
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.Doi Number

A Survey of Fault-Tolerance Techniques for
Embedded Systems from the Perspective of
Power, Energy, and Thermal Issues

SEPIDEH SAFARI1,2, MOHSEN ANSARI1,2, HEBA KHDR2, POURYA GOHARI NAZARI1, SINA
YARI-KARIN1, AMIR YEGANEH-KHAKSAR1, SHAAHIN HESSABI1, (Member, IEEE), ALIREZA
EJLALI1, AND JÖRG HENKEL2, (Fellow, IEEE)

1Department of Computer Science and Engineering, Sharif University of Technology, Tehran 14588, Iran
2Department of Computer Science, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Corresponding authors: Shaahin Hessabi (hessabi@sharif.edu).

ABSTRACT The relentless technology scaling has provided a significant increase in processor

performance, but on the other hand, it has led to adverse impacts on system reliability. In particular,

technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover,

technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby

temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may

ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these

potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance

techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the

integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing

constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the

integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time

embedded systems. More advanced techniques aim additionally at minimizing power and energy while at

the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have

started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance

techniques. These emerging techniques aim at satisfying temperature constraints besides timing and

reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit

fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time

embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-

tolerance real-time embedded systems are reviewed and classified according to their considered goals and

constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models

are considered as additional dimensions of the presented classification. Lastly, this survey gives deep

insights into the main achievements and shortcomings of the existing approaches and highlights the most

promising ones.

INDEX TERMS Fault-tolerance, embedded systems, real-time computing, scheduling, power/energy

minimization, thermal-aware design.

I. INTRODUCTION

Aggressive scaling in the size of the transistors enables

integrating billions of transistors into a single die, which

significantly improves computation performance [1].

Nevertheless, technology scaling has led to several negative

impacts on system reliability [2][3]. Firstly, it increases the

rate of radiation-induced faults up to several orders of

magnitude [4][5][81]. Secondly, it increases the power

density on the chip, and thereby on-chip temperatures are

elevated [6]. High temperature, poses considerable

challenges to lifetime reliability (occurrence of permanent

faults) due to their direct influence on the aging effects such

as electro migration. Moreover, it may increase soft error

rates [7]. In order to mitigate thermal violation chip-level

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

countermeasures such as lowering the operating voltage and

frequency will be triggered, which can again significantly

affect the timeliness and reliability of the system. Hence,

system reliability has become a major concern in real-time

embedded systems design, due to the negative impacts of

technology scaling. Automotive systems, avionics, satellite,

robots, and wireless body area networks (WBAN) are the

example of embedded systems which have been growing

steadily in the recent past and should meet the correctness

and timeliness even under fault occurrences [10][13][14][15].

To ensure reliability in embedded systems, so-called fault-

tolerance techniques have emerged [16][17]. Particularly,

they employ redundancy in terms of time, hardware,

software, and information to satisfy a given reliability target,

which specifies the probability that the system functions

correctly according to its specifications in the time interval

[0, t], with the assumption that it was functioning correctly in

the beginning (at time 0) [16][17]. The shift to a multi-core

paradigm provides a great potential for the implementation of

fault-tolerance techniques, which require additional resources

on the chip to employ redundancy in order to fulfill reliability

requirements [83][92]. However, implementing fault-

tolerance techniques leads to time overhead, additional

power/energy consumption, and high temperature.

In general, to suppress power and temperature on the chip,

several countermeasures such as Dynamic Power

Management (DPM) and Dynamic Voltage and Frequency

Scaling (DVFS) can be taken by the dynamic thermal

management (DTM) unit that is typically implemented on the

chip [19]. However, DVFS can potentially degrade the

system reliability because the rate of transient faults increases

at low supply voltages [20][62][66]. Moreover, such

countermeasures might prevent the tasks from meeting their

deadlines, which is not acceptable in real-time embedded

systems [21]. That implies the goals/constraints of designing

real-time embedded systems, i.e., low-power consumption,

real-time computing, and high reliability are contradicting

each other as depicted in Figure 1. Therefore, it is

indispensable to consider all of those metrics; i.e., time,

power, and temperature, within the task mapping and

scheduling policies of the fault-tolerance systems in order to

find a suitable trade-off and avoid triggering conservative

countermeasures.

Besides existing classification in the state-of-the-art survey

papers, we consider an additional dimension which is the

considered goals and constraints of the mapping and

scheduling policies in fault-tolerance embedded systems (i.e.,

time, power/energy, and temperature). This survey shows

that the majority of the state-of-the-art fault-tolerance

techniques either solely focus on satisfying timing constraints

or optimizing for power/energy as well. Just a few state-of-

the-art fault-tolerance techniques consider the thermal issue,

despite its relevance. Particularly, employing fault-tolerance

techniques in embedded systems leads to increase the

temperature, and therefore temperature constraints need to be

considered. Hence, our survey paper shows the significant

impact of employing fault-tolerance techniques on the

temperature through a motivational example. Then, it

summarizes and classifies the state-of-the-art fault-tolerance

techniques considering the taxonomy presented in Figure 2.

Additionally, this survey highlights the advantages and the

shortcomings of state-of-the-art techniques.

The remainder of this paper is organized as follows.

Section II discusses the system model, and fault-tolerance

techniques. Section III surveys the studies that exploit fault-

tolerance techniques without considering power, energy, and

temperature constraints. Section IV surveys the

power/energy-aware fault-tolerance techniques. Thermal-

aware fault-tolerance techniques are studied in Section V.

Finally, the paper is concluded in Section VI.

II. SYSTEM MODELS AND FAULT-TOLERANCE TECHNIQUES

The design of fault-tolerance techniques depends on the

targeted system model, which is described by software-level

and hardware-level parameters. In particular, selecting the

redundancy type of fault-tolerance techniques depends to a

large extent on the system model. Moreover, mapping and

scheduling techniques will be designed based on both the

Temperature

Reliability

Upscaling
vf level

UpScaling
vf level

Downscaling
vf level

Downscaling
vf level &

DPMPower(Energy)

Downscaling
vf level

Time

DPM &
Downscaling

vf level

DPM &
Downscaling

vf level

Legend Goals/Constraints Positive impact
Negative impact

Fault-Tolerant
Techniques

FIGURE 1. Illustrating the dependencies between the
contradictory constraints and goals of fault-tolerance
techniques.

FIGURE 2. Classification of system-level fault-tolerance
techniques in real-time embedded systems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

employed fault-tolerance techniques and the targeted system

model, while considering the target goals and constraints of

the system. Figure 3 summarizes the available options for

system models, fault-tolerance techniques, and

mapping/scheduling policies.

A. System Model

1) SOFTWARE-LEVEL PARAMETERS

The main software-level parameters include the real-time

constraints, reliability requirements, and application model

as shown in Figure 3.

Real-time constraints: Embedded systems are information

processing systems that are embedded into a larger product.

Meeting real-time constraints, dependability, energy

efficiency, code-size efficiency, low weight, low cost, and

run time efficiency are common characteristics of these

systems. Indeed, real-time embedded systems are

computing systems that react to environmental events

within precise time constraints [10]. Therefore, the correct

output of these systems depends on both the correct result

and the time at which the results are generated [10]. Hence,

based on the consequences that may happen after missing

the predefined timing constraint, real-time tasks are

categorized into the following groups [10]:

• Hard: If producing the results after missing the

deadline leads to catastrophic consequences, a real-

time task is known as hard [10].

• Firm: If producing the results after missing the

deadline is useless for the system, but does not cause

any damage, a real-time task is known as a firm [10].

• Soft: If producing the results after missing the

deadline has still some utility for the system,

although causing performance degradation, a real-

time task is known as soft [10].

Recently advancement of cyber-physical systems attracted

more attention to mixed-criticality systems (MCSs). In

MCSs a large number of tasks of different criticality levels,

with different timing requirements, are integrated to

execute on the same computing platform, to meet stringent

non-functional requirements relating to the area, cost, and

power [11].

Reliability requirements: The reliability of the system

specifies the probability that the system functions correctly

according to its specifications in the time interval [0, t],

with the assumption that it was functioning correctly in the

beginning (at time 0) [16][17]. The reliability requirements

of the system will be determined based on different safety

standards such as IEC61508 for all kinds of industrial

software systems, DO-254, ISO26262 for automotive

systems, and DO-178B/C for avionic systems [22]. More

details about the different types of fault occurrence on the

system and fault-tolerance techniques are described in

Section II.C.

Application Model: There are several application models

executing on a real-time system. Computational activities

can be done independently or dependent on each other. In

some applications, computational activities have to respect

some precedence relations defined at the design time. Such

precedence relations are usually described through a

directed acyclic graph, where tasks are represented by

nodes and precedence relations by arrows. Based on the

periodicity of the execution of tasks (task activation), they

can be periodic, aperiodic, or sporadic. The task model is

called periodic when each task consists of infinite jobs, and

jobs have regular inter-arrival time equal to the task’s

period. An aperiodic task has infinite jobs where jobs

arriving at irregular intervals. A sporadic task is an

aperiodic task where jobs have a minimum inter-arrival

time.

2) HARDWARE-LEVEL PARAMETERS

The hardware architecture, i.e., single-core, dual-core, or

multi-core processors1 (including homogenous and

heterogeneous), plays an important role in selecting the

fault-tolerance technique, and the task mapping/scheduling

policies. Moreover, available voltage and frequency levels

(supporting discrete or continuous configuration),

power/temperature constraints, and cooling system are

other important architecture parameters.

B. Mapping and Scheduling Policies

After assigning tasks to cores (mapping) based on heuristic

or optimal methods, tasks should be properly scheduled

among cores to guarantee the constraints of the system.

Proposed scheduling algorithms for real-time systems can

be classified based on the following metrics:

• Preemptive or non-preemptive: In preemptive

scheduling, an executing task will be interrupted at any

1 The term multi-core is used in this paper to express both multi-core processor

or multi-processors.

Hardware-Level Parameters

Vf levels

Software-Level Parameters

Reliability requirements

DO-178B/C, IEC 61508, ISO 26262

• DAG
• Frame based
• Periodic

Real-time constraints:
 Hard, Soft, Firm, Mixed-criticality

Application Model

Scheduling Policies with
Fault-Tolerant Provisions

Power/Temperature constraints

. Single core

. Dual-core

. Multi-core:

Platforms

Homogenous
Heterogeneous

C1

Cm-1

C3

Cm

…

…

……

Mapping strategies

Fault-Tolerance Techniques

Redundancy Types
(Time, Hardware, Software, Information)

• NMR
• Standby-Sparing
• DWC
• Checkpointing

• NVP
• Recovery Blocks
• Re-execution
• Replication

• Sporadic
• Aperiodic
• etc.

System Model

• Best Fit Decreasing
• etc.

• Worst Fit Decreasing
• First Fit Decreasing

• Earliest Deadline First
• Earliest Deadline Late
• Latest Deadline First
• Rate Monotonic Scheduling
• Deadline Monotonic

Scheduling
• Shortest Job First
• Earliest Start Time First
• List scheduling
• etc.

FIGURE 3. Overview of fault-tolerance systems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

time, and the processor will be assigned to another task

based on upcoming conditions. However, in non-

preemptive scheduling, a task that starts its execution

will not be interrupted until its completion.

• Static or dynamic: In static scheduling, the scheduling

decision is fixed and assigned to tasks before system

activation. While in dynamic scheduling decisions may

be changed during system operation.

• Offline or online: in the offline scheduling, the

proposed algorithm is applied in the offline phase (at

design time) to the whole task set and the generated

schedule is stored in a table to be exploited later.

However, in online scheduling, every time a new task

enters the system at runtime, the scheduling decisions

are taken.

• Optimal or heuristic: The optimal schedule minimizes

some given cost function defined over the task set.

However, in heuristic-based algorithms, the scheduling

decisions are taken based on proposed heuristic

functions. Therefore, the heuristic algorithm tends

toward the optimal schedule but does not guarantee to

find it.

C. Fault-Tolerance Techniques

Faults in computer systems are classified into transient,

intermittent, and permanent based on their occurrence and

duration [16][17].

• Transient faults: This type of fault occurs for a short

time period and then disappears without physical

damage to the processor. It is often induced by

electromagnetic interference and cosmic radiation.

• Intermittent faults: This type of fault occurs frequently,

and it is difficult to detect because after its occurrence

the system operates correctly.  

• Permanent faults: This type of fault results from

hardware component failure or manufacturing defects.

Recovery from this kind of fault is only possible by

replacing or repairing the faulty component.  
In this survey paper, we targeted all types of faults in the

state-of-the-art. Irrespective of the fault type, fault-tolerance

techniques aim at detecting the faults and recover from

them (if possible), to let the system continue to function

correctly. Typically, a fault-tolerance technique is designed

to satisfy a given reliability target. To do that, fault-

tolerance techniques employ redundancy in terms of 1)

hardware, 2) software, 3) information, and 4) time beyond

what is needed for the normal operation of the system. In

the following, we explain the different fault-tolerance

techniques that belong to the four mentioned redundancy

types as introduced in [16][17][24].

1) HARDWARE REDUNDANCY

Hardware redundancy is the most common technique which

is the addition of extra hardware components for detecting

or tolerating faults [16][17]. For example, instead of using a

single core/processor, more cores/processors can be

exploited, so that each application is executed on each

core/processor, then the fault can be detected or even

corrected. Hardware redundancy can be applied through

passive, active, or hybrid methods.

Passive hardware redundancy: Examples of this

redundancy are N modular redundancy (NMR) such as

Triple Modular Redundancy (TMR), and voting techniques.

These techniques are referred to as M-of-N systems, which

means that the system consists of N components, and the

correct operation of this system is achieved when at least M

components correctly work. The TMR system is a 2-of-3

system with M=2 and N=3, which is realized by three

components performing the same action, and the result is

voted [16][17].

Active hardware redundancy: Duplication with

comparison (DWC), Standby-sparing (SS), Pair-and-a-

spare technique, and watchdog timers are included in this

type of active hardware redundancy. In DWC, two identical

hardware components perform the same computation in

parallel and their output is compared. Therefore, the DWC

technique can only detect faults, but it cannot tolerate them

because the faulty component cannot be determined

[16][17]. In standby-sparing, one module is operational and

one or more modules are standby or spares. If the fault is

detected in the main component, it will be omitted from the

operation and the spare component will continue the

execution [16][17]. Meanwhile, pair-and-a-spare is a

combination of DWC and SS techniques, i.e., two modules

are executed in parallel and their results will be compared

to detect the fault [16][17].

Hybrid hardware redundancy: The basic concept of this

method is combining the features of both active and passive

hardware redundancies. N modular redundancy with spare,

sift-out modular redundancy, self-purging redundancy, and

triple duplex architecture are examples of hybrid hardware

redundancy [16][17]. The basic concept of self-purging is

based on NMR with spare techniques, all modules are

active and participate in the function of the system. In sift-

out modular redundancy, there are N identical modules.

However, they are configured in the system through special

circuits (comparators, detectors, and collectors). The triple

duplex architecture combines the DWC technique with

TMR, which helps to detect the faulty module and remove

it from the system.

2) TIME REDUNDANCY

Time redundancy is achieved by allocating extra time to

perform the functions of the system to detect faults, and

often tolerate them. It should be noted that applying time

redundancy techniques must not lead to missing the timing

constraints of real-time systems. For example, the re-

execution technique is a well-known method of time

redundancy that is the repetitive execution of the faulty task

on the same hardware and comparing the results until

reaching the correct output [16][17].

3) INFORMATION REDUNDANCY

Error detection and correction coding (such as parity check,

cyclic code, checksum, etc.) are well-known information

redundancy techniques [17]. Indeed, information

redundancy is widely used in memory units, storage

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

devices, and data communication over noisy channels.

Redundant Arrays of Independent Disks (RAIDs) are other

well-known examples of information redundancy at a

higher level than individual data words which have

different organizations. Also, the replication technique is a

well-known example of exploiting information redundancy

to enhance reliability at the system level. In replication,

identical copies of the data will be executed on multiple

hardware.

4) SOFTWARE REDUNDANCY

Software redundancy is the addition of extra software to

give an output for a desired function to detect and tolerate

faults (if possible). N version programming (NVP),

checkpointing (CP), and recovery blocks are well-known

techniques that fall into the software redundancy category

[16]. In N version programming, the software module is

designed and coded N times by separate groups of

programmers and the results are compared. Therefore,

when N different programmers implement a specific

software the likelihood of occurring the same mistake in all

modules will be decreased. In the checkpointing technique,

the last fault-free state of the faulty process is stored in

advance in the stable memory. Whenever a fault occurs, the

system rolls back to the last correct checkpoint and re-

executes the application part that is executed in the last

checkpoint duration [16][17].

It is worthy to mention that regarding existing

redundancy types (hardware, software, information, and

time) there is another classification known as spatial and

temporal redundancies, in which temporal and spatial are

analogous to hardware and time redundancy, respectively.

However, information and software redundancies are a mix

of spatial and temporal [23].

Fault-tolerance techniques can be classified into three

broad categories based on exploited redundancy types

including: i) hardware-based, ii) software-based, and iii)

hybrid techniques [24].

Hardware-based techniques add extra hardware modules

which changes the original architecture of the system or its

components. Therefore, such techniques must be

implemented during the design of the system. Hardware-

based techniques have two main groups including

redundancy-based, and hardware monitors. The first group

relies on hardware or time redundancy, while the second

group adds special hardware modules to the system’s

architecture to monitor the control flow of the programs

inside the processors and memory accesses performed by

them such as watchdog processors [25], checkers [26] or

Infrastructure Intellectual Properties (I-IP) [27]. Hardware-

based techniques have a high cost, verification and testing

time, and area overhead which leads to higher power

consumption as well.

Software-based techniques exploit the concepts of

software, time, and information redundancies to detect

faults during the execution of the program. Software-based

techniques are divided into two groups: i) data flow

checking techniques, which consider the faults in the data

structures of the processor, such as variables, registers, and

the data memory. These faults may lead to calculate an

incorrect result, but they do not change the program flow.

Error Detection by Data Diversity and Duplicated

Instructions (ED4I) [28], the transformation technique

proposed in [29], and Variables 1 (VAR1), Variables 2

(VAR2), and Variables 3 (VAR3) [30] are the techniques

that exploit information and software redundancies. ii)

Control flow checking techniques, which deviate from the

normal program flow and lead to an infinite loop in a

subroutine or instruction. In the software-based techniques

since there is no need to modify the hardware, they provide

more flexibility, and low cost, and development time.

However, the performance degradation is the main

drawback, because extra instructions will be executed by

the processor, which slows the overall application runtime,

and increases the memory overhead.

Hybrid techniques are a combination of hardware-based

and software-based techniques. Hybrid techniques have low

development time and low area overheads (from the

software-based techniques perspective), and low-

performance degradation (from the hardware-based

techniques perspective). However, they need the

application source code, which is not always available, and

require changes, at least, in the system’s architecture. The

studies in [27][32][33] are the example of hybrid fault-

tolerance techniques in embedded systems. For example,

the studies in [31][32] have proposed hardening

infrastructure offers the techniques called SWIFT-R, as a

software-based technique, and selective TMR as a

hardware-based technique.

Fault-tolerance techniques can be applied at different

levels of implementation, starting from the software level

down to the architecture description level, the logical and

transistor level, until the layout level. Regarding fault-

tolerance techniques which are applied at a lower level such

as Moore-Shannon’s hammock networks which means that

by replacing all transistors in a chip with hammock

networks of transistors, the reliability will be enhanced

while power consumption stays the same [34]-[37], in this

survey paper, we have considered system-level fault-

tolerance techniques, which have negative effects on the

timing, power/energy, and temperature constraints of the

system.

In the following, we present the three categories of the

mapping/scheduling policies of fault-tolerance systems

according to our classification (Figure 2). It is worthy to

mention that in all categories timing constraints are

considered as an important design metric. In the first

classification (Section III), fault-tolerance techniques that

only consider timing constraints as design metric is studied.

In the second classification (Section IV), fault-tolerance

techniques that consider power/energy management besides

timing constraints are studied. All of the methods that are

investigated in Section III and Section IV have ignored the

effects of elevated temperature caused by the power density

on the system. Therefore, thermal management to avoid

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

temperature-induced failures is also a significant research

issue especially for real-time embedded systems with

timing constraints and limited cooling techniques. As far as

we know, little investigation has been conducted in the

literature on thermal management for fault-tolerance real-

time embedded systems. Therefore, finally, in the third

classification (Section V) fault-tolerance techniques that

consider temperature constraints besides timing constraints

are studied. In all three classifications, state-of-the-arts are

described based on exploited fault-tolerance techniques in

detail including describing the exploited application model,

architecture model, energy management techniques, goals,

and constraints.

III. TIMING-AWARE FAULT-TOLERANCE TECHNIQUES WITHOUT

CONSIDERING POWER, ENERGY, AND TEMPERATURE

The proposed mapping/scheduling policies in this category

(summarized in Table 1) focus only on satisfying timing,

and reliability constraints. However, exploiting fault-

tolerance techniques will increase the power/energy and

temperature which are not considered in the proposed

methods in this category. Furthermore, we classify these

techniques into sub-categories according to their employed

fault-tolerance technique.

A. Standby-Sparing (SS) and Primary/Backup (P/B)

The problem of fixed-priority preemptive scheduling for a set

of periodic hard real-time tasks has been proposed in [38],

where each task has primary and backup versions. The

primary version is more complex and has more functions that

produce results with good quality, but its execution is more

susceptible to faults because of its high level of complexity

and resource usage. By contrast, the backup version is

simpler and contains the minimum required functions, which

produces acceptable results with lower precision. The

proposed scheduling algorithm satisfies the timeliness of the

primary and backup versions of each task, while attempts to

complete as many primary tasks as possible. If the primary

fails due to missing timing constraints or fault occurrence or

when the latest time to start execution of the backup without

missing the corresponding task deadline is reached, the

backup will be executed. The experimental evaluations are

based on simulation, and the real-world platform and

application models are not used.

Kim et al. [39] have presented R-BATCH (Reliable

Binpacking Algorithm for Tasks with Cold standby and Hot

standby) scheme. Based on the required recovery time for

tasks, it has considered hard recovery, soft recovery, and

best-effort recovery tasks set. Then, it has introduced the idea

of exploiting hot standby for hard recovery tasks, and cold

standby for soft recovery and best-effort recovery tasks. They

have proposed an allocation method, called Reliable Best-Fit

Decreasing (R-BFD), for hot standby replicas which

allocates active replicas such that the primary task and its

corresponding active replicas are not assigned to the same

processor. The proposed R-BATCH algorithm reduces the

number of required replicas in comparison to R-BFD through

considering cold standbys (passive replicas) which are

activated whenever a fault occurs. The evaluation results

demonstrate a significant improvement in the performance;

however, the proposed method does not consider the impact

of redundancy in the energy/power consumption of the

Table 1. Summary of timing-aware fault-tolerance techniques without considering power, energy, and temperature in real-time
embedded systems.

Ref. Application Model Architecture Model Fault-Tolerant Technique Goals/Constraints

[38] Periodic Dual-core

Standby-Sparing (SS),

Primary/Backup (P/B)

Timing/Reliability

[39][40] Periodic Homogeneous Multi-core Timing/Reliability

[41] Aperiodic Homogeneous Multi-core Timing/Reliability

[42][43] Periodic Homogeneous Multi-core Timing/Reliability/Performance

[44] Multi-DAG Homogeneous Multi-core

Replication

Timing/Reliability

[45] Periodic Heterogeneous Multi-core Timing/Reliability

[46][47] Periodic Homogeneous Multi-core Timing/Reliability

[48] Periodic/Sporadic Single-core, Heterogeneous Multi-core

Checkpointing (CP)

Timing/Reliability

[49] Single task Single-core Latency/Reliability

[50] Periodic/Sporadic Single-core Timing/Reliability

[51] Task-graph Homogeneous Manycore N Version
Programming (NVP)

Reliability/Performance

[52] Periodic Homogeneous Multi-core Tuning/ Reliability

[53] Frame-based DAG Single-core

Re-execution

Timing/Utility/Reliability

[54] DAG Single-core, Multi-core Timing/Reliability

[55] Periodic Homogeneous Multi-core Timing/Reliability/QoS/Utilization

[56][57] Periodic/Sporadic Single-core Timing/Reliability

[58] Sporadic Single-core, Multi-core Timing/Reliability/QoS

[59] Frame-based Single-core Timing/Reliability

[60] Multi DAG Homogeneous Multi-core Replication, Re-execution Timing/Reliability

[61] DAG Heterogeneous Multi-core Replication, Re-execution Timing/Reliability

[62] Periodic DAG Heterogeneous Multi-core Replication, CP Timing/# checkpoints/Mapping

[63] Sporadic Single-core, Homo. Multi-core DMR, TMR, Replication Timing/Reliability/QoS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

embedded system. Also, the evaluations are based on random

task generation.

Kim et al. [40] have proposed a System-level Architecture

for Failure Evasion in hard Real-time applications (SAFER)

which observes the state and information of each task and

whenever a failure is detected, using their fault detection

method, SAFER reconfigures the system to maintain the

functionality of the whole system. The SAFER proposed an

architecture that can detect both time-based and event-based

failures in a distributed embedded real-time system with

periodic tasks. Moreover, the proposed configuration is

implemented on Linux and x86 hardware. However, the

proposed architecture does not consider the power

consumption overhead of the redundant units, and it just

evaluates the timing overhead.

A primary/backup online scheduling approach has been

proposed in [41] that guarantees the reliability of the hard

real-time system without increasing overhead and the need

for extra hardware components. In the primary/backup

approach, two identical versions for each task are scheduled

on two different cores in a way they do not have any

execution overlap. Hence, in the fault-free scenario, the

overhead of the system is kept low; i.e., the backup version is

executed whenever a fault is detected. Moreover, to

efficiently map and schedule primary and backup versions on

the cores, this paper has proposed two policies for

homogenous multi-cores known as exhaustive search, and

first found solution search (FFSS). All cores are checked

through the exhaustive search for finding available slack

times, then FFSS selects the best solution which schedules

the primary version as soon as possible and the backup

version as late as possible. However, FFSS determines the

first suitable slot for the primary version and then for the first

backup version without considering their positions within the

schedule window. It has shown that FFSS reduces the

computation complexity more than the exhaustive search.

The scheduling approach in [41] with the FFSS policy

achieves a significant improvement in the performance of

periodic applications. However, the simulations do not

consider real-world task sets and platforms. This proposed

method attempts to execute primary tasks as soon as possible

and the backup tasks as late as possible. Therefore, another

missing subject in this proposed method is the impact of

overlap minimization through the FFSS policy on the

energy/power consumption of the system.

The authors in [42] have proposed two fault-tolerance

techniques by presenting fixed-priority-based scheduling

algorithms. The first technique (called Tercos) terminates the

execution of backup tasks whenever the corresponding

primary tasks are completed successfully. Tercos reduces the

scheduling lengths in the fault-free scenario to improve

schedulability under executing portions of backup tasks. The

second technique (called Debus) schedules backup tasks as

late as possible while terminating backup tasks when their

corresponding primary tasks are successfully completed,

which will further minimize the schedule lengths to enhance

schedulability performance. Indeed, Tercos is a passive way

of eliminating redundancies of backup tasks, while Debus is

a proactive method that defers the execution of backup tasks.

The proposed schemes improve the performance of the

distributed real-time embedded system while considering the

reliability requirement. However, the proposed schemes do

not discuss the impact of the overlap minimization through

the proposed schemes in power/energy consumption and

thermal violation. Moreover, the simulation results are based

on random task set generation executing on the Pentium 4

platform.

The proposed method in [43] is a low overhead, semi-

partitioned, and optimal fair scheduling technique for the

cold standby-sparing (CSS) technique. After detecting a

permanent fault, the system boots up the spare core for

operation. Hence, it can achieve significantly better resource

usage and power efficiencies in comparison with hot

standby-sparing. However, similar to any cold standby-

sparing based scheme, it must also deal with a recovery

period subsequent to a fault, when one less core resource is

available. The proposed method distributes the slack times of

jobs and minimizes the job terminations and rejections in the

recovery phase to maximize the performance of the system.

The FT-FS proposed method in [43] evaluates the

performance of the CSS proposed technique and its timing

overhead in periodic real-time task sets. However, it does not

consider the power/energy constraint for safety-critical

applications. Moreover, the evaluations are based on

simulation.

B. Replication

The authors in [44] have proposed a framework for taking

into account the replicated hard real-time tasks in

scheduling algorithms that are largely independent of the

replication technique (e.g., active, passive, and semi-active

replication). They have presented that the way fault-

tolerance tasks are integrated into scheduling algorithms

depends neither on the type of replication strategy nor on its

parameters such as replication level, replication granularity,

and replicas’ location. They have shown that different

replication techniques can be exploited and integrated into a

unified scheduling algorithm. The study in [45] has

considered only two replicas for each hard real-time task

and solved the problem of mapping tasks to a

heterogeneous platform in a way that guarantees timing

requirements while core failures can be tolerated. In order

to solve the task partitioning problem with timing and

replication constraints, it has developed a fully polynomial-

time approximation scheme. Chen et al. [46] have

replicated each hard real-time task on different K

processors, where K is a user-defined integer for improving

system reliability. Tasks on each processor are scheduled

with EDF scheduling. They have presented an

approximation algorithm, with a 2-approximation ratio, to

minimize the maximum utilization in a system with a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

certain number of processors. The proposed approach is

then extended to a polynomial-time approximation scheme.

Moreover, in order to minimize the required number of

processors for feasible scheduling, they have proposed an

asymptotic polynomial-time approximation scheme. The

proposed methods in [45] and [46] did not contain any

practical comparison with other approaches. The work in

[47] has considered the problem of maximizing the number

of tasks which are successfully assigned to a homogeneous

distributed multiprocessor system where the replicas

corresponding to the same task are assigned to different

processors, and all assigned tasks meet their timing

constraints. They have proposed the greedy and

polynomial-time approximation algorithms for solving their

problem. The effectiveness of this proposed method is

evaluated using synthetic generated applications, on a

machine (Acer Extensa 5620) that consists of Core 2 Duo

1.83 GHz CPU and 3GB main memory, where fix number

of fault occurrence (k=3) should be tolerated. It should be

noted that in [45][46][47] the overhead of communication

is not considered.

C. Checkpointing (CP)

In the checkpointing technique, the last correct state of the

faulty process is stored in the stable memory. Whenever a

fault occurs, the system rolls back to the last correct

checkpoint and recovers the faulty portion of the task in the

last checkpoint duration [16][17]. Although checkpointing

increases the execution time of the task in the fault-free

scenario, it reduces recovery time when faults occur, since

it is not required to re-execute the whole task from the

beginning and only the faulty portion is required to be

recovered. Note that in real-time systems the location of the

checkpoints (intervals between checkpoints) or the size of

recovery blocks is of great importance. If the size of

recovery blocks is large, it will lead to bigger latency to

detect the fault and recover it. On the other hand, if the size

of the recovery block is small it will lead to higher

overheads in fault-free scenarios. In this regard, the

following research [48]-[50] are the example of exploiting

checkpointing techniques in real-time embedded systems.

A schedulability test for periodic/sporadic task sets has

been proposed in [48], where the task set can be scheduled

based on any fixed-priority preemptive scheduling under

checkpointing fault-tolerance technique for single-core

systems to tolerate transient faults. They claim that the

results are applicable to distributed/multiprocessor systems

where tasks are statically allocated to individual processors.

The proposed checkpointing scheme is an optimal

scheduling algorithm for deterministic hard real-time

systems. It has implemented an optimization approach

based on Tabu search that determines the processes

assignment to the heterogeneous nodes, and the assignment

of fault-tolerance techniques to processes. The work in [49]

has presented a non-uniform checkpointing scheme for soft

real-time applications, which is based on a static non-

uniform checkpoint placement that asymmetrically stores

the processor states. This work supports the non-zero error

detection latency. It tries to reduce error recovery latency

and the number of checkpoints in order to increase the

probability of timely task completion. The proposed

method in micro architecture-level is implemented on the

VHDL model of LEON2 32 bit processor, which is

extended by adding an extra unit, called RUC (Recovery

Unit Controller). RUC has been connected to the execution

unit, registers file, and data cache memory. To carry out the

experiments to evaluate the effectiveness of the proposed

method, four benchmarks including bitcount, basicmath,

bubble sort, and matrix multiply from MiBench suit are

selected. Zhengyong et al. [50] have provided a scheduling

analysis to deal with the burst fault model and determine

the optimal number of checkpoints for hard real-time tasks

to minimize the worst-case execution time of tasks in

presence of faults. The tasks can be scheduled based on a

fixed-priority algorithm such as rate monotonic or deadline

monotonic scheduling algorithm, which assigns different

priorities to each task. The burst fault model defines

processes that can cause random faults over a short period

of time. Moreover, it has exploited task reallocation to deal

with permanent faults. The applicability of the proposed

approach is evaluated by generating synthetic task sets.

It is worthy to mention that the aforementioned proposed

methods did not consider the effect of checkpointing on the

power/energy consumption of the system.

D. N Version Programming (NVP)

A greedy task mapping, called dTune (dependability

Tuning), has been proposed in [51] to improve the

reliability of the multiprocessors considering, aging,

process variation, and soft errors. This method efficiently

selects suitable code versions using the knowledge of on-

chip process variation and performance variations due to

aging effects at runtime. The authors consider reliability-

driven compiler results to determine the reliability of the

different code versions of the applications. Moreover, they

have developed a processor aging estimator, and considered

the effects of process variations and aging. Since in a real-

world scenario, an on-chip many-core system is susceptible

to multiple of such reliability threats and different cores

may experience different performance variations and soft

error rates, joint consideration of aging and process

variations is important. In this paper, a many-core processor

with N ISA-compatible homogenous RISC cores (e.g., a 5-

stage pipeline LEON3 embedded processor) is considered.

Note that due to the design-time process variations or run-

time NBTI aging effects, heterogeneous w.r.t. their

performance capabilities will be considered at runtime. The

work in [52] has presented an enhanced redundancy

technique for multi-core systems executing software

replicas. It tries to recover permanent faults by introducing

a new cost-efficient software diversity technique. For

example, different compilers can be used to generate

binaries for the same program that means different

characteristics in the execution of the same calculations.

The presented solution in this paper claims that its method

independent of the type of processors.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

E. Re-execution

The study in [53] guarantees the timing constraints in the

fault occurrences scenario for hard real-time tasks while

maximizing the overall utility of soft real-time tasks. This

method has two offline and online scheduling. Offline

scheduling is not fault-tolerance and is pessimistic from the

utility perspective. However, the online approach calculates

a new schedule each time a process encounters a fault or

completes without producing acceptable output. The

proposed method synthesizes a set of schedules at the

offline phase which is known as a quasi-static scheduling

strategy. Then, in the online phase, based on the fault

occurrence scenario, the correct schedule will be selected.

Synthetic applications with a random number of processes

are generated to evaluate the proposed method. It has been

considered that the proposed method can tolerate three fault

occurrences. The experiments have been run on a Pentium

4 with 2.8 GHz processor with 1Gb of memory. The

authors in [54] have proposed models to evaluate the effect

of fault detection and recovery strategy on timing

constraints by considering different fault models (such as

single or multiple fault occurrence), task execution model,

and hardware platform (such as several types of single-core,

multi-core, and distributed platforms). In order to analyze

the feasibility, it has exploited mixed-integer linear

programming (MILP) for joint task allocation and

scheduling with tolerance mechanisms under timing and

fault tolerance constraints. Furthermore, it has presented a

Monte Carlo based simulator to check fault coverage of the

system and meeting timing constraints. The proposed

approach is applied to the synthetic task sets (which are

generated with TGFF tool) and industrial case study (which

is derived from a subsystem of an experimental vehicle).

The exploitation of re-execution fault-tolerance technique

in mixed-criticality systems is presented in [55]-[59]. The

proposed method in [55] is a mixed-criticality fault-

tolerance scheme that maximizes the utilization of the

system while preserving the reliability at the guaranteed

level. It exploits an optimization theory to find the proper

slack windows for the execution of both critical and non-

critical tasks, which maximizes the utilization of each node

while preventing overloads. For this purpose, the tasks are

distributed to the nodes regarding minimizing the overhead

of nodes, and the feasible scheduling avoids any

interference between the execution of the critical and non-

critical tasks. Moreover, in each node, the Integer Linear

Programming (ILP) aims for tasks to be executed based on

their priority while reducing the execution cost, and

guarantees the feasibility and reliability of tasks. In order to

control the effect of a node failure, the alternate versions of

certain critical tasks are scheduled on different cores. The

study in [56] has proposed an exact feasibility test which is

necessary and sufficient for a set of periodic tasks to

tolerate faults on a single-core processor. The proposed

feasibility test is applicable to any fixed-priority scheduling

algorithm such as rate-monotonic or deadline-monotonic

algorithms. They have considered multiple faults can occur

on each task at any time, even during the recovery process.

The proposed feasibility test can tolerate the maximum

number of faults that can occur at any time interval. The

work in [57] has proposed a new model for mixed-

criticality systems from the perspective of fault tolerance, in

a single-core processor. It has first scheduled the primary

task, and if the primary task encounters a fault, the backups

are dispatched one by one until the correct output is

reached. It has also derived a sufficient schedulability test

for a fixed-priority scheduling algorithm that guarantees

meeting all deadlines even if backups are executed to

recover from faults. The efficiency of the proposed method

is examined through synthetically generated task sets. The

study in [58] addresses overrun and fault occurrence with

separate operational modes in a single-core and multi-core

processor while executing as many low-criticality tasks as

possible in each system operational mode. The experiments

are conducted based on synthetically generated tasks’ set.

An approach to increase the lifetime of mixed-criticality

systems while satisfying the timing and safety requirements

has been presented in [59]. This work has considered

transient and permanent faults that are caused by thermal

cycling. Moreover, it has presented two MILP-based

methods to solve the scheduling problem and a time-

efficient CEM-based (cross-entropy method) heuristic for

maximizing the lifetime of the system. Simulations are

carried out based on the synthetic generated benchmarks,

and real-world benchmarks. A random task generator is

used to produce multiple synthetic benchmarks (i.e., task

sets). Moreover, five real-world benchmarks from flight

management systems are tested. The Alpha 21264

processor (with complete power and thermal models) is

exploited as the hardware platform.

F. Combination of Several Fault-Tolerance Techniques

The work in [60] has considered the problem of analysis

and optimization of fault-tolerance hard real-time task

scheduling for multiprocessor embedded systems. In order

to compute the system-level reliability, a Binary Tree

Analysis (BTA) in the presence of re-execution and

hardware replication techniques is proposed. By integrating

the analysis with optimization based on the Multi-Objective

Evolutionary Algorithm (MOEA), the feasible schedules

under reliability, resource, and timing constraints are

synthesized. Tasks’ mapping to processors, the assignment

of the fault-tolerance policy, and tasks’ scheduling are the

output of the optimization algorithm. They have considered

an application as the functionality of the system that

consists of a set of independent jobs, each given as a

directed acyclic graph. In this paper, multi-processor

systems are considered. In multi-processor systems, if two

dependent tasks are mapped to different processors, a

message must be scheduled for data transfer between

processors. Hence, the latency of message transfer is also

considered. The study in [61] has developed analysis and

optimization techniques that consider imperfect fault

detection and distinguishes detectable and undetectable

faults in the overall workflow. It exploits both temporal and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

spatial redundancies in hard real-time systems. In addition,

it has proposed an approach based on the multi-objective

evolutionary algorithm (MOEA) for reliability-aware

design optimization. The target architectures of [60] and

[61] are heterogeneous multi-processor platforms consists

of two types of Processing Elements (PEs), namely a RISC

processor and a DSP with time-triggered communication.

The communication between tasks is implemented with

messages. Pop et al. [62] have considered hard real-time

safety-critical systems which are scheduled based on static

cyclic scheduling. The study in [63] has generalized the

proposed model in [58] for mixed-criticality systems to

support on-demand redundancy which exploits dual

modular redundancy (DMR), TMR, and passive replication.

Indeed, the proposed method improves the QoS of low-

criticality tasks. The effectiveness of the proposed idea is

evaluated using synthetic generated applications.

IV. POWER/ENERGY-AWARE FAULT-TOLERANCE TECHNIQUES

In this section, proposed mapping/scheduling techniques

are categorized based on their employed fault-tolerance

technique. Table 2 shows an overview of the proposed

approaches which consider power/energy in designing

fault-tolerance real-time embedded systems.

A. Standby-Sparing (SS) and Primary/Backup (P/B)

An application-level fault-tolerance (ALFT) approach has

been proposed by Unsal et.al [64] to evaluate the energy

efficiency and fault-tolerance technique simultaneously in

hard real-time systems. The ALFT employs a primary and

secondary approach (to tolerate one permanent fault) and

tries to complete the execution of the primary task as soon

as possible, and delay the execution of the secondary task to

diminish the execution overlap between the primary and

secondary tasks. In this regard, the ALFT heuristic uses an

energy-efficient Earliest Deadline First (EDF) and Shortest

Execution-time First (SEF) scheduling algorithms and

evaluates the efficiency of each approach to achieve an

energy-efficient fault-tolerance technique. Although the

proposed method attempts to reduce energy consumption

by eliminating the overlap between the execution of the

primary and backup tasks, however, it does not employ a

power/energy management technique (e.g., DVFS).

Moreover, due to not considering the peak power

constraint, it may face temperature violation. It should be

noted that the proposed method is a software-level

approach, which does not need any hardware modification.

The effectiveness of the proposed method is evaluated

through generating random tasks. Although, it does not

consider any real-world platform for evaluations. In order

to minimize the energy of standby-sparing, Ejlali et al. [65]

have applied DPM on the backup core, and dynamic

voltage scaling (DVS) on the primary core. This study has

shown the negative impact of the DVS technique on

reliability. Hence, it proposed an analytical approach to

assign the proper supply voltage value of the primary core

at runtime to reduce energy consumption by exploiting

dynamic slack times and meets the reliability target. The

presented method in [66] is an online energy management

technique for a standby-sparing system that considers the

overheads of activation and voltage transition forced by

DPM and DVS techniques, respectively. Moreover, the

energy manager is considered as a task and its overhead is

computed. Indeed, this method exploits dynamic released

slack times at runtime to reduce energy consumption while

guaranteeing timing constraints. The proposed methods in

[65] and [63] exploit RTEMS real-time operating system in

the ARM7TDMI-based system and select the tasks from the

MiBench benchmark suite for evaluation.

The study in [67] has considered the effect of frequency

scaling on the fault arrival rates. Therefore, they have

proposed the enhanced primary/backup model, where

accounts for the loss of reliability due to frequency scaling

by scheduling additional copies of tasks. In this approach,

the switch to a lower frequency is committed only if the

available slack is large enough to accommodate the

additional copies required to retain the original reliability

provided before frequency scaling. Due to the iterative

selection of proper frequency for the execution of the tasks,

time overhead and probability of failure will be increased.

Moreover, reducing the energy/power consumption without

consideration of peak power constraints faces thermal

violation. The proposed method considers the Intel Xscale

and Transmeta Crusoe processors for the evaluation of the

proposed method in a homogeneous and heterogeneous

system. Nevertheless, the task sets are generated

synthetically, and execution times are assumed to have a

normal probability distribution function.

The study in [68] has proposed two energy-aware fault-

tolerance scheduling algorithms based on a primary-backup

approach called “Fault-tolerant Energy Efficient task

scheduling with Delayed and Overloaded backups (FEED-

O)”, and “FEEDO with Dynamic-deferring (FEED-OD)”.

Primary tasks will be executed on a DVS-enabled

processor, while the backup copies are scheduled on the

auxiliary processor with DPM for reducing energy

consumption. It has proposed the overloading of backup

jobs and analyzed it for reducing the energy consumption of

scheduling periodic task-sets with rate monotonic

scheduling. Indeed, in order to ensure that all backup jobs

will not be executed at runtime on an auxiliary processor,

they are scheduled in an overlapped time interval, which is

called backup-overloading. If overloading of backup jobs

on an auxiliary processor is done, then it may further

enhance energy saving by deferring the start time of backup

copies.

Paired-Standby-Sparing (Paired-SS) and Generalized-

Standby-Sparing (Generalized-SS) have been proposed in

[69] and [70]. In the Paired-SS method, cores are divided

into pairs, and the standby-sparing method is applied to

each pair. On the other hand, the Generalized-SS divides

the cores into two categories, primary and secondary cores.

The primary tasks are executed in the primary cores under

partitioned-EDF and the DVFS technique. The backup

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

tasks are executed in secondary cores under partitioned-

EDL with the DPM mechanism. The Preference-Oriented

Earliest Deadline (POED) scheduler has been studied, and

experimental results have shown that POED-based methods

perform better than SS-based methods in terms of energy,

especially for high-loaded systems. A low-energy task

scheduling algorithm that employs the adaptive dual-queue

mechanism to postpone backup tasks’ execution has been

introduced in [71]. The primary tasks are scheduled by the

EDF algorithm to minimize execution overlap between

primary and backup tasks. The studies in [66], [70], and

[71] employ a discrete event simulator. Therefore, there is

not any consideration for the platform model, and the

evaluations ignore some system overheads.

The standby-sparing technique is exploited by Roy et al.

[72] to tolerate both permanent and transient faults for

heterogeneous multi-core systems, where the platform

includes high-performance (HP) and low-power (LP) cores.

The proposed method in [72] determines the proper type of

cores for primary and backup tasks to minimize energy

consumption. To further reduce energy consumption, the

primary core uses DVFS (the proper frequency level for the

primary core is determined), while the spare one employs

DPM. The proposed method considers an ARM

big.LITTLE heterogeneous platform. However, in order to

evaluate the effectiveness of the proposed method task sets

are generated randomly. Therefore, the impact of system

configuration on the tasks’ specifications is not considered.

A shared resource standby-sparing scheme to preserve

the original reliability for the dynamic-priority real-time

task has been presented in [73], which schedules tasks

according to the Earliest Deadline First/Dynamic Deadline

Modification (EDF/DDM) policy. Moreover, primary and

backup tasks can be executed at a uniform speed. In

addition, it exploits the mixed mapping partitioning

method, in which the tasks need to access the shared

resources are assigned to the primary cores, and other tasks

are assigned to the spare cores. Moreover, to save energy,

DVS and DPM techniques are applied to both primary and

backup tasks.

Ansari et al. [74] have proposed a method that uses the

standby-sparing technique for periodic real-time tasks to

satisfy the Thermal Design Power (TDP) constraint. In this

method, the primary and backup cores exploit peak-power-

aware EDF, and peak-power-aware EDL policies,

respectively. In order to reduce the peak power

consumption, the proposed method delays the execution of

backup tasks as much as possible and tries to cancel the

execution overlap of backup tasks. It exploits gem5 and

McPAT simulators to evaluate the proposed method.

Moreover, tasks are selected from MiBench benchmark

suite in an ARM-based system.

The work in [75] has proposed two schemes (known as

MC-2S and MC-4S) to tolerate permanent faults through

applying the standby-sparing technique with low energy

overhead in mixed-criticality systems. In both schemes, two

copies of each high-criticality task are scheduled on

different cores to guarantee their timeliness in case of

permanent fault occurrence. In order to guarantee the

quality of service of low-criticality tasks, in case of

permanent fault or overrun occurrence two different

strategies are proposed. In the MC-2S scheme, sufficient

slack time is reserved to schedule a backup task for each

low criticality task on an alternative core. However, the

MC-4S scheme exploits semi-partitioned scheduling in

which the low-criticality tasks migrate to other cores. The

schedulability analysis to guarantee the timeliness, and QoS

in the proposed algorithm along with the reliability-aware

DVFS method is approved through demand bound function

analysis. Due to lack of benchmark for mixed-criticality

systems, the studies in [72] exploit synthetic generated task

sets for evaluation. The study in [76] has introduced a

parallelism and reduction policy in every primary-backup

pair of the multi-core platform to increase the quality of

service (QoS) of low-criticality tasks in a mixed-criticality

system. It also minimizes the energy consumption through

convex optimization, and proposes a heuristic for energy

reduction by reducing the execution time and overlap

between primary and backup tasks.

Ansari et al. [77] have proposed a peak-power-aware

primary/backup scheme for frame-based soft real-time

tasks. The proposed scheme removes the peak power

overlaps of concurrently executing tasks to reduce the peak

power consumption and meet the chip-level TDP

constraint. To do this, the proposed method receives the

tasks’ power profiles, and presents a task partitioning

method, and two developed scheduling policies known as

maximum-peak-power-first and maximum-peak-power-last

to schedule primary and backup tasks, respectively. This

method receives the power and performance information of

LEON3 processor from a logic simulation. After that, a

software-level simulation and fault injection are used to

evaluate the proposed method with the MiBench

benchmark task sets.

B. Replication

Assayad et al. [78] have proposed a heuristic-based

scheduling algorithm considering three criteria: a)

minimizing the length of the schedule in real-time systems,

b) maximizing the reliability in dependable systems, and c)

minimizing energy in autonomous systems. Their proposed

method maximizes reliability through active replication and

employs DVS to reduce power consumption. In this regard,

the proposed scheduling algorithm divides the problem of

simultaneous reliability improvement, power reduction, and

minimum scheduling length into the reliability

improvement and power minimization problem for each

defined cell of the grid, and after that, the scheduling part

reduces the scheduling length of the cell. The goal of [79] is

to find the proper number of replicas, frequency

assignment, and core allocation for each periodic hard-real

time task at the offline phase to achieve the reliability target

while minimizing the overall energy consumption of the

system. At run-time, they find the first copy of tasks that

have been completed successfully and cancel the execution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

of their other replicas to achieve even more energy saving.

Note that the proposed system supports core-level DVFS to

further reduce energy consumption.

Spasic et al. [80] have proposed a polynomial-time

solution approach which efficiently maps and schedule hard

real-time streaming applications onto clustered

heterogeneous MPSoCs such that the required throughput is

satisfied and the energy consumption is minimized through

per-cluster voltage frequency scaling (VFS). Moreover, it

determines the required number of replicas for each task in

a graph, and balance the distribution of the tasks on the

same type of processors, to reduce the energy consumption

through running processors at lower voltage and frequency

levels. Tasks are scheduled based on EDF policy. The

experiments were performed on the real-life applications

from the StreamIt benchmarks suit.

 The study in [81] shows how task replication can be

exploited to satisfy a given task-level reliability target that

is expressed in terms of tolerating transient faults.

Moreover, the fault coverage factor of the fault detection

techniques is taken into account. By considering the

negative effect of DVFS on the rate of transient fault, it has

presented a technique to compute the number of replicas

and the frequency assignment for each task while

minimizing the overall energy of the hard real-time system.

Moreover, in order to reduce the execution overlap between

the primary task and its corresponding replica(s) it has

developed a static solution and dynamic adaptation. In

order to evaluate the effectiveness of the proposed method

synthetic tasks set based on UUnifast algorithm are

generated and executed on 4- to 12-core processors.

The authors in [82] aim to propose energy-efficient

scheduling by considering a reliability target (known as

ESRG algorithm) to minimize the energy consumption

while meeting the reliability target for the parallel

applications. Moreover, they further proposed energy-

efficient fault-tolerance scheduling with a reliability goal

method (known as EFSRG) to minimize the energy

consumption while meeting the reliability target based on

an active replication scheme when the application’s

reliability target is unreachable. Both proposed methods are

solved through three steps: i) Prioritizing tasks: Prioritizing

tasks problem is an important problem for DAG list

scheduling on heterogeneous distributed systems. Among

existing prioritizing task schemes, this paper considers the

descending order of upward rank value of tasks as the

criterion for DAG list scheduling, because it has been

widely used in energy-efficient and reliability-aware

scheduling. ii) Satisfying reliability goals: The reliability

value of an application is the product of the reliability value

of each task. Therefore, if the reliability of all tasks exceeds

the reliability target, then the reliability value of the

application must exceed its reliability goal. iii) Reducing

energy consumption: Each task only selects the processor

and frequency combination with the minimum dynamic

energy consumption while satisfying its reliability target.

 The LETR-MC scheme has been proposed in [83] that

satisfies timing, energy, reliability, and service level

constraints in mixed-criticality multi-core systems. The task

replication is employed to satisfy reliability requirements

and enhance the QoS of low-criticality tasks in the overrun

operational mode of the system. The proposed scheme

computes the minimum number of replicas for each high-

criticality task to meet the reliability target. It has

developed a unified demand bound function analysis to

check the schedulability and applying DVFS for energy

reduction. Tasks can be assigned based on worst-fit, best-

fit, or first-fit bin packing strategy, and they are scheduled

based on proposed ER-POED (ER-Preference-Oriented

Earliest-Deadline first) scheduling algorithm on multi-cores.

Saber-Latibari et al. [84] have proposed a mapping and

scheduling method by employing task replication

mechanism for a task-graph model of applications in

heterogeneous multi-core systems. The hardware

configuration of this work is a processor with two

heterogeneous islands which execute a different number of

tasks. The cores on the high-performance island are

considered to be Alpha21264 type, with lower execution

time of tasks and higher reliability, while the cores on low

power island are considered ARM Cortex-A15 with higher

execution time of tasks and less power consumption.

 Yeganeh-Khaksar et al. [85] have presented a novel

mapping and scheduling method for the problem of

achieving the desired reliability target that meets the chip-

level power constraint. In the proposed scheme, first, tasks

are assigned based on reliability-aware lowest utilization

policy, then, tasks are scheduled based on maximum-

power-aware EDF policy, and finally, the reliability-and-

peak-power-aware DVFS technique is employed for

meeting TDP constraints. The effectiveness of the proposed

method is evaluated based on an ARM processor with core-

level DVFS capability and there are 6 different

frequency/voltage levels from [0.85Volt, 1GHz] to

[1.1Volt, 2GHz] to reduce peak power consumption.

As it can be seen in the mentioned related work, the

works that consider the replication technique reduce power

and energy consumption through applying DPM and DVFS

in different types of platforms, but they did not discuss

temperature issues. It is worthy to mention that inserting

more replicas will increase the extra power consumption on

the chip, and thereby on-chip temperatures might increase

beyond safe limits. Therefore, in order to prevent thermal

violations, it is indispensable to consider a temperature

constraint for the task replications techniques.

C. N Modular Redundancy (NMR)

An Optimistic Triple Modular Redundancy (OTMR)

scheme has been introduced in [86] which reduces the

energy consumption of conventional TMR systems. In

OTMR one of the processing units is turned off or slowed

down, however, if the other two units encounter a fault, it

should boot up and complete the computation before the

timing constraint. The optimal frequency assignment for

OTMR was discussed in [87]. The study in [87] has been

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

explored the optimal frequency setting to minimize the

system energy consumption of the OTMR scheme and has

been considered a single task within each frame. Indeed, it

analytically compared the OTMR, conventional TMR, and

classical DWC. It is worthy to mention that the studies in

[86] and [87] don’t need any additional hardware

modification, however, they need pre-defined

synchronization points. Moreover, for the evaluation, they

generate synthetic tasks set with an Intel Pentium3

processor.

The work in [88] has proposed an aging-aware adaptive

fault-tolerance method called ANMR for DVFS-enabled

Table 2. Summary of power/energy-aware fault-tolerance techniques in real-time embedded systems.

Ref.
Application

 Model

Architecture

Model

Fault-Tolerant

Technique
Goals/Constraints

Energy

Management

Technique

[64] Periodic Homogeneous Multi-core

Standby-Sparing

(SS),

Primary/Backup

(P/B)

Energy/Timing/Reliability -

[65][66] Frame-based Homogeneous Dual-core Energy/Timing/Reliability DVS, DPM

[67] Periodic Homo. & Hetero. Dual-core Energy/Timing/Reliability DVS

[68][69] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVS, DPM

[70] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVFS, DPM

[71] Periodic Homogeneous Dual-core Energy/Timing/Reliability DVS, DPM

[72] Frame-based Heterogeneous Dual-core Energy/Timing/Reliability DVFS, DPM

[73] Periodic Homogeneous Dual-core Energy/Timing/Reliability DVS, DPM

[74] Periodic Homogeneous Multi-core Energy/Timing/Reliability/Peak power DVFS, DPM

[75] Periodic Homogeneous Multi-core Energy/Timing/Reliability/QoS DVFS

[76] DAG Homogeneous Multi-core Energy/Timing/Reliability/QoS DVFS, DPM

[77] Frame-based Homogeneous Multi-core Timing/ Reliability/Peak power DPM

[78] DAG Homogeneous Multi-core

Replication

Energy/Timing/Reliability DVS

[79] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVFS, DPM

[80] DAG Homo. & Hetero. MPSoC Energy/Timing/Reliability/Throughput VFS

[81] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVS

[82] DAG Heterogeneous Multi-core Energy/Timing/Reliability DVFS

[83] Periodic Heterogeneous Multi-core Energy/Timing/Reliability/QoS DVFS, DPM

[84] DAG Heterogeneous Multi-core Reliability/QoS/Power DFS, DPM

[85] Periodic Homogenous Multi-core Energy/Timing/Reliability/TDP DVFS, DPM

[86] Periodic Single-core

N Modular

Redundancy
 (NMR)

Energy/Timing/Reliability DVS, DPM

[87] Frame-based Single-core Energy/Timing/Reliability DVS, DPM

[88] Frame-based Homogeneous Multi-core Energy/ Timing/Reliability DVFS

[89] Frame-based Homogeneous Multi-core Energy/ Timing/Reliability -

[90] Frame-based Homogeneous Multi-core Energy/ Timing/Reliability DVFS, DPM

[92] DAG Homogeneous Multi-core Energy/Timing/Reliability/TDP DVFS, DPM

[91] DAG Homogeneous Multi-core Energy/ Timing/Reliability DVFS

[93] DAG Homogeneous Multi-core Power/ Timing/Reliability DVFS

[94] Periodic Single-core

Checkpointing

(CP)

Energy/Timing/Reliability DVS

[95] DAG Homogeneous Multi-core Energy/ Timing/Reliability DVS

[96] Aperiodic Single-core Energy/Timing/ Reliability DVS

[97] Frame-based Homogeneous Multi-core Energy/Timing/Reliability DVFS

[98] Periodic Single-core Energy/Timing/Reliability DVS

[99] Periodic Homogenous Multi-core Energy/Timing/Reliability DVS

[100] Aperiodic Single-core Energy/Timing/Reliability DVFS

[101][102] Frame-based Homogenous Multi-core Energy/Performance/Timing/Reliability DVFS

[103] Frame-based Single-core Energy/Timing/Reliability -

[104]-[106] Frame-based Single-core

Re-execution,
Shared Recovery

Energy/Timing/Reliability DVFS

[107][108] Periodic Single-core Energy/Timing/Reliability DVFS

[109] Frame-based Heterogeneous Multi-core Energy/Timing/Reliability DVFS

[110][111] DAG Heterogeneous Multi-core Energy/Timing/Reliability DVS

[112] Multiple DAG Homogeneous Multi-core Energy/Timing/Reliability DVFS

[113] Frame-based Homogeneous Multi-core Energy/Timing/Reliability DVFS

[114] DAG Heterogenous Multi-core
 Replication,

Re-execution
Energy/Timing/Reliability -

[115] DAG Homogeneous Multi-core P/B, CP Energy/Timing/Reliability DVFS

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

multi-core embedded systems. The ANMR assumes that

applications in a system or functions of the same

application may have different vulnerability levels, and

consequently, their reliability levels are different. ANMR

determines the generated slack time when the current

frequencies of some cores change from scaled value to

maximum one. It checks whether generated slacks are

enough to execute the redundant copies of the critical task

in parallel with the main one. The selection of cores for

mapping tasks is combined with the DVFS technique such

that the energy consumption of the system is kept near its

original value. In this way, it needs additional hardware to

keep the history table. The effectiveness of the proposed

method is evaluated based on real-world applications from

the ParMiBench suite with LEON3 processor. The study in

[89] has presented a low-energy NMR based on

approximate computing. Redundant tasks are executed

based on approximately reduced execution time and energy

consumption. Therefore, in addition to increasing the

reliability of a system, instead of exploiting N cores in

traditional NMR, only k cores are deployed, where k<N.

However, it needs special software for comparison. The

effectiveness of the proposed method is evaluated based on

AxBench and MiBench benchmark suites running on

ARM7-based homogenous processors. The energy-budget-

aware reliability management (enBudRM) scheme with

hybrid energy sources (consisting of renewable and non-

renewable energy sources) has been studied in [90]. In the

offline phase, the battery is the only energy source of the

system and, based on the available budget of energy and

static slack time, voltage-frequency levels are determined

and tasks are scheduled. In the online phase, to increase the

system lifetime, released dynamic slack times are used to

further energy saving. To compensate for the reliability loss

of DVFS, an energy harvester is considered along with the

battery to enable executing more task replicas.

The technique has been proposed in [91] to execute the

hard real-time tasks based on the NMR technique in the

indispensable and on-demand phases. In this work, the

system starts execution in the indispensable phase. If a task

has no faults during the indispensable phase, the time which

is reserved in advance for its corresponding copies to

execute in the on-demand phase is released to employ for

significantly reducing power and energy. It exploits

MiBench benchmark suite with Intel PXA270 processor to

evaluate the effectiveness of the proposed method. Ansari

et al. [92] have developed a scheduling algorithm based on

the peak-power-aware longest task first policy to prevent

overlaps of the concurrently executing tasks to meet the

TDP constraint. To reduce the instantaneous power

dissipation the DVFS technique is applied on each core. To

further reduce the power in the realistic scenario the task

cancelation scheme is employed. The proposed method is

evaluated based on MiBench benchmark suite with ARM7

processor. The study in [93] has presented a power-efficient

reliability management technique which exploits DMR and

TMR techniques operating in different voltage and

frequency levels. It also considers diversities in execution

time properties, software vulnerability, and process

variations in hardware.

Finally, it should be noted that all the mentioned

approaches did not consider thermal or peak-power

constraints. Therefore, in scenarios that all cores will be

activated simultaneously to execute tasks, the temperature

constraints will be violated.

D. Checkpointing (CP)

Zhang et al. have studied checkpointing in [94], and [95].

The authors in [94] have presented a feasibility analysis for

checkpointing schemes in fixed-priority hard real-time

systems with constant and variable processor speeds. DVS

is then applied based on the feasibility analysis. Important

practical challenges such as fault occurrence during

checkpointing, the overheads of accessing memory,

rollback recovery, the energy of checkpointing, the energy

of DVS, and context-switching are discussed in this paper.

The Intel XScale PXA260, and the Transmeta Crusoe

which are low-power embedded processors are selected for

the experiments. The proposed schemes are evaluated based

on three real-life task sets, including a CNC, an inertial

navigation system (INS), and a generic aviation platform

(GAP) task sets. Since the number of tasks for CNC and

INS is relatively small, the simulation results for CNC and

INS are obtained using the exhaustive search method. The

simulation results for GAP are obtained using the heuristic

method. The task execution times for these task sets are

assumed for a nominal CPU frequency of 200 MHz.

The study in [95] has developed schedulability tests for

the checkpointing scheme in a DAG task model for a

constant speed and DVS-enabled processor. It

deterministically guarantees the timeliness of tasks even

when transient faults occur. It considers that the system is

composed of processing elements and all of them take

checkpoints simultaneously under a global clock in a

message-passing system. It also considers that at most k

faults can occur in the system before the overall deadline of

the graph. The goal of this paper is to find the distance

between checkpoints and proper voltage assignment to each

task for saving energy. The effectiveness of the proposed

method is evaluated by executing E3S benchmark set on the

AMD K6 processor. The benchmarks are based on the

Embedded Microprocessor Benchmark Consortium

(EEMBC) and include tasks in the application domains of

automotive systems, telecommunications, and consumer

electronics.

The study in [96] has proposed two policies for

checkpoint placement in aperiodic tasks and computed the

optimal number of checkpoints from the energy

consumption perspective in each proposed method. It

exploits slacks in the schedule for applying the DVS

technique to further reduce energy consumption while

tolerating faults. It is assumed that one fault can occur

during the execution of each task and the processor can

scale its frequency in a continuous range. Simulation

experiments are conducted using the Simple-Scalar

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

simulator by executing Li, Perl, Go, and Compress

programs from the SPEC benchmarks. Zhu et al. [97] have

investigated the effect of DVFS on the reliability of the

system. Their evaluations have shown that the reliability of

the system depends on the number of recoveries before the

deadline of the applications. In order to analyze the effect

of frequency and voltage scaling on fault rate, simulation-

based on Intel Pentium M processor with RAMBUS

memory are conducted.

Wei et al. [98][99] have studied energy management in

the checkpointing technique. The quasi-static task

scheduling for fixed-priority rate monotonic algorithm

(RMA) has been proposed in [98], which is composed of

offline and online phases. This paper aims at reducing

energy by designing an efficient offline algorithm that can

be adapted based on the runtime behavior of the system. It

has proposed two offline energy management techniques

known as application-level DVS where all the tasks share

the same voltage level; and task-level DVS where each task

is executed based on its voltage level. Moreover, the

feasibility test of RMA algorithm is achieved through an

exact timing analysis approach. The energy efficiency of

the proposed scheduling algorithms in [98] is evaluated

through simulation based on Transmeta Crusoe with 5

voltage and frequency levels, and Intel XScale PXA260

with 3 voltage and frequency levels processors. Moreover,

two real-life task sets including Inertial Navigation System

(INS), and Computer Numerical Control (CNC), are

exploited for evaluation. The online overhead of the

proposed schemes was also evaluated using a SimpleScalar-

based Intel XScale processor simulator. The study in [99]

has proposed energy-efficient task allocation and

scheduling schemes to minimize energy through the DVS

technique and maximize performance in checkpointing

strategy on hard real-time homogenous symmetric

multiprocessor (SMP) systems. The proposed heuristic

achieves energy saving by optimally balancing the

application workload among processors in a system where

processors have identical characteristics, and support

continuous voltage scaling. The simulations were repeated

for varying numbers of processors between two processors

to eight processors. Tasks are generated randomly.

The proposed method in [100] has considered the

reliability of the system, application size, and fault rate in

the proposed scheme to reduce energy consumption

dynamically. In this scheme, the slack times are used to

save energy without decreasing the reliability by scheduling

an additional recovery task. Furthermore, the checkpointing

technique is employed to use slack times more efficiently,

especially in the case where the slack time is not enough for

the recovery of a whole task. The evaluations are conducted

based on randomly generated task sets.

Han et al. have exploited the checkpointing technique in

[101] and [102]. The study in [101] at first proposed an

optimal checkpointing scheme that minimizes the worst-

case response time of tasks set on a single-core processor;

that all tasks share the same reserved recovery. Then it

allocates tasks to multiprocessors in a way the energy

consumption is reduced. In this step, it shows that resource

reservations on each processor for optimal checkpointing

and exploiting slack time for applying DVFS are in contrast

with each other, and solves this problem. The effectiveness

of the proposed method is evaluated with randomly

generated task sets. The study in [102] has proposed an

energy-efficient method that solves the problem of

simultaneous fault-tolerance and task mapping under the

DVFS condition for periodic fixed-priority hard real-time

tasks. It selects the proper number of checkpoints to check

the schedulability of tasks and guarantees the fault

tolerance of the system, then maps the tasks under DVFS

and checkpointing conditions to minimize energy

consumption. At first, the effect of the increasing number of

tolerable faults, and the effect of increasing checkpointing

overhead on the timing complexity of the proposed method

is evaluated on a uniprocessor platform based on randomly

generated task sets. Then the effectiveness of the proposed

energy-saving algorithm is evaluated through simulations.

A two-state checkpointing (TsCp) scheme has been

proposed in [103], which considers two operational modes

for the system; i.e., fault-free and faulty. It finds non-

uniform (non-equidistant) and uniform (equidistant)

checkpoint intervals for fault-free and faulty states,

respectively. In the offline phase, the optimized checkpoint

intervals are computed for all fault occurrence scenarios. In

the online phase according to the fault-occurrence scenario,

the checkpoint intervals which are computed in the offline

phase, are selected. From the beginning of the execution of

a task, non-uniform checkpointing is used. As soon as the

first fault occurs, the remaining execution time of the task

will be executed based on uniform intervals. In order to

minimize the number of checkpoints in fault-free states,

checkpoint insertions are postponed as much as possible,

however, enough recovery time for the faulty state is

considered. In the faulty state, the optimal number of

uniform checkpoints is computed based on [48].

Experimental evaluation of this method is conducted based

on executing various real-life applications on a system-level

simulator. Power and performance characteristics are

obtained from LEON3 processor and an emerging NVM

technology. The applications and processor characteristics

were obtained through detailed ASIC synthesis and gate-

level simulations. The memory characteristics were

obtained from the NVsim tool.

E. Re-Execution

The study in [104] has developed two polynomial-time

heuristic schemes to solve the slack allocation problem for

minimizing energy while preserving the reliability target.

The proposed method in [105] has exploited the shared

recovery technique to minimize the energy while

simultaneously satisfy the original reliability of the system.

Indeed, in this method instead of allocating separate

recovery to each task at the offline phase, a global or shared

recovery block can be used by all tasks at the online phase.

The presented method in [106] has formulated the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

reliability-aware energy management problem for a set of

frame-based task models as a nonlinear optimization

problem and obtains the static optimal solution. Then, it has

adjusted the task frequencies at runtime by detecting

dynamic slacks through early completion of tasks, and

proposed an online algorithm to improve the overall

reliability. Moreover, the proposed solutions are extended

to the periodic task model.

A reliability-aware energy management technique has

been presented in [107] for a set of periodic tasks which are

scheduled based on EDF policy. In order to solve the

problem, it has proposed two task-level heuristics. Then, it

introduced a wrapper-task mechanism to monitor dynamic

slacks at runtime and manage them efficiently through the

job-level online scheme in a reliability-aware manner.

Indeed, whenever recovery tasks/jobs are required for

preserving reliability, they are scheduled dynamically at the

task’s dispatch time. Otherwise, the remaining slack is

exploited for energy savings. The study in [108] has

proposed an approach based on dynamic allocating

recoveries to achieve optional reliability levels for each

periodic task, when employing DVFS. It has also developed

a pseudo-polynomial time feasibility test for the proposed

method. Qi et al. [109] have derived a reliability-aware

global scheduling scheme to reduce the energy

consumption for a frame-based task model. They have

considered that different tasks can share the same reserved

slack time to recover from faults. Then, in case of fault

occurrence, the entire faulty task has to be re-executed.

 Pop et al. [110] have presented a scheduling and energy

management method for hard real-time tasks mapping on

distributed heterogeneous embedded systems. It has

proposed a constraint logic programming-based algorithm

which can synthesis the fault-tolerance schedules for

finding schedulable and reliable results within limited

hardware and energy resources. An optimization scheme

for joint reliability and energy management in DAG

applications through adopting the shared recovery

technique has been proposed in [111]. To solve the

mentioned problem, this paper has proposed three

algorithms that each of them consists of three steps: i) Task

priority establishment phase, ii) Frequency selection phase,

and iii) Processor assignment phase. Finally, the task

recovery phase detects the transient fault and recovers the

faulty task, to reach higher reliability with lower total

energy. The work in [112] has considered a hybrid scheme

at both design-time and run-time for reliable and low-

energy mapping and scheduling of dependent applications,

in multi-core embedded systems with solar energy

harvesting. Indeed, it cops with problems such as data

dependencies in task graphs, an online variation of solar

energy, transient faults, and execution times. It has

proposed a flexible schedule at design time and after

monitoring the runtime behavior of the system, the

lightweight online adjustment mechanism is employed to

adapt the task execution policy. The study in [113] has

proposed two scheduling algorithms to improve system-

level soft-error reliability in conjunction with satisfying

lifetime reliability and real-time requirements. If the

remaining slack time is sufficient, it can guarantee to

recover any faulty task through the dynamic recovery

allocation technique. It has satisfied the lifetime reliability

requirements by reducing core frequency for appropriate

tasks. Hence, aging due to temperature and thermal cycling

will be reduced.

F. Combination of Several Fault-Tolerance Techniques

Cia et al. [114] have presented a greedy heuristic-based

method to reduce energy consumption in the heterogeneous

distributed embedded systems. The proposed method
exploits both task replication and re-execution techniques to

tolerate faults and satisfies the deadline constraint while

reducing energy consumption. In the proposed method, the

initialization parts of the tasks are mapped based on the

utilization of the cores and then will be executed based on

the re-execution policy. Afterward, the greedy algorithm

changes the mapping policy and fault-tolerance technique

to meet the deadline constraints and reduces energy

consumption. The study in [115] has proposed energy-

efficient fault-tolerance scheduling for a set of applications

with precedence-constrained, which is based on list

scheduling heuristics that satisfies the real-time constraints.

V. THERMAL-AWARE FAULT-TOLERANCE TECHNIQUES

Due to the elevated on-chip temperatures, many research

efforts have been made to control the power and the

temperature of the multi-core chip at the system level, e.g.,

[124]-[129]. A large body of these techniques has enforced

Table 3. Summary of temperature-aware fault-tolerance techniques in real-time embedded systems.

Ref.
Application

 Model

Architecture

Model

Fault-Tolerant

Techniques
Goals/Constraints

Energy Management

Technique

[116] Frame-based Heterogeneous Multi-core Replication Timing/Reliability/Energy/Temperature -

[117] Periodic Heterogeneous Multi-core Replication Timing/Reliability/Energy/Temperature DVS, DPM

[118] Frame-based Single-core Checkpointing Timing/Reliability/Energy /Temperature DVFS

[119] DAG Homogeneous Multi-core NMR Timing/Reliability/Power/Temperature/QoS DVFS

[120] DAG Heterogeneous Multi-core Cold Standby-Sparing Timing/Reliability/Power/Temperature/QoS DVFS, DPM

[121] Periodic Heterogeneous Multi-core Replication, NVP Timing/Reliability/Power/Temperature DFS, DPM

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

temperature constraints within the task mapping decisions

while aiming at maximizing the performance. For instance,

a task mapping technique called DsRM for homogeneous

multi-cores is introduced in [130], which selects the

numbers and the positions of the active and inactive cores

of each multi-threaded application, so that the temperature

constrained is satisfied. For heterogeneous multi-cores, the

technique proposed in [131] assigns the multi-threaded

application to the tiles on the chip, and then maps their

threads to the cores, while satisfying the thermally safe

power density constraint. To cope with the concern of

scalability with the continuous increase in the number of

cores, a distributed thermal-constrained task mapping has

been proposed in [132]. In addition to task mapping, task

migration policies are proposed in [133] to improve the

performance under the temperature constraint. However, all

of these task mapping techniques do not enforce timing and

reliability constraints.

Another class of related works proposes mapping and

scheduling techniques that consider both timing and

temperature constraints, e.g., [21], [134]-[139]. The study

in [134] has proposed two DTM techniques for cyber-

physical systems, where the thermal stress is evenly

distributed temporally (on each core) and spatially (among

cores). In order to balance the thermal related wear-out

among cores, tasks will be reassigned among cores with

recording their effect on the aging rate. The study in [135]

has proposed a task assignment heuristic on heterogeneous

platforms to minimize the dynamic energy consumption

under timing constraints. The study in [136] estimates the

temperature of the multi-core chip while considering the

dynamic behavior of the system in real time. Tasks are

partitioned and assigned to cores in a way that meets the

timing constraints. Then, the proposed peak temperature

manager is applied to each task partition based on a given

scheduling algorithm. In order to avoid the thermal hotspots

on a multi-core chip, the work in [137] has introduced a

runtime thermal-aware scheduler based on power-gating

and job-migration techniques. The study in [138] minimizes

the energy consumption through applying DVS while at the

same time meeting thermal constraints. The study in [139]

has presented both power-aware and thermal-aware

approaches for task allocating and scheduling in embedded

systems.

None of these works exploits fault-tolerance techniques

to satisfy the reliability target. Just a few works (shown in

Table 3) exploit fault-tolerance techniques and at the same

time consider all of the three metrics; time, power, and

temperature. In the following, these few works will be

discussed and classified into sub-categories considering

their adopted fault-tolerance techniques, similar to the

previous sections.

A. Replication

The task assignment and scheduling technique have been

introduced in [116] that uses a mixed-integer linear

program (MLP) solver to optimize the makespan under

time, reliability, and peak temperature constraints.

Makespan is the latest completion time of all tasks on

processors. Then a two-stage heuristic is proposed which

first determines the task mapping and replication technique

to minimize the makespan, and then it checks meeting the

timeliness and temperature constraint of the system. Since it

has considered the service-oriented systems, all the services

(independent tasks) need to be finished before the deadline

such that the QoS requirement of users can be satisfied. If

the system’s temperature constraint is violated, it tries to

reduce the peak temperature using two task sequencing and

frequency scaling techniques. The effectiveness of the

proposed method is evaluated through synthetic random

generated tasks set and real-world multimedia applications.

The reliability requirement of tasks to tolerate the transient

faults is determined in the interval of [0.7, 0.999]. The

simulated processor is modeled based on a prototype

version of the ARM big.LITTLE chip containing 3 Cortex

A7 cores and 2 Cortex A15 cores.

The proposed technique in [117] has optimized energy

consumption while satisfying timing, reliability, thermal

design power (TDP), and thermal safe power (TSP) [123]

constraints through convex optimization. The proposed

optimizer maps and schedules periodic hard real-time tasks

on different types of cores on heterogeneous multi-core

embedded systems. The effectiveness of the optimal

solution (YALMIP solver in MATLAB) is evaluated via

simulating different task sets of the MiBench Benchmark

suite running on ARM Cortex-A7 and Cortex-A15. It is

worthy to mention that since the study in [117] exploits

optimization, it is applicable for lower number of tasks.

B. Checkpointing (CP)

Zhou et al. [118] have introduced a stochastic energy-

efficient thermal- and reliability-aware task scheduling for

real-time systems. Instead of exploiting the released slack

times for energy reduction, in this paper the generated slack

times are utilized for providing fault-tolerance, energy

management, and reducing the temperature. First, the slack

time is utilized to guarantee a certain level of reliability

requirement in the presence of stochastic soft errors by

calculating the optimum number of checkpoints for each

task. Then it selects the voltage-frequency level of each

task based on available slack time to reduce energy

consumption. Finally, the temperature is reduced by

utilizing the task sequencing technique, and remaining

slack times. The thermal-aware task sequencing heuristic

method shows that the execution order of a hot task and a

cool task has an important effect on the peak temperature. It

has been shown that the final temperature of tasks

executing in the hot–cool order is less than executing in the

order of cool–hot tasks. In order to evaluate the reliability

of the generated task schedule under transient fault

occurrences of Poisson probability distribution, the Monte

Carlo simulation method is utilized. The effectiveness of

the proposed method is evaluated via simulating different

task sets of the MiBench and Mediabench Benchmark

suites running on the ARM Cortex A7 processor.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

C. N Modular Redundancy (NMR)

In order to conisider temperature constraint within the

scheduling process of fault-tolerant mixed-criticality system

the study in [119] presents, for the first time, a thermal-

aware scheduling scheme, named TherMa-MiCs. In

particular, TherMa-MiCs, satisfies the temperature

constraint jointly with the timing constraints of the high-

criticality tasks, while attempting to maximize the QoS of

low-criticality tasks. Moreover, the reliability target is

satisfied by employing the N Modular Redundancy (NMR)

fault-tolerant technique. The effectiveness of the proposed

method is evaluated via simulation of different task sets of

the MiBench Benchmark suite running on ARM Cortex-

A15.

D. Standby-Sparing

The authors in [120] have proposed a thermal-aware cold

standby-sparing technique that maximizes the Quality of

Service (QoS) of soft real-time tasks. Their proposed

technique tolerates permanent and transient faults for

heterogeneous multicore real-time embedded systems while

meeting the Thermal Safe Power (TSP) as the core-level

power constraint. Executing the main and backup tasks on

the cores at any power consumption below TSP guarantees

that no thermal violation occurs. Moreover, they have

employed a heterogeneous platform to execute the main

tasks as soon as possible on high-performance cores with

more power budget and the backup tasks are executed on

low power cores after finishing the main tasks to maximize

the QoS.

E. Combination of Several Fault-Tolerance Techniques

A peak-power-aware reliability management scheme has

been proposed in [121] that meets the chip-level power

constraints (TPD) and core-level power constraints (TSP)

by employing different versions of each soft real-time task

(code version programming) and determines the number of

required replicas for each task to preserve the system

reliability at an acceptable level. It is mentioned that due to

the disadvantages of the DVS technique, the Dynamic

Frequency Scaling (DFS) technique is exploited to reduce

the peak power consumption and satisfy thermal

constraints. In order to verify the effectiveness of the

proposed method extensive simulations including gem5,

McPAT, HotSpot, and TSP tools are exploited. The

implementations result in the code versions with low-power

and high-reliability consumption. The low-power-density

code version of a task is a code that has the lowest peak

power and average power consumption among all code

versions, while the high-reliability code version of a task is

a code that has the highest functional reliability among all

versions. The effectiveness of the proposed method is

evaluated via simulation of different task sets of the

MiBench Benchmark suite running on ARM Cortex-A7,

Cortex-A12, and Cortex-A15.

VI. SUMMARY AND FUTURE TRENDS

In this paper, we have presented a survey for many relevant

task mapping/scheduling policies for real-time embedded

systems that employ fault-tolerance techniques to satisfy

reliability requirements. Applying fault-tolerance

techniques introduces new challenges to the scheduling

process of real-time embedded systems. Firstly, the fault-

tolerance techniques come with an additional timing

overhead that should be considered in the scheduling

process to avoid missing timing constraints. Secondly,

fault-tolerance techniques will increase the power

consumption of the cores, leading to increasing on-chip

temperatures beyond safe limits. Therefore, we have

focused on the related works, which consider timing,

power/energy, and temperature on single-, dual-, or multi-

core processors. Table 4 summarizes the reviewed state-of-

the-art task mapping/scheduling policies for fault-tolerance

systems according to their considered goals and constraints.

As can be seen in this table, several works have considered

power and energy besides timing constraints. However, just

a few works consider the thermal issue, as well, in spite of

its importance. In particular, it is not possible to provide

reliability and timing guarantees without enforcing

temperature constraints, since chip-level countermeasures

will be triggered at any thermal violation, which might lead

to violating reliability and timing constraints. Therefore, it

is inevitable to jointly consider all of these metrics;

reliability, timing, power/energy, and temperature within

the task mapping/scheduling process of fault-tolerance

embedded systems. Applying multi-objective

optimizations for fault-tolerance embedded systems in

future research could be a promising approach to exploit

optimization potentials for all relevant metrics; time,

reliability, power/energy, and temperature.

REFERENCES
[1] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and D.

Burger, “Dark silicon and the end of multicore scaling,” in Int’l

Conf. on Computer Applications in Industry and Engineering (ISCA),

2011, pp. 365–376.

[2] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M.
Tahoori, and N. When, “Reliable on-chip systems in the nano-era:

Lessons learnt and future trends,” 50th ACM/EDAC/IEEE Design

Automation Conf. (DAC), Austin, TX, 2013, pp. 1-10.

[3] J. Henkel, S. Pagani, H. Khdr, F. Kriebel, S. Rehman, and M.

Shafique, “Towards performance and reliability-efficient computing
in the dark silicon era,” IEEE/ACM Design, Automation and Test in

Europe Conf. and Exhibition (DATE), Dresden, Germany, Mar 14-18

2016.
[4] R. Baumann, “The impact of technology scaling on soft error rate

performance and limits to the efficacy of error correction,” Digest.
Int’l Electron Devices Meeting, San Francisco, CA, USA, 2002, pp.
329-332.

[5] R. Canal, C. Hernandez, R. Tornero, A. Cilardo, G. Massari, F.
Reghenzani, W. Fornaciari, M. Zapater, D. Atienza, A. Oleksiak, W.
Piatek, and J. Abella “Predictive reliability and fault management in

Table 4. Summary of all fault-tolerant techniques.

Ref.
Design Metrics

Time Power/Energy Temperature

[38]-[63] ✓

[64]-[115] ✓ ✓

[116]-[121] ✓ ✓ ✓

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

exascale systems: State of the art and perspectives,” ACM Computing
Surveys, vol. 53, no. 5, 2020.

[6] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in dark
silicon,” ACM/EDAC/IEEE Design Automation Conf. (DAC), 2015.

[7] M. Shafique, S. Garg, D. Marculescu, and J. Henkel, “The EDA
challenges in the dark silicon era: Temperature, reliability, and
variability perspectives,” in Proc. ACM/EDAC/IEEE 51st Design
Autom. Conf. (DAC), 2014, pp. 1-6.

[8] H. Amrouch, H. Khdr, and J. Henkel, Aging effects: From Physics to

CAD. In: W. Fornaciari, D. Soudris, (eds) Harnessing Performance

Variability in Embedded and High-performance Many/Multi-core

Platforms. Springer, Cham, 2019.

[9] J. Henkel, T. Ebi, H. Amrouch, and H. Khdr, “Thermal management

for dependable on-chip systems,” 18th Asia and South Pacific

Design Automation Conf. (ASP-DAC), Yokohama, 2013, pp. 113-

118.

[10] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, New York, NY, USA:

Springer, 2011.
[11] A. Burns, and R. I. Davis, “A survey of research into mixedcriticality

systems,” Journal ACM Computing Surveys, vol. 50, no. 6, 2018.

[12] F. Oszwald, J. Becker, P. Obergfell, and M. Traub, “Dynamic

Reconfiguration for Real-Time Automotive Embedded Systems in

Fail-Operational Context,” IEEE Int’l Parallel and Distributed
Processing Symp. Workshops (IPDPSW), Vancouver, BC, Canada,

2018, pp. 206-209.

[13] G. Mehmood, M. Zahid Khan, S. Abbas, M. Faisal, and H. U.

Rahman, “An energy-efficient and cooprative fault-tolerant

communication approach for wireless body area network,” IEEE
Access, vol. 8, pp. 69134-69147, 2020.

[14] G. Mehmood, M. Z. Khan, A. Waheed, M. Zareei, and E. M.

Mohamed, “A trust-based energy-efficient and reliable

communication scheme (trust-based ERCS) for remote patient

monitoring in wireless body area networks,” IEEE Access, vol. 8, pp.
131397-131413, 2020.

[15] B. Wang, G. Vakil, Y. Liu, T. Yang, Z. Zhang, C. Gerada,

“Optimization and analysis of a high power density and fault tolerant

starter–generator for aircraft application” Energies, vol. 14, pp 1-
113, 2021.

[16] E. Dubrova, “Fault-tolerant design,” Springer-Verlag New York,

2013.

[17] I. Koren, and C.M. Krishna, “Fault-tolerant systems,” Morgan

Kaufman, 2007.

[18] “MiBench homepage.” [Online]. Available:

http://vhosts.eecs.umich.edu/mibench/. [Accessed: Feb-2021].

[19] Intel Corporation, Santa Clara, CA, USA, Intel Xeon Phi

Coprocessor Datasheet, Jun. 2013.

[20] A. Yeganeh-Khaksar, M. Ansari, S. Safari, S. Yari-Karin and A.
Ejlali, “Ring-DVFS: Reliability-Aware Reinforcement Learning-

Based DVFS for Real-Time Embedded Systems,” IEEE Embedded

Systems Letters, 2020.

[21] B. Pourmohseni, F. Smirnov, H. Khdr, S. Wildermann, J. Teich, and

J. Henkel, “Thermally composable hybrid application mapping for
real-time applications in heterogeneous many-core Systems,” IEEE

Real-Time Systems Symposium (RTSS), Hong Kong, Hong Kong,

2019, pp. 220-232.

[22] R. F. S. 167, Software considerations in airborne systems and

equipment certification, RTCA document DO-178C. RTCA
Incorporated 1992.

[23] T. Li, M. Shafique, J. A. Ambrose, S. Rehman, J. Henkel, and S.

Parameswaran, “RASTER: Runtime adaptive spatial/temporal error

resiliency for embedded processors,” 50th ACM/EDAC/IEEE Design

Automation Conference (DAC), 2013, pp. 1-7.
[24] J. R. Azambuja, F. Kastensmidt, and J. Becker, “Hybrid fault

tolerance techniques to detect transient faults in embedded
processors,” Springer Int’l Publishing Switzerland, 2014.

[25] A. Mahmood, and E. Mccluckey, “Concurrent error detection using
watchdog processors-a survey,” IEEE Trans. on Computers (TC),
vol. 37, no. 2, pp. 160–174, 1988.

[26] T. Austin, and T. Diva, “A reliable substrate for deep submicron
microarchitecture design,” in Proc. ACM/ IEEE Int’l Syp. on
Microarchitecture, IEEE Computer Society, 1999, pp. 196–207.

[27] C. Lisboa, M. Erigson, and L. Carro, “System level approaches for
mitigation of long duration transient faults in future technologies,” in

Proc. IEEE European Test Symp (ETS), Los Alamitos, Los Alamitos,
USA, 2007, pp. 165-170.

[28] N. Oh, S. Mitra, and E. Mccluckey, “ED4I: error detection by diverse
data and duplicated instructions,” IEEE Trans. on Computers (TC),
vol. 51, no. 2, pp. 180-199, 2002.

[29] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, S. Reorda,
and M. Violante, “Experimentally evaluating an automatic approach
for generating safety-critical software with respect to transient
errors,” IEEE Trans. On Nuclear Science, IEEE Nuclear and Plasma
Sciences Society, vol. 47, no. 6 (part 3), pp. 2231–2236, 2000.

[30] J. Azambuja, A. Lapolli, L. Rosa, and F. Kastensmidt, “Detecting
SEEs in microprocessors through a non-intrusive hybrid Technique,”
IEEE Trans. On Nuclear Science, Los Alamitos, vol. 58, no. 3, pp.
993-1000, 2011.

[31] S. Cuenca-Asensi, A. Martinez-Alvarez, F. Restrepo-Calle,
F.Palomo, H. Guzman-Miranda, and M. Aguirre, “A novel co-design
approach for soft errors mitigation in embedded systems,” IEEE
Trans. on Nuclear Science, Los Alamitos, vol. 58, no. 3, pp. 1059-
1065, 2011.

[32] A. Lindoso, L. Entrena, E. Millan, S. Cuenca-Asensi, A. Martinez-
Alvarez, and F. Restrepo-Calle, “A co-design approach for SET
mitigation in embedded systems,” IEEE Trans. On Nuclear Science,
vol. 59, no. 4, pp. 1034-1039, 2012.

[33] E. Rhod, C. Lisboa, L. Carro, and M. Sonza-reorda, “Hardware and
software transparency in the protection of programs against SEUs
and SETs,” Journal of Electronic Testing: theory and applications,
vol. 24, no. 3, pp. 45-56, 2008.

[34] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Lecture Notes, Caltech,
Pasadena, CA, USA, January 4-15, 1952. In: Shannon, C.E.,
McCarthy, J. (eds.): Automata Studies, pp. 43–98. Princeton Univ.
Press, Princeton, 1956.

[35] E. F. Moore, and C. E. Shannon, “Reliable circuits using less reliable
relays,” Part I. J. Frankl. Inst., 262 (3), pp. 191–208, Sep. 1956.

[36] E. F. Moore, and C. E. Shannon, "Reliable circuits using less
reliable relays," Part II. J. Frankl. Inst., 262(4): pp. 281–297, Oct.
1956.

[37] D. T. Chiang, and S. Niu. "Reliability of consecutive-k-out-of-n:F
system," IEEE Trans. Reliab., R-30(1):87–89, Apr. 1981.

[38] C-C. Han, K. G. Shin, and J. Wu, “A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software faults,”

IEEE Trans. on Comp. (TC), vol. 52, no. 3, pp. 362-372, 2003.

[39] J. Kim, K. Lakshmanan, and R. Rajkumar, “R-BATCH: Task

partitioning for fault-tolerant multiprocessor real-time systems,” 10th

IEEE Int’l Conf. on Comp. and Inf. Tec., 2010, pp. 1872-1879.

[40] J. Kim, G. Bhatia, R. Rajkumar, and M. Jochim, “SAFER: System-

level architecture for failure evasion in real-time applications,” IEEE

33rd Real-Time Systems Symposium (RTSS), 2012, pp. 227-236.

[41] P. Dobias, E. Casseau, and O. Sinnen, “Comparison of different

methods making use of backup copies for fault-tolerant scheduling
on embedded multiprocessor systems,” Conf. on Design and Arch.

for Signal and Image Proc. (DASIP), Porto, 2018, pp. 100-105.

[42] W. Luo, X. Qin, X. Tan, K. Qin, and A. Manzanares, “Exploiting

redundancies to enhance schedulability in fault-tolerant and real-time

distributed systems,” IEEE Trans. on Sys., Man, and Cyber. - Part A:
Sys. and Hum., vol. 39, no. 3, 2009, pp. 626-639.

[43] P. Purushothaman Nair, A. Sarkar, and S. Biswas, “Fault-tolerant

real-time fair scheduling on multiprocessor systems with cold-

standby,” IEEE Trans. on Dep. and Secure Computing (TDSC),

2019.

[44] P. Chevochot, and I. Puaut, “Scheduling fault-tolerant distributed

hard real-time tasks independently of the replication

strategies,” Proc. 6th Int’l Conf. on Real-Time Computing Systems

and Applications (RTCSA), Hong Kong, China, 1999, pp. 356-363.

[45] S. Gopalakrishnan and M. Caccamo, “Task partitioning with

replication upon heterogeneous multiprocessor systems,” 12th IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), San Jose, CA, USA, 2006, pp. 199-207.

[46] J. Chen, C. Yang, T. Kuo, and S. Tseng, “Real-time task replication
for fault tolerance in identical multiprocessor systems,” 13th IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), Bellevue, WA, 2007, pp. 249-258.

[47] J. Lin, and A. M. K. Cheng, “Real-time task assignment with

replication on multiprocessor platforms,” 15th Int’l Conf. on Parallel
and Distributed Systems, Shenzhen, 2009, pp. 399-406.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

[48] S. Punnekkat, A. Burns, and R. Davis, “Analysis of checkpointing

for real-time systems,” Real-Time Syst., vol. 20, no. 1, 2001, pp. 83–
102.

[49] H. Tabkhi, S. G. Miremadi, and A. Ejlali, “An asymmetric

checkpointing and rollback error recovery scheme for embedded

processors,” IEEE Int’l Symposium on Defect and Fault Tolerance of

VLSI Systems, Boston, MA, 2008.

[50] Z. Zhengyong, P. Liping, and Y. Fumin, “Schedulability analysis for

Fault tolerance real-time system under fault bursts,” IEEE 7th Int’l

Info. Tech. and Artif. Intell. Conf., Chongqing, 2014, pp. 20-27.

[51] S. Rehman, F. Kriebel, Duo Sun, M. Shafique, and J. Henkel,

“dTune: Leveraging reliable code generation for adaptive
dependability tuning under process variation and aging-induced

effects,” 51st ACM/EDAC/IEEE Design Automation Conf. (DAC),

San Francisco, CA, 2014, pp. 1-6.

[52] F. Restrepo-Calle, S. Cuenca-Asensi, and A. Martinez-Alvarez, “An

effective strategy for selective hardening of software,” 18th IEEE
Latin American Test Symp. (LATS), Bogota, 2017, pp. 1-6.

[53] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling of fault-

tolerant embedded systems with soft and hard timing constraints,”

Design, Automation and Test in Europe Conf. and Exhibition

(DATE), Munich, 2008, pp. 915-920.

[54] B. Zheng, Y. Gao, Q. Zhu, and S. Gupta, “Analysis and optimization

of soft error tolerance strategies for real-time systems,” Int’l Conf. on

Hardware/Software Codesign and System Synthesis (CODES+ISSS),

Amsterdam, 2015, pp. 55-64.

[55] A. Thekilakkattil, R. Dobrin, S. Punnekkat, and H. Aysan,
“Optimizing the fault tolerance capabilities of distributed real-time

systems,” Proc. of the 14th IEEE Int’l Conf. on Emerging

Technologies and Factory Automation (ETFA), Palma de Mallorca,

Spain, 2009, pp. 1699–1702.

[56] R. M. Pathan, and J. Jonsson, “Exact fault-tolerant feasibility
analysis of fixed-priority real-time tasks,” IEEE 16th Int’l Conf. on

Embedded and Real-Time Computing Systems and Applications

(RTCSA), Macau SAR, 2010, pp. 265-274.

[57] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-
criticality systems,” Real-Time Syst., vol. 50, no. 4, 2014, pp. 509-

547.

[58] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng, “A four-mode

model for efficient fault-tolerant mixed-criticality systems,” Design,

Automation and Test in Europe Conf. and Exhibition (DATE), 2016.

[59] K. Cao, G. Xu, J. Zhou, M. Chen, T. Wei, and K. Li, “Lifetime-

aware real-time task scheduling on fault-tolerant mixed-criticality

embedded systems,” Future Generation Computer Systems, 2019,

pp. 165-175.

[60] J. Huang, J. O. Blech, A. Raabe, C. Buckl and A. Knoll, “Analysis
and optimization of fault-tolerant task scheduling on multiprocessor

embedded systems,” Proc. of the 9th IEEE/ACM/IFIP Int’l Conf. on

Hardware/Software Codesign and System Synthesis (CODES+ISSS),

Taipei, 2011, pp. 247-256.

[61] J. Huang, K. Huang, A. Raabe, C. Buckl and A. Knoll, “Towards
fault-tolerant embedded systems with imperfect fault detection,”

Design Automation Conf. (DAC), San Francisco, CA, 2012, pp. 188-

196.

[62] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimization of

time- and cost-constrained fault-tolerant embedded systems with
checkpointing and replication,” IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. 17, no. 3, 2009, pp. 389-402.

[63] J. Caplan, Z. Al-bayati, H. Zeng and B. H. Meyer, “Mapping and

scheduling mixed-criticality systems with on-demand redundancy,”

IEEE Trans. on Computers (TC), vol. 67, no. 4, pp. 582-588, 1 April
2018.

[64] O. S. Unsal, I. Koren and C. M. Krishna, “Towards energy-aware

software-based fault tolerance in real-time systems,” Proc. of the

Int’l Symp. on Low Power Electronics and Design, Monterey

(ISLPED), CA, USA, 2002, pp. 124-129.

[65] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “A standby-sparing

technique with low energy-overhead for fault-tolerant hard real-time

systems,” Proc. of the 7th IEEE/ACM Int’l conf. on

Hardware/software codesign and system synthesis (CODES+ISSS),

2009, pp. 193-202.

[66] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-

sparing for hard real-time systems,” IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), vol. 31, no. 3,

pp. 329-342, 2012.

[67] R. Sridharan, and R. Mahapatra, “Reliability aware power
management for dual-processor real-time embedded systems,”

Design Automation Conf. (DAC), Anaheim, CA, 2010, pp. 819-824.
[68] S. Bansal, R. K. Bansal, and K. Arora, “Energy efficient backup

overloading schemes for fault tolerant scheduling of real-time tasks,”
Journal of Systems Architecture (LSA), vol. 113, 2021.

[69] Y. Guo, D. Zhu, and H. Aydin, “Generalized standby-sparing

techniques for energy-efficient fault tolerance in multiprocessor real-

time systems,” IEEE 19th Int’l Conf. on Embedded and Real-Time

Computing Systems and Applications (RTCSA), Taipei, 2013, pp. 62-
71.

[70] Y. Guo, D. Zhu, H. Aydin, J.-J. Han, and L. T. Yang, “Exploiting

primary/backup mechanism for energy efficiency in dependable real-

time systems,” Journal of Systems Architecture (JSA), vol. 78, pp.

68–80, Aug. 2017.

[71] M. Ansari, S. Safari, F. R.Poursafaei, M. Salehi, and A. Ejlali,

“AdDQ: Low-energy hardware replication for real-time systems

through adaptive dual-queue scheduling,” The CSI Journal on

Computer Science and Engineering, vol. 15, no. 1, 2017.

[72] A. Roy, H. Aydin, and D. Zhu, “Energy-aware standby-sparing on
heterogeneous multicore systems,” 54th ACM/EDAC/IEEE Design

Automation Conf. (DAC), 2017, pp. 1-6.

[73] Y. Zhang, “Energy-aware mixed partitioning scheduling in standby-

sparing systems,” Computer Standards & Interfaces, vol. 61, pp.

129–136, 2019.

[74] M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali, “Peak-

power-aware energy management for periodic real-time

applications,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 39, no. 4, pp. 779-788, 2020.

[75] A. Naghavi, S. Safari and S. Hessabi, “Tolerating permanent faults
with low-energy overhead in multicore mixed-criticality systems,”

IEEE Trans. on Emerging Topics in Computing (TETC), 2021.

[76] S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A low energy

standby-sparing scheme for mixed-criticality systems,” IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2020.

[77] M. Ansari, M. Salehi, S. Safari, A. Ejlali, and M. Shafique, “Peak-

power-aware primary-backup technique for efficient fault-tolerance

in multicore embedded systems,” IEEE Access, vol. 8, pp. 142843-

142857, 2020.

[78] I. Assayad, A. Girault, and, H. Kalla, “Scheduling of real-time

embedded systems under reliability and power constraints,” IEEE

Int’l Conf. on Complex Systems (ICCS), Agadir, 2012, pp. 1-6.

[79] F. R. Poursafaei, S. Safari, M. Ansari, M. Salehi, and A. Ejlali,

“Offline replication and online energy management for hard real-
time multicore systems,” Proc. of the 1st Int'l the CSI Symposium on

Real-Time and Embedded Systems and Technologies (RTEST),

Tehran, 2015.

[80] J. Spasic, D. Liu, and T. Stefanov, “Energy-efficient mapping of

real-time applications on heterogeneous MPSoCs using task
replication,” Int’l Conf. on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), Pittsburgh, PA, 2016, pp. 1-10.

[81] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management of

energy-aware real-time systems through task replication,” IEEE

Trans. on Parallel and Distributed Systems (TPDS), vol. 28, no. 3,
pp. 813-825, 2017.

[82] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li, “Energy-efficient

fault-tolerant scheduling of reliable parallel applications on

heterogeneous distributed embedded systems,” IEEE Trans. on Sus.

Comp. (TC), vol. 3, no. 3, pp. 167-181, 1 July-Sept. 2018.

[83] S. Safari, M. Ansari, G. Ershadi, and S. Hessabi, “On the scheduling

of energy-aware fault-tolerant mixed-criticality multicore systems

with service guarantee exploration,” IEEE Trans. on Parallel and

Distributed Systems (TPDS), vol. 30, no. 10, pp. 2338-2354, 2019.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

[84] J. Saber-Latibari, M. Ansari, P. Gohari-Nazari, S. Yari-Karin, A. M.

H. Monazzah, and A. Ejlali, “READY: Reliability-and deadline-
aware power-budgeting for heterogeneous multi-core systems,”

Trans. on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), 2020.

[85] A. Yeganeh-Khaksar, M. Ansari, and A. Ejlali, “ReMap: Reliability

management of peak-power-aware real-time embedded systems
through task replication,” IEEE Trans. on Emerging Topics in

Computing (TETC), 2020.

[86] E. (Mootaz) Elnozahy, R. Melhem, and D. Mosse, “Energy-

efficient duplex and TMR real-time systems,” Proc. of the Real-

Time Systems Symposium (RTSS), 2002.  

[87] D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy, “Analysis of an

energy efficient optimistic TMR scheme,” Proc. 10th Int’l Conf. on
Parallel and Distributed Systems, (ICPADS), Newport Beach, CA,

USA, pp. 559-568, 2004.

[88] F. Baharvand, and S.G. Miremadi, “ANMR: Aging-aware adaptive

N-modular redundancy for homogeneous multicore embedded

processors,” Journal of Parallel and Distributed Computing, vol.
109, 2017.

[89] F. Baharvand, and S. G Miremadi, “LEXACT: Low energy N-

modular redundancy using approximate computing for real-time

multicore processors,” IEEE Trans. on Emerging Topics in

Computing (TETC), vol. 8, no. 2, pp. 431-441, 2020.

[90] S. Safari, M. Ansari, M. Salehi, and A. Ejlali, “Energy-budget-aware

reliability management in multi-core emebedded systems with hybrid

energy source,” The CSI Journal on Computer Science and

Engeneering (JCSE), vol. 15, no. 2, pp 31-43, 2018.

[91] M. Salehi, A. Ejlali, and B. M. Al-Hashimi, “Two-phase low-energy
N-modular redundancy for hard real-time multi-core systems,” IEEE

Trans. on Parallel and Distributed Systems (TPDS), vol. 27, no. 5,

pp. 1497-1510, 1 May 2016.

[92] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi, and A. Ejlali,

“Peak power management to meet thermal design power in fault-
tolerant embedded systems,” IEEE Trans. on Parallel and

Distributed Systems (TPDS), vol. 30, no. 1, pp. 161-173, 2019.

[93] M. Salehi, M. Khavari Tavana, S. Rehman, F. Kriebel, M. Shafique,

A. Ejlali, and J. Henkel, “DRVS: Power-efficient reliability
management through dynamic redundancy and voltage scaling under

variations,” IEEE/ACM Int’l Symposium on Low Power Electronics

and Design (ISLPED), Rome, 2015, pp. 225-230.

[94] Y. Zhang, and K. Chakrabarty, “A unified approach for fault

tolerance and dynamic power management in fixed-priority real-time
embedded systems,” IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 25, no. 1, pp. 111-125,

Jan. 2006.

[95] Y. Zhang, R. Dick, and K. Chakrabarty, “Energy-aware deterministic

fault tolerance in distributed real-time embedded systems” Proc. 41st
Design Automation Conf. (DAC), 2004.

[96] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power

management and fault recovery in real-time systems,” IEEE Trans.

Computers (TC), vol. 53, no. 2, pp. 217-231, 2004.

[97] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy
management on reliability in real-time embedded systems,”

IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD), San

Jose, CA, USA, 2004, pp. 35-40.

[98] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” J.
of Sys. and Soft., vol. 85, no. 6, pp. 1386-1399, 2012.

[99] T. Wei, P. Mishra, K. Wu, and H. Liang, “Fixed-priority allocation

and scheduling for energy-efficient fault tolerance in hard real-time

multiprocessor systems,” IEEE Trans. on Parallel and Distributed

Systems (TPDS), vol. 19, no. 11, pp. 1511-1526, Nov. 2008.

[100] D. Zhu, “Reliability-aware dynamic energy management in

dependable embedded real-time systems,” ACM Trans. Embed.

Comput. Syst., vol. 10, no. 2, pp. 1-27, 2010.

[101] Q. Han, M. Fan, and G. Quan, “Energy minimization for fault-

tolerant real-time applications on multiprocessor platforms using
checkpointing,” Proc. of the Int’l Symposium on Low Power

Electronics and Design (ISLPED), 2013.

[102] Q. Han, M. Fan, L. Niu, and G. Quan, “Energy minimization for

fault-tolerant scheduling of periodic fixed-priority applications on
multiprocessor platforms,” Design, Automation and Test in Europe

Conf. and Exhibition (DATE), Grenoble, 2015, pp. 830-835.

[103] M. Salehi, M. Khavari Tavana, S. Rehman, M. Shafique, A. Ejlali,

and J. Henkel, “Two-state checkpointing for energy-efficient fault

tolerance in hard real-time systems,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 7, pp. 2426-2437, July

2016.

[104] D. Zhu, and H. Aydin, “Energy management for real-time embedded

systems with reliability requirements,” IEEE/ACM Int’l Conf. on

Computer-Aided Design (ICCAD), San Jose, CA, 2006, pp. 528-534.

[105] B. Zhao, H. Aydin, and D. Zhu “Generalized reliability-oriented

energy management for real-time embedded applications,” Proc. of

the Conf. on Computer-Aided Design (ICCAD), 2011, pp. 381–386.

[106] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-

time embedded applications under hard energy constraint,” IEEE
Trans. on Industrial Informatics, vol. 6, no. 3, pp. 316-328, 2010.

[107] D. Zhu, and H. Aydin, “Reliability-aware energy management for

periodic real-time tasks,” IEEE Trans. on Computers (TC), vol. 58,

no. 10, pp. 1382-1397, Oct. 2009.

[108] B. Zhao, H. Aydin, and D. Zhu, “Energy management under general
task-level reliability constraints,” IEEE 18th Real Time and

Embedded Technology and Applications Symposium (RTAS),

Beijing, 2012, pp. 285-294.

[109] X. Qi, D. Zhu, and H. Aydin, “Global reliability-aware power

management for multiprocessor real-time systems,” IEEE 16th Int’l
Conf. on Embedded and Real-Time Computing Systems and

Applications (RTCSA), Macau SAR, 2010, pp. 183-192.

[110] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles, “Scheduling and

voltage scaling for energy/reliability trade-offs in fault-tolerant time-

triggered embedded systems,” 5th IEEE/ACM/IFIP Int’l Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),

Salzburg, 2007, pp. 233-238.

[111] L. Zhang, K. Li, K. Li, and Y. Xu, “Joint optimization of energy

efficiency and system reliability for precedence constraint tasks in
heterogeneous systems,” Int’l Journal of Electrical Power & Energy

Systems, vol. 78, pp 499-512, 2016.

[112] Y. Xiang, and S. Pasricha, “Fault-aware application scheduling in

low-power embedded systems with energy harvesting,” Int’l Conf.

on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), New Delhi, 2014, pp. 1-10.

[113] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu, “Improving reliability

for real-time systems through dynamic recovery,” Design,

Automation and Test in Europe Conf. and Exhibition (DATE),

Dresden, 2018, pp. 515-520.

[114] Y. Cai, S. M. Reddy, and B. M. Al-Hashimi, “Reducing the energy

consumption in fault-tolerant distributed embedded systems with

time-constraint,” 8th Int’l Symposium on Quality Electronic Design

(ISQED), San Jose, CA, 2007, pp. 368-373.

[115] B. Kada, and H. Kalla “An efficient fault-tolerant scheduling
approach with energy minimization for hard real-time embedded

systems,” Distributed Computing for Emerging Smart Networks

(DiCES-N). Communications in Computer and Information Science,

vol. 1130. Springer, Cham, 2019.

[116] J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan, and Y.
Ma, “Reliability and temperature constrained task scheduling for

makespan minimization on heterogeneous multi-core platforms,”

Journal of Systems and Software (JSS), vol. 133, pp. 1-16, 2017.

[117] M. Ansari, M. Pasandideh, J. Saber-Latibari, and A. Ejlali, “Meeting

thermal safe power in fault-tolerant heterogeneous embedded
systems,” IEEE Embedded Systems Letters, vol. 12, no. 1, pp. 29-32,

March 2020.

[118] J. Zhou, and, T. Wei, “Stochastic thermal-aware real-time task

scheduling with considerations of soft errors,” Journal of Systems

and Software (JSS), vol. 102, pp. 123-133, 2015.

[119] S. Safari, H. Khdr, P. Gohari-Nazari, M. Ansari, S. Hessabi, and J.

Henkel, “TherMa-MiCs: Thermal-Aware Scheduling for Fault-

Tolerant Mixed-Criticality Systems,” IEEE Transactions on Parallel

and Distributed Systems (TPDS), 2021.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

[120] M. Ansari et al., “Thermal-Aware Standby-Sparing Technique on

Heterogeneous Real-Time Embedded Systems,” in IEEE
Transactions on Emerging Topics in Computing (TETC), 2021.

[121] M. Ansari, J. Saberlatibari, S. M. Pasandideh, and A. Ejlali,

“Simultaneous management of peak-power and reliability in

heterogeneous multicore embedded systems,” IEEE Trans. on

Parallel and Distr. Sys. (TPDS), vol. 31, no. 3, pp. 623-633, 2019.

[122] S. Pagani, H. Khdr, W. Munawar, J-J Chen, M. Shafique, M. Li, and

J. Henkel, “TSP: Thermal safe power - Efficient power budgeting for

many-core systems in dark silicon,” Int’l Conf. on

Hardware/Software Codesign and System Synthesis (CODES+ISSS),

New Delhi, India, Oct 12-17 2014.

[123] S. Pagani, H. Khdr, J. Chen, M. Shafique, M. Li and J. Henkel,

“Thermal safe power (TSP): Efficient power budgeting for

heterogeneous manycore systems in dark silicon,” IEEE Trans. on

Computers (TC), vol. 66, no. 1, pp. 147-162, 1 Jan. 2017.

[124] H. Khdr, H. Amrouch, and J. Henkel, “Aging-constrained
performance optimization for multi cores,” ACM/ESDA/IEEE Design

Automation Conf. (DAC), 2018, pp. 1-6.

[125] S. Pagani, S. Manoj, P. D. Axel Jantsch, and J. Henkel, ”Machine

learning for power, energy, and thermal management on multicore

processors: A survey,” IEEE Trans. on CAD of Integrated Circuits
and Systems (TCAD), vol. 39, no. 1, Jan 2020.

[126] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J-J. Chen, and J.

Henkel, “Peak power management for scheduling real-time tasks on

heterogeneous many-core systems,” 20th IEEE Int’l Conf. on

Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan, 2014.

[127] H. Khdr, H. Amrouch, and J. Henkel, “Dynamic guardband

selection: Thermal-aware optimization for unreliable multi-core

systems,” IEEE Trans. on Computers (TC), Jan 2019.

[128] J. Henkel, H. Khdr, and M. Rapp, “Smart thermal management for

heterogeneous multicores (Special Session),” IEEE/ACM 22nd
Design, Automation and Test in Europe Conf. and Exhibition

(DATE), Florence, Italy, Mar 25-29 2019.

[129] A. K. Singh, S. Dey, K. R. Basireddy, K. McDonald-Maier, G. V.

Merrett, and B. M. Al-Hashimi, “Dynamic energy and thermal
management of multi-core mobile platforms: A survey,” IEEE

Design & Test, 2020.

[130] H. Khdr, S. Pagani, M. Shafique, and J. Henkel, “Thermal

constrained resource management for mixed ILP-TLP workloads in

dark silicon chips,” ACM/EDAC/IEEE 52nd Design Automation
Conf. (DAC), San Francisco, CA, USA, Jun 7-11 2015.

[131] H. Khdr, S. Pagani, É. Sousa, V. Lari, A. Pathania, F. Hannig, M.

Shafique, J. Teich, and J. Henkel, “Power density-aware resource

management for heterogeneous tiled multicores,” IEEE Trans. on

Computers (TC), vol. 66, no. 3, Mar 2017.

[132] H. Khdr, M. Shafique, S. Pagani, A. Herkersdorf, and J. Henkel,

“Combinatorial auctions for temperature-constrained resource

management in manycores,” IEEE Trans. on Parallel and

Distributed Systems (TPDS), Jul 2020.

[133] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel,
“Power- and cache-aware task mapping with dynamic power

budgeting for many-cores,” IEEE Trans. on Computers (TC), vol. 69,

no 1, Jan 2020.

[134] S. Xu, I. Koren, and C. M. Krishna, “Thermal aware task scheduling

for enhanced cyber-physical systems sustainability,” IEEE Trans. on
Sustainable Computing, vol. 5, no. 4, pp. 581-593, 2020.

[135] J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu, and Y. Ma, “Thermal-

aware task scheduling for energy minimization in heterogeneous

real-time MPSoC systems,” IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), vol. 35, no. 8, pp. 1269-
1282, Aug. 2016.

[136] B. Yun, K. G. Shin, and S. Wang, “Predicting thermal behavior for

temperature management in time-critical multicore systems,” IEEE

19th Real-Time and Embedded Technology and Applications

Symposium (RTAS), Philadelphia, PA, 2013, pp. 185-194.

[137] B. Yun, K. G. Shin, and S. Wang, “Thermal-aware scheduling of

critical applications using job migration and power-gating on multi-

core chips,” IEEE 10th Int’l Conf. on Trust, Security, and Privacy in

Computing and Communications, Changsha, 2011, pp. 1083-1090.

[138] S. Wang, J. Chen, Z. Shi, and L. Thiele, “Energy-efficient speed

scheduling for real-time tasks under thermal constraints,” 15th IEEE
Int’l Conf. on Embedded and Real-Time Computing Systems and

Applications (RTCSA), Beijing, 2009, pp. 201-209.

[139] W. Hung, Y. Xie, N. ViJ'aykrishnan, M. Kandemir, and M. J. Irwin,

“Thermal-aware task allocation and scheduling for embedded

systems,” Design, Automation and Test in Europe Conf. and
Exhibition (DATE), Munich, Germany, 2005, pp. 898-899.

SEPIDEH SAFARI received the M.Sc. degree in

computer engineering from Sharif University of

Technology, Tehran, Iran, in 2016 with an excellent
grade and the first rank. She received the Ph.D.

degree in computer engineering from Sharif

University of Technology, Tehran, Iran, in 2021. She

was a visiting researcher in the Chair for Embedded

Systems (CES), Karlsruhe Institute of Technology
(KIT), Germany, from 2019 to 2021. Her research interests include low-

power design of cyber-physical systems, energy management in fault-

tolerant embedded systems, and multi-/many-core systems with a focus on

dependability/reliability.

MOHSEN ANSARI received his M.Sc. and Ph.D.

degrees in computer engineering from Sharif

University of Technology, Tehran, Iran, in 2016 and

2021, respectively. He was a visiting researcher in the

Chair for Embedded Systems (CES), Karlsruhe
Institute of Technology (KIT), Germany, from 2019

to 2021. Now, he is a postdoctoral researcher and a

research group leader of Embedded Systems Research

Laboratory (ESR-LAB), and a lecturer at the department of computer

science and engineering, Sharif University of Technology. His research
interests include low-power design of embedded systems and multi-/many-

core systems with a focus on dependability/reliability.

HEBA KHDR is a postdoctoral researcher and a
group leader at the Chair for Embedded Systems

(CES) in Karlsruhe Institute of Technology (KIT) in

Germany. She received her Ph.D. (Dr.-Ing.) in

Computer Science from Karlsruhe Institute of

Technology (KIT) in 2018.
In 2005, she received her Diploma in Informatics

Engineering from Aleppo University in Syria with

an excellent grade and the first rank. From 2005 until 2007 she worked as

a software engineer in the industry sector in Syria. She worked as an

assistant in Aleppo University from 2008 until 2010. In 2011 she did an
equivalent master thesis at KIT. Her research interests are thermal

management and resource management in multi- and many-core systems.

In 2012 she received Research Student Award from KIT. She received

Best Paper Award from IEEE/ACM International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS) in
2014, and four HiPEAC paper awards.

POURYA GOHARI-NAZARI received the B.Sc.

degree in computer engineering from the University

of Isfahan. He is currently working toward the M.Sc.

degree in the Department of Computer Engineering at

Sharif University of Technology, Tehran, Iran. His
research interests are thermal management in multi-

/many-core systems and design of embedded systems

with a focus on low-power and reliability.

SINA YARI-KARIN received his B.Sc. degree in
computer engineering from the Ferdowsi University of

Mashhad in 2017. He is currently an M.Sc. student in

computer engineering at the Sharif University of

Technology, Tehran, Iran. Also, he is a member of the

Embedded System Research Laboratory (ESR-LAB) at
the department of computer engineering at Sharif

University of Technology. His research interests are

embedded system design, low power system design,

fault-tolerant system design, and computer architecture.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144217, IEEE Access

VOLUME XX, 2021

AMIR YEGANEH-KHAKSAR received his M.Sc.
degree in computer engineering from Sharif University

of Technology (SUT), Tehran, Iran, in 2019, and the

B.Sc. degree from Ferdowsi University of Mashhad

(FUM), Mashhad, Iran, in 2016. From 2016 to 2019,

he was a member of the Embedded Systems Research
Laboratory (ESRLab) at the department of computer

engineering, Sharif University of Technology. He was

honored to be a member of the national elites’

foundation in 2019. His current research interests include low power

design, real-time embedded systems, and fault-tolerant embedded systems.

SHAAHIN HESSABI received the BS and MS

degrees in electrical engineering from Sharif

University of Technology, Tehran, Iran, in 1986 and

1990, respectively, and the PhD degree in electrical
and computer engineering from the University of

Waterloo, Ontario, Canada. He joined Sharif

University of Technology, in 1996. Since 2007, he has

been an associate professor in the Department of

Computer Engineering, Sharif University of
Technology, Tehran, Iran. He has published more than 100 refereed papers

in the related areas. His research interests include cyber-physical systems,

reconfigurable and heterogeneous architectures, network-on-chip, and

system-on-chip. He has served as the program chair, general chair, and

program committee member of various conferences, like DATE, NOCS,
NoCArch, and CADS.

ALIREZA EJLALI is an Associate Professor of

Computer Engineering at Sharif University of

Technology, Tehran, Iran. He received a Ph.D. degree

in computer engineering from Sharif University of

Technology in 2006. From 2005 to 2006, he was a
visiting researcher in the Electronic Systems Design

Group, University of Southampton, UK. In 2006 he

joined Sharif University of Technology as a faculty

member in the department of computer engineering

and from 2011 to 2015, he was the director of Computer Architecture
Group in this department. He is now the director of Embedded Systems

Research Laboratory (ESR-LAB) and the head of the department of

computer engineering, Sharif University of Technology. His research

interests include low power design, fault tolerance, real-time embedded

systems, and Internet of Things (IoT).

JÖRG HENKEL (M’95-SM’01-F’15) is currently

with the Karlsruhe Institute of Technology (KIT),

Germany, where he is directing the Chair for

Embedded Systems (CES). Prof. Henkel received the
masters and the Ph.D. (Summa cum laude) degrees,

both from the Technical University of Braunschweig,

Germany. He then joined the NEC Laboratories,

Princeton, NJ, USA. His current research interests
include design and architectures for embedded systems with focus on low

power and reliability. Prof. Henkel has received the 2008 DATE Best

Paper Award, the 2009 IEEE/ACM William J. Mc Calla ICCAD Best

Paper Award, the CODES+ISSS 2011, 2014 and 2015 Best Paper Awards.

He was the General Chair of major CAD events incl. ICCAD and
ESWeek. He is the Chairman of the IEEE Computer Society, Germany

Section, and was the Editor-in-Chief of the ACM Transactions on

Embedded Computing Systems for two terms. He is currently the Editor-

in-Chief of the IEEE Design&Test Magazine. He is also an Initiator and

Spokesperson of the national priority program on Dependable Embedded
Systems of the German Science Foundation and the site coordinator

(Karlsruhe site) of the three-university collaborative research center on

invasive computing. He is a Fellow of the IEEE and holds ten US patents.

