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ABSTRACT The relentless technology scaling has provided a significant increase in processor 

performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, 

technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, 

technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby 

temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may 

ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these 

potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance 

techniques employ some kind of redundancies to satisfy specific reliability requirements.  However, the 

integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing 

constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the 

integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time 

embedded systems. More advanced techniques aim additionally at minimizing power and energy while at 

the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have 

started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance 

techniques. These emerging techniques aim at satisfying temperature constraints besides timing and 

reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit 

fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time 

embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-

tolerance real-time embedded systems are reviewed and classified according to their considered goals and 

constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models 

are considered as additional dimensions of the presented classification. Lastly, this survey gives deep 

insights into the main achievements and shortcomings of the existing approaches and highlights the most 

promising ones. 

INDEX TERMS Fault-tolerance, embedded systems, real-time computing, scheduling, power/energy 

minimization, thermal-aware design.

I. INTRODUCTION 

Aggressive scaling in the size of the transistors enables 

integrating billions of transistors into a single die, which 

significantly improves computation performance [1]. 

Nevertheless, technology scaling has led to several negative 

impacts on system reliability [2][3]. Firstly, it increases the 

rate of radiation-induced faults up to several orders of 

magnitude [4][5][81]. Secondly, it increases the power 

density on the chip, and thereby on-chip temperatures are 

elevated [6]. High temperature, poses considerable 

challenges to lifetime reliability (occurrence of permanent 

faults) due to their direct influence on the aging effects such 

as electro migration. Moreover, it may increase soft error 

rates [7]. In order to mitigate thermal violation chip-level 
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countermeasures such as lowering the operating voltage and 

frequency will be triggered, which can again significantly 

affect the timeliness and reliability of the system. Hence, 

system reliability has become a major concern in real-time 

embedded systems design, due to the negative impacts of 

technology scaling. Automotive systems, avionics, satellite, 

robots, and wireless body area networks (WBAN) are the 

example of embedded systems which have been growing 

steadily in the recent past and should meet the correctness 

and timeliness even under fault occurrences [10][13][14][15].  

To ensure reliability in embedded systems, so-called fault-

tolerance techniques have emerged [16][17]. Particularly, 

they employ redundancy in terms of time, hardware, 

software, and information to satisfy a given reliability target, 

which specifies the probability that the system functions 

correctly according to its specifications in the time interval 

[0, t], with the assumption that it was functioning correctly in 

the beginning (at time 0) [16][17].  The shift to a multi-core 

paradigm provides a great potential for the implementation of 

fault-tolerance techniques, which require additional resources 

on the chip to employ redundancy in order to fulfill reliability 

requirements [83][92]. However, implementing fault-

tolerance techniques leads to time overhead, additional 

power/energy consumption, and high temperature. 

In general, to suppress power and temperature on the chip, 

several countermeasures such as Dynamic Power 

Management (DPM) and Dynamic Voltage and Frequency 

Scaling (DVFS) can be taken by the dynamic thermal 

management (DTM) unit that is typically implemented on the 

chip [19]. However, DVFS can potentially degrade the 

system reliability because the rate of transient faults increases 

at low supply voltages [20][62][66]. Moreover, such 

countermeasures might prevent the tasks from meeting their 

deadlines, which is not acceptable in real-time embedded 

systems [21]. That implies the goals/constraints of designing 

real-time embedded systems, i.e., low-power consumption, 

real-time computing, and high reliability are contradicting 

each other as depicted in Figure 1. Therefore, it is 

indispensable to consider all of those metrics; i.e., time, 

power, and temperature, within the task mapping and 

scheduling policies of the fault-tolerance systems in order to 

find a suitable trade-off and avoid triggering conservative 

countermeasures.  

Besides existing classification in the state-of-the-art survey 

papers, we consider an additional dimension which is the 

considered goals and constraints of the mapping and 

scheduling policies in fault-tolerance embedded systems (i.e., 

time, power/energy, and temperature). This survey shows 

that the majority of the state-of-the-art fault-tolerance 

techniques either solely focus on satisfying timing constraints 

or optimizing for power/energy as well. Just a few state-of-

the-art fault-tolerance techniques consider the thermal issue, 

despite its relevance. Particularly, employing fault-tolerance 

techniques in embedded systems leads to increase the 

temperature, and therefore temperature constraints need to be 

considered. Hence, our survey paper shows the significant 

impact of employing fault-tolerance techniques on the 

temperature through a motivational example. Then, it 

summarizes and classifies the state-of-the-art fault-tolerance 

techniques considering the taxonomy presented in Figure 2. 

Additionally, this survey highlights the advantages and the 

shortcomings of state-of-the-art techniques. 

The remainder of this paper is organized as follows. 

Section II discusses the system model, and fault-tolerance 

techniques. Section III surveys the studies that exploit fault-

tolerance techniques without considering power, energy, and 

temperature constraints. Section IV surveys the 

power/energy-aware fault-tolerance techniques. Thermal-

aware fault-tolerance techniques are studied in Section V. 

Finally, the paper is concluded in Section VI.  

II. SYSTEM MODELS AND FAULT-TOLERANCE TECHNIQUES 

The design of fault-tolerance techniques depends on the 

targeted system model, which is described by software-level 

and hardware-level parameters. In particular, selecting the 

redundancy type of fault-tolerance techniques depends to a 

large extent on the system model. Moreover, mapping and 

scheduling techniques will be designed based on both the 
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FIGURE 1.  Illustrating the dependencies between the 
contradictory constraints and goals of fault-tolerance 
techniques. 

 

 

 

FIGURE 2.  Classification of system-level fault-tolerance 
techniques in real-time embedded systems.  
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employed fault-tolerance techniques and the targeted system 

model, while considering the target goals and constraints of 

the system. Figure 3 summarizes the available options for 

system models, fault-tolerance techniques, and 

mapping/scheduling policies.   

A. System Model 

1)  SOFTWARE-LEVEL PARAMETERS  

The main software-level parameters include the real-time 

constraints, reliability requirements, and application model 

as shown in Figure 3.  

Real-time constraints: Embedded systems are information 

processing systems that are embedded into a larger product. 

Meeting real-time constraints, dependability, energy 

efficiency, code-size efficiency, low weight, low cost, and 

run time efficiency are common characteristics of these 

systems. Indeed, real-time embedded systems are 

computing systems that react to environmental events 

within precise time constraints [10]. Therefore, the correct 

output of these systems depends on both the correct result 

and the time at which the results are generated [10]. Hence, 

based on the consequences that may happen after missing 

the predefined timing constraint, real-time tasks are 

categorized into the following groups [10]:  

• Hard: If producing the results after missing the 

deadline leads to catastrophic consequences, a real-

time task is known as hard [10]. 

• Firm: If producing the results after missing the 

deadline is useless for the system, but does not cause 

any damage, a real-time task is known as a firm [10]. 

• Soft: If producing the results after missing the 

deadline has still some utility for the system, 

although causing performance degradation, a real-

time task is known as soft [10]. 

Recently advancement of cyber-physical systems attracted 

more attention to mixed-criticality systems (MCSs). In 

MCSs a large number of tasks of different criticality levels, 

with different timing requirements, are integrated to 

execute on the same computing platform, to meet stringent 

non-functional requirements relating to the area, cost, and 

power [11].  

Reliability requirements: The reliability of the system 

specifies the probability that the system functions correctly 

according to its specifications in the time interval [0, t], 

with the assumption that it was functioning correctly in the 

beginning (at time 0) [16][17].  The reliability requirements 

of the system will be determined based on different safety 

standards such as IEC61508 for all kinds of industrial 

software systems, DO-254, ISO26262 for automotive 

systems, and DO-178B/C for avionic systems [22]. More 

details about the different types of fault occurrence on the 

system and fault-tolerance techniques are described in 

Section II.C. 

Application Model: There are several application models 

executing on a real-time system. Computational activities 

can be done independently or dependent on each other. In 

some applications, computational activities have to respect 

some precedence relations defined at the design time. Such 

precedence relations are usually described through a 

directed acyclic graph, where tasks are represented by 

nodes and precedence relations by arrows. Based on the 

periodicity of the execution of tasks (task activation), they 

can be periodic, aperiodic, or sporadic. The task model is 

called periodic when each task consists of infinite jobs, and 

jobs have regular inter-arrival time equal to the task’s 

period. An aperiodic task has infinite jobs where jobs 

arriving at irregular intervals. A sporadic task is an 

aperiodic task where jobs have a minimum inter-arrival 

time. 

2)  HARDWARE-LEVEL PARAMETERS  

The hardware architecture, i.e., single-core, dual-core, or 

multi-core processors1 (including homogenous and 

heterogeneous), plays an important role in selecting the 

fault-tolerance technique, and the task mapping/scheduling 

policies. Moreover, available voltage and frequency levels 

(supporting discrete or continuous configuration), 

power/temperature constraints, and cooling system are 

other important architecture parameters. 

B. Mapping and Scheduling Policies 

After assigning tasks to cores (mapping) based on heuristic 

or optimal methods, tasks should be properly scheduled 

among cores to guarantee the constraints of the system. 

Proposed scheduling algorithms for real-time systems can 

be classified based on the following metrics: 

• Preemptive or non-preemptive: In preemptive 

scheduling, an executing task will be interrupted at any 

 
1 The term multi-core is used in this paper to express both multi-core processor 

or multi-processors. 
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FIGURE 3.  Overview of fault-tolerance systems. 
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time, and the processor will be assigned to another task 

based on upcoming conditions. However, in non-

preemptive scheduling, a task that starts its execution 

will not be interrupted until its completion. 

• Static or dynamic: In static scheduling, the scheduling 

decision is fixed and assigned to tasks before system 

activation. While in dynamic scheduling decisions may 

be changed during system operation. 

• Offline or online: in the offline scheduling, the 

proposed algorithm is applied in the offline phase (at 

design time) to the whole task set and the generated 

schedule is stored in a table to be exploited later. 

However, in online scheduling, every time a new task 

enters the system at runtime, the scheduling decisions 

are taken. 

• Optimal or heuristic: The optimal schedule minimizes 

some given cost function defined over the task set. 

However, in heuristic-based algorithms, the scheduling 

decisions are taken based on proposed heuristic 

functions. Therefore, the heuristic algorithm tends 

toward the optimal schedule but does not guarantee to 

find it. 

C. Fault-Tolerance Techniques 

Faults in computer systems are classified into transient, 

intermittent, and permanent based on their occurrence and 

duration [16][17].  

• Transient faults: This type of fault occurs for a short 

time period and then disappears without physical 

damage to the processor. It is often induced by 

electromagnetic interference and cosmic radiation. 

• Intermittent faults: This type of fault occurs frequently, 

and it is difficult to detect because after its occurrence 

the system operates correctly.   

• Permanent faults: This type of fault results from 

hardware component failure or manufacturing defects. 

Recovery from this kind of fault is only possible by 

replacing or repairing the faulty component.   
In this survey paper, we targeted all types of faults in the 

state-of-the-art. Irrespective of the fault type, fault-tolerance 

techniques aim at detecting the faults and recover from 

them (if possible), to let the system continue to function 

correctly. Typically, a fault-tolerance technique is designed 

to satisfy a given reliability target. To do that, fault-

tolerance techniques employ redundancy in terms of 1) 

hardware, 2) software, 3) information, and 4) time beyond 

what is needed for the normal operation of the system. In 

the following, we explain the different fault-tolerance 

techniques that belong to the four mentioned redundancy 

types as introduced in [16][17][24]. 

1)  HARDWARE REDUNDANCY 

Hardware redundancy is the most common technique which 

is the addition of extra hardware components for detecting 

or tolerating faults [16][17]. For example, instead of using a 

single core/processor, more cores/processors can be 

exploited, so that each application is executed on each 

core/processor, then the fault can be detected or even 

corrected. Hardware redundancy can be applied through 

passive, active, or hybrid methods. 

Passive hardware redundancy: Examples of this 

redundancy are N modular redundancy (NMR) such as 

Triple Modular Redundancy (TMR), and voting techniques.  

These techniques are referred to as M-of-N systems, which 

means that the system consists of N components, and the 

correct operation of this system is achieved when at least M 

components correctly work. The TMR system is a 2-of-3 

system with M=2 and N=3, which is realized by three 

components performing the same action, and the result is 

voted [16][17]. 

Active hardware redundancy: Duplication with 

comparison (DWC), Standby-sparing (SS), Pair-and-a-

spare technique, and watchdog timers are included in this 

type of active hardware redundancy. In DWC, two identical 

hardware components perform the same computation in 

parallel and their output is compared. Therefore, the DWC 

technique can only detect faults, but it cannot tolerate them 

because the faulty component cannot be determined 

[16][17]. In standby-sparing, one module is operational and 

one or more modules are standby or spares. If the fault is 

detected in the main component, it will be omitted from the 

operation and the spare component will continue the 

execution [16][17]. Meanwhile, pair-and-a-spare is a 

combination of DWC and SS techniques, i.e., two modules 

are executed in parallel and their results will be compared 

to detect the fault [16][17]. 

Hybrid hardware redundancy: The basic concept of this 

method is combining the features of both active and passive 

hardware redundancies. N modular redundancy with spare, 

sift-out modular redundancy, self-purging redundancy, and 

triple duplex architecture are examples of hybrid hardware 

redundancy [16][17]. The basic concept of self-purging is 

based on NMR with spare techniques, all modules are 

active and participate in the function of the system. In sift-

out modular redundancy, there are N identical modules. 

However, they are configured in the system through special 

circuits (comparators, detectors, and collectors). The triple 

duplex architecture combines the DWC technique with 

TMR, which helps to detect the faulty module and remove 

it from the system. 

2)  TIME REDUNDANCY 

Time redundancy is achieved by allocating extra time to 

perform the functions of the system to detect faults, and 

often tolerate them. It should be noted that applying time 

redundancy techniques must not lead to missing the timing 

constraints of real-time systems. For example, the re-

execution technique is a well-known method of time 

redundancy that is the repetitive execution of the faulty task 

on the same hardware and comparing the results until 

reaching the correct output [16][17].  

3)  INFORMATION REDUNDANCY 

Error detection and correction coding (such as parity check, 

cyclic code, checksum, etc.) are well-known information 

redundancy techniques [17]. Indeed, information 

redundancy is widely used in memory units, storage 
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devices, and data communication over noisy channels. 

Redundant Arrays of Independent Disks (RAIDs) are other 

well-known examples of information redundancy at a 

higher level than individual data words which have 

different organizations. Also, the replication technique is a 

well-known example of exploiting information redundancy 

to enhance reliability at the system level. In replication, 

identical copies of the data will be executed on multiple 

hardware.  

4)  SOFTWARE REDUNDANCY 

Software redundancy is the addition of extra software to 

give an output for a desired function to detect and tolerate 

faults (if possible). N version programming (NVP), 

checkpointing (CP), and recovery blocks are well-known 

techniques that fall into the software redundancy category 

[16]. In N version programming, the software module is 

designed and coded N times by separate groups of 

programmers and the results are compared. Therefore, 

when N different programmers implement a specific 

software the likelihood of occurring the same mistake in all 

modules will be decreased. In the checkpointing technique, 

the last fault-free state of the faulty process is stored in 

advance in the stable memory. Whenever a fault occurs, the 

system rolls back to the last correct checkpoint and re-

executes the application part that is executed in the last 

checkpoint duration [16][17].  

It is worthy to mention that regarding existing 

redundancy types (hardware, software, information, and 

time) there is another classification known as spatial and 

temporal redundancies, in which temporal and spatial are 

analogous to hardware and time redundancy, respectively. 

However, information and software redundancies are a mix 

of spatial and temporal [23].  

Fault-tolerance techniques can be classified into three 

broad categories based on exploited redundancy types 

including: i) hardware-based, ii) software-based, and iii) 

hybrid techniques [24].  

Hardware-based techniques add extra hardware modules 

which changes the original architecture of the system or its 

components. Therefore, such techniques must be 

implemented during the design of the system. Hardware-

based techniques have two main groups including 

redundancy-based, and hardware monitors. The first group 

relies on hardware or time redundancy, while the second 

group adds special hardware modules to the system’s 

architecture to monitor the control flow of the programs 

inside the processors and memory accesses performed by 

them such as watchdog processors [25], checkers [26] or 

Infrastructure Intellectual Properties (I-IP) [27]. Hardware-

based techniques have a high cost, verification and testing 

time, and area overhead which leads to higher power 

consumption as well. 

Software-based techniques exploit the concepts of 

software, time, and information redundancies to detect 

faults during the execution of the program. Software-based 

techniques are divided into two groups: i) data flow 

checking techniques, which consider the faults in the data 

structures of the processor, such as variables, registers, and 

the data memory. These faults may lead to calculate an 

incorrect result, but they do not change the program flow. 

Error Detection by Data Diversity and Duplicated 

Instructions (ED4I) [28], the transformation technique 

proposed in [29], and Variables 1 (VAR1), Variables 2 

(VAR2), and Variables 3 (VAR3) [30] are the techniques 

that exploit information and software redundancies. ii) 

Control flow checking techniques, which deviate from the 

normal program flow and lead to an infinite loop in a 

subroutine or instruction. In the software-based techniques 

since there is no need to modify the hardware, they provide 

more flexibility, and low cost, and development time. 

However, the performance degradation is the main 

drawback, because extra instructions will be executed by 

the processor, which slows the overall application runtime, 

and increases the memory overhead.  

Hybrid techniques are a combination of hardware-based 

and software-based techniques. Hybrid techniques have low 

development time and low area overheads (from the 

software-based techniques perspective), and low-

performance degradation (from the hardware-based 

techniques perspective). However, they need the 

application source code, which is not always available, and 

require changes, at least, in the system’s architecture. The 

studies in [27][32][33] are the example of hybrid fault-

tolerance techniques in embedded systems. For example, 

the studies in [31][32] have proposed hardening 

infrastructure offers the techniques called SWIFT-R, as a 

software-based technique, and selective TMR as a 

hardware-based technique.  

Fault-tolerance techniques can be applied at different 

levels of implementation, starting from the software level 

down to the architecture description level, the logical and 

transistor level, until the layout level. Regarding fault-

tolerance techniques which are applied at a lower level such 

as Moore-Shannon’s hammock networks which means that 

by replacing all transistors in a chip with hammock 

networks of transistors, the reliability will be enhanced 

while power consumption stays the same [34]-[37], in this 

survey paper, we have considered system-level fault-

tolerance techniques,  which have negative effects on the 

timing, power/energy, and temperature constraints of the 

system.  

In the following, we present the three categories of the 

mapping/scheduling policies of fault-tolerance systems 

according to our classification (Figure 2). It is worthy to 

mention that in all categories timing constraints are 

considered as an important design metric. In the first 

classification (Section III), fault-tolerance techniques that 

only consider timing constraints as design metric is studied. 

In the second classification (Section IV), fault-tolerance 

techniques that consider power/energy management besides 

timing constraints are studied. All of the methods that are 

investigated in Section III and Section IV have ignored the 

effects of elevated temperature caused by the power density 

on the system. Therefore, thermal management to avoid 
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temperature-induced failures is also a significant research 

issue especially for real-time embedded systems with 

timing constraints and limited cooling techniques. As far as 

we know, little investigation has been conducted in the 

literature on thermal management for fault-tolerance real-

time embedded systems. Therefore, finally, in the third 

classification (Section V) fault-tolerance techniques that 

consider temperature constraints besides timing constraints 

are studied. In all three classifications, state-of-the-arts are 

described based on exploited fault-tolerance techniques in 

detail including describing the exploited application model, 

architecture model, energy management techniques, goals, 

and constraints.  

III. TIMING-AWARE FAULT-TOLERANCE TECHNIQUES WITHOUT 

CONSIDERING POWER, ENERGY, AND TEMPERATURE 

The proposed mapping/scheduling policies in this category 

(summarized in Table 1) focus only on satisfying timing, 

and reliability constraints. However, exploiting fault-

tolerance techniques will increase the power/energy and 

temperature which are not considered in the proposed 

methods in this category. Furthermore, we classify these 

techniques into sub-categories according to their employed 

fault-tolerance technique.  

A. Standby-Sparing (SS) and Primary/Backup (P/B) 

The problem of fixed-priority preemptive scheduling for a set 

of periodic hard real-time tasks has been proposed in [38], 

where each task has primary and backup versions. The 

primary version is more complex and has more functions that 

produce results with good quality, but its execution is more 

susceptible to faults because of its high level of complexity 

and resource usage. By contrast, the backup version is 

simpler and contains the minimum required functions, which 

produces acceptable results with lower precision. The 

proposed scheduling algorithm satisfies the timeliness of the 

primary and backup versions of each task, while attempts to 

complete as many primary tasks as possible. If the primary 

fails due to missing timing constraints or fault occurrence or 

when the latest time to start execution of the backup without 

missing the corresponding task deadline is reached, the 

backup will be executed. The experimental evaluations are 

based on simulation, and the real-world platform and 

application models are not used. 

Kim et al. [39] have presented R-BATCH (Reliable 

Binpacking Algorithm for Tasks with Cold standby and Hot 

standby) scheme. Based on the required recovery time for 

tasks, it has considered hard recovery, soft recovery, and 

best-effort recovery tasks set. Then, it has introduced the idea 

of exploiting hot standby for hard recovery tasks, and cold 

standby for soft recovery and best-effort recovery tasks. They 

have proposed an allocation method, called Reliable Best-Fit 

Decreasing (R-BFD), for hot standby replicas which 

allocates active replicas such that the primary task and its 

corresponding active replicas are not assigned to the same 

processor. The proposed R-BATCH algorithm reduces the 

number of required replicas in comparison to R-BFD through 

considering cold standbys (passive replicas) which are 

activated whenever a fault occurs. The evaluation results 

demonstrate a significant improvement in the performance; 

however, the proposed method does not consider the impact 

of redundancy in the energy/power consumption of the 

Table 1. Summary of timing-aware fault-tolerance techniques without considering power, energy, and temperature in real-time 
embedded systems. 

Ref. Application Model Architecture Model Fault-Tolerant Technique Goals/Constraints 

[38] Periodic Dual-core 

Standby-Sparing (SS), 

Primary/Backup (P/B) 

Timing/Reliability 

[39][40] Periodic Homogeneous Multi-core Timing/Reliability 

[41] Aperiodic Homogeneous Multi-core Timing/Reliability 

[42][43] Periodic Homogeneous Multi-core Timing/Reliability/Performance 

[44] Multi-DAG Homogeneous Multi-core 

Replication 

Timing/Reliability 

[45] Periodic Heterogeneous Multi-core Timing/Reliability 

[46][47] Periodic Homogeneous Multi-core Timing/Reliability 

[48] Periodic/Sporadic Single-core, Heterogeneous Multi-core 

Checkpointing (CP) 

Timing/Reliability 

[49] Single task Single-core Latency/Reliability 

[50] Periodic/Sporadic Single-core  Timing/Reliability 

[51] Task-graph Homogeneous Manycore N Version  
Programming (NVP) 

Reliability/Performance 

[52] Periodic Homogeneous Multi-core Tuning/ Reliability 

[53] Frame-based DAG Single-core  

Re-execution 

Timing/Utility/Reliability 

[54] DAG Single-core, Multi-core Timing/Reliability 

[55] Periodic Homogeneous Multi-core Timing/Reliability/QoS/Utilization 

[56][57] Periodic/Sporadic Single-core  Timing/Reliability 

[58] Sporadic Single-core, Multi-core  Timing/Reliability/QoS 

[59] Frame-based Single-core  Timing/Reliability 

[60] Multi DAG Homogeneous Multi-core Replication, Re-execution Timing/Reliability 

[61] DAG Heterogeneous Multi-core Replication, Re-execution Timing/Reliability 

[62] Periodic DAG Heterogeneous Multi-core Replication, CP Timing/# checkpoints/Mapping 

[63] Sporadic Single-core, Homo. Multi-core  DMR, TMR, Replication Timing/Reliability/QoS 
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embedded system. Also, the evaluations are based on random 

task generation.  

Kim et al. [40] have proposed a System-level Architecture 

for Failure Evasion in hard Real-time applications (SAFER) 

which observes the state and information of each task and 

whenever a failure is detected, using their fault detection 

method, SAFER reconfigures the system to maintain the 

functionality of the whole system.  The SAFER proposed an 

architecture that can detect both time-based and event-based 

failures in a distributed embedded real-time system with 

periodic tasks. Moreover, the proposed configuration is 

implemented on Linux and x86 hardware. However, the 

proposed architecture does not consider the power 

consumption overhead of the redundant units, and it just 

evaluates the timing overhead.  

A primary/backup online scheduling approach has been 

proposed in [41] that guarantees the reliability of the hard 

real-time system without increasing overhead and the need 

for extra hardware components. In the primary/backup 

approach, two identical versions for each task are scheduled 

on two different cores in a way they do not have any 

execution overlap. Hence, in the fault-free scenario, the 

overhead of the system is kept low; i.e., the backup version is 

executed whenever a fault is detected. Moreover, to 

efficiently map and schedule primary and backup versions on 

the cores, this paper has proposed two policies for 

homogenous multi-cores known as exhaustive search, and 

first found solution search (FFSS). All cores are checked 

through the exhaustive search for finding available slack 

times, then FFSS selects the best solution which schedules 

the primary version as soon as possible and the backup 

version as late as possible. However, FFSS determines the 

first suitable slot for the primary version and then for the first 

backup version without considering their positions within the 

schedule window. It has shown that FFSS reduces the 

computation complexity more than the exhaustive search. 

The scheduling approach in [41] with the FFSS policy 

achieves a significant improvement in the performance of 

periodic applications. However, the simulations do not 

consider real-world task sets and platforms. This proposed 

method attempts to execute primary tasks as soon as possible 

and the backup tasks as late as possible. Therefore, another 

missing subject in this proposed method is the impact of 

overlap minimization through the FFSS policy on the 

energy/power consumption of the system.  

The authors in [42] have proposed two fault-tolerance 

techniques by presenting fixed-priority-based scheduling 

algorithms. The first technique (called Tercos) terminates the 

execution of backup tasks whenever the corresponding 

primary tasks are completed successfully. Tercos reduces the 

scheduling lengths in the fault-free scenario to improve 

schedulability under executing portions of backup tasks. The 

second technique (called Debus) schedules backup tasks as 

late as possible while terminating backup tasks when their 

corresponding primary tasks are successfully completed, 

which will further minimize the schedule lengths to enhance 

schedulability performance. Indeed, Tercos is a passive way 

of eliminating redundancies of backup tasks, while Debus is 

a proactive method that defers the execution of backup tasks. 

The proposed schemes improve the performance of the 

distributed real-time embedded system while considering the 

reliability requirement. However, the proposed schemes do 

not discuss the impact of the overlap minimization through 

the proposed schemes in power/energy consumption and 

thermal violation. Moreover, the simulation results are based 

on random task set generation executing on the Pentium 4 

platform.  

The proposed method in [43] is a low overhead, semi-

partitioned, and optimal fair scheduling technique for the 

cold standby-sparing (CSS) technique. After detecting a 

permanent fault, the system boots up the spare core for 

operation. Hence, it can achieve significantly better resource 

usage and power efficiencies in comparison with hot 

standby-sparing. However, similar to any cold standby-

sparing based scheme, it must also deal with a recovery 

period subsequent to a fault, when one less core resource is 

available. The proposed method distributes the slack times of 

jobs and minimizes the job terminations and rejections in the 

recovery phase to maximize the performance of the system. 

The FT-FS proposed method in [43] evaluates the 

performance of the CSS proposed technique and its timing 

overhead in periodic real-time task sets. However, it does not 

consider the power/energy constraint for safety-critical 

applications. Moreover, the evaluations are based on 

simulation. 

B. Replication 

The authors in [44] have proposed a framework for taking 

into account the replicated hard real-time tasks in 

scheduling algorithms that are largely independent of the 

replication technique (e.g., active, passive, and semi-active 

replication). They have presented that the way fault-

tolerance tasks are integrated into scheduling algorithms 

depends neither on the type of replication strategy nor on its 

parameters such as replication level, replication granularity, 

and replicas’ location. They have shown that different 

replication techniques can be exploited and integrated into a 

unified scheduling algorithm. The study in [45] has 

considered only two replicas for each hard real-time task 

and solved the problem of mapping tasks to a 

heterogeneous platform in a way that guarantees timing 

requirements while core failures can be tolerated. In order 

to solve the task partitioning problem with timing and 

replication constraints, it has developed a fully polynomial-

time approximation scheme. Chen et al. [46] have 

replicated each hard real-time task on different K 

processors, where K is a user-defined integer for improving 

system reliability. Tasks on each processor are scheduled 

with EDF scheduling. They have presented an 

approximation algorithm, with a 2-approximation ratio, to 

minimize the maximum utilization in a system with a 
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certain number of processors. The proposed approach is 

then extended to a polynomial-time approximation scheme. 

Moreover, in order to minimize the required number of 

processors for feasible scheduling, they have proposed an 

asymptotic polynomial-time approximation scheme. The 

proposed methods in [45] and [46] did not contain any 

practical comparison with other approaches. The work in 

[47] has considered the problem of maximizing the number 

of tasks which are successfully assigned to a homogeneous 

distributed multiprocessor system where the replicas 

corresponding to the same task are assigned to different 

processors, and all assigned tasks meet their timing 

constraints. They have proposed the greedy and 

polynomial-time approximation algorithms for solving their 

problem. The effectiveness of this proposed method is 

evaluated using synthetic generated applications, on a 

machine (Acer Extensa 5620) that consists of Core 2 Duo 

1.83 GHz CPU and 3GB main memory, where fix number 

of fault occurrence (k=3) should be tolerated. It should be 

noted that in [45][46][47] the overhead of communication 

is not considered. 

C. Checkpointing (CP) 

In the checkpointing technique, the last correct state of the 

faulty process is stored in the stable memory. Whenever a 

fault occurs, the system rolls back to the last correct 

checkpoint and recovers the faulty portion of the task in the 

last checkpoint duration [16][17]. Although checkpointing 

increases the execution time of the task in the fault-free 

scenario, it reduces recovery time when faults occur, since 

it is not required to re-execute the whole task from the 

beginning and only the faulty portion is required to be 

recovered. Note that in real-time systems the location of the 

checkpoints (intervals between checkpoints) or the size of 

recovery blocks is of great importance. If the size of 

recovery blocks is large, it will lead to bigger latency to 

detect the fault and recover it. On the other hand, if the size 

of the recovery block is small it will lead to higher 

overheads in fault-free scenarios. In this regard, the 

following research [48]-[50] are the example of exploiting 

checkpointing techniques in real-time embedded systems. 

A schedulability test for periodic/sporadic task sets has 

been proposed in [48], where the task set can be scheduled 

based on any fixed-priority preemptive scheduling under 

checkpointing fault-tolerance technique for single-core 

systems to tolerate transient faults. They claim that the 

results are applicable to distributed/multiprocessor systems 

where tasks are statically allocated to individual processors. 

The proposed checkpointing scheme is an optimal 

scheduling algorithm for deterministic hard real-time 

systems. It has implemented an optimization approach 

based on Tabu search that determines the processes 

assignment to the heterogeneous nodes, and the assignment 

of fault-tolerance techniques to processes. The work in [49] 

has presented a non-uniform checkpointing scheme for soft 

real-time applications, which is based on a static non-

uniform checkpoint placement that asymmetrically stores 

the processor states. This work supports the non-zero error 

detection latency. It tries to reduce error recovery latency 

and the number of checkpoints in order to increase the 

probability of timely task completion. The proposed 

method in micro architecture-level is implemented on the 

VHDL model of LEON2 32 bit processor, which is 

extended by adding an extra unit, called RUC (Recovery 

Unit Controller). RUC has been connected to the execution 

unit, registers file, and data cache memory. To carry out the 

experiments to evaluate the effectiveness of the proposed 

method, four benchmarks including bitcount, basicmath, 

bubble sort, and matrix multiply from MiBench suit are 

selected. Zhengyong et al. [50] have provided a scheduling 

analysis to deal with the burst fault model and determine 

the optimal number of checkpoints for hard real-time tasks 

to minimize the worst-case execution time of tasks in 

presence of faults. The tasks can be scheduled based on a 

fixed-priority algorithm such as rate monotonic or deadline 

monotonic scheduling algorithm, which assigns different 

priorities to each task. The burst fault model defines 

processes that can cause random faults over a short period 

of time. Moreover, it has exploited task reallocation to deal 

with permanent faults. The applicability of the proposed 

approach is evaluated by generating synthetic task sets.  

It is worthy to mention that the aforementioned proposed 

methods did not consider the effect of checkpointing on the 

power/energy consumption of the system. 

D. N Version Programming (NVP) 

A greedy task mapping, called dTune (dependability 

Tuning), has been proposed in [51] to improve the 

reliability of the multiprocessors considering, aging, 

process variation, and soft errors. This method efficiently 

selects suitable code versions using the knowledge of on-

chip process variation and performance variations due to 

aging effects at runtime. The authors consider reliability-

driven compiler results to determine the reliability of the 

different code versions of the applications. Moreover, they 

have developed a processor aging estimator, and considered 

the effects of process variations and aging. Since in a real-

world scenario, an on-chip many-core system is susceptible 

to multiple of such reliability threats and different cores 

may experience different performance variations and soft 

error rates, joint consideration of aging and process 

variations is important. In this paper, a many-core processor 

with N ISA-compatible homogenous RISC cores (e.g., a 5-

stage pipeline LEON3 embedded processor) is considered. 

Note that due to the design-time process variations or run-

time NBTI aging effects, heterogeneous w.r.t. their 

performance capabilities will be considered at runtime. The 

work in [52] has presented an enhanced redundancy 

technique for multi-core systems executing software 

replicas. It tries to recover permanent faults by introducing 

a new cost-efficient software diversity technique. For 

example, different compilers can be used to generate 

binaries for the same program that means different 

characteristics in the execution of the same calculations. 

The presented solution in this paper claims that its method 

independent of the type of processors. 
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E. Re-execution 

The study in [53] guarantees the timing constraints in the 

fault occurrences scenario for hard real-time tasks while 

maximizing the overall utility of soft real-time tasks. This 

method has two offline and online scheduling. Offline 

scheduling is not fault-tolerance and is pessimistic from the 

utility perspective. However, the online approach calculates 

a new schedule each time a process encounters a fault or 

completes without producing acceptable output. The 

proposed method synthesizes a set of schedules at the 

offline phase which is known as a quasi-static scheduling 

strategy. Then, in the online phase, based on the fault 

occurrence scenario, the correct schedule will be selected. 

Synthetic applications with a random number of processes 

are generated to evaluate the proposed method. It has been 

considered that the proposed method can tolerate three fault 

occurrences. The experiments have been run on a Pentium 

4 with 2.8 GHz processor with 1Gb of memory. The 

authors in [54] have proposed models to evaluate the effect 

of fault detection and recovery strategy on timing 

constraints by considering different fault models (such as 

single or multiple fault occurrence), task execution model, 

and hardware platform (such as several types of single-core, 

multi-core, and distributed platforms). In order to analyze 

the feasibility, it has exploited mixed-integer linear 

programming (MILP) for joint task allocation and 

scheduling with tolerance mechanisms under timing and 

fault tolerance constraints. Furthermore, it has presented a 

Monte Carlo based simulator to check fault coverage of the 

system and meeting timing constraints. The proposed 

approach is applied to the synthetic task sets (which are 

generated with TGFF tool) and industrial case study (which 

is derived from a subsystem of an experimental vehicle). 

The exploitation of re-execution fault-tolerance technique 

in mixed-criticality systems is presented in [55]-[59]. The 

proposed method in [55] is a mixed-criticality fault-

tolerance scheme that maximizes the utilization of the 

system while preserving the reliability at the guaranteed 

level. It exploits an optimization theory to find the proper 

slack windows for the execution of both critical and non-

critical tasks, which maximizes the utilization of each node 

while preventing overloads. For this purpose, the tasks are 

distributed to the nodes regarding minimizing the overhead 

of nodes, and the feasible scheduling avoids any 

interference between the execution of the critical and non-

critical tasks. Moreover, in each node, the Integer Linear 

Programming (ILP) aims for tasks to be executed based on 

their priority while reducing the execution cost, and 

guarantees the feasibility and reliability of tasks. In order to 

control the effect of a node failure, the alternate versions of 

certain critical tasks are scheduled on different cores. The 

study in [56] has proposed an exact feasibility test which is 

necessary and sufficient for a set of periodic tasks to 

tolerate faults on a single-core processor. The proposed 

feasibility test is applicable to any fixed-priority scheduling 

algorithm such as rate-monotonic or deadline-monotonic 

algorithms. They have considered multiple faults can occur 

on each task at any time, even during the recovery process. 

The proposed feasibility test can tolerate the maximum 

number of faults that can occur at any time interval. The 

work in [57] has proposed a new model for mixed-

criticality systems from the perspective of fault tolerance, in 

a single-core processor. It has first scheduled the primary 

task, and if the primary task encounters a fault, the backups 

are dispatched one by one until the correct output is 

reached. It has also derived a sufficient schedulability test 

for a fixed-priority scheduling algorithm that guarantees 

meeting all deadlines even if backups are executed to 

recover from faults. The efficiency of the proposed method 

is examined through synthetically generated task sets. The 

study in [58] addresses overrun and fault occurrence with 

separate operational modes in a single-core and multi-core 

processor while executing as many low-criticality tasks as 

possible in each system operational mode. The experiments 

are conducted based on synthetically generated tasks’ set. 

An approach to increase the lifetime of mixed-criticality 

systems while satisfying the timing and safety requirements 

has been presented in [59]. This work has considered 

transient and permanent faults that are caused by thermal 

cycling. Moreover, it has presented two MILP-based 

methods to solve the scheduling problem and a time-

efficient CEM-based (cross-entropy method) heuristic for 

maximizing the lifetime of the system. Simulations are 

carried out based on the synthetic generated benchmarks, 

and real-world benchmarks. A random task generator is 

used to produce multiple synthetic benchmarks (i.e., task 

sets). Moreover, five real-world benchmarks from flight 

management systems are tested. The Alpha 21264 

processor (with complete power and thermal models) is 

exploited as the hardware platform. 

F. Combination of Several Fault-Tolerance Techniques 

The work in [60] has considered the problem of analysis 

and optimization of fault-tolerance hard real-time task 

scheduling for multiprocessor embedded systems. In order 

to compute the system-level reliability, a Binary Tree 

Analysis (BTA) in the presence of re-execution and 

hardware replication techniques is proposed. By integrating 

the analysis with optimization based on the Multi-Objective 

Evolutionary Algorithm (MOEA), the feasible schedules 

under reliability, resource, and timing constraints are 

synthesized. Tasks’ mapping to processors, the assignment 

of the fault-tolerance policy, and tasks’ scheduling are the 

output of the optimization algorithm. They have considered 

an application as the functionality of the system that 

consists of a set of independent jobs, each given as a 

directed acyclic graph. In this paper, multi-processor 

systems are considered. In multi-processor systems, if two 

dependent tasks are mapped to different processors, a 

message must be scheduled for data transfer between 

processors. Hence, the latency of message transfer is also 

considered. The study in [61] has developed analysis and 

optimization techniques that consider imperfect fault 

detection and distinguishes detectable and undetectable 

faults in the overall workflow. It exploits both temporal and 
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spatial redundancies in hard real-time systems. In addition, 

it has proposed an approach based on the multi-objective 

evolutionary algorithm (MOEA) for reliability-aware 

design optimization. The target architectures of [60] and 

[61] are heterogeneous multi-processor platforms consists 

of two types of Processing Elements (PEs), namely a RISC 

processor and a DSP with time-triggered communication. 

The communication between tasks is implemented with 

messages. Pop et al. [62] have considered hard real-time 

safety-critical systems which are scheduled based on static 

cyclic scheduling. The study in [63] has generalized the 

proposed model in [58] for mixed-criticality systems to 

support on-demand redundancy which exploits dual 

modular redundancy (DMR), TMR, and passive replication. 

Indeed, the proposed method improves the QoS of low-

criticality tasks. The effectiveness of the proposed idea is 

evaluated using synthetic generated applications. 

IV. POWER/ENERGY-AWARE FAULT-TOLERANCE TECHNIQUES  

In this section, proposed mapping/scheduling techniques 

are categorized based on their employed fault-tolerance 

technique. Table 2 shows an overview of the proposed 

approaches which consider power/energy in designing 

fault-tolerance real-time embedded systems. 

A. Standby-Sparing (SS) and Primary/Backup (P/B) 

An application-level fault-tolerance (ALFT) approach has 

been proposed by Unsal et.al [64] to evaluate the energy 

efficiency and fault-tolerance technique simultaneously in 

hard real-time systems. The ALFT employs a primary and 

secondary approach (to tolerate one permanent fault) and 

tries to complete the execution of the primary task as soon 

as possible, and delay the execution of the secondary task to 

diminish the execution overlap between the primary and 

secondary tasks. In this regard, the ALFT heuristic uses an 

energy-efficient Earliest Deadline First (EDF) and Shortest 

Execution-time First (SEF) scheduling algorithms and 

evaluates the efficiency of each approach to achieve an 

energy-efficient fault-tolerance technique. Although the 

proposed method attempts to reduce energy consumption 

by eliminating the overlap between the execution of the 

primary and backup tasks, however, it does not employ a 

power/energy management technique (e.g., DVFS). 

Moreover, due to not considering the peak power 

constraint, it may face temperature violation. It should be 

noted that the proposed method is a software-level 

approach, which does not need any hardware modification. 

The effectiveness of the proposed method is evaluated 

through generating random tasks. Although, it does not 

consider any real-world platform for evaluations. In order 

to minimize the energy of standby-sparing, Ejlali et al. [65] 

have applied DPM on the backup core, and dynamic 

voltage scaling (DVS) on the primary core. This study has 

shown the negative impact of the DVS technique on 

reliability. Hence, it proposed an analytical approach to 

assign the proper supply voltage value of the primary core 

at runtime to reduce energy consumption by exploiting 

dynamic slack times and meets the reliability target. The 

presented method in [66] is an online energy management 

technique for a standby-sparing system that considers the 

overheads of activation and voltage transition forced by 

DPM and DVS techniques, respectively. Moreover, the 

energy manager is considered as a task and its overhead is 

computed. Indeed, this method exploits dynamic released 

slack times at runtime to reduce energy consumption while 

guaranteeing timing constraints. The proposed methods in 

[65] and [63] exploit RTEMS real-time operating system in 

the ARM7TDMI-based system and select the tasks from the 

MiBench benchmark suite for evaluation. 

The study in [67] has considered the effect of frequency 

scaling on the fault arrival rates. Therefore, they have 

proposed the enhanced primary/backup model, where 

accounts for the loss of reliability due to frequency scaling 

by scheduling additional copies of tasks. In this approach, 

the switch to a lower frequency is committed only if the 

available slack is large enough to accommodate the 

additional copies required to retain the original reliability 

provided before frequency scaling. Due to the iterative 

selection of proper frequency for the execution of the tasks, 

time overhead and probability of failure will be increased. 

Moreover, reducing the energy/power consumption without 

consideration of peak power constraints faces thermal 

violation. The proposed method considers the Intel Xscale 

and Transmeta Crusoe processors for the evaluation of the 

proposed method in a homogeneous and heterogeneous 

system. Nevertheless, the task sets are generated 

synthetically, and execution times are assumed to have a 

normal probability distribution function. 

The study in [68] has proposed two energy-aware fault-

tolerance scheduling algorithms based on a primary-backup 

approach called “Fault-tolerant Energy Efficient task 

scheduling with Delayed and Overloaded backups (FEED-

O)”, and “FEEDO with Dynamic-deferring (FEED-OD)”. 

Primary tasks will be executed on a DVS-enabled 

processor, while the backup copies are scheduled on the 

auxiliary processor with DPM for reducing energy 

consumption. It has proposed the overloading of backup 

jobs and analyzed it for reducing the energy consumption of 

scheduling periodic task-sets with rate monotonic 

scheduling. Indeed, in order to ensure that all backup jobs 

will not be executed at runtime on an auxiliary processor, 

they are scheduled in an overlapped time interval, which is 

called backup-overloading. If overloading of backup jobs 

on an auxiliary processor is done, then it may further 

enhance energy saving by deferring the start time of backup 

copies. 

Paired-Standby-Sparing (Paired-SS) and Generalized-

Standby-Sparing (Generalized-SS) have been proposed in 

[69] and [70]. In the Paired-SS method, cores are divided 

into pairs, and the standby-sparing method is applied to 

each pair. On the other hand, the Generalized-SS divides 

the cores into two categories, primary and secondary cores. 

The primary tasks are executed in the primary cores under 

partitioned-EDF and the DVFS technique. The backup 
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tasks are executed in secondary cores under partitioned-

EDL with the DPM mechanism. The Preference-Oriented 

Earliest Deadline (POED) scheduler has been studied, and 

experimental results have shown that POED-based methods 

perform better than SS-based methods in terms of energy, 

especially for high-loaded systems. A low-energy task 

scheduling algorithm that employs the adaptive dual-queue 

mechanism to postpone backup tasks’ execution has been 

introduced in [71]. The primary tasks are scheduled by the 

EDF algorithm to minimize execution overlap between 

primary and backup tasks. The studies in [66], [70], and 

[71] employ a discrete event simulator. Therefore, there is 

not any consideration for the platform model, and the 

evaluations ignore some system overheads. 

The standby-sparing technique is exploited by Roy et al. 

[72] to tolerate both permanent and transient faults for 

heterogeneous multi-core systems, where the platform 

includes high-performance (HP) and low-power (LP) cores. 

The proposed method in [72] determines the proper type of 

cores for primary and backup tasks to minimize energy 

consumption. To further reduce energy consumption, the 

primary core uses DVFS (the proper frequency level for the 

primary core is determined), while the spare one employs 

DPM. The proposed method considers an ARM 

big.LITTLE heterogeneous platform. However, in order to 

evaluate the effectiveness of the proposed method task sets 

are generated randomly. Therefore, the impact of system 

configuration on the tasks’ specifications is not considered. 

A shared resource standby-sparing scheme to preserve 

the original reliability for the dynamic-priority real-time 

task has been presented in [73], which schedules tasks 

according to the Earliest Deadline First/Dynamic Deadline 

Modification (EDF/DDM) policy. Moreover, primary and 

backup tasks can be executed at a uniform speed. In 

addition, it exploits the mixed mapping partitioning 

method, in which the tasks need to access the shared 

resources are assigned to the primary cores, and other tasks 

are assigned to the spare cores. Moreover, to save energy, 

DVS and DPM techniques are applied to both primary and 

backup tasks.  

Ansari et al. [74] have proposed a method that uses the 

standby-sparing technique for periodic real-time tasks to 

satisfy the Thermal Design Power (TDP) constraint. In this 

method, the primary and backup cores exploit peak-power-

aware EDF, and peak-power-aware EDL policies, 

respectively. In order to reduce the peak power 

consumption, the proposed method delays the execution of 

backup tasks as much as possible and tries to cancel the 

execution overlap of backup tasks. It exploits gem5 and 

McPAT simulators to evaluate the proposed method. 

Moreover, tasks are selected from MiBench benchmark 

suite in an ARM-based system. 

The work in [75] has proposed two schemes (known as 

MC-2S and MC-4S) to tolerate permanent faults through 

applying the standby-sparing technique with low energy 

overhead in mixed-criticality systems. In both schemes, two 

copies of each high-criticality task are scheduled on 

different cores to guarantee their timeliness in case of 

permanent fault occurrence. In order to guarantee the 

quality of service of low-criticality tasks, in case of 

permanent fault or overrun occurrence two different 

strategies are proposed. In the MC-2S scheme, sufficient 

slack time is reserved to schedule a backup task for each 

low criticality task on an alternative core. However, the 

MC-4S scheme exploits semi-partitioned scheduling in 

which the low-criticality tasks migrate to other cores. The 

schedulability analysis to guarantee the timeliness, and QoS 

in the proposed algorithm along with the reliability-aware 

DVFS method is approved through demand bound function 

analysis. Due to lack of benchmark for mixed-criticality 

systems, the studies in [72] exploit synthetic generated task 

sets for evaluation. The study in [76] has introduced a 

parallelism and reduction policy in every primary-backup 

pair of the multi-core platform to increase the quality of 

service (QoS) of low-criticality tasks in a mixed-criticality 

system. It also minimizes the energy consumption through 

convex optimization, and proposes a heuristic for energy 

reduction by reducing the execution time and overlap 

between primary and backup tasks. 

Ansari et al. [77] have proposed a peak-power-aware 

primary/backup scheme for frame-based soft real-time 

tasks. The proposed scheme removes the peak power 

overlaps of concurrently executing tasks to reduce the peak 

power consumption and meet the chip-level TDP 

constraint. To do this, the proposed method receives the 

tasks’ power profiles, and presents a task partitioning 

method, and two developed scheduling policies known as 

maximum-peak-power-first and maximum-peak-power-last 

to schedule primary and backup tasks, respectively. This 

method receives the power and performance information of 

LEON3 processor from a logic simulation. After that, a 

software-level simulation and fault injection are used to 

evaluate the proposed method with the MiBench 

benchmark task sets. 

B. Replication 

Assayad et al. [78] have proposed a heuristic-based 

scheduling algorithm considering three criteria: a) 

minimizing the length of the schedule in real-time systems, 

b) maximizing the reliability in dependable systems, and c) 

minimizing energy in autonomous systems. Their proposed 

method maximizes reliability through active replication and 

employs DVS to reduce power consumption. In this regard, 

the proposed scheduling algorithm divides the problem of 

simultaneous reliability improvement, power reduction, and 

minimum scheduling length into the reliability 

improvement and power minimization problem for each 

defined cell of the grid, and after that, the scheduling part 

reduces the scheduling length of the cell. The goal of [79] is 

to find the proper number of replicas, frequency 

assignment, and core allocation for each periodic hard-real 

time task at the offline phase to achieve the reliability target 

while minimizing the overall energy consumption of the 

system. At run-time, they find the first copy of tasks that 

have been completed successfully and cancel the execution 
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of their other replicas to achieve even more energy saving. 

Note that the proposed system supports core-level DVFS to 

further reduce energy consumption. 

Spasic et al. [80] have proposed a polynomial-time 

solution approach which efficiently maps and schedule hard 

real-time streaming applications onto clustered 

heterogeneous MPSoCs such that the required throughput is 

satisfied and the energy consumption is minimized through 

per-cluster voltage frequency scaling (VFS). Moreover, it 

determines the required number of replicas for each task in 

a graph, and balance the distribution of the tasks on the 

same type of processors, to reduce the energy consumption 

through running processors at lower voltage and frequency 

levels. Tasks are scheduled based on EDF policy. The 

experiments were performed on the real-life applications 

from the StreamIt benchmarks suit.  

 The study in [81] shows how task replication can be 

exploited to satisfy a given task-level reliability target that 

is expressed in terms of tolerating transient faults. 

Moreover, the fault coverage factor of the fault detection 

techniques is taken into account. By considering the 

negative effect of DVFS on the rate of transient fault, it has 

presented a technique to compute the number of replicas 

and the frequency assignment for each task while 

minimizing the overall energy of the hard real-time system. 

Moreover, in order to reduce the execution overlap between 

the primary task and its corresponding replica(s) it has 

developed a static solution and dynamic adaptation. In 

order to evaluate the effectiveness of the proposed method 

synthetic tasks set based on UUnifast algorithm are 

generated and executed on 4- to 12-core processors. 

The authors in [82] aim to propose energy-efficient 

scheduling by considering a reliability target (known as 

ESRG algorithm) to minimize the energy consumption 

while meeting the reliability target for the parallel 

applications. Moreover, they further proposed energy-

efficient fault-tolerance scheduling with a reliability goal 

method (known as EFSRG) to minimize the energy 

consumption while meeting the reliability target based on 

an active replication scheme when the application’s 

reliability target is unreachable. Both proposed methods are 

solved through three steps: i) Prioritizing tasks: Prioritizing 

tasks problem is an important problem for DAG list 

scheduling on heterogeneous distributed systems. Among 

existing prioritizing task schemes, this paper considers the 

descending order of upward rank value of tasks as the 

criterion for DAG list scheduling, because it has been 

widely used in energy-efficient and reliability-aware 

scheduling. ii) Satisfying reliability goals: The reliability 

value of an application is the product of the reliability value 

of each task. Therefore, if the reliability of all tasks exceeds 

the reliability target, then the reliability value of the 

application must exceed its reliability goal. iii) Reducing 

energy consumption: Each task only selects the processor 

and frequency combination with the minimum dynamic 

energy consumption while satisfying its reliability target. 

 The LETR-MC scheme has been proposed in [83] that 

satisfies timing, energy, reliability, and service level 

constraints in mixed-criticality multi-core systems. The task 

replication is employed to satisfy reliability requirements 

and enhance the QoS of low-criticality tasks in the overrun 

operational mode of the system. The proposed scheme 

computes the minimum number of replicas for each high-

criticality task to meet the reliability target.  It has 

developed a unified demand bound function analysis to 

check the schedulability and applying DVFS for energy 

reduction. Tasks can be assigned based on worst-fit, best-

fit, or first-fit bin packing strategy, and they are scheduled 

based on proposed ER-POED (ER-Preference-Oriented 

Earliest-Deadline first) scheduling algorithm on multi-cores. 

Saber-Latibari et al. [84] have proposed a mapping and 

scheduling method by employing task replication 

mechanism for a task-graph model of applications in 

heterogeneous multi-core systems. The hardware 

configuration of this work is a processor with two 

heterogeneous islands which execute a different number of 

tasks. The cores on the high-performance island are 

considered to be Alpha21264 type, with lower execution 

time of tasks and higher reliability, while the cores on low 

power island are considered ARM Cortex-A15 with higher 

execution time of tasks and less power consumption. 

 Yeganeh-Khaksar et al. [85] have presented a novel 

mapping and scheduling method for the problem of 

achieving the desired reliability target that meets the chip-

level power constraint. In the proposed scheme, first, tasks 

are assigned based on reliability-aware lowest utilization 

policy, then, tasks are scheduled based on maximum-

power-aware EDF policy, and finally, the reliability-and-

peak-power-aware DVFS technique is employed for 

meeting TDP constraints. The effectiveness of the proposed 

method is evaluated based on an ARM processor with core-

level DVFS capability and there are 6 different 

frequency/voltage levels from [0.85Volt, 1GHz] to 

[1.1Volt, 2GHz] to reduce peak power consumption. 

As it can be seen in the mentioned related work, the 

works that consider the replication technique reduce power 

and energy consumption through applying DPM and DVFS 

in different types of platforms, but they did not discuss 

temperature issues. It is worthy to mention that inserting 

more replicas will increase the extra power consumption on 

the chip, and thereby on-chip temperatures might increase 

beyond safe limits. Therefore, in order to prevent thermal 

violations, it is indispensable to consider a temperature 

constraint for the task replications techniques. 

C. N Modular Redundancy (NMR) 

An Optimistic Triple Modular Redundancy (OTMR) 

scheme has been introduced in [86] which reduces the 

energy consumption of conventional TMR systems. In 

OTMR one of the processing units is turned off or slowed 

down, however, if the other two units encounter a fault, it 

should boot up and complete the computation before the 

timing constraint. The optimal frequency assignment for 

OTMR was discussed in [87]. The study in [87] has been 
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explored the optimal frequency setting to minimize the 

system energy consumption of the OTMR scheme and has 

been considered a single task within each frame. Indeed, it 

analytically compared the OTMR, conventional TMR, and 

classical DWC. It is worthy to mention that the studies in 

[86] and [87] don’t need any additional hardware 

modification, however, they need pre-defined 

synchronization points. Moreover, for the evaluation, they 

generate synthetic tasks set with an Intel Pentium3 

processor.  

The work in [88] has proposed an aging-aware adaptive 

fault-tolerance method called ANMR for DVFS-enabled 

Table 2. Summary of power/energy-aware fault-tolerance techniques in real-time embedded systems. 

Ref. 
Application 

 Model 

Architecture  

Model 

Fault-Tolerant  

Technique 
Goals/Constraints 

Energy 

Management  

Technique 

[64] Periodic Homogeneous Multi-core 

Standby-Sparing 

(SS),  

Primary/Backup 

(P/B) 

Energy/Timing/Reliability - 

[65][66] Frame-based Homogeneous Dual-core Energy/Timing/Reliability DVS, DPM 

[67] Periodic Homo. & Hetero. Dual-core Energy/Timing/Reliability DVS 

[68][69] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVS, DPM 

[70] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVFS, DPM 

[71] Periodic Homogeneous Dual-core Energy/Timing/Reliability DVS, DPM 

[72]  Frame-based Heterogeneous Dual-core Energy/Timing/Reliability DVFS, DPM 

[73] Periodic Homogeneous Dual-core Energy/Timing/Reliability DVS, DPM 

[74] Periodic Homogeneous Multi-core Energy/Timing/Reliability/Peak power DVFS, DPM 

[75] Periodic Homogeneous Multi-core Energy/Timing/Reliability/QoS DVFS 

[76] DAG Homogeneous Multi-core Energy/Timing/Reliability/QoS DVFS, DPM 

[77] Frame-based Homogeneous Multi-core Timing/ Reliability/Peak power DPM 

[78] DAG Homogeneous Multi-core 

Replication 

Energy/Timing/Reliability DVS 

[79] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVFS, DPM 

[80] DAG Homo. & Hetero. MPSoC Energy/Timing/Reliability/Throughput VFS 

[81] Periodic Homogeneous Multi-core Energy/Timing/Reliability DVS 

[82] DAG Heterogeneous Multi-core Energy/Timing/Reliability DVFS 

[83] Periodic Heterogeneous Multi-core Energy/Timing/Reliability/QoS DVFS, DPM 

[84] DAG Heterogeneous Multi-core Reliability/QoS/Power DFS, DPM 

[85] Periodic Homogenous Multi-core Energy/Timing/Reliability/TDP DVFS, DPM 

[86] Periodic Single-core 

N Modular  

Redundancy 
 (NMR) 

Energy/Timing/Reliability DVS, DPM 

[87] Frame-based Single-core  Energy/Timing/Reliability DVS, DPM 

[88]  Frame-based Homogeneous Multi-core Energy/ Timing/Reliability DVFS 

[89] Frame-based Homogeneous Multi-core Energy/ Timing/Reliability - 

[90] Frame-based Homogeneous Multi-core Energy/ Timing/Reliability DVFS, DPM 

[92] DAG Homogeneous Multi-core Energy/Timing/Reliability/TDP DVFS, DPM 

[91] DAG Homogeneous Multi-core Energy/ Timing/Reliability DVFS 

[93] DAG Homogeneous Multi-core Power/ Timing/Reliability DVFS 

[94] Periodic Single-core 

Checkpointing  

(CP) 

Energy/Timing/Reliability DVS 

[95] DAG Homogeneous Multi-core Energy/ Timing/Reliability DVS 

[96] Aperiodic Single-core  Energy/Timing/ Reliability DVS 

[97] Frame-based Homogeneous Multi-core Energy/Timing/Reliability DVFS 

[98] Periodic Single-core  Energy/Timing/Reliability DVS 

[99] Periodic Homogenous Multi-core Energy/Timing/Reliability DVS 

[100] Aperiodic  Single-core  Energy/Timing/Reliability DVFS 

[101][102] Frame-based Homogenous Multi-core Energy/Performance/Timing/Reliability DVFS 

[103] Frame-based Single-core   Energy/Timing/Reliability - 

[104]-[106] Frame-based  Single-core  

Re-execution, 
Shared Recovery 

Energy/Timing/Reliability DVFS 

[107][108]  Periodic Single-core  Energy/Timing/Reliability DVFS 

[109] Frame-based Heterogeneous Multi-core Energy/Timing/Reliability DVFS 

[110][111] DAG Heterogeneous Multi-core Energy/Timing/Reliability DVS 

[112] Multiple DAG Homogeneous Multi-core Energy/Timing/Reliability DVFS 

[113] Frame-based Homogeneous Multi-core Energy/Timing/Reliability DVFS 

[114] DAG Heterogenous Multi-core 
 Replication,  

Re-execution 
Energy/Timing/Reliability - 

[115]  DAG Homogeneous Multi-core P/B, CP Energy/Timing/Reliability DVFS 
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multi-core embedded systems. The ANMR assumes that 

applications in a system or functions of the same 

application may have different vulnerability levels, and 

consequently, their reliability levels are different. ANMR 

determines the generated slack time when the current 

frequencies of some cores change from scaled value to 

maximum one. It checks whether generated slacks are 

enough to execute the redundant copies of the critical task 

in parallel with the main one. The selection of cores for 

mapping tasks is combined with the DVFS technique such 

that the energy consumption of the system is kept near its 

original value. In this way, it needs additional hardware to 

keep the history table. The effectiveness of the proposed 

method is evaluated based on real-world applications from 

the ParMiBench suite with LEON3 processor. The study in 

[89] has presented a low-energy NMR based on 

approximate computing. Redundant tasks are executed 

based on approximately reduced execution time and energy 

consumption. Therefore, in addition to increasing the 

reliability of a system, instead of exploiting N cores in 

traditional NMR, only k cores are deployed, where k<N. 

However, it needs special software for comparison. The 

effectiveness of the proposed method is evaluated based on  

AxBench and MiBench benchmark suites running on 

ARM7-based homogenous processors. The energy-budget-

aware reliability management (enBudRM) scheme with 

hybrid energy sources (consisting of renewable and non-

renewable energy sources) has been studied in [90]. In the 

offline phase, the battery is the only energy source of the 

system and, based on the available budget of energy and 

static slack time, voltage-frequency levels are determined 

and tasks are scheduled. In the online phase, to increase the 

system lifetime, released dynamic slack times are used to 

further energy saving. To compensate for the reliability loss 

of DVFS, an energy harvester is considered along with the 

battery to enable executing more task replicas.  

The technique has been proposed in [91] to execute the 

hard real-time tasks based on the NMR technique in the 

indispensable and on-demand phases. In this work, the 

system starts execution in the indispensable phase. If a task 

has no faults during the indispensable phase, the time which 

is reserved in advance for its corresponding copies to 

execute in the on-demand phase is released to employ for 

significantly reducing power and energy. It exploits 

MiBench benchmark suite with Intel PXA270 processor to 

evaluate the effectiveness of the proposed method. Ansari 

et al. [92] have developed a scheduling algorithm based on 

the peak-power-aware longest task first policy to prevent 

overlaps of the concurrently executing tasks to meet the 

TDP constraint. To reduce the instantaneous power 

dissipation the DVFS technique is applied on each core. To 

further reduce the power in the realistic scenario the task 

cancelation scheme is employed. The proposed method is 

evaluated based on MiBench benchmark suite with ARM7 

processor. The study in [93] has presented a power-efficient 

reliability management technique which exploits DMR and 

TMR techniques operating in different voltage and 

frequency levels. It also considers diversities in execution 

time properties, software vulnerability, and process 

variations in hardware.  

Finally, it should be noted that all the mentioned 

approaches did not consider thermal or peak-power 

constraints. Therefore, in scenarios that all cores will be 

activated simultaneously to execute tasks, the temperature 

constraints will be violated. 

D. Checkpointing (CP) 

Zhang et al. have studied checkpointing in [94], and [95]. 

The authors in [94] have presented a feasibility analysis for 

checkpointing schemes in fixed-priority hard real-time 

systems with constant and variable processor speeds. DVS 

is then applied based on the feasibility analysis. Important 

practical challenges such as fault occurrence during 

checkpointing, the overheads of accessing memory, 

rollback recovery, the energy of checkpointing, the energy 

of DVS, and context-switching are discussed in this paper. 

The Intel XScale PXA260, and the Transmeta Crusoe 

which are low-power embedded processors are selected for 

the experiments. The proposed schemes are evaluated based 

on three real-life task sets, including a CNC, an inertial 

navigation system (INS), and a generic aviation platform 

(GAP) task sets. Since the number of tasks for CNC and 

INS is relatively small, the simulation results for CNC and 

INS are obtained using the exhaustive search method. The 

simulation results for GAP are obtained using the heuristic 

method. The task execution times for these task sets are 

assumed for a nominal CPU frequency of 200 MHz.  

The study in [95] has developed schedulability tests for 

the checkpointing scheme in a DAG task model for a 

constant speed and DVS-enabled processor. It 

deterministically guarantees the timeliness of tasks even 

when transient faults occur. It considers that the system is 

composed of processing elements and all of them take 

checkpoints simultaneously under a global clock in a 

message-passing system. It also considers that at most k 

faults can occur in the system before the overall deadline of 

the graph. The goal of this paper is to find the distance 

between checkpoints and proper voltage assignment to each 

task for saving energy. The effectiveness of the proposed 

method is evaluated by executing E3S benchmark set on the 

AMD K6 processor. The benchmarks are based on the 

Embedded Microprocessor Benchmark Consortium 

(EEMBC) and include tasks in the application domains of 

automotive systems, telecommunications, and consumer 

electronics.  

The study in [96] has proposed two policies for 

checkpoint placement in aperiodic tasks and computed the 

optimal number of checkpoints from the energy 

consumption perspective in each proposed method. It 

exploits slacks in the schedule for applying the DVS 

technique to further reduce energy consumption while 

tolerating faults. It is assumed that one fault can occur 

during the execution of each task and the processor can 

scale its frequency in a continuous range. Simulation 

experiments are conducted using the Simple-Scalar 
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simulator by executing Li, Perl, Go, and Compress 

programs from the SPEC benchmarks. Zhu et al. [97] have 

investigated the effect of DVFS on the reliability of the 

system. Their evaluations have shown that the reliability of 

the system depends on the number of recoveries before the 

deadline of the applications. In order to analyze the effect 

of frequency and voltage scaling on fault rate, simulation-

based on Intel Pentium M processor with RAMBUS 

memory are conducted.  

Wei et al. [98][99] have studied energy management in 

the checkpointing technique. The quasi-static task 

scheduling for fixed-priority rate monotonic algorithm 

(RMA) has been proposed in [98], which is composed of 

offline and online phases. This paper aims at reducing 

energy by designing an efficient offline algorithm that can 

be adapted based on the runtime behavior of the system. It 

has proposed two offline energy management techniques 

known as application-level DVS where all the tasks share 

the same voltage level; and task-level DVS where each task 

is executed based on its voltage level. Moreover, the 

feasibility test of RMA algorithm is achieved through an 

exact timing analysis approach. The energy efficiency of 

the proposed scheduling algorithms in [98] is evaluated 

through simulation based on Transmeta Crusoe with 5 

voltage and frequency levels, and Intel XScale PXA260 

with 3 voltage and frequency levels processors. Moreover, 

two real-life task sets including Inertial Navigation System 

(INS), and Computer Numerical Control (CNC), are 

exploited for evaluation. The online overhead of the 

proposed schemes was also evaluated using a SimpleScalar-

based Intel XScale processor simulator. The study in [99] 

has proposed energy-efficient task allocation and 

scheduling schemes to minimize energy through the DVS 

technique and maximize performance in checkpointing 

strategy on hard real-time homogenous symmetric 

multiprocessor (SMP) systems. The proposed heuristic 

achieves energy saving by optimally balancing the 

application workload among processors in a system where 

processors have identical characteristics, and support 

continuous voltage scaling. The simulations were repeated 

for varying numbers of processors between two processors 

to eight processors. Tasks are generated randomly. 

The proposed method in [100] has considered the 

reliability of the system, application size, and fault rate in 

the proposed scheme to reduce energy consumption 

dynamically. In this scheme, the slack times are used to 

save energy without decreasing the reliability by scheduling 

an additional recovery task. Furthermore, the checkpointing 

technique is employed to use slack times more efficiently, 

especially in the case where the slack time is not enough for 

the recovery of a whole task. The evaluations are conducted 

based on randomly generated task sets. 

Han et al. have exploited the checkpointing technique in 

[101] and [102]. The study in [101] at first proposed an 

optimal checkpointing scheme that minimizes the worst-

case response time of tasks set on a single-core processor; 

that all tasks share the same reserved recovery. Then it 

allocates tasks to multiprocessors in a way the energy 

consumption is reduced. In this step, it shows that resource 

reservations on each processor for optimal checkpointing 

and exploiting slack time for applying DVFS are in contrast 

with each other, and solves this problem. The effectiveness 

of the proposed method is evaluated with randomly 

generated task sets. The study in [102] has proposed an 

energy-efficient method that solves the problem of 

simultaneous fault-tolerance and task mapping under the 

DVFS condition for periodic fixed-priority hard real-time 

tasks. It selects the proper number of checkpoints to check 

the schedulability of tasks and guarantees the fault 

tolerance of the system, then maps the tasks under DVFS 

and checkpointing conditions to minimize energy 

consumption. At first, the effect of the increasing number of 

tolerable faults, and the effect of increasing checkpointing 

overhead on the timing complexity of the proposed method 

is evaluated on a uniprocessor platform based on randomly 

generated task sets. Then the effectiveness of the proposed 

energy-saving algorithm is evaluated through simulations. 

A two-state checkpointing (TsCp) scheme has been 

proposed in [103], which considers two operational modes 

for the system; i.e., fault-free and faulty. It finds non-

uniform (non-equidistant) and uniform (equidistant) 

checkpoint intervals for fault-free and faulty states, 

respectively. In the offline phase, the optimized checkpoint 

intervals are computed for all fault occurrence scenarios. In 

the online phase according to the fault-occurrence scenario, 

the checkpoint intervals which are computed in the offline 

phase, are selected. From the beginning of the execution of 

a task, non-uniform checkpointing is used. As soon as the 

first fault occurs, the remaining execution time of the task 

will be executed based on uniform intervals. In order to 

minimize the number of checkpoints in fault-free states, 

checkpoint insertions are postponed as much as possible, 

however, enough recovery time for the faulty state is 

considered. In the faulty state, the optimal number of 

uniform checkpoints is computed based on [48]. 

Experimental evaluation of this method is conducted based 

on executing various real-life applications on a system-level 

simulator. Power and performance characteristics are 

obtained from LEON3 processor and an emerging NVM 

technology. The applications and processor characteristics 

were obtained through detailed ASIC synthesis and gate-

level simulations. The memory characteristics were 

obtained from the NVsim tool. 

E. Re-Execution 

The study in [104] has developed two polynomial-time 

heuristic schemes to solve the slack allocation problem for 

minimizing energy while preserving the reliability target. 

The proposed method in  [105] has exploited the shared 

recovery technique to minimize the energy while 

simultaneously satisfy the original reliability of the system. 

Indeed, in this method instead of allocating separate 

recovery to each task at the offline phase, a global or shared 

recovery block can be used by all tasks at the online phase. 

The presented method in [106] has formulated the 
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reliability-aware energy management problem for a set of 

frame-based task models as a nonlinear optimization 

problem and obtains the static optimal solution. Then, it has 

adjusted the task frequencies at runtime by detecting 

dynamic slacks through early completion of tasks, and 

proposed an online algorithm to improve the overall 

reliability. Moreover, the proposed solutions are extended 

to the periodic task model. 

A reliability-aware energy management technique has 

been presented in [107] for a set of periodic tasks which are 

scheduled based on EDF policy. In order to solve the 

problem, it has proposed two task-level heuristics. Then, it 

introduced a wrapper-task mechanism to monitor dynamic 

slacks at runtime and manage them efficiently through the 

job-level online scheme in a reliability-aware manner. 

Indeed, whenever recovery tasks/jobs are required for 

preserving reliability, they are scheduled dynamically at the 

task’s dispatch time. Otherwise, the remaining slack is 

exploited for energy savings. The study in [108] has 

proposed an approach based on dynamic allocating 

recoveries to achieve optional reliability levels for each 

periodic task, when employing DVFS. It has also developed 

a pseudo-polynomial time feasibility test for the proposed 

method. Qi et al. [109] have derived a reliability-aware 

global scheduling scheme to reduce the energy 

consumption for a frame-based task model. They have 

considered that different tasks can share the same reserved 

slack time to recover from faults. Then, in case of fault 

occurrence, the entire faulty task has to be re-executed. 

 Pop et al. [110] have presented a scheduling and energy 

management method for hard real-time tasks mapping on 

distributed heterogeneous embedded systems. It has 

proposed a constraint logic programming-based algorithm 

which can synthesis the fault-tolerance schedules for 

finding schedulable and reliable results within limited 

hardware and energy resources. An optimization scheme 

for joint reliability and energy management in DAG 

applications through adopting the shared recovery 

technique has been proposed in [111]. To solve the 

mentioned problem, this paper has proposed three 

algorithms that each of them consists of three steps: i) Task 

priority establishment phase, ii) Frequency selection phase, 

and iii) Processor assignment phase. Finally, the task 

recovery phase detects the transient fault and recovers the 

faulty task, to reach higher reliability with lower total 

energy. The work in [112] has considered a hybrid scheme 

at both design-time and run-time for reliable and low-

energy mapping and scheduling of dependent applications, 

in multi-core embedded systems with solar energy 

harvesting. Indeed, it cops with problems such as data 

dependencies in task graphs, an online variation of solar 

energy, transient faults, and execution times. It has 

proposed a flexible schedule at design time and after 

monitoring the runtime behavior of the system, the 

lightweight online adjustment mechanism is employed to 

adapt the task execution policy. The study in [113] has 

proposed two scheduling algorithms to improve system-

level soft-error reliability in conjunction with satisfying 

lifetime reliability and real-time requirements. If the 

remaining slack time is sufficient, it can guarantee to 

recover any faulty task through the dynamic recovery 

allocation technique. It has satisfied the lifetime reliability 

requirements by reducing core frequency for appropriate 

tasks. Hence, aging due to temperature and thermal cycling 

will be reduced. 

F. Combination of Several Fault-Tolerance Techniques 

Cia et al. [114] have presented a greedy heuristic-based 

method to reduce energy consumption in the heterogeneous 

distributed embedded systems. The proposed method 
exploits both task replication and re-execution techniques to 

tolerate faults and satisfies the deadline constraint while 

reducing energy consumption. In the proposed method, the 

initialization parts of the tasks are mapped based on the 

utilization of the cores and then will be executed based on 

the re-execution policy. Afterward, the greedy algorithm 

changes the mapping policy and fault-tolerance technique 

to meet the deadline constraints and reduces energy 

consumption. The study in [115] has proposed energy-

efficient fault-tolerance scheduling for a set of applications 

with precedence-constrained, which is based on list 

scheduling heuristics that satisfies the real-time constraints. 

V.  THERMAL-AWARE FAULT-TOLERANCE TECHNIQUES  

Due to the elevated on-chip temperatures, many research 

efforts have been made to control the power and the 

temperature of the multi-core chip at the system level, e.g., 

[124]-[129]. A large body of these techniques has enforced 

Table 3. Summary of temperature-aware fault-tolerance techniques in real-time embedded systems. 

Ref. 
Application 

 Model 

Architecture  

Model 

Fault-Tolerant  

Techniques 
Goals/Constraints 

Energy Management 

Technique 

[116] Frame-based Heterogeneous Multi-core Replication Timing/Reliability/Energy/Temperature - 

[117] Periodic Heterogeneous Multi-core  Replication Timing/Reliability/Energy/Temperature DVS, DPM 

[118] Frame-based Single-core Checkpointing Timing/Reliability/Energy /Temperature DVFS 

[119] DAG Homogeneous Multi-core NMR Timing/Reliability/Power/Temperature/QoS DVFS 

[120] DAG Heterogeneous Multi-core Cold Standby-Sparing Timing/Reliability/Power/Temperature/QoS DVFS, DPM 

[121] Periodic Heterogeneous Multi-core Replication, NVP Timing/Reliability/Power/Temperature DFS, DPM 
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temperature constraints within the task mapping decisions 

while aiming at maximizing the performance. For instance, 

a task mapping technique called DsRM for homogeneous 

multi-cores is introduced in [130], which selects the 

numbers and the positions of the active and inactive cores 

of each multi-threaded application, so that the temperature 

constrained is satisfied. For heterogeneous multi-cores, the 

technique proposed in [131] assigns the multi-threaded 

application to the tiles on the chip, and then maps their 

threads to the cores, while satisfying the thermally safe 

power density constraint. To cope with the concern of 

scalability with the continuous increase in the number of 

cores, a distributed thermal-constrained task mapping has 

been proposed in [132]. In addition to task mapping, task 

migration policies are proposed in [133] to improve the 

performance under the temperature constraint. However, all 

of these task mapping techniques do not enforce timing and 

reliability constraints. 

Another class of related works proposes mapping and 

scheduling techniques that consider both timing and 

temperature constraints, e.g., [21], [134]-[139]. The study 

in [134] has proposed two DTM techniques for cyber-

physical systems, where the thermal stress is evenly 

distributed temporally (on each core) and spatially (among 

cores). In order to balance the thermal related wear-out 

among cores, tasks will be reassigned among cores with 

recording their effect on the aging rate. The study in [135] 

has proposed a task assignment heuristic on heterogeneous 

platforms to minimize the dynamic energy consumption 

under timing constraints. The study in [136] estimates the 

temperature of the multi-core chip while considering the 

dynamic behavior of the system in real time. Tasks are 

partitioned and assigned to cores in a way that meets the 

timing constraints. Then, the proposed peak temperature 

manager is applied to each task partition based on a given 

scheduling algorithm. In order to avoid the thermal hotspots 

on a multi-core chip, the work in [137] has introduced a 

runtime thermal-aware scheduler based on power-gating 

and job-migration techniques. The study in [138] minimizes 

the energy consumption through applying DVS while at the 

same time meeting thermal constraints. The study in [139] 

has presented both power-aware and thermal-aware 

approaches for task allocating and scheduling in embedded 

systems.  

None of these works exploits fault-tolerance techniques 

to satisfy the reliability target. Just a few works (shown in 

Table 3) exploit fault-tolerance techniques and at the same 

time consider all of the three metrics; time, power, and 

temperature. In the following, these few works will be 

discussed and classified into sub-categories considering 

their adopted fault-tolerance techniques, similar to the 

previous sections. 

A. Replication 

The task assignment and scheduling technique have been 

introduced in [116] that uses a mixed-integer linear 

program (MLP) solver to optimize the makespan under 

time, reliability, and peak temperature constraints. 

Makespan is the latest completion time of all tasks on 

processors. Then a two-stage heuristic is proposed which 

first determines the task mapping and replication technique 

to minimize the makespan, and then it checks meeting the 

timeliness and temperature constraint of the system. Since it 

has considered the service-oriented systems, all the services 

(independent tasks) need to be finished before the deadline 

such that the QoS requirement of users can be satisfied. If 

the system’s temperature constraint is violated, it tries to 

reduce the peak temperature using two task sequencing and 

frequency scaling techniques. The effectiveness of the 

proposed method is evaluated through synthetic random 

generated tasks set and real-world multimedia applications. 

The reliability requirement of tasks to tolerate the transient 

faults is determined in the interval of [0.7, 0.999]. The 

simulated processor is modeled based on a prototype 

version of the ARM big.LITTLE chip containing 3 Cortex 

A7 cores and 2 Cortex A15 cores. 

The proposed technique in [117] has optimized energy 

consumption while satisfying timing, reliability, thermal 

design power (TDP), and thermal safe power (TSP) [123] 

constraints through convex optimization. The proposed 

optimizer maps and schedules periodic hard real-time tasks 

on different types of cores on heterogeneous multi-core 

embedded systems. The effectiveness of the optimal 

solution (YALMIP solver in MATLAB) is evaluated via 

simulating different task sets of the MiBench Benchmark 

suite running on ARM Cortex-A7 and Cortex-A15. It is 

worthy to mention that since the study in [117] exploits 

optimization, it is applicable for lower number of tasks. 

B. Checkpointing (CP) 

Zhou et al. [118] have introduced a stochastic energy-

efficient thermal- and reliability-aware task scheduling for 

real-time systems. Instead of exploiting the released slack 

times for energy reduction, in this paper the generated slack 

times are utilized for providing fault-tolerance, energy 

management, and reducing the temperature. First, the slack 

time is utilized to guarantee a certain level of reliability 

requirement in the presence of stochastic soft errors by 

calculating the optimum number of checkpoints for each 

task. Then it selects the voltage-frequency level of each 

task based on available slack time to reduce energy 

consumption. Finally, the temperature is reduced by 

utilizing the task sequencing technique, and remaining 

slack times. The thermal-aware task sequencing heuristic 

method shows that the execution order of a hot task and a 

cool task has an important effect on the peak temperature. It 

has been shown that the final temperature of tasks 

executing in the hot–cool order is less than executing in the 

order of cool–hot tasks. In order to evaluate the reliability 

of the generated task schedule under transient fault 

occurrences of Poisson probability distribution, the Monte 

Carlo simulation method is utilized. The effectiveness of 

the proposed method is evaluated via simulating different 

task sets of the MiBench and Mediabench Benchmark 

suites running on the ARM Cortex A7 processor.  
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C. N Modular Redundancy (NMR) 

In order to conisider temperature constraint within the 

scheduling process of fault-tolerant mixed-criticality system 

the study in [119] presents, for the first time, a thermal-

aware scheduling scheme, named TherMa-MiCs. In 

particular, TherMa-MiCs, satisfies the temperature 

constraint jointly with the timing constraints of the high-

criticality tasks, while attempting to maximize the QoS of 

low-criticality tasks. Moreover, the reliability target is 

satisfied by employing the N Modular Redundancy (NMR) 

fault-tolerant technique. The effectiveness of the proposed 

method is evaluated via simulation of different task sets of 

the MiBench Benchmark suite running on ARM Cortex-

A15. 

D. Standby-Sparing 

The authors in [120] have proposed a thermal-aware cold 

standby-sparing technique that maximizes the Quality of 

Service (QoS) of soft real-time tasks. Their proposed 

technique tolerates permanent and transient faults for 

heterogeneous multicore real-time embedded systems while 

meeting the Thermal Safe Power (TSP) as the core-level 

power constraint. Executing the main and backup tasks on 

the cores at any power consumption below TSP guarantees 

that no thermal violation occurs. Moreover, they have 

employed a heterogeneous platform to execute the main 

tasks as soon as possible on high-performance cores with 

more power budget and the backup tasks are executed on 

low power cores after finishing the main tasks to maximize 

the QoS. 

E. Combination of Several Fault-Tolerance Techniques 

A peak-power-aware reliability management scheme has 

been proposed in [121] that meets the chip-level power 

constraints (TPD) and core-level power constraints (TSP) 

by employing different versions of each soft real-time task 

(code version programming) and determines the number of 

required replicas for each task to preserve the system 

reliability at an acceptable level. It is mentioned that due to 

the disadvantages of the DVS technique, the Dynamic 

Frequency Scaling (DFS) technique is exploited to reduce 

the peak power consumption and satisfy thermal 

constraints. In order to verify the effectiveness of the 

proposed method extensive simulations including gem5, 

McPAT, HotSpot, and TSP tools are exploited. The 

implementations result in the code versions with low-power 

and high-reliability consumption. The low-power-density 

code version of a task is a code that has the lowest peak 

power and average power consumption among all code 

versions, while the high-reliability code version of a task is 

a code that has the highest functional reliability among all 

versions. The effectiveness of the proposed method is 

evaluated via simulation of different task sets of the 

MiBench Benchmark suite running on ARM Cortex-A7, 

Cortex-A12, and Cortex-A15.  

VI. SUMMARY AND FUTURE TRENDS  

In this paper, we have presented a survey for many relevant 

task mapping/scheduling policies for real-time embedded 

systems that employ fault-tolerance techniques to satisfy 

reliability requirements. Applying fault-tolerance 

techniques introduces new challenges to the scheduling 

process of real-time embedded systems. Firstly, the fault-

tolerance techniques come with an additional timing 

overhead that should be considered in the scheduling 

process to avoid missing timing constraints. Secondly, 

fault-tolerance techniques will increase the power 

consumption of the cores, leading to increasing on-chip 

temperatures beyond safe limits. Therefore, we have 

focused on the related works, which consider timing, 

power/energy, and temperature on single-, dual-, or multi-

core processors. Table 4 summarizes the reviewed state-of-

the-art task mapping/scheduling policies for fault-tolerance 

systems according to their considered goals and constraints. 

As can be seen in this table, several works have considered 

power and energy besides timing constraints. However, just 

a few works consider the thermal issue, as well, in spite of 

its importance. In particular, it is not possible to provide 

reliability and timing guarantees without enforcing 

temperature constraints, since chip-level countermeasures 

will be triggered at any thermal violation, which might lead 

to violating reliability and timing constraints. Therefore, it 

is inevitable to jointly consider all of these metrics; 

reliability, timing, power/energy, and temperature within 

the task mapping/scheduling process of fault-tolerance 

embedded systems.  Applying multi-objective 

optimizations for fault-tolerance embedded systems in 

future research could be a promising approach to exploit 

optimization potentials for all relevant metrics; time, 

reliability, power/energy, and temperature. 
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