156 research outputs found

    STATE-OF-ART Algorithms for Injectivity and Bounded Surjectivity of One-dimensional Cellular Automata

    Full text link
    Surjectivity and injectivity are the most fundamental problems in cellular automata (CA). We simplify and modify Amoroso's algorithm into optimum and make it compatible with fixed, periodic and reflective boundaries. A new algorithm (injectivity tree algorithm) for injectivity is also proposed. After our theoretic analysis and experiments, our algorithm for injectivity can save much space and 90\% or even more time compared with Amoroso's algorithm for injectivity so that it can support the decision of CA with larger neighborhood sizes. At last, we prove that the reversibility with the periodic boundary and global injectivity of one-dimensional CA is equivalent

    On the structure of Clifford quantum cellular automata

    Full text link
    We study reversible quantum cellular automata with the restriction that these are also Clifford operations. This means that tensor products of Pauli operators (or discrete Weyl operators) are mapped to tensor products of Pauli operators. Therefore Clifford quantum cellular automata are induced by symplectic cellular automata in phase space. We characterize these symplectic cellular automata and find that all possible local rules must be, up to some global shift, reflection invariant with respect to the origin. In the one dimensional case we also find that every uniquely determined and translationally invariant stabilizer state can be prepared from a product state by a single Clifford cellular automaton timestep, thereby characterizing these class of stabilizer states, and we show that all 1D Clifford quantum cellular automata are generated by a few elementary operations. We also show that the correspondence between translationally invariant stabilizer states and translationally invariant Clifford operations holds for periodic boundary conditions.Comment: 28 pages, 2 figures, LaTe

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Proceedings of JAC 2010. Journées Automates Cellulaires

    Get PDF
    The second Symposium on Cellular Automata “Journ´ees Automates Cellulaires” (JAC 2010) took place in Turku, Finland, on December 15-17, 2010. The first two conference days were held in the Educarium building of the University of Turku, while the talks of the third day were given onboard passenger ferry boats in the beautiful Turku archipelago, along the route Turku–Mariehamn–Turku. The conference was organized by FUNDIM, the Fundamentals of Computing and Discrete Mathematics research center at the mathematics department of the University of Turku. The program of the conference included 17 submitted papers that were selected by the international program committee, based on three peer reviews of each paper. These papers form the core of these proceedings. I want to thank the members of the program committee and the external referees for the excellent work that have done in choosing the papers to be presented in the conference. In addition to the submitted papers, the program of JAC 2010 included four distinguished invited speakers: Michel Coornaert (Universit´e de Strasbourg, France), Bruno Durand (Universit´e de Provence, Marseille, France), Dora Giammarresi (Universit` a di Roma Tor Vergata, Italy) and Martin Kutrib (Universit¨at Gie_en, Germany). I sincerely thank the invited speakers for accepting our invitation to come and give a plenary talk in the conference. The invited talk by Bruno Durand was eventually given by his co-author Alexander Shen, and I thank him for accepting to make the presentation with a short notice. Abstracts or extended abstracts of the invited presentations appear in the first part of this volume. The program also included several informal presentations describing very recent developments and ongoing research projects. I wish to thank all the speakers for their contribution to the success of the symposium. I also would like to thank the sponsors and our collaborators: the Finnish Academy of Science and Letters, the French National Research Agency project EMC (ANR-09-BLAN-0164), Turku Centre for Computer Science, the University of Turku, and Centro Hotel. Finally, I sincerely thank the members of the local organizing committee for making the conference possible. These proceedings are published both in an electronic format and in print. The electronic proceedings are available on the electronic repository HAL, managed by several French research agencies. The printed version is published in the general publications series of TUCS, Turku Centre for Computer Science. We thank both HAL and TUCS for accepting to publish the proceedings.Siirretty Doriast

    On Undecidable Dynamical Properties of Reversible One-Dimensional Cellular Automata

    Get PDF
    Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.Siirretty Doriast

    Symmetry structure in discrete models of biochemical systems : natural subsystems and the weak control hierarchy in a new model of computation driven by interactions

    Get PDF
    © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.Interaction Computing (IC) is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are (1) to identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this, and (2) to use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in Systems Biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, Krebs cycle, and p53-mdm2 genetic regulation constructed from Systems Biology models have canonically associated algebraic structures { transformation semigroups. These contain permutation groups (local substructures exhibiting symmetry) that correspond to "pools of reversibility". These natural subsystems are related to one another in a hierarchical manner by the notion of "weak control ". We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-abelian groups (SNAGs) are found in biological examples and can be harnessed to realize nitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions.Peer reviewe

    Proceedings of AUTOMATA 2010: 16th International workshop on cellular automata and discrete complex systems

    Get PDF
    International audienceThese local proceedings hold the papers of two catgeories: (a) Short, non-reviewed papers (b) Full paper

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Cellular automata for dynamic S-boxes in cryptography.

    Get PDF
    In today\u27s world of private information and mass communication, there is an ever increasing need for new methods of maintaining and protecting privacy and integrity of information. This thesis attempts to combine the chaotic world of cellular automata and the paranoid world of cryptography to enhance the S-box of many Substitution Permutation Network (SPN) ciphers, specifically Rijndael/AES. The success of this enhancement is measured in terms of security and performance. The results show that it is possible to use Cellular Automata (CA) to enhance the security of an 8-bit S-box by further randomizing the structure. This secure use of CA to scramble the S-box, removes the 9-term algebraic expression [20] [21] that typical Galois generated S-boxes share. This cryptosystem securely uses a Margolis class, partitioned block, uniform gas, cellular automata to create unique S-boxes for each block of data to be processed. The system improves the base Rijndael algorithm in the following ways. First, it utilizes a new S-box for each block of data. This effectively limits the amount of data that can be gathered for statistical analysis to the blocksize being used. Secondly, the S-boxes are not stored in the compiled binary, which protects against an S-box Blanking [22] attack. Thirdly, the algebraic expression hidden within each galois generated S-box is destroyed after one CA generation, which also modifies key expansion results. Finally, the thesis succeeds in combining Cellular Automata and Cryptography securely, though it is not the most efficient solution to dynamic S-boxes
    • …
    corecore