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ABSTRACT

ON THERMAL SENSOR CALIBRATION AND
SOFTWARE TECHNIQUES FOR MANY-CORE

THERMAL MANAGEMENT

SEPTEMBER 2015

SHITING LU

B.Sc., HARBIN INSTITUTE OF TECHNOLOGY, HARBIN, CHINA

M.Sc., FUDAN UNIVERSITY, SHANGHAI, CHINA

M.Sc., ROYAL INSTITUTE OF TECHNOLOGY, STOCKHOLM, SWEDEN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

The high power density of a many-core processor results in increased tempera-

ture which negatively impacts system reliability and performance. Dynamic thermal

management applies thermal-aware techniques at run time to avoid overheating using

temperature information collected from on-chip thermal sensors. Temperature sensing

and thermal control schemes are two critical technologies for successfully maintain-

ing thermal safety. In this dissertation, on-line thermal sensor calibration schemes

are developed to provide accurate temperature information. Software-based dynamic

thermal management techniques are proposed using calibrated thermal sensors.

Due to process variation and silicon aging, on-chip thermal sensors require periodic

calibration before use in DTM. However, the calibration cost for thermal sensors can
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be prohibitively high as the number of on-chip sensors increases. Linear models which

are suitable for on-line calculation are employed to estimate temperatures at multiple

sensor locations using performance counters. The estimated temperature and the

actual sensor thermal profile show a very high similarity with correlation coefficient

∼ 0.9 for SPLASH2 and SPEC2000 benchmarks. Moreover, the proposed estimation

model is capable of adapting to changing cooling conditions.

A calibration approach is proposed to combine potentially inaccurate tempera-

ture values obtained from two sources: thermal sensor readings and temperature

estimations. A data fusion strategy based on Bayesian inference, which combines

information from these two sources, is demonstrated. Our strategy is tested on two

benchmarks suites: SPLASH-2 and SPEC2000. The result shows the strategy can

effectively recalibrate sensor readings in response to inaccuracies caused by process

variation and environmental noise. The average absolute error of the corrected sen-

sor temperature readings is < 1.5oC and the standard deviation of error is less than

< 0.5oC for tested benchmarks.

A dynamic task allocation strategy is proposed to address localized overheating in

many-core systems due to both processor core and router power consumption. Our

approach employs reinforcement learning, a dynamic machine learning algorithm that

performs task allocation based on current temperatures and a prediction regarding

which assignment will minimize the peak temperature. Experiments show that the

proposed technique is capable of capturing the complex on-chip thermal environment

induced by dynamic work load distribution. Our results show that the proposed

technique is fast (scheduling performed in < 1ms) and can efficiently reduce peak

temperature by up to 8oC in a 49-core processor (6% on average) versus a leading

competing task allocation approach for a series of SPLASH-2 benchmarks.

Reinforcement learning has also been applied to 3D integrated circuits to allocate

tasks with thermal awareness. To avoid significant performance degradation and
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computational overhead for large numbers of cores, a cluster based approach is used

to apply reinforcement learning. Our results show that the proposed technique is fast

(scheduling performed in < 0.2 ms) and can efficiently reduce peak temperature by

∼ 2oC in average or up to 10oC versus task scheduling without thermal awareness.

It also reduces peak temperatures by ∼ 0.47oC on average compared with a previous

approach (balance-by-stack). Peak temperature reduction avoids ∼ 36% of thermal

emergencies which trigger performance throttling to alleviate thermal stress.
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CHAPTER 1

INTRODUCTION

Thermal management is a critical problem for modern microprocessors due to high

transistor density. This characteristic increases power and heat density [70] [54] in a

small silicon area causing performance degradation and decreased system reliability.

Fig. 1.1 shows the increasing trends of IC power density. The temperature depen-

dency of silicon reliability can be empirically modeled by the Arrhenius Equation

[6]

MTTF = MTTF0 × exp
(
Ea
kT

)
, (1.1)

where MTTF0, Ea and k are constants. The mean-time-to-failure (MTTF ) decreases

exponentially with the increasing of the temperature.

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 1, JANUARY 2008 245

Cool Chips: Opportunities and Implications for
Power and Thermal Management

Sheng-Chih Lin, Student Member, IEEE, and Kaustav Banerjee, Senior Member, IEEE

Abstract—Alongside innovative device, circuit, and microar-
chitecture level techniques to alleviate power and thermal prob-
lems in nanoscale CMOS-based integrated circuits (ICs), chip
cooling could be an effective knob for power and thermal man-
agement. This paper analyzes IC cooling while focusing on the
practical temperature range of operation. Comprehensive analy-
ses of chip cooling for various nanometer scale bulk-CMOS
and Silicon-On-Insulator (SOI) technologies are presented. Unlike
all previous works, this analysis employs a holistic approach
(combines device, circuit and system level considerations) and also
takes various electrothermal couplings between power dissipation,
operating frequency and die temperature into account. While chip
cooling always gives performance gain at the device and circuit
level, it is shown that system level power defines a temperature
limit beyond which cooling gives diminishing returns and an
associated cost that may be prohibitive. A scaling analysis of
this temperature limit is also presented. Furthermore, it is shown
that on-chip thermal gradients cannot be mitigated by global
chip cooling and that localized cooling can be more effective in
removing hot-spots.

Index Terms—Cooling, integrated circuits, performance, power
consumption, thermal management.

I. INTRODUCTION

FOR THE PAST 40 years, tracking Moore’s Law [1] has
been the goal of the semiconductor industry in the develop-

ment of silicon integrated circuits. Shrinking transistor size with
innovative technology provides significant benefits in the form
of higher integration density, higher performance, and lower
cost [2]. However, continuous scaling raises severe design
challenges and concerns due to excessive power consumption
(power density) and associated thermal problems, especially for
high-performance microprocessors [3]–[5].

Table I summarizes key parameters predicted by the Inter-
national Technology Roadmap for Semiconductors (ITRS) [6]
for silicon technology in the near future. While switching en-
ergy per device decreases with scaling [Fig. 1(a)], preliminary
calculation clearly shows that even if only switching power is
taken into account, average power density continues to increase
as illustrated in Fig. 1(b). Note that values (Trend 1) in Fig. 1(b)
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Fig. 1. (a) Trend of minimum transistor switching energy based on Table I.
The fundamental lower limit of switching energy for irreversible logic com-
puting is calculated using the gedanken model with the channel tunneling
effect (see Appendix for more detail) [7]. (b) Trend of IC power density
(Trend 1) with ITRS projected integration density and performance. Although
switching energy per device decreases with scaling, switching power and
density increases due to the fact that performance and packing density are also
improved. It is assumed that 0.1% transistors switch simultaneously. Values
shown here are exceptionally high (in reality, packing density and performance
will not be as high as projected). Power density can be reduced (Trend 2) if
the chip size is increased (to 620 mm2 from the year 2010 and beyond) or
if the switching activity is halved. However, this only mitigates the increase
in power density. When the maximum allowable average power density is
constrained by the limitation of heat removal capability as per ITRS projection,
doubling transistor count with scaling requires innovative power and thermal
management strategies.

TABLE I
HIGH-PERFORMANCE LOGIC TECHNOLOGY

TREND TARGETS (ITRS 2006 EDITION) [6]

are derived based on Table I under the assumptions of: 1) max-
imum integration density, and 2) highest performance, which
are not practical. However, the projected allowable maximum

0018-9383/$25.00 © 2008 IEEE

Figure 1.1: Trend of IC power density with ITRS projection (Trend 1) and technology
innovation (Trend 2) [54]
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The use of cooling technologies alone cannot meet system thermal design specifica-

tions and system-level thermal management techniques are necessary to alleviate chip

thermal stress. As a result, performance as well as temperature become first order

considerations for system design and run-time system management. Dynamic ther-

mal and power management strategies are often employed to tackle run-time thermal

and power issues [9][48] in order to achieve reliable, long-term system operation. The

thermal gradient can be fairly large [70] within a processor core, so multiple on-chip

thermal sensors at different positions are necessary to assist dynamic thermal man-

agement (DTM). For example, there are five thermal sensors per core implemented

in the Power 7 EnergyScale infrastructure [35] [34], as shown in Fig. 1.2, and twelve

sensors in each CPU core in the Intel 4-core Sandybridge processor [84] [73], as shown

in Fig. 1.3. Recent trends indicate increased future use to assess thermal gradients

and perform fine-grained thermal management with more on-chip thermal sensors.

Adaptive Energy Management Features of the POWER7 TM Processor

*   Statements regarding EnergyScale features do not imply that IBM will introduce a system with this capability
6

 Dedicated microarchitectural activity & event counters
 Processor core, memory hierarchy, and main memory access
 Provide performance, utilization, and activity measurements
 Used to direct power/performance tradeoff decisions & techniques

 Digital Thermal Sensor (DTS)
 44 on-chip sense points
 5 per core chiplet
 Emergency self-protect 

thermal throttling

 Critical Path Monitor (CPM)
 Detects circuit timing margin
 Assists in choosing optimal 

frequency & voltage

Physical Locations of Thermal Sensors
Off -chip Interconnect

MemCtrl 0

Core 0

Off -Module Interconnect

Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

SMP Coherence Fabric MemCtrl 1

POWER7 Features     Sense

Figure 1.2: POWER7 chip floorplan with 44 digital thermal sensors (DTS) [34]
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Figure 1.3: 12 thermal sensors per core in a 4-core SandyBridge processor [73]

1.1 Motivation and Challenges

The demands of high performance computing and the prevalence of distributed

computing have forced processor architecture into the many-core realm. For example,

Intel’s exascale supercomputing CPU, Knights Landing, which will debut in 2015 on

Intel’s 14nm process, will have up to 72 Atom cores and 16GB 3D stacked DRAM.

Temperature control techniques must be used dynamically in an aggressive way to

maximize performance. These techniques heavily rely on thermal sensors embedded

in the processor core and other locations on the die. Therefore, multiple technologies

must be considered. First, one must consider the design and deployment of on-

chip thermal sensors. This issue requires that thermal sensors be implemented with

ultra low cost considering the proliferation of thermal sensors as core count increases.

Sensors should be properly positioned to capture temperature hot spots. Second,

hardware and software techniques are needed to control temperatures within a safe

range with minimized performance degradation.
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The efficiency and effectiveness of a thermal management strategy relies on ac-

curate thermal sensor measurements. However, low cost on-chip thermal sensors are

sensitive to process variations and might report temperature values which deviate

from actual ones. In some cases, the temperature reading error of uncalibrated ther-

mal sensors can be substantial (up to 34oC at 95oC [82]) which adversely impacts

DTM strategy.

Two main issues exist in using these sensors: (1) detecting if a sensor is providing

erroneous readings [118] and (2) recalibrating the sensor, if necessary. Often, thermal

sensor calibration involves performing thermal imaging using an infrared camera while

capturing the physical readings of thermal sensors [39]. As the sensor count on a

silicon die increases, the per-chip calibration cost can be prohibitively high, leading

to on-chip thermal sensor use without individual sensor calibration. Even if thermal

sensors are initially well-calibrated, their readings gradually drift away from actual

temperature values due to device wear-out. Often, the degree of aging varies across

the chip due to the activity variation of different subcircuits. Therefore, recalibration

on thermal sensors is needed to regain the required accuracy. In general, it is not

practical to perform in-field calibration with thermal imaging since end users typically

do not have access to expensive calibration equipments.

Due to process variation and silicon aging, on-chip thermal sensors require peri-

odic calibration [7]. On-line techniques are necessary to dynamically calibrate thermal

sensors for DTM. However, the lack of knowledge of actual temperatures poses several

challenges for correcting sensor readings. Thermal models can be used to predict ac-

tual temperatures from the average power dissipation of functional components [91].

However, since the power profile can vary for different applications or for different

phases of one application, the use of average power dissipation to estimate temper-

ature can potentially be inaccurate. Furthermore, on-chip heat flux causes spatial

thermal correlations among different components which require extraction of ther-
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mal parameters like heat resistance and heat capacitance, a non-trivial task. Finally,

computational overhead is a major concern since calibration is performed on-line and

can degrade overall system performance.

This dissertation also considers the design of thermal management schemes using

information from calibrated on-chip thermal sensors. In contemporary many-cores,

the power consumption of network-on-chip (NoC) routers, as well as processor cores, is

a significant concern [90]. Many parallel and data intensive applications implemented

on many-cores benefit from low latency and high bandwidth on-chip communication.

Many-cores often require NoC routers with significant control circuitry and buffer

storage, leading to substantial power consumption [99]. The heat dissipated by a

router not only affects router temperature, but also the temperature of neighboring

cores. Effective task scheduling or allocation for thermal management considers all

many-core components, including NoCs. Effective task management for the numerous

tasks dynamically assigned to cores is particularly important as the number of cores

per chip scales.

There are several challenges associated with thermal-aware task scheduling and

allocation. First, predictive thermal models are usually necessary to account for

the thermal impacts of task allocation decisions. These thermal models are limited

by their prediction accuracy and computational overhead. Second, task allocation

is a global management decision which requires consideration of all cores, so the

scalability of allocation algorithms is a major design concern. Finally, a trade-off

between performance overhead and thermal benefits should be carefully evaluated for

different system specifications.

1.2 Contributions

Several contributions have been made in this research to address the noted technol-

ogy challenges. For thermal sensors, a collaborative calibration scheme is developed.
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Thermal estimation is used during calibration to obtain accurate readings from low

cost thermal sensors. For thermal management, an algorithm for allocating tasks to

many-cores is devised to lower peak many-core temperature. Detailed contributions

are summarized below.

• Thermal Estimation and Sensor Calibration

(1) A fine-grained thermal estimation technique is developed and validated.

Two linear models were built to estimate the steady and transient tem-

peratures of architectural components. The steady state temperature is

estimated by an absolute temperature estimation model [63] and the tran-

sient temperature is estimated by an incremental temperature estimation

model [65]. To dynamically account for changing processor activities, col-

lections of performance counter values are included to estimate the chip

thermal profile at run time. A performance counter selection method is

employed to reduce the intercorrelations between readings and improve

estimation accuracy. Our results show that the correlation coefficient be-

tween estimated and actual thermal profiles is ∼ 0.9 on a collection of

benchmarks. The estimation model can be adapted to changing cooling

conditions via parameter modeling.

(2) Multiple sensors deployed in the processor are dynamically calibrated via

the proposed Multi-Sensor Collaborative Calibration Algorithm (MSCCA)

[63] and ∆-based Multi-Sensor Collaborative Calibration Algorithm (∆-

MSCCA) [65]. Our calibration approach combines potentially inaccurate

temperature values obtained from two sources: temperature readings from

thermal sensors and temperature estimations using system performance

counters. A data fusion strategy based on Bayesian inference, which com-

bines information from these two sources, is demonstrated along with a
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temperature estimation approach using performance counters. The re-

sult shows that the strategy can effectively recalibrate sensor readings in

response to inaccuracies caused by process variation and environmental

noise. The average absolute error of the corrected sensor temperature read-

ings is < 1.5oC and the standard deviation of error is less than < 0.5oC

for tested benchmarks. The strategy incurs significantly reduced compu-

tational cost versus a previously-developed Kalman filtering technique [92]

and is appropriate for on-line usage.

• System Thermal Management

(3) A dynamic task allocation strategy is proposed to address localized over-

heating in many-core systems due to both processor core and router power

consumption [64]. Our approach employs reinforcement learning, a dy-

namic, machine learning algorithm that performs task allocation based on

current temperature and a prediction regarding which assignment will min-

imize maximum temperature. The algorithm updates prediction models

after each allocation based on feedback regarding the accuracy of previous

predictions. Our new algorithm is verified via detailed many-core sim-

ulation which includes on-chip routing. The experiments show that the

proposed technique is capable of capturing the complex on-chip thermal

environment induced by dynamic work load distribution. The results show

that the proposed technique is fast (scheduling performed in < 1ms) and

can efficiently reduce peak temperature by up to 8oC in a 49-core processor

(6% on average) versus a leading competing task allocation approach for

a series of SPLASH-2 benchmarks.

(4) Reinforcement learning is also applied to 3D integrated circuits to allocate

tasks using the influence of thermal information. To avoid significant per-
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formance degradation and computational overhead with a large core count,

allocations using clusters of cores, rather than all cores, is considered. Our

results show that the proposed technique based on reinforcement learn-

ing is fast (scheduling performed in < 0.2 ms) and can efficiently reduce

peak temperature by ∼ 2oC on average and up to 10oC versus the ap-

proach without thermal awareness. It also reduces peak temperatures by

∼ 0.47oC in average compared with a previous approach called balance-

by-stack [120]. The peak temperature reduction can avoid ∼ 36% thermal

emergencies which trigger performance throttling in order to alleviate the

thermal stress.

• Publications

1. Shiting Lu, Russell Tessir, Wayne Burleson, ”Thermal-Aware Task Allo-
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1.3 Dissertation Organization

The organization of this dissertation is as follows. Chapter 2 introduces on-chip

digital sensor calibration techniques and software level thermal management tech-

niques. Chapter 3 investigates the correlation between global performance counters

and local thermal sensors and a linear thermal estimation model is presented. Chap-

ter 4 describes and evaluates the Multi-Sensor Collaborative Calibration Algorithm

(MSCCA) and ∆-MSCCA for dynamic on-chip thermal sensor calibration. Chapter 5

introduces a thermal-aware task allocation technique for many-cores using reinforce-

ment learning. Chapter 6 presents thermal-aware task allocation in a 3D context.

Chapter 7 summarizes the dissertation and discusses future research directions.
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CHAPTER 2

BACKGROUND

In this chapter, state-of-the-art on-chip thermal sensors are briefly reviewed. Tech-

niques to calibrate on-chip thermal sensors are then discussed. Dynamic thermal

management techniques using on-chip thermal sensors are also summarized in this

chapter.

2.1 Thermal Management in Contemporary Microprocessors

High temperatures result in reduced reliability, degraded performance and in-

creased cooling cost, so temperature is a indispensable component of system man-

agement in modern processors. Significant effort has been devoted to exploring chip

level techniques to prevent processor overheating. Thermal management techniques

can be based on either hardware and software.

Hardware techniques include dynamic frequency and voltage scaling (DVFS),

thermal-aware floorplanning, and thermal-aware wire routing. DVFS performs run-

time frequency and voltage modifications to ensure thermal stability and required

performance [14][3]. DVFS requires hardware to regulate chip-level voltage and clock

generation. In contrast, thermal-aware floorplanning [75] [43] and thermal-aware wire

routing [113] are statically applied to a chip at design time. These approaches use

thermal simulation and analysis to disperse thermal hot spots, so that peak temper-

ature and thermal gradients are reduced.

Software-based techniques include thermal-aware task scheduling [20], thermal-

aware task allocation in many-cores [120], thermal-aware thread migration [117],
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thermal-aware compilation [88] [86], and thermal-aware packet routing [79]. These

software approaches improve thermal conditions by distributing workloads (tasks,

threads and packets) temporally and/or spatially. Runtime techniques (dynamic

task scheduling, allocation and thread migration) are implemented in the OS core

and applied online for thermal optimization. Correspondingly, static software based

techniques (compilation [86] and static task mapping [25]) are employed offline before

application execution.

Since DVFS and dynamic thermal-aware task scheduling/allocation are performed

at run time to accommodate a changing thermal environment, they can be considered

part of dynamic thermal management (DTM). To effectively apply DTM, the tem-

perature must be monitored. Detailed and accurate thermal information is needed

to perform fine-grained thermal management. Typically, multiple on-chip thermal

sensors are positioned at strategic locations in the processor to collect temperatures

[112]. The number of used thermal sensors is often constrained by the silicon area

required to implement them. Generally, the fabrication and design of digital sys-

tems demand that these on-chip sensors be implemented in digital logic to reduce

design complexity and increase fabrication yield. Low cost design and process vari-

ation can introduce inaccuracies into thermal sensor readings, requiring the sensors

to be carefully calibrated. In the following section, more information on thermal sen-

sors and their calibration techniques is presented. Subsequently, DTM strategies are

introduced and their advantages and limitations are discussed.

2.2 On-chip Thermal Sensors and Calibration Techniques

Digital thermal sensors (DTS) are typically implemented using delay chains whose

signal propagation latency depends on temperature. One implementation style is

based on a ring oscillator, as shown in Fig. 2.1a [97]. The circuit oscillates at

the frequency (f) determined by the number of stages (N) and the temperature-
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dependent propagation delay (d(T )) as given by (2.1). In a certain temperature

range, (2.1) can be rewritten in a liner [116] or quadratic [108] form, as shown by

(2.2) and (2.3), respectively.

f =
1

2×N × d(T )
(2.1)

T = w0 + w1f (2.2)

T = w0 + w1f + w2f
2 (2.3)

Here, w0, w1 and w2 are calibration parameters. By measuring the frequency, f ,

via the counter which operates at a reference frequency, one can obtain the temper-

ature via (2.2) and (2.3) if the sensor reading is calibrated properly.

Another digital thermal sensor implementation utilizes the same physical principle

but detects time difference instead of frequency, as shown in Fig. 2.1b. The time

difference between signal A and B is determined by the propagation delay and the

number of stages [103] [76]. The time/delay (T/D) converter measures ∆t and gives

a digital output.

∆t = N × d(T ) (2.4)

Other sensor implementations, based on bandgap voltage references, require ex-

pensive analog circuitry [93] [94] [108]. Due to parameter drifts introduced by process

variation, on-chip thermal sensor readings need proper calibration before use. The

reading drift from a sensor can be significant. For example, one study showed a

reading range from 61oC to 109oC for a true temperature of 95oC [82]. There are

several ways to calibrate on-chip thermal sensors to achieve better measurement ac-

curacy. We divide these approaches into four main categories: heat and read, thermal

imaging, design for calibration, and thermal estimation.
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Fig. 1. (a) Conventional temperature sensor using bipolar transistors. (b) In-
verter-delay-based temperature sensor.

synthesized by the first DLL. Crystal oscillators required
by DLLs are readily available in microprocessor environ-
ment. The use of multiple delay references via DLLs leads
to a high bandwidth (5 kilo-samples/s) at 7-bit resolution,
which can facilitate tracking of fast thermal transients.

This work was partially reported in [25]. This paper is a
significant expansion with new substantial experiments with
an increased number of sensor chips (5 chips versus 15 chips)
and new analyses. Sections II and III describe in details the
two new features of our sensor, thus, its operating principles.
Section IV presents design implementation. Section V reports
measurements of fabricated CMOS sensors to validate the
principle, and compares the performance of our sensor to that
of the prior delay-based temperature sensors.
Delay-based CMOS temperature sensors are prone to high

sensitivity to static supply shift [18]–[21]. Our design here also
does not overcome this issue. We explicitly measure and quan-
tify the sensitivity of our sensor to static supply shift to motivate
further studies. This is presented in Section VI.

II. OPERATING PRINCIPLE (1)—ONE-POINT CALIBRATION

A. Inverter Delay and Separation of Variables

Separation of the CMOS inverter delay into a function of only
temperature and a function of only process parameters is a key
to our one-point calibration. Here we establish this separation
of variables. Consider a CMOS inverter with equivalent pMOS
and nMOS strengths. The propagation delay, , through the
CMOS inverter may be expressed as [26]

(1)

is the load capacitance and is the supply. and are
the gate length and width, is the mobility, is the gate oxide
capacitance per unit area, and is the threshold voltage, all
for the nMOS transistor. We will demonstrate the separation
of variables using (1). Although we use short-channel transis-
tors in our design, we chose this expression derived from long-
channel transistors for simplicity. As discussed in Section II-C,

the essence of our analysis remains valid for short-channel de-
vice cases.
In (1), and are the only temperature-dependent param-

eters to the first order. For temperatures in excess of 200 K, the
temperature dependence of may be experimentally fitted to
[27], [28]

(2)

is temperature; and 1 are fitting constants. With
increasing , silicon lattice vibrates more, increasing electron
scattering, thus, reducing the mobility, as captured in (2).

’s temperature dependence may be expressed as [29]:

(3)

With proportional constant on the order of mV/K, does
not vary with as much as does. Moreover, in (1), always
appears in the form of where is a fraction of .
Overall, does not affect the temperature dependence of the
inverter delay as much as : we estimate that the temperature
dependence of due to is a few percent of that due to ,
when changes from 0 to 100 C.
Therefore, wemay neglect ’s temperature dependence and

consider only to account for the temperature dependence of
. Equation (1) then can be rewritten as

(4)

where is defined as

(5)

and collectively denotes process variations. Eq. (4) empha-
sizes the separation of the inverter delay into the temperature-
dependent function and the temperature-independent
function , while the latter is a function of process varia-
tions.
Furthermore, the temperature-dependent function ,

originating from the mobility, exhibits negligible dependence
on process variations. The exponent , affected by the electron
scattering due to impurity sites, varies with doping level [30]:
e.g., as the doping level changes by orders of magnitude from

cm to , varies only from 2.2 to 1.5. Thus
doping level variations typically moderate within a given tech-
nology would alter only slightly. Consequently in
(4) negligibly depends on process variations.
Therefore, we can rewrite (4) into

(6)

where

(7)

Equation (6) shows the separation of inverter delay into temper-
ature-only-dependent function and process-only-depen-
dent function . Separation of variables has been obtained.

1alpha’s numerical values, typically , are discussed shortly.

(b) Delay line based thermal sensor [38]

Figure 2.1: Two implementations of digital thermal sensors

2.2.1 Heat and Read

One straightforward but time-inefficient way to perform calibration is to heat the

silicon die to a preset temperature and then read values from thermal sensors [68]

[89] [107] [62]. The silicon components containing the thermal sensors are placed

in a thermally-isolated container and the responses are read at fixed temperatures.

Temperature sensors are calibrated using these measurements. The limitation of this

method is that the thermal chamber requires time to reach thermal equilibrium and

temperature variations must be kept minimal to determine actual chip temperatures.

Generally, the temperature around a sensor differs from the ambient temperature due

to temperature sensor self-heating.

2.2.2 Thermal Imaging

Another way of calibrating on-chip thermal sensors measures the thermal profile

of a running chip using thermal imaging technologies and reports the sensor readings

at that time instant [53]. Sensor model parameters can then be obtained by solving
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Assuming a 3-σ variation of 15%, we systematically vary 
each process parameter and observe the change in the slope 
and intercept values of the sensor response at each of these 
process-points. By data-fitting, we derive the analytical 
equations that can be used to describe the functional 
dependence of calibration-constants on process-parameters. 

 

 
Figure 10 Dependence of sensor-slope value on each 

process-parameter 
 

 
Figure 11 Dependence of sensor-intercept value on each 

process-parameter 
 

As is evident from Figs. 10 and 11, the calibration-
constants have a much stronger dependence on Leff than Vth 

or Tox. Post curve-fitting, the individual dependence models 
obtained were: 

      6560710144000580 23 .L.L.L.m effeffeffLeff
 

  833417309518150 2 .L.L.c effeffLeff
 

 

  155201193000240 2 .V.V.m ththVth
 

 

730304490 .V.c thVth
 

 

  27130137000460 2 .T.T.m oxoxTox
 

 

4071041720 .T.c oxTox
 

   (4) 

We adopted a heuristic approach to develop a 
comprehensive process-dependence analytical model for the 
ring-oscillator based thermal sensor. We used a linear-form 
to describe the process-corrected calibration constants with 
the shift due to each process-parameter weighted by a 
constant particular to the type of thermal sensor being used. 
Using this form, the analytical model can be written as: 

)T(m)V(m)L(mmm oxtheffip  111
 

)T(c)V(c)L(ccc oxtheffip  222
 (5) 

where mi and ci are the ideal/nominal calibration constants 
while α, β and γ are weights which are directly dependent on 
the relative variability caused by the individual process-
parameters. We use the following algorithm based on the 
relative importance of each process-parameter with respect 
to the thermal-sensor response, to estimate these weights: 

1. Model Leff, Vth and Tox as zero-mean, normal, random 
variables with a 3-σ variation of +/-15% 

2. For each of the above 3 process-parameters repeat the 
following steps: 

(a)  Select a random-value within the given 3- σ. 
(b) Simulate thermal sensor with the random process-

parameter across the temperature range of 25-150ºC 
(c) Determine sensor slope & intercept for selected 

random parameter 
(d) Repeat steps (a)-(c) 1k times each time selecting a 

different random value for a given process-parameter within 
the 3- σ (1k process-shifted ‘m’ & ‘c’ values) 

(e) From the data-collected compute the coefficient of 
variability (σ/μ) for both slope and intercept due to each 
process-parameter. The weights can be then calculated as: 

ToxVthfLeff

Tox/Vth/Leff

mmm

m
//
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                (6) 

Through this process, we obtain relatively bigger weights 
for the process-parameter which affects the thermal-sensor 
calibration-constants more than the others. Table 1 lists the 
weights obtained using the 45nm PTM models and reflects 
the stronger dependence of the calibration constants on Leff 
than on Vth or Tox. 

 

Table 1  Weights for comprehensive analytical model in 
45nm technology 

 Α (Leff) Β (Vth) Γ (Tox) 
Slope 0.8198 0.09315 0.087001 
Intercept 0.8056 0.08817 0.08654 

4. Soft Calibration of On-Chip Thermal Sensors 

 
Figure 12 SoC paradigm of thermal monitoring network 
 

In order to rectify the effect of on-chip non-idealities on 
response of thermal sensors we propose the following 
scheme. A thermal sensor is assigned to each functional 
block while a co-located process-sensing circuit  gives an 
accurate measure of ‘Vth’, ‘Tox’ and ‘Leff’’ in that particular 
portion of die. Instead of performing hard-calibration for all 
thermal-sensors with static calibration constants, we use the 
process-measures obtained from the process-sensors to 
estimate the drift in the calibration-constants of different 

Figure 2.2: Co-located thermal and process sensors for calibration purpose [28]

a series of equations or by using statistical parameter inference [81]. Usually, the

calibration cost associated with this approach is very high since every chip experiences

a different thermal imaging response and the amount of effort increases with the

number of on-chip thermal sensors. Although the approach could be used after chip

fabrication, it cannot be used effectively at run time.

2.2.3 Design for Calibration

A second calibration technique uses design-for-calibration (DFC). This approach

is implemented by integrating dedicated hardware circuits on chip which monitor the

process variation around the thermal sensors [28]. Process sensors are co-located with

thermal sensors and the process variation is compensated based on process measure-

ments [28], as shown in Fig. 2.2. With the knowledge of the chip process variation,

the errors in thermal sensor readings can be compensated and model parameters can

be optimized to reflect the physical relationship between the temperature and physi-

cal quantities. Since the process variation monitoring hardware consumes silicon real

estate, it raises the chip cost when a large number of sensors are integrated. Another

DFC approach estimates the gain of thermal sensor via a small set of wokloads and

power information [109].
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2.2.4 Thermal Estimation

A third approach uses accurate on-chip thermal estimation instead of thermal

imaging to determine actual temperatures. This information can then be used for

calibration of specific sensors. In Liu [57] and Cochran and Reda [21], the authors

describe methods to construct thermal estimates for numerous points in a proces-

sor from measurement data from a sparse set of thermal sensors. In Ranieri et al.

[80], the overall thermal map is recovered from a reduced set of sensors by selecting

principal eigenvectors of the whole-chip temperature vector. In Zhou et al. [120], an

information-theoretic framework is proposed to find the optimal location for sensor

deployment and full-chip thermal monitoring. Since the thermal sensor measurements

are subject to noise, the amount of error at each specific sensor can be difficult to

determine. In Zhang and Srivistava [114], the temperature for noisy sensors is esti-

mated using statistics. As a result, most recent approaches for sensor calibration use

a combination of sensor readings and other on-chip information to generate estimates

of actual temperature.

Chip Level Temperature Estimation Using Performance Counters: Ku-

mar et al. [48] use the 22 performance counters in an Intel Pentium-4 processor to

estimate temperature. A linear combination of these performance counters predicts

the overall chip temperature (2.5). For multiple sensor calibration, it is necessary to

estimate the temperature at the micro-architectural level due to thermal gradients

within the silicon die, so an estimation strategy with finer granularity is needed. Also,

this method is only suitable for steady temperature estimation for applications with

stable activity, but the estimation is not effective if the power profile of the application

changes quickly.

Toverall = wconst +
22∑
i=1

wi
ui
ttotal

(2.5)

where Toverall is the overall chip temperature; ui is the value of a performance counter

and ttotal is the elapsed time. wconst and wi are coefficients of the linear model.
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Architectural Component Temperature Estimation Using Performance

Counters: Lee et al. [49] proposed a run-time temperature sensing strategy using

performance counters in high-performance processors. In this strategy, performance

counters are used to estimate the power dissipation for each hardware component and

the estimated power traces are then used to estimate the temperature trace based

on the thermal model implemented in a thermal simulator (HotSpot). The mapping

from power to temperature requires a complex thermal model which characterizes the

thermal RC network of the given chip. A drawback is that the detailed in-system

thermal simulation causes significant performance degradation and generates heat.

Architectural Component Temperature Estimation Using Fusion Tech-

niques: In two recent papers [91][115], two sources of temperature information are

combined to generate temperature estimates: (1) noisy sensor readings and (2) lo-

calized power consumption which is related to temperature. The technique used to

integrate data from these two data sources is Kalman filtering (KF). A thermal model

is calibrated offline and then used by a Kalman filter for estimation, as shown in Fig.

2.3(a). The power estimates for each architectural component in Fig. 2.3(b) are also

obtained offline.

Although power traces can be accurately estimated at run time [78], a thermal

RC model is required to determine the mapping coefficients required to convert power

dissipation to temperature in the prediction step of KF approaches. Unfortunately,

the derivation of this model is not trivial due to the complexity of silicon materials.

KF-based approaches have shown the ability to track the temperature profile of a

chip at a high computational cost since KF is performed each time a temperature

estimation is made.

Collaborative Calibration for Wireless Sensor Networks: Although the

calibration of a number of sensors on a silicon die using performance information from

multiple sensors is a new challenge, similar problems have been studied in the wire-
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Fig. 3. Proposed technique. (a) Off-line setup. (b) Runtime temperature
estimation by KF.

[8] and [9]. The linear dynamic system generated in this
way is usually too large and too complex for an on-chip
software implementation. Model order reduction is used to
generate a much smaller yet accurate system. Calibration is
performed by applying Kalman filter (KF) to the reduced
order model of the system. The calibration ends when the
KF reaches its steady state. The resulting steady-state KF
is used during the normal operation to actually perform the
temperature estimation [Fig. 3(b)].

The KF estimates the temperature in a predict-correct
manner based on inaccurate information of temperature and
power consumption. Time update equations project forward
in time with the current temperatures and the error covariance
estimates to obtain a priori estimates for the measurement step.
The measurement update equations incorporate the new mea-
surements into the a priori estimate to obtain an improved a
posteriori estimate of the temperature. Details of the technique
are explained in the next section.

A. Temperature Estimation

Temperature values at different locations on the die depend
on various factors, such as power consumptions of functional
units, layout of the chip and the package characteristics.
Analysis and estimation of temperature requires a thermal
model which represents the relation between these factors and
the resulting temperature. The differential equations describing
the heat flow have a form dual to that of electrical current. This
duality is the basis for the micro-architectural thermal model
proposed in [8] and is further explained in [1] and [9].

The lumped values of thermal R and Cs represent the heat
flow among units and from each unit to the thermal package.
We model the temperature at grid cell level [1] which enables
more accurate and fine-grained temperature estimates. An an-
alytical method is proposed in [1] to determine the proper size
of a grid cell. The thermal network is represented in state space
form with the grid cell temperatures as states and the power
consumption as inputs to this system. The outputs of this state
space model are the temperatures at the sensor locations which

can be observed by sensor readings (S(t)). We define Ct and
Gt as thermal capacitance and thermal conductance matrices,
D as the input selection matrix which identifies the effect of
power consumptions at current time steps on the temperature at
next time step and F as the output matrix which identifies the
sensor grid cells at which temperatures are observable. u is the
vector of power consumption values for different components
on the die and T is the vector of temperature values at different
grid cells. The units for temperature and power are centigrade
degree and watt. The system can be represented as

dT
dt

(t) = −C−1
t GtT (t) + C−1

t Du(t)
S(t) = FT (t).

(11)

Since sensor measurements can be inaccurate and exact
power consumption of each functional unit at runtime is not
available, we use KF for accurate temperature estimation. The
KF uses a form of feedback control to estimate a process in
a predict-correct manner with time and measurement update
phases. Time update equations project forward in time the
current state of the system and the error covariance estimates
to obtain a priori estimates for the measurement step. The mea-
surement update equations incorporate the new measurements
into the a priori estimate to obtain an improved a posteriori
estimate.

We use Kalman filtering to both estimate the temperature
and to filter out any thermal sensor noise. In order to apply the
KF to our model, we convert the continuous time differential
equations in (11) to corresponding discrete time equations in
(12). Here, H, J, and F are the state matrix, input matrix
and output matrix of the system, respectively. Furthermore, at
time n, T[n], u[n], and S[n] are the state vector representing
temperatures at different grid cells, input vector of functional
block power consumption and output vector of temperatures
at sensor locations, respectively

T [n + 1] = H T [n] + J u[n]
S[n] = F T [n].

(12)

Accurate estimation of power consumptions of each com-
ponent at each time step is not practical in runtime. On the
other hand, [11] shows that most of the energy in the power
traces is concentrated in the DC component. The trend of
temperature variations is determined by the average power
over a period of time. This is especially true for power traces
with very large DC components and smaller high-frequency
harmonics [11]. Based on this fact, we use the average power
consumption of each component as an estimation of the actual
power consumption at that time.

Introduction of noise due to inaccuracies of modeling the
process, w[n], and the measurement noise, v[n], enables us to
rewrite the system formulation as

T[n + 1] = H T [n] + J u[n] + Gw[n]
Sv[n] = F T [n] + v[n].

(13)

The time-update equations for our system are given below.
Here, Ť [n|n − 1] represents the estimate of T [n] given the
past measurements up to Sv[n − 1], Ť [n|n] is the updated
estimate based on the last measurement Sv[n] and P is the
error covariance matrix

Figure 2.3: Kalman Filter Approach [91] (1) off-line model calibration (2) on-line
estimation

less sensor network community for years. For example, a Bayesian inference method

was employed to reduce the noise of sensor data [31]. The approach combines a pri-

ori knowledge of the expected reading, the noise characteristics of the sensors, and

an observed noisy reading to obtain a more accurate reading estimate. Whitehouse,

et al. [102] formulated the calibration of a large sensor network into a parameter

estimation problem. They determined that micro-calibration (the calibration of sen-

sors one-by-one) is sometimes problematic due to the lack of a calibration interface

and unobservable environments. Thus, the need for macro-calibrations (collaborative

calibrations) which utilize the correlation among sensors arises.
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2.3 Dynamic Thermal Management

In this section, several dynamic thermal management techniques are summarized,

including software-based techniques for many-cores. Overall, these techniques involve

core-level thermal management and network-level thermal management. Core-level

thermal management is a focus of this dissertation. Some thermal management ap-

proaches for data centers are also summarized to show similarity between chip-level

thermal management and data center-level thermal management.

2.3.1 Dynamic Voltage and Frequency Scaling

As mentioned in Section 2.1, dynamic voltage and frequency scaling (DVFS) is

a popular hardware-based thermal management technique for modern processors.

Dynamic power consumption is determined from supply voltage and frequency as

shown in (2.6)

Pdyn = αCV 2f (2.6)

Here, α is the activity factor, i.e., the fraction of the circuit that is switching; C is

the capacitance; V is the supply voltage; f is the frequency. The dynamic power can

be changed by adjusting voltage and frequency with resulting changes in temperature.

Many DVFS algorithms have been proposed to utilize voltage and frequency ad-

justments to control temperature [47]. DVFS actions can be applied reactively and

proactively for thermal management. The latter approach generally needs a predic-

tive thermal model to estimate temperature trends and throttle the system in advance

if there is a predicted thermal emergency. The reactive method lowers voltage and

frequency once the thermal redline is crossed. Although DVFS can effectively reduce

temperatures with a sacrifice in performance, some DVFS actions can be avoided if

tasks can be scheduled or allocated in a thermally-efficient way.
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Thermal-Aware Task Scheduling in 3D Chip Multiprocessor 24:17

Fig. 8. (a) The initial DFG, the corresponding DAG and schedule. (b) The rotated DFG in the first rotation,
the corresponding DAG and schedule. (c) The rotated DFG in the second rotation, the corresponding DAG
and schedule.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2, Article 24, Publication date: February 2013.

Figure 2.4: Thermal-aware scheduling for a task graph [51]. The tasks are labeled as
bubbles in the DAG. Schedule time is shown on the vertical axis on the right.

2.3.2 Thermal-aware task scheduling and allocation

Thermal-aware task scheduling and allocation techniques have been widely studied

for both single-core and multicore systems to reduce peak temperature and balance

heat distribution.

Thermal-Aware Task Scheduling: For modern multi-task time-sharing sys-

tems, tasks are scheduled into time slots on a single core processor. Thermal-aware

task scheduling optimizes the thermal condition of the chip. Temporal thermal cor-

relation is taken into account in these problems to avoid hot jobs that are executed

in a short time period. In Liu et al. [59], a thermal-aware scheduling algorithm with

stochastic workload is presented to reduce to peak temperature. In Li et al. [50],

the authors utilized compilation and dynamic instrumentation to identify process

thermal intensity and then applied a scheduling algorithm to reduce temperatures.
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Thermal-Aware On-Line Scheduler for 3-D
Many-Core Processor Throughput Optimization

Cody Hao Yu, Chiao-Ling Lung, Student Member, IEEE, Yi-Lun Ho, Ruei-Siang Hsu,
Ding-Ming Kwai, Member, IEEE, and Shih-Chieh Chang, Member, IEEE

Abstract—3-D many-core processor (3-D MCP) has become
an emerging technology to tackle the power wall problem due
to rapidly increasing number of transistors. However, when
maximizing the throughput of 3-D MCP, which is expressed as
a weighted sum of the speeds, due to the inherent heat removal
limitation, thermal issues must be taken into consideration. Since
the temperature of a core strongly depends on its location in
the 3-D IC, a proper task allocation can alleviate the thermal
problem and improve the throughput. Nevertheless, conventional
techniques require computationally intensive thermal simulation,
which prohibits its usage from the online application. In this
paper, we propose an efficient online task allocation and task
migration algorithm attempting to maximize the throughput of
3-D MCP simultaneously, considering unfinished tasks left from
the last scheduling interval and new incoming tasks of this
scheduling interval. The results of our experiments show that
our proposed method achieves a 20.82X runtime speedup. These
results are comparable to the exhaustive solutions obtained from
optimization-modeling software LINGO. In addition, on average,
our throughput results, with and without consideration of unfin-
ished tasks, are only 4.39% and 0.69% worse, respectively, than
that of the exhaustive method. In 128 task-to-core allocations,
our method takes only 0.951 ms, which is 59.39 times faster than
that of the previous work.

Index Terms—3-D integration, many-core processor, migration
penalty, task allocation, task migration, temperature uniformity,
thermal aware, throughput optimization.

I. Introduction

DUE TO THE rapidly increasing number of transistors
being used and the high performance requirements,

power consumption and thermal issues have become major
challenges for chip design. To meet these challenges, one
promising alternative is to integrate onchip many-cores in a
3-D topology. Despite the promising future of 3-D ICs, many
problems remain unsolved. Among them, thermal management
is of fundamental importance.
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Fig. 1. Different task distributions and the temperature profiles [10].
(a) Uneven task distribution. (b) Center task distribution.

Fig. 2. Example of TSV-based 3-D IC.

It is well known that an improper task distribution may
introduce adverse thermal effects. Fig. 1 shows two different
task allocations in a multicore processor [10]. Allocating
tasks around the center locations, such as shown in Fig. 1(b)
contributes high power density in the center area and leads to
a higher temperature profile. To deal with high temperature,
normally, the operating voltage/frequency is lowered to prevent
the temperature from exceeding the thermal constraint, which
may then cause a significant drop in performance.

The thermal problem becomes more acute in 3-D many-core
processors for two reasons. First, traditional 2-D ICs usually
have a thickness of 600 um−900 um, whereas 3-D ICs, after
thinning, have a thickness of only 15 um–60 um. The smaller
thickness and closer proximity dramatically increase the power
density in 3-D many-core processors. Second, insulation mate-
rials between dies have very poor thermal conductivity, which
leads to the problem of heat dissipation and, thus, can limit
the potential improvement of performance. Fig. 2 shows a
packaged two-tier stacked 3-D IC; because the heat sink can
conduct more heat flux than PCB does, the chip closer to the
heat sink can dissipate heat more easily. As a result, when
considering the thermal issue, we might naturally expect to
allocate high power tasks closer to the heat sink. However,

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Figure 2.5: Different task distribution in a many-core [110] [37]

Generally, the scheduler has knowledge of the task dependency graph before it per-

forms scheduling and the algorithm assigns tasks to time slots and cores, as shown

in Fig. 2.4. These techniques were demonstrated in system software as an assistive

feature to improve thermal conditions [18] [106].

Thermal-Aware Task Allocation in Many-Cores: For multi/many core sys-

tems, task allocation mechanisms have been developed to assign tasks to cores to

provide improved thermal conditions. As shown in Fig. 2.5, different task distribu-

tions result in quite different chip thermal profiles. Thermal-aware task allocation

generally considers the spatial thermal correlation between cores. Liu et al. [58] pro-

posed a temperature prediction model which takes the temperature of neighboring

cores into consideration. The approach was validated on a quad-core processor and

showed throughput improvements under peak temperature constraints. Additional

techniques to address thermal-aware task allocation are summarized subsequently.

Optimization Formulation with Constraints: Fisher et al. [33] considered

heat transfer in a homogeneous multicore and presented global scheduling algorithms

to minimize the peak temperature. In Coskun et al. [23], the authors formulated

the task scheduling statically as a integer linear programing problem (ILP) by tak-

ing temperature into account in a multicore system. The authors do not take heat

interaction among neighboring cores into account. In Chantem et al. [11], the au-
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thors present a mixed-integer linear programming (MILP) technique for assigning

and scheduling tasks to minimize peak temperature with real-time constraints on an

MPSoC. Similar techniques were used in [40] [110] with different optimization goals.

These works formulate the optimization problems with constraints and use integer

linear programing to derive solutions. For example, the task scheduling problem is

formulated as shown in (2.8) [110] to simultaneously maximize throughput and meet

maximum temperature requirements. Here, fi is frequency and wi is the weight of core

i. The throughput is defined as a weighted sum of all frequencies. All core temper-

atures must be lower than the preset redline temperature (Tmax). Other constraints

might be necessary if more factors are taken into account.

Maximize:
∑N
i=1(wi × fi) (2.7)

Constraints: ti ≤ Tmax (2.8)

A limitation of these works is the inclusion of thermal models in the optimization

problem for predictive decision making. Moreover, the knowledge of power consump-

tion for each application is required to conduct thermal modeling, but runtime power

estimation is quite challenging. Although various techniques are proposed to accel-

erate computation to reach an optimal goal, the solution doesn’t scale well when the

number of cores is large in a many-core system.

Adaptive Random Task Allocation: An intuitive approach to perform

thermal-aware allocation is to select the coolest core for assignment [120]. The main

problem with the coolest selection approach is that it doesn’t differentiate between the

thermal stresses of cores at the same temperature. For example, a core at the corner

of a floorplan has higher horizontal thermal resistance than a core at the center of the

floorplan, so it is more likely to exhibit a higher temperature in future evaluations.

The heuristic adaptive random algorithm improves on the “coolest” approach by se-
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lecting the coolest core for task allocation [24] under a set of calculated probabilities.

Potential allocations of tasks to cores are assigned weights based not only on the

cores’ current temperatures, but also on their thermal history. Weights measuring

thermal history are adjusted in real time as the cores execute a dynamic workload.

Stochastic assignment is employed to allocate a new task to a core based on its cur-

rent temperature, thermal history, and the thermal condition of neighboring cores.

The memory cost associated with this method is significant. The temperature values

for each core are stored for a period of time (around 1∼10K temperatures samples

for each core) to capture the thermal characteristics of a core for specific workloads.

Learning Based Approaches: Machine leaning has been widely adopted for

dynamic thermal and power management, and reinforcement learning based tech-

niques are favored for DTM/DPM, especially for DVFS action strategies. The basic

idea of these approaches is to learn a policy to configure frequency and voltage settings

based on the current power and the thermal state of the system. Ge and Qiu [36] pro-

posed a temperature reduction technique based on reinforcement learning for media

applications. The agent learns the workload and dynamically adjusts frequency to

control thermal violations. Similar techniques were applied in a power management

context [30] [77] [111] [16] [45]. An advantage of reinforcement learning is that it does

not require an explicit model for power or temperature. It learns the best policy to

perform actions according to a standard procedure.

Thermal Management in 3-D and Heterogeneous Systems: In a 3-D

system, silicon layers are stacked to achieve better performance and higher integra-

tion. Generally, stacking deteriorates the thermal environment of devices since the

3-D technology increases chip power density and slows heat dissipation. Many ther-

mal aware task scheduling techniques have been proposed for 3-D processor chip

systems [121] [66] [17] [60] [110]. Thermal aware techniques were also proposed for

heterogeneous MPSoC systems [92].
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2.3.3 Network-level Thermal Management

In contemporary many-cores, the power consumption of both network on chip

(NoC) routers and processor cores is a significant concern. Many parallel and data

intensive application can be adapted and implemented on many-cores to benefit from

the low latency and high bandwidth of on-chip communication [98] [15]. The size

of many-cores requires NoC routers to have significant control circuitry and buffer

storage, leading to increased power consumption. The heat dissipated by the routers

not only affects router temperature, but also the temperature of neighboring cores.

Shang et al. [90] determined that chip temperature is impacted by thermal correla-

tions among all on-chip components.

A number of thermal-aware routing algorithms have been proposed to control

NoC router run-time temperatures [90] [12] [56] [26] [79] [55]. In general, these works

are limited: (a) The thermal impact of processing cores is underestimated or ignored

[79]; (b) Application specific designs are employed, so the solutions lack generality

[79] [26]. Static task mapping on NoC systems can also achieve thermal balance and

communication cost minimization [42]. In these designs, the communication paths

among tasks are predetermined and fixed. Therefore, they are not suitable for a

dynamic system where tasks arrive and depart in a random fashion.

2.3.4 Thermal-Aware Workload Allocation in Data Centers

Cooling in a data center environment is a big challenge due to the high energy

consumption of dense server arrays [8]. Numerous studies have examined data center

thermal issues [101] [13] [72] [96]. Server blades in a rack are physically close to each

other and back-to-back racks are often laid out in rows. Although cooling systems

are typically deployed in a data center environment, local thermal imbalances can

create hot spots if workloads are clustered in physically close servers. Hot spots can

cause hardware failures and permanent damage to electronic components. In many
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circumstances, the allocation of server workloads must consider thermal effects to

avoid overheating.

Many thermal distribution similarities can be observed between many-core envi-

ronments and data centers. In many-cores, processor cores are positioned on a small

silicon die and they exhibit thermal correlation. In a data center or a server rack,

servers are thermally correlated due to constrained space. Workloads are assigned

to different nodes by a master node in both many-cores and data centers. Although

workload distribution in a data center is a macro scale problem which differs from a

small silicon die, similar allocation techniques can be effectively applied considering

that both aim to improve thermal conditions for thermally-correlated working nodes.

Chen et al. [13][100] proposed workload allocation based on reinforcement learning to

reduce the peak temperature in a data center. The approach avoids local heating by

assigning workloads in a spatially-dispersed fashion. In this dissertation, reinforce-

ment learning is applied to many-cores to reduce the maximum on-chip temperature.
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CHAPTER 3

ON-CHIP THERMAL ESTIMATION VIA
PERFORMANCE COUNTERS

To dynamically account for changing processor activities, collections of perfor-

mance counter values can be used to estimate the chip thermal profile at run time.

In this chapter, the correlation between global performance counters and tempera-

tures of architectural components is explored. Two thermal estimation techniques are

proposed to estimate temperature via linear regression. A performance counter selec-

tion method is employed to reduce the intercorrelations between performance counter

readings and improve estimation accuracy. In this dissertation, estimated temperature

is exclusively used to refer to a temperature obtained from thermal estimation using

performance counters.

3.1 Thermal Correlation With Performance Counters

In a microprocessor, performance counters monitor run-time system statistics,

such as the floating point instruction rate, the load/store rate, branch prediction

miss rate, amount of cache misses, and instructions per cycle (IPC), among others,

for various system management purposes. Typical system events recorded by per-

formance counters are listed in Table 3.1. Since these statistics contain the activity

information of functional units in the processor, they can be used to estimate the

power consumption at a per-structure granularity using linear regression [78] or unit

power consumption [49][105]. Unlike power consumption estimation, functional unit

temperature estimation is more complex due to spatial thermal correlation resulting

from heat flow across the chip.
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Table 3.1: Performance Counters Provided by SESC

general rate IPC, integer rate, load rate

store rate, floating point rate

cache Dcache read miss rate, Dcache write miss rate,

Icache miss rate

buffer and queue usage load queue, store queue, ROB, Iwin, TLB

branch BTB (branch target buffer utilization),

RAS (return address stack size)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
−1
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0.5

1

Sensor ID

 

 

Brach rate
Load rate 
Store rate
Integer rate
Floating Point rate
IPC
ICache miss rate
ICache read miss
DCache miss rate
Dcache read miss

Figure 3.1: Correlation between temperature and some system statistics for the radix
benchmark across 24 thermal sensors

It can be shown that the temperatures of functional units are correlated with

values read from on-chip performance counters. Fig. 3.1 shows the correlation coef-

ficients of component temperatures and various system statistics for the SPLASH-2

radix benchmark [104]. Most temperature-statistic pairs show non-zero correlation

coefficients. For example, the floating point rate shows a negative correlation with

integer units (e.g. the integer scheduler) and a positive correlation with floating point

components (e.g. the floating point scheduler).
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Figure 3.2: Runtime recording of some system statistics and temperature change
rates for three function units: integer scheduler (left column), floating point sched-
uler (middle column) and L1 data cache (right column) for the equake benchmark.
Temperature changes are in oC

To explore the correlation between the application characteristics and temper-

ature changes over a short time period, system statistics and a temperature trace

were recorded for every millisecond via simulation using SESC [83] and HotSpot [2].

Fig. 3.2 illustrates the relation between the system statistics: IPC (the first row),

integer instruction rate (the second row) and floating point instruction rate (the

third row), and temperature change rates for three functional units: integer sched-

uler (left column), floating point scheduler (middle column) and L1 data cache (right

column). The performance counter data was obtained by repeatedly running the

equake benchmark from the SPEC2000 benchmark suite using the SESC simulator.

The temperature trace was generated by HotSpot.

As seen in the figure, higher average IPC (phase A in the top-left sub-figure)

results in a higher temperature change rate for the integer scheduler at the start

of phase A. However, this change rate is negative for the floating point scheduler
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Figure 3.3: Runtime recording of thermal gradient and temperature change rates for
three function units. Temperature changes are in oC

at the same point. The floating point instruction rate is higher in phase B and

the scheduler is more active during this phase leading to a floating point scheduler

instruction temperature surge every time the application transitions from phase A

to phase B, although it is short. In this case, the temperature of the component is

impacted by its surroundings due to heat flow.

The temperature difference (referred to as thermal gradient in the figure) between

the specific component and a neighboring component is plotted to illustrate this point

in Fig. 3.3. The thermal gradient in the figure is obtained by taking the maximum

temperature difference among all neighboring blocks. In the integer scheduler, for

example, the temperature surge causes an increase in the thermal gradient which

accelerates heat flow from the integer scheduler to its neighbors. A new thermal

balance is quickly reached after a short time.

3.2 Temperature Estimation Using Performance Counters

By virtue of these complexities, the temperature at a specific position on the chip

is generally not linearly related to one particular performance counter, so it is not

possible to construct a thermal map using a few independent performance counters.

However, performance counters are correlated with each other as discussed in previous

section.
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The non-linear impact of performance counter correlation on temperature can

be illustrated via a simple example (Note: the real relationships generally are more

complex). Consider two performance counters, x and y, that are quadratically related,

as shown in (3.1).

y = α1x+ α2x
2 (3.1)

Also, the temperature, T , has a closed form representation based on these two vari-

ables given by the following equation.

T = γ1x+ γ2x
2 + y (3.2)

By replacing x2 in Equation (3.2) with a reordered version of Equation (3.1), the fol-

lowing linear representation is obtained, where A and B are determined by Equation

(3.4).

T = Ax+By (3.3)

A = γ1 − α1γ2/α2 and B = 1 + γ2/α2 (3.4)

Effectively, since α and γ are constant, temperature can be approximated with a

linear representation. Although this example is trivial compared to actual on-chip

thermal analysis, it provides a basis for our model derivation in the next section

assuming a sufficient amount of performance counters are available to be used to

provide accuracy.

The linear approximation is shown to be effective empirically in developing an

on-chip thermal profile. These thermal estimates can then be merged (Chapter 4)

with sensor readings to reduce spatial (across sensors) and temporal (across time)

noise.

3.2.1 Linear Model for Absolute Temperature Estimation

Similar to the method in [48], a linear model can be built using values from

system performance counters in the processor to estimate the absolute temperature of
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a specific component in the processor rather than the whole chip temperature in [48].

As shown in the following equation (3.5), the temperature for an integer scheduler

(unit 8 in floorplan shown in Fig. 3.4) is estimated via a linear combination of

performance counter values. Mij is the accumulated value of a system event recorded

by performance counter j at time instance i and ti is the elapsed time. Therefore,

Mij

ti
is the average rate for a particular event. T 8

i is the estimated temperature at

time instance i using these counter values. The coefficients, β8
j , are determined in the

model training phase.

T 8
i = β8

0 + β8
1

Mi1

ti
+ β8

2

Mi2

ti
...+ β8

k

Min

ti
(3.5)

The above equation can be rewritten in matrix form, as shown in (3.6), to represent

thermal estimation for multiple locations. At time instance i, Ti is an m× 1 column

temperature vector and Mi is a n × 1 column performance counter vector. βββ is an

m× n coefficients matrix.

Ti = βββ ×Mi (3.6)

The estimated temperatures can be calculated quickly in real time because only scalar

multiplications and additions are involved in (3.5).

3.2.2 Linear Model for Incremental Temperature Estimation

The drawback of the absolute temperature estimation is that it essentially esti-

mates the steady state temperatures instead of transient ones by including the aver-

ages rates of performance counters in the linear model. For application with drastic

activity changes, this technique is limited by its incapability to track the temperature

at run time. However, we demonstrate that a linear model can be used to estimate on-

chip temperature changes at specific temperature sensors using multiple performance

counters if the time interval is small. In the following derivation we are interested
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in determining ∆T estimates for specific sensors over a time interval, rather than

absolute T values.

In developing a linear model for a specific thermal sensor i over a time interval,

a row vector (xi) contains recorded performance counter values for the interval, M

(listed in Table 3.1), thermal gradient information, Gi, and temperature, T i. Values

Gi measure the thermal gradient between other thermal sensors and sensor i at the

beginning of the interval. Value T i measures the temperature of sensor i at the

beginning of the interval. Since the correct temperature before the first interval is

unknown, the thermal gradients and T i can be approximated by using thermal sensor

readings at the start of estimation. For other intervals, the temperature estimation

from the previous interval is used. The combination of these variables M, Gi, and T i

forms xi:

xi = [M,Gi, T i] (3.7)

For example, for the integer scheduler (unit 8), G8 includes all temperature dif-

ferences between the integer scheduler and other components at the beginning of the

measurement interval. Here, the superscripts of T indicate the hardware components

in the floorplan (Fig. 3.4 in Section 3.4). The thermal gradient vector for the in-

teger unit is given by (3.8). There are 24 architectural components in the studied

processor, so G8 contains 23 elements which are temperature differences between the

components and the integer scheduler, except itself. The performance counter vector

M can be represented by (3.9), where u is the number of performance counters used

in the model.

G8 = [T 1 − T 8, ..., T 7 − T 8, T 9 − T 8, ..., T 24 − T 8] (3.8)

M = [P 1, P 2, ..., P u] (3.9)

The T i value in (3.7) is used to take static power (which is dependent on tem-

perature) into account. Therefore, the sampled vector at a particular time step is
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given by (3.10) for the integer scheduler. It is apparent that both hardware activities

(as measured by performance counters) and thermal gradients impact temperature

change during the sampling interval.

x8 = [P 1, P 2, ..., P u, T 1 − T 8, ..., T 7 − T 8, T 9 − T 8, ..., T 24 − T 8, T 8] (3.10)

Performance counter values represent changes in the respective event counters during

the sampling interval. Only events happening in a specific interval are evaluated

for the corresponding performance counter monitors. Using the above x vector, it is

possible to estimate the temperature change of a particular component which contains

the thermal sensor during the sampling interval using a linear equation. For example,

the equation for thermal sensor i is:

∆T i = xi · βββi (3.11)

and for the sensor in the integer scheduler:

∆T 8 = x8 · βββ8 (3.12)

Here, βββ8 is a column vector whose elements are coefficients of the linear model. The

coefficient vector βββ8 can be determined through model training which will be dis-

cussed in the next subsection. Each sensor i is trained separately to obtain its own

βββ coefficient vector. The linear model only needs multiplications and additions to

calculate the results, so the time cost is low and calculations can be done in real time.

3.3 Linear Model Training

As mentioned earlier in this chapter, the first step in developing a relationship

between performance counter values and estimated temperatures (e.g. βββ vectors)
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involves training. The accuracy of the coefficient vector βiβiβi impacts the model accu-

racy for sensor i. In the training step, accurate known temperatures for the sensors

must be available to develop the relationships. These relationships can be determined

via architectural and thermal simulation during design once physical characteristics

of the chip have been determined or during post-fabrication testing using thermal

imaging. The accuracy of the model trained by simulation can be limited by the ef-

fectiveness of the simulators since they cannot simulate every detail of a real system.

In post-fabrication testing, it is possible to feed real workloads to the system and read

performance counter registers. At the same time temperature values can be captured

through infrared imaging of the running system. Unlike per-chip calibration, it is

only necessary to perform data capturing on a small amount of sample chips to get

the general information of a particular chip series. We assume that the specific infor-

mation of an individual chip caused by process variation is reflected in the thermal

sensors.

3.3.1 Model Training for Absolute Temperature Estimation

In the training phase, sensor temperatures and performance counter values are

recorded at each time instance for a series of time instances (n performance counters).

The estimation error of the absolute temperature for module k at time instance i is

given by

eki =
n∑
j=0

(β̂kjMij)− Ti. (3.13)

The ordinary least squares (OSL) regression method minimizes the sum of squares of

errors for l time instances:

S =
l∑

i=1

(eki )
2 (3.14)

Equation (3.15) shows the estimator of coefficients, βββ, for the multi-variable least

squares method.
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β̂ββ = (M′M)
−1

M′T (3.15)

Here, each column of M is a time series of a particular performance counter and

each column of T is a time series of temperature at a particular location. M′ is

the transposition of M. Once β̂ββ is calculated, it can be stored in the programmable

registers or re-programmable ROM region of the system.

3.3.2 Model Training for Incremental Temperature Estimation

Similarly, we assume that accurate temperatures changes and x values consisting

of M and G are available for all sensors. The most straightforward way to train

the linear model to determine βββ vectors in (3.11) is to use an ordinary least square

method (OLS). The coefficient vector for the incremental temperature model obtained

through OLS is given by (3.16).

βββiols = (XiTXi)−1XiTyi (3.16)

Here, Xi is a matrix consisting of row vectors xi calculated over a series of N sampling

intervals. Each row of Xi represents xi for one sample interval. yi is a column vector

comprised of accurate actual temperature changes for sensor i which occur during the

respective training intervals. Although OLS is capable of training the linear model, its

somewhat simplistic formulation does not consider the intercorrelation of performance

counters, limiting accuracy.

A more advanced, iterative mathematical approach can be used to determine βββ

values. As an alternative to OLS, we use automatic relevance determination (ARD),

which was developed by MacKay [67] and Neal [74]. The coefficient vector βββi for

sensor i can be represented by the following expressions (3.17) and (3.18).

βββi = δ−2SXiTyi (3.17)
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S = (A + δ−2XiTXi)
−1

(3.18)

In (3.18), A = diag(α1, ..., αM), which is a diagonal matrix. Each αj in A

represents the relevance of an input vector variable to the result such that:

αj =
1− αjSjj

βij

2

(3.19)

δ2 =

∑N
n=1(y

i
n − xin · βin)2

N −∑M
j=1(1− αjSjj)

(3.20)

Since (3.17) and (3.18) depend on (3.19) and (3.20) and vice versa, multiple it-

erations are needed to achieve convergence of the βi unknowns. These iterations

calculate αj in diagonal matrix A and δ. In the above equations, Sjj are elements of

S. yn is the nth element of yi and xn is the nth row vector of Xi. N is the number of

training samples and M is the length of vector xi and the dimension of the matrix SSS.

Values for αj and δ2 are determined by alternating evaluation of the above four equa-

tions until convergence. From our experiments, around four iterations are performed

until these parameters reach convergence.

3.4 Infrastructure and Experimental Approach

A simulation-based method is employed for data collection, model construction

and verification. Two simulators used by this work and other experimental infras-

tructure are described in this section.

3.4.1 Architectural Simulator

We use the SESC simulator [83] as the infrastructure for collecting system statis-

tics. SESC is a cycle-accurate simulator which models a full out-of-order pipeline with

branch prediction, caches, buses, and other components of a modern processor. It

can also report power traces of system components which are used for thermal simu-
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lation. The simulator was modified to support the on-the-fly dumping of performance

counter recordings which are synchronized with power traces.

The SESC simulator provides abundant system statistics for architectural anal-

ysis. Table 3.1 lists a subset of these statistics. Some simulation-related metrics,

e.g. simulation speed, are not used in our strategy since it would not be available

to a typical many-core user at run-time. The selection of performance counters is

critical for achieving a good temperature estimation. Performance counters that give

little correlation with temperature for most functional units are excluded from the

estimation. The performance counter selection procedure involves a select-and-test

iteration during the model training period, i.e. train the model using a set of selected

performance counters and perform a cross-benchmark test (different benchmarks are

used for training and testing) on the trained model.

During linear model training for β parameters and for model verification, SESC is

used to record the power trace for applications. This information is used by HotSpot

[2], a thermal simulator, to determine actual temperatures that can be used for train-

ing or for comparisons versus thermal estimates to verify our approach. However,

since only dynamic power consumption is reported by the simulator and static leak-

age power accounts for a non-negligible part of total power dissipation for submicron

technology nodes (about 40% for our chosen node of 45 nm), we add a static power

estimate to the SESC power estimate for each functional unit. First, a dynamic

power trace of all function units for a specific application is generated. A percentage

of processor dynamic power (40% based on the prediction in [29]) is used to estimate

static power and a portion of this power is added to the dynamic power trace for

each functional unit (proportional to area). To account for the effects of tempera-

ture on static power, the power trace is fed to HotSpot and thermal simulation is

performed. The static power for each functional unit is then adjusted using thermal

dependency linearization [61]. A combination of the adjusted static power and the
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dynamic power is then used for model training and verification using HotSpot. We

have found that the effects of temperature-dependent static power are small over the

temperature change range considered.

3.4.2 Thermal Simulator

The HotSpot simulation tool, which takes power traces from SESC, target pro-

cessor geometry and material parameters as inputs, is used to generate accurate

”golden” temperatures. As mentioned in the previous subsection, it is assumed that

the HotSpot generated temperature values are the actual temperatures for training

considering the sophisticated thermal diffusion model implemented by HotSpot. An

AMD Athlon64 processor is used to assess our approach. The floorplan of AMD

Athlon64 processor is shown in Fig. 3.4. The processor includes 24 functional blocks,

each of which is labeled in the figure. Each block contains a thermal sensor. Ac-

cording the processor specification of AMD Athlon 64 fabricated under 130 nm SOI

technology, the reported die size is 193 mm2 [1]. After technology scaling, the area of

the processor is estimated to be 24 mm2 in 45 nm technology. The frequency of the

processor is configured at 1 GHz in simulation and the overall initial temperature of

the processor is set to 50oC.

3.5 Model Evaluation

The SPLASH-2 and SPEC2000 benchmark suites were used to validate the ef-

fectiveness of our linear models for both absolute and incremental temperature esti-

mation. Section 3.5.1 presents the results for absolute temperature estimation, and

other sections are dedicated to incremental temperature estimation.

3.5.1 Evaluation of Absolute Temperature Estimation

The velosity benchmark is used to train the linear model (find βββ) values and the

trained model is tested for temperature estimation on other benchmarks. Figure
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Figure 3.4: Floorplan of the Athlon 64 processor [71]

3.6 shows the estimated and actual temperature profile for several benchmarks at a

representative time instance. In the subfigures, each point on the x axis represents a

thermal sensor value in the processor and there are 24 total sensors integrated on the

chip. Sensor 8 and sensor 19 correspond to the integer scheduler and load/store unit,

respectively, and they have relatively high temperatures due to high activity. Sensor

24 is in the L2 cache of the processor and its temperature is low because of its large

area and relatively low activity.

The estimated temperature profile and the actual temperature profile have very

similar shapes in the graphs, so the relative relationship among sensors are estimated

correctly. Graphs at other time points are similar. Figure 3.5 shows the correlation

between the estimated and actual temperature profile curves for the benchmarks over

a series of 3,000 time points. For all benchmarks, the correlation coefficient is larger

than 0.9 which indicates a good linear relationship between the two curves. However,

the estimated and actual curves are offset in terms of the absolute temperature value,
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Figure 3.5: The correlation between estimated and actual temperature profiles

as shown in Figure 3.6. In next chapter, this systematic drift is offset by adding

constant values to temperatures determined from sensor readings.

3.5.2 Evaluation of Incremental Temperature Estimation

Mixed samples from a subset of benchmarks were used to train the linear model

(find βββ values) and the trained model was tested for temperature estimation on the

rest of the benchmarks. To evaluate the accuracy of the linear model, Tables 3.2 and

3.3 show the estimation error for one time interval. In this case, (3.11) is evaluated for

one time interval, using known T values to determine G gradients and measured per-

formance counter values P. Errors between the actual ∆T and ∆T values determined

with (3.11) are then calculated.

Table 3.2 gives the average absolute error and error standard deviation for each

sensor for a single interval using the β values determined through training. The error is

averaged over all 16 test benchmarks (benchmarks described in more detail in Section

3.4). Using information from this table it is possible to evaluate the trained models for
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Figure 3.6: The estimated and actual processor temperature profile at one time in-
stance for four SPLASH2 benchmarks. Each of the 24 thermal sensors in the processor
are represented on the horizontal axis for the time instance.
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Table 3.2: Average estimation error for each sensor over all benchmarks

Sensor ID 1 2 3 4 5 6

Avg. abs. error (oC) 0.0003 0.0002 0.0003 0.0002 0.0002 0.0002

Std. abs. error (oC) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

Avg. change (oC) 0.0011 0.0010 0.0078 0.0081 0.0069 0.0010

Std. change (oC) 0.0007 0.0005 0.0037 0.0043 0.0047 0.0007

Sensor ID 7 8 9 10 11 12

Avg. abs. error (oC) 0.0002 0.0035 0.0003 0.0002 0.0002 0.0014

Std. abs. error (oC) 0.0002 0.0045 0.0002 0.0002 0.0002 0.0013

Avg. change (oC) 0.0022 0.0838 0.0288 0.0222 0.0046 0.0274

Std. change (oC) 0.0016 0.0272 0.0122 0.0096 0.0035 0.0090

Sensor ID 13 14 15 16 17 18

Avg.abs. error (oC) 0.0002 0.0003 0.0002 0.0004 0.0003 0.0003

Std. abs.error (oC) 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002

Avg. change (oC) 0.0166 0.0133 0.0032 0.0094 0.0139 0.0140

Std. change (oC) 0.0088 0.0088 0.0024 0.0058 0.0078 0.0076

Sensor ID 19 20 21 22 23 24

Avg.abs. error (oC) 0.0016 0.0072 0.0003 0.0015 0.0014 0.0005

Std. abs.error (oC) 0.0008 0.0049 0.0003 0.0010 0.0009 0.0003

Avg. change (oC) 0.0102 0.0437 0.0139 0.0126 0.0120 0.0001

Std. change (oC) 0.0056 0.0119 0.0060 0.0049 0.0044 0.0001
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Table 3.3: Average estimation error for each benchmark over all sensors

benchmark mcf vortex swim art apsi water-spatial

Avg. abs. error (oC) 0.0017 0.0005 0.0008 0.0019 0.0006 0.0004

Std. abs. error (oC) 0.0022 0.0003 0.0009 0.0004 0.0006 0.0004

Avg. change (oC) 0.0082 0.0117 0.0365 0.0338 0.0048 0.0181

Std. change (oC) 0.0002 0.0116 0.0058 0.0002 0.0004 0.0172

benchmarki radiosity ocean radix parser twolf fft

Avg. abs. error (oC) 0.0006 0.0011 0.0032 0.0004 0.0002 0.0008

Std. abs. error (oC) 0.0007 0.0009 0.0010 0.0007 0.0001 0.0010

Avg. change (oC) 0.0086 0.0409 0.0078 0.0113 0.0036 0.0195

Std. change (oC) 0.0045 0.0123 0.0060 0.0036 0.0031 0.0112

benchmark vpr ammp applu barnes

Avg.abs. error (oC) 0.0003 0.0005 0.0005 0.0007

Std. abs. error (oC) 0.0004 0.0006 0.0010 0.0003

Avg. change (oC) 0.0068 0.0047 0.0178 0.0046

Std. change (oC) 0.0046 0.0006 0.0178 0.0022

all sensors. Sensor 8 (integer scheduler) and sensor 20 (FP scheduler) report relatively

high error and error variation compared with other sensors due to their high activity.

Table 3.3 gives the average absolute error and the associated standard deviation for

each benchmark. The error is averaged over all sensors for each benchmark. From

this table, we can evaluate how the trained models work for all benchmarks. In

general, average absolute error and standard deviation are low in the tables. During

experimentation we found that the trained model was most effective for benchmarks

which have similar execution characteristics to the benchmark training set. However,

the use of a broad class of benchmarks for training helps minimize error across a

larger number of benchmarks.
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Figure 3.7: The estimated and actual processor temperature profile at four time
instances for the SPLASH-2 ocean benchmark.
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3.5.3 Estimated Thermal Profile for Incremental Temperature Estima-

tion

Fig. 3.7 shows the thermal profile across all sensors at four time instances of the

SPLASH-2 ocean benchmark. Experiments with other benchmarks created similar

graphs. At the first time point, the estimated profile is inaccurate due to the lack of

knowledge of initial temperatures. In succeeding time points, the estimated temper-

ature profile more closely matches the actual thermal profile. At the 3rd second, a

close temperature profile match is achieved. It should be noted that while an absolute

temperature match is not achieved, a relative match across the sensors is provided.

In Section 4, this systematic drift is offset by adding constant values to temperatures

estimated from sensor readings.

3.5.4 Temporal Evolution of Incremental Temperature Estimation

Fig. 3.8 shows how the estimated temperature progresses over time for three

sensors (integer scheduler, ALU and floating point scheduler). Other sensors show

similar trends. Since the initial temperatures are randomly chosen around 55oC for

all sensors, the estimation mainly reflects heat diffusion during the first 3 seconds.

Over time, the temperatures of these three components are corrected to match their

approximate relative values (the floating point scheduler is the hottest and ALU is

the coolest). Fig. 3.9 shows the correlation coefficient between these two values over

time.

To evaluate accuracy, the effect of limiting the number of performance counters

used to generate thermal estimates is also considered. Table 3.4 indicates the average

absolute error over all sensors and benchmarks for different numbers of performance

counters used to generate estimates. Fourteen of the counters provide little benefit

in terms of absolute error.
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Figure 3.9: The correlation between estimated and actual temperature profiles for
various benchmarks.
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Table 3.4: Average absolute error of temperature estimation for all sensors and bench-
marks if the number of performance counters is limited to specific quantities

No. counters Abs. error (oC)

5 0.5000

10 0.0164

15 0.0031

20 0.0009

34 0.0009

3.6 Principal Components of Performance Counter Vectors

In Section 3.2 it was shown that combinations of performance counter changes

and thermal gradients can be combined to estimate temperature changes. However,

it has previously been determined that performance counter values are correlated,

potentially leading to model instability [22]. For example, a branch miss prediction

may lead to a pipeline flush which impacts IPC. To explore the impact of this is-

sue, experiments were performed to replace the P i values in (3.9) and (3.10) with

uncorrelated principal components [44].

Principal component analysis (PCA) transforms an input vector (in this case u

performance counter values) into a new vector set by multiplying the input values

with a matrix of the eigenvectors derived from the set, as shown in (3.21).

P ′1×u = P1×u ∗ C (3.21)

P1×u is the original vector of u performance counter values collected from the processor

and C is a coefficient matrix of eigenvectors determined during model training. P ′1×u

is the principal component vector. In many cases, depending on the eigenvalues of the

original data set, some of the P ′1×u set may be ignored, leading to a reduced dimension

vector P ′1×v. Rather than inserting P1×u performance counters into the linear model

in (3.11), the reduced dimension principal component estimates are inserted instead.
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Figure 3.10: Eigenvalues calculated for 34 principal components from 34 performance
counters collected using CINT2000 benchmarks and SESC simulator.

Since variables in P ′1×v are orthogonal with each other, the multicollinearity problem

is eliminated.

Experimentation showed that the largest 14 principal component estimates corre-

spond to non-zero eigenvalues, but the remaining 20 have eigenvalues close to zero.

In general, to maintain maximum accuracy, the number of principal components (e.g.

the dimension of v in P ′1×v) used in the model should include the number of non-zero

eigenvalues, in this case 14.

Fig. 3.11 shows the thermal estimation error for different numbers of principal

components used in the model. As expected, accuracy is improved as the number of

principal components is increased from 5 to 14. Principal component count increases

beyond this value do not improve accuracy. To assess the benefits of PCA, the

experiments described in Section 3.5 were performed using the fourteen PCA values

in place of the thirty-four P i values as part of the xi vector in (3.11) after model

retraining. In all our experiments, the estimated temperature results were nearly

identical, indicating the negligible effect of performance counter correlation. As a

result, the rest of our reported results use P i values in (3.11) rather than PCA values.
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Figure 3.11: Prediction accuracy comparison for different numbers of principal com-
ponents used in the model.

3.7 Dynamic Model for Changing Cooling Conditions

In contemporary computer systems, a variety of cooling technologies (e.g. fans,

liquid) are used to efficiently remove heat from the microprocessor and protect it

from overheating. Often, the amount of cooling (e.g. fan speed, fluid flow speed) is

dynamically adjusted based on a processor’s thermal situation. As a result, the β

parameters determined through training in Section 3.2 are only valid for a specific

cooling amount. In systems with multiple cooling levels, effectively (3.11) for thermal

sensor i can be restated as:

∆T i = xi · βββ(s)i (3.22)

where β(s) values have been determined using the training method described in Sec-

tion 3.3 for a specific cooling amount (e.g. fan speed). In this case, β(s) training

(Section 3.3) is performed at each cooling amount, s. In performing calibration, the

appropriate set of β(s) values can be used based on the current cooling amount. The

drawback of this method is that it increases storage cost incurred by storing multiple

model parameters.

Although this multiple training approach can be effectively used for multiple,

discrete cooling amounts, it does not address the issue of a large number of possible

cooling amounts. The model to dynamically adapt βββ(s) for an s which was not
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Figure 3.12: (a) One β model using cubic fitting for integer module (block 8 in Fig.
3.4) . (b) One β model using cubic fitting for ALU module (block 12 in Fig. 3.4).

previously trained can be achieved using polynomial fitting. Fig. 3.12 shows known

β parameters determined through training for integer scheduler as blue stars. β(s)

can be determined by a cubic fitting using Equation. (3.23).

β(s) = a0 + a1s+ a2s
2 + a3s

3 (3.23)

The β for the integer scheduler module in Fig. 3.12(a) decreases with increasing

fan speed based on its principal component. The β for the integer scheduler module

in Fig. 3.12(b) increases with higher fan speed. Since the first principal component

is negatively related to the temperature of ALU, the β increases even with improved

cooling The example shown in Fig. 3.12 exhibits a cubic fit. By building βββ(s) models,

only a few βββ parameters for specific s cooling amounts must be stored, saving storage

space.
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3.8 Summary

In this chapter, two linear models which are suitable for on-line calculation are

employed to estimate the temperatures of multiple sensor locations on the silicon die.

The estimated sensor and actual sensor thermal profiles show a very high similarity

with correlation coefficient ∼ 0.9 for most tested benchmarks.

Unlike previous techniques, we directly use information from performance coun-

ters for temperature estimation rather than using power consumption as an interme-

diate value for conversion between performance counter information and estimated

temperature. This direct approach reduces run time and eliminates the need to es-

timate per-functional unit power consumption. The proposed estimation model can

be adapted to changing cooling conditions via parameter modeling.
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CHAPTER 4

MULTI-SENSOR COLLABORATIVE CALIBRATION

On-chip digital thermal sensors, such as ring oscillators, often are affected by noise

due to process variation and gradual device wear-out. As a result, their readings may

drift away from accurate values. In this chapter we show that sensor readings can be

combined with estimates derived using the performance counter approach from the

previous chapter to generate more accurate corrected temperature readings. Although

it is expected that sensor readings will track corrected readings for long periods of

time, if the reading for a specific sensor significantly differs from its corrected readings

for a number of samples, the sensor can be recalibrated.

To determine accurate temperature values, estimated temperature values obtained

in Chapter 3 and readings taken from sensors are merged via a Multi-Sensor Collab-

orative Calibration Algorithm (MSCCA) and ∆-MSCCA. These algorithms can be

executed at run time using a block of consecutive sensor readings. Corrected tem-

perature values obtained from the algorithm are then used to adjust the mapping of

thermal sensor parameters to temperature readings. A Bayesian technique integrated

into MSCCA utilizes the implicit physical proximity of the estimated temperature

locations (spatial correlation) to correct sensor reading errors.

4.1 Dynamic Calibration Strategy: Approach Overview

Fig. 4.1 shows our strategy for dynamic on-chip sensor calibration. This flow can

be broken down into four steps, one which is performed once during the design or

post-silicon phase and three which are performed repetitively at run time.
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Figure 4.1: Our dynamic calibration scheme for on-chip thermal sensors

1. Temperature model training - In the design or post-silicon phase, a ther-

mal estimation model is developed based on accurate temperature recordings

through thermal imaging technology and system statistics from performance

counters. The model training outputs a set of parameters called βββ parameters.

These βββ parameters define the relationship between performance counter values

and estimated temperatures.

2. Temperature estimation - The βββ parameters are used in a series of lin-

ear equations to convert performance counter values to temperature estimates.

Although useful, temperatures obtained from this model often do not meet

accuracy requirements since performance counters cannot capture all on-chip

thermal details precisely.
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3. On-chip thermal sensor recording - Potentially noisy thermal sensor read-

ings are collected from on-chip thermal sensors.

4. Merging algorithm - To calibrate a thermal sensor, we combine thermal es-

timations and sensor readings using a Bayesian-based fusion algorithm. This

MSCCA algorithms generate corrected temperature values and identifies how

much a thermal sensor should be adjusted in calibration, if needed. Note that

the initial temperature feedback (dashed line) only effective for ∆-MSCCA be-

cause no initial temperature is assumed for MSCCA.

In Chapter 3, temperature estimation and model training are considered. This

chapter describes our merging algorithms and the techniques used for on-chip sensor

readings.

4.2 Problem Formulation

Bayes’ theorem presents the relationship between a known (priori) probability

distribution and a posterior probability distribution; it is widely used for parameter

inference. The unknown parameter distribution is represented by p(θ), which repre-

sents the prior knowledge of θ and the distribution of random variable x for a given

θ is p(x|θ). The distribution of θ after an observation can be calculated using the

following formula.

p(θ|x) =
p(x|θ)p(θ)
p(x)

(4.1)

For our sensor calibration problem, the actual temperatures of sensors are unknown

attributes which are estimated by Bayesian inference. The following definitions are

used for the formulation of the sensor calibration problem.

• t and p(t) : the random vector of the actual temperatures and its probability

distribution;
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• r and p(r) : the random vector of the thermal sensor readings and its probability

distribution;

• e and p(e) : the random vector of the estimated temperatures and its probability

distribution;

• Σr: the covariance matrix of the random vector r;

• Σe: the covariance matrix of the random vector e;

• p(r|t): the probability distribution of the sensor readings given the actual tem-

peratures (sensor noise distribution);

• p(t|r): the probability distribution of the actual temperatures given the sensor

readings (statistical inference after an observation);

The probability distribution of the actual temperature t is given by the following

formula. Note that t and r are multivariate random variables.

p(t|r) =
p(r|t)p(t)

p(r)
(4.2)

In the above equation, the priori knowledge of the actual temperature distribution is

p(t), which can be obtained via thermal estimation discussed in Chapter 3. So, the

priori knowledge is p(e). The posteriori inference of an actual temperature after an

observation is p(t|r).

Since the temperature change rate is less than 0.1oC per millisecond [91], we

assume that the actual temperature keeps constant during a 1 millisecond period. For

today’s high performance processors, this corresponds to several million clock cycles

and enough sensor and performance counter readings can be obtained to perform the
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calibration algorithm. The corrected temperature is defined as the expected value of

the conditional random vector t|r which is calculated by the following equation.

µµµt = E(t|r) =
∫

t× p(t|r)dt (4.3)

The covariance matrix of the corrected temperature is given as:

Σt = E[(t− µµµt)(t− µµµt)′] (4.4)

The probability distribution can be characterized by collecting a time series of sensor

readings.

Because there are many factors, such as supply voltage, process variation and

ambient temperature fluctuation which impact the sensor readings, the noise of a

thermal sensor follows a Gaussian distribution, i.e. r|t ∼ N (t, Σr). In the Gaussian

case, (4.3) and (4.4) have closed form representations as follows [31].

µµµt = µµµe + Σe(Σe + Σr)
−1(r− µµµe) (4.5)

Σt = Σe −Σe(Σe + Σr)
−1Σ′e (4.6)

Thus, the expected actual temperature given r, (µt), and its covariance (Σt) can

be determined directly from sensor readings and estimated temperature values from

performance counters.

4.3 MSCCA and ∆-MSCCA

The Bayesian inference of the actual temperature is used to perform calibration

on m thermal sensors once per every p readings (time instances). The goal of the

MSCCA algorithm is to determine the corrected temperature (µt) and covariance
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Algorithm 1 Multi-Sensor Collaborative Calibration Algorithm – MSCCA

1: Initialize www ← 000.
2: while Invocation count ≤ p

l
do

3: Store sensor readings in R matrix for next l time instances.
4: Store estimated temperatures determined from approach in Section 3 in E

matrix.
5: Adjust R matrix by adding offset www to each row.
6: Adjust E matrix by subtracting a constant value c.
7: The vector r is the columnwise mean of R.
8: The vector µµµe is the columnwise mean of E.
9: Calculate the covariance matrices Σr and Σe.
10: Perform Bayesian inference using Equations (4.5) and (4.6), and get the cor-

rected temperature µµµt.
11: www ← µµµt - r.
12: end while

(Σt) for each temperature sensor once per l samples. Two calibration algorithms are

described for the absolute and incremental temperature estimation respectively.

MSCCA: The algorithm is shown in Algorithm 1. The steps described in Section

4.2 are performed multiple times per calibration period to refine intermediate results

to a final value. In the following description, each algorithm invocation is performed on

readings from l consecutive time instances. A total of p
l

invocations are performed per

calibration. The calibration offset for sensor i, wi, is defined as the difference between

the corrected temperature and sensor reading at a specific time point. The w vector

contains all wi values. The R matrix (l×m) is initialized with raw sensor data in each

invocation and each column represents a time series of readings from one sensor. The

E matrix (l ×m) is initialized with raw estimated temperatures in each invocation

and each column represents a time series of estimation for one sensor. Step 5 updates

the sensors’ readings by adding the w offsets from the previous invocation and Step

6 adjusts the estimated temperatures since these temperatures have systematic error,

as mentioned in the previous chapter. The value c is the mean value of all elements

in R. Overall, algorithm 1 shows the multi-sensor collaborative calibration algorithm
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using Bayesian inference over multiple invocations until all p readings for m sensors

have been processed.

∆-MSCCA: The major difference between MSCCA and ∆-MSSCA is the addi-

tional corrected temperature feedback for ∆-MSSCA. Since ∆-MSSCA needs initial

temperature to estimate the temperature changes, current corrected temperatures

are used as initial temperatures for the calculation of the next block. As shown in

Fig. 4.1, temperature change estimation requires an initial temperature profile of the

silicon die which may not be available at run-time. For initialization of the estimation

approach, it is possible to assign an arbitrary temperature to each thermal sensor or

to use thermal sensor readings as initial temperatures. As seen in Algorithm 2, during

each of l samples, temperature sensor readings r and performance counter values are

read. For the sample, the sensor readings from all temperature sensors form a row in

an R matrix (line 8). Additionally, the performance counter values are converted to

estimated temperature changes for each sensor using (3.11) (line 5). These tempera-

ture changes are added to the estimated temperatures from the previous sample (line

6) and the results for each sensor is stored in an E matrix (line 7).

After processing l samples, corrected temperature values for each temperature

sensor are determined (line 14) using (4.5) and (4.6). Vectors r and µe used in the

corrected temperature calculation are determined from the columnwise mean of the

E and R matrices (lines 11 and 12). As noted in previous chapter and shown in Fig.

3.7, the use of performance counters to estimate temperature shows a strong relative

match, although an absolute offset for the actual temperature is often present. To

address this issue, a per-sensor offset value w is added to each r reading. Although we

found that w values are constant for each sensor across time and across benchmarks,

the values are recalculated in the algorithm for consistency. In our experimentation,

calculation was performed over p total samples with l samples per invocation. A total

of p
l

invocations are used for the p sample set.
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Algorithm 2 ∆-based Multi-Sensor Collaborative Calibration Algorithm – ∆-
MSCCA

1: Initialize www ← 000.
2: Initialize temperature profile
3: while Invocation count ≤ p

l
do

4: for i = 0; i < l; i++ do
5: Estimate ∆ temperatures determined from performance counters using (3.11)
6: Add ∆ temperatures to previous corrected temperatures and get updated

temperature profile.
7: Store the updated temperatures as a row in E matrix.
8: Store sensor readings as a row in R matrix.
9: end for
10: Adjust R matrix by adding offset www to each row.
11: The vector r is the columnwise mean of R.
12: The vector µµµe is the columnwise mean of E.
13: Calculate the covariance matrices Σr and Σe.
14: Perform Bayesian inference using Equations (4.5) and (4.6), and get the cor-

rected temperature µµµt.
15: www ← µµµt - r.
16: end while

4.4 Performance and Storage Evaluation

This section analyzes the computational complexity of both MSCCA approaches

and compares it with the complexity of using Kalman filtering to generate corrected

temperatures for thermal sensors. Although a full discussion of the KF algorithm

for temperature estimation can be found in [116], we provide a brief overview of the

required operations here. The KF approach requires two estimation steps to convert

performance counter values to estimated temperature. First, the power consumption

of individual functional units is determined using a linear set of equations which

have been determined via linear regression [78]. Per-functional unit power values

are then converted to estimated temperature via a second set of linear equations

[116] whose derivation require the difficult approximation of thermal resistance and

capacitance for on-chip functional units. To develop corrected temperature values

from estimates and sensor readings, KF then uses cross correlation with previously-

determined noise values to merge the estimates and readings together. Unlike our
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approach, where corrected temperatures are generated every l samples, KF requires

corrected temperature evaluation for every sample, a significant time penalty. Thus,

our approach has two significant practical benefits versus KF:

• Estimated temperatures are determined directly from performance counter val-

ues rather than requiring power as an intermediate value. The elimination of

power as a transition metric also eliminates the need for complicated thermal

resistance and capacitance calculation.

• MSCCAs requires many fewer operations and can be performed less frequently

reducing run time.

4.4.1 Computational Complexity

The computational cost for MSCCAs and KF approaches (not considering model

training which takes place only once at design time) can be broken down into two

parts: temperature (or power) estimation and temperature correction. The computa-

tional cost of the power estimation for KF and temperature estimation for MSCCAs

is the time required to calculate a linear combination of scaled performance counter

values. As a result, the estimation complexity is O(np), where n is the number of

performance counters and p is the number of sample sets. The estimation column in

Table 4.1 shows the number of operations needed to perform this estimation (thermal

for MSCCAs and power for KF). There are n = 34 performance counters included in

our linear regression model, so we specify complexity in terms of this value.

The MSCCAs approach stores samples and performs Bayesian estimation once

per l time steps. Table 4.1 shows the number of operations performed for p sets

of readings. For the MSCCAs, l time instances (sets) of readings per invocation

are used. As noted in the previous subsection, calibration can be simultaneously

performed for multiple consecutive sensor readings for each sensor in one invocation.

In our implementation, there are m=24 thermal sensors, so the matrix dimensions of
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Table 4.1: Operations required by MSCCAs and Kalman filtering for p sets of sample
readings for 24 thermal sensors

MSCCAs Approach KF Approach
Operation Estimation

correction total correction total

scalar addition 34p×24 p
l
(444l − 48) p

l
(1404l − 48) 0 816p

scalar
multiplication 34p×24 p

l
(300l + 48) p

l
(1260l + 48) 0 816p

matrix addition 0 p
l

p
l

2p 2p

matrix
multiplication 0 p

l
p
l

10p 10p

matrix-vector
multiplication 0 p

l
p
l

3p 3p

matrix inversion 0 p
l

p
l

p p

vector addition 0 p
l

p
l

3p 3p

Σr and Σe are 24×24. If the matrix operations are converted to scalar operations,

there are about 150, 000p additions and 150, 000p multiplications required for the

KF method. In our method, the numbers of additions and multiplications are about

p
l
(1404l + 14, 000) and p

l
(1260l + 14, 000).

In contrast, KF-based algorithms predict and update the temperature for each

set of sample readings, resulting in more matrix operations. In Table 4.1, the 34p

scalar operations for KF represent the operations to convert power estimates to tem-

perature estimates for a single sensor. The remaining operations represent merging

computations for temperature estimates and temperature sensor readings.

4.4.2 Memory Overhead

Since samples must be stored in matrices for a period of time before they are pro-

cessed, MSCCAs does require more memory usage than the KF-based approach. In

general, the KF approach does not require storage for the power estimates and sensor
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reading samples. At each time step, the thermal sensor samples (sensor readings) and

temperature estimates determined from power estimations are used to update tem-

peratures, and then these samples are thrown away. The MSCCAs approach must

store thermal sensor samples R and temperature estimates E for l samples in memory

until the next MSCCAs evaluation. As a result, the memory complexity for the KF

approach is O(1) and for MSCCAs is O(ml). In our experiments, l is several hundred

and m = 24 sensors are used. So the memory storage of samples is around several

kilobytes.

4.5 Implementation Issues

The use of thermal calibration raises concerns about overburdening the hardware

and operating system of the target processor. However, the nature of our calibration

approach and recent trends in on-chip monitoring for microprocessors lessen this

concern. In general, thermal sensor calibration is expected to be performed once

every few seconds, rather than milliseconds. In Section 4.6, it is shown that algorithm

execution time is on the order of tens of milliseconds for evaluation that is performed

every ten seconds. This overhead limits the operating system and processor-level

power and temperature impact of the algorithm itself.

Independent of this overhead limit, recent trends indicate that microprocessors

increasingly include dedicated circuitry to perform monitoring and monitor data pro-

cessing which is separate from the main OS/processor compute platform. For exam-

ple, IBM EnergyScale [35] uses temperature and critical path monitors along with

a microcontroller for sensor data processing. Intel’s Active Management Technology

provides a separate on-chip communications channel and controller to monitor device

operation and control system responses at the operating system level. Often, these

monitoring and monitor data processing infrastructures can be quite small compared

to the main processing infrastructure (e.g. 0.2% of overall processor area [119]),
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Table 4.2: Benchmarks used in experimental evaluation

Suite Name Set I Set II

SPEC2000 CINT bzip2, crafty, gzip gap, gcc

SPEC2000 CFP equake, mgrid mesa, sixtrack, wupwise

SPLASH2 volrend, cholesky, raytrace lu, water-nsquared, fmm

Suite Name Set III Set IV

SPEC2000 CINT mcf vortex parser, twolf, vpr

SPEC2000 CFP swim, art, apsi ammp, applu

SPLASH2 radiosity, ocean, radix barnes, fft, water-spatial

limiting system performance impact. These effects can be weighed against the ben-

efits of a more accurate DTM approach due to improved thermal sensor calibration.

Additionally, the processing of monitor data often takes place in an area which is

isolated, limiting self heating issues in the main processor due to the monitoring data

processing.

4.6 Experiments and Results

For training and verification of our new calibration approach and for comparison

to KF, we use the applications listed in Table 4.2 from the SPEC2000 and SPLASH-2

benchmark suites. SPEC2000 is an industry-standardized CPU-intensive benchmark

suite which include both integer and floating point applications. To diversify the

test benchmarks, we mixed SPEC2000 and SPLASH-2 in the same test sets. These

benchmarks were randomly divided into four sets: Set I, Set II, Set III and Set IV. Our

thermal estimation model (β values) was trained using benchmark sets I and II. Our

models and algorithms are verified with the remaining sets. Although SESC supports

multi-threaded simulation for multi-core systems, all benchmarks are configured to

run in a single processor in our experiments.
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Figure 4.2: Sensor data and thermal estimation merging scheme. Sensor readings are
artificially generated shown in the left flow; Estimated temperature from performance
counter are obtained by the right flow.

4.6.1 Methodology

Simulation Scheme: The HotSpot simulation tool, which takes power traces

from SESC, target processor geometry and material parameters as inputs, is used to

generate accurate “golden” temperatures. As mentioned in the previous subsection,

it is assumed that the HotSpot generated temperature values are the actual tempera-

tures considering the sophisticated thermal diffusion model implemented by HotSpot

(Fig. 4.2).

Spatial and Temporal Noise: Variations in sensor accuracy across temper-

ature sensors on the die (spatial noise) is mainly caused by process variation which

is relatively static, so we consider spatial noise to be constant for short time periods

(several hours). Unlike spatial noise, variations in a specific sensor’s accuracy over

time (temporal noise) is caused by environmental effects like voltage and ambient

temperature fluctuation, so its value varies for each temperature sample.
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Figure 4.3: The thermal profile of the processor for one time instance of the lu
benchmark. Each point on the horizontal axis represents a single sensor located in a
block in Figure 3.

4.6.2 Effectiveness Verification

In a first series of experiments, the thermal profiles for the AMD Athlon 64 were

determined using Algorithm 1 and 2. For these experiments, the standard deviation

of temporal and spatial noises were both set to 4oC and 6000 total time instances of

readings were processed. MSCCA uses l=100 time instances per invocation.

MSCCA: In Figure 4.3, we demonstrate the thermal profile of the AMD Athlon

64 processor for the lu benchmark after the 2000th time instance. The horizontal axis

represents thermal sensors for each functional block in Fig. 3.4. In the figure, the

actual temperature, sensor readings, and corrected temperature from the KF based

implementation and from MSCCA are plotted. Both constant spatial noise due to

process variations and temporal noise (shown in the plot of the sensor readings) are

taken into account in our simulation. The first observation is that both methods

effectively reduce the sensor reading errors: the sum of the square errors of all sen-

sors for the corrected readings is much smaller than that of sensor readings. The

second observation is that the thermal profile is recovered after synthesizing two data
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sources (the estimated temperature and sensor readings in our case, the statistical

characteristics of the power dissipation and sensor readings in the KF case).

∆-MSCCA: In Fig. 4.4, we demonstrate the thermal profile of the AMD Athlon

64 processor for the bzip2 benchmark. In the figure, the actual temperature, sensor

readings (only spatial noise is shown for clarity but the experiment is performed

with both spatial and temporal noises), corrected temperature from the KF-based

implementation, and corrected temperature from ∆-MSCCA using thermal estimates

from performance counters are plotted. It is apparent that both methods effectively

reduce the sensor reading errors: the sum of the square errors of all sensors for the

corrected readings is much smaller than that of sensor readings.

Although corrected temperatures initially differ from actual temperatures due to

incorrect initial estimates of temperature, the corrected temperatures determined by

∆-MSCCA quickly converge. In both the ∆-MSCCA and KF cases, the thermal

profile is recovered after synthesizing two data sources (the estimated temperature

and sensor readings in the ∆-MSCCA case, the statistical characteristics of the power

dissipation and sensor readings in the KF case). The ∆-MSCCA case has the benefit

of faster calculation (contrasted in Section 4.6.6) and a much simpler model training

process (no power-to-temperature model needed).

4.6.3 Temperature Tracking Using ∆-MSCCA

Fig. 4.5 shows the temperature tracking results for three thermal sensors: Sensor 8

(integer scheduler), Sensor 15 (L1 data cache) and Sensor 20 (floating point scheduler).

The results from other sensors are similar. For each sensor, four curves are plotted in

the figure: the actual temperature, ∆-MSCCA corrected temperature, noisy sensor

readings and noisy sensor reading with temporal noise pruned out. Since we assume

that the spatial noise does not change in a short time period, the green curve has
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Figure 4.4: The estimated and actual processor temperature profile at four time
instances.
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Figure 4.5: Temperature tracking over 6 seconds for thermal sensor 8 (integer sched-
uler), 15 (L1 data cache) and 20 (floating point scheduler) in Fig. 3.4 running the
twolf benchmark.

a constant offset from red curve. The simulation lasts for 6 seconds and the initial

temperatures for all sensors are randomly generated.

Although the actual initial temperatures for the three sensors are not 50oC, ∆-

MSCCA estimation results were generated using this initial value. Estimated tem-

perature values converge to the actual temperature over time. The figure indicates

that sensors 8 and 20 show good calibration accuracy since the estimation curves are

closer to the actual curves than the sensor reading curves.

Fig. 4.6 shows temperature tracking results with different fan speeds, 800, 2800

and 4800 rpm respectively. A different set of βββ parameters are used for each fan

speed, as discussed in Section 3.7. The thermal model can effectively track the actual

temperature values for all fan speed values, as expected.

4.6.4 Estimation Error Comparison

The experiments in the previous subsection qualitatively show the effectiveness of

dynamic sensor calibration using data fusion. In this section, the error of the both

MSCCA approaches are quantitatively evaluated. Fig. 4.7 shows the average absolute

error and the standard deviation of the errors for original sensor readings, MSCCA,

∆-MSCCA and the KF approach. The MSCCA results in Fig. 4.7 were determined
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Figure 4.6: Temperature tracking with various fan speeds running the benchmark
volrend

using the same training set as the ∆-MSCCA algorithm. The spatial noise added to

sensor readings is Gaussian with standard deviation 6oC and the temporal noise is

Gaussian with 4oC standard deviation.

In Fig. 4.7(a), the average absolute error is reduced by 5oC (from 6oC to 1.2oC)

with respect to the original sensor readings. In Fig. 4.7(b), the standard deviation of

the error is reduced by a factor of 10 (from 3oC to 0.2oC) from the original sensor

readings with limited computational effort.

4.6.5 Impact of Sensor Reading Noise for ∆-MSCCA

The standard deviation of the errors of the corrected temperature increases as the

noise of the sensor readings becomes larger. The experiments in Section 4.6.4 were

repeated, this time with varying amounts of noise in the sensor readings. Experiments
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Figure 4.7: (a) The average absolute error for sensor readings, temperatures generated
with MSCCA, and with KF (b) The standard deviation of errors for sensor readings,
temperatures generated with MSCCA, and KF approaches.

of 10,000 time instances each were performed. To better evaluate the effect of noise,

one set of 10,000 random noise values was determined for each noise amount (e.g.

each column in Table 4.3). These values were added to read values and the results are

used for comparison across configurations. The table shows the standard deviations

of corrected temperatures for sensor readings with four different sensor noise levels.

As predicted, the less accurate the sensor readings are, the larger error seen in the

corrected temperature.

4.6.6 Run Time Comparison

Table 4.4 shows the total run time including both temperature estimation and

correction for both MSCCA and KF approaches. The total number of samples is

10,000, collected in 10 seconds. The total run time per sampling interval for MSCCA

is < 0.004 seconds for MSCCA and about 0.2 seconds for the KF-based approach. As

seen in the table, the run time of MSCCA decreases as the number of time instances
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Table 4.3: The standard deviation of the error for the corrected temperatures over
10,000 time instances for increasing sensor error

Time instances Std dev of sensor error oC

per invocation l 2 4 6 8

100 0.1059 0.1575 0.2047 0.2798

200 0.1137 0.1663 0.2159 0.2935

300 0.1203 0.1711 0.2241 0.3040

400 0.1276 0.1732 0.2284 0.3093

500 0.1311 0.1819 0.2372 0.3187

Table 4.4: Run time comparison (in seconds) between MSCCA and KF approaches
for 10000 time instances

Instances/invocation 100 200 400 500 1000

MSCCA run time 0.0387 0.0301 0.0242 0.0228 0.0169

KF run time 1.9076 1.912 1.9289 1.9133 1.8946

per MSCCA invocation increases and it remains constant for the KF approach since

corrected temperature calculation is performed for each sample.

As we mentioned in Section 4.3, our approach can be inserted as system manage-

ment code in an operating system. Since system tick time is normally on the order

of milliseconds, the thermal estimation can be invoked when the OS core performs

thread scheduling. Based on our results from Table 4.4, the time needed to do estima-

tion calculation is < 0.004 millisecond, so the integration of the calibration approach

into the OS will minimally affect system performance.

4.7 Summary

In this chapter, estimated temperatures generated using our approach from Chap-

ter 3 and thermal sensor readings are merged using the Multi-Sensor Collaborative
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Calibration Algorithm and corrected temperature readings for thermal sensors are

achieved. Our strategy is evaluated using SPLASH-2 and SPEC2000 benchmarks

suites. Results show that the strategy can effectively recalibrate sensor readings in

response to inaccuracies caused by process variation and environmental noise. The

average absolute error of the corrected sensor temperature readings is < 1.5oC and

the standard deviation of error is less than < 0.5oC for tested benchmarks. Our over-

all estimation and correction run time is significantly reduced versus Kalman filtering

(at least 50× faster) to make our strategy favorable for real time implementation.
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CHAPTER 5

THERMAL-AWARE TASK ALLOCATION BASED ON
REINFORCEMENT LEARNING

As many-core systems scale, thermal problems becomes more complex due to

increased computation and communication resources. In contemporary many-cores,

the power consumption of network on chip (NoC) routers, as well as processor cores,

is a significant concern. Many parallel and data intensive applications benefit from

the low latency and high bandwidth of on-chip NoC communication [98] [15]. The

heat dissipated by the NoC routers not only affects router temperature, but also the

temperatures of neighboring cores.

Effective many-core management schedules and allocates tasks considering ther-

mal impacts. Effective task scheduling for thermal management considers all many-

core components, including NoCs. This chapter presents a task allocation technique

based on reinforcement learning for many-cores. The effectiveness of the approach in

reducing maximum temperature is evaluated.

5.1 Thermal Profile of a 16-Core Processor including Data

Traffic

In this section, we examine the thermal profile of a 16-core processor to motivate

our use of both router and core temperarature in determining task allocation. The

power consumed by an on-chip network infrastructure (eg. routers) has become quite

significant (up to 39% of total power [99] [27]). Shang et al. determined that chip

temperature is impacted by thermal correlations among all on-chip components [90],
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increasing maximum chip temperature. To compare thermal profiles for a many-core

processor with different levels of network traffic, a 16-core system interconnected in

a mesh architecture was studied. A detailed discussion of the core and router con-

figuration and experimental methodology for thermal tracking is provided in Section

5.4. Fig. 5.1 shows three thermal maps which were generated by executing four tasks

on four separate cores in the 16-core system. The Splash-2 fft benchmark was run on

cores 6 and 7 with limited data transmission for all three scenarios. Two other tasks

were allocated to cores 2 and 14 in Figs. 5.1a and 5.1c, and cores 14 and 16 in Fig.

5.1b.

In Fig. 5.1a, four tasks are running independently in their corresponding cores

and the rest of cores are in an idle state. Since there is no data transmission in

the network, all routers are relatively cool except those in core 2, 6 and 14 due

to the spatial correlation of temperature across neighboring active processor core

components.

In Fig. 5.1b, tasks running on core 14 and 16 communicate with each other. As

a result, routers in core 14, 15 and 16 are in active state which leads to a rise in

temperature. The thermal hot spots are present in not only execution components

but also routers. Although workload intensity in core 6 and 7 is the same as scenario

a), the hot spot temperature is around 3oC higher than a) due to spatial thermal

correlation.

In Fig. 5.1c, the communication link is established between core 2 and core 14

via core 6. The temperatures of all routers on the link are pushed up due to circuit

routing activities. Although tasks in three scenarios incur the same power dissipation,

the peak temperature in c) is 5oC higher than that in b) and almost 8oC higher than

that in c).
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Figure 5.1: Thermal map for three different scenarios (a) all tasks running indepen-
dently (b) tasks running on cores 14 and 16 communicate with each other (c) tasks
running on cores 2 and 14 communicate with each other.
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5.2 Thermal Aware Task Allocation Using Reinforcement

Learning

In this section, we introduced a machine learning based algorithm which takes

router and processor core thermal effects into account by ”awarding” task allocations

which are likely to lead to better thermal results.

The definition of a many-core task allocation problem is as follows. A many-core

system is composed of a processor array and an on-chip network. Tasks are executed

in parallel on multiple processors. Although a single core processor has multi-tasking

capability and task ordering impacts the thermal profile due to temporal thermal

effects, we focus on the spatial distribution of tasks in this dissertation. Static global

optimization of this goal is infeasible as formulated in [41] since it requires the knowl-

edge of all tasks in advance. In our case, we assume that tasks arrive stochastically

and the duration time of task execution is also random, ie. one task may finish earlier

than other tasks even though it is started later. Task allocation is initiated under the

following two circumstances: 1) a new task arrives; 2) a thermal emergency occurs

and tasks on one or more cores need to be swapped out. The assumption is close to

a server which accepts stochastic workloads and dispatches them to processing cores.

The goal is to find a thermal-aware allocation policy which reduces the maximum

temperature on the chip to maintain healthy thermal environment.

5.2.1 Reinforcement Learning

In reinforcement learning (RL) [5], an agent (the task allocator in our case) ex-

plores an environment by taking actions and observing the resultant reward. The

reward of a particular action (assigning a task to a specific core) reflects the metric

to be optimized (maximum temperature). For our system, as task allocations are

performed, the model used to make assignments is refined in a learning process. The

task allocator gradually refines the model based on temperatures measured a time pe-
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riod after an allocation is performed. Effectively, the allocator learns how to respond

to a specific environmental condition (e.g. temperatures measured from temperature

sensors) based on the results of previous assignments when cores and routers had a

similar temperature profile.

Formally, reinforcement learning consists of the following

• A set of environment states: S, in this case temperature readings from on-chip

sensors;

• A set of available actions on the current state : A, task assignments to specific

cores;

• A rule to evaluate the reward for taking the action at a specific state: R;

• The goal is to find a policy π : S → A, i.e. what action (assignment) should be

taken at the current environmental (temperature) state.

One reinforcement learning technique is Q learning which provides a model free

reinforcement learning formulation for task allocation. A utility function can be de-

veloped to allow for the desired mapping. The utility value is defined to find the

optimal policy π in Q learning as follows.

Q(s, a) = E

[ ∞∑
i=0

(γirt+i|st = s, at = a)

]
(5.1)

The utility Q(s, a) indicates the maximum temperature rewards (both present, i = 0,

and future) which can be obtained by performing task assignment action a for temper-

ature vector state s at time step t. The accumulated future reward is discounted via

the discount factor γ. Therefore, the optimal policy is to take action which maximizes

the utility Q. During each task assignment at time t + 1, utility Q for temperature

vector s and assignment a in (5.1) can be approximated as follows [5]:

Qt+1(st+1, a)=Qt(st, a)+α(rt(s, a)︸ ︷︷ ︸
current
reward

+γmax
a′

Qt(st+1, a
′)︸ ︷︷ ︸

future reward

−Qt(st, a)) (5.2)
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Learning Agent:π 
(Task Allocator)

Environment: s
(Thermal Profile)

Reward: r
(Temperature Margin)

Action: a
(Task Dispatch)

Figure 5.2: Reinforcement Learning Scheme for Thermal Aware Task allocation

In the above equation, α is the learning rate and γ is the discount rate. The new

utility is the currently observed reward plus the maximum discounted future reward.

The difference of utility values is used to update Qt(s, a). The iteration equation

is known to converge to the optimal policy [5]. Fig. 5.2 shows the reinforcement

learning iteration process. Each cycle represents one task allocation. As mentioned

above, in our implementation, the task allocator is served as a learning agent and the

environment state is the chip thermal profile which is read from on-chip temperature

sensors. The task allocator interacts with the thermal environments through on-chip

thermal sensors. The task allocation decisions also impact the thermal condition for

the whole chip. After each task allocation episode, the allocator collects all system

thermal information to assess the reward of the last allocation action and select cores

for incoming tasks. The details on how to apply Q and update the model used to

determine it are discussed subsequently.

5.2.2 Chip Thermal States

On-chip thermal sensors are often deployed in the processors to assist thermal

management [84]. In our approach, a subset of thermal sensor readings from m

temperature sensors are used to represent the thermal state of the silicon. In order
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to apply RL in thermal-aware task allocation, the environment state are defined as

the chip thermal state which is a temperature vector,

s =
[
s1, s2, s3, ..., sm

]
. (5.3)

Each temperature value in the vector is a temperature reading from one of m different

on-chip thermal sensors deployed in different locations on the chip.

5.2.3 Task Allocation Actions

In a many-core, the task allocator is implemented on a dedicated core which

typically performs other system-level management functions. This core dispatches

the incoming tasks to other working nodes. So a task allocation action is to make a

decision which processor core should be receiving the workload and assign the task

the selected. If processor nodes are indexed from 1 to n, the possible actions are given

by the following set.

A = {1, 2, 3, ..., n−1, n} (5.4)

In real implementation, an action is selected from idle cores to achieve high computing

performance by utilizing the parallelism of the many-core. We refer legitimate actions

to task allocations to idle cores. An assignment to a specific processor is an action

denoted as a appeared in (5.2).

5.2.4 Thermal Reward

The construction of the reward function is a key step in effectively performing

RL-based task allocation. Since the peak temperature adversely impacts the perfor-

mance and reliability of the system, reduction of this value is the goal. Generally,

an emergency temperature is set as an alarm when the peak temperature crosses the

emergency line. System remediation (e.g. frequency and voltage scaling, task migra-

tion, and etc.) is needed to avoid severe performance degradation and device damage
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if a maximum temperature on the die passes this point. We define the reward of

a thermal state as the difference between the emergency temperature and the peak

temperature.

r = Tth − Tmax (5.5)

Based on the above equation, the reward r is defined as the margin between the

emergency temperature and the peak temperature. The higher the reward, the bigger

the temperature margin.

5.2.5 Utility Function Approximation

In our approach, a processor which has a high utility Q value is more likely to

to receive a task assignment. If the number of possible temperatures for a core

and associated router is relatively small, the utility function Q(s, a) in (5.2) can be

represented as a lookup table using temperature vector s and target processor core

a as inputs. In other words, for every input temperature vector s, a Q value which

has been previously determined and refined for a core a can be identified and used

to make the current allocation decision. This approach leads to two issues: (1) Q

values must be learned over time and stored in the lookup table and (2) temperature

readings can span a large range of continuous values that would have to be discretized.

As the state space of temperatures becomes large, using a lookup table for Q learning

becomes intractable due to memory limitations and the difficulty of updating it in

a timely fashion. Therefore, a continuous function is needed to map state-action

(temperature-target processor) pairs to Q values.

Q : S ×A → Q (5.6)

Due to high complexity of the value function 5.2, it is usually not realistic to

find a closed form function for the Q function. However, the value function can be

approximated by the linear combination of a series of basis functions, φi(s).
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Q(s, a) =
k∑
i=0

θai × φi(s) (5.7a)

a = 1, 2, ..., n (5.7b)

Here, θai are k weight parameters for core a that are refined after each allocation to the

core (k is defined in the next section). Each task assignment to a core (e.g. an action)

corresponds to a set of weight parameters θai for core a. Following the updating of

Q values at time t + 1, weight parameters (θai ) for the processor selected during the

previous allocation at time t are updated according to the gradient descent technique

[4].

θai (t+ 1) = θai (t) + α(rt + γmax
a′

Q(st+1, a
′)−Q(st, a))φi(st) (5.8)

5.2.6 Basis Functions

We need to specify basis function for value function approximation. The basis

scheme selected in this paper is radial basis functions (RBF)[4] which is defined as

follows.

φi(s) =
1√

2πσ2
e−||c−s||

2/2σ2

(5.9)

c =
[
c1, c2, c3, ..., cm

]
(5.10)

There are two constant parameters: c and σ2. Here, c is a m-element vector and σ2 is

a scalar. The elements of c− s provide context regarding the temperature difference

between sensor readings s and typical temperature measurements c. Temperature

centers are specified in this range. The value of each of the elements in c is defined

as one of v temperature centers within this range:

c1, c2, ..., cm ∈ {340, 350} (5.11)

The above example shows v = 2 centers. Since each of the values in the c vector can

take on any of the v values, there are k = vm combinations for the c vector. Thus,
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vm basis functions are available to approximate one Q function for each processor a.

Since there are n total processors (possible allocation actions), the total number of

parameters is n ∗ vm. Note that v is generally quite small (2 or 3).

5.3 Implementation of RL-based Task Allocator

In a many-core system, the task dispatcher is responsible for monitoring thermal

state and assigning tasks to cores. At a high level, the steps which take place during

each task allocation can be described as follows:

1. Temperature readings are collected from temperature sensors located in each

processor core.

2. The maximum temperature Tmax among all sensors is recorded.

3. The temperature values are used to determine the best assignment of a task to

an idle processor core based on a temperature-based utility function.

4. The model used to formulate the utility function is updated.

As formulated previously based on reinforcement learning, the utility function ef-

fectively determines which assignment is likely to affect the maximum temperature of

the chip the least. This effect is determined by considering the processing core’s in-

stantaneous temperature and the temperature of the attached router and surrounding

cores.

5.3.1 Task Allocation Algorithm Description

Algorithm 3 describes the task allocation procedure performed by the dispatcher.

Initially, the θai weight parameters of the Q function (5.7a) are initialized to zero to

define the initial thermal state of the chip. Steps 5-10 are performed for each task

allocation. An allocation can be invoked when a new task arrives or an overheating
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Algorithm 3 Task Allocator Algorithm

1: Initialize weight parameters θai ← 0;
2: Read temperature values s from temperature sensors;
3: Apply a random task allocation;
4: for each task allocation episode do
5: Get current temperature values st+1;
6: Calculate reward function for the last action based on (5.5);
7: For state st+1, calculate utility value, Q(st+1, a), for all processors a;
8: Find maximum Q value from the above step and update the selected processor

for the task: a← argmaxa′ Q(st, a
′);

9: Update weight parameter for θai according to (5.8);
10: Apply action a with probability p and the rest of all legitimate actions with

probability 1− p;
11: end for

situation is detected and a task must be migrated. The reward is calculated for the

last allocation action at Step 6 and current thermal states are obtained by collect-

ing temperatures from thermal sensors at Step 5. Step 7 and 8 determine the task

assignment to an idle core (action a) which leads to the maximum Q. Information

is updated once the appropriate task allocation action is determined. Our technique

is stochastic, i.e. the determined action is taken with probability p, and all other

assignments for a specific allocation are applied with combined probability of 1 − p.

Using this approach, potential good actions are not excluded and the environment is

extensively explored.

5.3.2 Memory and Computational Complexity

The main memory cost of the allocation algorithm is the storage of weight pa-

rameters. The total number of θai is vm, which is exponential. However, m (the

number of thermal sensors) can be controlled properly to meet performance and stor-

age requirement. To realistically apply the technique, we can cluster cores in several

groups and apply task allocation for each cluster. So the memory cost can be reduced

significantly.
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Figure 5.3: Single block floorplan generated by HotFloorplan

The computational complexity is O(2m) for the weight parameter θai update. In

our experimentation, we use nine sensor readings to represent the thermal state in a

16-core system. The time overhead of the task allocation is less than 0.2 ms, which

does not impact performance if allocation is performed once per second.

5.4 Experimental Approach

Simulation is employed to verify the proposed task allocation scheme. Power, tem-

perature and performance were simulated to verify the effectiveness of our new task

allocation scheme and to perform comparisons to adaptive random task allocation. In

this section, a detailed description of the simulation platform, task models and the

simulator flow are presented.

5.4.1 Many-core Floorplan and Sensor Allocation

We use a mesh topology to build many-core systems for verification purposes.

Both routers and processor cores in 45 nm technology were evaluated. McPAT[52] was

used to estimate the area and power for each architectural component in the processor

based on the parameters in Table 5.1, and DSENT [95] was used to estimate the area
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Figure 5.4: Deployment of 9 thermal sensors in a 16-core device

and power for the router based on the configuration in Table 5.2. HotFloorPlan was

fed with processor core and router area information to generate the floorplan for a

single core. Then, the many-core floorplan was obtained by replicating single-core

building blocks. Fig. 5.3 shows the HotFloorplan generated floorplan for a single

core-router block.

We assume that multiple thermal sensors exist in a block (including a core and

a router) and they are capable of identifying thermal hot spots. Thermal sensors

used by (5.3) to record thermal states are spread over the chip. Fig. 5.4 shows that 9

thermal sensors are evenly distributed in a 16-core to characterize the thermal profile.

Similar deployments are used for results generation.

5.4.2 Synthetic Workload

Twelve benchmarks from the SPLASH-2 suite are used to test our platform. Each

allocated task consisted of an instantiation of one of the benchmarks. Communi-

85



Table 5.1: Core Configuration

L1-I 16KB

L1-D 16KB

L2 256KB

ITLB 16 entries

DTLB 16 entries

Table 5.2: Router Configuration

message class 3

port number 5

frequency 2.0 Ghz

VC per port 8

flit size 144 bits

buffer length 24 flits

cation between tasks was randomly assigned. To determine dynamic temperature

values during many-core execution, power values for all processor core components

and associated routers were determined. The power traces of the SPLASH-2 bench-

marks were captured using the McPAT-integrated Sniper simulator [10]. HotSpot [2]

was used to convert calculated power values and the floorplan of components into

temperature values. Note that HotSpot considers the impact of power consumption

in neighboring cores and routers in addition to the local core in determining local

core power.

We use an M/M/c queuing model to mimic the task arrival and task execution

duration in the many-core system. In this model, task arrival is modeled as a Poisson

process whose inter-arrival time is exponentially distributed; the execution time of

tasks is also exponentially distributed. Value n is the number of cores in the system.

The task arrival rate is defined as λ and the service rate is defined as µ. The system

utilization, ρ, is given by the following equation.
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Figure 5.5: The simulation flowchart

ρ =
λ

nµ
(5.12)

Effectively, nρ defines the steady-state number of processor cores which are assigned

workload.

5.4.3 Simulation Flow

The simulation flow is shown in Fig. 5.5. As a first step, the power traces for each

benchmark for a single-core floorplan are generated. The power of a router under

different loads is also calculated. The task allocator is implemented in conjunction

with HotSpot which reports simulated chip temperatures. The task allocator re-

trieves temperature points which represent the s vector in (5.3). When a new task

is generated for allocation, its communication is paired with other tasks. The task

allocator assigns the appropriate power trace from the stochastic task generator and

maps it onto the floorplan. The HotSpot simulator reads the mapped power trace
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Figure 5.6: Convergence of θi values for a 25-core processor

from the task allocator and performs thermal simulation. The maximum temperature

is reported to the allocator for reward calculation.

5.5 Results

Our approach has been validated via simulation using 16-core, 25-core, 36-core

and 49-core systems. To implement the reinforcement learning technique, the learning

rate is set to α = 0.8 and the discount rate is set to γ = 0.8. These parameters were

determined empirically.

5.5.1 Effectiveness Validation

In an initial experiment, the convergence of our reinforcement learning model

is evaluated over a series of task allocations. In the experiment, allocations are

performed to all 25 processor cores. A selection of θi values is shown in Fig. 5.6.

Initially, θi values are all zeros and they begin to converge after 200 ∼ 300 allocation

episodes. Other θi values showed similar behavior.

The Q values for a fixed thermal profile are also evaluated as task allocation with

reinforcement learning proceeds. The thermal profile is represented by a sextuple

collected from thermal sensors (s0 = [343, 347, 340, 339, 342, 339]). We evaluate Q
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Figure 5.7: Convergence of Q values for a fixed thermal condition

values for two actions (allocation to processors 10 and 14, respectively) under thermal

profile, s0, for individual allocation episodes over a total of 800 task allocations.

Fig. 5.7 shows Q value evolvement over time as tasks are allocated and θi weight

parameters for function approximation are updated. Initially, Q values are all zeros

and they begin to converge after 200 ∼ 300 allocation episodes.

Fig. 5.8 shows a thermal snapshot of a 36-core processor at the seven minute time

point. Q values are calculated for all possible allocation choices at this time point.

Fig. 5.9 shows the magnitude of Q values for corresponding cores indexed in Fig. 5.8.

As seen in the figure, the Q value for action 22 is lowest among all actions because the

heat stress for core 22 is significant. An allocation to core 22 will negatively impact

the chip peak temperature. Actions 3, 18, 29 and 35 have relatively high Q values.

From the chip thermal map, it is seen that core 3, 18, 29 and 35 are relatively cool

and their neighboring cores are also in a favorable thermal condition. Effectively, the

allocator has learned how to respond this thermal environment. We also notice that

core 1 and 31 are cool but the Q values are not as high as the previous four cores.

These two cores are in the corner of the chip and the thermal conductivity of air is

much lower than silicon. The allocator effectively learns this information over time

via reinforcement.
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Figure 5.8: A thermal map snapshot for a 36-core

5.5.2 Peak Temperature Reduction

The peak temperature can be effectively reduced versus previous approaches

through the use of the proposed allocation technique. A series of experiments are

conducted to observe the peak temperature of the chip in comparison with the adap-

tive random approach [24] over five minute execution runs. This allocator assigns

tasks to one of the coolest available cores in a multi-core based on probabilities de-

termined from core temperature histories. In our implementation of the adaptive

random approach we also included the impact of router power consumption on task

allocations to allow for a fair comparison versus the reinforcement learning based

technique.

Table 5.3 shows the average peak temperature over time for different core counts

and system utilization ratios for the two approaches. For a low system utilization (ρ =

0.1), adaptive random and reinforcement learning have almost the same performance

in terms of peak temperature. The main reason is that the chip temperature is
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Figure 5.9: Q values for different actions at the thermal state given in Fig. 5.8.

less likely impacted by the distribution of tasks and the hot spot is mainly induced

by the workload intensity inside the core. Our technique performs better when the

system is moderately loaded (about half used). For example, compared to adaptive

random, our approach reduces peak temperature by 9.4% in a 49-core system (6.2%

across all many-core configurations). When the system is heavily utilized (ρ = 0.8),

the performance of two techniques is almost the same since feasible choices for task

assignment are limited. Proactive circuit level DTM can be used in this case to avoid

overheating.

Fig. 5.10 shows the differences in the peak temperatures over time between the

two approaches for 16-, 25-, and 36-core systems. Comparisons between reinforcement

learning and adaptive random indicate that the former approach is more effective in

reducing the peak temperature.

The importance of including router temperature in many-core task scheduling is

apparent from Fig. 5.11. All other reported results in this chapter consider the impact

of router temperature.

5.5.3 Memory and Computational Complexity

The time cost of the reinforcement learning allocator was evaluated for different

numbers of sensors, m, and two sets of temperature centers, v. Table 5.4 shows the
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Table 5.3: Peak temperature comparison between reinforcement learning (ours) and
adaptive random [24]. The value ρ indicates the average number of cores used during
execution. Percentage peak temperature reductions are shown.

System Utilization

ρ = 0.1 ρ = 0.4

core number ours [24] ours [24]

(oC) (oC) % (oC) (oC) %

16 73.2 74.1 1.2% 81.5 86.4 5.9%

25 74.6 74.3 -0.4% 83.1 86.7 4.2%

36 72.8 73.2 0.5% 83.8 88.3 5.1%

49 70.5 71.4 1.3% 78.0 86.1 9.4%

System Utilization

ρ = 0.6 ρ = 0.8

core number ours [24] ours [24]

(oC) (oC) % (oC) (oC) %

16 86.8 88.5 1.9% 93.8 93.5 -0.3%

25 87.5 90.8 3.6% 95.1 96.0 0.9%

36 87.3 91.1 4.2% 96.4 96.1 0.3%

49 86.2 90.8 5.1% 93.1 93.8 0.7%

average computational time for one task allocation. Typically, temperatures collected

from less than 10 sensors are representative of the chip thermal profile although more

sensors are needed to recover whole chip thermal map. The temperature centers

used in (5.10) are selected from two sets, {340, 350} and {335, 345, 355}, respectively.

For most cases, the computational time of task allocation is < 1ms . Since the task

allocation is only invoked when there is an incoming task or a thermal emergency, the

frequency of allocation is typically on the order of seconds. Therefore, the percentage

time cost of allocation with respect to the allocation interval is negligible. Although

the adaptive random technique also has very low overhead time cost (<< 1 ms) for
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Figure 5.10: Peak temperature comparison over time for ρ = 0.4 for reinforcement
learning (RL) and adaptive random (AR)

each task allocation, it must track temperature sensor readings over time (one sample

per 100 ms) regardless of task allocation rate. As a result, the technique becomes less

favorable in a system which has a low task arrival rate.

The primary memory cost of reinforcement learning is the storage of θi weight

parameters. In Table 5.5, the memory overheads are listed for typical processor core

configurations and most of them are less than one Mbyte. For contemporary servers

with gigabyte memories, this is a very small fraction of total memory. The adaptive

random approach requires a similar overhead (100s KByte) to track thermal history

for thermal index adjustment.
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Figure 5.11: Estimation results for RL if router temperature is considered or omitted

Table 5.4: Time Cost For RL Task Allocation (ms)

Temperature Sensor Numbers

Center Set 5 6 7 8 9

{340, 350} 0.014 0.024 0.043 0.081 0.150

{335, 345, 355} 0.074 0.216 0.635 1.927 6.210

Table 5.5: Memory Cost For a 16-Core System (KB)

Temperature Temperature Sensor Count m

Center Set 5 6 7 8 9

{340, 350} 2 4 8 16 32

{335, 345, 355} 15.6 46.7 140.0 420 1,259.7
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5.6 Summary

In this chapter, a reinforcement learning based task allocation strategy is proposed

to address localized overheating in many-core systems due to both processor core and

router power consumption. Function approximation is employed to evaluate quality

metrics (Q values) to find optimized allocation decisions. Our algorithm is verified

via detailed many-core simulation which includes on-chip routing. The experiments

show that the proposed technique is capable of capturing the complex on-chip thermal

environment induced by dynamic work load distribution. Our results show that the

proposed technique is fast (scheduling performed in <1 ms) and can efficiently reduce

peak temperature by 6% on average in moderately-loaded many-core processors for

a collection of SPLASH-2 benchmarks.
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CHAPTER 6

THERMAL AWARE TASK ALLOCATION FOR 3D
MANY-CORES

Three dimensional integrated circuits (3D-ICs) stack multiple silicon dies verti-

cally and use through silicon vias (TSVs) for inter-die communication. Although 3D

technology can effectively reduce circuit footprint and increase system performance,

the thermal behavior of 3D many-core processors has grown to become a major con-

cern in terms of both reliability and performance. High temperatures resulting from

the thermal proximity of stacked silicon dies in 3D-ICs and longer heat dissipation

paths impact circuit reliability and chip lifetime. To address the issue, hardware

based remediation techniques such as dynamic voltage and frequency scaling are ini-

tiated during thermal emergencies when a core temperature value passes a predefined

temperature line. These events inevitably cause speed degradation which offset the

performance benefits of 3D technology.

To alleviate heat issues, advanced cooling technologies have been proposed to

accelerate heat removal from stacked silicon, including liquid cooling using micro-

channels [85] and superlattice-based thermoelectric coolers [19]. In 3D systems, ther-

mal stress varies considerably across silicon layers. Spatial thermal correlation due to

horizontal and vertical heat transfer plays an important role [87] in shaping the chip

thermal profile. It is challenging to dynamically allocate workloads based on the chip

thermal profile due to this correlation. In a contemporary 3D many-core system, var-

ious components, such as processors, memories, and on-chip routers, among others,

are included. The increased power consumption in the communication infrastructure
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coupled with a multitude of stacked processing components makes the thermal profile

difficult to track using traditional diffusion simulation technology.

In this chapter, the reinforcement learning technique introduced in the previous

chapter is improved and applied to a 3D many-core system. As described in the

previous chapter, a reinforcement learning agent adaptively learns the thermal stress

of each core and makes an allocation decision based on the current thermal profile

obtained from thermal sensor readings. Since algorithm scalabilty is a major con-

cern for 3D systems, a cluster based algorithm is presented to accelerate RL-based

allocation.

6.1 Thermal Behavior in 3D Integrated Circuits

The physical structure of a 3D integrated circuit provides insights into its thermal

behavior. Figure 6.1 shows a typical implementation of a 3D integrated circuit. In

this example, three silicon layers are stacked on top of each other. The thickness of

the silicon layers in 3D-ICs is much thinner than in 2D-ICs. It is around 15µm -60µm

compared with 600µm-900µm for 2D-ICs [110]. However, the silicon substrate of a

3D-IC (the layer closest to heat sink - layer 2 in Figure 6.1) is thicker than interior

layers and comparable to the thickness of a 2D IC. Since a heat sink is more capable

of conducting heat flux than a printed circuit board, the layer closest to the heat

sink is often cooler than the interior layers. TSVs have better thermal conductance

than bonding material, so a larger TSV density results in higher thermal conductance

and stronger inter-layer thermal interference (also called vertical thermal correlation).

Thermal interference on the same layer is horizontal thermal correlation. In 3D chips,

vertical thermal correlation is stronger than corresponding horizontal values due to the

larger contact area between two layers versus the contact area between two adjacent

cores on the same layer.
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Figure 6.1: Typical 3D layout of an integrated circuit

A simple example is used to illustrate this observation. In a three layer many-core

system, two tasks are placed on two neighboring cores. In Figure 6.2, the tasks are

assigned to cores 14 and 15 on layer 2. In Figure 6.3, the same two tasks are assigned

to core 14 on layer 1 and core 14 on layer 2. The resulting thermal maps for these

two assignment schemes are shown in Figures 6.4 and 6.5. The second assignment

results in more thermal stress than the first. The peak temperature of the first and

second thermal maps are 66.34oC and 69.39oC, respectively.

Figure 6.6 plots peak temperatures for various assignment schemes for thermal

steady states. An assignment is represented by a tuple with four numbers. For

example, (2, 14, 1, 15) represents that one task is assigned to layer 2 at core 14 and the

other task is assigned to layer 1 at core 15. The peak temperatures vary for different

task assignment schemes, as observed in the figure. The peak temperature difference

is over 6oC for assignment (0, 14, 1, 14) versus assignment (2, 14, 2, 22). From these

simple examples, we can obtain the following insights.

• Insight 1: Tasks should be assigned to the layer closest to the heat sink since

the heat flux can be more easily conducted.
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Figure 6.2: Two tasks are allocated to neighboring cores on the same layer

• Insight 2: Back-to-back assignment (two neighboring cores on different layers, as

shown in Figure 6.3) produces more thermal stress than side-by-side assignment

(two neighboring cores on the same layer, as shown in Figure 6.2). Therefore,

back-to-back assignment should be avoided if possible.

• Insight 3: The cores at the corners are more easily heated leading to higher

peak temperature, so corner assignment should be given low priority.

6.2 Revisiting Reinforcement Learning

As mentioned in the previous chapter, a reinforcement learning task allocator

uses chip temperature information to dispatch tasks in a thermal-aware fashion. Es-

sentially, reinforcement learning is a trial-and-error process between an agent and a

dynamic environment. For thermal-aware task allocation, the agent is a task allocator

and the environment is the thermal condition of the silicon die. They interact with

each other by repeatedly performing the following two steps.

1. The allocator reads the temperature profile of the die and calculates quality

value Q (defined as expected accumulated rewards) for each possible allocation.
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Figure 6.3: Two tasks are allocated to neighboring cores on two layers
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Figure 6.4: Thermal maps resulting from Fig. 6.2 assignment

The processor core which has the highest quality value is selected to receive the

task.

2. For each task assignment, the resulting thermal profile is retrieved by reading

post-assignment temperature values from on-chip thermal sensors. The previous

allocation is evaluated in terms of thermal reward based on an optimization goal.

The result of the evaluation is used to update weights for future quality value

calculation.

More processor cores are typically included in a 3D system versus a 2D system, so

global optimization must generally consider temperatures from more thermal sensors
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Figure 6.5: Thermal maps resulting from Fig. 6.3 assignment
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Figure 6.6: Peak temperatures for assignment schemes for thermally-steady states.

in generating a detailed thermal profile. Thus, the computational overhead to run

reinforcement learning becomes high as the number of basis functions grows exponen-

tially with the number of sensors. Communication latency can also limit the overall

system performance because thermal aware techniques intrinsically place tasks apart

to reduce thermal interference. A hierarchical approach to task allocation is proposed

in the next section to reduce computational overhead and communication latency.

6.2.1 3D Many-Core Model

The 3D many-core model used in this dissertation is similar to those used in

previous work [121] [110]. We assume that there are three computing layers with the

same core count in each layer. Figure 6.7 shows a three layer many-core system with
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router

processor

TSV

Figure 6.7: A three layer many-core system with 16 cores on each layer

16 cores on each layer. The processor nodes are connected in a 3D mesh topology.

We assume that TSVs only pass between layers in the router region.

6.2.2 A New Definition of Thermal Reward

The construction of the reward function is a key step in effectively performing

RL-based task allocation. Since the peak temperature adversely impacts the perfor-

mance and reliability of a multi- or many-core, the reduction of this value is the goal.

Instead of using the temperature margin between the peak temperature and ther-

mal emergency line as in Chapter 5, a new reward function is defined when applying

reinforcement learning in a 3D many-core system.

We determine the reward of a task assignment based on the peak temperature

change before allocation and after allocation, as shown in Equation 5.5. Tpre is the

peak temperature before an allocation takes place and Tpost is the temperature after

the allocation, as shown in Figure 6.8. It is important to note that Tpre is the peak

temperature right before the allocation. Since temperature takes some time to reach a

steady state (usually hundreds of milliseconds), Tpost is the steady state temperature
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Figure 6.8: Tpost and Tpre peak temperature illustration in the task arrival and de-
parture time line

value after the stabilization period. This value reflects the steady state temperature

impact of an allocation. Tpost is always greater than Tpre because the allocation of

an additional task in this manner increases temperature. A constant value C is used

to guarantee that the reward is a positive value. From our experiments, the typical

peak temperature change is around a couple of degrees, so squaring is used to increase

mathematical sensitivity.

r = C − (Tpost − Tpre)2 (6.1)

Based on the above equation, the reward r of an allocation is an indication of how

much temperature increase occurred for that allocation. The higher the reward, the

less the temperature increase.

6.3 Cluster-based Reinforcement Learning for 3D ICs

As processor core count increases, especially for 3D systems which have multiple

computing layers, an increased number of thermal sensors are necessary to represent

the chip thermal state at a sufficient level of detail. Since the number of basis func-

tions (defined in Section 5.2.6) increases exponentially with the number of thermal

sensors (2m for m sensors with two temperature centers), computational complexity

can become unreasonable for on-line task allocation if m is large. To increase the scal-
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ability of the allocator for 3D many cores, we introduce a distributed RL allocation

approach which replaces the centralized RL agent for the system with a distributed

collection of agents. One agent is used per cluster of cores.

6.3.1 Reinforcement Learning on Clusters

Heat transfer results in spatial correlation between cores, although this correlation

decreases as the physical distance between cores increases. Fig. 6.9 shows the thermal

correlation coefficients between a selection of cores, determined via simulation. The

x axis represents distance, where one λ represents the width of a single core block.

According to the experiment, the correlation decreases to < 0.2 for cores which are

3 blocks away. Therefore, it can be said that the Q value for a core is less related to

temperatures at remote locations.

A cluster based method is now described that performs distributed task allocation.

Processing nodes are grouped into clusters based on their physical closeness and each

cluster has its own RL allocator which incurs limited computational overhead. Fig.

6.10 shows clustering for several many-core systems (25-core, 36-core, 49-core, 64-

core)1. Consider the 25-core processor as an example. There are 4 clusters in this

system and each cluster is a 4 × 4 processor array. Table 6.1 lists cores included in

each cluster (it is allowable to have overlaps between clusters). Similar clustering

techniques are performed for the other many-cores in Fig. 6.10. In a 3D chip, the

clustering is performed on each computing layer separately.

Task allocation is performed hierarchically. A cluster is first selected for allocation

and then RL allocation is performed among the cores in the cluster. Algorithm

4 shows the allocation procedure on a clustered many-core system. Initially, the

reinforcement learning allocator for each cluster is initialized. Upon a new task arrival,

one of clusters is selected for the task based on cluster average temperature. The

12D layouts are shown for clarity but the same concept applies for 3D layouts
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Figure 6.9: Spatial thermal correlation

Algorithm 4 Clustered RL Algorithm

1: Initialize weight parameters θai ← 0 for each RL cluster;
2: Read temperature values s from temperature sensors;
3: Calculate average temperatures for all clusters, {Ci}
4: Find the cluster which has the lowest average temperature, Cmin
5: Apply reinforcement learning on Cluster Cmin according to Algorithm 3 and find

the core to which the task will be assigned.
6: Apply task allocation according to the previous result;
7: Update weight parameters for the selected cluster based on the resulting thermal

reward.

average temperature is calculated from thermal sensor readings in each cluster and

the coolest cluster is picked for task assignment.

6.3.2 Communication Analysis

The goals for inter-task communication and thermal optimization are not consis-

tent. To limit communication, it is more favorable to place two tasks close together

to reduce latency and overall network traffic. However, from a thermal standpoint,

Table 6.1: Four clusters in a 5x5 system

Cluster 0 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18

Cluster 1 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19

Cluster 2 5, 6, 7, 8, 10, 11, 12, 13, 15, 16,17, 18, 20, 21, 22, 23

Cluster 3 6, 7, 8, 9, 11, 12, 13, 14, 16,17, 18, 19, 21, 22, 23, 24
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Figure 6.10: Clustering schemes for 25, 36, 49 and 64-core systems

it is more desirable to place tasks apart to limit cross-core thermal interference and

achieve a cooler thermal profile. Our cluster based technique can be modified to

improve the efficiency of inter-task communication. Instead of picking the coolest

cluster, the following two policies are employed to determine the target cluster.

1. If the task does not communicate with other nodes, pick the coolest cluster

among all clusters for assignment.
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Figure 6.11: Communication latency comparison. Theoretical indicates random as-
signment of tasks to cores.

2. If the task communicates with other nodes, assess clusters which contain cores

with which the task communicates and then pick the coolest cluster among

these clusters.

Policy 1 is the original cluster determination policy which picks the globally coolest

cluster. Policy 2 guarantees that the target task will be assigned to a subregion which

incurs limited communication overhead. The tradeoff between communication and

temperature is controlled by the cluster size. As shown in Figure 6.10, a 4× 4 cluster

size is used for our implementation. An evaluation of the average latency is presented

in Figure 6.11 where we use hops as the metric for the latency. From this figure,

the average latency remains constant for the clustered approach, but it increases

linearly for the non-clustered method. We also plot a line for an allocator which

randomly assigns tasks. The RL-enabled non-clustered allocators give larger average

communication latency because the RL allocator tends to place tasks apart from each

other.
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6.4 Experimental Setup

To verify the effectiveness of the new task allocation scheme, power and tempera-

ture simulations were performed on 3D many-core models. The simulation tools and

verification flow described and used in Chapter 5 were used to perform assessment in

this chapter.

6.4.1 3D Floorplan and Thermal Simulation

Both routers and processor cores in a 3D mesh topology were evaluated in 45

nm technology. Many-core floorplans were obtained by replicating the single-core

building blocks shown in Figure 5.3. In our experiments, a 3D chip is composed of

3 homogeneous computing layers with TSVs between layers, as shown in Figure 6.7.

We assume that there are only connections between on-chip routers, so TSVs only

exist in router regions and the TSV density is set to 10% considering IR drop noise

[46]. TSVs usually have better thermal conductivity than thermal interface materials

(TIM). HotSpot with a 3D extension [69] was used to convert simulated power traces

and the floorplan of components into temperature values.

6.4.2 HotSpot Integration

Our allocation scheme was integrated with 3D Hotspot using Python/C APIs.

The main reason for using Python was the rich Python libraries for matrix and

numerical computation which can be used by the RL scheduler. Code size is reduced

significantly with Python compared with C implementation and much less debug

effort is required. It is also much easier to adjust parameters and configurations with

a Python implementation, so scheduler tuning is much less time consuming.

Figure 6.12 shows a single allocation cycle implemented in 3D HotSpot. The

work is divided into two phases: task removal and task assignment. Every time a

task arrived, running tasks are checked to see if they have expired. Expired tasks are

removed from the current task list and a new power map is generated based on the
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updated task map. The heat diffusion solver in HotSpot is called with the updated

power trace as inputs. After the solver finishes calculations, temperature values at

preselected locations where thermal sensor are deployed are identified. At this point,

the pre-allocation peak temperature (Tpre) can also be obtained from the HotSpot

solver. These steps are shown in the figure from Step 1 to Step 4. This is called

the task removal phase since these steps are mainly associated with the deletion of

expired tasks in the simulation framework.

The task assignment phase starts with RL allocation, the fifth step in Figure 6.12.

Using the thermal sensor readings from the final step in the task removal phase, the

scheduler determines which cluster to assign the new task and runs the corresponding

reinforcement learning engine using that cluster. The task map is updated by the

scheduler to add the new task and the power map is regenerated using the new task

map. The heat diffusion solver is called again to perform thermal simulation using

the updated power trace. We can extract thermal sensor readings and Tpost after

the temperature reaches a steady state. As a last step, the coefficients of the basis

functions are updated using the reward calculated from Tpre and Tpost.

6.4.3 Benchmark Workload

The SPLASH-2 [104] benchmark suite is used to test the proposed task allocation

strategy for 3D many-core systems. A benchmark is randomly selected for each

incoming task and an M/M/c queuing model is used to determine task arrival times

and task execution durations in the many-core system. Task arrival is modeled as a

Poisson process whose inter-arrival time is exponentially distributed; the execution

time of tasks is also exponentially distributed. n is the number of cores in the system.

The task arrival rate is defined as λ and the service rate is defined as µ. The system

utilization, ρ, is given by the following equation.
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Figure 6.12: A single allocation cycle implemented in HotSpot

110



Table 6.2: Average number of executing tasks for a collection of system configurations

Config. ρ = 0.2 ρ = 0.5 ρ = 0.7

16× 3 9.6 24 33.6

25× 3 15 37.5 52.5

36× 3 21.6 54 75.6

49× 3 29.4 73.5 102.9

64× 3 38.4 96 134.4

ρ =
λ

nµ
(6.2)

Effectively, nρ defines the steady-state number of processor cores which are used

to service tasks. In our experiment, the arrival rate is set to 4 tasks per second

to accelerate the simulation speed. The service rate is adjusted based on system

utilization and core count. Table 6.2 lists the average number of tasks running in the

system for various configurations.

6.5 Results

Our approach has been validated via simulation using three layer many-core sys-

tems, each layer of which includes 16, 25, 36, 49, or 64 cores. To implement the

reinforcement learning technique, the parameters in Table 6.3 were determined em-

pirically.

Table 6.3: Empirically determined parameters in used experiments.

PARAMETER SELECTED VALUE

learning rate α in Eqn. (5.8) 0.9

discount factor γ in (5.8) 0.8

probability p in Algorithm 3 0.95

σ in (5.9) 17
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6.5.1 Peak Temperature Reduction

In this section, we show that the peak temperature can be effectively reduced

versus a previous approach [120] through the use of the proposed allocation technique.

To quantitatively evaluate peak temperature reduction, a series of experiments are

performed for different core count configurations and system utilization rates. Due

to the limits of parallelism and thermal design power (TDP), the dark silicon rate

is expected to exceed 50% for future technology generations [32]. Therefore, it is

reasonable to assume that the system utilization rate is under 70% for our 3D many

core systems for experimentation. The balance-by-stack assignment scheme [120]

bundled vertically-stacked cores at the same 2D position as a “super-core”. Super-

cores are sorted by their average temperatures and the coolest stack is selected for

assignment. For each super-core, tasks are allocated onto cores in order of decreasing

temperature, i.e., the most power consuming task is assigned to the core closest to

the heat sink. In the following discussion, we refer to this approach as the balance-

by-stack approach.

Figure 6.13 shows the peak temperature reduction with respect to a non-thermal

aware task allocator for a variety of configurations. Each plot in the figure shows

the peak temperature reduction distribution, where the x axis represents the amount

of reduction and the y axis represents counts of corresponding reductions. For each

configuration in Figure 6.13, experiments were performed with 5000 incoming tasks.

From these figures, one can observe that the RL allocator consistently reduces the

peak temperature for ∼ 88% of the cases. The average temperature reduction is

1.7 ∼ 2.6oC and the maximum peak temperature reduction is > 10oC (as shown in

experiments for “16× 3, ρ = 0.2”, “16× 3, ρ = 0.5”, and “64× 3, ρ = 0.2”). For most

experiments shown in the figure, over 20% of the reduction values are 4oC or more.

Figure 6.14 shows the peak temperature comparison for random, balance-by-stack

[120] and RL approaches. The system utilization is set to 0.5 for all experiments in

112



producing the results. The two thermal aware approaches reduce the peak temper-

atures with respect to the non-thermal-aware approach. The RL approach performs

slightly better than the balance-by-stack approach. The average peak temperature is

0.47oC less for the RL approach.

Figures 6.15 and 6.16 show thermal profiles for RL and balance-by-stack allocators

after 5000 allocations under the same task sequence. The thermal maps are plotted

for all three layers. Layer 2 is the closest to the heat sink and Layer 0 is the farthest

from the heat sink. It is interesting to see that the two resulting thermal profiles are

quite different: the balance-by-stack allocator exhibits a checker board profile and the

hot region for the RL allocator is centered in the middle of the chip. This observation

is consistent with Insight 3 summarized earlier in this chapter. RL agents learn that

assignment to the corner cores would result in added thermal stress. We also observe

that the thermal maps for the three layers are similar with each other due to strong

thermal correlation in the vertical direction. Layer 2 gives the coolest thermal maps

for both allocators thanks to the shorter heat dissipation path to the heat sink.

6.5.2 Reduction of Thermal Emergencies

Although cluster-based RL is effective in reducing peak temperature, as shown in

the previous section, average temperature reduction is not as significant. However, it

can be seen that a significant number of thermal emergencies can be avoided by uti-

lizing information from the tail part of temperature distribution. The upper portion

of Figure 6.17 shows the peak temperature distribution for random, balance-by-stack

and RL allocators. The figure on the top is the distribution results for non-thermal-

aware (random) and RL task allocation approaches. The thermal emergency line is

set to 100oC. There are 1675 thermal-emergency incidents out of 5000 allocations for

the non-thermal-aware (random) allocator but only 988 incidents for the RL alloca-
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Figure 6.13: Distributions of peak temperature reduction under various core count
and system utilization configurations
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Figure 6.15: The thermal profile for RL allocator after 5000 allocation
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Figure 6.16: The thermal profile for balance-by-stack allocator after 5000 allocation

tor. Therefore, 41% of potential thermal emergencies can be avoided by using the RL

approach.

Similarly, the lower portion of Figure 6.17 shows the distribution comparison be-

tween balance-by-stack and RL approaches. There are 1162 thermal-emergency inci-

dents for the balance-by-stack approach. In comparison, RL shows a 14.9% reduction

versus this number. Since a thermal emergency triggers performance throttling (e.g.

frequency reduction), the removal of thermal emergencies brings performance bene-

fits. We assume a 20% performance penalty for each thermal emergency in determin-

ing potential performance benefits (note that a DVFS strategy usually has multiple

frequency and voltage settings). The removal of emergencies by the RL allocator

roughly accounts for 3% and 0.7% performance improvements versus random and

balance-by-stack approaches, respectively.
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Figure 6.17: Peak temperature distribution comparison between random, bal-
ance by stack and RL approaches.

Figure 6.18 shows the number of thermal emergencies for various core counts and

system utilizations. The numbers are normalized to the corresponding random cases.

The average reduction of emergencies is 36% compared with the random approach

and 9% compared with the balance-by-stack approach.

6.5.3 Computational and Memory Overhead

The computational overhead of our approach is comprised of two components:

cluster selection and reinforcement learning. The complexity of reinforcement learning

is O(2m) for weight parameter (θai ) update as shown in Chapter 5. The time cost of

cluster selection is negligible (linear in number of clusters), since it simply involves

the selection of the coolest cluster.
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Figure 6.18: Thermal emergency incidents for various core counts and system utiliza-
tion settings

Table 6.4: Time Cost For RL Task Allocation (ms)

Sensor Count m

5 6 7 8 9

0.014 0.024 0.043 0.081 0.150

The time cost of the allocator was evaluated for different values of sensor count,

m. Table 6.4 shows the average computational time for one task allocation. Two

temperature centers were used to generate basis function. The maximum computation

time of task allocation is 0.15ms . Since task allocation is only invoked when there is

an incoming task or a thermal emergency, the frequency of allocation is typically on

the order of seconds. Therefore, the percentage time cost of allocation with respect

to the allocation interval is negligible. For example, we use nine sensor readings to

represent the thermal state in a 16-core cluster, so the overhead is < 0.2ms.

The memory cost of the allocation algorithm is based on the storage of the θai

weight parameters for each cluster. The total number of parameters for each core

is vm (v and m are defined in Section 5.2.6). However, m (number of temperature

sensors) is generally small and can be limited to reduce memory impact. For v = 2

and m = 9, the memory overhead is only 32KB. Based on our clustering scheme
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Table 6.5: Memory Cost for Different Core Numbers (KB))

Core Count

16× 3 25× 3 36× 3 48× 3 64× 3

96 384 384 384 480

shown in Figure 6.10, the memory overhead is listed in Table 6.5. For contemporary

servers with gigabyte memories, this is a small fraction of total memory.

6.6 Summary

In this chapter, reinforcement learning-based task allocation is applied to address

localized overheating in 3-D many-core systems. A new cost function and distributed

use of allocation to clusters is added to the model from Chapter 5 to support 3D

systems. Our algorithm is verified via detailed many-core simulation which includes

on-chip routing. The experiments show that the technique is capable of capturing

the complex on-chip thermal environment induced by dynamic work load distribution.

Our results show that the proposed technique is fast (scheduling performed in <0.2

ms) and can efficiently reduce peak temperature by ∼ 2oC on average or up to 10oC

for a collection of SPLASH-2 benchmarks. The approach reduces thermal emergency

count by 36% versus non-thermal-aware allocation.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Temperature control is a fundamental issue for integrated circuits as it impacts

circuit reliability and limits performance. Significant previous work has been con-

ducted to explore different aspects of thermal issues, ranging from on-chip thermal

sensing to temperature control techniques. The first half of this dissertation proposed

temperature estimation and calibration techniques which utilize system statistics and

thermal sensor information to achieve more accurate sensing results. This work falls

into the thermal sensing category. In the second half of the dissertation, software

techniques are explored to reduce the peak temperature on a silicon die during appli-

cation execution. This work falls into the temperature control category.

To summarize, the four main contributions made in this dissertation include:

(1) A fine-grained thermal estimation technique.

Two linear models were built to estimate the steady and transient tempera-

tures of a variety of architectural components in a microprocessor. The steady

state temperature is estimated using a absolute temperature estimation model

and the transient temperature is estimated using an incremental temperature

estimation model. To dynamically account for changing processor activities,

collections of performance counter values were used to estimate the chip ther-

mal profile at run time. A performance counter selection method is employed

to reduce the intercorrelations between readings and improve estimation accu-

racy. Our results show that the correlation coefficient between estimated and

actual thermal profiles is ∼ 0.9 on a collection of benchmarks. The proposed
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estimation model can be adapted to changing cooling conditions via parameter

modeling.

(2) An on-line thermal data fusion strategy. Multiple sensors deployed in a

processor are dynamically calibrated via the Multi-Sensor Collaborative Cali-

bration Algorithm (MSCCA) and the ∆-based Multi-Sensor Collaborative Cali-

bration Algorithm (∆-MSCCA). Our calibration approach combines potentially

inaccurate temperature values obtained from two sources: temperature readings

from thermal sensors and temperature estimations using system performance

counters. A data fusion strategy based on Bayesian inference, which combines

information from these two sources, is demonstrated along with a temperature

estimation approach using performance counters. The result shows the strategy

can effectively recalibrate sensor readings in response to inaccuracies caused by

process variation and environmental noise. The average absolute error of the

corrected sensor temperature readings is < 1.5oC and the standard deviation

of error is less than < 0.5oC for tested benchmarks. The strategy incurs sig-

nificantly reduced computational cost versus a previously-developed Kalman

filtering technique and is appropriate for on-line usage.

(3) A dynamic task allocation strategy with thermal awareness. The goal

of the developed algorithm is to overcome localized overheating in many-core

systems due to processor core and router power consumption. Our approach

employs reinforcement learning, a dynamic, machine learning algorithm that

performs task allocation based on current temperature and a prediction regard-

ing which assignment will minimize maximum temperature. The algorithm

updates prediction models after each allocation based on feedback regarding

the accuracy of previous predictions. Our new algorithm is verified via detailed

many-core simulation which includes on-chip routing. The experiments show
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that the proposed technique is capable of capturing the complex on-chip ther-

mal environment induced by dynamic work load distribution. The results show

that the proposed technique is fast (scheduling performed in < 1ms) and can

efficiently reduce peak temperature by up to 8oC in a 49-core processor (6%

on average) versus a leading competing task allocation approach for a series of

SPLASH-2 benchmarks.

(4) A dynamic strategy to control temperatures in 3D ICs. Reinforce-

ment learning has been applied to 3D integrated circuits to allocate tasks with

thermal awareness. To avoid significant performance degradation and compu-

tational overhead for large core counts, a cluster based approach is used when

applying this dynamic learning technique. Our results show that the proposed

technique is fast (scheduling performed in < 0.2 ms) and can efficiently reduce

peak temperature by ∼ 2oC on average or up to 10oC versus the previous

task allocation approach for a series of SPLASH-2 benchmarks. The peak tem-

perature reduction eliminates 36% of thermal emergencies which occur when

non-thermal-aware task allocation is used.

Thermal control remains an active research area, particularly as three dimen-

sional integrated circuits become more common. It is desirable to obtain detailed and

accurate temperature information spatially and temporally to perform fine grained

temperature control strategies. In the future, the following research areas warrant

exploration.

• Low cost thermal sensors. The design of on-chip thermal sensors should attract

increased research interest to push sensor design to physical limits. Another im-

portant aspect of thermal sensor design is the exploration of design automation

tools to automatically embed these sensors at the best die locations. This goal

requires a better understanding of the thermal implications of circuit design
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and the use of appropriate sensor allocation strategies to identify thermal hot

spots.

• Cooling technologies and low power techniques. As 3D technology becomes

more prevalent, it is important to address temperature issues. Advanced tech-

nologies should be developed to remove heat efficiently. Additionally, both

hardware and software designers should take temperature factors into account

to avoid unnecessary overheating. This second observation requires designers

to consider the temperature as a first order design factor. The use of low power

techniques is perhaps the most important approach which can be used to reduce

system-level heat sources.
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