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Interaction computing is inspired by the observation
that cell metabolic/regulatory systems construct
order dynamically, through constrained interactions
between their components and based on a wide range
of possible inputs and environmental conditions.
The goals of this work are to (i) identify and
understand mathematically the natural subsystems
and hierarchical relations in natural systems
enabling this and (ii) use the resulting insights
to define a new model of computation based on
interactions that is useful for both biology and
computation. The dynamical characteristics of the
cellular pathways studied in systems biology relate,
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mathematically, to the computational characteristics of automata derived from them, and their
internal symmetry structures to computational power. Finite discrete automata models of
biological systems such as the lac operon, the Krebs cycle and p53–mdm2 genetic regulation
constructed from systems biology models have canonically associated algebraic structures
(their transformation semigroups). These contain permutation groups (local substructures
exhibiting symmetry) that correspond to ‘pools of reversibility’. These natural subsystems
are related to one another in a hierarchical manner by the notion of ‘weak control’. We
present natural subsystems arising from several biological examples and their weak control
hierarchies in detail. Finite simple non-Abelian groups are found in biological examples and
can be harnessed to realize finitary universal computation. This allows ensembles of cells to
achieve any desired finitary computational transformation, depending on external inputs, via
suitably constrained interactions. Based on this, interaction machines that grow and change their
structure recursively are introduced and applied, providing a natural model of computation
driven by interactions.

In the 21st century, algebra will be as important for biology as chemistry was in the 20th
century. —Günter P. Wagner

1. Introduction

(a) Motivation and overview
Natural biological and biochemical systems are able to construct order dynamically through
constrained interactions between their constituents based on a wide range of possible inputs and
environmental conditions. What role does symmetry in biological systems play in this capacity to
self-organize, and, in another direction, could similar mechanisms be exploited in computation
driven by interaction? By examining natural symmetry structures that arise from the algebraic
analysis of discrete models of biological and related biochemical systems, we aim to begin to
answer these questions.

Our main goals are thus twofold: (i) to identify and understand mathematically the natural
subsystems and hierarchical relations inside discrete models of natural systems and (ii) to use
insights we find there to define a new model of computation driven by interactions that is useful
for both biology and computation. Despite the fact that symmetry structures in biological systems
continually degenerate (but are also renewed and replaced), we demonstrate here that nature
may be using symmetry computationally in hidden ways. This leads us to consider dynamic
ensembles (such as cell assemblies) whose constituents and interconnections change based on
interaction and whose constituents have a rich structure of natural subsystems internally.

The remainder of §1 reviews necessary background on algebraic theory of automata, automata
networks and algebraic structures associated with them, while motivating the ensemble viewpoint
on multiple interacting systems that is developed further throughout the article. The article then
proceeds as follows: §2 develops novel algebraic tools, including the concepts of natural subsystems
(which are permutation groups in the algebraic structures associated to discrete dynamical
systems) and their weak control hierarchy, for the analysis of discrete models of biological systems.
Section 3 applies these tools to give detailed analyses of several examples of discrete biochemical
and biological models (a Boolean network model of the Escherichia coli lac operon, reaction
graph models of the Krebs cycle in metabolism, and a Petri net model of the p53–mdm2 genetic
regulation system). We observe that simple non-Abelian groups (SNAGs) can occur as the
symmetry groups acting in the natural subsystems. Section 4 explains how SNAGs can work as a
basis for computation as they are functionally complete (like the two-element Boolean algebra in
logic), reviews the background and recently demonstrated bounds on the realization of arbitrary
finitary functions, and proves new results showing how discrete systems with SNAGs such as the
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p53–mdm2 genetic regulatory system or ensembles of such systems could exploit this to achieve
finitary universal computation. In §5, we introduce interaction machines as ensemble structures that
dynamically grow or change their topologies based on internal and external interaction, and
outline how these discrete dynamical systems can implement novel dynamic computational
structures (e.g. dynamic cascades for positional number systems). Section 6 applies the interaction
machine framework to show how it can naturally model biological systems that change their
own structure (e.g. multicellular differentiation with cell division), discusses the interpretation
of permutation groups in temporally changing interacting ensembles, and proves that ensembles
of the natural subsystems can be arranged according to the weak control hierarchy to emulate
a given discrete finite automaton. Moreover, we prove that the last can be achieved with a
dynamic cascade, generalizing the holonomy method in algebraic automata theory for finite
automata to decomposition using interaction machines. This gives the basis for further work on
interaction computing.

(b) Automata and their associated algebra structures
Numerous biologists and their collaborators now model biological, biochemical or genetic
regulatory systems using discrete models such as Petri nets, Boolean networks or multi-valued
logical networks [1–6], and the use of annotated directed graphs to encode biological networks is
even more prevalent in numerous scientific repositories. This entails that these biological models
are finite automata or well approximated by finite automata,1 or can be discretized to yield
finite automata models. Automata are discrete dynamical system structures whose state-space
trajectories are influenced by events or external inputs. They have associated algebraic structures
(their transformation semigroups) and these include dynamical building-block components as
substructures that can be expressed in terms of mathematical symmetries (permutation groups).
An example of automata from biochemical models appears in §3.

A (complete, deterministic) automaton A is a tuple (Q, A, δ), where A is the set of input
symbols (the input alphabet—also called inputs or basic events), Q = States(A) is the set of states,
the state space, and δ is the (fully defined) state transition function δ : Q × A → Q. Note that use of
deterministic automata does not preclude stochasticity in their input/event streams, i.e. which
event occurs or which transition fires may well be determined probabilistically depending on
current configuration, environment factors, etc.

One could also include in the tuple an output function ε : Q → B to an output alphabet B. As
output can be recovered from state, we shall not use an explicit output function, but assume state
information is available where needed (equivalently, the output function is the identity function
on Q and the output alphabet is Q).2 Generally, we shall consider finite-state automata, i.e. all the
sets involved are finite.

A semigroup S is a set with an associative multiplication defined on it, i.e. (st)u = s(tu) for
all s, t, u ∈ S. Let A+ be the free semigroup generated by A, i.e. all the finite words with positive
length constructed from the alphabet A with concatenation as the associative binary operation.
Similarly, A∗ = A+ ∪ {λ} is the free monoid on A consisting of all finite words and the empty
word λ which acts as the multiplicative identity for concatenation. For any t = a1 · · · an ∈ A+ let
us define δ+(t) : Q → Q inductively: δ+(a1)(q) = δ(q, a1) for a1 ∈ A and q ∈ Q. Let δ+(a1 · · · ak)(q) =
δ+(ak)(δ+(a1 · · · ak−1)(q)) for k> 1, a1 · · · ak ∈ A+ and q ∈ Q. Let F(Q) = QQ denote the semigroup of
all transformations of Q into itself under function composition ◦, where, for f , g ∈ F(Q), we have
(f ◦ g)(q) = g(f (q)). Then δ+ : A+ → F(Q) is a homomorphism. Let us denote δ+(A+) by S(A), and
call it the characteristic semigroup of A. Thus, a word in A+ gives a member of the semigroup of A
whose elements are transformation of Q, and concatenation of words corresponds to the function

1As in the case of Petri nets with no a priori bound on the number of tokens, see [7] for details on constructing finite automata
from Petri nets.
2The formulation with output as a function of state is sometimes called a Moore automaton. Alternatively, the output function
may be allowed to depend on input, ε : Q × A → B, giving an alternative definition (Mealy automaton) with similar properties
for which one can develop essentially the same theory and generalizations as we do in the article with interaction machines.
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composition for these transformations. We can extend δ+ to A∗ by mapping the empty word to
the identity function on Q giving a monoid homomorphism δ∗ : A∗ → F(Q). The pair (Q, S(A)) is
the transformation semigroup of the automaton A. Similarly, M(A) = δ∗(A∗) is the characteristic monoid
of A and (Q, M(A)) is its transformation monoid.3

Notation: we write q · a for δ(q, a) = δ+(a)(q) = δ∗(a)(q), where q is a state and a is a basic event. This
extends to all finite words by letting q · w = δ∗(w)(q). We have q · λ= q and (q · w) · v= q · wv, for
all words w, v ∈ A∗ and for all states q ∈ Q, as δ∗ is a homomorphism. Simply put, q · w denotes
the new state if, starting with state q, the sequence of events w occurs, so ·w = δ∗(w) ∈ S(A) is
the mapping on states given by the input word w ∈ A∗. If X ⊆ Q and w ∈ A∗, we write X · w for
{x · w | x ∈ X}.

A group G is a semigroup with unique idempotent element e = e2 that acts as a right and left
identity on G: ge = eg = g for all g ∈ G, such that for each g ∈ G there is an inverse h ∈ G with hg = e =
gh. Given any subgroup G of S(A), that is, a subset of S(A) which is a group, with identity element
e ∈ G, define X(G) = {q ∈ Q : q · e = q}. Note that e is an idempotent e2 = e but will generally not be
the identity map on Q. Then it is easy to check that (X(G), G) is a permutation group. That is, each
of its elements g ∈ G acts as a permutation of X(G), e acts as the identity on X(G), and the (unique)
inverse h ∈ G of g acts as the inverse permutation to g.
Note: if a transformation semigroup (X, S) is given and G is a subgroup of S, then (X, G) may not
be a group of permutations (e.g. consider a constant map on n points giving (Xn, {1})). However,
it is easy to prove that each member of G has the same range X(G) on X, i.e. for all g ∈ G,
X · g = {x · g : x ∈ X} = X · e = {x : x · e = x} ≡ X(G), where e2 = e is the identity of G. Thus G 	→ X(G)
maps subgroups of S into subsets of X. As they are closed under the action of the group G by
permutations, the transitive components of X(G) (in (X(G), G)) can be considered as ‘pools of
feedback’ or ‘reaction chains’ or ‘natural subsystems’, etc.

Transformation semigroups and permutation groups are key concepts in algebraic automata
theory, where the Krohn–Rhodes prime decomposition theory guarantees that any given finite
automaton can be emulated by a cascade (automata network with fixed linear topology)
whose component automata are basic atomic building blocks (finite simple group automata
(permutation groups) and substructures of the flip-flop, a two-state identity-reset automaton)
[8–12]. The computationally most important proof of the Krohn–Rhodes theory, the holonomy
theorem [9,13,14], proceeds by finding representative permutation groups for the automaton.
These permutation groups are of the form (X(G), G), where G is a maximal subgroup of the
semigroup S(A). We shall study them and their relationships for a number of biological systems
below (§2) on natural subsystems of p53, the lac operon, the Krebs cycle and their weak control
relations. Section 1d states and explains a useful elementary version of the Krohn–Rhodes
decomposition (theorem 1.1). For notation and extensive background, the reader may refer to
[8,9,11–13].

(c) Ensemble approach
Within a body, there may be many nearly identical cells (or cells in various states of differentiation
descended from a common progenitor cell), and within a cell there are many instances of
particular reaction networks (such as the Krebs citric acid cycle of intermediary metabolism,
etc.). These biological examples suggest another interpretation for automata and their hierarchical
(Krohn–Rhodes) decompositions, based on ideas borrowed from statistical mechanics. In this
ensemble approach,4 we consider the state transitions of many copies of the same automaton.

Let n be a positive integer. Then from an automaton A= (Q, A, δ), we get a direct product
power An consisting of n copies of A running in parallel and each accepting the same input a ∈ A

3We remark that it is also common to write (Q, S) for an action of a semigroup S on a set Q: that is, each s ∈ S gives function
q 	→ q · s on Q satisfying (q · s) · s′ = q · (ss′) for all q ∈ Q, s, s′ ∈ S. An action is faithful if q · s = q · s′ for all q ∈ Q implies s = s′. In
particular, the transformation semigroup or monoid of an automaton is obviously faithful as its semigroup’s elements lie in
F(Q).
4This idea is due to John L. Rhodes [11] following physicists Josiah Willard Gibbs and Erwin Schrödinger [15].
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Table 1. States in a Boolean network model of the lac operon. The states are defined by Boolean combinations of the
presence/activity versus absence/inactivity of biochemical components: L, lactose; A, allolactose is an isomer of lactose; Op,
the repressor molecule; ZYA, the structural genes for the enzymes needed for lactose metabolism. In the Boolean network, 1
means that the molecule is present/active or the gene is expressed; 0 is for the absence/inactivity. States are given by binary
column vectors, e.g. 1100 corresponds to the state L A, where L and A have value 1 and Op and ZYA have value 0. States to the
left of the vertical separating line correspond to metabolic states in which lactose is present.

Boolean variable Boolean state vector

L 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

Op 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

ZYA 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

from a state qi ∈ Q (1 ≤ i ≤ n):

(q1, . . . , qn) · a = (q1 · a, . . . , qn · a).

This can be construed mathematically or physically (for the latter, there will be distinct physical
copies of the system present at the same time, e.g. cells in a multicellular organism). In particular,
if we consider n = |Q| and enumerate the elements of Q as q1, . . . , qn, then each elementary
event a transforms the ensemble in a way that concretely and completely describes a as a
transformation. Gibbs essentially did this to consider statistical mechanics of physical systems
[11,15]. Alternatively, we might consider the dynamically stable states (i.e. orbits5) of a discrete
dynamical system and take a smaller m< |Q| and start with a tuple (q′

1, . . . , q′
m) with the q′

i ∈ Q
representing all the distinct dynamically stable states of the system, and study how events
transform ensembles of dynamically stable states to other dynamically stable states (cf. [4]).

We shall speak of ensembles when we have many copies of the same or different automata
running in parallel as simple direct-product ensembles, but we shall also consider more general
networks of automata updated synchronously (possibly with dependencies between them) as
ensembles. For example, the state of a lac operon in each cell in a large population of E. coli cells
growing in a Petri dish may be modelled as an ensemble of copies of the automaton in table 1.

Krohn–Rhodes decompositions (such as in theorem 1.1 and the holonomy decomposition [9,
13], which we have computationally implemented [16–18]) give a ‘hierarchical coordinate system’
on the semigroups of transformations acting on the state set of an automaton.6 Here higher level
coordinates correspond to a coarse-graining of the system, i.e. to subsets of the state set. Thus,
we can regard any level of the decomposition as an ensemble being transformed in parallel as
in a direct product. One can therefore use the decomposition as an atlas with arbitrary scale at
different hierarchical levels, from coarse to fine, for the global states of the ensemble of cells. This
approach is appealing biologically and also removes some of the difficulties originating from a
discrete modelling approach.

Clearly, the global state of an ensemble can be defined in many different ways (e.g. the set
of observed states, or their frequency distribution). The choice of an ‘update rule’ (how the
transformations are applied to the individual automata, the members of the ensemble), if not
synchronous, may potentially change the behaviour of the ensemble [19], but we shall restrict
ourselves to synchronous update here.

For direct-product ensembles of a single system, a given transformation s ∈ S(A), resulting
from a sequence of basic events or inputs, is interpreted mathematically or physically as
simultaneously being applied to each copy as they all change state in parallel and independently.

5Similar to continuous systems, in discrete dynamical systems, an orbit comprises a set of system states closed under the
action of time, i.e. under the occurrence of sequence events a ∈ A (or transformations s in some group or semigroup).
6See [11] for details and examples of the important and deep notion of how to interpret cascade decompositions as coordinate
systems.
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For more complex ensembles, the effect of this transitioning occurs synchronously but not
necessarily independently. In particular, this is the case for networks of automata, Krohn–Rhodes
decompositions, and, as we shall see, for interaction machines whose topology and constituent
components may change dynamically. The ensemble approach can be used as a guiding metaphor
for building and understanding complex systems.

(d) Automata networks
We consider not only strictly parallel ensembles but also more complex networks of automata.
A directed graph (or digraph) Γ = (V, E) is a set of nodes V and directed edges E ⊆ V × V. If v
is a node in a digraph Γ , then its neighbourhood N(v) is the set of nodes with incoming edges
to v, i.e. N(v) = {v′ ∈ V : (v′, v) ∈ E}. An automata network A = (Γ , {Av}v∈V , {ϕv}v∈V , A) consists of a
collection of automata Av = (Qv , Av , δv) associated with the vertices v ∈ V of a digraph Γ = (V, E),
a global input alphabet A and interaction functions

ϕv :
∏

w∈N(v)

Qw × A → Av ,

for each node v of Γ . A state of the network is a choice of state for each component automaton,
i.e. States(A) = ∏

v∈V Qv . Given a global input a ∈ A and a state of the automata network, the
next input to the automaton at node v is a function ϕv of the states of the automata in the
neighbourhood of v and the input a. Thus, the new state of the automaton at node v may be
written as

q′
v = δv(qv ,ϕv(qN(v), a)),

where qv ∈ Qv and qN(v) := {qw}w∈N(v) are, respectively, the current state at v and the states qw ∈ Qw

of all nodes w in the neighbourhood of v.7

Special cases.

(1) An automata network is called a ‘general product’ of automata if Γ is a complete graph,
i.e. E = V × V. Without loss of generality, we may take V = {1, . . . , n} in the case of
finite V. Then for each i ∈ V, there is an interaction function ϕi : Q1 × · · · × Qn × A → Ai.
The general product (or Gluškov product) of the automata Ai = (Qi, Ai, δi) with respect
to the interaction functions ϕi(i ∈ {1, . . . , n}) is then the automaton A with state set
Q = Q1 × · · · × Qn, input alphabet A, transition function δ given by δ((q1, . . . , qn), a) =
(δ1(q1,ϕ1(q1, . . . , qn, a)), . . . , δn(qn,ϕn(q1, . . . , qn, a))), for all (q1, . . . , qn) ∈ Q and a ∈ A.
Note that automata networks can be defined in terms of a general product of their
components where the interaction functions depend just on the neighbourhood states
qN(v) and the global input.

(2) In the network A, if all automata are copies of the same automaton Av =A (for all v ∈ V),
then we say that A is a (general) power of A, or an ensemble of copies of A.

(3) Another special case is a direct product of automata where E = ∅, i.e. the graph with
disconnected nodes. This is still taken with respect to interaction functions ϕv : A → Av
(v ∈ V), depending only on the global input a ∈ A, so

q′
v = δv(qv ,ϕv(a)).

(4) If the underlying graph of the network is totally ordered (or more generally directed
acyclic), then A is said to be a cascade of its component automata. In the linear case with
nodes V = {1, . . . , n} ordered as usual, each interaction function ϕi depends only on the
global input a and the states qj with j< i, and not on qi, . . . , qn. That is, ϕi :

∏
j<i Qj × A →

Ai, so that the new state of A is given locally as q′
i = δi(qi,ϕi(q1, . . . , qi−1, a)), where qj ∈ Qj

and a ∈ A.

7In the literature, what we call ‘interaction functions’ have been referred to as ‘feedback functions’ [9,20].
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a

j1

j1(q1,. . .,qn,a)

ji(q1,. . .,qn,a)

jn(q1,. . .,qn,a)
dn(qn,jn(q1,. . .,qn, a))

di(qi,ji (q1,. . .,qn, a))

d1(q1,j1(q1,. . .,qn,a))

ji

jn

qn

qi

q1

qn

qi

q1

qn

qi

q1

qn

qi

q1

qn

qi

q1

Figure 1. General product. (Adapted from [9, p. 59].)

(5) We shall use the interaction functions ϕi, i ∈ V = {1, . . . , n} in an extended sense as
mappings ϕ∗

i : Q1 × · · · × Qn × A∗ → A∗
i , where ϕ∗

i (q1, . . . , qn, λ) = λ and

ϕ∗
i (q1, . . . , qn, pa) =
ϕ∗

i (q1, . . . , qn, p)ϕi(δ1(q1,ϕ∗
1 (q1, . . . , qn, p)), . . . , δn(qn,ϕ∗

n(q1, . . . , qn, p)), a),

where qi ∈ Qi, i = 1, . . . , n, p ∈ A∗, a ∈ A. In the sequel, ϕ∗
i will also be denoted by ϕi.

This is equivalent to allowing words rather than just letters in the inputs to each
component automaton Ai. Or, again equivalently, we may regard ϕi as taking values in
the characteristic monoid M(Ai) of the transformations acting naturally on Ai’s states Qi
that are induced by words over Ai. (This too holds of course if ϕi only depends on some
of its arguments, i.e. those with indices in the neighbourhood of i ∈ V, where without loss
of generality V = {1, . . . , n}.)

We can imagine the structure of the general product A as a working model in the following
way:8 the product is a collection of automata such that every member Ai of this collection is
supplied with a transformer which is a special type of an automaton (figure 1). The transformers,
realizing the interaction functions ϕi mentioned above, are able to get an input vector containing
a common external input sign and the state of all component automata in their neighbourhood
of Av according to the directed graph V. They can each transform this input vector into an
appropriate input sign for their component automaton. The automata network A is at work
along a discrete time scale in the following way: all transformers of the product get a common
external input event a, and, simultaneously, get the value of the instantaneous states q1, . . . , qn

of all component automata as input information. By the effect of this input vector (q1, . . . , qn, a),
the transformers produce an input sign ai = ϕi(q1, . . . , qn, a) ∈ Ai, i = 1, . . . , n for their component
automata. Then, by the effect of these (transformed) input signs, every component automaton
goes into a new (not necessarily different) state δi(qi, ai) = δi(qi,ϕi(q1, . . . , qn, a)) and then, in the
next time period, this process all happens again.

The transformation semigroup (Q, S(A)) of a finite automaton A= (Q, A, δ) can be regarded
as an automaton itself; its basic event or input alphabet is the collection of all transformations

8The definition of automata network and the explanation are adapted from [9, p. 59] by P. Dömösi and C. L. Nehaniv.
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t : Q → Q given by some word w ∈ A∗ in the inputs of A. We may then write t = [w] or t = ·w, for
this transformation t ∈ S(A) ⊆ QQ, in the dynamical space of A.

An automaton A′ = (Q′, A′, δ′) emulates automaton A if A′ has a subautomaton mapping onto
A. That is, there exist Q̃ ⊆ Q′, Ã ⊆ A′ with δ′(q̃, ã) ∈ Q̃ for all q̃ ∈ Q̃, ã ∈ Ã, and surjective functions
ϕ1 : Q̃ → Q and ϕ2 : Ã → A satisfying ϕ1(δ′(q̃, ã)) = δ(ϕ1(q̃),ϕ2(ã)).

Very important for understanding the fundamental building blocks of finite discrete dynamical
systems are the cascade products of transformation semigroups; in particular, one can emulate
any finite automaton A by cascading representative symmetry structures (permutation groups)
arising from (Q, S(A)) and copies of two-state identity reset automata (so-called ‘flip-flops’).

Theorem 1.1 (Krohn–Rhodes [8,11,13,21].). Let A be a finite automaton. Then there is a cascade
A = (Γ , {Av}v∈V , {ϕv}v∈V , A′), with Γ linearly ordered, such that A emulates A and each S(Av) is either
a group or contains no non-trivial group.

Let c(A) be the number of v ∈ V for which S(Av) is a non-trivial group. The (Krohn–Rhodes)
complexity of A is the least c(A) over all cascades A emulating A as in theorem 1.1.

The Krohn–Rhodes prime decomposition theorem refines theorem 1.1 to guarantee that S(Av)
can be chosen to be finite simple groups and flip-flops and describes which irreducible building
blocks must occur in every decomposition of a given automaton A [8,11,13,21].

In §5, we define an interaction machine (of level 1) as an automata network that can dynamically
change its structure and topology in the course of an update (following [19,22–24]). This points to
a method for keeping computational activity far from equilibrium by continually regenerating
structure. Interaction machines may themselves be recursively combined into networks that
dynamically respond when interacting with each other and the environment. An interaction
machine (of level n + 1) will comprise a dynamic network of interaction machines of level n and
below. More generally, interaction machines consist of dynamic networks of interaction machines
without regard to level (as, for example, these levels may be changing or unknown).

2. Weak control

(a) R-equivalence, permutator and stabilizer of states
In the following, X, Y, Z, etc., with various subscripts denote subsets of finite set Q = States(A).

The set of stabilizer strings of a subset X of states is

(X)stabstr = {w ∈ A∗ | X · w ⊆ X}.

It consists of all input strings w that map each state in X to some state in X. It has a subset, the
permutator strings of X,

(X)perstr = {w ∈ A∗ | X · w = X},

which since X is finite consists of the strings that permute the members of X.
In particular, (X)stabstr and (X)perstr are subsets of A∗ containing the empty word λ ∈ A∗, and

each is closed under concatenation of its members. So (X)perstr is a subsemigroup of (X)stabstr.
Define the stabilizer (X)stab of X to be the set of equivalence classes of words in (X)stabstr

that realize the same transformation of X. Thus, two stabilizer strings w1 and w2 are identified in
(X)stab when they agree on all x ∈ X, i.e. each w ∈ (X)stabstr is considered as the function x 	→ x · w
on X. Similarly, (X)stabsgp denotes the equivalence classes of words w in (X)stabstr yielding the
same transformation q 	→ q · w, for all q ∈ Q, i.e. as members of the characteristic monoid M(A).

The permutator group (X)per of a subset X consists of, by definition, those members of (X)stab
which are permutations of X (i.e. 1 : 1 and onto, but of course 1 : 1 is equivalent to onto because X
is finite). Then (X)per is a subgroup of (X)stab and (X, (X)per) is a permutation group.

The permutator semigroup (X)persgp is the set of mappings on all states Q given by members of
(X)perstr. Then restriction to X ⊆ Q is a homomorphism from (X)persgp onto (X)per.
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We have the following commutative diagram relating these semigroups, including the group
(X)per, via natural homomorphisms and inclusions:

A∗ QQ XX

⊆ ⊆ ⊆

(X)stabstr
η
� (X)stabsgp

ρ
� (X)stab

⊆ = ⊆ ⊆

(X)perstr
η
� (X)persgp

ρ
� (X)per

Here, for w ∈ A∗, η(w) is the mapping Q → Q given by η : w 	→ ·w, and ρ is restriction to X. Thus,
(X, (X)stabstr) is a not necessarily faithful (right) transformation monoid, (X, (X)stab) is a faithful
transformation monoid and (X)stabsgp is a submonoid of the characteristic monoid M(A).

Theorem 2.1. The restriction homomorphism from (X)persgp to (X)per is injective on any subgroup G
of (X)persgp whose identity element e has image X.

Proof. Let G be a subgroup of (X)persgp with identity element e2 = e and Q · e = X, where Q is
the full state set. Consider g1, g2 ∈ G and q ∈ Q. Suppose the restrictions of g1 and g2 to X agree,
then q · g1 = q · eg1 = (q · e) · g1 = (q · e) · g2 = q · eg2 = q · g2. So g1 and g2 also agree on the full state
set, hence g1 = g2. �

For subsets X1, X2 ⊆ Q, we define the reflexive transitive relation X1 ≥R X2, if there exists t ∈
A∗ such that X1 · t = X2. We define X1RX2 if and only if there exists t12, t21 ∈ A∗ such that X1 · t12 =
X2 and X2 · t21 = X1. In this case x1 	→ x1 · t12 and x2 	→ x2 · t21, for xj ∈ Xj are bijections. Then for
some positive integer w, (t12t21)w is the identity map on X1, so, by replacing t12 by (t12t21)w−1t12,
we can assume the two bijections above are inverses of each other.

Theorem 2.2. If X1 is R-equivalent to X2, then we have an isomorphism of permutation groups

(X1, (X1)per) ∼= (X2, (X2)per).

Proof. Using the notation above, it is immediate to check that the bijective mappings
x1 	→ x1 · t12 (for states x1 ∈ X1) and s 	→ t21st12 (for transformations s ∈ (X1)per) respect the group
action giving an isomorphism of permutation groups. �

An element e of a semigroup is idempotent if e2 = e. There is an important transitive, reflexive
natural partial order on idempotents: e1 ≤ e2 if and only if e1e2 = e2 = e2e1.

(b) Natural subsystems and weak control of one permutator group over another
We shall only be concerned with (non-trivial) permutators of subsets Xw = Q · w that are reachable
and stable under some sequence of events w ∈ A∗, where Xw · w = Xw. In the ensemble viewpoint,
starting the system in every possible state and feeding in the input event sequence w results in the
set of possible states Xw. For X = Xw, we call the permutation group (X, (X)per) a natural subsystem
for the automaton A.

The transformation on Q due to w has a unique idempotent power e = e2. We assume G to be
the (unique9) maximal subgroup of S(A) with e as the identity, and let X(G) = X = Q · e = X · e,
which we may also denote X(e). We have Q · e = X · e ⊆ X · G = {x · g : x ∈ X, g ∈ G} ⊆ (X · G) · e ⊆
Q · e, so X(G) = X · G. By theorem 2.1, we have that (X(G), G) is a faithful permutation group. We
also call (X(G), G) a natural subsystem, although unlike (X, (X)per) the elements of its group are
defined on all states of Q, not just on X ⊆ Q. Of course each element of G will determine a unique
member of (X)per, but many different maximal subgroups G of (X)persgp may act by permutations

on X(G), and each such G embeds in (X)per by theorem 2.1.10

9Standard results of semigroup theory (e.g. [8,25–27]) show that every idempotent is contained in a unique maximal subgroup
Ge, i.e. if H is a subgroup containing e then H ⊆ Ge.
10Thus, there frequently may exist different w with different idempotent powers e stabilizing the same image X = X · w =
X(e) = X(Ge). In that case, it follows from footnote 9 that the different groups Ge are disjoint.
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We say (X1, (X1)per) exercises weak control over (Y1, (Y1)per) if and only if there exists X2
with X1 RX2 so (X1, (X1)per) ∼= (X2, (X2)per) and X2 ≥R Y1, Y1 ⊆ X2 (therefore there exists r ∈ A∗
so that X2 · r = Y1 � X2, but no r0 ∈ A∗ so that Y1 · r0 = X2). So r ∈ (X2)stabstr and r is not a
permutation when restricted to X2. We write (X1, (X1)per) �wc (X2, (X2)per) in this case.

In studying automata models of biological (metabolic, genetic regulatory, etc.) systems, we
want to return for biochemical and biological inspection strings (i) which generate (X2)per, (ii)
string r with X2 · r = Y1, and (iii) strings which generate (Y1)per.

Lemma 2.3. For natural subsystems (X(G1), G1) and (X(G2), G2) where X(G2) � X(G1), with identity
elements ei = e2

i ∈ Gi (for 1 ≤ i ≤ 2), there exists a group G′
2 with idempotent e′

2 such that e1 > e′
2 and

X(G′
2) = X(G2), and (X(G2), G2) ∼= (X(G′

2), G′
2).

Proof. Let e′
2 = (e1e2e1)k the unique idempotent power of e1e2e1, with k> 1. Then e′

2e1 =
(e1e2e1)ke1 = (e1e2e1)k = e′

2, and similarly e1e′
2 = e′

2, so e1 > e′
2. Then Q · e′

2 = Q · (e1e2e1)k = X(G2) as
e1 maps Q onto X(G1) and e2 fixes every element of X(G2) � X(G1) but maps Q (hence X(G1)) to
X(G2). Obviously, e′

2 acts as the identity on X(G2). Let G′
2 = e′

2G2e′
2. Then g 	→ e′

2ge′
2 is a surjective

function from G2 to G′
2. Clearly, for all x ∈ X(G2), g ∈ G2, x · e′

2ge′
2 = x · g. For g, h ∈ G2, if e′

2ge′
2 and

e′
2he′

2 agree on Q, then they agree on X(G2), so then g and h do, from where g = h by theorem 2.1.
Thus, g 	→ e′

2ge′
2 is an injective. Now G′

2 has identity e′
2. As e′

2 is the identity of the image of g,
(e′

2ge′
2)(e′

2he′
2) = e′

2ge′
2he′

2 = e′
2ghe′

2. Thus, the mapping g 	→ e′
2ge′

2 is a homomorphism, and hence an
isomorphism (in particular G′

2 is a group). This gives an isomorphism of the permutation groups
(X(G2), G2) ∼= (X(G′

2), G′
2), which is the identity map on states. �

Theorem 2.4. Let X(G1) � . . .� X(Gk) be the state sets of natural subsystems (X(Gi), Gi) with
idempotents e2

i = ei. Then there exist G′
i
∼= Gi with X(Gi) = X(G′

i) having identity elements e′
i for 1 ≤ i ≤ n,

with (X(Gi), Gi) ∼= (X(G′
i), G′

i), and, moreover, e′
1 > · · ·> e′

n.

Proof. Let (X(G′
1), G′

1) = (X(G1), G1) so e′
1 = e1. Then, inductively for 1 ≤ i< n using lemma 2.3,

given X(G′
i) � X(G′

i+1), one can replace (X(Gi+1), Gi) by isomorphic (X(G′
i+1), G′

i+1) with X(G′
i+1) =

X(Gi+1) and e′
i > e′

i+1 without changing e′
i. After n − 1 steps, we obtain idempotents e′

1 > · · ·> e′
n

and groups G′
i with the required properties. �

Simple counterexamples show that weak control need not be transitive. However, we have the
following general result.

Theorem 2.5. Natural subsystems (Xi, Gi)(1 ≤ i ≤ k) whose state sets form a chain X1 � . . .� Xk are
in weak control hierarchy where the larger sets’ permutation groups (Xi, Gi) weakly control each of the
smaller ones (Xj, Gj) with j> i.

Proof. By theorem 2.4, we can replace the natural subsystems with equivalent ones having the
same state sets and the same permutator group so that their identity elements are related in the
natural partial order. As the image of ej is Xj = X(Gj) and ej is the identity on Xj, we have that
Xi · ej = Xj for j> i shows that the empty word and the ej establishes weak control by (X(Gi), Gi)
over (X(Gj), Gj). �

Let A= (Q, δ, A) be a finite automaton and consider the digraph Ξ of natural subsystems
(X, G), where X ⊆ Q and G is a subgroup of the characteristic monoid M(A), with edges given
by the weak control relation, i.e. there is a directed edge from (X1, G2) to (X2, G2) if and only if
(X1, G1) �wc (X2, G2). We call Ξ =Ξ (A) the weak control hierarchy of the automaton A.

Lemma 2.6.

(a) The weak control relation for an automaton is irreflexive and antisymmetric.
(b) The weak control hierarchy Ξ is an acyclic directed graph.
(c) The weak control relation is transitive if and only if, for all natural subsystems where (X1, G1)

weakly controls (X2, G2) and (X2, G2) weakly controls (X3, G3), X1 is R-equivalent to some X′
1

containing X3.
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Proof. (a) By the definition of weak control, (X1, G1) �wc (X2, G2) implies |X1|> |X2|, from where
irreflexivity and anti-symmetry follow. (b) A cycle in the directed graph starting and ending with
(X, G) would entail |X|> |X|, a contradiction. (c) The condition on the existence of X′

1 ⊇ X3 with
X1 R X′

1 is obviously necessary as it must hold for (X1, G1) to weakly control (X3, G3). It is also
sufficient: for if it holds then by definition of weak control there exist subsets X, X′

2 ⊆ Q and words
w1, w̄1, w2, w3, w̄3, w4 ∈ A∗, such that X1 · w1 = X, X · w̄1 = X1, X · w2 = X2, X2 · w3 = X′

2, X′
2 · w̄3 =

X2 and X′
2 · w4 = X3. Then by hypothesis there exists X′

1 ⊆ Q containing X3 and words w, w̄ ∈ A∗
with X1 · w = X′

1 and X′
1 · w̄ = X1. Hence, X′

1 · w̄w1w2w3w4 = X1 · w1w2w3w4 = X · w2w3w4 = X2 ·
w3w4 = X′

2 · w4 = X3, so (X1, G1) weakly controls (X3, G3). �

Lemma 2.7. Weak control is transitive up to R-equivalence.

Proof. Suppose (X1, G1) �wc (X2, G2) �wc (X3, G3), then there exist X and X2 and words wi, w̄i as
in the proof of lemma 2.6(c). Without loss of generality, we may assume that ·w3w̄′

3 and ·w̄′
3w3

are idempotent and restrict to the identity on X2 and X′
2, respectively (as in theorem 2.2), and

that the image of w3 is X′
2 and the image of w̄3 is X2. Let X′

3 = X3 · w̄3. Then X′
3 · w3 = X3, as

X2 and X′
2 are in one-to-one correspondence via the bijections ·w3 and ·w̄′

3. Clearly X′
3RX3. For

g ∈ G3, let ψ(g) = ·w̄′
3gw3 ∈ (X′

3)persgp. Let G′
3 =ψ(G3) with identity w3w̄3. Then (X3, G3)R(X′

3, G′
3)

and are isomorphic. As (X1, G1)R(X, G′
1) with X · w2 = X2, the assertion follows: X · w2w3w4w̄3 =

X2 · w3w4w̄3 = X′
2w4w̄3 = X3w̄3 = X′

3, and X′
3 � X2 � X, showing (X, G′

1) �wc (X′
3, G′

3). �

Corollary 2.8. The weak control hierarchy modulo R-equivalence is a partial order Ξ/R.

(c) Interpretations of groups, control and essential dependencies
For a given subset X of the states of a biological system, (X, (X)per) is a permutation group.
Thus, the members of (X)per are symmetries of the subset X. They leave X invariant. Any string
of events t ∈ A∗ representing one of the members of (X)per will preserve X. That is, t gives a
bijection of the states in X to themselves, and any sequence of members of (X)per will also map
X to itself in a one-to-one onto manner. The structure (X, (X)per) is thus a ‘natural system’ or
‘pool of reversibility’. Non-trivial (X)per groups appear in the algebraic decomposition of the
automata into simpler components (Krohn–Rhodes theorem), which shows how to synthesize
the given automaton using a hierarchical arrangement of components—in the holonomy theorem
[9, ch. 3] these can be obtained from the weak control hierarchy (theorem 6.1).11 The irreducible
components of these groups are the ‘atomic pieces’ or elementary building blocks constituting
the entire structure. The Krohn–Rhodes decomposition can be viewed as providing a generalized
coordinate system (analogous to the decimal or binary expansion) that models how computation
in the biological system occurs).12

Now suppose a subset of Q = States(A) is partitioned into distinct configuration classes with
representatives c1, . . . , cm (m ≤ |Q|). For example, we may take the ci to be all the states of Q (so
m = |Q|), or, alternatively, the ci may be representatives of orbit trajectories in Q under subgroups
of S(A), i.e. dynamically stable orbits in different natural subsystems. Suppose a word t ∈ A∗ maps
each ci to ci · t in the partition class of some ct(i) and that this map is well defined on partition
classes. Then A has absolutely complete control or total control over the configuration classes if input
sequences can perform arbitrary operations on the classes. That is, every function f : {1, . . . , m} →
{1, . . . , m} is realized by some input sequence t ∈ A∗. The collection of all mappings on the partition
classes has maximal complexity with this property.
Note: mere transitivity on states is not an interesting alternative. That is, if for every ci and cj in Q
there exists a ti,j ∈ A∗ with ci · ti,j = cj. For example, if the characteristic monoid of A contains just
all constants then this condition is satisfied, but then there is no dependency of the resulting state
on the current state. So such systems have zero complexity.

11The groups occurring are non-trivial quotient groups of the (X)per groups for X a subset of the form X = Q · t, t ∈ A∗.

12The remainder of this section on different notions of control and essential dependencies is adapted from [11, pp. 49–50,
188–191] by John Rhodes; however, the notion of weak control and its application is new.
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Let G1 and G2 be two subgroups of S, with e2
k = ek the identity of Gk, for k = 1, 2. We define

e1 > e2 if and only if e1 �= e2 and e1e2 = e2e1 = e2. It is easy to show that > is a transitive relation on
the collection of idempotents of S. Also denote X(Gk) by Xk. Then it is not difficult to show that
e1 > e2 implies X1 � X2. Now a chain of internal dependencies is given by e2

1 = e1 > e2
2 = e2 > · · ·>

e2
n = en and non-trivial subgroups Gk with identities ek so that

X1 � X2 � · · · � Xn �= ∅.

But we must also require that each step Xk � Xk+1 be ‘essential’, so we precisely define this next.
Given subgroups Gk, Gk+1 of S with identities e2

k = ek and e2
k+1 = ek+1, respectively, and Xk =

X(Gk), Xk+1 = X(Gk+1) and ek > ek+1 so Xk � Xk+1 �= ∅, define Xk+1 = {Xk+1 · gk : gk ∈ Gk}. Thus,
Xk+1 is all those subsets of Xk given by letting (Xk, Gk) act or ‘knock about’ Xk+1 � Xk. Now
let Ik+1 = {f 2 = f ∈ S : X · f = Xk · f ∈Xk+1}. Thus, Ik+1 is all those idempotents of S whose range
is some translation of Xk+1 under some member of Gk. Let 〈Ik+1〉 be the subsemigroup of S
generated by Ik+1. Then by definition Xk � Xk+1 is an essential dependency if and only if

〈Ik+1〉 ∩ (Xk+1)per ⊇ Gk+1 �= {ek+1}.
Then we have the following.

Theorem 2.9 (complexity lower bounds (Rhodes–Tilson [11])). Let k be the length of a longest
chain of essential dependencies of an experimental system E described by an automaton A with
characteristic semigroup S(A). Then the number of non-trivial groups which must occur at different levels
of any linear cascade decomposition for A (i.e. the Krohn–Rhodes complexity of this model of E ) is greater
than or equal to k.

Let the spectrum of A= (Q, A, δ) be defined as spectrum(Q, A) = {k> 1 : k = |Q · t|, t ∈ A+}, i.e.
the set of cardinalities of images of Q under some input sequence.

The control of A is above the bare minimum if there is a sequence of input words t1, . . . tn−2 ∈
A∗ such that |A · t1 . . . ti| = n − i. Thus, each successive ti removes one state from the possible
configurations. This property implies that spectrum(A) is then the same as the spectrum of all
mappings on Q. Rhodes [11, ch. 6, part II] gives a mathematical argument that evolved systems
such as the cell must have control above the bare minimum. (It turns out that simpler systems
such as the Krebs cycle do too.)

One idea of locally good control of a collection of states {q1, . . . , qp} = Q is that a group of
permutations of Q acts transitively on Q (i.e. given q1, q2 ∈ Q, there exists an input t ∈ A∗ yielding
π : Q → Q so that Q · π = Q and q1 · π = q2) and also for each q ∈ Q there exists an input tq such
that qj · tq = q for all j = 1, . . . , p. The semigroup S = S(A) under locally good control contains
a transitive permutation group G on Q together with all the constant maps (or resets) on Q.
The constant map control is only locally good since whenever a constant map is used (a reset)
there is no way for any map but a constant map to occur again (as constants·S ⊆ S·constants ⊆
constants). Clearly, how effective a good local control is is inversely proportional to the number
of states. Of course, if A is in a cascade with other locally good control units, then if each unit
just controls a small number of states, the global control can be quite good, so heuristically high
complexity, relative to the total states, means many locally good control units in a cascade, while
low complexity relative to the total states implies few locally good control units in cascade. In
the first case, each local unit has few states to manage so the local control is good everywhere, so
the global control is good. Similarly in the second case, the global control is bad, as locally good
control units have so many states that their global control is bad.

Using the precise definition of essential dependencies, we can make the above heuristic
argument precise.

Let X1 � X2 � · · · � Xn be a chain of essential internal dependencies. Consider the step from
k to k + 1, Xk � Xk+1. Using the notation in the definition of essential dependency, we have Gk a
transitive group on Xk+1 = {Xk+1 · gk : gk ∈ Gk}. Using some standard semigroup theory (details of
which we omit), Ik+1 can be shown to have the following property. For each X′

k+1 ∈Xk+1, there
exists f ∈ Ik+1 so that for all X∗

k+1 ∈ Ik+1 either X∗
k+1 · f ≡ f (X∗

k+1) = X′
k+1 or |X∗

k+1 · f | ≡ |f (X∗
k+1)|<
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|X′
k+1| = qk+1, where qk+1 is the number of elements in each member of Xk+1. Also, for at least

one element of Ik+1, the first condition must hold. In other words, f acts like the constant map
sending every element of Xk+1 to X′

k+1 or to ‘zero’ and it sends at least one element to X′
k+1. Thus,

Gk ∪ Ik+1 acting on Xk+1 has locally good control (where our previous definition has been slightly
generalized to allow 0-constant maps).13

Thus, each essential dependency Xk � Xk+1 leads to locally good control. If n is nearly as large
as the number of states |Q|, by a strengthened definition of essential dependency giving tighter
bounds (similar to the above but going into precise details about how many zeros are allowed in
the 0-constant maps and not allowing for many zeros), the number of locally good control units
is large, so each has only a few states to govern, so the global control is good.

Based on the weak control hierarchy, natural subsystems give rise in theorem 6.1 to control
which is locally good and yield a coordinate system for the model being analysed.

3. Natural subsystems and weak control by permutation groups in biochemical
and biological examples: models of the lac operon in Escherichia coli,
p53–mdm2 and the Krebs cycle

Weak control hierarchies and natural subsystems are presented here for finite automata models
of various biochemical and biological systems. These illustrate the concepts and definitions
presented in §§1 and 2 in concrete systems biology models. Transformation semigroups, natural
subsystems and weak control structures were computed directly from these definitions for the
presented automata models using our open-source computer algebra system SGPDEC for analysis
and hierarchical synthesis and decomposition of finite automata, transformation semigroups and
permutation groups [16,17].

In all p53–mdm2 biological examples in this article and for the lac operon automaton, weak
control is transitive.14 The Krebs cyclic example has non-transitive occurrences of weak control,
but, by corollary 2.8, Ξ/R is a transitive hierarchy (i.e. partial order) in every case.

We show that permutation groups in the algebraic structures associated to biological models
can be non-trivial, and moreover that finite SNAGs occur. The latter is of special interest as they
have been shown to be capable of finitary universal computation (§4).

(a) Permutation groups in the lac operon in Escherichia coli
Now we study permutation groups and relations among them in a biological example. Escherichia
coli, the ‘workhorse’ bacterium of microbiology, can metabolize glucose and lactose also, but will
facultatively switch to glucose when it is available: lactose is metabolized only when glucose
is absent and lactose is available. In all other cases, the expression of the structural genes for
the enzymes of lactose metabolism is suppressed. This genetic regulatory mechanism, the lac
operon, is a canonical example of prokaryotic gene regulation (e.g. [28,29]). We use a finite-state
automaton description of this gene regulation mechanism in order to examine natural subsystems
and algebraic structure associated to the lac operon mechanism. This is a very simple Boolean
network model of the lac operon mechanism in E. coli, originally suggested by Stuart Kauffman
[4].15 Its states are configurations given by four Boolean variables, as shown in table 1. Time
evolution of the lac operon model depends on three kinds of basic event: t, the passage of
time (a discrete ‘clock tick’); L0, allowing lactose, if present, to deplete; L1, the introduction or

13A function is said to be a 0-constant map if it takes a constant value except possibly at some points where its value is
undefined or outside the range of interest and so is reported as ‘zero’. In the example here, the application of f induces a
0-constant map from Xk+1 to itself. Such maps arise frequently in semigroup theory (e.g. in relation to the wreath product of
permutation groups augmented with constant maps—implicitly related to the case discussed here—or in the global action of
a semigroup on the local Rees–Sushkevych coordinatizations).
14This was checked exhaustively by direct computation for all the examples on a laptop running SGPDEC. This took over one
week for the larger p53–mdm2 network to do directly, but less than one minute to check using the condition of lemma 2.6.
15We are grateful to George F. Estabrook for providing us with the details of Kauffman’s model.
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Figure 2. Automaton derived from Boolean network model of the lac operon mechanism in E. coli. Transition L1 denotes the
introduction of lactose, L0 the depletion of lactose and t labels transitions due to the passage of time. Nodes in the diagram are
states of thenetworkandare thusgivenby subsets of{L, A, Op, ZYA}, consistingof theactive/presentbiochemical components.
Here state 0 denotes the empty set where none of these components is present/active. The transformations of the system are
given by all finite sequences of transitions from L1, L0 and t. Light nodes denote states where lactose is present, whereas dark
nodes denote states without lactose. (Based on Kauffman [4]; adapted from Egri-Nagy & Nehaniv [30].)

maintenance of lactose. The clock tick is assumed to occur on a short but unspecified time scale,
where there is no change in whether lactose is present or not above a threshold value. These three
basic events thus comprise an external input alphabet to the ‘event-driven’ finite-state automaton
model, whose state-transition diagram is given in figure 2.

Natural subsystems are generally not immediately evident from either Boolean networks or
finite-state automaton descriptions. Knowing a model’s generators or transition diagram fully
describes it, but this gives almost no insight into its structure and no higher level insight into how
it functions. This is analogous to the fact that writing down a system of differential equations
does not by itself yield understanding of a system’s orbit and stability structure, local and global
dynamics, etc.

Studying the transformation semigroup of this lac operon model reveals exactly two non-
trivial natural subsystems. These structures were calculated in a few seconds using our
computational algebra system SGPDEC [16–18] together with the weak control relationship
between the two. Figure 3 shows the weak control structure of this model of the lac operon with
two permutator groups inside the semigroup of the automaton for this model. Both consist of
cyclic group C6 of order 6 acting on subsets of the state space: there is a natural subsystem (X, C6)
with X consisting of the nine states Op, L, L ZYA, L Op, L Op ZYA, L A, L A ZYA, L A Op and
L A Op ZYA. These are Op and the states with lactose. The set X is permuted in three orbits by
the clock tick t: one orbit consists of two states L and L A Op ZYA that are transposed by t, the
second of six states of the Boolean network L Op, L A Op, L A, L A ZYA, L ZYA and L A Op
ZYA cyclically permuted in that order, while a final orbit consists of Op alone as the repressor
molecule is continually produced but activates nothing else in the absence of lactose. There is a
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Figure 3. Weak control hierarchy for the lac operon Boolean network model.

natural subsystem (Y, C6) where Y consists of the eight states L, L ZYA, L Op, L Op ZYA, L A, L
A ZYA, L A Op and L A Op ZYA, where lactose is present (states on the left in table 1 and also
appearing as the white nodes in figure 2). The permutation group with nine states X = Y ∪ {Op}
includes these eight plus the Op state, where the operon repressor molecule is present but no
lactose or allolactose is present and also protein biosynthesis according to genes ZYA are not
active. This permutation group weakly controls and is a superstructure of the permutation group
with the eight states: adding lactose (input L1) maps the Op state to L Op, where both lactose and
the repressor molecule are present (one of the eight states), but fixes the remaining eight states.
These eight states are the image of the idempotent L1, and the group has identity L1. Formally, by
weak control words λ and L1: X ≡ X via the empty word λ and Y = X · L1 � X. The permutations
of the lower group are generated by the event sequence L1 t L1 (or L1 t).

In the ensemble viewpoint, given a direct product of lac automata each in one of the states in
X, then applying an element of the group (X)per leaves the set of states fixed although it permutes
them non-trivially pointwise. From the entire possible set of states of the Boolean network after
the occurrence of three or more clock ticks, the possible states are exactly X, the lactose-containing
states and Op. This is why X and not some other subset occurs—it is the first natural system
reached after a transient. If lactose is then added, L1, the possible set of states is Y, as lactose
takes Op to Op L, and the lactose-containing states are not affected. These are the only non-
trivial natural subsystems in this example and they are defined algebraically by the notion of the
permutator group. No other subset of possible states that can be reached by any event sequence
starting from the full set of possible states is non-trivially permuted by any event sequence.
Note that every sequence consisting of only L1’s and t’s will permute Y, and (Y)perstr = {L1, t}∗.
Every sequence consisting only of t’s permutes X, and (X)perstr = t∗. These two infinite regular
languages describe exactly six cyclic permutations of Y and X, respectively, where the former
permutations are restrictions of the latter C6 ∼= (X)per ∼= (Y)per.16 In this case, the ‘weak control’

16We remark that, while the event sequences t and L1 t each generate the permutator group (Y)per, the subsemigroups of the
semigroup of the lac operon automaton that they generate contain different subgroups isomorphic to C6. This can be seen
from the fact that elements of the former fix the state Op while the latter do not. Generally, as it is defined by restriction, the
permutator group may be realized by many different subgroups of the semigroup of the automaton, as is the case also for the
other examples in this paper (see also [31]). Here the monogenic semigroups 〈t〉 and 〈L1 t〉 inside (X)persgp contain disjoint
subgroups, each isomorphic to C6.
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is rather ‘strong’, in that every permutator element of the lower set Y is realized as the restriction
of a permutator element of the larger natural system (X, C6).17 This will not in general be the case,
as we shall see for the p53–mdm2 genetic regulatory and Krebs cycle models.

(b) Krebs cycle
The major portion of a eukaryotic cell’s energy requirements are met by the breakdown of sugars,
with glucose as the principal source. The complete burning of 1 mole of glucose is given by

C6H12O6 + 6O2 → 6CO2 + 6H2O + 673 kcal.

Glucose is converted to CO2 and water by a process involving nearly 30 different successive steps
that gradually release energy. This reaction network was a big evolutionary leap, as anaerobic
glycolysis is much less efficient at extracting energy from sugar [32]. Any standard textbook in
biochemistry contains the details (e.g. [33]). First, a glucose molecule is broken down into two
pyruvic acid molecules with the Embden–Meyerhof pathway (fermentation). Second, pyruvic acid
is completely oxidized to CO2 and water via a series of acidic intermediates called the citric
acid cycle or the Krebs cycle. In the course of the cycle, oxaloacetic acid acquires an acetyl group
from pyruvic acid to form citric acid, which then undergoes a number of transformations that
eventually yield oxaloacetic acid that is ready to take up a new acetyl group from pyruvate.
The Krebs cycle releases a great amount of energy (in the form of ATP), requires oxygen and
is sometimes called respiration or glucose oxidation.18 Now that we have said what the Krebs cycle
does, we describe how this is achieved (figure 4a).19

In figure 4, NAD, CoASH, NADP, GDP and FAD are the coenzymes; pyruvic acid,
acetyl CoA, citric acid, etc., are the substrates. To obtain a discrete dynamical system (finite-
state automaton) model of the Krebs cycle, we must define the state space, the inputs
and the action. With reference to figure 4a, we define the set of inputs to be {NAD +
CoASH, CoASH, NADP, GDP, FAD, NAD}. For ease in defining the states, we enumerate the
substrates: 11 for pyruvic acid, 21 for acetyl CoA, 31 for citric acid, 41 for isocitric acid, 51 for
oxalosuccinic acid, 61 for α-ketoglutaric acid, 71 for succinyl CoA, 81 for succinic acid, 91 for
fumaric acid, 101 for L-malic acid, 111 for oxaloacetic acid. We let all the relevant enzymes (listed
in figure 4a), the ADP, Pi, O2, etc., i.e. everything required for the reactions but not listed in the
inputs or states, to be considered in the ‘soup’ and present in the amount required and at the time
and place required.

Figure 4b shows the reaction graph of the Krebs cycle in which substrates appear as states and
arrows are labelled by coenzymes required for the transition. In cases where the transition from
one substrate to another runs to completion given the constitution of the soup, the substrates in
question are shown in the same state as in the model (e.g. citric and isocitric acid). We denote
this model of the Krebs cycle as K1. Now by reaction 3© of figure 4a, citric acid is converted
to its isomer (chemical composition the same but structure or shape differing) isocitric acid by
way of the enzyme aconitase, which functions by removing a molecule of water from the citric

17A Krohn–Rhodes hierarchical decomposition using a cascade of transients as well as the subgroup structure of this model
using a different analysis is presented in [30]. As the relationship between the two permutator groups is so close, the
holonomy decomposition can be carried out using only one copy of C6, showing that the model has complexity 1, i.e. it
requires only one level of (generalized) arithmetic given by a non-trivial group.
18The explanation of the Krebs cycle and its discrete dynamical modelling using the reaction graph of figure 4b closely follows
our previous work [11,34]. The extended Krebs cycle two-molecule model (figure 5) and analyses of its natural subsystem
permutator group structure and weak control hierarchy are new.
19We make some very brief explanatory comments. Enzymes are biological catalysts. Catalysts modify the speed of a chemical
reaction without being used up or appearing as one of the reaction products. Certain enzymes are solely proteins (e.g. the
digestive enzymes pepsin and trypsin). Other enzymes consist of a non-protein part plus the protein and are therefore
conjugated proteins. If the non-protein portion is an organic part and is readily separated from the enzyme, this fragment is
called a coenzyme. It is called a prosthetic group if it is firmly attached to the protein portion of the enzyme. The amount (by
weight) of coenzymes in cells is very small. It is very important that the cell requires a different enzyme for practically every
reaction it carries out. No enzyme, no reaction. This specificity is not entirely absolute (there are enzymes which will catalyse
the hydrolysis of an ester R–COO–R′ + H2O � R–COOH + R′–OH without much regard for R, R′ if there is an ester linkage
between them) but for the majority of enzymes absolute specificity is the rule.
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Figure 4. Embden–Meyerhof pathway and Krebs cycle. (a) Enzymes involved in the reactions as numbered in the diagram
are: (1) pyruvate oxidase, (2) citrate synthase, (3) aconitase, (4) and (5) isocitrate dehydrogenase, (6) α-ketoglutarate
dehydrogenase, (7) succinyl thiokinase, (8) succinate dehydrogenase, (9) fumarase and (10)malate dehydrogenase. (b) Reaction
graph and finite-state automaton model K1 of the Krebs cycle (see text). Substrates correspond to states of the automaton and
if acted on by the relevant coenzyme are transformed, e.g. pyruvic acid (x1) interacting with NAD and CoASH (a1) is transformed
into acetyl CoA (x2). This is denoted δ(x1, a1)= x2. Note that if the coenzymes have no effect on a substrate then no arrow is
shown, e.g. δ(x8, a4)= x8 as oxaloacetic acid (x8) is not transformed by interaction with GDP (a4). The presentation is ‘event-
based’ or ‘perturbation-based’ and timedoes not appear explicitly in themodel. Reactions shown run to completion, and thus all
basic transitions are idempotent (i.e. δ(x, a)= δ(δ(x, a), a) always holds in a reaction graph). (Models from Rhodes [11, ch. 6,
Part I].)

acid and then replacing the water molecule isomerically. However, as no cofactor (i.e. input) is
required for this (just members of the ‘soup’), we identify 31 and 41. Similarly in reaction 5© of
figure 4a, oxalosuccinic acid is decarboxylated to give α-ketoglutaric acid, so we identify 51 and
61. Similarly, we also identify 91 and 101. Thus, the states of our model K1 are formally X1 =
{11, 21, {31, 41}, {51, 61}, 71, 81, {91, 101}, 111}.

Now to be completely formal, the first model K1 of the Krebs cycle is the automaton derived
from the reaction graph in figure 4b. The transition function of the automaton of K1 is defined
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in a natural way by letting, for example, δ1(101, NAD) = 111. The reaction network shows
how the encounters with coenzymes in the presence of appropriate enzymes yields chemical
transformation. For example, δ1(x5, a4) = x6 as the reaction graph shows

x5 = succinyl CoA
a4=GDP−→ succinic acid = x6,

whereas

δ1(x1, a4) = x1

since, according to the model, there is no arrow labelled GDP (a4) leaving state x1. So,
if GDP does come into contact with pyruvic acid (x1), it leaves this substrate unchanged.
As the state transition function δ1 is fully and uniquely defined for all possible state and
input symbol combinations, we have a complete knowledge of the automaton. However, this
knowledge does not imply immediate understanding of the automaton, as it is given in a
recursive form (just as in the case of differential equations), i.e. in order to gain insight about
the computations carried out by the automaton, we need to start from an initial state, apply an
input symbol, arrive in another state, then apply another transformation, and so on. Following
the definitions of §1, the transition function extends to input words, i.e. sequences of input
symbols: for the empty word δ(x, λ) = x, and for arbitrary words u, v ∈ A∗ (finite input sequences
from the input alphabet A), we have δ(x, uv) = δ(δ(x, u), v). This justifies the practice that, for
notational simplicity, we sometimes write x · u instead of δ(x, u) for any x ∈ Q and u ∈ A∗.
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Figure 5. Krebs cycle two-molecule automaton model. States are given by one or twometabolites, while transitions are given
by coenzymes and energy carriers (including input of pyruvic acid (P)) using the same notation as in figure 4b. Only transitions
which change the state are shown, e.g. (x2 x8) · a2 = x3, as acetyl CoA and oxaloacetic acid in the presence of CoASH (with
appropriate enzymes) are transformed to citric acid (then isocitric acid), whereas (x2 x8) · a3 = (x2 x8) as acetyl CoA and
oxaloacetic acid are unchanged in the presence of NADP (and ambient enzymes). This version of the Krebs cycle shows explicitly
how its end product oxaloacetic acid together with a new pyruvic acid that has been fermented (by splitting glucose) to acetyl
CoA then combines to form citric acid, thus closing the cycle. The state transition marked ∗ involves two steps as (x1 x4) acted
on by a1 becomes (x2 x5) as the presence of a1 transforms x1 to x2 and x4 to x5 (either simultaneously or in either possible order).

For example, in figure 4b, δ(x1, a6a1a2) = x1 · a6a1a2 = ((x1 · a6) · a1) · a2 = x3 as the reader can
immediately verify.

For mathematical convenience, given x, y ∈ Q = States(A) for any automaton A, we define an
elementary collapsing Txy : Q → Q, by (x)Txy = y and (z)Txy = z for all z ∈ Q with z �= x.

In the model here, states X1 = {11 = x1, 21 = x2, {31, 41} = x3, {51, 61} = x4, 71 = x5, 81 =
x6, {91, 101} = x7, 111 = x8}; inputs A1 = {NAD + CoASH = a1, CoASH = a2, NADP = a3, GDP =
a4, FAD = a5, NAD = a6} and the action δ1 : X1 × A1 → X1 is defined by δ1(x, a1) = (x)Tx1x2 Tx4x5 ,
δ1(x, a2) = (x)Tx2x3 Tx8x3 , δ1(x, a3) = (x)Tx3x4 , δ1(x, a4) = (x)Tx5x6 , δ1(x, a5) = (x)Tx6x7 , and δ1(x, a6) =
(x)Tx7x8 .20 Thus, our first model of the Krebs cycle yields K1 = (X1, A1, δ1) with characteristic
semigroup S(K1) and transformation semigroup (X1, S(K1)). In [34], we described a
hierarchical decomposition of this automaton having cyclic permutation groups as non-trivial
computing levels.

In order to model that the cycle closes with oxaloacetic acid acquiring an acetyl group from
pyruvic acid to form citric acid, we derive from model K1 another reaction graph whose states
may consist of more than one molecule at a time. Truncating this automaton at two molecules
to allow tracking of an additional molecule of pyruvic acid or acetyl CoA (which results from
under-fermentation) results in the finite automaton shown in figure 5.

Computing the natural subsystems shows that all of them are cyclic groups, namely
the cyclic modulo n groups for 2 ≤ n ≤ 6 of the form (X, (X)per) where X is a set of n
states and (X)per ∼= Cn. There are 51 equivalent, hence isomorphic, permutation C6 groups
cyclically permuting on different sets of six states in the transformation semigroup of the

20When we compose elementary collapsings, (x)Tx1x2 Tx4x5 equals x if x �= x1, x4 and (x1)Tx1x2 Tx4x5 = x2 and (x4)Tx1x2 Tx4x5 =
x5. Tx1x2 and Tx4x5 both occur because a1 occurs from x1 to x2 and from x4 to x5.
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Figure 6. Weak control hierarchy for Krebs cycle two-molecule automaton model.

automaton, 274 equivalent permutation C5 groups on five states, 375 equivalent permutation
C4 groups on four states, 248 equivalent permutation C3 groups on three states and 95
equivalent permutation C2 groups on two states.21,22 Weak control is transitive in this model
and illustrated in figure 6. For instance, the set with three states x2 x8, x2 x5 and x2 x7 is
cyclically permuted by the word δ = a2a3a4a1a6a2a3a5a4a6a5Pa1, i.e. a sequence of encounters
with the corresponding chemical species (and infinitely many other words). This three-state
set consists of acetyl CoA together with exactly one of succinyl CoA, oxaloacetic acid or
fumaric/L-malic acid. This natural subsystem is isomorphic to another three-state set consisting
of oxaloacetic acid, citric/isocitric acid and pyruvic acid with oxaloacetic acid, which is
cyclically permuted by the word δ′ = a3a2Pa1a4a5a3a1a2a3a4a6Pa1a5a2a3a4a6. The isomorphism
is determined by words w7 = a2a3a1a4a6a2a5a6a3a1a2a3a4a5Pa1 mapping the first three-state
set onto the second one, and w̄7 = a3a1a2a3a4a5Pa1 taking the second set back onto the
first. Applying a3a1a4a5a6 takes the second three-state set to its two-state subset oxaloacetic
acid and pyruvic acid with oxaloacetic acid on which the word ε = Pa2a3a1a4a5a6 acts as a
transposition: x8 · Pa2a3a1a4a5a6 = x1x8 · a2a3a1a4a5a6 = x1x8 · a1a4a5a6 = x2x8 · a4a5a6 = x2x8, and
also x2 x8 · Pa2a3a1a4a5a6 = x3 · a3a1a4a5a6 = x4 · a1a4a5a6 = x5 · a4a5a6 = x6 · a5a6 = x7 · a6 = x8. By
definition then, the representative order 3 cyclic permutation group on x2 x8, x2 x5, x2 x7 weakly
controls the order 2 cyclic group on x2 x8 and x8. In this case, the first three-state subset acetyl CoA
together with exactly one of citric/isocitric acid, oxaloacetic acid or fumaric/L-malic acid does in
fact weakly control each of its two-element subsets, e.g. via the action of a6 this three-state subset
maps onto the pair x2 x8 of acetyl CoA and oxaloacetic acid together and x2 x5 of acetyl CoA and
succinyl CoA. While no element of the three-element group transposes the latter pair {x2x8, x2x5},

21The list of member states of each of these natural subsystems is given in supplementary material available from the authors
on request.
22It follows by the holonomy theorem (e.g. [9, ch. 3]) or theorem 6.1 below that the automaton can be decomposed by a
cascade alternating one copy of each cyclic permutation group Cn (6 ≥ n ≥ 2) with series-parallel banks of flip-flops (which
have no non-trivial subgroups).
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the orbit of this pair under the three-element cycles through two-element subsets of the three-
state natural subsystem. Similarly, each n-element natural subsystem on the left-hand side of
figure 6 cycles the proper subset below it through n − 1 of its proper subsets. But no element of the
group of the n-state natural subsystem gives a non-trivial permutation of the n − 1-element, . . ., or
two-element natural subsystem. (Thus, the control is in this case properly ‘weak’—no non-trivial
permutation in the weakly controlled group is realized by the weakly controlling groups. This is
in contrast to the lac operon example where every permutation of the lower subsystem is realized
by the weakly controlling group.)

Thus, in this Krebs cycle model, there are dozens or hundreds each of natural subsystems
of each of the five cardinalities 6, 5, 4, 3 and 2 for their state sets with cyclic groups acting on
them transitively, as described above. Moreover, any other natural subsystem is equivalent to
and isomorphic to one of these five. Among these we have identified at least one subset chain
of subsets of these cardinalities whose permutation group each weakly controls the next smaller
one. Thus, by theorem 2.5, weak control by these natural subsystems (permutator groups) by each
other is a transitive total order of natural subsystems.

Remark. Generally if (X1, G1) weakly controls (X2, G2) with X2 � X1, the subgroup of G1
stabilizing X2 restricts to a subgroup of G2. The examples of the lac operon and Krebs cycle show
that this may be all of G2 or be the trivial group, but it may also be a non-trivial proper subgroup
of G2 as in the example for a symmetric group on three letters weakly controlling a SNAG arising
in the p53–mdm2 pathway.

(c) p53–mdm2 genetic regulatory pathway
We examine natural subsystems and algebraic structure in a model of the p53–mdm2 system
[35,36]. Figure 7 shows such a model of the p53–mdm2 regulatory pathway, which is important
in the cellular response to ionizing radiation and can trigger self-repair or, in extreme cases,
the onset of programmed cell death (apoptosis). This pathway is involved in ameliorating
DNA damage and preventing cancer [38]. The p53 protein is linked to many other proteins
and processes in the cell [38], but its coupling to the mdm2 protein appears to be particularly
important for understanding cancer. Depending on the concentration level of p53, the cell can
(in order of increasing concentration): (i) operate normally; (ii) stop all functions to allow DNA
repair to take place; (iii) induce reproductive senescence (disable cellular reproduction); and
(iv) induce apoptosis instantly (cell ‘suicide’). Therefore, p53 is a very powerful and potentially
very dangerous chemical that humans (and most other animals) carry around in each cell,
whose control must be tuned very finely indeed. Approximately 50% of all cancers result
from the malfunction of the p53–mdm2 regulatory pathway in damaged cells that should have
killed themselves.

Levels of p53 are controlled by a fast-feedback mechanism in the form of the mdm2 protein.
Synthesis of p53 occurs all the time, at a fairly fast rate; but the presence of p53 induces the
synthesis of mdm2, which binds to p53 and causes it to be disintegrated. When the DNA
is damaged (for instance, by radiation in radiotherapy) the cell responds by binding an ATP
molecule to each p53, bringing it to a higher energy level that prevents its destruction and causes
its concentration to rise. Thus in the simplest possible model [36], there are in all four biochemical
species: p53 (P), mdm2 (M), p53–mdm2 (C) and p53* (R), whose concentrations are modelled by
four coupled and nonlinear ordinary differential equations (ODEs). In [37], we derived a Petri net
model for p53–mdm2 gene regulation shown in figure 7 and studied algebraically in [31,35,37,39].
It is increasingly common to model biological networks as Petri nets. Petri nets [40,41] can easily
be transformed into finite automata, though this operation should be carried out with some care
(for a detailed explanation, see [7]). A Petri net’s state (‘configuration’) consists of assigning
an amount of tokens (e.g. corresponding to molecules or moles) to each of several ‘places’
(e.g. corresponding to molecular species). A basic event or input for a Petri net (‘transition’) is
a rule for consuming a fixed number of tokens from certain places and producing new tokens
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Figure 7. Petri net for the p53–mdm2 regulatory pathway following [31,35,37] with places P= p53,M= mdm2, C= p53–
mdm2, R= p53∗ and transitions modelling genetic regulatory dynamics.

at other places. If the rule does not apply due to lack of tokens, no change occurs. Different
transitions may occur at different rates, and these might vary or become zero (‘inhibition’) if
the state satisfies certain conditions [42]. Depending on the capacity allowed in the places of the
Petri net, the automaton’s state set can be different in size, thus we can get different resolutions
during discretization. Here if a transition occurs that would cause a place to exceed its capacity,
its capacity is reached [7].

When we distinguish only between the presence and absence (in sufficient concentration above
a threshold) of the molecules, the derived automaton has only 16 states (see figure 7).23 This may
be considered as a very rough approximation of the original process, but still natural subsystems
given by permutation groups do appear in this simple model: S3, the symmetric group on three
points is among the components. The existence of these group components is clearly connected
to oscillatory behaviours, however the exact nature of this relation still needs to be investigated.
Natural subsystems representing all possible ones for this model are visualized in figure 8.

If we in addition distinguish three levels of concentration of the molecular species, i.e.
absence (or very low, sub-threshold concentration), low and high levels concentrations, then the
corresponding automaton has 81 states (34 = 81) and the algebraic decomposition reveals that
it contains S5 among its components [35]. The appearance of S5 is particularly interesting as it
contains A5, the alternating group on five points, which is the smallest SNAG. If we let the place
M for mdm2 have three levels (capacity 2), but the others C, P, R have only two (capacity 1),
then A5 already appears. Weak control relations among representative natural subsystems for
this model of p53–mdm gene regulation appear in figure 9.

Weak control hierarchy representatives for the p53–mdm2 model using the Petri net capacity
1 model has 16 states, denoted by which of molecular species M, C, P, R are present (above
some threshold levels). States give the set of active species, thus ∅ denotes none of the species

23Four places each taking on two possible values (0 or 1) makes 24 = 16 states.
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Figure 9. Weak control hierarchy for the p53–mdm2 petri net with capacities forM= 2, C= 1, P= 1 and R= 1.

above threshold, while MP denotes mdm2 and p53∗ above threshold but C and R below their
respective thresholds. The natural subsystem X1 = {MP, MCP, MCR, MCPR} with cyclic group
C2 = 〈α〉 acting on permutations is a transformation group with two orbits. The permutation
α swaps states MP with MCP, and swaps MPR with MCPR. This permutation is realized by
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infinitely many sequences of basic events in the Petri net, for example α is realized by infinitely
many different words, including t4t6t5t3t7t5t3t1 and t2t6t5t1t5t3t5t1t5t7t5t3t1t4t6t5t3t5t1t5t7t5t3t1.
Note that these words do not have the same effect on states outside of X1, although they restrict
to the same permutation α of X1. In this case, the group G1 of permutations of X1 given by
permutator words has exactly two distinct elements, α and the identity function α2.

The permutator group (X1, G1) for this natural subsystem is, as visualized in figure 8,
isomorphic to the natural subsystem with state set X′

1 = {∅, C, R, CR} and order 2 cyclic group G′
1

via the isomorphism ψStates(q) := q · w1, where w1 is given by the word t2t4, the degradation of p53
and of mdm2. Its inverse is given by ψ−1

States(q) := q · w̄1 with w̄1 = t1t3 by the synthesis of p53 and
of mdm2. These functions give a one-to-one correspondence between the two state sets X1 and X′

1.
Moreover, ψGroup(g) := w̄1gw1 is a homomorphism of groups (g ∈ G1) as, for all g1, g2 ∈ G1 giving
permutations of {MP, MCP, MCR, MCPR}, then ψGroup(g1g2) = w̄1g1g2w1 = w̄1g1w1w̄1g2w1 =
ψGroup(g1)ψGroup(g2) and is in fact an isomorphism with inverse homomorphism: ψ−1

Group(g) =
w1gw̄1. We have ψStates(q) · ψGroup(g) = (q · w1) · w̄1gw1 = q · (w1w̄1)gw1 = q · w1 =ψStates(q · g), for
all g ∈ G1 and q ∈ X1. (Note: this computation is essentially the proof of theorem 2.2 that
R-equivalent permutation groups are isomorphic using appropriate w1 and w̄1.)

The right-hand side of figure 8 shows three natural subsystems, where each successive one’s
state set is a proper superset of the one below, in a transitive weak control hierarchy with three
levels.24 All natural subsystems in the semigroup of the p53–mdm2 capacity 1 automaton are
equivalent to one of these: G′

1 = 〈α′〉 ∼= C2 cyclic permutation group (X′
1, G′

1) acting on four states
(with two disjoint orbits) representing 31 isomorphic natural subsystems, G2 ∼= S3 the symmetric
permutation group (i.e. all possible permutations) on three states X2 = {C, R, CR} representing
120 isomorphic natural subsystems, and G2 ∼= C2 cyclic permutation group on two states X3 =
{C, CR}, representing 86 isomorphic natural subsystems.25 The sequence of transitions given by
the word w2 = t1t6t5t8 collapses the state set of the top natural subsystem onto the X2, and event
sequence w4 = t1t3t5 collapses X2 onto X3.26

Note that the top C2 = G′
1 does not have any non-trivial elements that permute X2 or X3,

while G2 has all the permutations in G3. Unlike in the previous examples, here we encounter
a non-Abelian group S3, i.e. which does not satisfy the commutative law xy = yx.

(i) Weak control in a larger p53–mdm2model

With increased capacity of mdm2 so that three levels of concentration are distinguished, there
are 24 possible configurations (states) in the p53–mdm2 Petri net, with the other species still
limited only to being distinguished in a binary way as above a threshold or not. Writing M
for concentration above the first threshold of mdm2, and 2M for concentrations above a second
threshold, we extend the notation for states of the Petri net so that 2MCP denotes that C (the p53–
mdm2 complex), and P = p53 are both above threshold and mdm2 is above its second threshold.
Similarly, MCP denotes mdm2 above the first threshold (but not the second), with both C and
P above threshold, etc. Figure 9 gives the natural subsystems and words consisting of basic
transitions for representative members of the weak control hierarchy.

The weak control relation is again transitive so we have a hierarchy of permutator groups
with five levels: cyclic permutation group C3 on six states with two disjoint orbits (representing
39 isomorphic natural subsystems), alternating group A5 acting on five states (representing 234
isomorphic natural subsystems), symmetric group S4 on four states (representing 531 isomorphic
natural subsystems), symmetric group S3 on three states (representing 476 isomorphic natural

24Words in the figure w1 = λ and w2 show that (X′
1, G′

1) weakly controls (X2, G2), and w3 = λ and w4 show that (X2, G3) weakly
controls (X3, G3), while (X1, G1) weakly controls (X3, G3) by the empty word and w2w4.
25Generators of permutator groups are given in the figure, while generator words in basic events of the Petri net are given in
the electronic supplementary material available on request for this and other examples in this article. Also exhaustive lists of
state subsets for all equivalent natural subsystems are in the electronic supplementary material available on request.
26Weak control does entail that the controlled system is a homomorphic image. The reader should note that none of the
state-mapping functions given by w2, w4 or w2w4 in this weak control hierarchy can be the state map for homomorphism of
transformation groups.
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subsystems) and cyclic group C2 on two states (representing 173 isomorphic natural subsystems).
Every natural subsystem is equivalent and isomorphic to one of these. In figure 9, the words of
the form w2i give maps a subset at level i to the level i + 1, and words w2i−1 and w̄2i−1 yield
isomorphisms between permutation groups at level i (1 ≤ i ≤ 4), establishing weak control.

Here is a nested collection of sets with each being an image of the next larger one, giving
equivalent and isomorphic natural subsystems to the permutator groups in figure 9:

Y1 = {P, PR, C, CP, CR, CPR} � Y2 = {PR, C, CP, CR, CPR} � Y3 = {C, CP, CR, CPR}
� Y4 = {CP, CR, CPR} � Y5 = {CR, CPR}

with permutator groups and transitive weak control relations

(Y1, S3) �wc (Y2, A5) ≺wc (Y3, S4) �wc (Y4, S3) �wc (Y5, C2),

where transitive weak control follows from the subset relation and from Y1 · t7t5t8t1t5 = Y2, Y2 ·
t3t5t1t5 = Y3, Y3 · t7t5t4t3t6t8t1t5t1t5 = Y4 and Y4 · t3t5t1t8t1t5 = Y5.

Here, at the second level of a weak control hierarchy, is the alternating group A5, a simple27

non-Abelian group that acts on the collection of configurations Y2 = {PR, C, CP, CR, CPR} by all
possible even permutations. It is generated by permutations given by infinitely many words,
e.g. by three permutations given by words t7t5t4t3t7t5t1t4t5t3t7t5t1t5t7t5t1t4t5 yielding a product
of disjoint transpositions β1 = (C, CP)(CR, CPR), t7t5t4t3t7t5t4t9t5ut1t4t5t7t5(ut4t9t5v)2t8t1t5 (with
u = t8t1t5t7t5t4t3t7t5, v = t8t1t5t3t7t5t1t5t7wt4t7t3w, where w = t5t4t1t5t7t5) yielding a product of
transpositions β2 =(PR, CR)(C, CPR), and t7t5t4t3t7t5t4t9t5ut1t4t5t7t5t9t8t1t5 giving the 5-cycle
β3 = (PR, CR, CPR, C, CP) as visualized in figure 9.

4. Computing with simple non-Abelian groups: unconventional computation
based on functionally complete alternatives to the two-element Boolean
algebra in biological systems

Finite SNAGs are not only fundamentally important to group theory but are also very interesting
computationally. In the p53–mdm2 model, we see both non-Abelian groups and even non-
solvable groups arising. These are more complex types of symmetry than the cyclic groups we
saw in the lac operon and Krebs cycle examples. In particular, we have seen various symmetric
groups and have demonstrated the presence of the SNAG A5 in multiple natural subsystems. The
smallest SNAG is the alternating group A5 comprising the 60 even permutations of five elements.
For the p53–mdm2 genetic regulatory control network in the semigroup of the automaton of the
second model examined in §3c(i), the SNAG A5 appears in 234 isomorphic natural subsystems.28

SNAGs have been hypothesized to be related to biological error-correction [11]. They have
the property of functional completeness [43–45] (see §4b), making them a natural candidate
for realizing an analogue of ‘universal computation’ within the finite realm. The presence of a
SNAG in the decomposition of the p53–mdm2 pathway suggests that the cell could potentially
be performing arbitrarily complex finitary computation using this pathway.

27A group is simple if it has only trivial quotient groups. Finite simple groups are the atomic building blocks of symmetry.
All finite groups may be reduced to a uniquely determined collection of such atomic components, and may be reconstructed
from finite simple groups by cascading these irreducible simple components. With 60 elements, A5 is the smallest SNAG.
28In general, and in the semigroup of this model in particular, the permutator group (X, (X)per) on the subset X can be
isomorphic to permutators of subsets other than X as we see from the example of 234 R-equivalent natural subsystems each
with a different state set on which an A5 permutator group acts. But isomorphic copies of the group can also be present in
multiple, disjoint isomorphic copies as subgroups of S(A) inside (X)persgp, with each acting on the same subset X in exactly
the same way. These groups’ actions will differ, however, on members of the rest of the state space Q \ X. So there are even
more isomorphic copies than suggested by looking at the permutator groups.
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(a) Unconventional computing with simple non-Abelian groups
Limits for current and foreseeable computer technology in terms of computational speed and
power present a pressing challenge for science and mathematics to transcend using new and
unconventional ideas. Present-day computation is based on two-valued Boolean logic as a two-
state logic is the simplest to conceive of. However, other algebras—including finite SNAGs—with
similar functional completeness properties are known but have not yet been deeply investigated
as alternative foundations for possible future and emerging devices. Owing to the prevalence
of symmetry groups in nature, especially physics [46] (including elementary particles [47],
quantum dots [48,49], etc.), chemistry (e.g. in many quasi-crystals [50]) and quantum chemistry
(e.g. with alternating group A5 multiply and irreducibly represented in SO(4), see [51]), many
naturally occurring physical systems could potentially realize SNAG-based computation. Indeed,
SNAGs such as the group A5 of icosahedral/dodecahedral symmetry occur (in continuum-many
instances) in the classical physical groups SU(2) and SO(3), and the SNAG An+1 (n ≥ 4) embeds
in SO(n) as oriented symmetries of the n-dimensional simplex [51], also. SNAG symmetry in
such physical systems could potentially be manipulated at high speeds or in high densities
(cf. [52]) in future and emerging devices. This potential could lead in the next decades to a
shift from the use of bits, Boolean synthesis and logical techniques to computing based on
non-conventional algebraic structures. Thus, as a complement to the current pursuit of new
technologies to overcome speed and density barriers just to keep up with Moore’s law, it makes
sense to investigate the computational potential of alternative kinds of algebras as a broader,
unconventional basis of computation superseding the Boolean logic of the bit.

(b) Finitary universal computation by simple non-Abelian groups
Computers up to the present day have almost exclusively been based on the two-element Boolean
algebra B. It has a special property which makes the computers computationally universal,
namely every arbitrary function from {0, 1}n to {0, 1} can be expressed by the basic operations of
B. This property is called functional completeness. However, not only B has this property. Formally,
by a functionally complete algebra we mean an algebra with underlying set A and with basic
operations f1, . . . , fk such that for every non-negative integer n and for every function f : An → A
there is a polynomial expression p(x1, . . . , xn) over A such that for every n-tuple (a1, . . . , an) ∈ An

we have f (a1, . . . , an) = p(a1, . . . , an). (Polynomial expressions are expressions built up from variables,
constants from A and the basic operations of A using composition.) The two-element Boolean
algebra, matrix rings over finite fields or the finite SNAGs are examples of functionally complete
algebras [45,53,54]. Any computational device based on any of these algebras offers an alternative
paradigm for computation. Horváth [43] gives a basic overview characterizing functionally
complete algebras. There are several equivalent characterizations of functional completeness
(some are theoretical and some operationally useful, e.g. the expressibility of certain basic
functions which generate a functionally complete algebra). The functionally complete rings are
matrix rings over finite fields, the functionally complete groups are the finite SNAGs. Moreover,
every functionally complete semigroup is a group and every functionally complete semiring is a
ring [43].

A natural question to ask is how to represent a function as a polynomial. Intuitively, these
polynomials correspond to directed acyclic ‘programmes’ or ‘circuits’ for computing the desired
function using basic operations of the algebra, so those of minimal length or depth are of special
interest. One would like to know whether there is a short way of representing and a fast way
of computing an arbitrary or a specific function over a given functionally complete algebra. The
length of the polynomials needed to realize a given (Boolean or more general) function has been
investigated for several different algebras. Not surprisingly, most of these results concern the two-
element Boolean algebra (e.g. [53]). There are investigations also for rings [55], including various
sporadic results, e.g. short representing polynomials were given for the square-root function in
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[56]. Recently, a computational search has been applied to find particular polynomials for certain
special functions over certain functionally complete algebras [57].29

The original paper of Maurer & Rhodes [45] characterizing the functionally complete groups
is not algorithmic, but Horváth [43] gave an algorithm to calculate a representing polynomial for
a given function and gave several upper and lower bounds for minimal length and for minimal
depth of these polynomials. While there exist some results on the length of unary polynomials
over finite groups [58], no estimates could be found in the literature for the n-ary case until
recently [43,59]. This seems surprising as groups algebraically capture the notion of symmetry
and play a fundamental role in physics, mathematics and numerous areas of computer science.

Finitary universal computation is defined here as the set of computational properties that follow
from functional completeness. It includes the capacity to implement arbitrary mappings between
finite sets of arbitrarily large size using polynomial functions, a familiar property of Boolean
functions. This follows from the fact that functionally complete algebras A can implement any
f : An → A with a polynomial for all n ≥ 0, and hence can implement any function f ′ : An → Am

component-wise for all m, n ≥ 0.
In the presence of SNAGs, there are many ways to implement finitary analogues of universal

computation, as we now explore, with new results in §4c. Fröhlich’s theorem [60] states that every
function f : G → G with f (1) = 1 is a product of ϕa(x) := axa−1 (inner automorphisms, a ∈ G) under
pointwise multiplication if and only if G is a SNAG or has at most two elements. For SNAGs, there
is the following analogue of the Stone–Weierstrass theorem significantly generalizing Fröhlich’s
result.

Theorem 4.1 (Stone–Weierstrass property of SNAGs (Maurer–Rhodes [45])). Let G be a finite
group and X be any finite set, both with three or more elements. Consider the set of functions GX from X to
G under pointwise multiplication (f1 ∗ f2)(x) = f1(x) ∗ f2(x). Then let F be a subset of GX such that

(a) F contains all constant functions: for all g ∈ G, there exists f ∈ F, such that f (x) = g for all x ∈ X.
(b) F separates points: for all x1, x2 ∈ X, there exists f ∈ F with f (x1) �= f (x2).

Let 〈F〉 be the subsemigroup of GX generated by F. Then, for all such F, 〈F〉 = GX if and only if G is a
SNAG.

It is easy to see that GX is a group, and so, due to finiteness, 〈F〉 is a group too. Observe that
condition (a) may be weakened to requiring F to contain constant functions for a set of generators
of G. By the classification of finite SNAGs (see, for example, [61] for an overview), SNAGs can all
be generated by just two elements, so it suffices to have two particular constant functions in F as
the others are products of these.

Taking X = Gn and considering all functions Gn → G under pointwise multiplication, the
conditions of theorem 4.1 are satisfied if we take F to be the projections πi(g1, . . . , gn) = gi (1 ≤ i ≤ n)
and constant maps. Products of these projections and constant maps are the same as polynomials
over G. Here, projections correspond to the variables. So we have that SNAGs can compute any
function f : Gn → G using a polynomial. This remains true if we include more functions in F using
inverses as well: a polynomial function over a group G is a function of the form Gn → G given by
(x1, . . . , xn) 	→ g1xe1

i1
g2 . . . gkxek

ik
gk+1, for some k ≥ 0, 1 ≤ i1, . . . , ik ≤ n, exponents e1, . . . , ek ∈ {−1, 1},

and constants g1, . . . gk+1 ∈ G.

Corollary 4.2 (functional completeness of SNAGs). Let G be a SNAG. For every function
f : Gn → G there is a polynomial p over G such that f (g1, . . . , gn) = p(g1, . . . , gn) holds for all n-tuples
of elements of G.

29The authors of [57] used a computational search method (genetic programming) to search for discriminator polynomials,
Mal’cev polynomials and majority polynomials for particular three- and four-element functionally complete algebras. It turns
out that even for such small algebras it is quite difficult to find these polynomials. For example, the exhaustive search to
compute a short discriminator polynomial over a particular four-element functionally complete algebra would take about
1038 years by their estimation. After a week of running time, their genetic programming method was not able to provide a
discriminator polynomial for the algebra either (see [57] for further details).
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Thus polynomials over SNAGs can realize any function, and no other non-trivial finite groups
have this property. This implies that SNAGs are capable of finitary universal computation. The
minimal length ‖ f‖ of a polynomial p needed to compute f in this manner is the length of f .

A completely different way to represent functions is via finite state sequential circuits. Krohn
et al. [44] used this to show that a finite automaton whose semigroup is a SNAG can implement
any Boolean function. It follows that so can any finite automata which have a SNAG subgroup
divisor. Barrington [62] discovered the computational power of SNAGs independently of [44,45]
and has shown, as a direct consequence of this result, that a language can be recognized by an
O(log n) depth, polynomial size Boolean circuit if and only if it can be recognized by a polynomial
length branching programme over a SNAG. Explicit upper and lower bounds on the lengths of
polynomials needed to define functions over SNAGs, including the implementation of Boolean
computation and permutation branching programmes, are given by Horváth & Nehaniv [43,59].

Theorem 4.3 (length of logical functions over SNAGs [59]). Let G be a SNAG. Then there exists
g( �= 1) ∈ G such that, for every n-ary function f :

{
1, g

}n → {
1, g

}
over G, we have

‖ f‖ ≤ 448 · n8 · e,

where e = ∣∣f −1(g)
∣∣ , ( e ≤ 2n ). If G is the alternating group Am for some m ≥ 5, then

‖ f‖ ≤ (3n2 − 3n + 2) · e + 1.

Theorem 4.4 (length of functions over SNAGs [59]). Let G be a SNAG, N = |G|. Let f be an n-ary
function over G taking non-identity values e times ( e ≤ Nn ). Then the following inequality holds:

‖ f‖ ≤ 100352 · K2 · N8 · n8 · e,

where K ≤ min(c0 log N, number of conjugacy classes of G) with c0 a universal constant not depending on
G or f . If G = Am for some m ≥ 5, then

‖ f‖ ≤ 9 · m · N2 · n2 · e.

If we use additional operations such as the commutator [x, y] = x−1y−1xy in building up
polynomials, then of course we can still realize all functions. Let ‖ f‖C denote the minimal
length of a polynomial p needed to compute f if commutators may be used. Clearly ‖ f‖C ≤
‖ f‖, but, intriguingly, Horváth [43] observed that expressions for a function may be decreased
substantially if commutator is used. For example, the n-ary Boolean logic AND function can be
represented in O(nk) length (where k ≤ 8 depends only on the SNAG) using a recursive divide-
and-conquer logarithmic depth idea [59,63], while with commutator its length is linear. There are
also situations where the difference in the length of expressions is exponential with commutator,
e.g. for f (x1, . . . , xn) = [x1, [x2, [x3, [. . . .[xn−1, xn]]]]]. However, for many solvable, non-nilpotent
groups problems related to the length of the polynomials (the so-called equivalence and equation
solvability problems) are in P without the commutator, but are (co)NP-complete if one is allowed
to use the commutator [64,65]. This suggests again that there may be an exponential shortening
for particular polynomials (but does not prove there is, unless P �= NP). Generally, there are still
very few results about minimal realizing polynomials as mostly there are upper bound results
only but very few lower bounds.

If the commutator is considered as a basic operation, we have the following.

Theorem 4.5 (length of logical functions over SNAGs with a commutator [43]). Let G be a
SNAG with an added commutator operation [, ]. Let 1 �= u ∈ G, and let f be an arbitrary n-ary function
f : {1, u}n → {1, u} with at most e-many non-identity values. Then

‖ f‖C ≤ K · ((10 + 3(n − log e)) · e − 5) + 1,

where K is a constant depending on the group G and the element u is bounded above by the number of
conjugacy classes of G.
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When G = Am ( m ≥ 5 ) and u is a three-cycle, then

‖ f‖C ≤ 4 · ((10 + 3(n − log e)) · e − 5) + 1.

If 4 � m, then we can replace the constant factor 4 by 2.

Theorem 4.6 (length of functions over SNAGs with commutator [43]). Let G be a SNAG with
an added commutator operation [, ]. Let f be an arbitrary n-ary (possibly partial) function over G with
e-many non-identity values. Let N = |G|. Then the following inequality holds:

‖ f‖C ≤ 3 · K4 · N · n · e,

where K is a constant depending on the group G and is bounded by the number of conjugacy classes of G.
If G = Am ( m ≥ 5 ), then

‖ f‖C ≤ 176 ·
⌊m

2

⌋
· (N − 1) · n · e.

If 4 � m, then we can replace the constant 176 by 28.

By way of comparison, we note that, for the two-element Boolean algebra B, the well-known
conjunctive normal form gives an upper bound on the length on the order of n · e to realize any
n-ary logical function taking the value true e times (1 ≤ e ≤ 2n).

(c) Biological systems can compute any finitary function: simple non-Abelian groups and
genetic regulatory control

SNAGs allow one to realize any mapping of a set they act transitively on using ‘primitives’ from
an F as in theorem 4.1.

Proposition 4.7 (total control by SNAGs with feedback). Let (Y, G) be a transitive permutation
group where G is a SNAG. Let F ⊆ GY satisfy the conditions of the Maurer–Rhodes theorem. Let h : Y → Y
be any function. Then there is an f ∈ 〈F〉 with y · f (y) = h(y) for all y ∈ Y.

Proof. As (Y, G) is transitive for all y1, y2 ∈ Y there exists gy1,y2 ∈ G with y1 · gy1,y2 = y2. Defining
f : Y → G by f (y) = gy,h(y) yields the desired f as y · f (y) = y · gy,h(y) = h(y). By the Maurer–Rhodes
theorem, we can write f as a product of members of F. �

Recent work on the evolution of gene expression in living organisms has indicated that much
of the evolutionary activity involves not only purifying selection and gene product evolution, but
also regulatory evolution [66]. Indeed, the majority, perhaps as much as 83%, of genome-wide
changes at adaptive loci in sticklebacks are regulatory [67]. Genetic regulatory evolution has been
important in speciation and developmental changes [68,69] as well as in human evolution [70].
Moreover, conserved non-coding elements account for most of the genome that is conserved,
whereas conserved coding DNA is an order of magnitude less [67].

The computational power of SNAGs suggests how they might be involved in regulatory
control. Let Z be any collection of cell and environmental states, or any set of partition classes on a
subset of a collection of such states in an automaton model A of a cell, or other biological system.
Let (X, G) be a natural subsystem of A. Suppose the cell’s activity (e.g. via genetic regulatory
control) can realize ρ : Z → A∗, where ρ(z) is a sequence of events in A, giving a transformation
of (X)per. That is, ρ(z) acts as an element of G when restricted to X. Let F be a collection of such ρ
that the cell can realize.

We say Z is G-distinguishable if, for all distinct z, z′ ∈ Z, there is a ρ ∈ F, with ρ(z) and ρ(z′)
giving distinct permutations of X. For example, Z is G-distinguishable if the cell can detect each
state z as opposed to any other state by a kind of generalized characteristic function χz ∈ F with
χz(z) never equal to χz(z′) as transformations of X for z′ �= z, Then χz is a kind of ‘sensor’ for state
z. We say F contains a generalized constant function cg : Z → A∗, with cg(z) always giving the same
permutation g ∈ G of X.
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Proposition 4.8 (genetic regulation with SNAGs). Let (X, G) be a natural subsystem of automaton
model A of some part of a cell, where G is a SNAG. Let Z be a collection of cell and environment states (or
equivalence classes of these). Assume the cell can generate regulatory mappings of Z to event sequences
in A∗ by a collection F of regulatory transformations ρ : Z → A∗ giving elements of G. If F contains
generalized constant functions for generators of G and Z is G-distinguishable, then, for every f : Z → G,
there is a sequence p = ρ1 · · · ρk of members of F such that f (z) ∈ G is realized by the permutation given by
sequence p(z) = ρ1(z) · · · ρk(z) ∈ A∗.

Proof. This follows immediately from the Stone–Weierstrass property of SNAGs (theorem 4.1).
In detail, write [ρ] for the function from Z to G given by letting, for z ∈ Z, [ρ](z) = [ρ(z)] = ·ρ(z) be
the permutation of X given by the event sequence ρ(z). Let [F] = {[ρ] ∈ GZ | ρ ∈ F}. By hypothesis,
[F] separates points of Z and generates all constant maps in G, thus satisfying the conditions of
theorem 4.1. Therefore, every function f ∈ GZ can be written as a product [ρ1] · · · [ρk] of members
of [F] under pointwise multiplication, but [ρ1(z) · · · ρk(z)] = [ρ1(z)] · · · [ρk(z)]. �

Thus, cells can use a natural subsystem (X, G) with G a SNAG to compute an arbitrary
function from such a collection of cell and environment states Z to manipulations of X by any
desired elements of the SNAG (proposition 4.8), and might also perform arbitrary mappings on
X (proposition 4.7).

Thus, as suggested by Rhodes [11], SNAGs could be important in error correction and other
forms of regulation in biological systems. Propositions 4.7 and 4.8, and the other results here,
suggest numerous ways in which this might occur.

Suppose a SNAG (Y, G) occurs for the model of a cell. In terms of genetic regulatory control,
suppose the cell can produce distinct members of G, e.g. as products of elementary events, in
response to its current state y (separating points in state space), as well as produce outputs in
G that do not depend on y (but at least a generating set for G, which might consist of as few as
two elements), i.e. constant maps. Then the above results show that every function Y → Y can be
realized by a sequence of these genetic regulatory outputs if they can be produced fast enough
so that state may be regarded as unchanging during the production of the sequence.30 Thus cells
(e.g. a cell with the p53–mdm2 genetic regulatory system modelled in §3c) are capable of finitary universal
computation. Indeed given any cell state y ∈ Y, such a system can steer y to a suitable new state
(proposition 4.7). In this way, a cell with such genetic regulatory control could implement error
correction, recovery, homeostasis and dynamic equilibrium, responding to perturbations of its
state so as to return the cell to desirable dynamic regimes in its trajectory through state space.
Similarly, proposition 4.8 suggests how genetic regulatory control could implement any mapping
from cell and environment states to the action of a SNAG.

The results of this section have natural analogues for the more general case where an
automaton A has a SNAG G as a divisor (homomorphic image of subgroup G̃ of S(A)), then
G̃/N ∼= G for a normal subgroup N in G̃, then we can use G̃ instead of G to compute any function
f : X → G̃ up to a coset using the same methods as above, that is, there is h in the G̃X generated
by suitable31 subset F, with h(x) ∈ f (x)N, i.e. h(x)f (x)−1 ∈ N. This also applies to computing partial
functions f : X → G̃, which are less constrained.

Moreover, there are also many ways to employ direct product ensembles, independent copies
of the cell or system, by using multiple independent copies of (X, S) for any semigroup S acting
faithfully on a set X. In particular, this is true when X ⊆ Q and S = (X)per divides S(A), with
S a SNAG. A useful fact via ‘computing in parallel’ is related to the interpretation of groups
in Gibbs’s viewpoint on ensembles. For any faithful permutation group (X, G), the right regular

30This restriction might be removable also if the sequences produced would vary in time in response to state that changes
more quickly, but details of conditions that make this possible have not been characterized yet.
31F must separate points of X up to cosets and contain enough constants up to cosets: for the first, distinct points should map
to different cosets of N and, for the second, there must exist functions approximating constants for generators of G, i.e. values
must be in the same coset of G̃/N rather than strictly constant.
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representation (G, G) with action g1 · g = g1g can be realized as a substructure of the direct product
of X-many copies of (X, G). That is, |X| instances of a regulatory network within a cell, or |X|
instances of the cell, allow one to embed (G, G) into the ensemble: let X = {x1, . . . , xm} denote
the m distinct elements of X, then a state g1 ∈ G can be uniquely encoded as (x1 · g1, . . . , xm · g1)
as the action is faithful. Then the action of g ∈ G is given by letting g act in parallel on each
component. The result, (x1 · g1, . . . , xm · g1) · g = (x1 · g1g, . . . , xm · g1g), corresponds to state g1g of
the right regular representation. (This works even if G is not a group as long as it acts faithfully
on X). However, many other different kinds of networks of copies of (X, G) could be employed
in different ways to yield circuits computing over the SNAG (e.g. implementing any function or
polynomial). Combining multiple copies of a system with SNAG (X, G) in a way that emulates
multiplication in G gives another way to compute any finitary function Gn → G, in particular n|X|
copies suffice.

5. Interaction machines

(a) Dynamically growing and changing automata networks
Nehaniv & Wagner [71] wrote that appropriate mathematics is lacking for developmental and
evolutionary biology; in particular, there is still no developed mathematical theory of constructive
dynamical systems whose state space and dimensionality may change, growing and shrinking
over time, as a function of—or at least constrained by—their interaction with other such
networks and the external environment. Moreover, mathematical and computational biology
still continue, almost completely, to lack adequately developed formal tools (‘the right stuff’
[71]) to begin the serious study of biological complexity. Early insightful efforts by Rosen on
constructive sequential functions [72–74] in this direction continue to arouse scientific interest
but reportedly suffer from mathematical errors that remain to be corrected [75]. Constructive
models of self-maintaining, self-producing systems have been studied computationally by
several researchers (e.g. [76,77]), but not mathematically. Methods to address the kind of
structures that appear in biological and biochemical systems, and artificial systems with similar
characteristics, include those of Dittrich and co-workers [78–83], who introduced a general
theory of chemical organization, while Paun and colleagues [84–86]; developed a theory of
membrane computing; in addition, there are attempts to apply Milner’s π -calculus [87] to systems
biology [88–90]. Other useful methods in biological and adaptive complex systems include
Petri net modelling [1,40,41] with hierarchical extensions [5], multi-valued logical modelling
(generalizing Kauffman’s Boolean network approach [4]) combined with constraint analysis
[1,3,6,91,92].

Overall, such efforts, while often constructive and even useful for simulation modelling,
identifying constraints or to generate testable hypotheses on biological structures, are still largely
at the level of formal descriptions and lack the kind of mathematical power one would like
to see: we still lack the analytic mathematical tools for providing deeper understanding and
for proving powerful theorems to yield insight into higher level structure. This is most severe
for constructive dynamical systems which interact and change the essentials of their structure
(e.g. the dimensionality of their phase spaces).

Krohn–Rhodes theory [21] provides a powerful framework for discrete dynamical systems,
and theorems for the synthesis and decomposition of finite automata models using algebra
applied to biological complexity [11,30,34,93]. As illustrated here algebraic methods allow one
to discover and interpret higher level structure including natural systems and their relations (in this
article), and they also allow one to give hierarchical coordinate systems and coarse-to-fine graining
of dynamical structure ([11,34] and theorems 6.1 and 6.2). However, these methods were developed
for systems that do not fundamentally change their structure as living systems do. We can
begin to address this by introducing dynamical automata networks ([19], §5d) and interaction
machines (§5e).
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(b) Example 1. Modelling cell division
The biological cell is an entity with variable size, variable numbers and types of internal
structures—such as organelles, vesicles, ribosomes—as well as variable numbers and
concentrations of metabolites, enzymes and structural proteins. Dynamical systems with a fixed
number of coordinates or dimensionality, whose space of possible system trajectories is fixed
and unvarying from the outset of analysis, are adequate primarily only to model such entities
as cells on short time scales, over which the structure and topology of constituent components’
interactions do not change.

A traditional approach thus fails to capture and adequately represent the possibilities inherent
in natural systems. For example, even for something relatively ‘simple’ like cell division, the
most natural dynamical model would require doubling the number of variables somehow in
the course of continuous dynamics, with the number of chromosomes in their respective states
of methylation, and so on, doubling. Furthermore, with one cell dividing into two, it would
be natural for the model to double the number of variables describing the internal milieu,
concentrations of metabolites, enzymes, co-factors, and as well as variables describing the states
of internal structures (organelles such as mitochondria, vesicles, ribosomes, Golgi bodies, etc.),
which themselves consist of complex structures. We outline how to do this using interaction
machines in §6b.

(c) Example 2. Finite dynamically expansive modulo n counter cascade
A familiar example of changing the number of states and components in computation arises in
our daily practice of employing the decimal or binary expansion of the natural numbers. It is
well known that the cascade of modulo n counters (n ∈ N+) encodes our usual base n positional
notation and basic arithmetic operations. That is, with k positions one can denote any integer v
from 0 to nk − 1 as

∑k−1
i=0 dini, where the ith digit di ∈ {0, . . .n − 1} gives the number of ni in v to

encode v as a sequence (dk−1, . . . , d0). For example, the three-digit sequence 431 encodes 4 × 72 +
3 × 71 + 1 × 70 in base 7 but denotes 4 × 162 + 3 × 16 + 1 × 160 in hexadecimal. Moreover, the
usual carry rules guarantee that, in adding or multiplying numbers, information flows only from
right to left. That is, the computation of the ith digit never depends on digits to the left of the ith
position. Such base n expansions with their carry rules, which are taught and used worldwide for
representing and manipulating numbers, are just linear cascade automata networks of modulo n
counters [11,94] with very useful properties (e.g. [95]). Generalizations to such coordinatizations
for arbitrary finitary systems are detailed in [11] and, for example, §6c.

Now in practice the number k of digits needed to represent numbers is not fixed for all time and
all applications. We ignore leading zeros, but also add new digits to the left as needed to represent
non-zero place values arising from carries; for example, in adding in base 10: 17 + 99 = 116, a
third position on the left appears whereas the summands had only two digits. Or in subtracting:
1003 − 6, the leftmost position disappears, when we report the answer 997 as a sequence of
fewer digits. A cascade of some fixed number k of modulo n-counters can represent what is
going on, as long as k is some integer greater than the number of digits one will ever need for
representing place values. Conventionally, all leftmost zero values are tacitly ignored although
they are implicitly present in this representation. Alternatively, an infinite number of counters can
be used to guarantee never running out of positions [9,94].

However, a novel minimal extension of the idea of cascade of automata gives a more natural
formalization for how we do arithmetic in practice: to add two k-digit numbers, only k counters
are required before the addition, but a new component counter appears (‘grows’) at the left of
the k component cascade after the operation if a carry rule applies in the leftmost position. The
number of automata may change based on upstream conditions given an input to be added or
subtracted (figure 10). The distinction is subtle, but important. At any given moment we have only
a finite number of positions (counters in the cascade), but this number may change dynamically.
Formally, the current state is a k-component network of automata, each one carrying the value
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Figure 10. Formulation of the base n expansion of natural numbers as a dynamic cascadeautomatanetwork.A cascade ofmodulo
n counters Cn gives the usual base n expansion of integers with a dynamically changing number of digits. Taking n= 10, the
top cascade holds three-digit base n numerical representations, while the bottom cascade holds four-digit base n numerical
representations. The number of digits may increase if a carry results in a non-zero value beyond the leftmost digit; while if
subtraction would result in the leftmost digits becoming zero then at the same time the leftmost automata for these digits are
removed, resulting in a cascade of fewer automata. (Example due to C. L. Nehaniv and E. Rothstein Morris.)

di × ni if it is in the ith position. During the transition with the carry rule a k + 1st position, i.e. a new
modulo n counter, is created and put in a state giving the value for the new position. Similarly, for
subtraction, the size of the cascade (i.e. the number of positions) may change, with all components
with leading zero values disappearing. Thus, while four counters are needed prior to computing
1003 − 996, afterwards, rather than four counters with states 0007, only one modulo 10 counter in
state seven remains.

In a transformation semigroup (Q, S) or automaton A, if X is a set of states and t ∈ A∗ is an
input word giving a transformation, we always have |X · t| ≤ |X|. Now from the ensemble point
of view, it is worth noticing that the number of states represented may increase in a dynamic
ensemble of copies of A. For example, in figure 10 with its cascade of modulo n counters, the
size of the ensemble may grow under the action of the input +6. Moreover, in a direct product
ensemble of fixed size, the number of distinct states X occurring in the ensemble cannot increase
under the action of t, but with a dynamic automata network that creates a new parallel component
this can easily occur, so it is possible for |X · t| ≤ |X| to fail.

(d) Interaction machines (level 1): dynamic generalization of automata networks
Interaction machines of level 1 are a generalization of automata networks (with static topologies—
whose study goes back at least to Gluškov & Letichevsky in the early 1960s [9,20]). As we saw
in §1d, an automata network is an ensemble of automata connected by interaction functions, and
the next state of each automaton is computed synchronously as a function of an external input
(basic event) and the current state of all the automata in the network according to the interaction
function for the given component automaton. The so-called general product of automata allows
arbitrary feedback between components, and the overall network is a new automaton. Other
types of products restrict the topology and/or number of components that the ith interaction
function may depend on, giving rise, for example, to bounded-feedback products, products with
bounded number of dependencies, direct product, and cascade products.32 In cascade products,

32The latter correspond in algebra to substructures of the wreath product. These are also called feedback-free or loop-free products.
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the interconnection topology is given by an acyclic directed graph, typically a linear arrangement
as in the example of decimal and base n expansions used in arithmetic.

The notion of a (level 1) interaction machine generalizes the notion of an automata network
by allowing the removal or addition of some component automata and changes to the
interconnection topology. Any new components also go into a well-defined state at the end of
a transition. Variants of such growing and dynamically changing automata networks have been
introduced and studied by Nehaniv & Quick [19] as dynamic automata networks and independently
by Sayama and colleagues [22–24] as generative network automata.

A level 1 interaction machine is a (synchronous) dynamic automata network A (generalizing the
usual definition of automata network) comprising a time-varying structure

(Γ (t), {A(t)
v }v∈V(t) , {ϕ(t)

v }v∈V(t) , A)

that has interconnection digraph Γ (t) = (V(t), E(t)) with vertices V(t) and edges E(t) ⊆ V(t) × V(t)

which, starting from an initial state, both may change as a function of discrete time t ∈ A∗ and
local conditions. Note that time is modelled by the free monoid A∗ (or free semigroup A+) on the
global input event alphabet A.33 (Notice that the length of an input word t gives the number of
discrete external events driving the system. Thus length can be thought of as a clock time index
in the natural numbers N. That is, different interactions with the external environment will give
different trajectories through the space of the possible configurations of the interaction machine,
depending on its initial configuration). Each node v ∈ V(t) indexes an automaton A(t)

v in some
state q(t)

v . The tuple A(t) = (Γ (t), (A(t)
v )v∈V(t) , {ϕ(t)

v }v∈V(t) , (q(t)
v )v∈V(t) ) is called the total configuration

of the dynamic automata network at time t. To aid the intuition, by abuse of notation we write
‘t + 1’ for the concatenation ta of the word t and new external input a ∈ A here, as ta has length
(‘clocktime index’ in N) one more than t. Then, depending on the global input a ∈ A in the next
step we will have A(t+1) = (Γ (t+1), (A′

v)v∈V(t+1) , {ϕ′
v}v∈V(t+1) , (q′

v)v∈V(t+1) ). Denote the interconnection
digraph of the automata network at time t + 1 by Γ ′ := Γ (t+1), the automaton at time t + 1 (that
is, ta ∈ A∗) in node v by A′

v :=A(t+1)
v and its next state at node v by q′

v := q(t+1)
v . If v ∈ V(t) ∩ V(t+1),

then A′
v =Av and is in the state q′

v = δv(q(t)
v ,ϕ(t)

v (q(t)
N(v), a)). Otherwise, if v ∈ V(t+1) \ V(t), then A′

v

is a new automaton in state q′
v which is created as a function of A(t) and a. Also ϕ′

v for each
v ∈ V(t+1) is given by a function of A(t) and a ∈ A. Generally, such new interaction functions
ϕ′
v , automata A′

v and their states q′
v , as well as changes to the interconnection digraph, will

be locally determined. For our purposes here we shall allow arbitrary changes to the topology,
components, and state as a function of the current configuration of the network and a ∈ A. These
updates can be constrained in various ways to guarantee various special properties. See §5c for
an important novel application, [19] for constraints guaranteeing synchronization properties, as
well as [19,22–24] for various graph-rewriting constraints.34 All this can be viewed as a higher
level transition function A(ta) = A(t+1) = δ(A(t), a). Sections 5b and 6b describe more general (level
n + 1 interaction machine) applications to multicellularity.

(e) Interaction machines (level n + 1): dynamically deployable computational structure
These are the same as level 1 interaction machines except that the component automata of the
network may themselves be interaction machines. Thus one has a ‘recursive’ structure, where
constituent components themselves may be dynamically changing networks of automata (or
interaction machines). For simplicity, we shall suppose that the component automata of an

33Writing earlier events to the left and later events to the right, the associative law α(βγ ) = (αβ)γ holds for (non-overlapping)
events α,β, γ in time. Semigroups (which are defined as those structures satisfying the associative law) can be thus considered
as models of time (following [11, Prologue; 96]).
34In that work, constraints are stated on topology changes which guarantee that such a synchronously updated network
can be emulated asynchronously. For example, this is guaranteed for certain basic changes analogous to biological growth
in multicellular organisms where cells correspond to nodes and edges to contact between cells: nodes may split into two
connected to their parent’s neighbourhood, new nodes appear connected to at most one current node, connections may
disappear, and changes in topology depend only on local conditions.
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interaction machine of level n + 1 are interaction machines of level at most n, where level 1
interaction machines were defined in the previous section.35 Indeed, in modelling, the degree of
recursiveness might not be known, or fixed in advance. Moreover, in behavioural specifications of
the interaction machines details such as the number of levels need not be constrained. Interaction
machines may thus also be construed as ‘fractals’, i.e. with structure at every level.

Iterating the idea of a level 1 interaction machine, a level n + 1 interaction machine is a
dynamic interaction machine network A with time-varying structure

(Γ (t), {A(t)
v }v∈V(t) , {ϕ(t)

v }v∈V(t) , A)

that has interconnection digraph Γ (t) = (V(t), E(t)) with vertices V(t) and edges E(t) ⊆ V(t) × V(t)

which, starting from an initial configuration, both may change as a function of discrete time
t ∈ A∗ and local conditions. Each node v ∈ V(t) indexes an interaction machine of level n or less
in some total configuration A

(t)
v . The tuple A(t) = (Γ (t), (A(t)

v )v∈V(t) , {ϕ(t)
v }v∈V(t) ) is called the total

configuration of the interaction machine at time t. Note that A
(t)
v includes information on the state of

all of its constituent automata. Again, by abuse of notation, we write ‘t + 1’ for the concatenation
ta of the word t and new external input a ∈ A here, as ta has length (‘clocktime index’ in N)
one more than t. Then, depending on the global input a ∈ A in the next step we will have
A(t+1) = (Γ (t+1), (A′

v)v∈V(t+1) , {ϕ′
v}v∈V(t+1) ). Denote the interconnection digraph of the interaction

network at time t + 1 by Γ ′ := Γ (t+1), the component interaction machine at time ta in node v
by A′

v := A
(t+1)
v . If v ∈ V(t) ∩ V(t+1), then A′

v = δv(A(t)
v ,ϕ(t)

v (A(t)
N(v), a)). Otherwise, if v ∈ V(t+1) \ V(t),

then A′
v is a new interaction network of level n or less in configuration A′

v which is created as
a function of A(t) and a. Similarly, ϕ′

v for each v ∈ V is determined by the total configuration A(t)

and a ∈ A. Again, generally, the configurations of such constituent interaction machines A′
v of

lower level, and interaction functions ϕ′
v as well as changes to the interconnection digraph, will

be locally determined. Like before, for the n + 1 level interaction machine, this defines a higher
level transition function A(ta) = A(t+1) = δ(A(t), a).

For our purposes here we shall allow arbitrary changes to the topology, interaction machine
components, and their configurations as a function of the current configuration of the network
and a ∈ A, but in practice these must be constrained to reflect the feasibility and locality of
computation in any given model (figure 11).

We remark that, for the purpose of specification of behaviours and studying multiple
realizations, one could reformulate our definitions of automata network, level 1, and level n + 1
interaction machines co-algebraically (cf. [98,99]).

6. Permutation groups in recurring transient structures in dynamic ensembles
Beyond the instability of the thermodynamic branch (i.e. equilibrium) we may have a new
type of organization relating the coherent space–time behaviour to the dynamical processes
(e.g. chemical kinetics and convection) inside the system. Only if appropriate feedback
conditions are satisfied can the thermodynamic branch become unstable at a sufficient
distance from equilibrium. The new structures that appear in this way are radically different
from the ‘equilibrium structures’ studied in classical thermodynamics, such as crystals
and liquids. They can be maintained in far-from-equilibrium conditions only through a
sufficient flow of energy and matter.

—Nicolis & Prigogine [100]

We’ll have to do it again then, won’t we? — British pantomime

35However, it may be useful to allow ‘non-well-founded’ induction (cf. [97]), where the level of constituent components is not
bounded below, or a temporarily changing partial order may index the level of machines.

 on August 12, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


36

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140223

.........................................................Figure 11. A level n + 1 interaction machine is a dynamic automata network of interaction machines of level n or below. The
entire structure and each constituent component updates its state based on local conditions and environmental input. Based on
interactions and local state thenetworkmay change its interconnection topologyandhowcomponents affect eachother (i.e. the
functions that locally determine inputs to constituent components), as well as changing the number and type of components
dynamically. Interaction machines and their constituents of level 1 or above may grow or remove components as needed in
response to interactions.

(a) The ensemble viewpoint for interaction machines
Typically, physicists and engineers studying a complex system may discard features of a model
that represent its initial ‘transient’ behaviour, and focus on long-term properties that persist in
the limit, e.g. using ergodic methods that apply to a behavioural regime that obtains after some
initial transient behaviour which lacks properties such as ergodicity. The long-term behaviour
of living systems, however, is death, which, while thermodynamically simple, is not biologically
interesting. Indeed, biological systems continually regenerate structure and even reproduce
themselves. Individuals and also evolving populations continually engage with and re-engage
with the same contexts. While any given cell or individual will eventually die, similar entities
are generated which re-enact the same kinds of interactions with entities and events in their
environments.

In automata models, when non-trivial sequences of inputs (or events) permute some subset
Y of states, the set of sequences permuting Y will be infinite,36 and each such sequence will
determine a member of permutation group (Y)per. The pair (Y, per(Y)) can be considered a
‘natural subsystem’, ‘reaction chain’, ‘pool of feedback’ or ‘pool of local reversibility’ (§2b).
These groups are significant for instance in characterizing the atomic components (finite simple
groups) needed to build a Krohn–Rhodes decomposition of an automaton in the form of either
a cascade of automata or a series–parallel composition of sequential machines (see, for example,
[8,11] for details). These groups and the relations between them are also important in computing
the Krohn–Rhodes complexity of these automata (minimal number of group levels needed in a
decomposition (theorem 1.1). However, in the course of running such an automaton, if inputs are
stochastic, say, then there is a probability ε > 0 that a given input symbol or event takes us out

36In the case of finite automata, the sequences permuting the members of Y will be a regular language L(Y).
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of the language of words that can be extended to permutations of the local state space Y, so that
after m events the probability of remaining in the ‘pool of reversibility’ is (1 − ε)m if the events
are independent. This probability converges to zero with more events. The natural subsystem is
thus ‘transient’. Indeed all reversible behaviour is transient in this sense, except for a final lowest
level where the system is ‘dead’. This lowest level may be ergodic and characterize what the
system does as time goes to infinity, but, for living systems, this ignores all their most interesting
structure. (And in contrast to Krohn–Rhodes analysis says next to nothing about their complexity
or how to synthesize them from simple components.) Long-term behaviour in this sense reflects
only death.

However, living systems such as cells and differentiated multicellular organisms, and also their
components such as constituent instances of the Krebs citric acid cycle, organelles or particular
genetic regulatory subnetworks (like the p53–mdm2 cellular response to damage and cancer),
exist in varying amounts and in varying topologies. In particular, they can be modelled using
interaction machines that dynamically grow and change their interconnectivity while undergoing
temporal evolution in response to interactions with the environment.

That the long-term behaviour of a fixed automaton will converge out of any transient regime to
a final subset of possible states is very simple to see, but the long-term behaviour of a dynamically
renewed ensemble of such automata can continue (physically and mathematically) to re-visit any
given natural subsystem (Y, (Y)per), albeit with newly generated components.

Gibbs’s ensemble interpretation applied to automata whose semigroups contain permutation
groups is made concrete by interaction machines where natural subsystems (which are
permutation groups) repeatedly recur. The multiple copies or components are simultaneously
present in the ensemble defined by the interaction machine for such an interaction network
of copies of the automata (even without any interaction between the components, i.e. parallel
composition as in the simplest Gibbs interpretation with one copy of the system in each of its
possible states). At any given moment, new copies of component automata may be generated.
In such a setting, which applies for modelling multicellular growth or protein bio-synthesis
of the constituents needed for multiple instances in a cell of a given metabolic pathway, etc.,
the notion of transient behaviour of any given copy of the system fails to capture the global
recurring instantiation of the full dynamics of the system arising in the behaviour of the ensemble.
Indeed, the same principle of adding copies of the system applied to a transformation semigroup
in each of its possible states allows all the possibilities and mappings in the semigroup to
be realized recurrently, without permanent loss in a transient. For every mapping s of the
semigroup, any set X stabilized by s (e.g. any natural subsystem where s acts) recurs in the
ensemble, so even after arbitrary time ·s : X → X will realized. Thus, the entire semigroup
S with its space of dynamical possibilities (Q, S(A)) recurs indefinitely often. If one has a
good model for understanding its natural subsystems and the transitions between them,37

this can be applied repeatedly, in spite of the fact that they may only occur transiently in a
particular component.

(b) Example 1 continued: cell cycle and multicellular differentiation
Let C be any finite automaton cell model including the cell cycle which results at some point
in division, for example using the simple cell-cycle model of [101] modelled as a Petri net in
figure 12.38 Here phosphorylated cdc-2 (cdc2-P) and cyclin oscillate in synchronization with the
cell cycle; in sufficient concentration cdc2-P sets off a cascade of events that results in the cell

37This refers not only to scientific or experiential understanding, but also to hierarchical coordinate systems obtained by
Krohn–Rhodes decompositions, using say the partial order Ξ/R of weak control hierarchy (as in theorems 6.1 and 6.2).
38We remark that in this Petri net for the cell cycle there are non-trivial automorphisms (symmetries). One gets an
automorphism of the Petri net via the (external) symmetry of order 2: on places, (cdc2 amino acids) (cdc2-P cyclin), i.e.
swap cdc2 and amino acids and simultaneously swap cdc2-P and cyclin; whereas, on transitions, swap as follows (t5t7) (t4t6).
This induces an (external) automorphism of order 2 on the six-state automaton, as evident from figure 12b.
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Figure 12. (a) Petri net model of the cell cycle based on a differential equation model of reactions as described by Tyson [101].
(b) Finite six-state automaton associated to this Petri net whose state set consists of all configurations reachable from the initial
configuration with one token at the place representing MPF (active or inactive).

division. Mitosis-promoting factor (MPF) consists of cdc2-P bound to cyclin, and when activated
breaks down into cdc2 and amino acids, mediating this process.

The natural subsystems and their weak-control hierarchy in the transformation semigroup
of the six-state automata (found using an analysis with SGPDEC [17] like before, modulo
R-equivalence) comprise three permutation groups in this order with cyclic groups C2, C3,
C2 acting on 4-, 3- and 2-macrostate sets. Thus, Abelian subgroups C2, C3, C2 correspond to
natural subsystems that exist in multiple copies in the transformation semigroup (which has 1309
elements) of the automaton. Larger starting configurations lead to even more and larger groups,
including non-Abelian ones already when starting with two tokens of MPF.

We might also add constituent finite automata into the network modelling the Krebs cycle or
p53–mdm2 genetic regulatory control to obtain an automata network with fixed topology.39 If the
constituents have natural subsystems with functionally complete groups (SNAGs), they could
in single or multiple copies be computing any finitary functions via local interaction functions
(e.g. as in propositions 4.7 and 4.8) to control the growth, change and development of the network.

Now we select a state q of the finite cell-cycle automaton C corresponding to cell division (for
the above Petri net a many-token starting state would be needed, and division would be triggered
by the amount of cdc2-P tokens exceeding a threshold). A level 1 interaction machine consists of
just the automaton C at time zero (corresponding to the empty word), and is defined by adding
a new copy of C connected to the original one (its ‘mother’) whenever the cdc2-P threshold is
reached, giving rise to cell division with two automata in appropriate states. We might suppose
that the state of this new automaton either is determined by external inputs or is the same as that
of its mother, or for mathematical convenience that the state is given by some function of a clock
so that all states can occur as initial states for some division.

Now we have a very different situation regarding transients. Each cell C has a transformation
semigroup with transient properties. Long sequences of inputs, unless they correspond exactly
to words in a permutator semigroup (X)perstr, will ‘knock the cell out of’ any given pool
of reversibility (natural subsystem with state set X), until C is at a lowest level in the weak
control hierarchy after all transient behaviour has finished. However, the interaction machine
A (which we may suppose has inputs modelling nutrients reaching the cell C triggering transition
sequences according to some interaction functions ϕv that eventually cause the cell to divide) will
repeatedly give rise to copies of C in any ensemble state. Thus, while the behaviour of any given
constituent cell is transient, the dynamically growing ensemble will repeatedly visit all the natural
subsystems with their associated permutation groups (X)per.

39A dynamic variant (level 1 interaction machine) would allow the creation of new instances of the Krebs cycle or other finite
automata components depending on the metabolic and genetic regulatory activity modelled in the network.
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It is easy to construct elaborations of this model with many other constituent automata within
each cell C. For example, we may expand C to include metabolism and p53 genetic regulatory
control in a more sophisticated model of the cell. Moreover, based on local conditions, external
input and intercellular signalling, the model cells of the ensemble exhibit differentiation into cell
types in different ways, e.g. activating different parts of their genome corresponding to different
cell types (e.g. neurons, muscle cells, etc.) in a division of labour.

Now changes in the number of cells occur during multicellular differentiation and
development, and discrete automata models of this process within cells are increasingly used
(e.g. [102,103]) to understand morphogenesis of living organisms. It is clear that, within the
framework of interaction machines, cell number increases and decreases, as well as changes in
topology and differentiation of cells and ensembles of cells into different types, can be modelled
naturally. A higher level interaction machine elaboration could organize cells into constituents
that are themselves organs, modelled as constituent interaction machines in a multicellular body
that interact with each other and the environment to constitute a higher level individual. In such
a setting, considerations of robustness and self-reproduction [104,105], self-maintenance and self-
repair (more generally, autopoiesis [106], i.e. processes of ‘self-production’ including constructing
the machinery for producing the cell’s components) can naturally be modelled for natural and
robust, artificial systems.

(c) Layers of time: recurrence and dynamic coordinates with natural systems as building
blocks

One generation passes away, and another generation comes [. . .]. The sun also arises, and
the sun goes down, and hastens to his place where he arose.

—Ecclesiastes

We now examine how any discrete dynamical system given by an automaton A can be
synthesized using ensembles of natural subsystems according to the weak control hierarchy as
an interaction machine, as either a static or dynamic cascade (theorems 6.1 and 6.2). For any
permutation group (X, G), such as a natural subsystem (X, (X)per) of A, let (X, Ḡ) denote the
transformation semigroup obtained from (X, G) by including all constant maps on X, i.e. all
c : X → X of the form c(x) = x0 ∈ X for all x ∈ X. Each element of Ḡ is either a permutation or
constant. Here we allow trivial permutator groups |(X)per| = 1. For X ⊆ Q = States(A), let Tiles(X)
be the maximal (under inclusion) subsets of X which either are singletons or occur as images of Q,
i.e. X = Q · w for some w ∈ A∗. Subduction for images is defined by: Y ≤S X if there exists s ∈ M(A)
with Y ⊆ X · s. Subduction equivalence is the same as R-equivalence. It is clear that the partial
order (X, (X)per) ≺wc (Y, (Y)per) implies the same ordering in subduction. Note that subduction
dominance may be strict even if X and Y have the same cardinality, which is not possible for
weak control. Now

⋃
Tiles(X) = X and it is easy to show that each element of (X)per permutes

Tiles(X).40 Moreover, each s ∈ S(A) either permutes Tiles(X) or there exists T ∈ Tiles(X), with X · s ⊆
T. Consider A’s weak control hierarchy Ξ/R giving a partial order ≺wc on equivalence classes of
natural subsystems (X, (X)per). Expand this to include R-equivalence classes of (X, (X)per) for all
X images of Q, even if X is not the image of an idempotent in S(A). Add new inequalities for
subduction modulo R-equivalence. Thus, subduction modulo R is a partial order that includes
weak control modulo R. Finally, remove all the classes for (X, (X)per) if X is a singleton, to obtain
a partial order ≺wc+ on non-singleton image sets X modulo R-equivalence.

Theorem 6.1 (weak control coordinatization by ensemble of natural subsystems). Let A be
a finite automaton with characteristic monoid M(A). Then the partial order ≺wc+ indexes an ensemble,
i.e. a cascade, of (Tiles(X), (X)per) that emulates A. Moreover, each constituent (Tiles(X), (X)per) either
(1) comes from a natural subsystem (X, (X)per) or (2) has a trivial group (X)per; in the latter case

40This action might not be faithful. The group (X)per modulo the kernel of the action is called the holonomy group (X)hol of X,
and one can replace (X)per in the components in the argument by the smaller (X)hol.
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(Tiles(X), (X)per) contains only the identity and constant maps. Finally, each of these components can
be replaced by parallel copies of (X, (X)per).

Proof. (Outline) This is based on a modification of the holonomy theorem. (See [9, ch. 3] or
[13] for the holonomy group and decomposition theorem.) By simple modifications of standard
proofs of the holonomy theorem [9, ch. 3], consider all X that are non-singleton images X of Q
under some a ∈ A∗. Then subduction modulo R includes Ξ/R, the weak control partial order
on R-equivalence classes of image sets. This gives the partial order ≺wc+ of these equivalence
classes, ordered according to the subduction order that includes all weak control relations. The
directed network with this ordering of constituents (Tiles(X), (X)per) is then a cascade network
that emulates the automaton A that we started with, as its constituents map onto the holonomy
permutation groups with constants (Tiles(X), (X)hol). But each (Tiles(X), (X)per) can be replaced
by a parallel ensemble of |Tiles(X)| copies of (X, (X)per) as the former embeds in the latter. �

This shows how to reconstruct A from its component natural subsystems (X, (X)per), using
copies of only one per equivalence class, augmented with constants for locally good control. The
network is a cascade (and can be made linear if desired) as we started with a partial order.

Now if the automaton A can occur in a recurring way in some interaction machine, theorem 6.1
gives it a hierarchical coordinate system in which all the natural subsystem representatives may
occur arbitrarily often (with changing, i.e. non-constant, values). That is, transience recurs and
may be usefully coordinatized via computation in natural subsystems.

We also have an interaction machine result (a new version of the holonomy decomposition):
theorem 6.2 shows that hierarchical coordinatization (i.e. cascade decomposition) can be done
with a growing changing interaction machine that is a dynamic cascade of natural subsystems
based on the weak control hierarchy. Just like our decimal example (§5c), this interaction machine
gives a coordinate system that grows as needed.

Theorem 6.2 (emulation via a growing dynamic cascade of natural subsystems). Let A be a
finite automaton. Then A is emulated by an interaction machine A whose constituents at every given time
t ∈ A∗ are a collection of representatives (X, (X)per) that are either natural subsystems of A or, if not,
(X)per is a trivial group. The digraph of the interaction machine at time t is a suborder of the partial order
≺wc+ (but with some nodes expanded in parallel for multiple copies of the same component) changing as a
function of time and configuration, so A comprises a dynamic growing cascade.

Proof. (Outline) From the proof of the holonomy theorem in [9, ch. 3] and so also for the
emulating ensemble in theorem 6.1, it is clear that, in lifting a state for the emulation, only certain
components are used (i.e. have non-trivial values). Let these components be present with the
topology given as a suborder of ≺wc+ but expanding some nodes by parallel copies as in the
proof of theorem 6.1. Then using the interaction machine notion, when a lifted input symbol ã
corresponding to a ∈ A acts on the machine, all present components are updated according to the
usual cascade formulation, but those constituents where a value should fall that have not been
set before come into existence at that moment with the appropriate state value. This continues as
each input symbol acts, resulting in a growing cascade. �

Remarks on recurrence. Transience of the natural subsystems (X, (X)per) of A is a natural
consequence of the fact that semigroups allow for irreversible change. However, with the notion
of an interaction machine as formulated here and an ensemble approach in which new instances of
A may continually arise, this transience itself becomes a recurring phenomenon, as do instances
of the natural subsystems given by its permutation groups (X, (X)per). Semigroups such as the
natural numbers N or real numbers R are taken in physics as models of time. But more generally
(see footnote 33), we can consider A∗, the free semigroup over an alphabet A of basic events
a ∈ A, or the semigroup S(A) of a discrete dynamical system A, as its appropriate model of time.
In an interaction machine A, for different times t ∈ A∗, a new copy of A may repeatedly arise
as a component of A(t). The semigroup S(A) and the natural subsystems (X, (X)per) of A may
be repeatedly encountered. Recurrence of full possibilities of the full state space of A (due to
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growing and changing dynamics of A allowing the reproduction of more copies of the system)
must now be considered for a full understanding of systems maintained far from thermodynamic
equilibrium. Similarly, the weak control hierarchy is repeatedly encountered. In the same way, in an
interaction machine of level greater than 1, its constituent interaction machines may repeatedly
arise in this way too, so that this kind of recurrent structure can be layered or ‘nested’. �

(d) Discussion
Symmetry appears in the notion of natural subsystems as a particular kind of permutation group
in the transformation semigroup of an automaton. These symmetry structures are related by
hierarchical relations of weak control and essential dependencies between natural subsystems
as introduced here. We have explored the algebraic and symmetry structures for various
discrete biological models in detail and described their weak control hierarchies in detail.
In particular, biological systems (e.g. the p53–mdm2 genetic regulatory pathway) may have
symmetry structures that are capable of a finitary analogue of universal computation (SNAGs).
The natural symmetry structures within these discrete dynamical systems are generally present in
very many copies, and are related to each other via a notion of weak control and R-equivalence,
which allows us to see hidden hierarchical structure from both global and local perspectives.
These relations can be used to reconstruct the system in an ensemble using just representative
copies of its natural subsystems, in a static or growing dynamic cascade.

Dynamic cascades are a case of level 1 interaction machines, introduced here, which generalize
static automata networks and can be used to naturally model systems that we see all around us,
e.g. in our capacity to use growing or shrinking decimal representation of numbers. Iterating
this insight, we introduced general interaction machines as dynamically changing networks of
interaction machines whose components are themselves interaction machines. These allow the
natural formulation of a new class of discrete biological models, e.g. for growing, differentiating
multicellular systems with recurring division of cells based on the cell cycle. Interaction machines
give a model of computation close to what biological systems do based on interactions.
Furthermore, this work lays the foundation for us to apply mathematical tools to understand
and design dynamically changing computational structures that respond to each other and the
environment.

In natural examples, multiple instances of these natural subsystems may continually arise
and later be destroyed or renewed, giving them a recurrent presence in ensembles. Considering
networks of automata, including dynamic automata networks and more general interaction
machines, that can grow or change their components and topologies like living things do, or
that can deploy multiple copies of components in suitable configurations (as in differentiated
multicellular development of living things), suggests that the powerful computational capacity
of symmetry structures that we find within models of biological systems may drive, control and
shape their activity in response to the environment and each other, in a manner where their
activity keeps them far from thermodynamic equilibrium (‘death’). Indeed, we obtained results
showing how genetic regulatory control (or other methods) could harness the finitary universal
computational power of SNAGs.
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