entire application does not conform to this special

case, major subsystems may satisfy the FP-PAS property, and can be optimized using the

94

techniques in this chapter.

We focus in this chapter on Symmetric Multi-Processing (SMP) platforms as the

class of target platforms for addressing the FP-PAS problem. To address the FP-PAS

problem for SMP targets, we develop and experimentally evaluate a novel two-phase

scheduling framework with two alternative work flows — particle swarm optimization

with a mixed integer programming formulation, and particle swarm optimization with a

fast heuristic based on list scheduling. These alternative work flows provide the designer

with a choice between fast synthesis time (e.g., during early stage prototyping) and high

quality solutions (e.g., when deriving deployable implementations).

5.2 Background

5.2.1 Dataflow Interchange Format

The Dataflow Interchange Format (DIF) framework provides a standard approach

for specifying mixed-grain dataflow-based semantics for signal processing system de-

sign [26]. The DIF Language (TDL), which is part of the DIF framework, provides a

unified textual language for expressing different kinds of dataflow semantics, including

graph topologies, hierarchical design structure, dataflow-related design properties, and

actor-specific information.

TDL is therefore suitable for both programming and interchange (transfer of dataflow

graphs across design tools). By using TDL, various kinds of signal processing systems

can be represented as dataflow graphs at a high level of abstraction.

The DIF package (TDP) is a software tool that accompanies TDL, and provides a

95

variety of intermediate representations, analysis techniques, and graph transformations

that are useful for working with dataflow graphs.

5.3 Problem Statement

In this section, we present a formal definition of the PAS problem, which we intro-

duced intuitively in Section 6.1.

An instance of the PAS problem is represented as a 3-tuple I = (G,P,C). Here,

G = (V,E) represents an SDF graph with a set V of actors, and a set E of edges. P

represents the set of available computational resources (e.g., a set of processors) in the

target platform. Specifically, we target Symmetric Multi-Processing (SMP) platforms,

which are widely used in the prototyping, design and implementation of embedded signal

processing systems (e.g., see [76]).

Since the target platform is assumed to be an SMP, we assume that the set of pro-

cessors in P is homogeneous. Extension of the techniques in this chapter to handle het-

erogeneous platforms is an interesting direction for further study.

In I , the third element C represents a function, called the Actor Acceleration Func-

tion (AAF), which provides information about how much time it takes (actual or estimat-

ed) for a given actor to execute on a given number of processors.

The AAF (C) can in general be determined by designers through profiling, although

through follow-on work, one can also imagine development of static analysis techniques

for automated derivation of this function. In more precise terms, the AAF C is a mapping

96

C : V × N>0 → Next , (5.1)

where N>0 represents the set of positive integers, Next represents the set of extended

positive integers (i.e., Next = N>0 ∪ {∞}), and C(a, n) provides the execution time of

actor a when it is executed across n processors. The AAF may have “gaps” at arbitrary

values of n. Such a gap means that the execution time value is not available for the

associated value of n (e.g., because a corresponding library implementation does not exist

or the maximum number of supported processors is exceeded). Such gaps are represented

by the execution time value of ∞. Thus, C(a,m) = ∞ effectively means that a useful

solution to instance I cannot use exactly m processors for actor a.

A solution to the PAS problem is a mapping, called a schedule. Such a schedule L

is a mapping from the set V of actors in G into (powerset(P)×N0)). Here, powerset(P)

represents the power set (or set of all subsets) of a given set P . In particular, if a ∈ V

then L(a) = (ρ, τ) indicates that actor a is scheduled to execute on all resources within

ρ starting at time τ . L determines the following characteristics associated with each PA:

(1) how many processors the actor uses; (2) the processor assignment for the actor; and

(3) the start time (the time when the actor begins execution).

A feasible schedule L must satisfy the following conditions.

1. Data dependencies in the given dataflow graph G must be adhered to.

2. Resource constraints in the targeted MPSoC must be adhered to — in other words,

any given resource (i.e., any element of P) in the targeted MPSoC can be reserved

for at most one actor at any given time instant.

97

3. Implementation availability. For each actor a, we have that

L(a) = (ρ, τ)⇒ C(a, |ρ|) <∞.

If L is a schedule and L(a) = (ρ, τ), then we define resource(L, a) = ρ, and

stime(L, a) = τ .

The objective of the PAS the problem is to find a feasible schedule L that minimizes

the schedule length or “makespan” — i.e., to minimize the maximum completion time

over all actors. For an actor a and a feasible schedule L, the completion time can be

expressed as stime(L, a) + C(a, |resource(L, a)|)

As discussed in Section 6.1, we address in this chapter a special case of the origi-

nal PAS problem, called the FP-PAS (fully parallelizable PAS) problem. In the FP-PAS

problem, we assume that all actors in G are PAs. This means that for every actor a, there

exists at least one integer m such that m > 1 and C(a,m) <∞.

We assume that each actor in the dataflow graph provides the control to initialize

the communication operations associated with its input and output edges, and we assume

that communication between actors is carried out through shared memory. The commu-

nication time for each edge includes two parts: Shared Memory Write (SMW) time and

Shared Memory Read (SMR) time. The shared memory model we assume is multiport

shared memory (e.g., see [76]), which allows multiple processors to access the shared

memory simultaneously. Thus, the SMWs on edges that connect to the same source actor

are executed sequentially; however, the SMWs on edges that have different source actors

can be executed in parallel. Similarly, the SMRs on edges that have different sink actors

98

Figure 5.1: An example of an assignment-constrained FP-PAS instance.

can be executed in parallel.

Since the communication time for each edge is assumed to be fixed, we incorporate

the communication cost on each edge into the AAF of its source actor and sink actor.

The SMW time is incorporated into the AAF of the source actor, and the SMR time is

incorporated into the AAF of the sink actor.

For SDF graphs that are multirate or contain cycles (or both), we first transform

the graphs into acyclic, single rate SDF dataflow graphs using transformation techniques

introduced in [41]. These transformation techniques are useful for exposing inter-firing

parallelism that is embedded within multirate SDF graphs, thus providing a valuable com-

plement to the intra-firing parallelization techniques that we introduce in this chapter.

99

Figure 5.2: Solutions for the FP-PAS instance.

To help solve the FP-PAS problem, we define a general way to project an instance

of the problem onto a specific processor count assignment. Here, by a “processor count

assignment” we mean an assignment of a specific number of processors to each actor.

We refer to such a projection as an assignment-constrained version of the associated in-

stance. More precisely, suppose that we are given (1) an FP-PAS instance I = (G,P,C),

and (2) a processor count assignment asgn as a mapping asgn : V → N>0. Then the

assignment constrained version of I with assignment asgn, denoted constr(I, asgn), is

identical to I except that each feasible schedule L must adhere to the processor count

assignment represented by asgn. This means that for each actor a, we must have that

|resource(L, a)| == asgn(a). An optimal schedule for I is a schedule that minimizes the

schedule makespan over all feasible schedules for all assignment-constrained versions of

I .

100

Fig. 5.1 gives an example of an assignment-constrained version of an FP-PAS in-

stance. Here, the application dataflow graph G is shown in Fig. 5.1(a). We focus on

scheduling the subgraph in the dashed rectangular region, which satisfies the condition

that all actors are PAs. C and P are shown in Fig. 5.1(c). The processor count assignment

asgn is shown in Fig. 5.1(b).

We observe that the schedule in Figure 5.2(a) is a feasible solution for the FP-

PAS instance illustrated in Figure 5.1, but not a feasible solution for the assignment-

constrained version of the FP-PAS problem. On the other hand, the schedule shown in

Figure 5.2(b) is a feasible solution for the FP-PAS problem and also a feasible solution

for the assignment-constrained FP-PAS problem. Moreover, the schedule in Figure 5.2(b)

is an optimal schedule for the FP-PAS problem.

Intuitively, the concept of assignment-constrained versions of FP-PAS instances

helps to decompose the FP-PAS problem into two distinct phases — (1) the generation

of effective processor count assignments, and (2) the efficient assignment-constrained

scheduling of the dataflow graph. We will apply this two-phase decomposition in later

sections of this chapter.

5.4 Mixed Integer Programming Solution

In this section, we introduce a mixed integer programming (MIP) formulation for

the assignment-constrained version of the FP-PAS problem. The formulation is based on

an intermediate representation called the computation usage graph (CUG). The input to

the assignment-constrained version of the FP-PAS problem is first transformed to a CUG.

101

Then, from the CUG, we formulate a corresponding instance γ of the MIP problem. Any

existing MIP solver can then be used to solve the instance γ.

5.4.1 Computation Usage Graph

Given an instance I = (G,P,C) of the FP-PAS problem and the processor coun-

t assignment asgn, the corresponding CUG G
′ is a directed weighted graph G

′
=<

V
′
, E

′
, ω >, where V ′ is the set of vertices, E ′ is the set of edges, and ω : V

′ → N>0

assigns a positive integer weight to each vertex.

The vertices in V ′ are in one-to-one correspondence with the set of ordered pairs

(x, y),where x is a PA, and y ∈ {1, 2, . . . , asgn(x)}. Given a vertex v ∈ V
′ , the

corresponding values of x and y are denoted as paractor(v), and index (v). The set

of vertices in V
′ corresponding to a given PA a is denoted as Sa. In other words,

Sa = {v | paractor(v) = a}.

For each edge e = (a, b) in G, there is an edge in G′ connecting each member of

Sa to each member of Sb. If we denote this set of edges by depend(e), then we can write

depend(e) = {(p1, p2) | p1 ∈ Sa and p2 ∈ Sb}, where e = (a, b). The edge set E ′ can

then be expressed precisely as E ′
=

⋃
e∈E depend(e). Thus, intuitively, the edges in E ′

correspond to data dependencies between parallel actors.

The function ω : V
′ → N>0 specifies weights for vertices in the CUG. These

weights correspond to execution times, as determined by the given processor count assign-

ments and the AAF. Thus, for each v ∈ V ′ , ω(v) = C(paractor(v), asgn(paractor(v))).

For example, suppose that a dataflow graph G contains two PAs a and b, and sup-

102

pose that asgn(a) = 3 and asgn(b) = 2. Suppose also that (1) PA a has AAF C(a, 3) = 5

and C(a, n) = ∞ for n 6= 3, and (2) PA b has a AAF C(b, 2) = 4 and C(b, n) = ∞

for n 6= 2. Finally, suppose that there is an edge e = (a, b) in G, and that we are given

the processor count assignment asgn(a) = 3 and asgn(b) = 2. Then in the correspond-

ing CUG, there are 3 vertices A = {a1, a2, a3} corresponding to PA a, and two vertices

B = {b1, b2} corresponding to PA b. The vertex weights are given by ω(ai) = 5 for

i = 1, 2, 3, and ω(bi) = 4 for i = 1, 2. Furthermore, the set of edges in the CUG can be

expressed as (α, β) | α ∈ A and β ∈ B, which means that there are six edges in total.

5.4.2 Mixed Integer Programming Formulation

After an instance of the assignment constrained version of the FP-PAS problem

has been transformed into a CUG, a corresponding instance of the MIP problem can be

derived from the CUG. This derivation is outlined as follows.

Parameters

• Bin Assignment. ∀v ∈ V
′ and ∀a ∈ V , BA[v, a] = 1 if a == paractor(v), and

BA[v, a] = 0 otherwise.

• Node Dependency. ∀vi, vj ∈ V
′ , ND [vi, vj] = 1 if (vi, vj) ∈ E

′ , and ND [vi, vj] = 0

otherwise.

Variables

• Mapping. ∀v ∈ V
′ and ∀r ∈ P , MP [v, r] = 1 when the vertex v is assigned to

processor r, and MP [v, r] = 0 otherwise.

103

• Non-dependent Vertex Ordering. ∀ vertices vi and vj such that vi 6= vj , ND [vi, vj] = 0,

and vi, vj are assigned to the same processor, NO [vi, vj] = 1 when ST [vi] ≤ ST [vj],

and NO [vi, vj] = 0 when ST [vi] > ST [vj]. When vi, vj are assigned to different

processors, NO [vi, vj] = 0.

• Vertex Start Time. ∀v ∈ V ′ , ST [v] is the scheduled start time of vertex v.

• Actor Start Time. ∀a ∈ V , SA[a] is the scheduled start time of actor a.

• Pair Vertex Assignment. ∀vi, vj ∈ V
′ and ∀r ∈ P , NA[vi, vj, r] = 1 when vi and vj are

both assigned to processor r, and NA[vi, vj, r] = 0 otherwise.

• Vertex Collocation Relation. ∀vi, vj ∈ V
′ , CR[vi, vj] = 1 when vi and vj are assigned

to two different processors, and CR[vi, vj] = 0 otherwise.

Constraints

• Vertex Mapping. Every vertex is mapped to exactly one processor:

∀v ∈ V ′
,
∑
r∈P

MP [v, r] = 1.

• Actor Start Time. Every vertex belonging to the same actor has the same start time:

∀v ∈ V ′
, ST [v] =

∑
a∈V

BA[v, a]× SA[a].

• Dependent Vertex Start Time.

∀(x, y) ∈ E ′
, ST [y] ≥ ST [x] + ω(x).

104

• Non-dependent Vertex Start Time. ∀ vertices vi, vj ∈ V
′ such that vi 6= vj and

ND [vi, vj] = 0:

ST [vi] ≥ ST [vj] + ω[vj]−K(1− NO [vi, vj] + CR[vi, vj]), and

ST [vj] ≥ ST [vi] + ω[vi]−K(NO [vi, vj] + CR[vi, vj]),

where K =
∑

v∈V ′ ω(v).

• Other constraints. ∀ vertices vi, vj ∈ V
′ such that vi 6= vj , and ∀r ∈ P :

NA[vi, vj, r] ≥ MP [vi, r] + MP [vj, r]− 1

NA[vi, vj, r] ≤ MP [vi, r]

NA[vi, vj, r] ≤ MP [vj, r]

CR[vi, vj] ≥
∑
r∈P

NA[vi, vj, r]

The objective function is to minimize the maximum completion time over all vertices v ∈

V
′ , where the completion time completion(v) of a vertex v is defined by completion(v) =

ST [v] + ω[v]. The objective function is thus to minimize M , where

M = max ({completion(v) | v ∈ V ′}).

5.5 List Scheduling Solution

In this section, we develop a novel list scheduling algorithm for the assignment-

constrained version of the FP-PAS problem. We call our algorithm the story scheduling

algorithm.

105

We first clarify some notation that is used in our algorithm formulation. A sink

vertex is a vertex in a directed graph that has no outgoing edges. The level li of a vertex

ai in a vertex-weighted dataflow graph G is defined as the length of the longest path (in

terms of cumulative vertex weights) from vertex ai to a sink vertex.

During the list scheduling process, the dependence count DC i of a vertex a in a

dataflow graphG = (V,E) is initially equal to the number of incoming edges of a. When-

ever a vertex a is scheduled, the dependence counts of all vertices in the set successors(a)

are decremented (decreased by 1), where successors(a) = {b ∈ V | (a, b) ∈ E}. At a

given point during the scheduling process, a free vertex is a vertex that has dependence

count equal to 0, but has not yet been scheduled.

We view the set P of processing resources and time T as a 2-dimensional compu-

tation resource space. We consider each SDF vertex a ∈ V as a rectangle for placement

within this space. Given a processor count assignment asgn, the rectangle associated with

a vertex a has width w(a) = asgn(a) and height h(a) = C(a, asgn(a)). The assignment-

constrained version of the FP-PAS problem can be viewed as the problem of placing the

rectangles associated with the SDF vertices in the computation resource space in such

a way that no two rectangles overlap, and all of the dataflow graph dependencies are

satisfied.

5.5.1 Story Scheduling Overview

Each time interval [t1, t2] specifies a region in the computation resource space that

we called a story. We refer to t1 is the floor of the story and t2 as the ceiling of the story.

106

Two stories are adjacent if the floor of one story is equal to the ceiling of the other story.

The proposed algorithm constructs stories one at a time for different dataflow graph ac-

tors, and conceptually lays these stories out in the computation resource space by adhering

to resource and data dependence constraints. Intuitively, the algorithm repeatedly selects

a free actor a, constructs and lays out a story for a, decrements any relevant dependence

counts, and then repeats this iterative process.

The available processor count (APC) for a given story is initially equal to |P |,

which means that a total of |P | processors can be assigned to actors scheduled in the

story. When a story s = [t1, t2] is under construction, only its floor t1 is known; its ceiling

t2 is determined as soon as construction of s is complete. When a free vertex a is evaluated

for scheduling into the story s = [t1, t2] that is currently under construction, the actor’s

processor count assignment asgn(a) is compared to the APC. If asgn(a) ≤ APC , then

the start time of a is set to the floor t1 of s, and the APC is updated by APC − asgn(a).

On the other hand, if asgn(a) > APC , then a cannot be scheduled into s.

If no free vertex can be scheduled into s, then the story’s construction is com-

plete, and the story’s ceiling t2 is determined as t2 = max ({C(b, asgn(b)) + t1 | b ∈

actors(s)}), where actors(s) represents the set of actors that have been scheduled into

story s.

5.5.2 Algorithm Description

Our story scheduling algorithm operates in two phases — the preparation phase,

and the core loop phase. These phases are described as follows.

107

Preparation phase. The level for each vertex is calculated using Dijkstra’s algo-

rithm, which has time complexity of O(|V |2). Then the dependence count for each graph

vertex is initialized. This initialization process has complexity O(|E|). Thus, the overall

time complexity for the preparation phase is O(|V |2).

Core loop phase. At the beginning of each iteration in the core loop phase, a story

and its APC are initialized. Then, the free vertices are sorted in descending order of their

levels. If a tie occurs during this sorting process, then the vertex that requires the most

processors (among the set of tied vertices) is selected first. The free vertices are selected

one by one based on their positions in the sorted list, and evaluated for scheduling based

on the process described in Section 5.5.1. A given core loop iteration completes when

construction of the current story is completed, and then if there are one or more actors

that remain to be scheduled, the construction process continues in the next iteration with

the initialization and construction of a new story.

The core loop phase ends when all vertices in the input SDF graph G = (V,E)

have been scheduled. The time complexity for the core loop phase is O(|E|+ |V |log|V |).

We omit details of this complexity derivation due to space limitations. We see that the

time complexity of the story scheduling algorithm is dominated by that of the preparation

phase, and can be expressed as O(|V |2).

5.5.3 Example

In this section, we present a simple example to illustrate the story scheduling algo-

rithm. Consider the instance of the assignment-constrained version of the FP-PAS prob-

108

Figure 5.3: Result of applying the story scheduling algorithm on the example of Fig. 5.1.

lem shown in Fig. 5.1. Fig. 5.3 shows the schedule constructed for this instance by the

story scheduling algorithm. It can be verified that for this simple example, the solution

shown in Fig. 5.3 is optimal. In general, however, the story scheduling algorithm is not

guaranteed to produce optimal solutions, and can be viewed as a fast heuristic.

5.6 Two Phase Scheduling Framework

In Section 5.4 and Section 5.5, we introduced alternative algorithms for the assignment-

constrained version of the FP-PAS problem. In this section, we build on these algorithms,

109

and introduce a two-phase scheduling framework, called the Two-Phase FP-PAS Frame-

work (TPFF), for solving the general FP-PAS problem (i.e., the FP-PAS problem without

assignment constraints).

The TPFF is illustrated in Fig. 5.4. In the first phase, a candidate processor count

assignment is generated using a Particle Swarm Optimization (PSO) [33] engine. Such

candidate processor count assignments are used to project the given instance of the FP-

PAS problem onto an assignment-constrained version of the FP-PAS problem. In the

second phase of the TPFF, a solution to the assignment-constrained version of the FP-

PAS problem is derived by using either the MIP problem formulation of Section 5.4 or

the list scheduling heuristic of Section 5.5. The quality of the derived solution is then

evaluated and used as feedback to the PSO engine to help generate new processor count

assignments.

The TPFF framework iteratively optimizes the schedule until a given termination

condition is satisfied. The set of supported termination conditions in our implementation

of the framework currently includes a specific time limit for optimization or a maximum

number of PSO iterations.

PSO [33] is a computational method that derives an optimized solution by itera-

tively trying to improve a candidate solution with regard to a given measure of quality.

PSO performs optimization by maintaining a population of candidate solutions, where

each candidate solution is referred to as a particle. Each particle’s “movement” (trajecto-

ry through the underlying design space or problem space) is influenced by its local best

known position, and is also guided toward the best known positions in the search-space,

which are updated as better positions are found by other particles.

110

Figure 5.4: Two-phase scheduling framework for the FP-PAS problem.

Our PSO formulation is inspired by PSO techniques introduced in [90]. In our PSO

formulation, a particle p in the PSO swarm encapsulates a processor count assignment

asgnp (using a minor abuse of notation). asgnp(a) denotes the processor count assignment

for a specific actor a. The PSO swarm S is a set of particles. For each particle p, optp

stores the best processor count assignment, in terms of schedule makespan, found so far

for the particle. In case of ties for the best processor count assignment, the oldest (least

recently encountered) solution is stored. For the swarm S, optS stores the best processor

count assignment found so far for the swarm, with ties handled in a similar way.

During initialization, a swarm is created by randomly generating its particles. Each

particle in the current swarm along with the FP-PAS instance that has been input to the

framework are passed to the second scheduling phase to derive a schedule. The schedule

111

makespan is then used to evaluate the schedule.

During optimization, each particle p in the current swarm is modified. The result-

ing set of particle modifications leads to a new swarm, which then becomes the “current

swarm” for the next optimization iteration. The modification to a given particle is deter-

mined by two “force values”: lforcep and gforcep. Intuitively, the local force lforcep tries

to move the current particle towards optp, while the global force gforcep tries to move the

current particle towards optS . Key equations that govern the particle modification process

are summarized as follows.

lforcep(a) = W1 × rand()× (optp(a)− asgnp(a)) (5.2)

gforcep(a) = W2 × rand()× (optS(a)− asgnp(a)) (5.3)

asgnp(a) = asgnp(a) + lforcep(a) + gforcep(a) (5.4)

Here, W1 and W2 are weights to adjust the impact of local and global forces, respectively,

on a particle’s movement, and rand() generates random integers. This use of randomiza-

tion helps the optimization process to avoid “getting stuck” in local minima.

5.7 Related Work

Static MPSoC scheduling problems can be classified into four categories based on

the task models: (1) independent sequential task scheduling (ISTS), (2) dependent se-

quential task scheduling (DSTS), (3) independent parallel task scheduling (IPTS), and (4)

112

dependent parallel task scheduling (DPTS).

For the ISTS problem, Dogramaci et al. introduce a dynamic programming ap-

proach to derive optimal schedules [15].

The DSTS problem is NP-hard, so heuristics and meta algorithms have been ex-

plored. Wu et al. [81] propose an algorithm called Modified Critical Path (MCP). MCP

calculates the As-Late-As-Possible (ALAP) scheduling times of all tasks and ranks the

tasks in order of ascending ALAP times. Tasks are selected one by one from the sorted

list, and each task is assigned to the processor that provides the earliest start time. O-

mara et al. [51] introduce a genetic/evolutionary algorithm for the DSTS problem. An

initial schedule is first formed as a chromosome. Mutations alter one or more genes in

such “schedule chromosomes” to generate new chromosomes. The chromosomes are e-

valuated by a fitness function that assesses schedule performance. Genetic operations

and fitness evaluation on schedule chromosomes are repeated until a given termination

condition is reached.

The IPTS problem is also NP-hard. Depending on the targeted application domain,

preemption of tasks may or may be not be allowed. For preemptive IPTS with task mi-

gration, Klaus et al. [28] develop a linear programming algorithm and that is guaranteed

to find an optimal solution in O(n) + poly(m) time, where n is the number of tasks, poly

is a univariate polynomial, and m is an expression involving exponential variables.

Both preemptive and non-preemptive versions of the DPTS problem have been stud-

ied. The non-preemptive DPTS problem was investigated by Du et al. in [17] and shown

to be strongly NP-hard. Algorithms for non-preemptive DPTS are discussed in [21, 46].

However, the solutions provided by these works are restricted to handling only 2 or 3 pro-

113

cessors in the target (parallel processing) platform. The non-preemptive DPTS problem

is similar to the FP-PAS problem that we target in this chapter; however, conventional ap-

proaches to non-preemptive DPTS do not consider interprocessor communication costs

or multiple implementations of the same actor.

In [91], Zaki et al. formulate an MIP problem for scheduling SDF graphs on het-

erogeneous platforms that consist of graphics processing units and general-purpose pro-

cessors. Our MIP formulation for CUG scheduling is similar in some ways to Zaki’s;

however, our MIP problem formulation is novel in that it considers alternative implemen-

tations of actors (actor acceleration functions) across different numbers of processors in

addition to considering graph-level data dependencies.

5.8 Experiments

We have developed a prototype implementation of our FP-PAS scheduling frame-

work, TPFF, in the DIF environment [26]. In this section, we present experimental results

obtained using this prototype implementation. We experiment with two different work

flows within TPFF: PSO +MIP and PSO +Heuristic, where Heuristic refers to the list

scheduling heuristic presented in Section 5.5.

In our experiments, we use PREESM [53] to generate random SDF graphs in DIF

format as one form of input for our scheduling framework. The SDF graphs are randomly

generated from the following constraints: (1) each actor has between 1 and 3 input ports

and between 1 and 5 output ports; (2) each actor has a load of rand10 ()×50, representing

the execution time of the actor on a single processor, where rand10 () generates a random

114

integer between 1 and 10; and (3) each edge has a communication cost of rand10 ()× 6,

representing data movement time through shared memory.

Due to the overhead of synchronization and communication, linear speedup in actor

execution time on multiple processors is difficult to obtain in many realistic scenarios.

Thus, we assume a logarithmic (log1.5) speedup profile to generate AAFs. We assume

that each actor can be sped up by 2 to 8 processors in the generated AAFs. These models

of random SDF graph, and AAF generation provide a flexible mechanism for constructing

a diverse set of synthetic benchmarks to test our framework under different conditions.

We also assume that the time for SMW and SWR on each edge is the same. Thus,

half of the communication cost on an edge is attributed to its source actor, and the other

half is attributed to its sink actor. The logarithmic speedup model for AAF generation re-

sults in general in fractional values; all such fractional values are rounded to their nearest

integers.

For example, if the sequential execution time of actor 1 is 450 and the commu-

nication cost attributed to it is 30, then a representative “computation-only” AAF, and

an extended AAF (AAF
′
) that includes communication costs for actor 1 are shown in

Fig. 5.5.

In our experiments, we empirically set the swarm size of the PSO to 2, W1 and W2

to 0.5, and rand() to generate integers between 0 and 4 in Equation 5.2 and Equation 5.3.

We constrain the runtime of the two-phase scheduling framework by two termination

criteria: one is the maximum number of optimization iterations No for the PSO, and the

other is the maximum runtime Nr for optimization. We set No = 20 and Nr = 24hours.

We assume a |P | = 8 multiport shared memory SMP platform.

115

Figure 5.5: Generated AAF and AAF
′

for actor 1.

The experimental results presented in this section are all obtained by executing the

TPFF on an Intel Core i7-2600K CPU (3.40GHz). Table 5.1 shows the results of the

two evaluated work flows for solving the FP-PAS problem. Each entry presents results

for a randomly generated SDF graph. For each work flow, the optimization run time and

the graph schedule length (makespan) are given. The column labeled “Ratio” presents

the ratio of the graph schedule length obtained by PSO + Heuristic compared to that of

PSO + MIP . An entry labeled NF indicates that no feasible schedule was found.

As demonstrated in Table 5.1, the optimization runtime of PSO + MIP grows

exponentially with the number of vertices and edges in the SDF graph. The reason is

that the MIP solver utilizes a branch and bound method to find an optimal schedule for

the assignment constrained version of the FP-PAS problem. Despite the optimality of the

116

solutions it provides, the PSO + MIP work flow fails to finish all optimization iterations

for problems with more than 30 actors. Furthermore, the PSO + MIP work flow fails to

find any feasible solutions for problems with more than 60 actors.

In contrast, the runtime of the PSO + Heuristic work flow is roughly proportional

to |V |2, which demonstrates good scalability. Solutions for all cases are calculated in less

than 1 second. The results in Table 5.1 also show that the lengths of the schedules generat-

ed from the PSO +Heuristic work flow are shorter than those of the schedules generated

by PSO+MIP for problems with more than 30 actors. Intuitively, this improvement aris-

es because the heuristic-embedded workflow is able explore more processor count assign-

ments. When both work flows finish all of their optimization iterations, PSO +Heuristic

generates schedules that are 11% longer on average compared to the schedules generated

by PSO + MIP ; however, these moderately under-performing schedules are generated

much faster by the heuristic-embedded work flow.

We also experimented with the TPFF on a practical application. Specifically, we in-

corporated the TPFF into the TDIF-PPG framework [92] to implement an Image Registra-

tion (IR) application [82] on the Texas Instruments (TI) 6678L multicore programmable

digital signal processor (PDSP) [76]. The TI 6678L has 8 PDSP cores, where each core

runs at 1.0 Ghz. The TI 6678L also has 32KB L1 data cache, 32 KB L1 instruction cache,

and 512KB L2 cache. Additionally, the device has 4MB of multiport shared SDRAM,

which allows up to 4 “masters” to access it simultaneously.

DSP applications typically consist of different DSP algorithm kernels with data be-

ing streamed through the kernels sequentially. With little temporal locality in the data,

data cache structures provide little benefit in terms of power and performance over soft-

117

Table 5.1: Performance of both work flows on randomly generated SDF graphs.

SDF Graphs PSO+MIP PSO+Heuristic

|V | |E| Time Length Time Length Ratio

10 12 420 s 1300 0.192 s 1450 1.12

15 20 1.2 hr 1850 0.228 s 2150 1.16

20 31 3.8 hr 1800 0.276 s 1950 1.08

30 54 23.8 hr 4600 0.38 s 5050 1.1

40 57 24 hr 4850 0.46 s 4050 0.83

50 98 24 hr 7750 0.58 s 6700 0.86

60 107 24 hr 9300 0.61 s 7050 0.76

70 93 24 hr NF 0.62 s 9100 NA

80 98 24 hr NF 0.66 s 10150 NA

90 194 24 hr NF 0.77 s 10800 NA

100 274 24 hr NF 0.91 s 12050 NA

ware controlled scratchpad memories (SPM). Thus, for our experiments, we disable all

levels of cache in the TI 6678L and configure them as SPMs.

Our targeted IR application [82] involves a significant amount of matrix operations,

which have high levels of data parallelism. Under TI’s Code Composer Studio integrated

development environment, we use the TI Inter-Process Communication (IPC) library to

develop the multithreaded implementation for each actor in the dataflow graph, except for

the file reading actor and file writing actor, which are used as input/output interfaces for

the graph. IRSUB is a subgraph of the original dataflow graph that is composed entirely

118

of PAs, and is therefore a suitable input for the FP-PAS problem. In sequential execution

on a single PDSP core, IRSUB uses up to 98% of the execution time of the whole dataflow

graph. Thus, if we can accelerate IRSUB, we can provide significant acceleration for the

overall IR application.

Using the TI multicore system analyzer, we derive the AAF for each actor by pro-

filing its execution time on different numbers of TI 6678L cores. We also obtain the

communication cost on each edge by measuring the associated data write time and data

read time to and from shared memory. All of these measurements are in terms of PDSP

cycles. We input the AAF and communication cost information to the TPFF, and ap-

ply the framework using both of our implemented work flows, PSO + Heuristic and

PSO + MIP .

As shown in Table 5.2, both work flows derive the same schedule for this applica-

tion. We refer to this common schedule as “Schedule 1”. The PSO + Heuristic work

flow is much faster than the PSO + MIP work flow in deriving this schedule.

To further demonstrate the utility of the TPFF framework, we use Schedule 1 to de-

velop a fully functional implementation of the IR application on the TI 6678L platform.

The actual graph execution time is 2.36E10 PDSP cycles, which is 10% more than the es-

timated schedule length. We also manually create an optimal schedule that maps IRSUB

to the target multi-core platform using only sequential actor implementations. We refer to

this sequential-actor-only schedule as “Schedule 2”. We implement Schedule 2 on the TI

6678L platform and measure its performance. The result of this measurement indicates

that when implemented on the TI 6678L platform, Schedule 1 provides a 1.97X speedup

compared to Schedule 2. This speedup can be viewed as a performance gain enabled by

119

Table 5.2: Performance of both TPFF work flows on an image registration application.

Graphs PSO+MIP PSO+Heuristic

Time Length Time Length Ratio

IRSUB 1.1 hr 2.14E10 0.21 s 2.14E10 1

exploiting both intra-actor and inter-actor parallelism compared to using only inter-actor

parallelism.

5.9 Summary

In this chapter, we introduced a new scheduling problem, called the Parallel Ac-

tor Scheduling (PAS) problem, that is targeted to optimized MPSoC implementation of

synchronous dataflow (SDF) graphs. We focused on an important special case of the

PAS problem, called the fully parallelizable PAS (FP-PAS) problem, in which all actors

in the given application are parallel actors. We utilized multiple levels in both struc-

tural and behavioral contexts of the targeted DSP system to derive our solution approach.

We developed a two-phase scheduling framework, called TPFF, for the FP-PAS problem

using (1) particle swarm optimization techniques in conjunction with (2) mixed integer

programming and fast heuristic techniques that optimize FP-PAS solutions for fixed pro-

cessor count assignments. We used a diverse set of randomly generated SDF graphs and

a practical image processing application to demonstrate the effectiveness and utility of

the TPFF framework in integrating both intra- and inter-actor parallelism for optimized

MPSoC implementation.

120

Chapter 6

A Cross-platform Design Flow for DSP Applications

In the previous chapters of this thesis, we introduced several scheduling techniques

that address different design levels and combinations of levels in the mapping of signal

processing applications onto parallel and distributed platforms. In this chapter, we de-

velop a design methodology for integrating and applying different scheduling techniques

in a way that helps engineers to efficiently explore the diverse design spaces associated

with state-of-the-art signal processing systems. In particular, we discuss a CFDF-based

design flow and associated design methodology for efficient simulation and implemen-

tation of DSP applications. The design flow supports system formulation, simulation,

validation, cross-platform software implementation, instrumentation, and system integra-

tion capabilities to derive optimized signal processing implementations on a variety of

platforms. We provide a comprehensive specification of the design methodology using

the lightweight dataflow (LWDF) and targeted dataflow interchange format (TDIF) tools,

and demonstrate it with case studies on CPU/GPU and multicore PDSP designs that are

geared towards fast simulation, rapid transition from simulation to deployment, high per-

formance implementation, and power-efficient acceleration. Material in this chapter was

published in preliminary form in [95].

121

6.1 Introduction

As embedded processing platforms become increasingly diverse, designers must

evaluate trade-offs among different kinds of devices such as CPPs, graphics processing

units (GPUs), multicore programmable digital signal processors (PDSPs), and field pro-

grammable gate arrays (FPGAs). The diversity of relevant platforms is compounded by

the trend towards integrating different kinds of processors onto heterogeneous multicore

devices for DSP (e.g., see [4]). Such heterogeneous platforms help designers to simulta-

neously achieve manageable cost, high power efficiency, and high performance for critical

operations. However, there is a large gap from the simulation phase to the final implemen-

tation. Simulation is used extensively in the early stage of system design for high-level

exploration of design spaces and fast validation. In contrast, in the implementation phase,

there is strong emphasis platform dependent issues, performance centric optimization,

and tuning low-level implementation trade-offs. A seamless design flow is needed to help

designers to effectively bridge this gap.

Dataflow models of computation have been widely used in the design and imple-

mentation of DSP applications, such as applications for audio and video stream process-

ing, digital communications, and image processing (e.g., see [4, 41]). These applications

often require real-time processing capabilities and have critical performance constraints.

Dataflow provides a formal mechanism for specifying DSP applications, imposes minimal

data-dependency constraints in specifications, and is effective in exposing and exploiting

task or data level parallelism for achieving high performance implementations.

A dataflow graph is a directed graph, where vertices (actors) represent computa-

122

tional functions (actors), and edges represent first-in-first-out (FIFO) channels for storing

data values (tokens) and imposing data dependencies between actors. In DSP-oriented

dataflow models of computation, actors can typically represent computations of arbitrary

complexity as long as the interfaces of the computations conform to dataflow semantics.

That is, dataflow actors produce and consume data from their input and output edges, re-

spectively, and each actor executes as a sequence of discrete units of computation, called

firings, where each firing depends on some well-defined amount of data from the input

edges, and produces some well-defined amount of data onto the output edges of the asso-

ciated actor [42].

Dataflow modeling has several advantages, which facilitate its use as a single, u-

nified model across the simulation phase and implementation phases of the design flow.

First, dataflow utilizes simple, standard, and loosely coupled interfaces (in the form of

FIFOs), which can be easily implemented on individual platforms and across different

platforms. Second, the structure of actor interfaces can be cleanly separated from the in-

ternal operation of actors. As long as the predefined amounts of data from the input edges

are consumed and the predefined amounts of data to the output edges are produced on

each firing, the implementation of an actor can be changed without violating key higher

level properties of the enclosing dataflow model. Third, dataflow models enable a wide

variety of powerful techniques for design analysis and optimization — e.g., for evaluating

or optimizing performance, memory usage, throughput and latency [4].

Based on Core Functional Dataflow (CFDF) [56], two complementary tools have

been developed in recent years. First, the lightweight dataflow (LWDF) programming

methodology [69] provides a “minimalistic” approach for integrating coarse grain dataflow

123

programming structures into DSP simulation for fast system formulation, validation and

profiling with arbitrary languages. Second, the targeted dataflow interchange format (T-

DIF) framework [71] provides cross-platform actor design support, and the integration

of (1) code generation for programming interfaces, and (2) low level customization for

implementations targeted to homogeneous and heterogeneous platforms alike. In this

chapter, we present a novel dataflow-based design flow that builds upon on both LWDF

and TDIF to allow rapid transition from simulation to optimized implementations on di-

verse platforms. In this chapter, we present this design flow, and provide case studies to

demonstrate its application.

6.2 Background

In this section, we review background that is needed to introduce our design flow,

which is introduced in the next section.

6.2.1 Lightweight Dataflow

Lightweight dataflow (LWDF) [69] is a programming approach that allows design-

ers to integrate various dataflow modeling approaches relatively quickly and flexibly into

existing design methodologies and processes. LWDF is designed to be minimally intru-

sive on existing design processes and requires minimal dependence on specialized tools

or libraries. LWDF can be combined with a wide variety of dataflow models to yield a

lightweight programming method for those models. In our design flow, the LWDF is used

for system simulation.

124

In LWDF, an actor has an operational context, which encapsulates the following

entities related to an actor design [68]:

• Actor parameters.

• Local actor variables — variables whose values store temporary data that does not

persist across actor firings.

• Actor state variables — variables whose values do persist across firings.

• References to the FIFOs corresponding to the input and output ports (edge connec-

tions) of the actor as a component of the enclosing dataflow graph.

• Terminal modes: a (possibly empty) subset of actor modes in which the actor cannot

be fired.

In LWDF, the operational context for an actor also contains a mode variable whose

value stores the next CFDF mode of the actor and persists across firings. The LWDF

operational context also includes references to the invoke function and enable function

of the actor. The concept of terminal modes, defined above, can be used to model finite

subsequences of execution that are “re-started” only through external control (e.g., by an

enclosing scheduler). This is implemented in LWDF by extending the standard CFDF

enable functionality such that it unconditionally returns false whenever the actor is in

a terminal mode.

125

6.3 From simulation to implementation

In this section, we elaborate on the process of applying our proposed design flow

based on LWDF and TDIF, and we discuss useful features of the design flow.

6.3.1 Step 1: System Formulation

In the first step of the design flow, the targeted DSP application is modeled in terms

of CFDF semantics. Decisions are made on how to decompose the application specifica-

tion into actors, along with the functionality of and parameterization associated with each

actor.

Next, we design FIFOs and actors or select such design components from prede-

fined libraries. Actor design in LWDF includes four interface functions — the construct,

enable, invoke, and terminate functions. The construct function can be viewed as a form

of object-oriented constructor, which connects an actor to its input and output edges (FI-

FO buffers), and performs any other pre-execution initialization associated with the actor.

Similarly, the terminate function performs any operations that are required for “closing

out” the actor after the enclosing graph has finished executing (e.g., deallocation of actor-

specific memory or closing of associated files).

In the enable function for an LWDF actor a, a true value is returned if

population(e) ≥ cons(a,m, e) for all e ∈ inputs(a); (6.1)

population(e) ≤ (capacity(e)− prod(a,m, e)) for all e ∈ outputs(a); and (6.2)

126

m /∈ τ(a), (6.3)

where m is the current mode of a.

In other words, the enable function returns true if the given actor is not in a

terminal mode, and has sufficient input data to execute the current mode, and the output

edges of the actor have sufficient data to store the new tokens that are produced when the

mode executes. An actor can be invoked at a given point of time if the enable function is

true-valued at that time.

In the invoke function of an LWDF actor a, the operational sequence associated with

a single invocation of a is implemented. Based on CFDF semantics, an actor proceeds

deterministically to one particular mode of execution whenever it is enabled, and in any

given mode, the invoke method of an actor should consume data from at least one input

or produce data on at least one output (or both) [56]. Note that in case an actor includes

state, then the state can be modeled as a self-loop edge (a dataflow edge whose source and

sink actors are identical) with appropriate delay, and one or more modes can be defined

that produce or consume data only from the self-loop edge. Thus, modes that affect only

the actor state (and not the “true” inputs or outputs of the actor) do not fundamentally

violate CFDF semantics, and are therefore permissible in LWDF.

After completing actor design and selection, we focus an analogous process for FI-

FOs. FIFO design for LWDF dataflow edge implementation is orthogonal to the design

of dataflow actors in LWDF. That is, by using LWDF, application designers can focus on

design of actors and mapping of edges to lower level communication protocols through

127

separate design processes (if desired) and integrate them later through well-defined in-

terfaces. Such design flow separation is useful due to the orthogonal objectives, which

center around computation and communication, respectively, associated with actor and

FIFO implementation.

Standard FIFO operations in LWDF include operations that perform the following

tasks:

• Create a new FIFO with a specified capacity;

• Read and write tokens from and to a FIFO;

• Check the capacity of a FIFO;

• Check the number of tokens that are currently in a FIFO;

• Deallocate the storage associated with a FIFO (e.g., for dynamically adapting graph

topologies or, more commonly, as a termination phase of overall application execu-

tion).

The buffer sizes used during simulation and implementation are determined based

on the scheduling strategies that are employed. Our proposed design flow facilitates ex-

perimentation with alternative scheduling strategies to help designers explore trade-offs

involving buffer sizes and other relevant implementation metrics, such as latency and

throughput. More details on scheduling are provided later in this section.

128

6.3.2 Step 2: System Validation and Profiling

After system formulation, we need a schedule to validate the correctness of the sys-

tem and the behavior of each actor. A CFDF canonical schedule [58] can be employed for

this purpose. A canonical schedule repeatedly traverses the list of actors in a CFDF graph

according to some pre-defined sequence. When an actor is visited during this traversal

process, its enable function is first called. If the enable function returns true, the invoke

function for the actor is subsequently called; otherwise, firing of the actor is effectively

“skipped”, and traversal continues with the next actor in the sequence.

During simulation, profiling information for each actor is obtained to extract rele-

vant performance characterizations that will be employed to inform the implementation

phase. For example, execution time statistics for each actor mode are extracted. Such

profiling can help to identify modes that are bottlenecks of individual actors, and actors

that are bottlenecks of the overall system.

6.3.3 Step 3: System Optimization

In this step, we enter the implementation phase, which is where TDIF comes into

play. There are two main kinds of optimization techniques supported in the TDIF frame-

work. One is cross-platform implementation for actor-level optimization, and the other is

scheduling and mapping for system or subsystem optimization.

After we identify the bottleneck actors, cross-platform implementation of actors

allows designers to efficiently experiment with alternative actor realizations on different

kinds of platforms, such as GPUs, multicore PDSPs, and FPGAs, to help derive a platfor-

129

m or mix of platforms that will be strategic in terms of the given design constraints (e.g.,

constraints involving cost, performance, and energy consumption). During this process,

much of the code from the simulation phase can be reused. Only the functionality associ-

ated with selected actor modes (e.g., bottleneck modes of bottleneck actors) needs to be

rewritten or selected from available platform-specific libraries.

The TDIF environment currently supports C-like programming languages — i.e.,

languages that are targeted to CPU, GPU and multicore PDSP platforms. The GPU-based

capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on the CUDA

programming language [1], which can be viewed as an extension of C. The multicore

PDSP capabilities currently in TDIF are oriented towards Texas Instruments (TI) PDSP

devices, and are interoperable with the multithreading libraries provided by TI [76].

TDIF also provides a library of FIFO implementations that are optimized for dif-

ferent platforms. These FIFOs all adhere to standard operations defined in LWDF so that

they can be integrated in a manner that is consistent with the CFDF graph model from

the simulation phase. After simulation-mode FIFOs are mapped into platform-specific

FIFOs, optimized actors can communicate in a manner that is efficient, and consistent

with the designer’s simulation model.

The scheduling strategy employed determines the execution order of the actors

while the mapping process, which is typically coupled closely with scheduling, deter-

mines which resource each actor is executed on. TDIF provides the generalized schedule

tree (GST) [36] representation to facilitate implementation of and experimentation with

alternative scheduling and mapping schemes for system optimization. GSTs are ordered

trees with leaf nodes and internal nodes. An internal node of a GST in TDIF represents

130

iteration control (e.g., a loop count) for an iteration construct that is to be applied when

executing the associated subtree. On the other hand, a GST leaf node includes two pieces

of information that are used to carry out individual actor firings — one is an actor of

the associated dataflow graph, and the other is mapping information associated with the

actor. The GST representation provides designers with a common interface through with

topological information and algorithms for ordered trees can be applied to access and

manipulate schedule elements.

Execution of a GST involves traversing the tree to iteratively enable (and then ex-

ecute, if appropriate) actors that correspond to the schedule tree leaf nodes. Note that

if actors are not enabled, the GST traversal simply skips their invocation. Subsequent

schedule rounds (and thus subsequent traversals of the schedule tree) will generally revis-

it actors that were unable to execute in the current round.

For schedule construction in the implementation phase, the CFDF graph decom-

position approach of [54] is integrated in the TDIF framework. This approach allows

designers to decompose a CFDF graph into a set of SDF subgraphs. Each SDF subgraph

can be scheduled by existing static scheduling algorithms, such as an APGAN-based

scheduler [5]. The GST schedule trees that result from scheduling these SDF subgraph-

s are then systematically combined into a single, “execution-rate-balanced” GST using

profiling and instrumentation techniques that are discussed in next section.

131

6.3.4 Step 4: System Verification and Instrumentation

Given a GST together with a set of actor and FIFO implementations, the TDIF

framework automatically generates a complete CFDF graph implementation for the target

platform. Performance metrics, such as latency and throughput, can then be evaluated

using platform-specific simulation tools, or using execution on actual target hardware.

The TDIF framework also provides an instrumentation approach to help assess gen-

erated implementations. Such instrumentation facilitates experimentation with and tuning

of alternative scheduling and mapping techniques. The instrumentation approach integrat-

ed in TDIF also facilitates trade-off assessment across different implementation metrics,

and helps designers steer implementations towards effective solutions.

Our approach to instrumentation in TDIF is designed to support the following fea-

tures: (a) no change in functionality (instrumentation directives should not change ap-

plication functionality); (b) operations for adding and removing instrumentation points

should be performed by designers in a way that is external to actors (i.e., does not inter-

fere with or require modification of actor code); and (c) instrumentation operations should

be modular so that they can be mixed, matched, and migrated with ease and flexibility.

In schedule tuning mode, TDIF allows designers to augment the GST representa-

tion with functional modules, encapsulated as instrumentation nodes, which are dedicated

to instrumentation tasks. Like iteration nodes, instrumentation nodes are incorporated as

internal nodes. We refer to GSTs that are augmented with instrumentation nodes as in-

strumented GSTs (IGSTs). The instrumentation tasks associated with an instrumentation

node are in general applied to the corresponding IGST sub-tree.

132

An IGST allows software synthesis for a schedule together with instrumentation

functionality that is integrated in a precise and flexible format throughout the schedule.

Upon execution, software that is synthesized from an IGST produces profiling data (e.g.,

related to memory usage, performance or power consumption) along with the output da-

ta that is generated by the source application. Modeling techniques, metrics, and mea-

surements related to the coding efficiency of TDIF-based implementations are discussed

in [83].

6.3.5 Determining Buffer Sizes

During simulation, estimated buffer size bounds are provided by the designer. If the

these bounds are not sufficient to keep the graph running without deadlock, then simula-

tion is terminated with an appropriate diagnostic message. The designer can then increase

selected buffer sizes, and retry the simulation. This process is repeated until the simula-

tion completes for the desired number of iterations, or the buffer size constraints of the

design are exhausted. In the latter case, the designer needs to re-examine the system

for sample-rate inconsistencies (unbounded buffer sizes), and re-design the system to re-

duce buffer sizes. Such an iterative process is needed for general CFDF specifications,

which are highly expressive, and therefore do not provide the kinds of guaranteed buffer

size bounds that are available with less expressive models, such as synchronous dataflow

(SDF) or cyclo-static dataflow (CSDF) [41, 6].

During the implementation phase, subgraphs corresponding to specialized model-

s, such as SDF or CSDF, can be extracted from the CFDF specification and optimized

133

with appropriate guaranteed-buffer-bound algorithms. In particular, we apply the AP-

GAN scheduling technique to optimize buffer sizes for SDF subgraphs [5]. Furthermore,

quasi-static scheduling techniques, such as the CFDF mode grouping technique, can be

applied to provide buffer optimization for CFDF specifications that contain certain kinds

of dynamic dataflow structures (e.g., see [55]).

6.3.6 Discussion

Integration of the following four features distinguish the CFDF-based design flow

developed in this chapter:

1. Support for dynamic dataflow behavior in the system;

2. Use of a common formal model for simulation and implementation, which provides

rapid transition between the simulation and implementation phases, and promotes

consistency between simulation and implementation versions of a design;

3. Support for diverse target platforms;

4. Support for significant code reuse across the simulation and implementation phases.

One limitation of TDIF is that due to the high expressive power of the underlying

CFDF model of computation, key analysis and verification problems are undecidable for

general TDIF-based applications (e.g., see [58]). However, the CFDF model helps to ex-

pose and exploit subsystems within an overall dataflow graph specification that adhere

to more specialized (static) dataflow modeling techniques, so that decidable verification

properties can be exploited at a “local” level on those subsystems. Some work has also

134

been developed on quasi-static scheduling of CFDF specifications, where fully-verified

schedules for static dataflow subsystems are integrated systematically with global dynam-

ic schedulers [55]. Efficient and reliable quasi-static and dynamic scheduling of CFDF

specifications are useful directions for further investigation.

6.4 Case Study 1 - CPU/GPU

To demonstrate our design flow, we first experiment with an image processing ap-

plication centered on Gaussian filtering. Two-dimensional Gaussian filtering is a common

kernel in image processing that is used for preprocessing. Gaussian filtering can be used

to denoise an image or to prepare for multiresolution processing. A Gaussian filter is a

filter whose impulse response is a Gaussian curve, which in two dimensions resembles a

bell.

For filtering in digital systems, the continuous Gaussian filter is sampled in a win-

dow and stored as coefficients in a matrix. The filter is convolved with the input image by

centering the matrix on each pixel, multiplying the value of each entry in the matrix with

the appropriate pixel, and then summing the results to produce the value of the new pixel.

This operation is repeated until the entire output image has been created.

The size of the matrix and the width of the filter may be customized according to the

application. A wide filter will remove noise more aggressively but will smoothen sharp

features. A narrow filter will have less of an impact on the quality of the image, but will

be correspondingly less effective against noise.

It should also be noted that the tiles indicated in Figure 6.1 do vary somewhat

135

Figure 6.1: Dataflow graph of an image processing application for Gaussian filtering.

between edges. Gaussian filtering applied to tiles must consider a limited neighbor-

hood around each tile (called a halo) for correct results. Therefore, tiles produced by

bmp file reader overlap, while the halo is discarded after Gaussian filtering. As a

result, non-overlapping tiles form the input to bmp file writer.

Figure 6.1 shows a simple application based on Gaussian filtering. It reads bitmap

files in tile chunks, inverts the values of the pixels of each tile, runs Gaussian filtering

on each inverted tile, and then writes the results to an output bitmap file. The main pro-

cessing pipeline is single-rate in terms of tiles, and can be statically scheduled, but after

initialization and end-of-file behavior is modeled, there is conditional dataflow behavior

in the application graph, which is represented by square brackets in the figure.

Such conditional behavior arises, first, because the Gaussian filter coefficients are

programmable to allow for different standard deviations. The coefficients are set once per

image — coefficient filter reader produces a coefficient matrix for only the

first firing. To correspond to this behavior, the gaussian filter actor consumes the

coefficient matrix only once, and each subsequent firing processes tiles. Such condition-

al firing also applies to bmp file reader, which produces tiles until the end of the

associated file is reached.

136

As shown in Figure 6.1, our dataflow graph of the image processing application

for Gaussian filtering is specified as a CFDF graph. The graph includes five actors:

bmp file reader, coefficient filter reader, invert, gaussian filter,

and bmp file writer. We first use the LWDF programming methodology, integrated

with the C language, to construct the system for simulation.

6.4.1 Simulation

In our design, the bmp file reader actor is specified using two CFDF modes,

and one output FIFO. The two modes are the process mode and the inactive mode.

It is the actor programmer’s responsibility to implement the functionality of each mode.

In the process mode, the bmp file reader reads image pixels of a given tile and

the corresponding header information from a given bitmap file, and produces them to its

output FIFOs. Then the actor returns the process mode as the mode for its next firing.

This continues for each firing until all of the data has been read from the given bitmap

file. After that, the actor returns the inactive mode, which is a terminal mode. Arrival

at a terminal mode indicates that the actor cannot be fired anymore until its current mode

is first reset externally (e.g., by the enclosing scheduler).

The coefficient filter reader actor is also specified in terms of two

modes and one output FIFO. The two modes are again labeled as the process mode

and the inactive mode, and again, the inactive mode is a terminal mode. On each

firing when it is not in the inactive mode, the coefficient filter reader

actor reads filter coefficients from a given file, stores them into a filter coefficient vector

137

(FCV) array, and produces the coefficients onto its output FIFO. The FCV V has the form

V = (sizeX,sizeY, c0, c1, . . . , cn−1), (6.4)

where sizeX and sizeY denote the size of the FCV represented in two dimensional

format; each ci represents a coefficient value; and n = sizeX×sizeY. After firing, the

actor returns the process mode if there is data remaining in the input file; otherwise,

the actor returns the inactive mode.

The bmp file writer actor contains only a single mode and one input FIFO.

The single mode is called the process mode. Thus, the actor behaves as an SDF actor.

On each firing, the bmp file writer actor reads the processed image pixels of the

given tile and the corresponding header information from its input FIFOs, and writes

them to a bitmap file, which can later be used to display the processed results. The actor

returns the process mode as the next mode for firing.

The gaussian filter actor contains one input FIFO, one output FIFO and

two modes: the store coefficients (STC) mode and the process mode. On each firing

in the STC mode, the gaussian filter actor consumes filter coefficients from its

coefficient input FIFO, caches them inside the actor for further reference, and then returns

the process mode as the next mode for firing. In the process mode, image pixels

of a single tile will be consumed from the tile input FIFO of the actor, and the cached

filter coefficients will be applied to these pixels. The results will be produced onto the tile

output FIFO. The actor then returns the process mode as the next mode for firing. To

activate a new set of coefficients, the actor must first be reset, through external control,

138

back to the STC mode.

The invert actor also contains a single mode called the process mode, and

contains one input FIFO and one output FIFO. Because it has only one mode, it can also

be viewed as an SDF actor. On each firing, the invert actor reads the image pixels of

the given tile from its input FIFOs, inverts the color of the image pixels, and writes the

processed result to its output FIFO. The actor always returns the process mode as the

next mode for firing.

After designing the actors, as described above, we connect the actors with the ap-

propriate FIFOs. For our simulation setup, we use 256x256 images decomposed into

128x128 tiles, and filtered with different sizes of matrices for Gaussian filter coefficients.

The canonical scheduler (see Section 6.3.2) is used to run the simulation on 3GHz Intel

Xeon processors. The profiling results are reported in Table 6.1. As can be observed

from this table, increases in the matrix size lead to increases in the processing time for the

Gaussian filter and the overall application. Furthermore, the Gaussian filter actor accounts

for most of the processing time in the application in all cases. Thus, if we can optimize

the Gaussian filter actor, the performance of the overall application will be enhanced.

6.4.2 Implementation

From the experiments discussed in the previous section, we identified the bottleneck

actor to be the Gaussian filtering actor. To improve the performance of this actor, we

apply the cross-platform implementation features of TDIF. In particular, we use TDIF

to experiment with a new version of the implementation in which the Gaussian filtering

139

Table 6.1: Execution time of the gaussian filter (GF) actor and the Gaussian fil-

tering application (App) during simulation.

Filter size 5X5 11X11 21X21 25X25 37X37

GF. SIM (ms) 50 280 1080 1540 3310

App. SIM (ms) 70 295 1100 1550 3340

Percentage 71.4% 95% 98.2% 99.3% 99.1%

actor is executed on a graphics processing unit (GPU).

GPUs provide a class of high performance computing platforms that provide high

peak throughput processing for certain kinds of regularly structured computations [52].

Typically, a GPU architecture is structured as an array of hierarchically connected cores

as shown in Figure 6.2. Cores tend to be lightweight as the GPU will instantiate many

of them to support massively parallel graphics computations. Some of the memories are

small and scoped for access to small numbers of cores, but can be read or written in one

or just a few cycles. Other memories are larger and accessible by more cores, but at the

cost of longer read and write latencies.

Using TDIF, we explore the use of GPUs to accelerate the gaussian filter

actor. We employ an NVIDIA GTX 285 GPU and employ the CUDA programming

environment to specify the internal functionality of the gaussian filter actor for

GPU acceleration. This CUDA based actor implementation is integrated systematically

into the overall application-level CFDF graph through the TDIF design environment. We

140

Figure 6.2: A typical GPU architecture.

apply actor-level vectorization to exploit data parallelism within the actor on the targeted

GPU.

Fundamentals of vectorized execution for dataflow actors have been developed by

Ritz [64], and explored further by Zivojnovic [96], Lalgudi [39], and Ko [35]. In such

vectorization, multiple firings of the same actor are grouped together for execution to

reduce the rate of context switching, enhance locality, and improve processor pipeline

utilization. On GPUs, groups of vectorized firings can be executed concurrently to achieve

parallel processing across different invocations of the associated actor. Each instance of

a “vectorized actor” may be mapped to an individual thread or process, allowing the

replicated instances to be executed in parallel.

141

An application developer may consider vectorization within and across actors while

writing kernels for CUDA acceleration. In TDIF, the actor interface need not change as

the vectorization degree changes, which makes it relatively easy for designers to start with

the programming framework provided by CUDA and wrap the resulting vectorized kernel

designs in individual modes of an actor for integration at the dataflow graph level.

In the GPU-targeted version of our Gaussian filtering application, a CUDA kernel

is developed to accelerate the core Gaussian filtering computation (the process mode),

and each thread is assigned to a single pixel, which leads to a set of parallel independent

tasks. The threads are assembled into blocks to maximize data reuse. Each thread uses

the same matrix for application to the local neighborhood, and there is significant overlap

in the neighborhoods of the nearby pixels. To this end, the threads are grouped by tiles in

the image. Once the kernel is launched, threads in a block cooperate to load the matrix,

the tile to be processed, and a surrounding neighborhood of points. The image load itself

is vectorized to ensure efficient bursting from memory. Because CUDA recognizes the

contiguous accesses across threads, the subsequent image processing operations induce

vectorized accesses to global memory.

We use the same canonical scheduler in the GPU implementation that we used in

in the simulation phase. The performance of our Gaussian filtering application in sim-

ulation and GPU-accelerated implementation is compared to demonstrate the ability of

our design flow to support cross-platform actor implementation exploration in a manner

that is systematically coupled with the simulation-level application model. We use the

same experimental setup — in terms of input and output images and overall dataflow

graph structure — as used in the simulation. To accelerate the Gaussian Filtering actor,

142

Table 6.2: Execution time of the gaussian filter (GF) actor and the Gaussian fil-

tering application (App) in simulation and GPU-accelerated implementation.

Filter size 5X5 11X11 21X21 25X25 37X37

GF. SIM (ms) 50 280 1080 1540 3310

GF. GPU (ms) 4.228 4.874 10.257 12.759 21.72

GF. Speedup 11.83 57.45 105.29 120.70 152.39

App. SIM (ms) 70 295 1100 1550 3340

App. GPU (ms) 70 80 140 115 130

App. Speedup 1 3.69 7.86 13.48 25.69

we applied an NVIDIA GTX 285 running CUDA 3.1 and compared the associated imple-

mentation to the simulation system. The measurement results are reported in Table 6.2.

As shown in Table 6.2, our design flow provides flexible and efficient transition

from the simulation system to a GPU-accelerated implementation that has superior per-

formance compared to the corresponding simulation design for these experiments. The

actor-level speedup realized by this acceleration process is in the range of 10X to 100X .

However, the application-level speedup levels, while still significant (up to 25X speedup),

are consistently less than the corresponding actor-level speedup levels. This is due to fac-

tors such as context switch overhead and communication cost for memory movement,

which are associated with overall schedule coordination in the application implementa-

tions.

143

Figure 6.3: Block diagram of TI TMS320C6678 8-core PDSP device.

6.5 Case Study 2 - Multicore PDSP

A programmable digital signal processor (PDSP) is a specialized kind of micropro-

cessor with an architecture optimized for the operational needs of real-time digital signal

processing [40]. In multicore PDSPs, such as those available in the Texas Instruments

TMS320C6678 family of fixed point and floating point processors [76], multiple PDSP

cores are integrated on a single chip and connected with shared memory. A typical mul-

ticore PDSP is shown in Figure 6.3, where each core has private L1 cache as well as L2

cache. All cores share on-chip SRAM and DRAM. High peak throughput can be achieved

if all PDSP cores can operate parallel.

Multicore PDSPs are increasingly employed in wireless communication systems,

such as systems for software defined radio (SDR). Fig. 6.4 shows a CFDF graph model

for the mp-sched benchmark [91], which is representative of an important class of digital

144

Figure 6.4: An illustration of the mp-sched benchmark.

processing subsystems for wireless communication, and is designed for use with the GNU

Radio environment [7]. There are two paths between SRC and SNK , which represent two

different signal processing procedures on the incoming signals. In the upper path, from

SRC to SNK , the signal is first filtered in the time-domain and then transformed to the

frequency-domain. In the lower path, from SRC to SNK , the signal is first transformed to

the frequency-domain and then filtered in the frequency-domain. We illustrate the utility

of our design flow to conduct simulation and implementation of the mp-sched benchmark

on a TI TMS320C6678 8-core PDSP device.

6.5.1 Simulation

The mp-sched application involves mainly two actors: finite impulse response (FIR)

filtering and fast Fourier transform (FFT) computation, which are fundamental operations

in SDR applications.

Our FIR filter actor is specified using a single input FIFO, a single output FIFO,

and one mode, the process mode. In this mode, the core operation of an FIR filter is

developed in terms of the C language. The functionality is developed from the following

145

equation, which defines the output sequence y [n] in terms of the input sequence x [n]:

y[n] = b0x[n] + b1x[n− 1] + . . .+ bNx[x−M + 1]

=
M−1∑
i=0

bix[n− i], (6.5)

where x [n] is the input signal, y [n] is the output signal, the bis are the filter coefficients,

and M is the filter order, which is set to 79 in our design.

An FFT is an efficient algorithm to compute the discrete Fourier transform (DFT)

and its inverse. FFTs are of great importance in a wide variety of applications, from

digital signal processing and solving partial differential equations to algorithms for fast

multiplication of large integers. Let x0, x1, . . . , xN−1 be complex numbers. The DFT is

defined by the following formula:

Xk =
N−1∑
n=0

xne
−i2πk n

N . (6.6)

There areN outputs {Xk}. Each output requires a sum ofN items, which leads toO(N2)

operations overall.

The most common form of FFT is the Cooley-Tukey algorithm, which calculates the

DFT and its inverse using O(N logN) operations. This is a divide and conquer algorithm

that recursively breaks down a DFT of any composite sizeN = N1×N2 into smaller DFT-

s of sizesN1 andN2, along withO(N) multiplications by complex roots of unity. A radix-

2 decimation-in-time (DIT) FFT is the simplest and most common form of the Cooley-

Tukey algorithm. A Radix-2 DIT FFT computes the DFTs of the even-indexed inputs

x2m(x0, x2, . . . , xN−2) and of the odd-indexed inputs x2m+1 (x1, x3, . . . , xN−1), and then

146

combines those two results to produce the DFT of the whole sequence. Then the same

procedure is performed recursively to reduce the overall running time to O(N logN).

The recursive tree of the Radix-2 DIT FFT is illustrated in Fig. 6.6(a). Each white node

in the figure represents a DFT computation involving the number of points annotated next

to the node, and each black node merges two smaller DFT results together.

The FFT actor connects to one output FIFO and one input FIFO, and has one mod-

e, the process mode. In this mode, we carry out the steps of the Radix-2 DIT FFT

algorithm.

On each firing, the SRC node generates 1024 samples to each of its two output

FIFOs. These blocks of 1024 samples are packaged into single tokens — i.e., each token

encapsulates a complete block of 1024 samples. Such “blocking” of the data does not

affect overall system input/output functionality, but it influences the internal dataflow

structure of the design model and the associated analysis and implementation steps. The

canonical scheduler is used to simulate the dataflow graph on a single core of 8-core

PDSP. The processing time for the core computation (as shown in the dashed rectangle in

Fig. 6.4) is 98.8% of the computation time for the overall system. The overall computation

time is 24.6ms. The FFT computation takes 8.6ms, while the FIR filter takes 3.55ms. To

improve the overall system performance, we need to optimize the core computation.

6.5.2 Implementation

In this section, we demonstrate, through the core computation of mp-sched, the use

of both cross-platform implementation and scheduling/mapping in our proposed LWDF-

147

Figure 6.5: Multithreaded FIR filter for PDSP implementation.

and TDIF-based design flow.

6.5.2.1 Cross-Platform Implementation

To optimize the system, we first port the FIR filter and FFT actors to multiple PDSP

cores by employing the multithreading libraries provided by TI. These libraries are pro-

vided with the TI PDSP platform to help DSP system designers express and exploit par-

allelism for efficient execution on the PDSP cores.

The FIR filtering operation provides a significant amount of data parallelism (DP).

For demonstration purposes, this “intra-actor” DP is exploited across two cores on the

targeted multicore PDSP using multithreading techniques. Our implementation can be

readily adapted to utilize additional cores if desired.

148

Operation of our TDIF based FIR filter design is shown in Fig. 6.5, where X is sin-

gle input token containingN input samples, Y is the output token, andB is the coefficient

vector. In order to exploit DP, blocks ofN input samples are divided into two groups, each

for execution across two threads. Blocks of output samples are similarly divided into two

groups each. The common coefficient vector B is shared by both threads, and each thread

executes the fir calculation independently. This provides a multi-threaded FIR filter

implementation, which exploits intra-actor parallelism in a manner that can be integrated

systematically, through TDIF, with higher level parallelism exposed by the application

dataflow graph. The overlap on the inputs of thread 0 and thread 1 arises because the

current output depends on the previous (M − 1) input samples.

To demonstrate the performance gain from multithreading, the execution time of a

sequential 79th order FIR filter (Seq-FIR) design in simulation is compared to that of our

parallel FIR (Par-FIR) implementation using identical input streams on the targeted mul-

ticore PDSP platform. The results for multiple input sizes are demonstrated in Table 6.3.

The input size is the number of signal samples. The reported execution time is the pro-

cessing time, excluding the time for reading from the input FIFO and writing to the output

FIFO. The FIFO reading and writing operations involve only pointer manipulations and

no actual data movement, and thus have negligible impact on actor performance. The

speedup is defined as the ratio between the execution time of Par-FIR and that of Seq-

FIR. The super-linear speedup observed is due to the VLIW feature of the targeted kind

of PDSP core. As more data is processed, more ILP is available to be exploited within

each core.

DP and temporal parallelism (TP) from the recursive tree of Fig. 6.6(a) are utilized

149

Table 6.3: Execution time comparison between sequential FIR in simulation and parallel

FIR implementations for different input sizes.

Input Size 1079 10079 100079 1000079

Seq-FIR (s) 0.0036 0.0336 0.334 3.34

Par-FIR (s) 0.0017 0.015 0.147 1.47

Speedup 2.11 2.24 2.27 2.27

for multithreading in the FFT actor, as illustrated in Fig. 6.6(b). With DP, two threads

T1 and T2 each calculate half of the overall DFT (N), which is DFT (N/2) using the

Cooley-Turkey algorithm. Another single thread T0 merges the two results together. We

experiment with two different implementations, Ia and Ib. In Implementation Ia, T1 and

T2 are assigned to two separate cores, and T0 is assigned to one of these two cores. In

this implementation, only DP is exploited. On the other hand, in Implementation Ib, T1

and T2 are assigned to two separate cores, as in Ia, but T0 is assigned to another (third)

core. In this way, T1 and T2 can execute concurrently in a software pipelined manner

with T0 in a separate “pipeline stage”. Implementation Ib thus exploits both DP and TP.

The execution time of the sequential FFT (Seq-FFT) in simulation is compared

to the two different parallel FFT implementations, Ia and Ib. The execution time of Ia

is the time for its longest pipeline stage. The speedup is defined by the ratio between

the execution time of the parallel implementation (Ia or Ib) and that of Seq-FFT. The

latency is another important figure of merit. The latency in these experiments is defined

150

(a) Recursive tree for Radix-2 DIT FFT. (b) Thread construction on recursive tree.

Figure 6.6: Parallel FFT actor implementation using TDIF.

by the time difference (tw − tr), where tr denotes the time when the FFT actor reads the

first token from its input FIFO, and tw denotes the time when the actor writes the first

result token to its output FIFO. The results are shown in Table 6.4. For Seq-FFT and

Ia, the latency is the same as the execution time, so the latency values are not shown

separately. We see from the results that Ib achieves more speedup than Ia, but introduces

more latency.

6.5.2.2 Scheduling and Mapping

Using the GST representation for dataflow graph schedules, we have derived, by

hand, three different scheduling and mapping schemes for the core computation of the

mp-sched benchmark, and we have implemented these different schemes using the T-

DIF scheduling APIs. Due to the use of a common underlying CFDF-based modeling

foundation, the actor design from LWDF can be scheduled with no change in the TDIF

scheduling APIs. Our experiments with these different scheduling and mapping schemes

demonstrate the utility of our design flow for assessing design trade-offs based on alter-

151

Table 6.4: Execution time and latency comparisons between Seq-FFT in simulation, and

the two parallel FFT implementations Ia and Ib.

Input Size 64 256 1024 4096

Seq-FFT (s) 0.00028 0.0016 0.0086 0.045

Ia (s) 0.00021 0.001 0.005 0.255

Speedup 1.3 1.61 1.72 1.788

Ib (s) 0.00023 0.00073 0.0039 0.021

Speedup 1.21 2.19 2.20 2.14

Latency (s) 0.00038 0.00118 0.00517 0.0257

native implementation strategies for a given application dataflow graph.

Note that the two paths in the graph of Figure 6.4 are independent so that control

parallelism can be used. Additionally, in each path, the individual actors can be pipelined

to exploit more temporal parallelism. In the first scheme, we use a sequential implementa-

tion for each actor; however, we distribute different actors across different PDSP cores. In

particular, the actors are mapped onto 4 DSP cores — FIR1 is assigned to DSP0 ; FFT1

is assigned to DSP1 ; FFT2 is assigned to DSP2 ; and FIR1 is assigned to DSP3 .

The second and third schemes in our experimentation are derived by replacing

sequential actor implementations in the graph with corresponding parallel actor imple-

mentations. In the second scheme, FIR1 is assigned to DSP0 ,DSP1 ; FFT1 is as-

signed to DSP2 ,DSP3 ; FFT2 is assigned to DSP4 ,DSP5 ; and FIR1 is assigned to

152

DSP6 ,DSP7 . On the other hand, in the third schedule, FIR1 is assigned to DSP0 ;

FFT1 is assigned to DSP1 ,DSP2 ,DSP3 ; FFT2 is assigned to DSP4 ,DSP5 ,DSP6 ;

and FIR1 is assigned to DSP7 . Thus, in the second scheme, intra-actor parallelism is

exploited for all actors, while in the third scheme, intra-actor parallelism is exploited only

for the FFT actors. The GSTs with the associated actor and FIFO implementations are

processed to generate corresponding application implementations for the targeted PDSP

platform.

We experiment with three different implementations, corresponding to the three

different schemes described above. The implementations are evaluated using the same

input stream used in simulation, which contains 1024 samples. The execution time,

speedup and latency values for these implementations are compared on the core compu-

tation shown in Fig. 6.4. The remaining actors (SRC and SNK) take only approximately

1.2% of the computation time for sequential execution and thus do not have a significant

impact on overall performance. The execution time is taken to be the processing time

in the core computation region defined above. If pipelining is used, then the execution

time is the time for the longest pipeline stage. The latency is defined as the elapsed time

during the first iteration of graph execution between when the first input token enters the

region and the time when the first output token leaves the region. The results of the three

implementations are compared to the simulation, as shown in Table 6.5.

The results demonstrate the capabilities in our design flow for supporting flexible

design exploration in terms of different implementation constraints. For example, Scheme

2 has higher execution time but less latency compared to Scheme 3. If the system has a

tight latency constraint, then Scheme 2 should be chosen, whereas Scheme 3 is preferable

153

Table 6.5: Execution time and latency comparisons among 3 different scheduling and

mapping schemes and simulation for the mp-sched benchmark.

Schedule Execution Time (s) Speedup Latency (s)

simulation 0.0243 1 0.0243

1 0.00878 2.77 0.0089

2 0.00517 4.7 0.0052

3 0.0041 5.9 0.0092

if throughput is the most critical constraint. Using our design flow, the designer can

experiment with such alternatives to efficiently arrive at an implementation whose trade-

offs are well matched to the design requirements.

6.6 Summary

In this chapter, we have introduced dataflow-based methods that facilitate integrated

software simulation and implementation for digital signal processing (DSP) applications.

Specifically, we have demonstrated use of a design flow, based on core functional dataflow

(CFDF) graphs and multi-scale scheduling techniques, for simulation and implementation

of diverse DSP systems — (1) an image processing application on a CPU/GPU platform,

and (2) a software defined radio benchmark on a multicore programmable digital signal

processor (PDSP).

Through these case studies on diverse platforms, we show that our design flow

154

allows a designer to formulate and simulate DSP systems efficiently using lightweight

dataflow (LWDF) programming. Then, from the profiling results in the simulation, the

designer can identify bottlenecks in the system. To alleviate these bottlenecks, optimiza-

tion techniques in the targeted dataflow interchange format (TDIF) are applied. While

TDIF provides a framework where platform-specific optimizations can be applied and

experimented with in a flexible way, our design methodology ensures that such experi-

mentation adheres to the high level application structure defined by the simulation model.

Such consistency is maintained as a natural by-product of the common CFDF modeling

foundation that supports both LWDF and TDIF. The flexibility with which designers can

implement different mapping and scheduling strategies using our design flow, and the

efficiency with which such strategies can be integrated into complete implementations

further facilitate exploration of optimization trade-offs.

155

Chapter 7

Conclusions and Future Work

With the fast evolution of hardware platforms and applications for signal process-

ing systems, scheduling techniques play a critical role in satisfying performance require-

ments, and utilizing state-of-the art platforms effectively. In this thesis, we have de-

veloped multi-scale scheduling techniques simultaneously considering multiple levels of

processing and communication hierarchies. We targeted two types of signal processing

systems — 1) distributed signal processing systems, where applications are implement-

ed on distributed processing platforms, and 2) parallel signal processing systems, where

applications are implemented on parallel processing platforms.

7.1 Distributed Signal Processing Systems

For distributed signal processing systems, we demonstrated a scheduling framework

for event detection applications on wireless sensor networks [61].

In this framework, we systematically decompose the system into two layers: the

chip layer and network layer. At the chip layer, a sensor node is considered to have

variable false positive and false negative error probabilities due to process variations and

environmental noise. We designed a training process to estimate the actual detection

accuracy for an individual sensor. At the network layer, based on the information obtained

from the lower (chip) layer, our scheduling framework efficiently maps the computational

156

tasks and communication tasks to the distributed sensor nodes across the network.

Only the spatial variance in sensor node detection accuracy is considered in our

scheduling framework. Taking temporal variance into account in this framework is a

useful direction for future work. One approach to addressing this problem is to design

a special training process for monitoring the history of the transmitted data from each

sensor node to the associated fusion center. When the system detects that that a sensor

node’s data is consistently “off the mark”, appropriate adjustments can be made.

7.2 Parallel Signal Processing Systems

For parallel signal processing systems, we developed scheduling techniques based

on physical aspects of the platforms and abstract (high level) aspects of the application

models. Both kind of aspects have strong influence on system performance. Through

extensive experimentation, we showed that our scheduling techniques can effectively take

these aspects into account to improve overall system performance.

7.2.1 Scheduling from Physical Aspects

We are the first to consider both process variations and thermal flow in task schedul-

ing for multicore GPPs. We formulated the problem in terms of Partial Differential Equa-

tions (PDEs). We developed static and dynamic solutions to solve the PDEs. Based on

the solutions, we built a scheduling framework that can statically and dynamically assign

threads to cores to maximize the throughput of the threads. The proposed techniques are

the first to address the problem with online solutions while considering both process and

157

temperature variations in multicore processors.

Useful directions that emerge from our work on scheduling from physical aspects

include the following.

• Considering process variations on Network On Chip [37] devices, which are of

increasing interest in future multicore processors and systems.

• Experimenting with our scheduling framework on real parallel platforms and other

task models.

7.2.2 Scheduling from Models of Computation

We introduced a new design flow, called TDIF-PPG, that considers multiple levels

in the behavioral hierarchy of DSP applications, and is formulated in terms of signal

processing oriented dataflow models of computation. The TDIF-PPG is designed with

a specific emphasis on integrating graph level parallelism and actor level parallelism in

dataflow-based, MPSoC software optimization for DSP applications. Our approach is

based on a new model, called the parallel processing group (PPG). Our new design flow

applies this model to help designers express parallelism within actor designs, and integrate

such intra-actor parallelism efficiently with graph level parallelism. Empirical results

show that our TDIF-PPG design flow can provide significant speedup on multicore PDSP

platforms.

To systematically exploit intra- and inter-actor parallelism in DSP applications, we

formulated a new scheduling problem, called the Parallel Actor Scheduling (PAS) prob-

lem, that is targeted to optimized MPSoC implementation of DSP applications modeled

158

by synchronous dataflow (SDF) graphs. We first focused on an important special case

of the PAS problem, called the fully parallelizable PAS (FP-PAS) problem, in which al-

l actors in the given application are parallel actors. We utilized multiple levels in both

structural and behavioral contexts to derive efficient solutions for the FP-PAS problem.

We developed a two-phase scheduling framework, called TPFF, for the FP-PAS

problem using particle swarm optimization techniques in conjunction with (1) mixed in-

teger programming (MIP), and (2) fast heuristic techniques that optimize FP-PAS solu-

tions for fixed processor count assignments. We used a diverse set of randomly generated

SDF graphs and a practical image processing application to demonstrate the effectiveness

and utility of the TPFF framework in integrating both intra- and inter-actor parallelism

for optimized MPSoC implementation.

In the process of developing signal processing systems, there is a large gap from the

simulation phase to the implementation phase. To help migrate designs efficiently across

this gap, we introduced a novel dataflow-based work flow. Our work flow is designed

specifically to aid in the implementation of optimized systems on parallel signal process-

ing platforms. Our work flow integrates use of a design flow, based on core functional

dataflow (CFDF) graphs, and the multi-scale scheduling techniques described above. We

have demonstrated this work flow in the design and implementation of diverse signal pro-

cessing systems, including (1) an image processing application on a CPU/GPU platform,

and (2) a software defined radio benchmark on a multicore PDSP.

Interesting directions for future work along these lines include the following.

• Accurate and efficient functional simulation of PPG-based designs for early-stage

159

DSP system validation.

• Experimentation on other kinds of state-of-the-art digital signal processing plat-

forms.

• Investigation of dynamic and quasi-static scheduling techniques for DSP applica-

tions.

• Exploration of scheduling techniques for DSP applications in which performance

requirements for the system can change significantly at runtime, such as LTE sys-

tems (e.g., see [34]).

160

Bibliography

[1] NVIDIA CUDA Compute Unified Device Architecture: Programming Guide, Version
1.0, June 2007.

[2] Whitepaper: NVIDA’s next generation CUDA computer architecture Fermi. Sep.
2009.

[3] Anandkumar A., L. Tong, and A. Swami. Optimal node density for detection in
energy-constrained random networks. Signal Processing, IEEE Transactions on,
56(10):5232 –5245, oct. 2008.

[4] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, editors. Handbook of
Signal Processing Systems. Springer, second edition, 2013.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. APGAN and RPMC: Comple-
mentary heuristics for translating DSP block diagrams into efficient software im-
plementations. Journal of Design Automation for Embedded Systems, 2(1):33–60,
January 1997.

[6] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static dataflow.
IEEE Transactions on Signal Processing, 44(2):397–408, February 1996.

[7] E. Blossom. GNU radio: tools for exploring the radio frequency spectrum. Linux
Journal, June 2004.

[8] K.A. Bowman, A.R. Alameldeen, S.T. Srinivasan, and C.B. Wilkerson. Impact of
die-to-die and within-die parameter variations on the clock frequency and through-
put of multi-core processors. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 17(12):1679 –1690, dec. 2009.

[9] K.A. Bowman, S.G. Duvall, and J.D. Meindl. Impact of die-to-die and within-die
parameter fluctuations on the maximum clock frequency distribution for gigascale
integration. Solid-State Circuits, IEEE Journal of, 37(2):183 –190, feb 2002.

[10] Vladimir Bychkovskiy, Seapahn Megerian, Deborah Estrin, and Miodrag Potkonjak.
A collaborative approach to in-place sensor calibration. In IPSN’03: Proceedings
of the 2nd international conference on Information processing in sensor networks,
pages 301–316, Berlin, Heidelberg, 2003. Springer-Verlag.

[11] J. Ceng et al. MAPS: An integrated framework for MPSoC application paralleliza-
tion. In Proceedings of the Design Automation Conference, pages 754–759, 2008.

[12] A.K. Coskun, T.T. Rosing, K.A. Whisnant, and K.C. Gross. Static and dynamic
temperature-aware scheduling for multiprocessor socs. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 16(9):1127 –1140, sept. 2008.

161

[13] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. Computational Science Engineering, IEEE, 5(1):46–55, 1998.

[14] Jay L. Devore. Probability and statistics for engineering and the sciences. 1995.

[15] A. Dogramaci and J. Surkis. Evaluation of heuristic for scheduling independent jobs
on parallel identical processors. Management Science, 25(12):1208–1216, 1979.

[16] D.S.Naidu. Optimal control systems. CRC Press, 2002.

[17] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM
Journal of Discrete Mathematics, 2(4):473–487, 1989.

[18] H. El-Rewini, T. G. Lewis, and H. H. Ali. Task Scheduling in Parallel and Distribut-
ed Systems. Prentice Hall, 1994.

[19] M. Frigo and S. G. Johnson. FFTW: an adaptive software architecture for the FFT.
In Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, 1998.

[20] Edgar Gabriel, GrahamE. Fagg, George Bosilca, Thara Angskun, JackJ. Dongar-
ra, JeffreyM. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, RalphH. Castain, DavidJ. Daniel, RichardL. Graham, and TimothyS.
Woodall. Open mpi: Goals, concept, and design of a next generation mpi imple-
mentation. In Dieter Kranzlmller, Pter Kacsuk, and Jack Dongarra, editors, Recent
Advances in Parallel Virtual Machine and Message Passing Interface, volume 3241
of Lecture Notes in Computer Science, pages 97–104. Springer Berlin Heidelberg,
2004.

[21] K. Giaro, M. Kubale, and P. Obszarski. A graph coloring approach to scheduling of
multiprocessor tasks on dedicated machines with availability constraints. Discrete
Applied Mathematics, 157(17):3625–3630, 2009.

[22] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In Symposium on Architectural Support
for Programming Languages and Operating Systems, 2006.

[23] M.N. Haggag, M. El-Sharkawy, and G. Fahmy. Efficient fast multiplication-free in-
teger transformation for the 2-D DCT H.265 standard. In Image Processing (ICIP),
2010 17th IEEE International Conference on, pages 3769–3772, 2010.

[24] V. Hanumaiah, R. Rao, S. Vrudhula, and K.S. Chatha. Throughput optimal task al-
location under thermal constraints for multi-core processors. In Design Automation
Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 776 –781, 26-31 2009.

[25] V. Hanumaiah, S. Vrudhula, and K.S. Chatha. Maximizing performance of ther-
mally constrained multi-core processors by dynamic voltage and frequency con-
trol. In Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009.
IEEE/ACM International Conference on, pages 310 –313, 2-5 2009.

162

[26] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software synthesis from the dataflow
interchange format. In Proceedings of the International Workshop on Software and
Compilers for Embedded Systems, pages 37–49, Dallas, Texas, September 2005.

[27] Alexander T. Ihler, John W. Fisher, III, Randolph L. Moses, and Alan S. Willsky.
Nonparametric belief propagation for self-calibration in sensor networks. In IPSN
’04: Proceedings of the 3rd international symposium on Information processing in
sensor networks, pages 225–233, New York, NY, USA, 2004. ACM.

[28] K. Jansen and L. Porkolab. Preemptive parallel task scheduling in O(n) + Poly(m)
time. In G. Goos, J. Hartmanis, J. Leeuwen, D. T. Lee, and S. Teng, editors, Al-
gorithms and Computation, Lecture Notes in Computer Science, pages 398–409.
Springer Berlin Heidelberg, 2000.

[29] A. A. Jerraya, A. Bouchhima, and F. Petrot. Programming models and HW-SW
interfaces abstraction for multi-processor SoC. In Proceedings of the Design Au-
tomation Conference, pages 280–285, 2006.

[30] P.O. Jskelinen, C.S. de La Lama, P. Huerta, and J.H. Takala. OpenCL-based design
methodology for application-specific processors. In Embedded Computer Systems
(SAMOS), 2010 International Conference on, pages 223–230, 2010.

[31] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. Proc. of ACM MOBICOM, Aug. 2000.

[32] H. Kasim, V. Marchu, R. Zhang, and S. See. Survey on parallel programming model.
In J. Cao, M. Li, M. Wu, and J. Chen, editors, Network and Parallel Computing,
volume 5245 of Lecture Notes in Computer Science, pages 266–275. Springer Berlin
Heidelberg, 2008.

[33] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the
IEEE International Conference on Neural Networks, pages 1942–1948, November
1995.

[34] Farooq Khan. LTE for 4G Mobile Broadband: Air Interface Technologies and Per-
formance. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[35] M. Ko, C. Shen, and S. S. Bhattacharyya. Memory-constrained block processing for
DSP software optimization. Journal of Signal Processing Systems, 50(2):163–177,
February 2008.

[36] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and
E. Deprettere. Parameterized looped schedules for compact representation of execu-
tion sequences in DSP hardware and software implementation. IEEE Transactions
on Signal Processing, 55(6):3126–3138, June 2007.

[37] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani. A network on chip architecture and design methodology. In VLSI,

163

2002. Proceedings. IEEE Computer Society Annual Symposium on, pages 105–112,
2002.

[38] S. Kwon, Y. Kim, W.-C. Jeun, S. Ha, and Y. Paek. A retargetable parallel-
programming framework for MPSoC. ACM Transactions on Design Automation
of Electronic Systems, 13(3), July 2008.

[39] K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak. Optimizing computations
for effective block-processing. ACM Transactions on Design Automation of Elec-
tronic Systems, 5(3):604–630, July 2000.

[40] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee. DSP Processor Fundamentals. Berke-
ley Design Technology, Inc., 1994.

[41] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the
IEEE, 75(9):1235–1245, September 1987.

[42] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
pages 773–799, May 1995.

[43] Jungseob Lee and Nam Sung Kim. Optimizing throughput of power- and thermal-
constrained multicore processors using DVFS and per-core power-gating. In De-
sign Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 47 –50, 26-31
2009.

[44] Weiping Liao, Lei He, and K.M. Lepak. Temperature and supply voltage aware per-
formance and power modeling at microarchitecture level. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 24(7):1042 – 1053, July
2005.

[45] X. Luo, M. Dong, and Y. Huang. On distributed fault-tolerant detection in wireless
sensor networks. Computers, IEEE Transactions on, 55(1):58 – 70, Jan. 2006.

[46] A. Manaa and C. Chu. Scheduling multiprocessor tasks to minimise the makespan
on two dedicated processors. European Journal of Industrial Engineering,
4(3):265–279, 2010.

[47] J.-Y. Mignolet and R. Wuyts. Embedded multiprocessor systems-on-chip program-
ming. IEEE Software, 26(3):34–41, 2009.

[48] Michel Mouly and Marie-Bernadette Pautet. The GSM System for Mobile Commu-
nications. Telecom Publishing, 1992.

[49] Girija J. Narlikar and Guy E. Blelloch. Pthreads for dynamic and irregular par-
allelism. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’98, pages 1–16, Washington, DC, USA, 1998. IEEE
Computer Society.

164

[50] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming: A POSIX Standard
for Better Multiprocessing. O’Reilly & Associates, Inc., 1996.

[51] F. A. Omara and M. M. Arafa. Genetic algorithms for task scheduling problem.
Journal of Parallel and Distributed Computing, 70(1):13–22, 2010.

[52] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. GPU
computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[53] M. Pelcat, P. Menuet, S. Aridhi, and J.-F. Nezan. Scalable compile-time scheduler
for multi-core architectures. In Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, pages 1552–1555, 2009.

[54] W. Plishker, N. Sane, and S. S. Bhattacharyya. A generalized scheduling approach
for dynamic dataflow applications. In Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, pages 111–116, Nice, France, April 2009.

[55] W. Plishker, N. Sane, and S. S. Bhattacharyya. Mode grouping for more effective
generalized scheduling of dynamic dataflow applications. In Proceedings of the
Design Automation Conference, pages 923–926, San Francisco, July 2009.

[56] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Functional
DIF for rapid prototyping. In Proceedings of the International Symposium on Rapid
System Prototyping, pages 17–23, Monterey, California, June 2008.

[57] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous design in
functional DIF. In Proceedings of the International Workshop on Systems, Architec-
tures, Modeling, and Simulation, pages 157–166, Samos, Greece, July 2008.

[58] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous design
in functional DIF. In P. Stenström, editor, Transactions on High-Performance Em-
bedded Architectures and Compilers IV, volume 6760 of Lecture Notes in Computer
Science, pages 391–408. Springer Berlin / Heidelberg, 2011.

[59] W. Plishker, G. Zaki, S. S. Bhattacharyya, C. Clancy, and J. Kuykendall. Applying
graphics processor acceleration in a software defined radio prototyping environment.
In Proceedings of the International Symposium on Rapid System Prototyping, pages
67–73, Karlsruhe, Germany, May 2011.

[60] H. Vincent Poor. An introduction to signal detection and estimation (2nd ed.).
Springer-Verlag New York, Inc., New York, NY, USA, 1994.

[61] G.J. Pottie. Wireless sensor networks. In Information Theory Workshop, 1998, pages
139–140, 1998.

[62] R. Rao and S. Vrudhula. Efficient online computation of core speeds to maximize
the throughput of thermally constrained multi-core processors. In Computer-Aided
Design, 2008. ICCAD 2008. IEEE/ACM International Conference on, pages 537
–542, 10-13 2008.

165

[63] Ravishankar Rao, Sarma Vrudhula, and Chaitali Chakrabarti. Throughput of multi-
core processors under thermal constraints. In ISLPED ’07: Proceedings of the 2007
International Symposium on Low Power Electronics and Design, pages 201–206,
New York, NY, USA, 2007. ACM.

[64] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of scalable synchronous
dataflow graphs. In Proceedings of the International Conference on Application
Specific Array Processors, October 1993.

[65] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional, 1st edition,
2010.

[66] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video coding
extension of the h.264/avc standard. Circuits and Systems for Video Technology,
IEEE Transactions on, 17(9):1103–1120, 2007.

[67] M. Sen, Y. Hemaraj, W. Plishker, R. Shekhar, and S. S. Bhattacharyya. Model-
based mapping of reconfigurable image registration on FPGA platforms. Journal of
Real-Time Image Processing, 2008. 14 pages.

[68] C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based design and imple-
mentation of image processing applications. In L. Guan, Y. He, and S.-Y. Kung,
editors, Multimedia Image and Video Processing, pages 609–629. CRC Press, sec-
ond edition, 2012. Chapter 24.

[69] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. A lightweight dataflow
approach for design and implementation of SDR systems. In Proceedings of the
Wireless Innovation Conference and Product Exposition, pages 640–645, Washing-
ton DC, USA, November 2010.

[70] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya. A design tool for
efficient mapping of multimedia applications onto heterogeneous platforms. In Pro-
ceedings of the IEEE International Conference on Multimedia and Expo, Barcelona,
Spain, July 2011. 6 pages in online proceedings.

[71] C. Shen, S. Wu, N. Sane, H. Wu, W. Plishker, and S. S. Bhattacharyya. Design and
synthesis for multimedia systems using the targeted dataflow interchange format.
IEEE Transactions on Multimedia, 14(3):630–640, June 2012.

[72] Bing Shi, Yufu Zhang, and Ankur Srivastava. Dynamic thermal management for
single and multicore processors under soft thermal constraints. In Low-Power Elec-
tronics and Design (ISLPED), 2010 ACM/IEEE International Symposium on, pages
165 –170, 2010.

[73] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking multiple targets
using binary proximity sensors. IPSN’07, pages 529 –538, april 2007.

166

[74] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. CRC Press, second edition, 2009.

[75] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiprocessor resource
allocation for throughput-constrained synchronous dataflow graphs. In Proceedings
of the Design Automation Conference, 2007.

[76] Texas Instruments, Inc. TMS320C6678 Multicore Fixed and Floating-Point Digital
Signal Processor Data Manual, February 2012.

[77] J.W. Tschanz, J.T. Kao, S.G. Narendra, R. Nair, D.A. Antoniadis, A.P. Chan-
drakasan, and V. De. Adaptive body bias for reducing impacts of die-to-die and
within-die parameter variations on microprocessor frequency and leakage. Solid-
State Circuits, IEEE Journal of, 37(11):1396 – 1402, nov 2002.

[78] Pieter van der Wolf, Erwin de Kock, Tomas Henriksson, Wido Kruijtzer, and Gerben
Essink. Design and programming of embedded multiprocessors: an interface-centric
approach. In Proceedings of the 2nd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, CODES+ISSS ’04, pages 206–
217, New York, NY, USA, 2004. ACM.

[79] Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph Nuzman. Explicit
multi-threading (XMT) bridging models for instruction parallelism (extended ab-
stract). In SPAA ’98: Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures, pages 140–151, New York, NY, USA, 1998. ACM.

[80] W. Wang, V. Srinivasan, K-C Chua, and B. Wang. Energy-efficient coverage for
target detection in wireless sensor networks. IPSN’07, pages 313 –322, April 2007.

[81] M.-Y. Wu and D.D. Gajski. Hypertool: a programming aid for message-passing
systems. IEEE Transactions on Parallel and Distributed Systems, 1(3):330–343,
1990.

[82] S. Wu. Representation and scheduling of scalable dataflow graph topologies. Mas-
ter’s thesis, Department of Electrical and Computer Engineering, University of
Maryland, College Park, 2011.

[83] S. Wu, C. Shen, N. Sane, K. Davis, and S. Bhattacharyya. Parameterized schedul-
ing for signal processing systems using topological patterns. In Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, pages 1561–
1564, Kyoto, Japan, March 2012.

[84] G. Yang, V. Shukla, and D. Qiao. Analytical study of collaborative information
coverage for object detection in sensor networks. Sensor, Mesh and Ad Hoc Com-
munications and Networks, pages 144 –152, june 2008.

[85] Inchoon Yeo, Chih Chun Liu, and Eun Jung Kim. Predictive dynamic thermal man-
agement for multicore systems. In Design Automation Conference, 2008. DAC 2008.
45th ACM/IEEE, pages 734 –739, 8-13 2008.

167

[86] L. Yu, L. Yuan, G. Qu, and A. Ephremides. Energy-driven detection scheme with
guaranteed accuracy. IPSN 2006, pages 284 –291, 2006.

[87] Lige Yu. and A. Ephremides. Detection performance and energy efficiency trade-off
in a sensor network. Proc. of 2003 Allerton Conference, Alletion, IL, Oct. 2003.

[88] Lin Yuan, S. Leventhal, and Gang Qu. Temperature-aware leakage minimization
technique for real-time systems. In Computer-Aided Design, 2006. ICCAD ’06.
IEEE/ACM International Conference on, pages 761 –764, 5-9 2006.

[89] S. Zahedi, M.B. Srivastava, and C. Bisdikian. A computational framework for qual-
ity of information analysis for detection-oriented sensor networks. MILCOM’08,
pages 1 –7, nov. 2008.

[90] G. Zaki. Scalable Techniques for Scheduling and Mapping DSP Applications on-
to Embedded Multiprocessor Platforms. PhD thesis, Department of Electrical and
Computer Engineering, University of Maryland, College Park, 2013.

[91] G. Zaki, W. Plishker, S. Bhattacharyya, C. Clancy, and J. Kuykendall. Vectoriza-
tion and mapping of software defined radio applications on heterogeneous multi-
processor platforms. In Proceedings of the IEEE Workshop on Signal Processing
Systems, pages 31–36, Beirut, Lebanon, October 2011.

[92] Z. Zhou, C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. Systematic inte-
gration of flowgraph- and module-level parallelism in implementation of DSP ap-
plications on multiprocessor systems-on-chip. In Proceedings of the International
Conference on Signal Processing, pages 402–408, Beijing, China, October 2012.

[93] Zheng Zhou, Junjun Gu, and Gang Qu. Scheduling for multi-core processor under
process and temperature variation. In Embedded Multicore Socs (MCSoC), 2012
IEEE 6th International Symposium on, pages 113–120, 2012.

[94] Zheng Zhou and Gang Qu. An energy efficient adaptive event detection scheme for
wireless sensor network. In Application-Specific Systems, Architectures and Proces-
sors (ASAP), 2011 IEEE International Conference on, pages 235 –238, sept. 2011.

[95] Zheng Zhou, Chung-Ching Shen, William Plishker, and Shuvra S. Bhattacharyya.
Dataflow-based, cross-platform design flow for DSP applications. In Embedded
Systems Development — From Functional Models to Implementations, volume 20,
page 212. Springer, 2013.

[96] V. Zivojnovic, S. Ritz, and H. Meyr. Retiming of DSP programs for optimum vec-
torization. In Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, pages 492–496, April 1994.

168

