
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

9-2007

Cellular automata for dynamic S-boxes in cryptography. Cellular automata for dynamic S-boxes in cryptography.

William Matthew Luckett
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Luckett, William Matthew, "Cellular automata for dynamic S-boxes in cryptography." (2007). Electronic
Theses and Dissertations. Paper 863.
https://doi.org/10.18297/etd/863

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Louisville

https://core.ac.uk/display/143830612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/863
mailto:thinkir@louisville.edu

CELLULAR AUTOMATA FOR DYNAMIC S-BOXES IN CRYPTOGRAPHY

By

William Matthew Luckett
B.S., University of Louisville, 2005

A Thesis
Submitted to the Faculty of the

University of Louisville
J. B. Speed School of Engineering

in Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering and Computer Science

September 2007

CELLULAR AUTOMATA FOR DYNAMIC S-BOXES IN CRYPTOGRAPHY

Submitted by: ______________________

 William Luckett

A Thesis Approved On

(Date)

by the Following Reading and Examination Committee

Dr. Mehmed Kantardzic, Thesis Director

Dr. Ahmed Desoky

Dr. John Naber

 i

ABSTRACT

In today's world of private information and mass communication, there is an ever

increasing need for new methods of maintaining and protecting privacy and integrity of

information. This thesis attempts to combine the chaotic world of cellular automata and

the paranoid world of cryptography to enhance the S-box of many Substitution

Permutation Network (SPN) ciphers, specifically Rijndael/AES. The success of this

enhancement is measured in terms of security and performance.

The results show that it is possible to use Cellular Automata (CA) to enhance the

security of an 8-bit S-box by further randomizing the structure. This secure use of CA to

scramble the S-box, removes the "9-term algebraic expression" [20] [21] that typical

Galois generated S-boxes share. This cryptosystem securely uses a Margolis class,

partitioned block, uniform gas, cellular automata to create unique S-boxes for each block

of data to be processed.

The system improves the base Rijndael algorithm in the following ways. First, it

utilizes a new S-box for each block of data. This effectively limits the amount of data

that can be gathered for statistical analysis to the blocksize being used. Secondly, the

S-boxes are not stored in the compiled binary, which protects against an "S-box

blanking" [22] attack. Thirdly, the algebraic expression hidden within each galois

generated S-box is destroyed after one CA generation, which also modifies key

expansion results. Finally, the thesis succeeds in combining Cellular Automata and

Cryptography securely, though it is not the most efficient solution to dynamic S-boxes.

 ii

TABLE OF CONTENTS
ABSTRACT………………………………………………………………………………i

INDEX OF APPENDICIES…...…………………………………………………………iv

INDEX OF TABLES……………………………………………………………………..v

INDEX OF FIGURES…………...……………………………………………………….vi

1. INTRODUCTION……………………………………………………………………..1

1.1. Cellular Automata……………………………………………………………2
1.1.1. CA Dimensions…………………………………………………….3
1.1.2. CA States…………………………………………………………..3
1.1.3. CA Neighborhoods………………………………………………...4
1.1.4. CA Transition Function……………………………………………7
1.1.5. Example of a Cellular Automata……………………………….…..8

1.2. Cryptography……………………………………………………………….10
1.2.1. Types of Ciphers………………………………………………….11
1.2.2. Basic Boolean Operations………………………………………...14
1.2.3. Block Cipher Modes of Operation………………………………..15
1.2.4. Cryptographic Keys and Keyspace……………………………….17
1.2.5. Other Parameters of Encryption Algorithms……………………..19
1.2.6. Padding Methods for Block Ciphers……………………………...20
1.2.7. Common Cryptanalysis Techniques……………………………...21

1.3. Cellular Automata Properties for Cryptography……………………………23
1.3.1. Previous Research in Combining CA and Cryptography………...24
1.3.2. Other Possible Uses of CA in Cryptography…………………….27

2. CYPTOSYSTEM DESIGN AND PROCEDURES………………………………….29

2.1. Rijndael Implementation……………………………………………………31
2.1.1. Generating Rijndael's Galois Field……………………………….32

2.1.1.1. Multiplying in GF(28)…………………………………..32
2.1.1.2. Generating the Exponentiation and Log Tables………...33
2.1.1.3. Generating the Multiplicative Inverse Table…………...34
2.1.1.4. Generating the S-box and Inverse S-box……………….34

2.1.2. Performing the MixColumn Operation…………………………...35
2.1.3. Performing the ShiftRow Operation……………………………...37
2.1.4. Performing Key Expansion……………………………………….38
2.1.5. The AddRoundKey Function……………………………………..40

 iii

2.1.6. Other Rijndael Implementation Details…………………………..41
2.1.6.1. Implementing the doRounds and doInvRounds………..41
2.1.6.2. Implementing CBC Mode Functions…………………...42
2.1.6.3. Implementing the Padding Functions…………………..44

2.2. Implementing Margolus Automata…………………………………………45
2.2.1. Determining the Rule Structure…………………………………..49
2.2.2. Determining the Configuration…………………………………...50
2.2.3. Making Margolus Move………………………………………….51

2.3. CAC Construction…………………………………………………………..51

3. ANALYSIS OF CRYPTOSYSTEM…………………………………………………53

3.1. Analyzing the Cellular Automata…………………………………………..53

3.1.1. Distribution of States……………………………………………..53
3.1.2. Distribution of Swap Counts……………………………………..55

3.2. Analyzing the Generated S-boxes………………………………………….56
3.2.1. Bit Change and Avalanche Criteria………………………………57
3.2.2. Non-Linearity Measures………………………………………….59

3.3. Analyzing the CAC Output and Performance……………………………...63
3.3.1. Maurer's Universal Statistical Test……………………………….63
3.3.2. Entropy and Conditional Entropy………………………………...64
3.3.3. Data Histogram Results…………………………………………..66
3.3.4. Compression Results……………………………………………...67
3.3.5. Time Analysis and Profiling Results……………………………..68

4. CONCLUSIONS……………………………………………………………………..71

5. REFERENCES……………………………………………………………………….74

6. APPENDECIES……………………………………………………………………....77

7. DEVELOPMENT ENVIRONMENT……………………………………………….153

 iv

INDEX OF APPENDICES

APPENDIX A – Design Diagrams………………………………………………77
APPENDIX B – Implementation Source………………………………………..85
APPENDIX C – Modular Test Case Sources and Test Results………………..118

 v

INDEX OF TABLES

1. Conways' Transition Rules……………………………………………….……….9
2. Truth table for XOR operation…………………………………………………...13
3. The relationship between keylength, total keys, and days to test 50%

of keys at 1 per ms and at 1 per picosecond……………………………………..18
4. Conditional Entropy Results……………………………………………………..66
5. Results of BZIP2 compression test………………………………………………68
6. Temporal differences between static and dynamic S-boxes while

encrypting a 4mb file with one generation per block……………………………68

 vi

INDEX OF FIGURES

1. Toroidal result of wrapping borders of a 2-D plane…………………………………..3
2.

a. Moore Neighborhood with r = 1………………………………………………5
b. von Neumann Neighborhood with r = 1………………………………………5
c. Alternating Margolus Neighborhood……………………………………….....5

3. Moore Neighborhood indexing with wrapping of borders……………………………6
4. 5 Generations under Conway's rules. Numbers show the neighbor

counts for cells, grey cells are living………………………………………………….9
5.

a. A Fiestel Network……………………………………………………………11
b. The 4 steps of AES, and SPN cipher………………………………………...12

6. Example of XORs properties with an 8-bit string…………………………………...14
7. ECB block mode operation…………………………………………………………..15
8. Comparison of ECB and CBC mode for a 6885 x 10000 pixel image. ……………..16
9. CBC block mode operation…………………………………………………………..17
10. Pseudo-random pattern generation from a 1-D Automata…………………………...20
11. Two different padding methods……………………………………………………...21
12. Defining rules for 1-Dimensional automata………………………………………....24
13. Rjindael Encryption Flowchart for processing a single block. doRounds……….…..30
14. Multiplying in Rijndael's Galois Field…………………………………………….....33
15. Generating the Exponentiation and Log Tables……………………………………...33
16. Multiplication of X and Y in the GF using tables……………………………………33
17. Generating the Multiplicative Inverse Table………………………………………...34
18. Getting an S-box Entry (SUB)……………………………………………………….35
19. Generating the S-box and Inverse S-box Tables……………………………………..35
20. Rjindael's 4x4 Matrix and Inv 4x4 Matrix…………………………………………...36
21. MixColumn Effects in Hexadecimal on an input block……………………………...36
22. Mix column effect on bit a pattern…………………………………………………...37
23. ShiftRow Effects in Hexadecimal on an input block………………………………...37
24. ShiftRow effects on a bit pattern…………………………………………………….38
25. Circular left rotate of a four byte word………………………………………………38
26. Rcon operation, exponentiation of 2 in GF(28)………………………………………39
27. ScheduleCore scrambles four bytes and uses rcon on the first byte…………………39
28. The KeyExpansion algorithm performs in place expansion of the key……………...40
29. AddRoundKey modifies the state by XORing with a round key…………………….40
30. doRounds performs Rijndael encryption on the current block of data………………41
31. doInvRounds performs Rijndael decryption on the current block of data…………...42
32. Utilizing clock drift for cross platform CBC IV generation………………………....42
33. Frequency of Bytes in clock drift output…………………………………………….43

 vii

34. InitIV function utilizes clock drift, encryption, and CBC to create IV……………....43
35.

a. Possible Margolus Configurations…………………………………………...45
b. Billiard Ball Model Transitions……………………………………………...45
c. Bounce Gas Transitions……………………………………………………...45

36. Billiard ball model interactions………………………………………………………46
37. Weak Margolus rule showing clustering across generations………………………...46
38. Visualization of uniform distribution of on and off cells under the

uniform bounce gas rule in 100 generation steps…………………………………….47
39. Symmetry in Bounce Gas rules allowing full reversibility, uniform

dispersion, and symmetrical pattern propagation……………………………………48
40. S-Box viewed as a CA grid with threshold 0x7f…………………………………….49
41. DoTransition function based on 'currentState'……………………………………….50
42. GetConfiguration function…………………………………………………………...50
43. Processing the map…………………………………………………………………..51
44. Flow chart showing the process of encrypting a file………………………………...52
45. Distribution of average Mid-Points, from a non-uniform initial state……………….54
46. Midpoint distance from center location, from a non-uniform initial state…………...55
47. BounceGas rules swap count per generation………………………………………...56
48. Average per byte bit changes in static and dynamic S-boxes………………………..58
49. Comparison of dynamic and static S-boxes avalanche………………………………59
50. Comparison of minimum non-linearity for dynamic and static S-boxes…………….60
51. Nonlinearity Distribution in random 8-Bit Tables…………………………………...61
52. Distribution of MinNL for CA generated S-boxes under the BounceGas rule……....61
53. Distribution of MinNL for CA generated S-boxes under random rules……………..62
54. Computing Maurer's Test Statistic…………………………………………………...63
55. Maurer's results comparing CAC outputs to English text and random

uniform data………………………………………………………………………….64
56.

a. Definition of entropy H(X)…………………………………………………..65
b. Definition conditional entropy H(Y|X)………………………………………65

57. Comparison of original and output data histograms…………………………………67

 1

1. INTRODUCTION

Since their conception by Stanislaw Ulam and John von Neumann in the 1940's

[1], researchers have successfully utilized Cellular Automata (CA) for many different

purposes. The simple structure and the properties of CA suggest various uses in many

fields of study. However, it has proven quite difficult to integrate CA with the field of

cryptography. Despite previous results, new uses for CA in cryptographic applications

are often investigated. This thesis will attempt to enhance the security of the Rijndael

encryption algorithm by using the perceived performance and randomness of CA to

modify the typically static S-Box structure. While the strength of the existing Rijndael

algorithm may not reside entirely with the S-Box, research suggests room for

improvement in both implementation and the design of S-Box dependent algorithms.

The thesis will consist of three main chapters each having several sub chapters.

The introduction will provide relevant background information over the topics of Cellular

Automata and cryptography. The typical operation of common types of CA will be

explained, as well as their perceived uses in cryptography. Similarly, common

cryptographic networks and primitives, like the S-Box, will be introduced. This first

chapter will finally provide a look at some previously proposed Cellular Automata

Cryptosystems (CACs) and their shortcomings.

The second chapter of the thesis will focus on the design and implementation of

the proposed system. The proposal integrates two separate systems into one and was

 2

designed similarly. In the first part of the second chapter, the Rijndael algorithm is

explained. This section details the structures and operations that work together to make

Rijndael a secure algorithm. The chapter then explains the S-Box modifying CA. The

design and operation of the CA as well as its properties and selection criteria are

rationalized. The chapter finally shows the integration of the two parts, as the proposal

suggests.

The proposed CAC is analyzed in the third chapter based on a number of criteria.

The two halves of the CAC, the cipher and the CA, are analyzed independently to verify

their operation and fulfillment of their selection criteria. Finally, the combined system is

evaluated based on strength of the generated S-Boxes, the security of the implementation,

and the processing performance. The final results of the analysis lead to the conclusion

that the CAC operates correctly, offers improvements to Rijndael's S-Box, and has a

moderate impact on performance.

1.1. Cellular Automata

Cellular Automata typically exist on a finite or infinite regular grid of cells. Each

cell, or automata, has a finite number of possible states. These automata cells are each

modified independently by the transition function on a discrete time step. The

application of the transition function to each cell in the grid leads to the next 'generation'

for the grid. Transition functions typically operate based on the state of the cell and the

cells around it. Though these functions depend on their input states, every cell follows

the same rule for determining these transitions. Formally, a CA is a 4-tuple [1] [2]:

 3

1.1.1. CA Dimensions.

The dimensions defined by d could be described as NxxNyxNz, where (Nx, Ny, Nz)

are members of the natural numbers. Typically CA are limited to one or two dimensions

(Nz = 0) and a finite size for the dimensions Nx and Ny. In an attempt to emulate an

infinite grid, the border cells typically have their neighbors wrap to the other side of the

grid, creating a Nz-dimensional torus [2], as shown in the image [3] in Figure 1.

1.1.2. CA States.

The finite set of states S = (S0, S1, …, Sn-1) where n is the size of the set S. Most

CA based on Margolus's Lattice Gas Automata or Conway's Game of Life will have only

two states. For Lattice Gas Automata, the two states are seen as the existence or

non-existence of a particle. In Conway's Game of Life, the two states indicate whether a

cell is alive or dead. Few automata have more than two states, as the design complexity

Figure 1. Toroidal result of wrapping borders of a 2-D plane. [3]

CA = (d, S, N, ƒƒƒƒ)
where d = is a triple determining the size of dimensions
S = the finite set of possible states
N = the neighborhood vector for each cell
ƒƒƒƒ = the local transition function

 4

of the transition function ƒ ƒ ƒ ƒ increases with the number of states. The transition function ƒƒƒƒ

transforms a cell's state to another state based on its current state and its neighbor's states

defined by N. The combined states of the cells in the neighborhood is called the

configuration. The number of possible configurations for a neighborhood depends on the

size of the state set S and the number of cells in neighborhood N, which amounts to SN

total configurations for a specific CA.

1.1.3. CA Neighborhoods.

For the standard 2-dimensional cellular automaton on a square grid, there are

three standard choices of neighborhood vector N. Edward F. Moore proposed one

method [4] for defining neighborhoods. A Moore neighborhood of range r is defined by

NMoore(x0,y0,r) = [(x, y) : |x – x0| ≤ r, |y - y0| ≤ r], and the number of cells in each

neighborhood is (2r + 1)2. A r value of one is typically used which yields eight

neighbors to each cell, for a total of nine cells in the Moore neighborhood as seen in

Figure 2a. The Moore neighbor-hooding scheme is used in John Conway's Game of Life,

and many related CA [2]. The second most common scheme is the von Neumann

neighborhood [5]. A von Neumann neighborhood of range r is defined by

NvonNeumann(x0,y0,r) = [(x, y) : |x – x0| + |y - y0| ≤ r], and the number of cells in each

neighborhood is 2r(r + 1) + 1. A range of one is typically used which yields four

neighbors to each cell, for a total of five cells in the von Neumann neighborhood, as seen

in Figure 2b.

 5

 The third common neighborhood is quite a bit different. Designed to model

physical systems (Lattice Gases [6]), the Margolus neighborhood has the smallest

neighborhood with just 4 members. However, Margolus neighborhood automata operate

with an alternating partitioning scheme [7]. The 2x2 partitioning scheme effectively

groups four cells together into what can be looked at as a macro-cell. Figure 2c. shows

the neighbors of the central cell with the alternating partitions indicated by the odd and

even labels. Without the alternating partitioning scheme, transitions between

configurations would not propagate beyond the individual partitions [7]. In a Margolus

neighborhood based CA, the states of the four cells in the macro-cell indicate the current

configuration of that macro-cell. For Margolus automata, the current configuration of the

 xx,yy-1

xx-1,yy xx,yy xx+1,yy

 xx,yy+1

Figure 2b.
von Neumann Neighborhood with r = 1.

xx-1,yy-1 xx,yy-1 xx+1,yy-1

xx-1,yy xx,yy xx+1,yy

xx-1,yy+1 xx,yy+1 xx+1,yy+1

Figure 2a.
Moore Neighborhood with r = 1.

Odd
xx-1,yy-1

Odd
xx,yy-1

Odd
xx-1,yy

xx,yy
Even
xx+1,yy

Even
xx,yy+1

Even
xx+1,yy+1

Figure 2c.
Alternating Margolus Neighborhood

 6

macro-cell is seen as the state, and the transition function works on macro-cells as

opposed to individual cells. The number of possible configurations for these two

dimensional neighborhoods are S(2r+1)^2, S2r(r + 1) + 1, and 24 for Moore, von Neumann, and

Margolus neighborhoods respectively.

For all neighbor-hooding schemes, the wrapping of border cells must be taken

into consideration when determining the indices of the neighbors of the central cell [2].

Most software implementations of CA elect to emulate an infinite grid of cells by

wrapping the borders. Formally, calculating the index for a neighbor could be described

as a modulo operation. For example, the neighbor of the Nx±1'th cell would be written as

N(x±1)%Nx where % represents the arithmetic modulo operation, requiring that

mod(-1,32)=31 for example. Figure 3 illustrate this idea for the Moore neighborhood

with range r = 1.

 Though most software implementations of 2-dimensional Cellular Automata wrap

the borders of the grid, special precautions must be taken for hardware implementations.

In hardware, each CA cell would be an identical circuit. The cells would each have

connections to their neighbors. Connecting each border cell to the other side of the grid

would increase the cost and scalability of the implementation. As such, it is often

x(x-1)%Nx,y(y-1)%Ny xx,y(y-1)%Ny x(x+1)%Nx,y(y-1)%Ny

x(x-1)%Nx,yy xx,yy x(x+1)%Nx,yy

x(x-1)%Nx,y(y+1)%Ny xx,y(y+1)%Ny x(x+1)%Nx,y(y+1)%Ny

Figure 3.
Moore Neighborhood indexing with wrapping of borders.

 7

advised that CA systems destined for hardware take this into account [2]. Because the

operation of the CA still requires that each cell have the same neighborhood, some

special-case null-value must be chosen as transition functions for those non-existent

neighbors to avoid leaking information in or out of the CA grid.

1.1.4. CA Transition Function.

The last member of the 4-tuple, the local transition function ƒƒƒƒ, defines the

behavior of the automata. ƒƒƒƒ is directly dependent upon the number of states and the

chosen neighbor-hooding scheme. Let Sn
x,y denote the current state of the cell in a

2-dimensional grid field [2]. ƒƒƒƒ transforms a cell to its next state based on it

neighborhood:

ƒƒƒƒ : S
n
x,y → Sn+1

x,y

Let Gridc be the current configuration of the entire grid. After applying the local

transition function ƒƒƒƒ to all cells in the field, the global transition function F evolves [2],

changing Gridc into GridFn.

F : GridFc → GridFn

When choosing ƒƒƒƒ for applications that are information preserving, it must be

specially crafted to avoid destroying information. For example, in Conway's Game of

Life, which has a Moore neighborhood with range r = 1, a living cell with zero neighbors

will die, or transition from state 1 to state 0. Since there are no complimentary rules for

the spontaneous birth of a cell, Conway's rules are not information preserving. For some

cryptographic purposes (i.e. not random pattern generation), ƒƒƒƒ must be designed to be

injective. The injective property simply requires that all inputs to the function have

 8

specific outputs. If the CA state values are based on its current neighborhood

configuration, as opposed to an aggregate sum of neighbors, then creating one-to-one

functions that preserve all information is simplified. Injective transition functions

inherently imply the existence of the inverse of ƒƒƒƒ, ƒƒƒƒ-1, which defines F-1 as the inverse

operation on the entire grid field. F is reversible if and only if F is a bijection. [2] If a

CA requires reversible rules, then the function ƒƒƒƒ must be its own inverse. For example, if

configuration (or state) 'A' is changed to 'B', then 'B' must also change to 'A'. A CA with

a bijective function ƒƒƒƒ can be described as a reversible cellular automata or RCA.

1.1.5. Example of a Cellular Automata.

The standard example of cellular automata is John Conway's Game of Life. This

automata uses a Moore neighborhood with r = 1, giving eight total neighbors to each cell

for a total of nine in a neighborhood. The transition function is based on the number of

'living' neighbors and the state of the current cell. Under Conway's rules, if a dead cell

has exactly three neighbors, it will be born; if a live cell has two or three, neighbors it

survives to the next generation; in all other cases, the cell dies. Formally, Conway's

Game of Life can be described as a 4-tuple CA = (d, S, N, ƒƒƒƒ).

 9

Figure 4 illustrates five generations of Conway's rules with grey tiles representing

the living cells (cells in state 1) and the numbers indicating the count of living neighbors

for the chosen cell. During each generation, every cell counts the number of living

neighbors in its neighborhood. Next, the local transition function is applied to each cell,

which determines the next state of the cell based on its current state and its' living

neighbor count. From the first randomly selected generation shown in Figure 4, all the

non-living white cells with a value of three (indicating the number of living neighbors)

will be born in the next generation. In the second generation, all the cells with the values

four and five will die in the next generation, in addition to the usual births. The map

continues to evolve via Conway's rules until it reaches a stable configuration in the fifth

generation.

Gen: 1 2 3 4 5
Figure 4. 5 Generations under Conway's rules. Numbers show the
living neighbor counts of the cell, grey cells are living.

d = (Nx, Ny, Nz) = (X, Y, 0) where X and Y are natural numbers.
S = {0,1} with 0 and 1 representing dead and living cells respectively.
N = NMoore,1 a Moore neighborhood with range 1.
ƒƒƒƒ = is described by the following table.

Table 1. Conways' Transition Rules

 10

1.2. Cryptography

Cryptography is the process of encoding and scrambling data for confidentiality

purposes. The strength of a cryptographic algorithm (cipher) is not specifically in the

algorithm itself; instead, its strength is determined by the 'secret keys' and the type of

network used (SPN, feistel, data-dependent rotations) [8]. The most basic way of

differentiating cryptographic algorithms is by the number of keys used. A symmetric key

cipher requires only a single key to encrypt the user's data. This single key is mixed into

the data in such a way that the same key is used to undo the mixing. This property

implies that the way in which the key is mixed is its own inverse, and most likely the

XOR operation described later. The second basic type of cipher uses two keys to do its

work. These are typically called public-key cryptosystems. The operation of such

two-key asymmetric ciphers are fundamentally different from their single-key cousins.

Besides providing confidentiality of data, these asymmetric ciphers also offer integrity

checking and verification of author for non-repudiation. Focusing on symmetric ciphers,

like Rijndael, there are some basic components and methods used that require some

introduction.

 11

1.2.1. Types of Ciphers.

There are a few main structures to crypto algorithms in use today. They all seek

to create what Claude Shannon calls "confusion and diffusion" of the input data [9].

Diffusion is the process of scrambling and swapping bits among bytes within a block of

data. This is typically done before a confusion step. On the other hand, Confusion is

performed by byte substitutions, meaning each byte is replaced by a different byte. An

advantage of feistel networks is that their design is nearly identical for encryption and

decryption, only requiring the key-schedule to be reversed. Figure 5a illustrates a

simplified process of encrypting and decrypting a plaintext block [10]. For encryption,

the block is split into two halves. One of the halves is processed by the function F. This

function F performs the diffusion and confusion of the data, using whichever method the

feistel cipher has chosen. Next, either as another step or as part of the function F, a

portion of the key K is mixed into the data with an XOR. The resulting half block is

XORed with the other half, and the process continues this way. The two half blocks

Figure 5a. A Feistel Network [10]

 12

swap positions, and continue utilizing F and K until the entire key has been used. For

decryption, the exact same algorithm is used, but the key stream is reversed.

Substitution Permutation Network (SPN) ciphers, like Rijndael, borrow a lot from

the mixing functions of Feistel ciphers. However, the encryption and decryption

processes differ by more than a simple key reversal. Rijndael consists of steps that mix

the key, substitute bytes using an S-box, shift rows within the block and then mix

columns within each block (Figure 5b) [11]. Figure 5b, shows each of the confusion and

diffusion steps used in the SPN cipher, in no particular order. The first confusion step in

XOR Key and State (Confusion)

Substitute Bytes of State (Confusion)

Shift Rows of State (Diffusion)

MixColumns of State (Diffusion)

Figure 5b. The four steps of AES, a SPN Cipher [12]

 13

the figure shows how the plaintext block, or state, is XORed with some of the Key. This

is represented as MatA ⊕ MatK = MatB. The second step shown in Figure 5b shows the

second confusion step, called SubBytes, which is used in Rijndael and similar SPN

ciphers. This process uses an S-Box to produce unique outputs for each input. The next

step in the figure is simply the ShiftRow diffusion step, which deterministically rotates

rows in the state, which move bits from their original location in the state. The second

diffusion step illustrated in Figure 5b, is the MixColumns function. This function uses

matrix multiplication in the Galois field to diffuse bits within each column among all four

column entries. Thus, for an SPN cipher like Rijndael, confusion and diffusion functions

(and their inverses) work together and in a certain order to provide security. The SPN

decryption process differs from the encryption in that only the inverse functions are

called and in the opposite order, which makes designing SPN ciphers slightly more

involved than a Feistel cipher.

The S-box, mentioned above, is the heart of most SPN ciphers and responsible for

a large amount of the confusion aspect of the cipher. S-Box is a term that simply means

substitution box. An 8-bit S-box contains 256 unique entries: one for each of the 256

8-bit numbers. The input byte is used as an index into the table, and the value at that

index is the substitution value. To undo the substitutions indicated by the S-box, there

must also be an inverse S-box. These boxes must stay in sync (remain inverts) for

encryption and decryption to work.

A B A ⊕ B
T T F
T F T
F T T
F F F

Table 2. Truth table for XOR operation.

 14

1.2.2. Basic Boolean Operations.

Both SPN and Feistel networks (and nearly all ciphers in existence) depend

heavily on the XOR operation to do most of their invertible operations. XOR (⊕), which

means Exclusive OR, is a Boolean operation that results in true if and only if one of the

inputs is true (Table 2). This exclusive disjunction allows two pieces of data to be mixed

invertibly as long as one of the original pieces of information is known. Thus, if A ⊕ B =

C, then C ⊕ B = A, and C ⊕ A = B (Figure 6). At the simplest level, all encryption

algorithms XOR the plaintext and the key together to get the cipher text. This naïve

example has the obvious problem that if an attacker were able to guess the content of a

plaintext block, they could retrieve the encryption key. Thus, algorithms have diffusion

aspects as well. These properties and the performance of bit-level operations make XOR

a perfect fit with cryptographic applications.

A 10010011 C 00100111 C 00100111
B 10110100 B 10110100 A 10010011

A ⊕ B = C 00100111 C ⊕ B = A 10010011 C ⊕ A = B 10110100
Figure 6. Example of XORs properties with an 8-bit string.

 15

1.2.3. Block Cipher Modes of Operation.

All block ciphers operate on fixed sized chunks of data, or blocks. Because of

this, any two identical blocks encrypted under the same key will output the same cipher

text. Since this is a flaw inherent in any block cipher, a number of "modes" exist to

increase the security implementations of block ciphers. In Electronic Codebook (ECB)

mode (Figure 7) [12], each input block is encrypted in turn. A block of data is first read

into a buffer. The encryption algorithm is then performed on that buffer, which mixes the

key into the data. This processed block is then output to the cipher text file, and the next

plaintext block is encrypted in turn. For example, if you were to encrypt a large image

with ECB mode, the input blocks for identical regions would show through in the cipher

text (Figure 8) as per the inherent flaw. ECB is not recommended for any cryptographic

implementation because of this reason [13].

Figure 7. ECB block mode operation [12]

 16

 A much better choice of mode for a block cipher is the Cipher Block Chaining

(CBC) mode. Figure 9 illustrates this mode. CBC mode requires an initialization vector

(IV), which is simply a random block of data that will be XORed with the plaintext

before encrypting a block. To create an IV, first fill a block-sized buffer with random

data from any random number source. The second step is to encrypt this IV with the

users' key. The resulting IV should be uniform random after encryption. The IV does

not need to be kept secret; it only needs to be random and never re-used for the same key.

The initial IV is now ready for use in processing plaintext blocks. It is used and updated

exactly as shown in Figure 9 [12]. First, a plaintext block is read in from the file, the

plaintext block is modified by XORing with the IV. The block is then encrypted, and the

IV is set to the values of the encrypted block. This process continues until the file is

exhausted. However, in order to decrypt a file with CBC mode the initial IV needs to be

stored as the first block in the cipher text.

Scaled Original Scaled RC5 Encrypted ECB Scaled AES CBC
Figure 8.
Comparison of ECB and CBC mode for a 6885 x 10000 pixel image. (Non-Interpolated Post Scaling)

 17

The main advantage of CBC over ECB is that all previous blocks affect the

current block in one way or another [13]. Thus, if a single bit is changed in the first

block of the file (and the algorithm has good per block avalanche effect), every other

block will also be changed. There are other modes for block ciphers like Cipher

Feedback, Output Feedback, and Counter mode, but most of them focus on creating

stream ciphers from block ciphers, which is outside of the scope of this thesis.

1.2.4. Cryptographic Keys and Keyspace.

The key itself is one of the most important parts of any algorithm, as it provides

'instructions' for encrypting and decrypting the data [8]. In any symmetric cryptosystem,

the key must be kept secret by the user. Typically, keys range from 64-256 bits, with

more bits suggesting more security. The key space is the number of possible keys that

could be used for input. For a key of 256 bits, there are 2256 available keys. The most

obvious step toward security is removing the possibility for someone to do a brute force

Figure 9. CBC block mode operation [12]

 18

attack in which the attacker tries many keys until a plain text matching a known

distribution is generated. Statistically, a brute force attack would need to try half of the

key space before finding a match, or 2(256-1) trials for a 256-bit key. Due to the enormous

number of keys to try (Table 3), it is usually computationally infeasible to use brute force

on most of today's algorithms.

Internally, keys are usually larger than the user supplied key due to key-expansion

or key-scheduling functions built within a strong cipher [14] [15]. Such key expansion

functions also serve another important role, by avoiding weak keys. In some algorithms,

there exist key patterns that could output part of the message or part of the key in the

cipher text. Or even cause no encryption to be done at all. These key expansion

algorithms typically do not directly increase key-space, as they are deterministic and

based on the users small input key. However, key expansion allows an algorithm to

perform more rounds of encryption on the data with a different key each time. In

Rijndael/AES, key expansion relies on the S-box and is therefore related to the S-boxes

current configuration, yet it is still deterministic.

One place that researchers have attempted to integrate CA with Cryptography, is

in key-expansion. The authors of [1] [16] [17] [18] all used one-dimensional CA to

KeyBits Total Keys Single (1) Distributed (1mil)
1 2 1.15741E-11 1.15741E-17
2 4 2.31481E-11 2.31481E-17
4 16 9.25926E-11 9.25926E-17
8 256 1.48148E-09 1.48148E-15

16 65536 3.79259E-07 3.79259E-13
32 4294967296 0.024855135 2.48551E-08
64 1.84467E+19 106751991.2 106.7519912

128 3.40282E+38 1.96923E+27 1.96923E+21
256 1.15792E+77 6.70093E+65 6.70093E+59
512 1.3408E+154 7.7591E+142 7.7591E+136

Table 3. Relationship between keylength, total keys, and days to test 50%
of keys at 1 per µs and at 1 per picosecond.

 19

generate a key-schedule based on the pseudo-random pattern properties of many

one-dimensional CA rules, as illustrated in Figure 10. Thus, the first line of pixels in

Figure 10 represents the first generation, or the user supplied key. Subsequent

generations provide keys further in the key-schedule, which are claimed to be

pseudo-random. While a truly random expanded key would b ideal for encryption (like a

one-time-pad cipher), pseudo-random is the norm as most algorithms use the

user-supplied key as an initialization vector for key expansion.

1.2.5. Other Parameters of Encryption Algorithms.

Many symmetric key ciphers have parameters for the number of rounds, block

size, word size, and for CA based systems the number of generations. A user modifiable

block size, for example, is often a parameter of a good algorithm and allows

modifications to be made based on memory and time constraints. Typically, a larger

block size will encrypt faster, but block sizes directly depend on the word size the

Figure 10. Pseudo-random pattern generation from a 1-D Automata Rule

 20

algorithm or user supplies and their architecture. For example, the RC5 algorithm

parameterizes word size to allow 16, 32 or 64 bits of data for each entry in the block.

Providing parameters to the internal workings of the algorithms effectively increase the

key-space, as the attacker must know these values exactly in order to decrypt a file.

Another common parameter, the number of rounds, determines the number of times the

encryption functions are performed on a block of data. In RC5, this parameter is variable

from 1-255; in Rijndael, it is typically a function of the key-length but can be

parameterized. Increasing the number of rounds increases the convolution of the data.

1.2.6. Padding Methods for Block Ciphers.

Any block cipher using ECB or CBC modes must pad the plaintext to fill out the

block before encryption; the other modes require no padding, as they are stream ciphers.

If the final block is not padded prior to encryption, then it will not decrypt properly. One

typical method of padding suggests filling the first unused byte with 128 (0x80, or

10000000 binary) and all other bits/bytes with zeros. The other primary method is to fill

all Np bytes with the value Np; thus if you have four padding bytes they will all be padded

with 04, as shown in Figure 11, Case 1, Method 1. However, there is a problem with this

scheme. If the plaintext ends on a block boundary and has the last bytes (0x01) or (0x02,

0x02), or even (0x03,0x03,0x03) then these bytes will be indistinguishable from padding

and will be removed as padding. This is illustrated in Figure 11, Case 2, Method 1.

Thus, it is highly recommended to add a full block of padding to the cipher text in

addition to filling out the last block with padding bytes. In this scheme, all padding bytes

are filled with the value, Np + BlockSize. This allows the padding to be properly

 21

removed after decryption and is illustrated in Figure 11 in Method 2 for both cases. This

method will always work unlike Method 1.

1.2.7. Common Cryptanalysis Techniques.

Besides ensuring an adequate key space, there are many experimental methods for

analyzing the general strength of a cipher. These methods can target weaknesses in the

algorithmic design, software implementation, or hardware implementations. The most

basic test of the algorithm is a data histogram. After processing a block or file of data,

there should have been adequate confusion and diffusion to produce a uniform frequency

 Case 1 Case 2
 Padding Needed No Padding Needed

Message that needs 4 bytes padding. Message that needs 0 bytes padding.

Method 1. Padding with Np = 04h Method 1. Padding with Np = 0h
Depadding will remove 4 bytes. Depadding will remove 3 bytes.

Method 2. Padding with Np = 24h Method 2. Padding with Np = 20h
Depadding will remove 36 bytes. Depadding will remove 32 bytes.

Figure 11. Two padding methods.

 22

histogram for all byte values, regardless of the plaintext input. This uniform property is

necessary to avoid first order language attacks which are based on the probability and

statistics of the original data, like frequency of letters in the English language. Obtaining

this uniformity even with the use of a uniform input key and uniform plaintext is the first

step to showing a cipher may not be trivially breakable.

Another property of all modern algorithms is the critical avalanche effect (CAE).

CAE says that for a single bit change in input byte, at least 50% of bits should change in

the output byte [2]. In the AES/Rijndael algorithm, this is handled by the diffusion steps,

namely the ShiftRow and MixColumn operations. The MixColumn operation

specifically performs matrix multiplication using a matrix [19] which ensures that every

byte of the input affects all four bytes of the output. This method is elegant, and its affine

property does not weaken the cipher. These types of operations, coupled with an S-box,

provide the critical avalanche criterion and byte frequency uniformity. An algorithm

design that meets these criteria – in an intelligent order – has the possibility of being a

secure algorithm.

Many attacks focus on weaknesses in the implementations of algorithms as

opposed to the actual design of the algorithm. For example, in AES and Rijndael

S-boxes are supposedly generated in such a way so as to have good non-linearity

properties. However, According to [20] and [21], the S-boxes generated by Rijndael's

algorithms only have 9 algebraic terms, which may prove to be vulnerability in the

design. It is also suggested in [22] that a static S-box – which most implementations

store in the binary – allows an attacker to simply modify the binary and discover the

secret key and plaintext.

 23

The authors argue that most implementations of ciphers with static S-boxes are

vulnerable to blanking, resulting in key discovery. In addition to their examples and

proofs of AES's vulnerability to this scheme, they also suggest that all SPN ciphers with

"Unprotected Implementations, Static S-boxes in cipher round, Key whitening (XOR)

operation after the final round, A suitable round key expansion," are likely vulnerable to

S-box Blanking. In the case of AES, if an attacker were to blank the S-box with zeroes

on the victims machine, then due to the XORing of the data with an entry from the key

schedule, the key would be directly outputted in the cipher text. Kerins and Kursawe

offer methods to defend against S-box blanking, such as physical protection of the cipher

binary by the operating system, code obfuscation or executable packers, dynamic static

S-box generation at run time, and dynamically modifying a generated S-box. These

suggestions are useful, as the dynamic modified generated S-box offers protections

against both S-box blanking as well as the weak 9-term arithmetic complexity of the

standard AES S-box as mentioned in [20] [21].

1.3. Cellular Automata Properties for Cryptography

There are many properties of Cellular Automata that may help or hinder their

usefulness in cryptographic applications. For example, any cellular automata that is not

injective is said to be a non-reversible CA [2]. Such a non-reversible CA loses data each

generation, which lowers its usefulness for encryption purposes. It may be possible to

find a use for these automata where reversibility is not important, such as random number

generation and hashing functions. Yet in the case of reversible cellular automata (RCA),

it is easy to see one simple use in cryptography. An RCA could be used as a diffusion

step. Each cell would represent a bit from a file, and the global transition functions F and

 24

F-1 would be used for performing diffusion of bits within a block of data. However,

running a RCA on a block of data for an arbitrary number of generations does not make a

cryptographically secure algorithm. The use of an RCA as the 'diffusion' step in a

substitution permutation cipher (SPN) seems obvious, but a single static RCA rule does

not offer much more diffusion than the typical RowShift and ColumnMix operations.

Even with the existence of techniques for creating RCA (tiling techniques, and second

order CA) [23] the information preserving property of RCA may be of more interest for

some cryptographic applications than reversibility. A final property – and one of the

most critical for cryptographic purposes – is the affine property. If a Cellular Automata

Cryptosystem (CAC) depends heavily on weak affine transformations, the low linear

complexity of the transformations will most likely lead to an insecure algorithm when

used as a diffusion step [24].

1.3.1. Previous Research in Combining CA and Cryptography.

As mentioned previously, there have been many attempts at creating a CAC. In

[16] S. Nandi, et al, propose a class of block and stream ciphers based on what they call

"fundamental transformations". The scheme offered creates an alternating group of

permutations using EXNOR logic, various programmable one dimensional cellular

automata (PCA) rules (51, 153, and 195), and a rule selection function based on a given

key. One-dimensional automata rules were defined by Stephen Wolfram [25], as shown

Figure 12. Defining rules for 1-Dimensional automata.

 25

in Figure 12. The three top cells indicate the current configuration of the central cell and

its two neighbors. The single cell in the second row indicates what color the central cell

will have in the next generation. The binary pattern of the next generation defines the

rule number from 0 to 255. For example, in Figure 12, the top example has a next

generation pattern of 00000000, or rule 0, while the bottom example has the pattern

00110011, or rule 51. A rebuttal to their proposal is offered in [26], where Blackburn

and Murphy rigorously analyze the scheme and conclude that all the transformations are

of the affine group and are therefore cryptographically weak. They state that they can

determine the initial state of the automata (in this case, the key) by solving a set of linear

equations with L – 2 variables and with only 2L+2 trials, where the initial key is an LxL

bit matrix and the proposed value of L by Nandi is 16.

Nandi, et al, also claim the ability to use PCA as "high quality pseudorandom

pattern generators" as well as for dynamic key generation and manipulation for stream

ciphers. Their proposed use of CA as pseudo random pattern generators was not

questioned and is supported by the finding in S. Wolfram's research [18]; yet [24] argues

that the Komogorov complexity theory proves that the simple local rules of cellular

automata cannot create true randomness and thus may not be good enough for

cryptographic applications. Nandi, et al, question the absolute terms of insecurity based

on their affine transformations, inquire about ways to absolutely secure such a system,

and re-iterate their correct statements about CA natural fit with VLSI design in [27].

In his paper "Cryptosystems Based on Reversible Cellular Automata", Jarrko Kari

offers another CA based cryptosystem which offers some useful suggestions to any future

attempts. He proposes both a secret-key and a public-key cryptosystem using cellular

 26

automata. The proposed symmetric key system uses a CA to modify the key each block.

Kari suggests that each application of the CA to the key offers increased security. As

with most systems, special precautions must be taken to avoid weak keys. A simple

solution to the problem of homogenous input key or plaintext is offered. Kari suggests

always forcing some of the cells to certain states and using input data to populate the

other cells. This suggestion and parameterization of the k value offer an avalanche effect

that results in largely different output if a single bit of the key or plain text is changed.

Kari also offers an asymmetric or public key CAC. The general theory of

public-key encryption using CA is to craft a complimentary pair of automata that are hard

to find the inverses of individually. Finding the inverse of a given automata, is an

NP-Hard problem according to Toffoli and Margolus in [23]. However, going against

traditional methodology, Kari suggests the use of many simple self-inverting "marker

automata", or transformations, which will decrypt when run in reverse. This sounds more

like a single key system, as the key is simply the order in which to run the data through

the "automata" (forward or backward). Calling these simple and linear transformation

rules an automata, let alone a crypto system, is misleading.

In [1], the authors propose a private key block cipher system that moves away

from simply using a 1-dimensional CA to generate the key stream and XOR logic as

previous research in [17] and [16] did. The algorithm's key consists of the number of

RCA, the iterations p, and p input vectors. The two transition matrices generated based

on this data are inverses of each other and have possible uses in encryption. However,

the transition matrices generated are assumed (by the author) to be linear, which may

prove to be a weakness. The authors suggest that their algorithm is more resistant to

 27

exhaustive search attack than other CACs due to its larger key space lower bound of 22p.

As most other offered solutions, their real focus is on fast parallel operation for hardware

VLSI designs. As such, their boundary neighbors are always considered with a null state

as previously suggested.

Efforts to use CA for cryptography seek to take advantage of the fact that simple

rules can generate complex pseudorandom patterns and that they can be implemented in

hardware for very fast and efficient operation. While there have been many attempts in

using CA for cryptography, not many have been proven to be cryptographically secure.

On the contrary, any cryptosystem based on affine, linear, simple, or "fundamental

transformations" is cryptographically weak and only a problem of solving a system of

equations with the support of trial data. Using one-dimensional pseudorandom patterns

generated by CA for a key stream is argued to be insufficient for cryptography [24]. The

use of non-homogenous cellular automata for public-key systems also suffers from the

challenge of generating complimentary pairs of automata and the fact [24] that

NP-hardness does not necessarily guarantee security for cryptosystems.

1.3.2. Other Possible Uses of CA in Cryptography.

Researchers have made many attempts at creating cryptosystems based nearly

entirely on cellular automata. Some of the problems in these CACs lead researchers to

question the true applicability of CA for any cryptographic use. While the idea of using

CA as a cryptographic primitive, like a key expansion algorithm, or as the confusion and

diffusion steps themselves may seem like a lost cause, CA may still have some possible

application. For example, in [28] the author proposes the use of CA to generate new and

unique S-boxes for block ciphers. While it remains to be shown that CA can generate

 28

good non-linearity in an S-box, S-boxes are a proven and very powerful cryptographic

primitive. In this sense, while developing entirely new algorithms based on cellular

automata might be questionable based on prior attempts, CA surely have some use in

further enhancing existing and proven cryptographic primitives like an S-box. While

S-boxes are typically generated deterministically, or even hard-coded into the binary,

there is an opportunity for increased security in dynamic S-boxes that are kept secret

from the attacker.

Thus, based on the conclusions of [20] [21] [22] and suggestions of [28], the S-box

cryptographic primitive, and specifically the AES/Rijndael implementation, could

possibly be improved in the following ways:

1. Dynamically generate S-boxes at runtime, do not store a single static S-box in the

binary. Dynamic generation protects against S-box blanking.

2. The 9-term algebraic expression for the S-box could be removed with some

dynamic modifications of the S-box.

3. Having more than one initial S-box based on user choice or key, as opposed to

AES's single static S-box, increases complexity. S-Box choice also modifies the

key-expansion process.

 29

2. CRYPTOSYSTEM DESIGN AND PROCEDURES

Initially there were several ideas that could have been used to develop this cellular

automata cryptosystem. The base encryption algorithm chosen for the cryptosystem is

Rijndael with some restrictions placed on its parameters. The chosen parameters

guarantee a very high level of security and allow for a simpler implementation. The

choice of CA for S-box mixing was based on the simple Margolus neighborhood.

Margolus, which was the first cellular automata investigated for this purpose, ended up

being a very suitable method due to the simplicity and elegance of its alternating

partitioning scheme. The following section provides details on the design and

implementation of the proposed CAC.

This thesis proposes a CAC based on Rijndael symmetric block cipher that

implements:

1. Dynamic S-box generation, generating up to 128 unique and valid initial

S-boxes.

2. A Cellular Automata that dynamically, reversibly, and uniformly

redistributes S-box and Inverse S-box values.

3. The option of modifying the S-box before key expansion for generating

different expansions based on the input parameters.

 30

4. User parameters controlling the Initial S-box choice and the number of

generations the Automata should modify the S-box per block, as well as a

threshold parameter of the CA.

5. 256-bit block size, 256-bit key size, CBC mode with IV generated from

clock drift calculations, double padding.

6. Optional key shuffling CA is also provided.

7. All user input parameters must be known to properly decrypt a file.

There are many steps in developing and testing a CAC. In this system, there are

two main parts: the encryption system and the S-box modifying CA. Each part has

multiple steps; thus a modular unit-tested design was used throughout. Each function

was rigorously tested during the implementation to ensure the proper operation and to

avoid debugging nightmares where encryption and decryption just do not work properly.

Figure 13. Rjindael Encryption Flowchart for processing a single block. doRounds

 31

2.1. Rijndael Implementation.

Implementing Rijndael with specific parameters of 256-bit key and 256-bit blocks

was the first step towards realizing the design of the eventual CAC. A systematic

approach was taken, with each function being tested and verified before moving to the

next (Figure 13). The Galois mathematics functions were based on and verified with the

example C++ code, tutorials, and lookup tables released into the public domain on Sam

Trenholme's website [19]. Specifically, the public domain Rijndael code utilized in the

CAC deals with generating multiple supporting tables. This code was utilized because it

is highly optimized for performing various Galois Field mathematics in GF(28), and to re-

write these base functions into less optimized and less tested versions would be

counterproductive.

Specifically, the public domain functions that were implemented generate the log

table, exponentiation table, division table, and the key expansion table. These

initialization functions generate 8-bit 256 entry tables for performing GF(28) math

quickly. These functions were modified at various times during their integration into a

working Rijndael implementation. Most of these changes were data type and data

structure changes, for example making all data types unsigned 8-bit (for the 8-bit field)

and making all two dimensional tables one dimensional. Another function that utilizes

public domain C++ code is the mixColumn operation. Once again, the existence of high

quality public domain source code for this crucial step in implementing the Rijndael half

of the CAC makes re-implementation pointless. The public domain functions were

mainly used for convenience in the early stages of development, and on their own they do

 32

nothing. They serve as initialization and mathematics routines only. Charts showing

functions source and their use in the process can be found in Appendix A5 and A6.

2.1.1. Generating Rijndael's Galois Field.

The first step of the Rijndael implementation design dealt with generating the

Galois Field used throughout the AES/Rijndael algorithm. A Galois Field is typically

described with the notation GF(pn) where p is the characteristic prime number, and the

value (pn) represents the order (total elements) of the field. In the case of AES\Rijndael,

the field used has order 256 and characteristic prime of n=2, thus a GF(28). Doing

mathematics in a Galois field requires that all results fit within the field, i.e. 8-bits.

Adding and subtracting in Rijndael's Galois field are represented by an XOR operation.

In contrast, multiplication, division, exponentiation, and logarithms require operations

that are more complex. Luckily, these operations can be handled with lookup tables. In

the implementation, five tables are generated based on a user chosen Galois generator.

These generators are numbers that , traverse all possible values in the Galois field (except

zero) when exponentiated 255 times. There are 128 Galois generators in GF(28). The

chosen Galois generator affects all five look-up tables in the implementation, the S-box,

and the later key-expansion. Making it a user parameter increases key-space and hides

the initial S-box of the CAC from the attacker, as opposed to AES's single S-box.

2.1.1.1. Multiplying in GF(28).

As mentioned, multiplication in GF(28) is more complicated than the simple XOR

that is used for addition and subtraction. The abundant Galois field theory and

supporting information in the AES proposal for Rijndael [9] can be implemented with a

surprisingly simple algorithm, shown in Figure 14:

 33

2.1.1.2. Generating the Exponentiation and Log Tables.

The generator is first used to build the exponentiation table and the log table as

per the following algorithm shown in Figure 15:

The exponentiation table and the log table can be used to multiply two numbers in

the Galois field much more quickly than the standard Galois multiply (which was used to

generate the tables). This is done with the method shown in Figure 16:

set a = logTable[X]
set b = logTable[Y]
set sum = a + b mod 255 (normal addition, not galois)
set product = expTable[sum]

Figure 16 Multiplication of X and Y in the GF using tables.

set expTable[0] = 1
set expTable[255] = 1
for x = 1 to 255 do
 set expTable[x] = expTable[x-1] * galoisGenerator (galois multiplication)
 set logTable[expTable[x]] = x
set expTable[255] = 1

Figure 15 Generating the Exponetiation and Log Tables

set product = 0
set highbit = 0
for x = 0 to 7
 if(operandB AND '01')
 product = product ⊕ operandB
 highbit = (operandA AND '80')
 bitShiftLeft(operandA, 1)
 if(highbit)
 operandA = operandA ⊕ '1b'
 bitShiftRight(operandB,1)
return product

Fig. 14 Multiplying in Rijndael's Galois Field

 34

2.1.1.3. Generating the Multiplicative Inverse Table.

Division in Rijndael's Galois Field is performed by taking the logarithm of the

numerator and subtracting the logarithm of the denominator modulo 255 and looking it

up in the exponentiation table. The only division operations actually performed in

Rijndael always have one as the numerator; thus, we generate the multiplicative inverse

table as shown in Figure 17. The log of 1 (the numerator) always has a value of 255.

The log of the denominator is subtracted from 255, and the result is looked up in the

exponentiation table. These tricks for quickly performing mathematics in the Galois

Field were found on Sam Trenholme's website, and replaces the typical generalized

Galois Field polynomial based calculations for table look ups. These tables will be used

to build the initial S-box and inverse S-box.

2.1.1.4. Generating the S-box and Inverse S-box.

The S-box, handles Shannon's confusion step of the SPN cipher Rijndael. It

simply handles all byte substitutions and thus requires an inverse table. It is generated by

taking the multiplicative inverse of a given number and transforming it with a simple

affine transformation matrix. A single value for the S-box can be transformed and

calculated with the algorithm shown in Figure 18:

set mulInv[0] = 0
for x = 1 to 255
 mulInv[x] = expTable[255 – logTable[x]]

Figure 17 Generating the Multiplicative Inverse

 35

 Using the SUB algorithm (Figure 18) the S-box and Inverse S-box tables were

generated, as shown in Figure 19:

2.1.2. Performing the MixColumn Operation.

The MixColumn operation performs half of Shannon's diffusion step in Rijndael,

with ShiftRow performing the other half. It accomplishes this diffusion of bits by using

matrix multiplication within the Galois field. Figure 5b, showed a graphical

representation of this function. The MixColumn operation is performed on every column

of the state. The state represents the current block of data being operated on. In this

case, the 256-bit block size being implemented has a state of 4x8 bytes. Each of the eight

4x1 column matrices are multiplied by one of the two 4x4 matrices shown in Figure 20,

depending on whether encryption or decryption is being performed. Multiplying by these

matrices ensures that all four entries in the column will mix with each other and

reversibly so. The creators of Rijndael chose these matrices based on the fact that within

the Galois field the columns are considered polynomials over GF(28), which are

multiplied modulo the irreducible polynomial x8 + x4 + x3 + x + 1 [9]. This constant

for x = 0 to 255
 Sbox[x] = SUB(x)
 SboxInv[Sbox[x]] = x

Figure 19. Generating the S-box and Inverse S-box Tables

set s = mulInv[inputByte]
set x = mulInv[inputByte]
for c = 0 to 3
 s = ROTL(s,1) (circular rotate s left by one)
 x = x ⊕ s (⊕ = XOR)
outputByte = x ⊕ galoisGenerator

Figure 18 Getting an S-box Entry (SUB)

 36

polynomial is co-prime to x4 + 1 and thus invertible as per standard Galois Field

methodology [9], which this thesis largely ignores with its optimized table based

approach to Galois Field mathematics.

Multiplication and addition during the matrix operations are performed within the

GF(28), with addition and subtraction being the XOR operation [9]. These kinds of

operations quickly lead toward meeting the Critical Avalanche Criterion [29] which

requires that any bit change in the input affects an average of 50% of the bits in the

output. The MixColumn operation moves a fair number of bits to different positions, as

can be seen in Figure 21. Figure 22 shows the original pattern representing the four rows

of data shown in Figure 21, and the bit pattern after performing the MixColumn

operation.

Fig. 21 MixColumn Effects in Hexadecimal on an input block.

14 9 13 11

11 14 9 13

13 11 14 9

 9 13 11 14

Rjindael's Inv 4x4 Matrix

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

Fig 20. Rjindael's 4x4 Matrix

00 08 10 18 20 28 30 38
40 48 50 58 60 68 70 78
80 88 90 98 a0 a8 b0 b8
c0 c8 d0 d8 e0 e8 f0 f8

80 88 90 98 a0 a8 b0 b8
db d3 cb c3 fb f3 eb e3
00 08 10 18 20 28 30 38
5b 53 4b 43 7b 73 6b 63

 37

2.1.3. Performing the ShiftRow Operation.

The ShiftRow operation performs the second half of the diffusion of bits

throughout the state. The prime operation of ShiftRow is a one-byte circular shift of the

row: left or right for encryption or decryption respectively. The number of times each

row is shifted depends on the block size and the row number itself. For the fixed 256-bit

block size being implemented, the 8-byte rows 3, 2, and 1, are shifted 4, 3, and 1, times

respectively. Figure 5b, showed a simple graphical example of this process. Row 0 is

never shifted with any block size. These operations result in yet more diffusion, as

shown in Figure 23 and Figure 24. You will notice that the first row remains unchanged,

the second row was shifted once, and the third and fourth rows are shifted 3 and 4 times

respectively. Figure 24 shows the data from Figure 23 represented as bits, with an

asterisk representing a bit that is turned on.

Fig. 23 ShiftRow Effects in Hexadecimal on an input block

00 08 10 18 20 28 30 38
40 48 50 58 60 68 70 78
80 88 90 98 a0 a8 b0 b8
c0 c8 d0 d8 e0 e8 f0 f8

00 08 10 18 20 28 30 38
48 50 58 60 68 70 78 40
90 98 a0 a8 b0 b8 80 88
d8 e0 e8 f0 f8 c0 c8 d0

1)

2)

Fig 22. Mix column effect on the bits of the state shown in Figure 21.
1) Original Bit Pattern, 2) Resulting MixColumn Bit Pattern

 38

2.1.4. Performing Key Expansion.

Key expansion is the process of taking the user's small and possibly weak input

key and procedurally expanding it into a much larger and stronger key. The key

expansion functions for Rijndael differ slightly based on the size of the input key. For a

256-bit key, the algorithm generates an additional 448 bytes for the key schedule. In this

implementation, forcing a fixed sized 256-bit key slightly simplifies the process of

generating the key schedule. However, the process still requires several functions. These

functions consist of an 8-bit circular rotate on a 32-bit word, the RCON operation

(exponentiation of 2), a substitution using the S-box, and finally the key schedule

function. While the first two functions may be trivial (Figure 25, 26), they are illustrated

in pseudo-code along with the others for completeness.

set a = in[0]
for c = 0 to 3
 in[c] = in[c+1]
in[3] = a

Fig. 25 Circular left rotate of a four byte word.

1)

2)

Fig 24. ShiftRow effects on the state shown in Figure 23.
1) Original Bit Pattern, 2) Resulting ShiftRow Bit Pattern

 39

The ScheduleCore function (Figure 27) does most of the work during key

expansion. It takes four input bytes (32-bits) of the key and uses the rotate and RCON

operations to do some mixing of the key. This mixing is necessary to avoid weak keys

and weak expansions.

The final algorithm (Figure 28) in key expansion uses ScheduleCore to do most of

its work. However, in the case of 256-bit keys, this algorithm also does some extra

mixing by adding an extra S-box substitution. This extra step is necessary to maintain

strength in larger input keys that is not required for small keys. For the 256-bit key

expansion, the ScheduleCore algorithm expects the first 32-bytes of the 480-byte

InputKey array to contain the user supplied key. This expectation allows in place

expansion to the final 480-byte key.

rotate(FourInputBytes)
for c = 0 to 3
 FourInputBytes[c] = Sbox[FourInputBytes[c]]
FourInputBytes[0] = FourInputBytes[0] ⊕ rcon(inputExponent)

Fig. 27 ScheduleCore scrambles four bytes and uses rcon on the first byte.

set result = 1
if(inputExponent == 0) return 0
while(inputExponent != 1)
 result = gmul(result, 2)
 inputExponent = inputExponent – 1
return result

Fig. 26 Rcon operation, exponentiation of 2 in GF(28).

 40

2.1.5. AddRoundKey Function.

With the key expansion complete, most of the core functions of Rijndael have been

implemented. The only core function that remains to be implemented deals with actually

utilizing the key to further confuse the input data and thus tie the cipher text to the user's

secret key. This function performs a simple XOR operation (addition) between the

intermediate state (block of data) being operated on and a part of the expanded key. The

key added with AddRoundKey (Figure 29) is dependent on the current round of

encryption that is being performed. With the 256-bit key expansion performed in this

implementation, 14 rounds of encryption are performed on each block, with each round

adding a different 32-byte round key from the expanded key.

set keyOffset = inputRound * 32
for i = 0 to 31
 state[i] = state[i] ⊕ inputKey[keyOffset]
 keyOffset = keyOffset + 1

Fig. 29 AddRoundKey modifies the state by XORing with a round key.

array FourTempBytes[4]
set keyOffset = 32
set inputExponent = 1
while(keyOffset < 480)
 for a = 0 to 3
 FourTempBytes[a] = inputKey[a + c – 4]
 if(c mod 32 == 0)
 ScheduleCore(FourTempBytes, inputExponent)
 inputExponent = inputExponent + 1
 if(c mod 32 == 16)
 for a = 0 to 3
 FourTempBytes[a] = Sbox[FourTempBytes[a]]
 for a = 0 to 3
 inputKey[c] = inputKey[c – 32] ⊕ FourTempBytes[a]
 c = c + 1

Fig. 28 The KeyExpansion algorithm performs in place expansion of the key.

 41

2.1.6. Other Rijndael Implementation Details.

With the core Rijndael functions finished, only a few more functions were

required to have a working Rijndael implementation. The functions outlined here deal

with background processes like, CBC mode, padding, as well as the basic doRounds and

doInvRounds functions that use all core functions to perform the encryption.

2.1.6.1. Implementing doRounds and doInvRounds Functions.

The doRounds function (and inverse function) performs all the confusion and

diffusion functions previously explained. The order in which these core functions are

called by doRounds were carefully chosen by Rijndael's authors to maintain high security

and secrecy. For decryption, the inverse of each core function is used in an opposite

calling order. The doRounds function is exactly as shown in Figure 30, and directly

operates on the current block of data (state). The doInvRounds function performs actions

in the opposite order, with the opposite key order, and calls inverse functions to undo the

encryption (Figure 31).

addRoundKey(0)
for i = 0 to Rounds – 1 (14 rounds for 256-bit blocks)
 SubstituteBytes()
 ShiftRows()
 MixColumns()
 addRoundKey(i)
SubstituteBytes()
ShiftRows()
addRoundKey(14)

Fig. 30 doRounds performs Rijndael encryption on the current block of data.

 42

2.1.6.2. Implementing CBC Mode.

CBC mode, outlined by Figure 9, requires the generation of an initialization

vector (IV). As mentioned previously, the IV does not need to be kept secret from the

attacker. In fact, it cannot be kept secret from the attacker as it is required to decrypt the

file properly. For this reason, the IV is typically stored as the first block in the cipher

text. As a rule, the final IV must be random and never re-used with the same key. This

unique IV can be achieved from non-uniform random input data by encrypting the IV

with the user's key. For platform independence, the implementation uses clock drift

calculations to generate the IV as shown in Figure 32:

Though the entropy of the clock drift IV calculation is dependent on the current

system usage, its output is typically not uniform random (Figure 33). After encryption

with the user's key, the output (as per typical Rijndael encryption) is uniform random and

addRoundKey(14)
invShiftRows()
for i = Rounds – 1 downto 1
 invSubstituteBytes()
 addRoundKey(i)
 invMixColumns()
 invShiftRows()
invSubstituteBytes()
addRoundKey(0)

Fig. 31 doInvRounds performs Rijndael decryption on the current block of data.

array IV[32]
set clockTime = 0
for i = 0 to 31
 IV[i] = 0
 clockTime = clock()
 while(clockTime == clock())
 IV[i] = IV[i] + 1

Fig. 32 Utilizing clock drift for cross platform CBC IV generation.

 43

appropriate for use as an IV. For extra mixing, a CBC style XOR is also performed

during IV generation (Figure 34).

With the IV generated, the basic functionality of CBC mode only requires two

trivial functions: one to update the current CBC state (a memcopy) and one to XOR each

entry of the CBC state with the encryption state. These simple functions were even used

in the InitIV function (Figure 34).

array IV[32]
array Temp[32]

ClockDriftFill(IV) //Fill IV with clock drift values
doRounds(IV) //Do Encryption rounds on the IV
copy(IV, temp) //Copy the IV array to the Temp array
ClockDriftFill(IV) //Fill IV with clock drift values
XOR(IV, temp) //XOR all 32 IV entries with the Temp entries
doRounds(IV) //Do Encryption rounds on the IV

return IV //IV is ready.

Fig. 34 InitIV function utilizes clock drift, encryption, and CBC to create IV.

Frequency of Byte Values in ClockDrift Output

0

50

100

150

200

250

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Byte Value

C
o

u
n

t

Fig 33. Frequency of Bytes in clock drift output.

 44

2.1.6.3. Implementing the Padding Functions.

The basics of the padding functions are trivial in nature but quite tedious in

implementation. The general idea employed here is detailed in Figure 11. The idea is to

pad the last block of data with a value equal to the number of padding bytes plus the size

of a complete block. In addition, a complete block of padding is always encrypted as the

final block; this method avoids the problem of removing padding bytes mentioned earlier.

After padding and encrypting the final block, a second complete block of padding (with

the same value) is encrypted and outputted. For decryption, the second to last block is

decrypted, and then the last block's decrypted data is used to remove padding. Testing

and perfecting the padding functions required a lot of trial and error, which seems typical

regardless of the simplicity of the method.

 45

2.2. Implementing Margolus Automata

The original inspiration to use a Margolus style automata came from the

undeniable reversibility of the standard billiard ball model (BBM) (Figure 35b) [6]. The

BBM is a two state Margolus automata that simulates particle interactions as if they were

bouncing balls. The BBM is interesting because its simple rules are reversible and can be

run forward or backward in time. It was thought that if the BBM were tied to an S-box or

bits of data as a diffusion step, it would be possible to use the BBM modify and restore

the data. Reversibility of this kind is due to symmetry between transition rules and

symmetrical states. With such a symmetrical Margolus neighborhood automata,

reversing the calculation of generations only requires an inversion of the current

A B C

Figure 35. a. Possible Configurations
 b. Billiard Ball Transition Rules
 c. Bounce Gas Transition Rules

 46

EvenOdd variable state. Though it seems nice, this type of reversibility turned out to be

unnecessary for S-boxes because the S-box, automata generation, and current block of

data are all dependent. This means that the block being processed and the S-box must be

synchronized between encryption and decryption, not the reversed order.

After taking a closer look at the mixing performance of the BBM, it was observed

that some configurations remained static for each generation, namely 2x2 blocks of living

cells (Figure 36) and any cluster of living cells. Having many configurations with null

transition rules would limit the amount of scrambling performed; thus it was decided that

automata rules that mix more uniformly would be preferable for this application.

1 2 3

Figure. 37 Weak Margolus rule showing clustering across generations.

Figure 36 Billiard ball model interactions.

 47

Finding rules with certain properties can be difficult in some automata systems.

This difficulty increases with the size of the neighborhood and number of possible states.

In this system, there was the option of allowing the users to generate their own rules key.

However, based on visual results of random rules, some patterns emerge that severely

weaken the S-box's uniformity (Fig 37.). The rule chosen for the final design was the

Bounce Gas rule invented by Tim Tyler [7] (Figure 35c). This rule is described by the

author as a uniform gas rule, and based on experimental results, it does distribute 'on' and

'off' cells, or particles, uniformly (Figure 38). Due to symmetries in its transition rules

(Figure 39), it also is reversible and thus applicable as a uniform bit-diffusion step in a

different CAC design.

Fig. 38. Visualization of uniform distribution of on and off cells
under the uniform bounce gas rule in 100 generation steps.

 1 2

 3 4

 5 6

Non-symmetrical initial pattern
single cell added causes eventual

uniform diffusion of cells.

 1 2

 3 4

 5 6

Symmetrical starting pattern
diffusion retains symmetry

seen in rules.

 48

The main advantage of the Margolus neighborhood for S-box modification is the

simple 2x2-block design. This partitioning scheme allowed all rules to be simple swaps

between horizontal, vertical, or diagonal pairs of cells. For each of the 16 configurations

possible with 2x2 blocks, any number of the six swaps may be performed.

Though the implementation only uses the BounceGas rule, having a swapping

design allows all possible rules, weak or not, to be used for S-box modification, as losing

data is impossible. Of course, due to this feature, some transitions possible in a normal

Margolus implementations are impossible, a transition from state zero to fifteen for

example. There was also the inverse S-box to swap, but maintaining invertibility

between the S-box and Inverse S-box was a trivial operation. The order in which the

swaps are processed is fixed and may affect the results.

Figure 39 Symmetry in BounceGas Rules allowing full reversibility, uniform
dispersion, and symmetrical pattern propagation.

 49

Another useful feature of the design is the threshold value. This value is used to

determine which cells are considered live and which are considered dead, state 1 and 0

respectively. The default value is '127' for uniformity purposes. With this setting, half

the cells in the S-box will be live and half will be dead. Figure 40 shows how a typical

S-Box looks when this threshold value is applied. Slight modification of the threshold

value drastically alters the results, hence its use as a user parameter. As the threshold

varies further from the half-way value of 127, fewer swaps will be performed. When the

threshold value reaches a value of 0 or 255, no swaps will be performed. No swaps are

performed when a partition is in configuration 0 or F, as per the BounceGas rules shown

in Figure 35c. Thus, the threshold values are limited to a range to ensure the ratio of live

to dead cells is not too skewed, which would hinder diffusion.

2.2.1. Determining the Rule Structure.

The 16*6 possible swapping rules available for defining the transition function

were designed as a 16x6 array of Booleans. For each of the 16 configurations, or states

Figure 40. S-Box viewed as a CA grid with threshold 0x7f,
 1:1 alive to dead ratio.

 50

as it is used here, there are six Boolean values indicating whether to perform that swap.

This method can easily perform the swaps on the cell with the algorithm shown in

Figure 41:

2.2.2. Determining the Configuration.

Determining the configuration of a 4x4 block is performed very often and

therefore needs to be fast. The way the states are numbered in Figure 35a follows a

binary pattern. This numbering scheme coupled with the rule matrix implemented,

allows the current configuration value to be calculated very efficiently. In the

implementation it is calculated with a single line define statement, encompassing the

general formula shown in Figure 42 which sums up the decimal value of the four 'bits' in

the configuration. This gives the state number.

set currentState = 0
currentState = currentState + getCellValue(x+1,y+1) > threshHold ? 8 : 0
currentState = currentState + getCellValue(x,y+1) > threshHold ? 4 : 0
currentState = currentState + getCellValue(x+1,y) > threshHold ? 2 : 0
currentState = currentState + getCellValue(x,y) > threshHold ? 1 : 0

Figure 42. GetConfiguration function, where "?:" represents the C/C++ tertiary
operator and threshHold is an 8-bit value with default 127.

for swapType = 0 to 5
 if(rulesMatrix[currentState][swapType] == true)
 switch(swapType)
 case 0
 swapDiag1
 case 1
 swapDiag2
 …
 case 5
 swapVert2
Figure 41. DoTransition function based on 'currentState'

 51

2.2.3. Making Margolus Move.

With the simple algorithms for applying the swaps and for determining the current

configuration, there comes an equally simple method for making it all work. As shown

previously in Figure 2c., the alternating even and odd partitioning scheme inherent in the

Margolus neighborhood creates an environment where living cells, or particles, are

constantly moving. The partitioning scheme can easily be handled by processing the map

starting from position (0,0) or position (1,1), based on the even or odd state. Border

handling is another concern for partitioning, and naturally wrapping the borders into a

torus was preferred for this software implementation. The complete procedure for

processing a generation of an XxY map is quite simple as Margolus intended (Figure 43).

The S-box is simply an array; thus, the CA was easily programmed to work within

one-dimensional arrays by using the basic formula: offset = x + y*width.

2.3. CAC Construction.

Combining the cellular automata to the crypto system was painless with this

solution. Once the automata is initialized, its operation only requires per block calls to

perform generations on the S-boxes. The addition of the CA to the encryption process

yields the flowchart in Figure 44, and Appendix A6 provides a more detailed flowchart.

Figure 44, displays the process of encrypting an entire file, where CBC, padding, and CA

evenOdd = !evenOdd
for x = evenOdd to X-1
 for y = evenOdd to Y-1
 doTransition(x, y, getConfiguration(x, y))
 y = y + 2
 x = x + 2

Figure. 43 Processing the map where doTransition and
getConfiguration are defined by Figures 41 and 42 respectively.

 52

generations are all performed. At this point, due to it being a trivial modification of the

CA source class, a key modification automata with the same rules was also added. This

addition alone has the potential of increasing security on many ciphers.

Figure 44. Flow chart showing the process of encrypting a
file where doRounds does the operations performed in Figure 13.

 53

3. ANALYSIS OF CRYPTOSYSTEM

During the implementation of the CAC, the modular systematic approach was

used to verify the proper operation of each algorithm. With the implementation complete

and working, analysis of the results needs to be performed. The hypothesis of this

analysis is that the CAC designed will offer improvements to the S-box cryptographic

primitive with a minimal performance impact. The analysis of security focuses on the

differences between Rijndael and the CAC. The security of the specific binary

implementation of the CAC is not a major focus, as minor coding mistakes and insecure

user input methods do not reflect on the security of the actual design.

3.1. Analyzing the Cellular Automata.

The Margolus automata was analyzed in a number of ways to ensure it meets the

criteria for which it was chosen. Tim Tyler, the author of the BounceGas rule [7], claims

that the rule simulates a "uniform gas". This claim, if true, benefits the CAC by ensuring

no bias or clustering of values in the S-box. If the initial S-box is sufficiently random,

then a uniform gas rule strongly suggests the creation of equally random S-boxes. To

verify this uniformity claim, specifically for the 2-state automata, a number of tests were

designed and performed.

3.1.1. Distribution of States.

In the most basic sense, all Margolus automata rules result in 1-bit bitmaps. The

S-box also must be viewed like this, which is why the threshold value is required.

 54

Looking at the S-box as a 1-bit bitmap, it was thought that if the BounceGas rule is in

fact uniform, then the average mid-point for the ones and the zeros should be roughly

equal and near the center of the map at all times. A simple experiment was performed to

test this idea. The experiment required starting with a non-uniform map with roughly

one-half all 'ones' and the other half all 'zeros'. With the BounceGas rules, a symmetrical

starting state will always remain symmetrical; thus, a few random cells on either side

were inverted from the start. After the map was initialized, single generations were

performed (Figure 45). Based on the visualization of the data, it is obvious that the

non-uniform starting state quickly becomes uniformly mixed and remains that way.

After each generation the automata modified S-box, was analyzed to find the

average location of the two states. This means, for each S-box entry, the threshold was

applied to determine if the entry is considered true or false (on or off, alive or dead, etc).

Based on this state, the coordinates for that entry are added to one or the other running

average. These averages represent the overall location of the two possible states. If the

Figure. 45 Distribution of average Mid-Points for both states,
from a non-uniform initial state in a 16x16 bitmap. 5782 trials.

 55

two states are equally spread among the map, then they will both have values near the

center of the map (7,7). This would also suggest that from a non-uniform starting state

the distance of the midpoints from the center of the map (7,7) for both 'true' and 'false'

states would approach zero, after some number of generations (Figure 46). Due to the

non-uniform starting states, the distance from center begins large but decreases each

generation for both data sets. The data also shows bias towards one set over the other

because the number of true states is not equal to the number of false states. When the

same tests are performed on a uniform initial S-box, like those generated in the

implementation, the S-boxes bitmaps remain uniform.

3.1.2. Distribution of Swap Counts.

The operation of the Margolus automata was investigated in terms of the number of

swaps performed per generation. It was expected that the data would be normally

distributed. Any results other than normal would not fit the operation of a uniform and

chaotic system. Figure 47 indicates that the distribution is normal with a large variance

Figure. 46 Midpoint distance from center location, from a non-uniform
initial state. 140 of 5143 trials shown.

 56

and an average of 48 swaps per generation under the BounceGas rules. Theoretically, it

may be possible for an attacker to determine the user's initial S-box based on the

deterministic swap counts, though the availability of 128 threshold values and 128 initial

S-boxes makes this unlikely. Even then, the CAC design is as strong as Rijndael.

3.2. Analyzing the Generated S-boxes.

S-boxes, a major part of the confusion step of the cipher, require some properties

to avoid leaking information into the cipher text. The S-boxes initially generated with the

Galois generators are said – with some arguments [20] [21] – to be strong in some

properties like the strict avalanche criterion and non-linearity [9]. Based on the previous

analysis of the CA uniform dispersion properties, and thus randomness in byte values, it

was expected that the generated S-boxes would also perform well in the same tests. One

direct result of using a new S-box every block is the effect it has on the data histogram of

a file. If a large file of English text were simply substituted with the static S-box values,

Figure 47. BounceGas rules swap count per generation with threshold at 127.

 57

frequency analysis could easily be used to decrypt the cipher text. However, if the same

file data were substituted with different values for each 32-byte block, this attack would

be difficult due to the limited sample size of 32 bytes for frequency analysis. Some of

these tests could possibly be redundant because a new S-box is used for every block;

however, a single weak S-box could theoretically make the CAC weaker than Rijndael

alone.

3.2.1. Bit Change and Avalanche Criteria.

S-boxes are typically compared with various avalanche criteria. In his paper

"Avalanche and Bit Independence Properties for the Ensembles of Randomly Chosen nxn

S-Boxes" [29], Isil Virgili found that it is unrealistic to expect most S-boxes to meet the

strict avalanche criterion (SAC) and more realistic to accept S-boxes within an error

range. This interpretation of the SAC and CAC led to the design of two simpler tests

strictly for S-box avalanche testing, as opposed to entire cryptosystem testing. To meet

the criteria of this interpretation of SAC and CAC based on Isil Virgili's research, the

numbers should always indicate about 50% bit changes in the results.

The first test counts the number of bit changes for all 256 input and output byte

combinations in the generated S-box. Figure 48 shows the results of the first tests when

comparing the 128 possible generated S-boxes and 256 dynamic S-boxes. Based on the

limited data for Static S-boxes, the results suggest that the dynamic S-boxes perform

nearly as well with just a little more variance.

 58

The second test counts the number of bit changes between each input byte and its

outputs when each bit is flipped. Figure 49 shows a comparison between the 128 static

and 256 dynamic S-boxes. This test, while closely related to the first, is closer to a

second order bit-independence test. Interestingly enough, the Galois generated S-boxes

have a constant avalanche of 0.504883, which is due to their 9-term arithmetic

construction [20]. The dynamic S-boxes perform nearly as well, with a similar mean

and slightly more variance.

Figure 48. Average per byte bit changes in static and dynamic S-boxes.

 59

3.2.2. Non-Linearity Measures.

Non-linearity is a typical measure of S-boxes, and the S-boxes generated by

Rijndael are said to have [9] "optimum worst-case non-linearity properties".

Non-linearity seems like a good metric for the comparisons of dynamic and static

S-boxes. Typically, accidental affine operations are often weaknesses in new

cryptosystems. Non-linearity can be thought of as the absence of that type of weakness.

It is basically a measure of the number of bits that must change in the truth table of a

Boolean function to reach the closest affine function [30]. According to Terry Ritter [31],

non-linearity is measured by forming the 1-bit wide truth tables for each output bit and

then performing a Fast Walsh-Hadamard transform (FWT) on the truth table to find the

correlation count between the truth table and the set of affine functions. The functions

for measuring non-linearity were ported to C++ from Terry Ritter's JavaScript FWT and

non-linearity testing sources with the authors permission. The FWT calculates the

difference away from the affine functions, and the largest distance possible from any

affine function is plus or minus one half of the bits, or 128 in this 8-bit case.

Figure 49. Comparison of dynamic and static S-boxes avalanche.

 60

That said, the reported minimum non-linearity for an S-Box is calculated as

2n/2 – abs(maxDist), where n is the number of bits. Though each entry in the S-box will

have a non-linearity measure, only the minimum is reported for a worst-case comparison.

Based on the results of this test, it is interesting to note that all 128 of the statically

generated S-boxes have the same minimum non-linearity (minNL = 112). This is a direct

result of the way the S-box is generated by its 9-term algebraic expression [20]. Figure

50 shows the resulting minimum non-linearity measures on some dynamically generated

S-boxes. A value of 128 is the unreachable best-case upper bound of non-linearity.

While the 128 static S-boxes perform very well at 112, the dynamic S-boxes perform

decently with an average minimum non-linearity of 99 based on 256 trials.

Based on research by Terry Ritter [30] (Figure 51), the distribution of minimum

non-linearity for random 8-bit S-boxes has an average of 100, which is supported by the

experimental results of the dynamic S-boxes (Figure 52). One of the original indicators

Figure 50. Comparison of minimum non-linearity for dynamic and static S-boxes.

 61

showing the importance of the uniform dispersion properties of the BounceGas rule

comes from comparing the distribution of MinNL under randomly chosen Margolus

rules.

Figure 52. Experimental results showing distribution of MinNL for CA
generated S-boxes under the BounceGas rule with threshold 127. 500 trials.

 0.35 | *
 0.3 | *
 0.25 | * *
 0.2 | * * *
 0.15 | * * *
 0.1 | * * * *
 0.05 | * * * * *
 0.00 | * * * * * * *
 Prob +--+--+--+--+--+--+--+--+--
 92 96 100 104
 Nonlinearity

Figure 51. Nonlinearity Distribution in random 8-Bit Tables as
reported in Terry Ritters Research. [30][31]

 62

The results (Figure 53) of this test clearly shows that some Margolus rules can

lead to very linear S-boxes, which would be useless from a security standpoint. The test

modified the S-box based on a random rule for 50 generations. It then output the

minumum non-linearity on the CA modified S-box This was the test that showed the

importance of having good CA rules (like BounceGas) for the Margolus CA transition

function.

Though the BounceGas rule performs decently well at generating non-linear

S-boxes, it still has a lower non-linearity than the specially crafted Galois generated static

S-boxes which had non-linearity 112. Terry Ritter's research [30] on random 4-bit

permutation S-boxes for DES-like Feistel ciphers, shows that randomizing the S-boxes is

a very bad idea. He does conclude, however, that random 8-bit permutation S-boxes are

very rarely weak, and the bad stigma about randomized S-boxes is most likely for the

special case of DES or 4-bit S-boxes. That said, the CA generated S-boxes with the

average MinNL of 99 appear to be acceptable.

Figure 53. Distribution of MinNL for CA generated S-boxes under
random rules with threshold 127. 500 Trials

 63

3.3. Analyzing the CAC Output and Performance.

The overall performance of the resulting CAC can be analyzed and compared to

Rijndael in many ways. If the CAC design is not any weaker than the Rijndael design,

then the results should be very similar in both cases.

3.3.1. Maurer's Universal Statistical Test.

Maurer's universal statistical test is typically used to measure the performance of

random bit generators [32]. It reports a value representing how well the bit stream could

be compressed by looking for patterns in the input. With enough input data, Maurer's test

is said to be universal in that it can be performed instead of the five common tests:

mono-bit test, two-bit test, runs test, poker test, and the auto-correlation test [32]. If we

assume any well-encrypted cipher text will look like random data, then this test can be

applied to compare cipher text outputs. The algorithm (Figure 54.) [32] reports a value of

about 7.18 for true uniform random 8-bit data streams, with lower values showing less

random data. An internal parameter to the statistic is the number of bits in each entry,

represented by L. Computing the test statistic requires a large amount of data, or roughly

1000 * 2L L-bit blocks. Q represents the number of blocks used to initialize the 2L table

entries, and should be of size at least 10*2L. K represents the other 990 * 2L blocks to be

processed, and Ai represents the actual L-bit entries from the random source.

Figure 54. Computing Maurer's Test Statistic [32]

 64

The results of Maurer's Universal Statistical test (with L=8) on the cipher text

outputs with various encryption parameters show uniform random outputs across the

board (Table 4), which implies that the CAC is not weaker than Rijndael alone.

3.3.2. Entropy and Conditional Entropy.

Shannon entropy, or information entropy, is a measure of the amount of

information contained in a random variable [33]. A constant pattern has zero entropy,

indicating that zero bits of data are required to transfer such a message. English text

typically has entropy of about 1.5 bits per letter, while a truly random string of characters

would have entropy of 8.0. The standard entropy formula [34] (Figure 56a) provides

nearly the same information the Maurer's test reports, but the conditional entropy (Figure

56b) [35] formula is often used as a measure of secrecy. Conditional entropy provides a

measure of the similarity between two discrete random variables, which can be used to

determine whether the two variables are independent or to what extent they are dependent

on each other. The conditional entropy between a plaintext and its cipher text would

report a value of zero if the cipher text were to provide all the information necessary to

undo the encryption, as is the case with the simple shift affine cipher. A cryptosystem is

said to have complete secrecy if the conditional entropy between the texts and the entropy

 Generations Maurer's
Moby-Dick.txt 0 3.8891
Ciph-Rijndael 0 7.1848
Ciph-CAC 1 7.1878
Ciph-CAC 2 7.1824
Ciph-CAC 3 7.1809
Ciph-CAC 4 7.1867
Ciph-CAC 5 7.1868
Ciph-CAC 10 7.1831
UniformRandom 0 7.1850

Figure 55. Maurer's experimental results comparing
CAC outputs to english text and random uniform data.

 65

of the original file are equal, which implies that a one-time pad (OTP) is the only

perfectly secret cipher.

 The entropy and conditional entropy were used compare cipher texts produced by

Rijndael, the CAC, and an OTP cipher. To provide a more clear comparison between the

systems, the input data was aligned along a block boundary and all CBC and padding

code was removed. The OTP cipher was simulated by generating a random block of data

for the cipher text. The results (Table 4) indicate that the CAC is no weaker than

Rijndael and that both perform nearly as well as the OTP, which was somewhat

unexpected. The results also suggest that increasing the number of CA generations does

not have much effect on the results. Thus as far as conditional entropy and secrecy are

concerned, the CAC and Rijndael perform extremely well, and the differences between

them are statistically insignificant.

a)

b)
Figure 56. Definition of entropy
a) H(X) and conditional entropy [34]
b) H(Y|X) [35]

 66

3.3.3. Data Histogram Results.

As mentioned previously, the simplest and most naïve method of judging the

strength of a cipher is the data histogram approach. Any cipher with a chance of being

better than the weakest affine shift ciphers will have a uniform data histogram for all its

cipher text output. Statistical analysis of the cipher text output distributions would

merely repeat the results of the entropy and Maurer's tests, therefore only a simple

graphical check was performed (Figure 57). It is important to point out that all

algorithms that utilize an S-box – ignoring their diffusion steps – are all nearly as weak as

shift ciphers. Simply performing the same substitutions for each byte of the file allows

the input and output frequencies to be directly compared. While this is only a weakness

in a cipher that doesn’t have a diffusion step, each block will have a unique histogram if

this CAC had no diffusion step. This fact reduces the amount of data that can be

collected for frequency attacks to the size of a single block, as opposed to the entire file.

Table 4. Experimental Conditional Entropy Results

 67

3.3.4. Compression Results.

The compression test is a simple test that should support the conclusions of the

Maurer's and entropy tests. Based on the entropy of around 7.99 for all of the cipher

texts, the compressed file should be larger than the uncompressed file. If the

compression of a cipher text ever reduces the file size, the cipher or implementation is

Figure 57. Comparison of original and output data histograms.
The two ciphertext histograms appear equally uniform.

 68

flawed (as in ECB mode). Based on the results of compressing with BZIP2 (Table 5), the

CAC passes this simple compression test.

3.3.5. Time Analysis and Profiling Results.

Based on the analysis done thus far, the cryptosystem is not weaker than Rijndael.

If the perceived weaknesses in the standard static S-box approach ever lead toward a

cryptanalysis technique for breaking Rijndael, then the CAC design will be the more

secure algorithm. If this were to happen, there is still the question of whether or not the

extra processing required to dynamically modify the S-box in this way is worth the added

security. For this, a profile of the code while encrypting a file was performed (Table 6).

These timings were taken to microsecond accuracy and the offer some startling

results. The processing of the simple CA code with one generation per block adds quite a

bit of overhead when encrypting a 4MB file. A 32% reduction in throughput was

unnexpected. There are a lot of factors causing these performance issues. With a 4MB

Table 5. Experimental Results of BZIP2 compression test.

Table 6. Temporal differences between static and dynamic
S-boxes while encrypting a 4mb file with one generation/block.

 69

file, there are 131,072 256-bit blocks, which corresponds directly to the number of

generations performed. The overhead of generating a new S-box for each block of data,

was much larger than expected.

A simple modification to the design would provide another user parameter to

control the number of blocks processed between CA S-box modifications. Another factor

is the large number of swaps being performed by the BounceGas rule. As shown in

Figure 47, there is an average of 48 swaps performed per generation with the default

threshold value of 127. Retaining synchronization between the S-Box and Inverse S-Box

doubles this to an average of 96 swaps per generation. With a 4MB file with 131,072

blocks, the algorithm would perform 12,582,912 swaps on average with the default

threshold of 127, meaning 12 million function calls. However, if the user modifies this

threshold away from the default mid-way point of 127, the number of swaps per

generation will always be reduced (on average).

 The time analysis also points out the existence of a hypothetical problem

somewhere in the implementation. The difference in encryption and decryption time is a

commonly warned against problem. If an attacker were able to perform similar profiling

or timing analysis, they may be able to exploit this information to gain limited knowledge

of the plaintext or internal state. While this highly unlikely situation is mostly a hardware

issue, timing attacks should not be ignored. In theory, each encryption and decryption

function should use the same number of cpu cycles.

 Based on these results and the typical non-linearity measures of random 8-bit

S-boxes (Figure 51) [30], one idea stands out. If a future novel cryptosystem were to use

dynamic S-boxes, it may be more efficient to just perform random permutations on the

 70

S-box. It may be even more efficient to do this only once per file based on some

parameters.

 71

4. CONCLUSIONS

The Cellular Automata Cryptosystem designed for this thesis has been shown to

operate as it was intended. The analysis performed indicates that the CAC design is not

weaker than the original Rijndael algorithm. While the implementation may not be

perfectly secure, as it wasn't a major focus, it does offer enhancements over numerous

currently deployed AES/Rijndael products. This is based on the implementations'

dynamic generation of the initial S-Box, which partially defeats the S-Box blanking

attacks described by Kerrins and Kursawe [22]. It is important to note, however, that the

implementation requires static table of the Galois generators to be stored in the binary.

Though there is a minor checksum and verification performed on this table at program

load, truly protecting the implementation from S-Box blanking requires further operating

system level protections as Kerrins suggested. Thus the design only partially protects

against S-Box blanking.

On the subject of the possible weaknesses of Rijndael's S-Box [20] [21],

specifically the "9-term algebraic expression" mentioned by Jingmei and Fuller, the

design fully protects against this. If the algebraic construction of Rijndael's S-Box was

ever used to successfully attack AES/Rijndael, or was discovered to be an advantage for

the NSA, a cryptosystem that implements dynamic S-boxes will undoubtedly be

preferred. This of course assumes that the CA generated S-boxes very rarely have an

 72

algebraic expression at all. The results of the Minimum Non-Linearity tests, wherein the

CA generated S-boxes had an average of 99 and the Rijndael S-Boxes had a static value

of 112, may raise some questions about the strength of CA S-boxes even though research

suggests it is a non-issue for 8-bit S-boxes [31].

All data suggests that this system is far more resistant to cryptanalysis than the

already "unbreakable" 256-bit Rijndael implementation with a single S-Box. However, it

should be noted that choice of the standard S-box was chosen for programmatic

performance tricks. This design removes the ability to cut corners on performance, and

also adds significant overhead. The 32% reduction in encryption and decryption speed,

with only a single generation per block, was quite unexpected. In its current form, the

Margolus automata rules add too much overhead to the process, especially since a main

idea behind this thesis was that CA are very fast and Margolus Automata are the fastest

of the fast. This was a disappointing realization. Furthermore, taking advantage of the

blistering speeds obtained using Cellular Automata in hardware ASICs, would require a

major change to the design. It is not known at this time how the border wrapping

Margolus functions could be modified to work on hardware without requiring excess

connections to create the torus-like wrapping currently being used. Moreover, as Terry

Ritter's research [31] was verified here, any random permutation of an 8-bit S-box will on

average have a minimum non-linearity of 100. This means that there may be no point to

using a CA to modify the S-box at all if you can programmatically generate random

permutations (based on some key) more efficiently. This could remove the need for a

generator table, the entire automata, the performance issues, and the ASIC deficiencies.

 73

Having successfully solved some of the perceived issues with Rijndael's S-box and

showing a secure use of CA in cryptography, the design is a success in all but

performance and efficient hardware implementation. Showing one possible secure use of

CA in cryptography was a major focus of this thesis, as was enhancing Rijndael's already

powerful S-box. The ideas employed here, may be of interest to future cryptographers

and cellular automata addicts alike.

 74

5. REFERENCES

 [1] C. Zhang, Q. Peng, and Y. Li, "Encryption Based on Reversible Cellular
Automata, IEEE 2002 International Conference on Communications, Circuits and
Systems and West Sino Expositions,", 2 ed 2002, pp. 1223-1226.

 [2] Jarkko Kari, "Cryptosystems Based on Reversible Cellular Automata, University
of Turku, Finland," 1992.

 [3] Public Domain Images, "Cellular Automata," in
http://en.wikipedia.org/wiki/Cellular_automata 2007.

 [4] Wolfram Mathworld, "Moore Neighborhood," in
http://mathworld.wolfram.com/MooreNeighborhood.html 2007.

 [5] Wolfram Mathworld, "von Neumann Neighborhood," in
http://mathworld.wolfram.com/vonNeumannNeighborhood.html 2003.

 [6] Jorg R.Weimer, "Reversible Cellular Automata," in
http://www.jweimar.de/jcasim/reversibleCA/ 2007.

 [7] Tim Tyler, "Margolus Neighborhood," in http://www.cell-
auto.com/neighbourhood/margolus/index.html 2007.

 [8] Algred J.Menezes, Paul C.van Oorschot, and Scott A.Vanstone, "Introduction to
Cryptography - Symmetric Key Encryption, Handbook of Applied Cryptography
5th Edition," 1996.

 [9] Joan Daemen and Vincent Rijmen, "AES Proposal - Rijndael, National Institute
for Standards and Technology Consortium," 1999.

 [10] Public Domain Images, "Wikipedia - Fiestel Cipher," in
http://en.wikipedia.org/wiki/Image:Feistel.png 2007.

 [11] Public Domain Images, "Wikipedia - AES," in
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard 2007.

 [12] Public Domain Images, "Wikipedia - Block Cipher Modes of Operation," in
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation 2007.

 [13] Algred J.Menezes, Paul C.van Oorschot, and Scott A.Vanstone, "Block Ciphers -
Modes of Operation, Handbook of Applied Cryptography 5th Edition," 1996.

 75

 [14] T. Jamil, "The Rijndael algorithm," Potentials, IEEE, vol. 23, no. 2, pp. 36-38,
2004.

 [15] C. Sanchez-Avila and R. Sanchez-Reillol, "The Rijndael block cipher (AES
proposal) : a comparison with DES, 2001 IEEE 35th International Carnahan
Conference on Security Technology," 2001, pp. 229-234.

 [16] S. Nandi, B. K. Kar, and P. Pal Chaudhuri, "Theory and applications of cellular
automata in cryptography," Computers, IEEE Transactions on, vol. 43, no. 12, pp.
1346-1357, 1994.

 [17] S.Wolfram, "Cryptography with Cellular Automata," in
http://www.stephenwolfram.com/publications/articles/ca/85-
cryptography/1/text.html 1986.

 [18] S.Wolfram, "Random Sequence Generation by Cellular Automata," in
http://www.stephenwolfram.com/publications/articles/ca/86-random/index.html
1986.

 [19] Sam Trenholme, "The AES Encryption Algorithm," in
http://www.samiam.org/rijndael.html 2005.

 [20] L. Jingmei, W. Baodian, C. Xiangguo, and W. Xinmei, "An AES S-box to
Increase Complexity and Cryptographic Analysis, AINA 2005 - 19th International
Conference on Advanced Information Networking and Applications,", 1 ed 2005,
pp. 724-728.

 [21] Joanne Fuller and William Millan, "On Linear Redundancy in the AES S-Box,
Queensland University of Technology - Information Security Research Centre,"
2002.

 [22] Tim Kerrins and Klaus Kursawe, "A Cautionary Note on Weak Implementations
of Block Ciphers, Philips Research Europe - Information and System Security
Group," 2007.

 [23] Tommaso Toffoli and Norman Margolus, "Invertible Cellular Automata: A
Review, Physica D,", 45 ed 1990, pp. 229-253.

 [24] B. Feng, "Cryptanalysis of a partially known cellular automata cryptosystem,"
Computers, IEEE Transactions on, vol. 53, no. 11, pp. 1493-1497, 2004.

 [25] S.Wolfram, "A New Kind of Science," in
http://www.wolframscience.com/nksonline/ Wolfram Media, 2002, pp. 53-56.

 [26] S. R. Blackburn, S. Murphy, K. G. Paterson, S. Nandi, and P. P. Chaudhuri,
"Comments on "Theory and applications of cellular automata in cryptography"
[and reply]," Computers, IEEE Transactions on, vol. 46, no. 5, pp. 637-639, 1997.

 76

 [27] S. Nandi and P. P. Chaudhuri, "Reply To Comments On "theory And Application
Of Cellular Automata In Cryptography"," Computers, IEEE Transactions on, vol.
46, no. 5, p. 639, 1997.

 [28] Debdeep Mukhopadhyay, "CASBox: A Programmable Structure to Generate S-
Boxes Using Cellular Automata, Indian Institute of Technology," 2007.

 [29] Isil Vergili and Melek D.Yucel, "Avalanche and Bit Independence Properties for
the Ensembles of Randomly Chosen nxn S-Boxes, Turk J Elec Engin, Vol. 9, No.
2," 2001.

 [30] Terry Ritter, "Measured Boolean Function Nonlinearity in Feistel Cipher
Constructions," in http://www.ciphersbyritter.com/ARTS/FEISNONL.HTM 1998.

 [31] Terry Ritter, "Measuring Boolean Function Nonlinearity by Walsh Transform," in
http://www.ciphersbyritter.com/ARTS/MEASNONL.HTM 1998.

 [32] Algred J.Menezes, Paul C.van Oorschot, and Scott A.Vanstone, "Maurer's
Universal Statistical Test - Pseudorandom Bits and Sequences, Handbook of
Applied Cryptography 5th Edition,", Chapter 5 ed 1996.

 [33] Serge Vaudenay, "A Classical Introduction to Cryptography," in Applications for
Communication Security Springer, 2006, pp. 17-18.

 [34] Public Domain Images, "Information Entropy," in
http://en.wikipedia.org/wiki/Information_entropy 2007.

 [35] Public Domain Images, "Conditional Entropy," in
http://en.wikipedia.org/wiki/Conditional_entropy 2007.

 77

6. APPENDICES

APPENDIX A – Design Diagrams

A1. Galois Class (Rijndael) Design……………………………………...78
A2. Margolis Class (Automata)……………………………………….…79
A3. Tests Class…………………………………………………………..79
A4. Complete Class Diagram…………………………………………....80
A5. Function Source.………………………………………………….…82
A6. Functional FlowChart…………………………………………….…83

 78

A1. Galois Class (Rinjdael) Design

 79

A.2 Margolis Class (Automata)

A.3 Tests Class

 80

A.4 Complete Class Diagram

 81

A.5 Function Source

 82

 83

A.6 Functional Flowchart

 84

 85

APPENDIX B – Implementation Source

B1. Galois Class Header………………………………………………........86
B2. Galois Class Source File…………………………………………….....87
B3. Margolis Class Header File…………………………………………...103
B4. Margolis Class Source File…………………………………………...105
B5. Tests Class Header File……………………………………………….107
B6. Tests Class Source File…………………………………………….....108
B7. Main Class Source File……………………………………………….116

B1. Galois Class Header

#ifndef GALOIS_H
#define GALOIS_H

#include <iostream>
#include <fstream>
#include <cassert>
#include <sys/stat.h>
#include <time.h>

#include "margolis.h"
#include "tests.h"

using std::cout;
using std::endl;
using std::ios;
using std::hex;
using std::dec;
using std::ifstream;
using std::ofstream;
using std::cin;
using std::fill;

const uint8_t generators[] =
 { /* The Galois Generator Table */
 0x03, 0x05, 0x06, 0x09, 0x0b, 0x0e, 0x11, 0x1 2, 0x13, 0x14, 0x17,
0x18, 0x19, 0x1a, 0x1c, 0x1e, 0x1f, 0x21, 0x22, 0x2 3, 0x27, 0x28, 0x2a,
0x2c, 0x30, 0x31, 0x3c, 0x3e, 0x3f, 0x41, 0x45, 0x4 6, 0x47, 0x48, 0x49,
0x4b, 0x4c, 0x4e, 0x4f, 0x52, 0x54, 0x56, 0x57, 0x5 8, 0x59, 0x5a, 0x5b,
0x5f, 0x64, 0x65, 0x68, 0x69, 0x6d, 0x6e, 0x70, 0x7 1, 0x76, 0x77, 0x79,
0x7a, 0x7b, 0x7e, 0x81, 0x84, 0x86, 0x87, 0x88, 0x8 a, 0x8e, 0x8f, 0x90,
0x93, 0x95, 0x96, 0x98, 0x99, 0x9b, 0x9d, 0xa0, 0xa 4, 0xa5, 0xa6, 0xa7,
0xa9, 0xaa, 0xac, 0xad, 0xb2, 0xb4, 0xb7, 0xb8, 0xb 9, 0xba, 0xbe, 0xbf,
0xc0, 0xc1, 0xc4, 0xc8, 0xc9, 0xce, 0xcf, 0xd0, 0xd 6, 0xd7, 0xda, 0xdc,
0xdd, 0xde, 0xe2, 0xe3, 0xe5, 0xe6, 0xe7, 0xe9, 0xe a, 0xeb, 0xee, 0xf0,
0xf1, 0xf4, 0xf5, 0xf6, 0xf8, 0xfb, 0xfd, 0xfe, 0xf f };

 86

class galois
{
public:
 galois(); //Default constructor
 ~galois(); //Default Destructor

private:
 uint8_t gmul (uint8_t a, uint8_t b); //Functi on for multiplying
two numbers without lookup table
 uint8_t gmulLookup (uint8_t a, uint8_t b); // Function for
multiplying two numbers with lookup table
 uint8_t gmulInverse (uint8_t in); //Function for calculating the
multiplicative inverse of a number
 uint8_t sub (uint8_t in); //Function for subs tituting a byte with
the sbox
 uint8_t rcon (uint8_t in); //Function for exp onentiating 2^in
used in key expansion
 uint8_t ROTL (uint8_t x, uint8_t s); //Functi on for left circular
shifting an 8bit number s times
 uint8_t ROTR (uint8_t x, uint8_t s); //Functi on for right
circular shifting an 8bit number s times

 void gmixColumn (uint8_t *r); //Rijndaels Mix Column step
 void invGmixColumn (uint8_t *r); //Rijndaels Inverse MixColumn
step
 void rotateStateL (int offset); //RotateState Left, takes offset
into one dimensional state variable
 void rotateStateR (int offset); //RotateState Right, takes offset
into one dimensional state variable
 void shiftRows(); //Calls RotateStateL to perfo rm the neccessary
shifts for 256-bit blocks
 void invShiftRows(); //Calls RotateStateR to pe rform the neccessary
unshifts for 256-bit blocks
 void mixColumns(); //Calls gMixColumn to perfor m mixing on each
column
 void invMixColumns(); //Calls invGmixColumn to perform unmixing on
each column
 void substituteBytes(); //Substitutes bytes wit h their SBox lookup
 void invSubstituteBytes(); //UnSubstitutes byte s with their invSBox
lookup
 void addRoundKey (int i); //Adds (xors) the i ndicated roundkey to
the state

 void textUserPrompt(); //Prompts the user for r equired input
 void initCipher(); //Initializes the core funct ionality of the
cipher
 void initIV(); //Initializes the IV for CBC Mod e
 void doEncryptDecrypt(); //Calls encrypt or dec rypt function based
on user input
 void generateLogTables(); //Generates the Logar ithm tables for the
Galois Field
 void generateGmulInverse(); //Generates the gmu lInverse table
 void generateSBoxes(); //Generates the SBox and InvSBox
 void schedule_core (uint8_t *in, uint8_t i); //Function used in
key expansion

 87

 void rotate (uint8_t *in); //Rotate function used in key
expansion
 void expand_key(); //Key Expansion function
 void doRounds(); //Rijndaels doRounds function
 void doInvRounds(); //Rijndaels doInvRounds fun ction
 void encrypt(); //Encryption function with File IO and Padding
 void decrypt(); //Decryption function with File IO and DePadding
 void doCBCXOR(); //CBC function to XOR over the state
 void doCBCUpdate (uint8_t source[32], uint8_t dest[32]); //CBC
function for updating the IV
 void padState (int padVal); //Function for Pa dding the State
 void padFullState (int padVal); //Function fo r adding an entire
pad block

 uint8_t hexToInt (char first, char second); / /Function for
converting user hex key input into real hex numbers
 bool verifyGenerators(); //Function for verifyi ng the static
generator table

 uint8_t ltable[256]; //Log Table
 uint8_t etable[256]; //Exponentiation Table
 uint8_t gmulInv[256]; //Multiplicative Inverse Table
 uint8_t SBox[256]; //SBox
 uint8_t SBoxInv[256]; //Inverse SBox
 uint8_t key[480]; //The Key and expanded key sp ace

 uint8_t state[32]; //The state, or current bloc k
 uint8_t IV[32]; //The initialization vector
 uint8_t IVTemp[32]; //Space for a temporary IV
 int rounds; //Number of rounds in the encryptio n

 bool encryptBool; //Boolean from user input
 bool runGensBeforeKey; //CA Key expansion modif ying boolean from
user input
 int galoisGenSeed; //Galois Generator seed from user input
 int generationsPerBlock; //CA Generations from user input
 int keyGenerationsPerBlock; //KeyCA Generations from user input
 int threshCA; //CA Threshold from user input
 char ciphFile[33]; //Filename for ciphertext
 char textFile[33]; //Filename for plaintext
 char userKey[32]; //User input key space

 margolis *theCA; //The SBox and InvSBox Modifyi ng CA
 margolisSingle *theKeyCA; //The Key modifying C A
 tests *theTest; //Object for the tests class
};

#include "galois.cpp"

#endif

B2. Galois Class Source File

#ifndef GALOIS_CPP
#define GALOIS_CPP

 88

#include "galois.h"

galois::galois()
{
 /*Default Constructor*/
 verifyGenerators(); //Verify the Generator Tabl es

 /*Blank all arrays*/
 fill (key, key + 480, 0);
 fill (ltable, ltable + 256, 0);
 fill (etable, etable + 256, 0);
 fill (gmulInv, gmulInv + 256, 0);
 fill (SBox, SBox + 256, 0);
 fill (SBoxInv, SBoxInv + 256, 0);
 fill (state, state + 32, 0);
 fill (IV, IV + 32, 0);
 fill (IVTemp, IVTemp + 32, 0);
 fill (userKey, userKey + 32, 0);
 fill (ciphFile, ciphFile + 33, 0);
 fill (textFile, textFile + 33, 0);

 textUserPrompt(); //Prompt for User Parameters

 initCipher(); //Initialize the cipher
 doEncryptDecrypt(); //Perform User Function
}

void galois::initCipher()
{
 rounds = 14; //Set Default Rounds
 generateLogTables(); //Generate the Log Tables
 generateGmulInverse(); //Generate the Multiplic ative Inverse Tables
 generateSBoxes(); //Generate the S-Box and Inv erse S-Box
 theCA = new margolis(); //Create the S-Box CA i nstance
 theCA->setParams (SBox, SBoxInv, 16, 16, thres hCA); //Set the
user chosen parameters

 theTest = new tests (SBox, SBoxInv); //Create the Tests class

 if (runGensBeforeKey) //If user chose to modi fy key expansion
 {
 theCA->doGenerations (generationsPerBlock); //Modify the S-
Box during initialization
 }

 expand_key(); //Expand the Users Key

 theKeyCA = new margolisSingle(); //Create the K ey CA instance
 theKeyCA->setParams (key, 24, 20, threshCA); //Set the user
chosen parameters
}

uint8_t galois::hexToInt (char first, char second)
{
 /*Method for converting ascii hex characters to numbers*/
 char hex[3];

 89

 char *stop;
 hex[0] = first;
 hex[1] = second;
 hex[2] = 0;
 return strtol (hex, &stop, 16);
}

void galois::textUserPrompt()
{
 /*Prompt the User for their options*/
 char input[129];
 fill (input, input + 129, 0);

 char choice = 0;

 do
 {
 cout << "Encrypt or Decrypt? (e,d) " << end l;
 choice = cin.get();
 }

 while ((choice != 'e') && (choice != 'd'));

 cin.ignore();

 encryptBool = (choice == 'e');

 do
 {
 cout << "Would you like to enter a 1)Passph rase or 2)Key? " <<
endl;
 choice = cin.get();
 }

 while ((choice != '1') && (choice != '2'));

 cin.ignore();

 if (choice == '1')
 {
 cout << "***Input 32 Ascii Characters****" << endl;
 cin.getline (input, 33);

 for (int i = 0;i < 32;i++)
 {
 userKey[i] = input[i];
 }
 }

 else
 {
 do
 {
 cout << "***********************Input 6 4 Hex Digit
Key*******************" << endl;
 cin.getline (input, 65);
 }

 90

 while (cin.gcount() != 65);

 for (int i = 0;i < 64;i += 2)
 {
 userKey[i/2] = hexToInt (input[i], inp ut[i+1]);
 }
 }

 do
 {
 cout << "***TextFile Name: <=32 Chars****" << endl;
 cin.getline (textFile, 33);
 }

 while (cin.gcount() == 1);

 do
 {
 cout << "***CiphFile Name: <=32 Chars****" << endl;
 cin.getline (ciphFile, 33);
 }

 while (cin.gcount() == 1);

 do
 {
 cout << "Enter your galois generator number (0-127)" << endl;
 cin >> galoisGenSeed;
 }

 while ((galoisGenSeed > 127) || (galoisGenS eed < 0));

 cin.ignore();

 galoisGenSeed = generators[galoisGenSeed];

 do
 {
 cout << "Enter the number of generations pe r block: " << endl;
 cin >> generationsPerBlock;
 cin.ignore();
 }

 while ((generationsPerBlock < 0) || (genera tionsPerBlock > 128
));

 do
 {
 cout << "Enter the number of key generation s per block: " <<
endl;
 cin >> keyGenerationsPerBlock;
 cin.ignore();
 }

 while ((keyGenerationsPerBlock < 0) || (key GenerationsPerBlock
> 128));

 91

 if (generationsPerBlock > 0) do
 {
 cout << "Enter the threshold value for the Automata: (64-
192) (127 RECOMMENDED) " << endl;
 cin >> threshCA;
 cin.ignore();
 }

 while ((threshCA <= 63) || (threshCA >= 193));

 choice = 'n';

 if (generationsPerBlock > 0) do
 {
 cout << "Would you like to run (" << de c <<
generationsPerBlock << ") generations before key ex pansion? (y,n) " <<
endl;
 choice = cin.get();
 cin.ignore();
 }

 while ((choice != 'y') && (choice != 'n '));

 runGensBeforeKey = (choice == 'y');
}

galois::~galois()
{
 /*Default Destructor, Delete instantiated objec ts*/
 delete theCA;
 delete theKeyCA;
 delete theTest;
}

void galois::initIV()
{
 /*CBC Initialization Vector initilization Metho d*/
 clock_t start_tick; //Create clock object

 for (int x = 0;x < 32;x++) //For the size of our block
 {
 state[x] = 0; //Blank Entry
 start_tick = clock(); //Set clocks current time

 while (clock() == start_tick) //While sti ll current time
 {
 state[x]++; //Increment this entry in t he block
 }
 }

 doRounds(); //Encrypt the state with the users key
 doCBCUpdate (state, IV); //Update the IV

 for (int x = 0;x < 32;x++) //For the size of our block
 {
 state[x] = 0; //Blank Entry

 92

 start_tick = clock(); //Set clocks current time

 while (clock() == start_tick) //While sti ll current time
 {
 state[x]++; //Increment this entry in t he block
 }
 }

 doCBCXOR(); //CBC XOR with our first IV
 doRounds(); //Encrypt the IV with users key

 doCBCUpdate (state, IV); //Update the FINAL I V
}

void galois::doEncryptDecrypt()
{
 /*Method for simply calling Encrypt or Decrypt based on user
input*/
 if (encryptBool) encrypt();
 else decrypt();
}

void galois::encrypt()
{
 /*The Encryption Method*/
 initIV(); //Initialize the IV

 struct stat results; //Get the FileSize
 int filesize = stat (textFile, &results);
 filesize = results.st_size;

 ifstream text (textFile, ios::in | ios::binary); //Open the Input
and Output Files
 ofstream ciph (ciphFile, ios::out | ios::binar y);

 assert (text); //Assert that the files were o pened
 assert (ciph);

 if (filesize == 0) //Refused to Encrypt an Em pty File
 {
 cout << "Input file size is zero! Not Encry pting " << endl;
 exit (0);
 }

 ciph.write ((char*) IV, sizeof (IV)); //W rite the IV as the
first block of the ciphertext

 for (int z = 0;z <= filesize;z += 32) //For a ll blocks in the
file
 {
 text.read ((char*) state, sizeof (state)); //Read a block
of text

 if (z + 32 > filesize) //If last block
 {
 int padVal = 32 - (filesize % 32); // Calculate the number
of bytes needed to fill the last block

 93

 if (padVal != 32) //If the file didn' t end as a perfect
multiple of the block size (32)
 {
 padState (padVal); //Pad the Last Block to fill it
out
 doCBCXOR(); //Do CBC XOR as usual
 doRounds(); //Do Encryption rounds as Usual
 theCA->doGenerations (generationsP erBlock); //Run the
CA on the SBox as usual
 theKeyCA->doGenerations (keyGenera tionsPerBlock);
//Run the CA on the Key as usual
 doCBCUpdate (state, IV); //Update the IV with
encrypted block
 ciph.write ((char*) state, sizeo f (state));
//Output the last block
 padFullState (padVal); //Prepare the final padding
block
 }
 else
 {
 padFullState (0); //Only adding t he final padding
block because file was a multiple of block size
 }
 }

 doCBCXOR(); //Either doing normal processin g or finishing final
padding block
 doRounds(); //Do Encryption rounds
 theCA->doGenerations (generationsPerBlock); //Do S-Box
Generations
 theKeyCA->doGenerations (keyGenerationsPer Block); //Do Key
Generations
 doCBCUpdate (state, IV); //Update the IV with the encrypted
block

 ciph.write ((char*) state, sizeof (stat e)); //Output the
block
 }

 text.close(); //Close the files
 ciph.close();
}

void galois::padState (int padVal)
{
 /*Method to pad a block to fill it up with padV al + 32*/
 for (int i = 31;i >= 32 - padVal;i--) //Start ing from the end,
write as many as needed
 {
 state[i] = padVal + 32; //Fill with 32 + Co unt
 }
}

void galois::padFullState (int padVal)
{
 /*Method to pad a full block with 32 + Count*/

 94

 for (int i = 31;i >= 0;i--)
 {
 state[i] = padVal + 32; //PadVal will be ze ro if the file was a
multiple of 32
 }
}

void galois::decrypt()
{
 /*Method for encrypting a file*/

 struct stat results; //Get the FileSize
 int filesize = stat (ciphFile, &results);
 filesize = results.st_size - 64; //Subtract the IV and Final
Padding block from the calculations

 ifstream ciph (ciphFile, ios::in | ios::binary); //Open the files
 ofstream text (textFile, ios::out | ios::binar y);

 assert (ciph); //Verify the files are open
 assert (text);

 ciph.read ((char*) IV, sizeof (IV)); //Re ad the IV from the
first block of the ciphertext

 for (int z = 0;z < filesize;z += 32) //For al l blocks in the file
 {
 ciph.read ((char*) state, sizeof (state)); //Read in an
ciphertext block

 doCBCUpdate (state, IVTemp); //Backup thi s block as the next
IV
 doInvRounds(); //Do the Inverse Rounds
 theCA->doGenerations (generationsPerBlock); //Do S-Box CA
Generations
 theKeyCA->doGenerations (keyGenerationsPer Block); //Do Key CA
Generations
 doCBCXOR(); //Do CBC XOR
 doCBCUpdate (IVTemp, IV); //Update the IV with the temp IV

 if (z + 32 >= filesize) //If Final Block
 {
 uint8_t finalState[32]; //Create a hold ing space for the
final state
 memcpy (finalState, state, 32); //Cop y the state into
finalState

 ciph.read ((char*) state, sizeof (s tate)); //Read the
Final Padding Block
 doCBCUpdate (state, IVTemp); //Update the IVTemp with the
state
 doInvRounds(); //Do the Inverse Rounds
 theCA->doGenerations (generationsPerBl ock); //Do S-Box CA
Generations
 theKeyCA->doGenerations (keyGeneration sPerBlock); //Do
Key CA Generations
 doCBCXOR(); //Do CBC XOR

 95

 if (state[0] == 32) //If the final pa dding block's last
entry is 32
 {
 text.write ((char*) finalState, 32); //Write the
ENTIRE final state out, original filesize % 32 was 0
 }
 else
 {
 text.write ((char*) finalState, 32 - (state[0] % 32
)); //Otherwise write out the number of bytes that weren't padding
 }
 }
 else
 {
 text.write ((char*) state, sizeof (state)); //Write
out a normal block of decrypted plain-text, wasnt l ast block.
 }
 }

 text.close(); //Close files
 ciph.close();
}

void galois::doCBCXOR()
{
 /*Do the XOR operation of CBC Mode*/
 for (int i = 0;i < 32;i++) state[i] ^= IV[i]; //XOR each state
entry with the IV
}

void galois::doCBCUpdate (uint8_t source[32], uint 8_t dest[32])
{
 /*Wrapper Method for copying to and from state, IV, IVTemp*/
 memcpy (dest, source, 32);
}

void galois::doRounds()
{
 /*Rijndael DoRounds*/
 addRoundKey (0); //Add Key 0

 for (int i = 1;i < rounds;i++) //For all roun ds
 {
 substituteBytes(); //S-Box
 shiftRows(); //Shift
 mixColumns(); //Mix
 addRoundKey (i); //Add Key i
 }

 substituteBytes(); //Final Sbu
 shiftRows(); //Final Shift
 addRoundKey (14); //Final Key
}

void galois::doInvRounds()
{

 96

 addRoundKey (14); //Add Key 14
 invShiftRows(); //UnShift

 for (int i = rounds - 1;i > 0;i--) //For all Rounds in reverse
 {
 invSubstituteBytes(); //Inv S-Box
 addRoundKey (i); //Add Key i
 invMixColumns(); //UnMix
 invShiftRows(); //UnShift
 }

 invSubstituteBytes(); //Inv S-Box

 addRoundKey (0); //Add Key 0
}

void galois::substituteBytes()
{
 /*Substitute all bytes in state with their S-Bo x entries*/
 for (int i = 0;i < 32;i++)
 {
 state[i] = SBox[state[i]];
 }
}

void galois::invSubstituteBytes()
{
 /*Substitute all bytes in the state with their Inverse S-Box
entries*/
 for (int i = 0;i < 32;i++)
 {
 state[i] = SBoxInv[state[i]];
 }
}

void galois::addRoundKey (int round)
{
 /*XOR Key block with state block*/
 int location = 32 * round; //Calculate the offs et in the expanded
key

 for (int i = 0;i < 32;i++) //For all entries in the key block
 {
 state[i] ^= key[location++]; //Do XOR (addi tion)
 }
}

uint8_t galois::ROTL (uint8_t x, uint8_t s)
{
 /*Circular rotate a byte left by s bits*/
 return (uint8_t) (((x) << (s& (8 - 1))) | ((x) >> (8
- (s& (8 - 1)))));
}

uint8_t galois::ROTR (uint8_t x, uint8_t s)
{
 /*Circular rotate a byte right by s bits*/

 97

 return (uint8_t) (((x) >> (s& (8 - 1))) | ((x) << (8
- (s& (8 - 1)))));
}

bool galois::verifyGenerators()
{
 /*Method to algorithmically verfiy the generato r tables*/
 uint8_t check = 0xb7; //Default Check Value

 for (int c = 0; c < 128; c++) //For all entri es in the generator
table
 {
 check ^= ROTL (generators[c], ROTR (gener ators[127-c], c));
//Do some Mixing
 }

 uint8_t compare = 1; //Algorithmically build co mpare

 compare = ROTL (compare, 2);
 compare |= ROTL (compare, 2);
 compare |= ROTR (compare, 6);

 if (check != compare) //If not equal, tables modified
 {
 cout << "Error! Generator table has been al tered! Check: " <<
hex << (uint16_t) check << " Compare: " << hex << (uint16_t)
compare << endl;
 }

 else
 {
 cout << "Generator Tables Verified! Check: " << hex << (
uint16_t) check << " Compare: " << hex << (uint16 _t) compare <<
endl;
 }
}

uint8_t galois::gmul (uint8_t a, uint8_t b)
{
 /*Perform multiplication in the galois field*/
 uint8_t p = 0;
 uint8_t hi_bit_set;

 for (int counter = 0; counter < 8; counter++)
 {
 if ((b & 1) == 1)
 p ^= a;

 hi_bit_set = (a & 0x80);

 a <<= 1;

 if (hi_bit_set == 0x80)
 a ^= 0x1b;

 b >>= 1;
 }

 98

 return p;
}

void galois::generateLogTables()
{
 /*Generate Log Tables with the given Generator Seed*/
 etable[0] = 1;
 etable[255] = 1;

 for (int c = 1;c < 256;c++)
 {
 etable[c] = gmul (etable[c-1], galoisGenSe ed);
 ltable[etable[c]] = c;
 }
}

/*Very fast define Method for performing multiplica tions with the
lookup tables*/
#define gmulLookupDefine(a, b)
((a==0)?0:etable[(ltable[a]+ltable[b])%255])

uint8_t galois::gmulLookup (uint8_t a, uint8_t b)
{
 /*Slow Method for performing multiplication wit h the lookup
tables*/
 return (a == 0) ? 0 : etable[(ltable[a] + l table[b]) % 255];
}

uint8_t galois::gmulInverse (uint8_t in)
{
 /*Method for calculating the multiplicative inv erse from the lookup
tables*/
 if (in == 0) return 0;
 else return etable[(255 - ltable[in])];
}

void galois::generateGmulInverse()
{
 /*Method for generating the gmulInverse table*/
 gmulInv[0] = 0;

 for (int c = 1;c < 256;c++) //For all 256 div isors
 {
 gmulInv[c] = gmulInverse (c); //Populate the gmulInv table
 }
}

uint8_t galois::sub (uint8_t in)
{
 /*Method for generating the S-box entries based on the Generator
Seed*/
 uint8_t s, x;
 s = x = gmulInv[in];

 for (int c = 0; c < 4; c++)
 {

 99

 s = (s << 1) | (s >> 7);
 x ^= s;
 }

 x ^= galoisGenSeed;

 return x;
}

void galois::generateSBoxes()
{
 /*Method for generating the S-Box tables using sub*/
 for (int c = 0;c < 256;c++) //For each byte v alue 0 - 255
 {
 SBox[c] = sub (c); //Populate the S-Box w ith its sub value
 SBoxInv[SBox[c]] = c; //Populate the SBoxIn verse location of
the sub value with the byte value
 }
}

void galois::mixColumns()
{
 /*Method for performing gmixColumn on all colum ns of the state*/
 uint8_t temp[4];

 for (int j = 0;j < 8;j++) //For all 8 columns
 {
 for (int i = 0;i < 4;i++) //For all 4 ent ries in a column
 {
 temp[i] = state[i*8+j]; //Copy them fro m the state to temp
 }

 gmixColumn (temp); //Mix temp

 for (int i = 0;i < 4;i++) //For all 4 ent ries in a column
 {
 state[i*8+j] = temp[i]; //Restore them into the state from
temp
 }
 }
}

void galois::invMixColumns()
{
 /*Method for performing invGmixColumn on all co lumns of the state*/
 uint8_t temp[4];

 for (int j = 0;j < 8;j++) //For all 8 columns
 {
 for (int i = 0;i < 4;i++) //For all 4 ent ries in a column
 {
 temp[i] = state[i*8+j]; //Copy them fro m the state to temp
 }

 invGmixColumn (temp); //UnMix temp

 for (int i = 0;i < 4;i++) //For all 4 ent ries in a column

 100

 {
 state[i*8+j] = temp[i]; //Restore them into the state from
temp
 }
 }
}

void galois::gmixColumn (uint8_t *r)
{
 /*Perform mixColumn on a single column*/

 uint8_t a[4]; //Make holding location
 memcpy (a, r, 4); //Copy original into holdin g

//Perform matrix multiplication by {{2,3,1,1}[15;15 ;15]}
 r[0] = gmulLookupDefine (a[0], 2) ^ gmulLooku pDefine (a[3], 1)
^ gmulLookupDefine (a[2], 1) ^ gmulLookupDefine (a[1], 3);
 r[1] = gmulLookupDefine (a[1], 2) ^ gmulLooku pDefine (a[0], 1)
^ gmulLookupDefine (a[3], 1) ^ gmulLookupDefine (a[2], 3);
 r[2] = gmulLookupDefine (a[2], 2) ^ gmulLooku pDefine (a[1], 1)
^ gmulLookupDefine (a[0], 1) ^ gmulLookupDefine (a[3], 3);
 r[3] = gmulLookupDefine (a[3], 2) ^ gmulLooku pDefine (a[2], 1)
^ gmulLookupDefine (a[1], 1) ^ gmulLookupDefine (a[0], 3);
}

void galois::invGmixColumn (uint8_t *r)
{
 /*Perform invGmixColumn on a single column*/

 uint8_t a[4]; //Make holding location
 memcpy (a, r, 4); //Copy original into holdin g

//Perform matrix multiplcation by
{{14,9,13,11}{11,14,9,13}{13,11,14,9}{9,13,11,14}}
 r[0] = gmulLookupDefine (a[0], 14) ^ gmulLook upDefine (a[3], 9)
^ gmulLookupDefine (a[2], 13) ^ gmulLookupDefine (a[1], 11);
 r[1] = gmulLookupDefine (a[1], 14) ^ gmulLook upDefine (a[0], 9)
^ gmulLookupDefine (a[3], 13) ^ gmulLookupDefine (a[2], 11);
 r[2] = gmulLookupDefine (a[2], 14) ^ gmulLook upDefine (a[1], 9)
^ gmulLookupDefine (a[0], 13) ^ gmulLookupDefine (a[3], 11);
 r[3] = gmulLookupDefine (a[3], 14) ^ gmulLook upDefine (a[2], 9)
^ gmulLookupDefine (a[1], 13) ^ gmulLookupDefine (a[0], 11);
}

void galois::rotateStateR (int offset)
{
 /*Method used by shiftRows to scramble rows*/

 uint8_t temp = state[offset+7]; //Backup last c haracter

 for (int c = 7;c > 0;c--) //Shift all once
 {
 state[offset + c] = state[offset + c - 1];
 }

 state[offset] = temp; //Restore first character (wrapped)
}

 101

void galois::rotateStateL (int offset)
{
 /*Method used by invShiftRows to unscramble row s*/

 uint8_t temp = state[offset]; //backup first ch aracter

 for (int c = 0;c < 7;c++) //Shift all once
 {
 state[offset + c] = state[offset + c + 1];
 }

 state[offset+7] = temp; //Restore last Characte r (wrapped)
}

void galois::rotate (uint8_t *in)
{
 /*4-byte Rotate method for use in Key Expansion */
 uint8_t temp = in[0];

 for (int c = 0;c < 3;c++)
 {
 in[c] = in[c + 1];
 }

 in[3] = temp;
}

void galois::shiftRows()
{
 /*ShiftRows method for performing Rijndaels shi ftrow for 256-bit
blocks*/
 for (int i = 1;i < 4;i++) //For all 3 rows to be shifted (0 is
never shifted)
 {
 switch (i)
 {

 case 3:
 rotateStateL (i*8); //Shift Row 3 4 t imes passing offset
into state

 case 2:
 rotateStateL (i*8);

 rotateStateL (i*8); //Shift Row 2 3 t imes

 case 1:
 rotateStateL (i*8); //Shift Row one o nce
 }
 }
}

void galois::invShiftRows()
{
 /*InvShiftRows method for performing Rijndaels unshiftrow for 256-
bit blocks*/

 102

 for (int i = 1;i < 4;i++) //For all 3 rows to be shifted (0 is
never shifted)
 {
 switch (i)
 {

 case 3:
 rotateStateR (i*8); //UnShift Row 3 4 times passing
offset into state

 case 2:
 rotateStateR (i*8);

 rotateStateR (i*8); //UnShift Row 2 3 times

 case 1:
 rotateStateR (i*8); //UnShift Row 1 o nce
 }
 }
}

uint8_t galois::rcon (uint8_t in)
{
 /*Method performs the rcon operation (2 exponen tiated) for key
expansion*/
 uint8_t c = 1;

 if (in == 0) return 0; //Anything to the 0 is 0

 while (in != 1)
 {
 c = gmulLookupDefine (c, 2); //Continuous multiply by 2
 in--;
 }

 return c;
}

void galois::schedule_core (uint8_t *in, uint8_t i)
{
 /*Schedule core is used in key expansion*/

 rotate (in); //Rotate all 4 bytes

 for (int a = 0; a < 4; a++) //Substitute all 4 bytes
 {
 in[a] = SBox[in[a]];
 }

 in[0] ^= rcon (i); //XOR with 2 exponentiated to some power
}

void galois::expand_key()
{
 /*Key Expansion Method*/
 for (int i = 0;i < 32;i++)

 103

 {
 key[i] = userKey[i]; //Set first 32 bytes t o be the user
inputted key
 }

 uint8_t t[4]; //Create temp 4 bytes

 int c = 32; //Start after the user inputted key
 uint8_t i = 1; //rcon exponentiation values sta ts at 1

 while (c < 480) //For all expanded eky bytes
 {
 for (int a = 0; a < 4; a++) //Base the fi rst 4 bytes on the
previous key blocks first 4 bytes
 {
 t[a] = key[a + c - 4];
 }

 if (c % 32 == 0) //If processing the end of a key block
 {
 schedule_core (t, i); //Call schedule core to modify the
4 bytes in t
 i++;
 }

 if (c % 32 == 16) //If processing the mid dle of a key block
 {
 for (int a = 0; a < 4; a++) //Do a Su bsitute for all 4
bytes
 {
 t[a] = SBox[t[a]];
 }
 }

 for (int a = 0; a < 4; a++) //For all 4 b ytes
 {
 key[c] = key[c - 32] ^ t[a]; //Key keys current entry is
the result of xoring the last blocks 4 bytes and t
 c++;
 }
 }
}

#endif

B3. Margolis Class Header File

#ifndef MARGOLIS_H
#define MARGOLIS_H

#define getCellInv(x,y) invSBox[SBox[fixX(x)+fixY(y)*width]] //Define
for getting value from InvSBox
#define getCell(x,y) SBox[fixX(x)+fixY(y)*width] // Define for getting
vlue from SBox

 104

#define fixX(x) ((width + (x))%width) //Define for Fixing X values
(border wrapping)
#define fixY(y) ((height + (y))%height) //Define fo r Fixing Y values
(border wrapping)

#define swapDiag1(x,y) swap(x,y,x+1,y+1) //Defines for calling swap
Method for different swaps
#define swapDiag2(x,y) swap(x+1,y,x,y+1)
#define swapHoriz1(x,y) swap(x,y,x+1,y)
#define swapHoriz2(x,y) swap(x,y+1,x+1,y+1)
#define swapVert1(x,y) swap(x,y,x,y+1)
#define swapVert2(x,y) swap(x+1,y,x+1,y+1)

class margolis //Basic functionality Margolis Class for use with SBox
and InvSBox (see MargolisSingle)
{
public:
 margolis(); //Default Constructor
 ~margolis(); //Default Destructor
 virtual void setParams (uint8_t *sboxz, uint8_ t *invsboxz, int
widthz, int heightz, int threshz); //Method for se tting parameters for
normal Margolis
 void doGenerations (int numGens); //Method fo r running N number
of generations

protected:
 virtual void swap (int x1, int y1, int x2, int y2); //Method for
performing swaps of values in neighborhood
 void doTransition (int x, int y, uint8_t currS tate); //Method for
performing the neccessary transition rules for the current
configuration
 uint8_t getConfiguration (int i, int j); //Me thod for reporting
the current configuration
 void setupRules(); //Method for initializing th e default rules

 uint8_t *SBox; //Pointer to SBox (Normal Margol is), or Key (Single
Margolis) to be used as the CA Map
 uint8_t *invSBox; //Pointer to InvSBox (Normal Margolis), or NULL
(Single Margolis) to be used as the CA Map
 bool rules[16][6]; //Rules Matrix 16 configurat ions possible for
each

 bool evenodd; //Variable for storing current ev en or odd for
Margolis Neighborhood
 int thresh; //Threshhold value for determining if a cell is on or
off
 int height; //Height of the CA Map (for 2d inde xing into a 1d map)
 int width; //Width of the CA Map (for 2d indexi ng into a 1d map)
};

class margolisSingle : public margolis //Single Mar golis class for use
with Key array
{
public:
 void swap (int x1, int y1, int x2, int y2); / /Redefined swap
Method that doesn't attempt to mix an inverse box

 105

 void setParams (uint8_t *keyBoxz, int widthz, int heightz, int
threshz); //Method for setting parameters for sing le Margolis
};

#include "margolis.cpp"

#endif

B4. Margolis Class Source File

#ifndef MARGOLIS_CPP
#define MARGOLIS_CPP

#include "margolis.h"

margolis::~margolis()
{} //Unused Default Destructor

margolis::margolis()
{} //Unused Default Constructor

void margolis::setupRules()
{
 /*Setup the BounceGas Rules for the Automata an d initialize
EvenOdd*/

 evenodd = true;

 for (int i = 0;i < 16;i++) for (int j = 0;j < 6;j++)
rules[i][j] = false;
 rules[1][0] = true;
 rules[2][1] = true;
 rules[4][1] = true;
 rules[6][2] = true;
 rules[6][3] = true;
 rules[7][0] = true;
 rules[8][0] = true;
 rules[9][2] = true;
 rules[9][3] = true;
 rules[11][1] = true;
 rules[13][1] = true;
 rules[14][0] = true;
}

void margolis::setParams (uint8_t *sboxz, uint8_t *invsboxz, int
widthz, int heightz, int threshz)
{
 /*Set the Parameters and S-Box pointers for the S-box modifying
CA*/

 SBox = sboxz; //Set S-Box Pointer
 invSBox = invsboxz; //Set Inv S-Box Pointer
 width = widthz; //Set Width
 height = heightz; //Set Height
 thresh = threshz; //Set CA Threshold

 106

 setupRules(); //Call Setup Rules
}

void margolisSingle::setParams (uint8_t *keyBoxz, int widthz, int
heightz, int threshz)
{
 /*Set the Parameters and Key Array pointers for the Key modifying
CA*/

 SBox = keyBoxz; //Set Key Array pointer
 width = widthz; //Set Width
 height = heightz; //Set Height
 thresh = threshz; //Set CA Threshold

 setupRules(); //Call Setup Rules
}

void margolisSingle::swap (int x1, int y1, int x2, int y2)
{
 /*Swap method for Key-Modifying CA*/

 uint8_t temp = getCell (x1, y1); //Swap Key E ntries
 getCell (x1, y1) = getCell (x2, y2);
 getCell (x2, y2) = temp;
}

void margolis::swap (int x1, int y1, int x2, int y 2)
{
 /*Swap method for S-Box modifying CA*/

 uint8_t temp = getCellInv (x1, y1); //Swap In v S-Box Entries
 getCellInv (x1, y1) = getCellInv (x2, y2);
 getCellInv (x2, y2) = temp;

 temp = getCell (x1, y1); //Swap S-Box Entries
 getCell (x1, y1) = getCell (x2, y2);
 getCell (x2, y2) = temp;
}

void margolis::doTransition (int x, int y, uint8_t currState)
{
 /*Apply the transition rules to the current par ition
 based on its current state*/

 for (int i = 0;i < 6;i++) //Check all Six Swa ps
 {
 if (rules[currState][i]) //If swap is to be performed
 {
 switch (i) //Determine Swap and Do it
 {
 case 0:
 swapDiag1 (x, y);
 break;
 case 1:
 swapDiag2 (x, y);
 break;
 case 2:

 107

 swapHoriz1 (x, y);
 break;
 case 3:
 swapHoriz2 (x, y);
 break;
 case 4:
 swapVert1 (x, y);
 break;
 case 5:
 swapVert2 (x, y);
 break;
 }
 }
 }
}

/*GetConfiguration adds up the the values of the ce lls in the partition
to a number between 0 and 15*/
#define getConfiguration(i,j) ((getCell(i+1,j+1)>th resh?8:0) +
(getCell(i,j+1)>thresh?4:0) + (getCell(i+1,j)>thres h?2:0) +
(getCell(i,j)>thresh?1:0))

void margolis::doGenerations (int numGens)
{
 /*Method for performing a number of generations */

 for (int k = 0; k < numGens; k++) //For all t he generations
 {
 evenodd ^= 1; //Invert the EvenOdd Boolean

 for (int i = evenodd; i < height; i += 2) //Start from
EvenOdd and count by 2s
 {

 for (int j = evenodd; j < width; j += 2) //Start from
EvenOdd and count by 2s
 {
 doTransition (i, j, getConfigurati on (i, j)); //Do
the transition for the configuration of the partiti on
 }
 }
 }
}

#endif

B5. Tests Class Header File

#ifndef TESTS_H
#define TESTS_H

#include <iostream>
#include <fstream>
#include <cassert>
#include <sys/stat.h>
#include <math.h>

 108

using std::cout;
using std::endl;
using std::hex;
using std::dec;
using std::cin;
using std::ifstream;
using std::ofstream;
using std::ios;

#define BIT(n) (1 << (n))

class tests //Class for performing various analysis
{

public:
 tests (uint8_t *sboxz, uint8_t *invsboxz); // Constructor takes an
SBox and invSBox pointer
 ~tests(); //Default Destructor

 void testInvertibility(); //Verifies invertibil ity between SBox and
invSBox
 void testNonLinearity (bool verbose); //Repor ts the Non-Linearity
measures of the SBox
 void testBitChanges (bool verbose); //Counts the number of bit
changes between sbox inputs and their outputs
 void BitARFWT(); //Performs Walsh Hadamard Tran sform for Non-
Linearity Measure
 void testDataHistogram (bool verbose); //Crea tes a data-histogram
file based on an input file
 void testMidPoints (bool verbose); //Reports the MidPoints of the
On and Off values in the CA SBox
 void testDistanceToCenter (bool verbose); //R eports the Distance
to the Center of MidPoints of the On and Off values in the CA SBox
 void testAvalanche (bool verbose); //Reports the effects of
modifying single bits in SBox input data
 void testAll (bool verbose); //Performs all t ests
 void testEntropy (bool verbose); //Reports th e Entropy of two
input files and their conditional entropy
 void printSbox(); //Prints out the SBox

private:
 uint8_t *sbox; //Pointer to SBox
 uint8_t *invsbox; //Pointer to InvSBox

 int bits[256]; //Walsh-Hadamard Transform Bits Array
};

#include "tests.cpp"

#endif

B6. Tests Class Source File

#ifndef TESTS_CPP
#define TESTS_CPP

 109

#include "tests.h"

tests::tests (uint8_t *sboxz, uint8_t *invsboxz)
{
 /*Initialize the Class by setting the pointers* /
 sbox = sboxz;
 invsbox = invsboxz;
}

tests::~tests()
{} //Unused default destructor

void tests::printSbox()
{
 /*Function for Printing the S-Box in a 16x16 ta ble*/

 for (int i = 0;i < 256;i++)
 {
 cout << hex << (uint16_t) sbox[i] << "\t" ;

 if ((i + 1) % 16 == 0) cout << endl;
 }

 cout << dec;
}

void tests::testEntropy (bool verbose)
{
 /*Function for reporting entropy of X, Y, and X |Y*/
 char strXFileName[33];
 char strYFileName[33];

 do
 {
 cout << "***XFileName Name: <=32 Chars****" << endl;
 cin.getline (strXFileName, 33);
 }

 while (cin.gcount() == 1);

 cout << "X: " << strXFileName << endl;

 do
 {
 cout << "***YFileName Name: <=32 Chars****" << endl;
 cin.getline (strYFileName, 33);
 }

 while (cin.gcount() == 1);

 cout << "Y: " << strYFileName << endl;

 ifstream X (strXFileName, ios::in | ios::binar y);
 ifstream Y (strYFileName, ios::in | ios::binar y);

 struct stat inputXStats;

 110

 struct stat inputYStats;

 stat (strXFileName, &inputXStats);
 stat (strYFileName, &inputYStats);

 int inputXByteCount = inputXStats.st_size;
 int inputYByteCount = inputYStats.st_size;

 if (inputXByteCount != inputYByteCount)
 {
 cout << "Files must be the same size! " << inputXByteCount << "
!= " << inputYByteCount << endl;
 return;
 }

 uint8_t tempDataX;

 uint8_t tempDataY;

 double probX[256];
 double probY[256];

 double jointProb[256][256];

 for (int i = 0;i < 256;i++)
 {
 probX[i] = 0.0;
 probY[i] = 0.0;

 for (int j = 0;j < 256;j++)
 {
 jointProb[i][j] = 0.0;
 }
 }

 for (int i = 0;i < inputXByteCount;i++)
 {
 X.read ((char*) &tempDataX, sizeof (tem pDataX));
 probX[tempDataX]++;

 Y.read ((char*) &tempDataY, sizeof (tem pDataY));
 probY[tempDataY]++;

 jointProb[tempDataX][tempDataY]++;
 }

 X.close();

 Y.close();

 for (int i = 0;i < 256;i++)
 {
 probX[i] /= inputXByteCount;

 if (verbose) cout << dec << "Xp(" << i << ") = " << probX[i]
<< endl;

 111

 probY[i] /= inputYByteCount;

 if (verbose) cout << dec << "Yp(" << i << ") = " << probY[i]
<< endl;

 for (int j = 0;j < 256;j++)
 {
 jointProb[i][j] /= inputXByteCount;
 }
 }

 double condEntropy = 0.0;

 for (int i = 0;i < 256;i++)
 {
 for (int j = 0;j < 256;j++)
 {
 if ((jointProb[i][j] != 0.0) && (pr obY[i] != 0.0))
 {
 condEntropy += jointProb[i][j] * lo g (probY[i] /
jointProb[i][j]);
 }
 }
 }

 condEntropy /= log (2.0);

 if (condEntropy <= 0.0) condEntropy = 0.0;

 cout << "Cond Entropy = " << condEntropy << end l;

 double entropyX = 0.0;

 double entropyY = 0.0;

 for (int i = 0;i < 256;i++)
 {
 if (probX[i] != 0.0) entropyX -= probX[i] * log (probX[i]);

 if (probY[i] != 0.0) entropyY -= probY[i] * log (probY[i]);
 }

 entropyX /= log (2.0);

 entropyY /= log (2.0);
 cout << "EntropyX = " << entropyX << endl;
 cout << "EntropyY = " << entropyY << endl;
}

void tests::testAll (bool verbose)
{
 testMidPoints (verbose);
 testDistanceToCenter (verbose);
 testNonLinearity (verbose);
 testAvalanche (verbose);
 testBitChanges (verbose);
 testInvertibility();

 112

}

void tests::testDistanceToCenter (bool verbose)
{
 double midPointTotalXT = 0;
 double midPointTotalYT = 0;
 double midPointCountT = 0;
 double midPointTotalXF = 0;
 double midPointTotalYF = 0;
 double midPointCountF = 0;

 for (int i = 0;i < 16;i++)
 {
 for (int j = 0;j < 16;j++)
 {
 if (sbox[i*16+j] > 0x7f)
 {
 midPointCountT++;
 midPointTotalXT += j;
 midPointTotalYT += i;
 }

 else
 {
 midPointCountF++;
 midPointTotalXF += j;
 midPointTotalYF += i;
 }
 }
 }

 double distanceT = sqrt (pow (midPointTotalXT / midPointCountT -
7, 2) + pow (midPointTotalYT / midPointCountT - 7 , 2));

 double distanceF = sqrt (pow (midPointTotalXF / midPointCountF -
7, 2) + pow (midPointTotalXF / midPointCountF - 7 , 2));
 cout << "1's Distance from MidPoint = " << dist anceT << " 0's
Distance from MidPoint = " << distanceF << endl;
//cout << distanceT << ";" << distanceF << endl;
}

void tests::testMidPoints (bool verbose)
{
 double midPointTotalXT = 0;
 double midPointTotalYT = 0;
 double midPointCountT = 0;
 double midPointTotalXF = 0;
 double midPointTotalYF = 0;
 double midPointCountF = 0;

 for (int i = 0;i < 16;i++)
 {
 for (int j = 0;j < 16;j++)
 {
 if (sbox[i*16+j] > 0x7f)
 {
 midPointCountT++;

 113

 midPointTotalXT += j;
 midPointTotalYT += i;
 }

 else
 {
 midPointCountF++;
 midPointTotalXF += j;
 midPointTotalYF += i;
 }
 }
 }

 cout << "MidPoint for 1s: (" << midPointTotalXT / midPointCountT <<
"," << midPointTotalYT / midPointCountT << ") ";

 cout << "MidPoint for 0s: (" << midPointTotalXF / midPointCountF <<
"," << midPointTotalYF / midPointCountF << ")" << e ndl;
//cout << midPointTotalXT/midPointCountT << ";" <<
midPointTotalYT/midPointCountT << ";" << midPointTo talXF/midPointCountF
<< ";" << midPointTotalYF/midPointCountF << endl;
}

void tests::testInvertibility()
{
 for (int i = 0; i < 256; i++)
 {
 if (invsbox[sbox[i]] != i)
 {
 cout << "Wrong value at " << i << endl;
 }

 else
 {
 if (i == 255) cout << "OK all lookups succeeded" << endl;
 }
 }
}

void tests::BitARFWT()
{
 /*Walsh-Hadarman Transform Code from: www.ciphe rsbyritter.com*/
 int el1 = 0;
 int el2 = 0;
 int stradwid = 1;
 int bitARLast = 255;
 int blocks = 255;

 while (stradwid != 0)
 {
 el1 = 0;
 blocks >>= 1;

 for (int block = 0; block <= blocks; block ++)
 {
 el2 = el1 + stradwid;

 114

 for (int pair = 0; pair < stradwid; pa ir++)
 {
 int a = bits[el1];
 int b = bits[el2];
 bits[el1] = a + b;
 bits[el2] = a - b;
 el1++;
 el2++;
 }

 el1 = el2;
 }

 stradwid = (stradwid + stradwid) & bitARL ast;
 }
}

void tests::testNonLinearity (bool verbose)
{
 int minNL = 0;

 for (int i = 0;i < 8;i++)
 {
 for (int j = 0;j < 256;j++)
 {
 bits[j] = (sbox[j] & BIT (i)) == 0 ? 0 : 1;
 }

 BitARFWT();

 for (int i = 1;i < 256;i++)
 {
 if (abs (bits[i]) > minNL) minNL = abs (bits[i]);
 }
 }

 minNL = 128 - minNL;

 cout << "MinNL = " << dec << minNL << endl;
}

void tests::testDataHistogram (bool verbose)
{
 char inFile[128];
 char outFile[128];

 do
 {
 cout << "Enter the data filename: " << endl ;
 cin.getline (inFile, 128);
 }

 while (cin.gcount() == 1);

 do
 {
 cout << "Enter the results filename: " << e ndl;

 115

 cin.getline (outFile, 128);
 }

 while (cin.gcount() == 1);

 uint64_t Histogram[256];

 for (int i = 0;i < 256;i++) Histogram[i] = 0;

 int n;

 struct stat results;

 n = stat (inFile, &results);

 ifstream data (inFile, ios::in | ios::binary) ;

 assert (data);

 ofstream resultsFile (outFile, ios::out);

 int c = 0;

 for (int i = 0;i < results.st_size;i++)
 {
 data.read ((char*) &c, 1);
 Histogram[c]++;
 }

 data.close();

 for (int i = 0;i < 256;i++)
 {
 resultsFile << hex << i << "," << dec << Hi stogram[i] << endl;

 if (verbose) cout << dec << Histogram[i] << "\t";

 if (verbose) if ((i + 1) % 16 == 0) c out << endl;
 }

 resultsFile << "Total Bytes: " << results.st_si ze << endl;

 if (verbose) cout << "Total Bytes: " << resul ts.st_size << endl;

 resultsFile.close();
}

void tests::testBitChanges (bool verbose)
{
 unsigned int totalBitChanges = 0;
 int count = 0;

 for (int i = 0;i < 256;i++)
 {
 count = 0;

 for (int j = 0;j < 8;j++)

 116

 {
 if ((i&BIT (j)) != (sbox[i]&BIT (j))) count++;

 }

 totalBitChanges += count;

 if (verbose) cout << "BitChange count for entry " << dec << i
<< " = " << count << "/" << (8) << " = " << count / (float) 8 <<
endl;
 }

 cout << "AvgBitChanges = " << totalBitChanges < < "/" << (256*8)
<< " = " << totalBitChanges / (float) (256*8) < < endl;
}

void tests::testAvalanche (bool verbose)
{
 /*Tests the avalanche effect by counting bit ch anges for single bit
changes in the input for all 256 entries*/
 unsigned int totalAvalanche = 0;
 int count = 0;
 int modified = 0;

 for (int i = 0;i < 256;i++)
 {
 count = 0;

 for (int j = 0;j < 8;j++)
 {
 modified = i ^ BIT (j);

 for (int k = 0;k < 8;k++)
 {
 if ((sbox[i]&BIT (k)) != (sbo x[modified]&BIT (k
))) count++;
 }
 }

 if (verbose) cout << "Avalanche for " << i << " = " << count
<< " / " << (8*8) << " = " << count / (float) (8*8) << endl;

 totalAvalanche += count;
 }

 cout << "Overall Avalanche = " << totalAvalanch e << " / " << (
8*8*256) << " = " << totalAvalanche / (float) (8*8*256) << endl;
}

#endif

B7. Main Class Source File

#include <iostream>

 117

#include <math.h>
#include <time.h>

#include "galois.h"

int main (int argc, char *argv[])
{
 srand (time (0)); //Initialize the random s eed to the time

 galois *newgalois = new galois(); //Create a bl ocking instance of
galois

 system ("PAUSE"); //Pause then exit
 return 0;
}

 118

APPENDIX C – Modular Test Case Sources and Test Results

C1. Galois Table Generation Test Source……………………………..118
C2. Border Wrapping Test……………………………………………..124
C3. Non-Linearity Test………………………………………………...125
C4. ShiftRow Test……………………………………………………...127
C5. Column Mix Test…………………………………………………..128
C6. Clock Drift IV Generation Test……………………………………130
C7. Padding Test and Results…………………………………………..131
C8. Time Analysis and Profiling Results………………………………135
C9. Entropy Results……………………………………………………142
C10. Mauer's Test and Results…………………………………………142
C11. Conditional Entropy Results……………………………………..146
C12. Compresion Test Results………………………………………....147
C13. Margolus Automata SDL Visualization Test…………………….148

C1. Galois Table Generation Test Source

#include <iostream>
#include <fstream>
#include <stdint.h>
#include <stdlib.h>

using namespace std;

uint8_t ltable[256];
uint8_t etable[256];
uint8_t gmulInv[256];
uint8_t SBox[256];
uint8_t SBoxInv[256];
uint8_t seed;
uint8_t expandKey[240];

const uint8_t generators[128] = {
0x03, 0x05, 0x06, 0x09, 0x0b, 0x0e, 0x11, 0x12, 0x1 3, 0x14, 0x17, 0x18,
0x19, 0x1a, 0x1c, 0x1e, 0x1f, 0x21, 0x22, 0x23, 0x2 7, 0x28, 0x2a, 0x2c,
0x30, 0x31, 0x3c, 0x3e, 0x3f, 0x41, 0x45, 0x46, 0x4 7, 0x48, 0x49, 0x4b,
0x4c, 0x4e, 0x4f, 0x52, 0x54, 0x56, 0x57, 0x58, 0x5 9, 0x5a, 0x5b, 0x5f,
0x64, 0x65, 0x68, 0x69, 0x6d, 0x6e, 0x70, 0x71, 0x7 6, 0x77, 0x79, 0x7a,
0x7b, 0x7e, 0x81, 0x84, 0x86, 0x87, 0x88, 0x8a, 0x8 e, 0x8f, 0x90, 0x93,
0x95, 0x96, 0x98, 0x99, 0x9b, 0x9d, 0xa0, 0xa4, 0xa 5, 0xa6, 0xa7, 0xa9,
0xaa, 0xac, 0xad, 0xb2, 0xb4, 0xb7, 0xb8, 0xb9, 0xb a, 0xbe, 0xbf, 0xc0,
0xc1, 0xc4, 0xc8, 0xc9, 0xce, 0xcf, 0xd0, 0xd6, 0xd 7, 0xda, 0xdc, 0xdd,
0xde, 0xe2, 0xe3, 0xe5, 0xe6, 0xe7, 0xe9, 0xea, 0xe b, 0xee, 0xf0, 0xf1,
0xf4, 0xf5, 0xf6, 0xf8, 0xfb, 0xfd, 0xfe, 0xff
 };

 119

uint8_t ROTL(uint8_t x, uint8_t s)
{
 return (uint8_t) (((x)<<(s&(8-1))) | ((x)>>(8-(s&(8-1)))));
}

uint8_t ROTR(uint8_t x, uint8_t s)
{
 return (uint8_t) (((x)>>(s&(8-1))) | ((x)<<(8-(s&(8-1)))));
}

uint8_t gadd(uint8_t a, uint8_t b)
{
 return a ^ b;
}
uint8_t gsub(uint8_t a, uint8_t b)
{
 return a ^ b;
}

uint8_t gmul(uint8_t a, uint8_t b)
{
 uint8_t p = 0;
 uint8_t counter;
 uint8_t hi_bit_set;
 for (counter = 0; counter < 8; counter++)
 {
 if ((b & 1) == 1)
 p ^= a;
 hi_bit_set = (a & 0x80);
 a <<= 1;
 if (hi_bit_set == 0x80)
 a ^= 0x1b;
 b >>= 1;
 }
 return p;
}

void generateTables(uint8_t seed)
{
 etable[0] = 1;
 etable[255] = 1;
 for (int c=1;c<256;c++)
 {
 etable[c] = gmul(etable[c-1],seed);
 ltable[etable[c]] = c;
 }
 etable[255] = 1;
}

uint8_t gmulLookup(uint8_t a, uint8_t b)
{
 int s;
 int q;
 int z = 0;
 s = ltable[a] + ltable[b];
 s %= 255;
 s = etable[s];

 120

 q = s;
 if (a == 0)
 {
 s = z;
 }
 else
 {
 s = q;
 }
 if (b == 0)
 {
 s = z;
 }
 else
 {
 q = z;
 }
 return s;
}

uint8_t gmulInverse(uint8_t in)
{
 if (in == 0)
 return 0;
 else
 return etable[(255 - ltable[in])];
}

void generateGmulInverse()
{
 gmulInv[0] = 0;
 for (int c=1;c<256;c++)
 {
 gmulInv[c] = gmulInverse(c);
 }
}

uint8_t sub(uint8_t in)
{
 uint8_t c, s, x;
 s = x = gmulInv[in];
 for (c = 0; c < 4; c++)
 {
 s = (s << 1) | (s >> 7);
 x ^= s;
 }
 x ^= seed;
 return x;
}

void generateSBoxen()
{
 for (int c=0;c<256;c++)
 {
 SBox[c] = sub(c);
 SBoxInv[SBox[c]] = c;
 }

 121

}

void printTables()
{
 cout << "Log Table" << endl;
 for (int i=0;i<256;i++)
 {
 cout << hex << (uint16_t) ltable[i] << "\t" ;
 if ((i+1)%16 == 0) cout << endl;
 }

 cout << endl << endl << endl;

 cout << "Anti-Log Table" << endl;
 for (int i=0;i<256;i++)
 {
 cout << hex << (uint16_t) etable[i] << "\t" ;
 if ((i+1)%16 == 0) cout << endl;
 }

 cout << endl << endl << endl;

 cout << "GMul Inverse Table" << endl;
 for (int i=0;i<256;i++)
 {
 cout << hex << (uint16_t) gmulInv[i] << "\t ";
 if ((i+1)%16 == 0) cout << endl;
 }

 cout << endl << endl << endl;

 cout << "SBox Table" << endl;
 for (int i=0;i<256;i++)
 {
 cout << hex << (uint16_t) SBox[i] << "\t";
 if ((i+1)%16 == 0) cout << endl;
 }

 cout << endl << endl << endl;

 cout << "Inverse SBox Table" << endl;
 for (int i=0;i<256;i++)
 {
 cout << hex << (uint16_t) SBoxInv[i] << "\t ";
 if ((i+1)%16 == 0) cout << endl;
 }

 cout << endl << endl << endl;

 cout << "Key Table" << endl;
 for (int i=0;i<240;i++)
 {
 cout << hex << (uint16_t) expandKey[i] << " \t";
 if ((i+1)%16 == 0) cout << endl;
 }
}

 122

void resetTables()
{
 for (int i=0;i<256;i++)
 {
 ltable[i] = etable[i] = gmulInv[i] = SBox[i] = SBoxInv[i] = 0;
 }
}

bool checkInvertibility()
{
 for (int i = 0; i < 256; i++)
 {
 if (SBoxInv[SBox[i]] != i)
 {
 cout << "Wrong value at " << i;

 }
 else
 {
 if (i == 255) cout << "OK all lookups s ucceeded" << endl;
 }
 }
}

void gmixColumn(uint8_t *r)
{
 uint8_t a[4];
 uint8_t c;
 for (c=0;c<4;c++)
 {
 a[c] = r[c];
 }
 r[0] = gmul(a[0],2) ^ gmul(a[3],1) ^ gmul(a[2], 1) ^ gmul(a[1],3);
 r[1] = gmul(a[1],2) ^ gmul(a[0],1) ^ gmul(a[3], 1) ^ gmul(a[2],3);
 r[2] = gmul(a[2],2) ^ gmul(a[1],1) ^ gmul(a[0], 1) ^ gmul(a[3],3);
 r[3] = gmul(a[3],2) ^ gmul(a[2],1) ^ gmul(a[1], 1) ^ gmul(a[0],3);
}

void invGmixColumn(uint8_t *r)
{
 uint8_t a[4];
 uint8_t c;
 for (c=0;c<4;c++)
 {
 a[c] = r[c];
 }

 r[0] = gmul(a[0],14) ^ gmul(a[3],9) ^ gmul(a[2] ,13) ^
gmul(a[1],11);
 r[1] = gmul(a[1],14) ^ gmul(a[0],9) ^ gmul(a[3] ,13) ^
gmul(a[2],11);
 r[2] = gmul(a[2],14) ^ gmul(a[1],9) ^ gmul(a[0] ,13) ^
gmul(a[3],11);
 r[3] = gmul(a[3],14) ^ gmul(a[2],9) ^ gmul(a[1] ,13) ^
gmul(a[0],11);
}

 123

void rotate(uint8_t *in)
{
 uint8_t a,c;
 a = in[0];
 for (c=0;c<3;c++) in[c] = in[c + 1];
 in[3] = a;
 return;
}

uint8_t rcon(uint8_t in)
{
 uint8_t c=1;
 if (in == 0) return 0;
 while (in != 1)
 {
 c = gmul(c,2);
 in--;
 }
 return c;
}

void schedule_core(uint8_t *in, uint8_t i)
{
 char a;
 rotate(in);
 for (int a = 0; a < 4; a++)
 in[a] = SBox[in[a]];
 in[0] ^= rcon(i);
}

void expand_key(uint8_t *in)
{
 uint8_t t[4];
 uint8_t c = 32;
 uint8_t a;
 uint8_t i = 1;
 while (c < 240)
 {
 for (a = 0; a < 4; a++) t[a] = in[a + c - 4];
 if (c % 32 == 0)
 {
 schedule_core(t,i);
 i++;
 }

 if (c % 32 == 16)
 {
 for (a = 0; a < 4; a++) t[a] = SBox[t[a]];
 }
 for (a = 0; a < 4; a++)
 {
 in[c] = in[c - 32] ^ t[a];
 c++;
 }
 }
}

 124

void printKey()
{
 for (int i=0;i<240;i++)
 {
 cout << "i=" << i << " " << hex << (uint16_ t) expandKey[i] <<
endl;
 }
}

int main()
{
 uint8_t test[] = { 0xdb, 0x13, 0x53, 0x45 };

 for (int i=0;i<32;i++) expandKey[i] = 0xff;

 //Verify Generator Tables
 //verifyExe();
 for (int i= 0;i<128;i++)
 {
 seed = generators[i];
 cout << "Generator = " << hex << (uint16_t) generators[i] <<
endl;
 //Zero tables for a new galois genertor
 resetTables();
 //Generate Log/Exponentiation Tables
 generateTables(generators[i]);
 //Generate 1/x Tables
 generateGmulInverse();
 //Generate SBox based on galois generator.
 generateSBoxen();
 //Check SBox to SBoxInv
 checkInvertibility();
 //Check GMix
 //gmixColumn(test);
 //for(int i=0;i<4;i++) cout << hex << (uint 16_t) test[i] << "
";
 //Check InvGMix
 //invGmixColumn(test);
 //for(int i=0;i<4;i++) cout << hex << (uint 16_t) test[i] << "
";
 expand_key(expandKey);
 //printTables();
 cout << "Generator " << i << ": " << endl;
 system("pause");
 }
 //system("pause");

 return 0;
}

C2. Border Wrapping Test

#include <stdio.h>
#include <stdlib.h>

#define HEIGHT 32

 125

#define WIDTH 32

int main()
{
 for (int i=0;i<HEIGHT;i++)
 {
 for (int j=0;j<WIDTH;j++)
 {
 printf("Left side for i = %d = %d\n", i , (HEIGHT + (i-
1))%HEIGHT);
 printf("Right side for i = %d = %d\n", i, (HEIGHT +
(i+1))%HEIGHT);
 printf("Bottom side for i = %d = %d\n", j, (WIDTH + (j-
1))%WIDTH);
 printf("Top side for i = %d = %d\n", j, (WIDTH +
(j+1))%WIDTH);
 }
 system("pause");
 }
 return 0;
}

C3. Non-Linearity Test

#include <iostream>
#include <math.h>

using std::cout;
using std::endl;
using std::hex;

int test[256] =
 {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5 , 0x30, 0x01, 0x67,
0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7 d, 0xfa, 0x59, 0x47,
0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc 0, 0xb7, 0xfd, 0x93,
0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf 1, 0x71, 0xd8, 0x31,
0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9 a, 0x07, 0x12, 0x80,
0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1 a, 0x1b, 0x6e, 0x5a,
0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x8 4, 0x53, 0xd1, 0x00,
0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x3 9, 0x4a, 0x4c, 0x58,
0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x8 5, 0x45, 0xf9, 0x02,
0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8 f, 0x92, 0x9d, 0x38,
0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd 2, 0xcd, 0x0c, 0x13,
0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3 d, 0x64, 0x5d, 0x19,
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x8 8, 0x46, 0xee, 0xb8,
0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0 a, 0x49, 0x06, 0x24,
0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x7 9, 0xe7, 0xc8, 0x37,
0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xe a, 0x65, 0x7a, 0xae,
0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc 6, 0xe8, 0xdd, 0x74,
0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x6 6, 0x48, 0x03, 0xf6,
0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9 e, 0xe1, 0xf8, 0x98,
0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe 9, 0xce, 0x55, 0x28,
0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x6 8, 0x41, 0x99, 0x2d,
0x0f, 0xb0, 0x54, 0xbb, 0x16};

int bits[256];

 126

#define BIT(n) (1 << (n))

void BitARFWT()
{ /*www.ciphersbyritter.com*/
 int el1 = 0;
 int el2 = 0;
 int stradwid = 1;
 int bitARLast = 255;
 int blocks = 255;

 while (stradwid != 0)
 {
 el1 = 0;
 blocks >>= 1;
 for (int block=0; block <= blocks; block++)
 {
 el2 = el1 + stradwid;
 for (int pair=0; pair < stradwid; pair+ +)
 {
 int a = bits[el1];
 int b = bits[el2];
 bits[el1] = a + b;
 bits[el2] = a - b;
 el1++;
 el2++;
 }
 el1 = el2;
 }
 stradwid = (stradwid + stradwid) & bitARLas t;
 }
}

void getNonLinearity()
{
 long unsigned int avgNL=0;
 int minNL = 0;
 int maxNL = 256;

 for (int i=0;i<8;i++)
 {
 for (int j=0;j<256;j++)
 {
 bits[j] = (test[j]&BIT(i))==0?0:1;
 }
 BitARFWT();
 for (int i=1;i<256;i++)
 {
 if (abs(bits[i]) > minNL) minNL = abs(b its[i]);
 if (abs(bits[i]) < maxNL) maxNL = abs(b its[i]);
 avgNL += 128 - abs(bits[i]);
 }
 }

 avgNL /= (255*8);
 minNL = 128 - minNL;
 maxNL = 128 - maxNL;

 127

 cout << "AvgNL = " << avgNL << endl;
 cout << "MinNL = " << minNL << endl;
 cout << "MaxNL = " << maxNL << endl;
}

int main()
{
 getNonLinearity();

 system("pause");
 return 0;
}

C4. ShiftRow Test

#include <iostream>
#include <stdlib.h>

using namespace std;

void rotate(uint8_t *in)
{
 uint8_t a,c;
 a = in[0];
 for (c=0;c<7;c++) in[c] = in[c + 1];
 in[7] = a;
 return;
}

void shiftRows(uint8_t in[4][8])
{
 for (int i=1;i<4;i++)
 {
 for (int j=0;j<i;j++) rotate(in[i]);
 }
}

void unshiftRows(uint8_t in[4][8])
{
 for (int i=1;i<4;i++)
 {
 for (int j=4-i;j>0;j--) rotate(in[i]);
 }
}

void printOut(uint8_t in[4][8])
{
 for (int i=0;i<4;i++)
 {
 for (int j=0;j<8;j++)
 {
 if(in[i][j]<16)cout << "0";
 else cout << ""; cout << hex << (uint16 _t) in[i][j] << " ";

 128

 }
 cout << endl;
 }
 cout << endl << endl;
}

int main()
{
 for (int i=1;i<4;i++)
 {
 for (int j=0;j<i;j++) cout << "Shifting " < < i << endl;
 }

 for (int i=1;i<4;i++)
 {
 for (int j=4-i;j>0;j--) cout << "UnShifting " << i << endl;
 }

 uint8_t blah[4][8] =
{{0x00,0x08,0x10,0x18,0x20,0x28,0x30,0x38},{0x40,0x 48,0x50,0x58,0x60,0x
68,0x70,0x78},{0x80,0x88,0x90,0x98,0xA0,0xA8,0xB0,0 xB8},{0xC0,0xC8,0xD0
,0xD8,0xE0,0xE8,0xF0,0xF8}};

 printOut(blah);
 shiftRows(blah);
 printOut(blah);
 unshiftRows(blah);
 printOut(blah);

 system("pause");
 return 0;
}

C5. Column Mix Test

#include <iostream>
#include <stdint.h>
#include <stdlib.h>

using namespace std;

uint8_t gmul(uint8_t a, uint8_t b)
{
 uint8_t p = 0;
 uint8_t counter;
 uint8_t hi_bit_set;
 for (counter = 0; counter < 8; counter++)
 {
 if ((b & 1) == 1)
 p ^= a;
 hi_bit_set = (a & 0x80);
 a <<= 1;
 if (hi_bit_set == 0x80)
 a ^= 0x1b;
 b >>= 1;
 }

 129

 return p;
}

void gmixColumn(uint8_t *r)
{
 uint8_t a[4];
 uint8_t c;
 for (c=0;c<4;c++)
 {
 a[c] = r[c];
 }
 r[0] = gmul(a[0],2) ^ gmul(a[3],1) ^ gmul(a[2], 1) ^ gmul(a[1],3);
 r[1] = gmul(a[1],2) ^ gmul(a[0],1) ^ gmul(a[3], 1) ^ gmul(a[2],3);
 r[2] = gmul(a[2],2) ^ gmul(a[1],1) ^ gmul(a[0], 1) ^ gmul(a[3],3);
 r[3] = gmul(a[3],2) ^ gmul(a[2],1) ^ gmul(a[1], 1) ^ gmul(a[0],3);
}

void invGmixColumn(uint8_t *r)
{
 uint8_t a[4];
 uint8_t c;
 for (c=0;c<4;c++)
 {
 a[c] = r[c];
 }

 r[0] = gmul(a[0],14) ^ gmul(a[3],9) ^ gmul(a[2] ,13) ^
gmul(a[1],11);
 r[1] = gmul(a[1],14) ^ gmul(a[0],9) ^ gmul(a[3] ,13) ^
gmul(a[2],11);
 r[2] = gmul(a[2],14) ^ gmul(a[1],9) ^ gmul(a[0] ,13) ^
gmul(a[3],11);
 r[3] = gmul(a[3],14) ^ gmul(a[2],9) ^ gmul(a[1] ,13) ^
gmul(a[0],11);
}

void mixColumns(uint8_t in[4][8])
{
 uint8_t temp[4];
 for (int j=0;j<8;j++)
 {
 for (int i=0;i<4;i++)
 {
 temp[i] = in[i][j];
 }
 gmixColumn(temp);
 for (int i=0;i<4;i++)
 {
 in[i][j] = temp[i];
 }
 }
}

void unmixColumns(uint8_t in[4][8])
{
 uint8_t temp[4];
 for (int j=0;j<8;j++)

 130

 {
 for (int i=0;i<4;i++)
 {
 temp[i] = in[i][j];
 }
 invGmixColumn(temp);
 for (int i=0;i<4;i++)
 {
 in[i][j] = temp[i];
 }
 }
}

void printOut(uint8_t in[4][8])
{
 for (int i=0;i<4;i++)
 {
 for (int j=0;j<8;j++)
 {
 if(in[i][j]<16)cout << "0";
 else cout << ""; cout << hex << (uint16 _t) in[i][j] << " ";
 }
 cout << endl;
 }
 cout << endl << endl;
}

int main()
{
 uint8_t blah[4][8] =
{{0x00,0x08,0x10,0x18,0x20,0x28,0x30,0x38},{0x40,0x 48,0x50,0x58,0x60,0x
68,0x70,0x78},{0x80,0x88,0x90,0x98,0xA0,0xA8,0xB0,0 xB8},{0xC0,0xC8,0xD0
,0xD8,0xE0,0xE8,0xF0,0xF8}};
 printOut(blah);
 mixColumns(blah);
 printOut(blah);
 unmixColumns(blah);
 printOut(blah);
 system("pause");
 return 0;
}

C6. Clock Drift IV Generation Test

#include <iostream>
#include <time.h>

using std::cout;
using std::endl;
using std::ios;
using std::hex;
using std::dec;

int main()
{
 uint8_t data[256*64];

 131

 clock_t start_tick;
 for (int x=0;x<256*64;x++)
 {
 data[x] = 0;
 start_tick = clock();
 while (clock() == start_tick)
 {
 data[x]++;
 }
 }

 for(int i=0;i<256*64;i++)
 {
 cout << i << "\t" << hex << (uint16_t) data [i] << endl;
 }

 uint8_t hist[256];
 for(int i=0;i<256;i++)
 {
 hist[i] = 0;
 }

 for(int i=0;i<256*64;i++)
 {
 hist[data[i]]++;
 }

 cout << endl << endl;

 for(int i=0;i<256;i++)
 {
 cout << dec << i << "," << dec << (uint16_t) hist[i] << endl;
 }

 system("pause");
 return 0;
}

C7. Padding Test and Results

#FileName: doTest.sh
#!/bin/bash
rm text.txt
cd /home/shambler/Thesis/Margalois
for((i=0;i<33;i++))
do
echo -n "A" >> text.txt;
./a.out < runScriptEncrypt > /dev/null;
./a.out < runScriptDecrypt > /dev/null;
ls -l *.txt;
md5sum *.txt;
done

#FileName: runScriptEncrypt
e

 132

1
myPasswordKey
text.txt
ciph.txt
0
1
0
127
n

#FileName: runScriptDecrypt
d
1
myPasswordKey
newtext.txt
ciph.txt
0
1
0
127
n

#FileName: PaddingResults.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 1 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 1 2007-06-02 16:31 tex t.txt
4b5bc888e08b7c3241dfa18564749292 ciph.txt
7fc56270e7a70fa81a5935b72eacbe29 newtext.txt
7fc56270e7a70fa81a5935b72eacbe29 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 2 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 2 2007-06-02 16:31 tex t.txt
50fbadc7a5abc1f82b198b1f22a2599e ciph.txt
3b98e2dffc6cb06a89dcb0d5c60a0206 newtext.txt
3b98e2dffc6cb06a89dcb0d5c60a0206 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 3 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 3 2007-06-02 16:31 tex t.txt
c62414a5cc9167f261d249176974335a ciph.txt
e1faffb3e614e6c2fba74296962386b7 newtext.txt
e1faffb3e614e6c2fba74296962386b7 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 4 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 4 2007-06-02 16:31 tex t.txt
9467faad9af733e43226ad85b75ca9e8 ciph.txt
098890dde069e9abad63f19a0d9e1f32 newtext.txt
098890dde069e9abad63f19a0d9e1f32 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 5 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 5 2007-06-02 16:31 tex t.txt
7d30a0a505fb38f58e4468665c9bd7b6 ciph.txt
f6a6263167c92de8644ac998b3c4e4d1 newtext.txt
f6a6263167c92de8644ac998b3c4e4d1 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 6 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 6 2007-06-02 16:31 tex t.txt

 133

374c4693420730ef3d655bf377d7681d ciph.txt
36d04a9d74392c727b1a9bf97a7bcbac newtext.txt
36d04a9d74392c727b1a9bf97a7bcbac text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 7 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 7 2007-06-02 16:31 tex t.txt
a781ab5862c1d70b272e46e2148777e3 ciph.txt
8430894cfeb54a3625f18fe24fce272e newtext.txt
8430894cfeb54a3625f18fe24fce272e text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 8 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 8 2007-06-02 16:31 tex t.txt
081b3a9ba33e7e278b3b4b7c05cc4a7f ciph.txt
aee9e38cb4d40ec2794542567539b4c8 newtext.txt
aee9e38cb4d40ec2794542567539b4c8 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 9 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 9 2007-06-02 16:31 tex t.txt
f3f5f53f5d9767fac37c52ab5ac4e3c3 ciph.txt
6c9395cacd317eed2777f669103b7181 newtext.txt
6c9395cacd317eed2777f669103b7181 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 10 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 10 2007-06-02 16:31 tex t.txt
8545b583d6ed814fe263d8b08469d576 ciph.txt
16c52c6e8326c071da771e66dc6e9e57 newtext.txt
16c52c6e8326c071da771e66dc6e9e57 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 11 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 11 2007-06-02 16:31 tex t.txt
8d9ea3b18f34da611ba25bca01eea1d2 ciph.txt
aae9ed2aebd46960a986cfb376bc1eca newtext.txt
aae9ed2aebd46960a986cfb376bc1eca text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 12 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 12 2007-06-02 16:31 tex t.txt
568348987f6d18af058f6767a7ee8243 ciph.txt
02737e4e8c87d7466b623c1f844fdd71 newtext.txt
02737e4e8c87d7466b623c1f844fdd71 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 13 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 13 2007-06-02 16:31 tex t.txt
c1ba67d0dff94d5ce0d1cd911fbbd254 ciph.txt
a68c7b41f873e90566acec7c22f89824 newtext.txt
a68c7b41f873e90566acec7c22f89824 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 14 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 14 2007-06-02 16:31 tex t.txt
ee563345e901b0d0862b548b2e51b4f7 ciph.txt
74d8c66251bba513d7d317dd47f556ba newtext.txt
74d8c66251bba513d7d317dd47f556ba text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 15 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 15 2007-06-02 16:31 tex t.txt
a47d0f1fc70e3fcde7a7c1ab86151a12 ciph.txt
409c94b762769ea5fb9384eb9bddf207 newtext.txt
409c94b762769ea5fb9384eb9bddf207 text.txt

 134

-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 16 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 16 2007-06-02 16:31 tex t.txt
87dd2d7909afdafc67a3462d69c53d79 ciph.txt
d8a73157ce10cd94a91c2079fc9a92c8 newtext.txt
d8a73157ce10cd94a91c2079fc9a92c8 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 17 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 17 2007-06-02 16:31 tex t.txt
f95074577aa85825d8f38b135c8164c3 ciph.txt
1105d53d33874fe294a18ee36398f2dc newtext.txt
1105d53d33874fe294a18ee36398f2dc text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 18 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 18 2007-06-02 16:31 tex t.txt
665a94ca1a36b8f011fd2854ab8e5f36 ciph.txt
9fe125b6680b43a62953d4cc6f4e08bf newtext.txt
9fe125b6680b43a62953d4cc6f4e08bf text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 19 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 19 2007-06-02 16:31 tex t.txt
0338ac039e3964b786829497914775d8 ciph.txt
7ae4d6728e33ff002bf67a2e5194ccb1 newtext.txt
7ae4d6728e33ff002bf67a2e5194ccb1 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 20 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 20 2007-06-02 16:31 tex t.txt
ac3269e385c3d02ca3e94daac9f2d199 ciph.txt
76d36e98f312e98ff908c8c82c8dd623 newtext.txt
76d36e98f312e98ff908c8c82c8dd623 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 21 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 21 2007-06-02 16:31 tex t.txt
825cd1e108204ae124920b635f0f0d88 ciph.txt
59f34ff3997b416f4f2dee1c9776c0cd newtext.txt
59f34ff3997b416f4f2dee1c9776c0cd text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 22 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 22 2007-06-02 16:31 tex t.txt
b8222f08a01c2a4e9260c53ee65ad3f0 ciph.txt
8b4cc90d421780e7674e2a25db33b770 newtext.txt
8b4cc90d421780e7674e2a25db33b770 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:31 cip h.txt
-rw-r--r-- 1 shambler users 23 2007-06-02 16:31 new text.txt
-rw-r--r-- 1 shambler users 23 2007-06-02 16:31 tex t.txt
d8abd5eab8bdbb5b3ce87c1b0855cc06 ciph.txt
38079371e04ce549db3e4d69bc96b3ad newtext.txt
38079371e04ce549db3e4d69bc96b3ad text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 24 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 24 2007-06-02 16:31 tex t.txt
ab390cdb9460daf3d58f6fda3b8484d4 ciph.txt
c7c6abfa9cb508f7fc178d4045313a94 newtext.txt
c7c6abfa9cb508f7fc178d4045313a94 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 25 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 25 2007-06-02 16:32 tex t.txt

 135

13194c6874dab92645c98b199f6d6a54 ciph.txt
1995da96cd16a48cebcbc08424f6f945 newtext.txt
1995da96cd16a48cebcbc08424f6f945 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 26 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 26 2007-06-02 16:32 tex t.txt
7224b7e5c0724b78f6edfff1b4c39ec1 ciph.txt
9894d0235313057edec272848ca193f3 newtext.txt
9894d0235313057edec272848ca193f3 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 27 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 27 2007-06-02 16:32 tex t.txt
c27e387e6794c203d40422b1375e7776 ciph.txt
878d9f8dea73b35e1d23570409b0a09d newtext.txt
878d9f8dea73b35e1d23570409b0a09d text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 28 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 28 2007-06-02 16:32 tex t.txt
7b311aa89bf0a03bbea37ea1d900b305 ciph.txt
35ea99843da5ff0639992be381c5b77a newtext.txt
35ea99843da5ff0639992be381c5b77a text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 29 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 29 2007-06-02 16:32 tex t.txt
3a4e3504c796e29c3630e2222f9b8fc5 ciph.txt
cf5205dc20fb05145e6d1fa08166e94e newtext.txt
cf5205dc20fb05145e6d1fa08166e94e text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 30 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 30 2007-06-02 16:32 tex t.txt
182d0f7f9e69f23e3839600117ea2fb1 ciph.txt
a8a7d9c5e31058f15d25f18d7d65404a newtext.txt
a8a7d9c5e31058f15d25f18d7d65404a text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 31 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 31 2007-06-02 16:32 tex t.txt
a1ab7389ad453f36e69bc79d4a65e26d ciph.txt
d09170db213e1a1fdc5effd49fd34767 newtext.txt
d09170db213e1a1fdc5effd49fd34767 text.txt
-rw-r--r-- 1 shambler users 96 2007-06-02 16:32 cip h.txt
-rw-r--r-- 1 shambler users 32 2007-06-02 16:32 new text.txt
-rw-r--r-- 1 shambler users 32 2007-06-02 16:32 tex t.txt
b5ccb9536c4b08f2a58eb4b75ce31125 ciph.txt
5216ddcc58e8dade5256075e77f642da newtext.txt
5216ddcc58e8dade5256075e77f642da text.txt
-rw-r--r-- 1 shambler users 128 2007-06-02 16:32 ci ph.txt
-rw-r--r-- 1 shambler users 33 2007-06-02 16:32 ne wtext.txt
-rw-r--r-- 1 shambler users 33 2007-06-02 16:32 te xt.txt
3d6c9595b8402b350aab89ac8c09d18e ciph.txt
eeda92ae5deb94f83a420113abf8db3e newtext.txt
eeda92ae5deb94f83a420113abf8db3e text.txt

C8. Time Analysis and Profiling Results

Generator Tables Verified! Check: 54 Compare: 54
Encrypt or Decrypt? (e,d)

 136

Would you like to enter a 1)Passphrase or 2)Key?
Input 32 Ascii Characters*
TextFile Name: <=32 Chars*
CiphFile Name: <=32 Chars*
Enter your galois generator number (0-127)
Enter the number of generations per block:
Enter the number of key generations per block:
Enter the threshold value for the Automata: (64-192) (127 RECOMMENDED)
Would you like to run (1) generations before key ex pansion? (y,n)
0.000089 InitCipherTime
0.631368 InitIVTime
17.200998 Encrypt/DecryptTime
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/cal l name
 57.76 21.76 21.76 13631800 0.00 0.0 0
galois::gmixColumn(unsigned char*)
 18.04 28.55 6.80 6071822 0.00 0.0 0
margolis::swap(int, int, int, int)
 14.58 34.05 5.49 262146 0.00 0.0 0
margolis::doGenerations(int)
 8.95 37.42 3.37 131075 0.00 0.0 0
galois::doRounds()
 0.24 37.51 0.09 1 0.09 37.5 7 galois::encrypt()
 0.16 37.57 0.06 1 0.06 0.0 6 galois::initIV()
 0.15 37.62 0.06
margolisSingle::swap(int, int, int, int)
 0.15 37.68 0.06
galois::generateSBoxes()
 0.00 37.68 0.00 4 0.00 0.0 0 void
std::fill<char*, int>(char*, char*, int const&)
 0.00 37.68 0.00 2 0.00 0.0 0
std::hex(std::ios_base&)
 0.00 37.68 0.00 1 0.00 0.0 0 global
constructors keyed to _ZN8margolis10setupRulesEv
 0.00 37.68 0.00 1 0.00 0.0 0
galois::expand_key()
 0.00 37.68 0.00 1 0.00 0.0 0
galois::initCipher()
 0.00 37.68 0.00 1 0.00 0.0 0
galois::textUserPrompt()
 0.00 37.68 0.00 1 0.00 37.5 7
galois::doEncryptDecrypt()
 0.00 37.68 0.00 1 0.00 0.0 0
galois::verifyGenerators()
 0.00 37.68 0.00 1 0.00 0.0 0
margolis::setParams(unsigned char*, unsigned char*, int, int, int)
 0.00 37.68 0.00 1 0.00 0.0 0
std::dec(std::ios_base&)

granularity: each sample hit covers 2 byte(s) for 0 .03% of 37.68
seconds

index % time self children called name

 137

 0.09 37.48 1/1
galois::doEncryptDecrypt() [3]
[1] 99.7 0.09 37.48 1 galois ::encrypt() [1]
 3.37 21.76 131073/131075 ga lois::doRounds() [4]
 5.49 6.80 262146/262146
margolis::doGenerations(int) [6]
 0.06 0.00 1/1 ga lois::initIV() [8]

 <s pontaneous>
[2] 99.7 0.00 37.57 main [2]
 0.00 37.57 1/1
galois::doEncryptDecrypt() [3]
 0.00 0.00 1/1
galois::verifyGenerators() [23]
 0.00 0.00 1/1
galois::textUserPrompt() [22]
 0.00 0.00 1/1 ga lois::initCipher()
[21]

 0.00 37.57 1/1 ma in [2]
[3] 99.7 0.00 37.57 1 galois ::doEncryptDecrypt()
[3]
 0.09 37.48 1/1 ga lois::encrypt() [1]

 0.00 0.00 2/131075 ga lois::initIV() [8]
 3.37 21.76 131073/131075 ga lois::encrypt() [1]
[4] 66.7 3.37 21.76 131075 galois ::doRounds() [4]
 21.76 0.00 13631800/13631800
galois::gmixColumn(unsigned char*) [5]

 21.76 0.00 13631800/13631800 galois::doRounds()
[4]
[5] 57.8 21.76 0.00 13631800
galois::gmixColumn(unsigned char*) [5]

 5.49 6.80 262146/262146 ga lois::encrypt() [1]
[6] 32.6 5.49 6.80 262146
margolis::doGenerations(int) [6]
 6.80 0.00 6071822/6071822 ma rgolis::swap(int,
int, int, int) [7]

 6.80 0.00 6071822/6071822
margolis::doGenerations(int) [6]
[7] 18.0 6.80 0.00 6071822 margol is::swap(int, int,
int, int) [7]

 0.06 0.00 1/1 ga lois::encrypt() [1]
[8] 0.2 0.06 0.00 1 galois ::initIV() [8]
 0.00 0.00 2/131075 ga lois::doRounds() [4]

 <s pontaneous>
[9] 0.1 0.06 0.00 margol isSingle::swap(int,
int, int, int) [9]

 <s pontaneous>
[10] 0.1 0.06 0.00 galois ::generateSBoxes()
[10]

 138

 0.00 0.00 4/4
galois::textUserPrompt() [22]
[17] 0.0 0.00 0.00 4 void s td::fill<char*,
int>(char*, char*, int const&) [17]

 0.00 0.00 2/2
galois::verifyGenerators() [23]
[18] 0.0 0.00 0.00 2 std::h ex(std::ios_base&)
[18]

 0.00 0.00 1/1 __ do_global_ctors_aux
[80]
[19] 0.0 0.00 0.00 1 global constructors keyed
to _ZN8margolis10setupRulesEv [19]

 0.00 0.00 1/1 ga lois::initCipher()
[21]
[20] 0.0 0.00 0.00 1 galois ::expand_key() [20]

 0.00 0.00 1/1 ma in [2]
[21] 0.0 0.00 0.00 1 galois ::initCipher() [21]
 0.00 0.00 1/1
margolis::setParams(unsigned char*, unsigned char*, int, int, int) [24]
 0.00 0.00 1/1 ga lois::expand_key()
[20]

 0.00 0.00 1/1 ma in [2]
[22] 0.0 0.00 0.00 1 galois ::textUserPrompt()
[22]
 0.00 0.00 4/4 vo id std::fill<char*,
int>(char*, char*, int const&) [17]
 0.00 0.00 1/1
std::dec(std::ios_base&) [25]

 0.00 0.00 1/1 ma in [2]
[23] 0.0 0.00 0.00 1 galois ::verifyGenerators()
[23]
 0.00 0.00 2/2
std::hex(std::ios_base&) [18]

 0.00 0.00 1/1 ga lois::initCipher()
[21]
[24] 0.0 0.00 0.00 1
margolis::setParams(unsigned char*, unsigned char*, int, int, int) [24]

 0.00 0.00 1/1
galois::textUserPrompt() [22]
[25] 0.0 0.00 0.00 1 std::d ec(std::ios_base&)
[25]

Index by function name

 [19] global constructors keyed to _ZN8margolis10s etupRulesEv [22]
galois::textUserPrompt() [6] margolis::doGeneration s(int)

 139

 [9] margolisSingle::swap(int, int, int, int) [3]
galois::doEncryptDecrypt() [7] margolis::swap(int, int, int, int)
 [20] galois::expand_key() [23] galois::verifyGe nerators() [24]
margolis::setParams(unsigned char*, unsigned char*, int, int, int)
 [5] galois::gmixColumn(unsigned char*) [8] galoi s::initIV() [25]
std::dec(std::ios_base&)
 [21] galois::initCipher() [1] galois::encrypt() [18]
std::hex(std::ios_base&)
 [10] galois::generateSBoxes() [4] galois::doRound s() [17] void
std::fill<char*, int>(char*, char*, int const&)
Generator Tables Verified! Check: 54 Compare: 54
Encrypt or Decrypt? (e,d)
Would you like to enter a 1)Passphrase or 2)Key?
Input 32 Ascii Characters*
TextFile Name: <=32 Chars*
CiphFile Name: <=32 Chars*
Enter your galois generator number (0-127)
Enter the number of generations per block:
Enter the number of key generations per block:
Enter the threshold value for the Automata: (64-192) (127 RECOMMENDED)
Would you like to run (1) generations before key ex pansion? (y,n)
0.000087 InitCipherTime
16.628243 Encrypt/DecryptTime
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/cal l name
 57.64 21.71 21.71 13631592 0.00 0.0 0
galois::invGmixColumn(unsigned char*)
 18.51 28.68 6.97 6071776 0.00 0.0 0
margolis::swap(int, int, int, int)
 14.39 34.10 5.42 262144 0.00 0.0 0
margolis::doGenerations(int)
 9.07 37.52 3.42 131073 0.00 0.0 0
galois::doInvRounds()
 0.17 37.58 0.07
galois::mixColumns()
 0.16 37.64 0.06 1 0.06 37.5 8 galois::decrypt()
 0.05 37.66 0.02
margolisSingle::swap(int, int, int, int)
 0.01 37.67 0.01
galois::invShiftRows()
 0.00 37.67 0.00 4 0.00 0.0 0 void
std::fill<char*, int>(char*, char*, int const&)
 0.00 37.67 0.00 2 0.00 0.0 0
std::hex(std::ios_base&)
 0.00 37.67 0.00 1 0.00 0.0 0 global
constructors keyed to _ZN8margolis10setupRulesEv
 0.00 37.67 0.00 1 0.00 0.0 0
galois::expand_key()
 0.00 37.67 0.00 1 0.00 0.0 0
galois::initCipher()
 0.00 37.67 0.00 1 0.00 0.0 0
galois::textUserPrompt()
 0.00 37.67 0.00 1 0.00 37.5 8
galois::doEncryptDecrypt()

 140

 0.00 37.67 0.00 1 0.00 0.0 0
galois::verifyGenerators()
 0.00 37.67 0.00 1 0.00 0.0 0
margolis::setParams(unsigned char*, unsigned char*, int, int, int)
 0.00 37.67 0.00 1 0.00 0.0 0
std::dec(std::ios_base&)

granularity: each sample hit covers 2 byte(s) for 0 .03% of 37.67
seconds

index % time self children called name
 <s pontaneous>
[1] 99.8 0.00 37.58 main [1]
 0.00 37.58 1/1
galois::doEncryptDecrypt() [2]
 0.00 0.00 1/1
galois::verifyGenerators() [23]
 0.00 0.00 1/1
galois::textUserPrompt() [22]
 0.00 0.00 1/1 ga lois::initCipher()
[21]

 0.00 37.58 1/1 ma in [1]
[2] 99.8 0.00 37.58 1 galois ::doEncryptDecrypt()
[2]
 0.06 37.52 1/1 ga lois::decrypt() [3]

 0.06 37.52 1/1
galois::doEncryptDecrypt() [2]
[3] 99.8 0.06 37.52 1 galois ::decrypt() [3]
 3.42 21.71 131073/131073 ga lois::doInvRounds()
[4]
 5.42 6.97 262144/262144
margolis::doGenerations(int) [6]

 3.42 21.71 131073/131073 ga lois::decrypt() [3]
[4] 66.7 3.42 21.71 131073 galois ::doInvRounds() [4]
 21.71 0.00 13631592/13631592
galois::invGmixColumn(unsigned char*) [5]

 21.71 0.00 13631592/13631592
galois::doInvRounds() [4]
[5] 57.6 21.71 0.00 13631592
galois::invGmixColumn(unsigned char*) [5]

 5.42 6.97 262144/262144 ga lois::decrypt() [3]
[6] 32.9 5.42 6.97 262144
margolis::doGenerations(int) [6]
 6.97 0.00 6071776/6071776 ma rgolis::swap(int,
int, int, int) [7]

 6.97 0.00 6071776/6071776
margolis::doGenerations(int) [6]
[7] 18.5 6.97 0.00 6071776 margol is::swap(int, int,
int, int) [7]

 <s pontaneous>

 141

[8] 0.2 0.07 0.00 galois ::mixColumns() [8]

 <s pontaneous>
[9] 0.1 0.02 0.00 margol isSingle::swap(int,
int, int, int) [9]

 <s pontaneous>
[10] 0.0 0.01 0.00 galois ::invShiftRows()
[10]

 0.00 0.00 4/4
galois::textUserPrompt() [22]
[17] 0.0 0.00 0.00 4 void s td::fill<char*,
int>(char*, char*, int const&) [17]

 0.00 0.00 2/2
galois::verifyGenerators() [23]
[18] 0.0 0.00 0.00 2 std::h ex(std::ios_base&)
[18]

 0.00 0.00 1/1 __ do_global_ctors_aux
[80]
[19] 0.0 0.00 0.00 1 global constructors keyed
to _ZN8margolis10setupRulesEv [19]

 0.00 0.00 1/1 ga lois::initCipher()
[21]
[20] 0.0 0.00 0.00 1 galois ::expand_key() [20]

 0.00 0.00 1/1 ma in [1]
[21] 0.0 0.00 0.00 1 galois ::initCipher() [21]
 0.00 0.00 1/1
margolis::setParams(unsigned char*, unsigned char*, int, int, int) [24]
 0.00 0.00 1/1 ga lois::expand_key()
[20]

 0.00 0.00 1/1 ma in [1]
[22] 0.0 0.00 0.00 1 galois ::textUserPrompt()
[22]
 0.00 0.00 4/4 vo id std::fill<char*,
int>(char*, char*, int const&) [17]
 0.00 0.00 1/1
std::dec(std::ios_base&) [25]

 0.00 0.00 1/1 ma in [1]
[23] 0.0 0.00 0.00 1 galois ::verifyGenerators()
[23]
 0.00 0.00 2/2
std::hex(std::ios_base&) [18]

 0.00 0.00 1/1 ga lois::initCipher()
[21]
[24] 0.0 0.00 0.00 1
margolis::setParams(unsigned char*, unsigned char*, int, int, int) [24]

 0.00 0.00 1/1
galois::textUserPrompt() [22]

 142

[25] 0.0 0.00 0.00 1 std::d ec(std::ios_base&)
[25]

Index by function name

 [19] global constructors keyed to _ZN8margolis10s etupRulesEv [10]
galois::invShiftRows() [6] margolis::doGenerations(int)
 [9] margolisSingle::swap(int, int, int, int) [5]
galois::invGmixColumn(unsigned char*) [7] margolis: :swap(int, int, int,
int)
 [20] galois::expand_key() [22] galois::textUser Prompt() [24]
margolis::setParams(unsigned char*, unsigned char*, int, int, int)
 [21] galois::initCipher() [2] galois::doEncryp tDecrypt() [25]
std::dec(std::ios_base&)
 [8] galois::mixColumns() [23] galois::verifyGe nerators() [18]
std::hex(std::ios_base&)
 [4] galois::doInvRounds() [3] galois::decrypt() [17] void
std::fill<char*, int>(char*, char*, int const&)

C9. Entropy Results

X: moby-dick.dat
Y: moby-dick-ciph-aes-sbox-only.dat
Cond Entropy = 0
EntropyX = 4.49714
EntropyY = 4.49714
X: moby-dick.dat
Y: moby-dick-ciph-AESCA1-sbox-only.dat
Cond Entropy = 4.35398
EntropyX = 4.49714
EntropyY = 7.98982
X: moby-dick.dat
Y: moby-dick-ciph-aesca2-sbox-only.dat
Cond Entropy = 4.4135
EntropyX = 4.49714
EntropyY = 7.99565
X: moby-dick.dat
Y: moby-dick-ciph-aesca5-sbox-only.dat
Cond Entropy = 4.4412
EntropyX = 4.49714
EntropyY = 7.99826
X: moby-dick.dat
Y: moby-dick-ciph-aesca10-sbox-only.dat
Cond Entropy = 4.44154
EntropyX = 4.49714
EntropyY = 7.99865
X: moby-dick.dat
Y: moby-dick-ciph-aesca50-sbox-only.dat
Cond Entropy = 4.46575
EntropyX = 4.49714
EntropyY = 7.99917

C10. Mauer's Results

/*

 143

 ULISCAN.c ---blocksize of 8

1 Oct 98
1 Dec 98
21 Dec 98
uliscan.c derived from ueli8.c
This version has // comments removed for Sun cc
This implements Ueli M Maurer's
"Universal Statistical Test for Random Bit Generato rs"
using L=8
Accepts a filename on the command line;
writes its results, with other info, to stdout.
Handles input file exhaustion gracefully.
Ref: J. Cryptology v 5 no 2, 1992 pp 89-105
also on the web somewhere, which is where I found i t.

-David Honig
honig@xxxxxxxxxxx

Usage:
 ULISCAN filename
 outputs to stdout
*/

#define L 8
#define V (1<<L)
#define Q (10*V)
#define K (100 *Q)
#define MAXSAMP (Q + K)

#include <stdio.h>
#include <math.h>
#include <iostream>

int main(int argc, char **argv)
{
 FILE *fptr;
 int i,j;
 int b, c;
 int table[V];
 double sum = 0.0;
 int iproduct = 1;
 int run;

 printf("Uliscan 21 Dec 98 \nL=%d %d %d \n", L, V, MAXSAMP);

 if (argc < 2) {
 printf("Usage: Uliscan filename\n");
 exit(-1);
 } else {
 printf("Measuring file %s\n", argv[1]);
 }

 fptr = fopen(argv[1],"rb");

 if (fptr == NULL) {
 printf("Can't find %s\n", argv[1]);

 144

 exit(-1);
 }

 for (i = 0; i < V; i++) {
 table[i] = 0;
 }

 for (i = 0; i < Q; i++) {
 b = fgetc(fptr);
 table[b] = i;
 }

 printf("Init done\n");

 printf("Expected value for L=8 is 7.1836656\n");

 run = 1;

 while (run) {
 sum = 0.0;
 iproduct = 1;

 if (run)
 for (i = Q; run && i < Q + K; i++) {
 j = i;
 b = fgetc(fptr);

 if (b < 0)
 run = 0;

 if (run) {
 if (table[b] > j)
 j += K;

 sum += log((double)(j-table[b]));

 table[b] = i;
 }
 }

 if (!run)
 printf("Premature end of file; read %d blocks .\n", i - Q);

 sum = (sum/((double)(i - Q))) / log(2.0);
 printf("%4.4f ", sum);

 for (i = 0; i < (int)(sum*8.0 + 0.50); i++)
 printf("-");

 printf("\n");

 /* refill initial table */
 if (0) {
 for (i = 0; i < Q; i++) {
 b = fgetc(fptr);
 if (b < 0) {
 run = 0;

 145

 } else {
 table[b] = i;
 }
 }
 }
 }
}

Uliscan 21 Dec 98
L=8 256 258560
Measuring file moby-dick.dat
Init done
Expected value for L=8 is 7.1836656
3.8997 -------------------------------
3.9097 -------------------------------
3.8891 -------------------------------
Uliscan 21 Dec 98
L=8 256 258560
Measuring file moby-dick-ciph-aes-sbox-only.dat
Init done
Expected value for L=8 is 7.1836656
3.8997 -------------------------------
3.9097 -------------------------------
3.8891 -------------------------------
Uliscan 21 Dec 98
L=8 256 258560
Measuring file moby-dick-ciph-aesca1-sbox-only.dat
Init done
Expected value for L=8 is 7.1836656
4.4220 -----------------------------------
4.4297 -----------------------------------
4.4103 -----------------------------------
Uliscan 21 Dec 98
L=8 256 258560
Measuring file moby-dick-ciph-aesca2-sbox-only.dat
Init done
Expected value for L=8 is 7.1836656
4.6556 -------------------------------------
4.6627 -------------------------------------
4.6468 -------------------------------------
Uliscan 21 Dec 98
L=8 256 258560
Measuring file moby-dick-ciph-aesca5-sbox-only.dat
Init done
Expected value for L=8 is 7.1836656
4.9300 ---------------------------------------
4.9401 --
4.9197 ---------------------------------------
Uliscan 21 Dec 98
L=8 256 258560
Measuring file moby-dick-ciph-aesca10-sbox-only.dat
Init done
Expected value for L=8 is 7.1836656
5.1294 ---
5.1403 ---
5.1277 ---

 146

Uliscan 21 Dec 98
L=8 256 258560
Measuring file moby-dick-ciph-aesca50-sbox-only.dat
Init done
Expected value for L=8 is 7.1836656
5.3950 ---
5.4093 ---
5.3927 ---

C11. Conditional Entropy Results

*Removed all CBC code and padding code, and aligned input along 32 bytes.

X: magna-carta.dat
Y: magna-carta-fakeOTP.dat
Cond Entropy = 4.18532
EntropyX = 4.4147
EntropyY = 7.99284
X: magna-carta.dat
Y: magna-carta-ciph-AES.dat
Cond Entropy = 4.06934
EntropyX = 4.4147
EntropyY = 7.99436
X: magna-carta.dat
Y: magna-carta-ciph-AESCA1.dat
Cond Entropy = 4.12997
EntropyX = 4.4147
EntropyY = 7.99384
X: magna-carta.dat
Y: magna-carta-ciph-AESCA2.dat
Cond Entropy = 4.06829
EntropyX = 4.4147
EntropyY = 7.99345
X: magna-carta.dat
Y: magna-carta-ciph-AESCA3.dat
Cond Entropy = 4.10717
EntropyX = 4.4147
EntropyY = 7.99404
X: magna-carta.dat
Y: magna-carta-ciph-AESCA4.dat
Cond Entropy = 4.14187
EntropyX = 4.4147
EntropyY = 7.99505
X: magna-carta.dat
Y: magna-carta-ciph-AESCA5.dat
Cond Entropy = 4.07648
EntropyX = 4.4147
EntropyY = 7.99389
X: magna-carta.dat
Y: magna-carta-ciph-AESCA10.dat
Cond Entropy = 4.15784
EntropyX = 4.4147
EntropyY = 7.9943
X: moby-dick.dat
Y: moby-dick-ciph-fakeOTP.dat
Cond Entropy = 4.48107

 147

EntropyX = 4.49714
EntropyY = 7.99972
X: moby-dick.dat
Y: moby-dick-ciph-AES.dat
Cond Entropy = 4.47943
EntropyX = 4.49714
EntropyY = 7.99973
X: moby-dick.dat
Y: moby-dick-ciph-AESCA1.dat
Cond Entropy = 4.46895
EntropyX = 4.49714
EntropyY = 7.99973
X: moby-dick.dat
Y: moby-dick-ciph-AESCA2.dat
Cond Entropy = 4.46718
EntropyX = 4.49714
EntropyY = 7.99973
X: moby-dick.dat
Y: moby-dick-ciph-AESCA3.dat
Cond Entropy = 4.47666
EntropyX = 4.49714
EntropyY = 7.99969
X: moby-dick.dat
Y: moby-dick-ciph-AESCA4.dat
Cond Entropy = 4.47919
EntropyX = 4.49714
EntropyY = 7.99974
X: moby-dick.dat
Y: moby-dick-ciph-AESCA5.dat
Cond Entropy = 4.47805
EntropyX = 4.49714
EntropyY = 7.99974
X: moby-dick.dat
Y: moby-dick-ciph-AESCA10.dat
Cond Entropy = 4.46592
EntropyX = 4.49714
EntropyY = 7.99972

C12. Compression Test Results

Uncompressed Results
-rw-r--r-- 1 shambler users 29824 2007-05-21 23:22 magna-carta-ciph-AES.dat
-rw-r--r-- 1 shambler users 29824 2007-05-21 23:22 magna-carta-ciph-AESCA1.dat
-rw-r--r-- 1 shambler users 29824 2007-05-21 23:23 magna-carta-ciph-AESCA10.dat
-rw-r--r-- 1 shambler users 29824 2007-05-21 23:23 magna-carta-ciph-AESCA2.dat
-rw-r--r-- 1 shambler users 29824 2007-05-21 23:23 magna-carta-ciph-AESCA3.dat
-rw-r--r-- 1 shambler users 29824 2007-05-21 23:23 magna-carta-ciph-AESCA4.dat
-rw-r--r-- 1 shambler users 29824 2007-05-21 23:23 magna-carta-ciph-AESCA5.dat
-rw-r--r-- 1 shambler users 29824 2007-05-22 00:13 magna-carta-ciph-fakeOTP.dat
-rw-r--r-- 1 shambler users 29824 2007-05-21 21:59 magna-carta.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:20 moby-dick-ciph-AES.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:21 moby-dick-ciph-AESCA1.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:24 moby-dick-ciph-AESCA10.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:21 moby-dick-ciph-AESCA2.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:21 moby-dick-ciph-AESCA3.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:21 moby-dick-ciph-AESCA4.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:21 moby-dick-ciph-AESCA5.dat
-rw-r--r-- 1 shambler users 643232 2007-05-22 00:51 moby-dick-ciph-fakeOTP.dat
-rw-r--r-- 1 shambler users 643232 2007-05-21 23:18 moby-dick.dat

 148

Compressed Bzip2 Results
-rw-r--r-- 1 shambler users 30304 2007-05-21 23:22 magna-carta-ciph-AES.dat.bz2
-rw-r--r-- 1 shambler users 30302 2007-05-21 23:22 magna-carta-ciph-AESCA1.dat.bz2
-rw-r--r-- 1 shambler users 30303 2007-05-21 23:23 magna-carta-ciph-AESCA10.dat.bz2
-rw-r--r-- 1 shambler users 30317 2007-05-21 23:23 magna-carta-ciph-AESCA2.dat.bz2
-rw-r--r-- 1 shambler users 30304 2007-05-21 23:23 magna-carta-ciph-AESCA3.dat.bz2
-rw-r--r-- 1 shambler users 30316 2007-05-21 23:23 magna-carta-ciph-AESCA4.dat.bz2
-rw-r--r-- 1 shambler users 30317 2007-05-21 23:23 magna-carta-ciph-AESCA5.dat.bz2
-rw-r--r-- 1 shambler users 30319 2007-05-22 00:13 magna-carta-ciph-fakeOTP.dat.bz2
-rw-r--r-- 1 shambler users 9638 2007-05-21 21:59 magna-carta.dat.bz2
-rw-r--r-- 1 shambler users 646597 2007-05-21 23:20 moby-dick-ciph-AES.dat.bz2
-rw-r--r-- 1 shambler users 646299 2007-05-21 23:21 moby-dick-ciph-AESCA1.dat.bz2
-rw-r--r-- 1 shambler users 646375 2007-05-21 23:24 moby-dick-ciph-AESCA10.dat.bz2
-rw-r--r-- 1 shambler users 646345 2007-05-21 23:21 moby-dick-ciph-AESCA2.dat.bz2
-rw-r--r-- 1 shambler users 646698 2007-05-21 23:21 moby-dick-ciph-AESCA3.dat.bz2
-rw-r--r-- 1 shambler users 646678 2007-05-21 23:21 moby-dick-ciph-AESCA4.dat.bz2
-rw-r--r-- 1 shambler users 646576 2007-05-21 23:21 moby-dick-ciph-AESCA5.dat.bz2
-rw-r--r-- 1 shambler users 646571 2007-05-22 00:51 moby-dick-ciph-fakeOTP.dat.bz2
-rw-r--r-- 1 shambler users 200486 2007-05-21 23:18 moby-dick.dat.bz2

C13. Margolus Automata SDL Visualization Test

#include <cstdlib>
#include <iostream>
#include <SDL/SDL.h>
#include <SDL/SDL_gfxprimitives.h>
#include <math.h>
#include <time.h>
#include <stdint.h>

#define HEIGHT 64
#define WIDTH 64
#define size 4

uint8_t thresh = 0x7f;

int swapCount=0;

uint8_t test[HEIGHT*WIDTH];
bool evenodd = true;

#define getCell(x,y) (test[fixX(x)+fixY(y)*WIDTH])
#define fixX(x) ((WIDTH + (x))%WIDTH)
#define fixY(y) ((HEIGHT + (y))%HEIGHT)

void swap(int x1,int y1,int x2,int y2)
{
 swapCount++;
 uint8_t temp = getCell(x1,y1);
 getCell(x1,y1) = getCell(x2,y2);
 getCell(x2,y2) = temp;
}

#define swapDiag1(x,y) swap(x,y,x+1,y+1)
#define swapDiag2(x,y) swap(x+1,y,x,y+1)
#define swapHoriz1(x,y) swap(x,y,x+1,y)
#define swapHoriz2(x,y) swap(x,y+1,x+1,y+1)
#define swapVert1(x,y) swap(x,y,x,y+1)

 149

#define swapVert2(x,y) swap(x+1,y,x+1,y+1)

enum{SCREENWIDTH = WIDTH*size, SCREENHEIGHT = HEIGH T*size,
SCREENBPP = 32, SCREENFLAGS = SDL_HWSURFACE|SDL_DOUBLEBUF};
SDL_Surface* pSurface;
SDL_Event keyEvent;

using namespace std;

#define T true
#define F false

bool rules[16][6] =
{{F,F,F,F,F,F},{T,F,F,F,F,F},{F,T,F,F,F,F},{F,F,F,F ,F,F},{F,T,F,F,F,F},
{F,F,F,F,F,F},{F,F,T,T,F,F},{T,F,F,F,F,F},{T,F,F,F, F,F},{F,F,T,T,F,F},{
F,F,F,F,F,F},{F,T,F,F,F,F},{F,F,F,F,F,F},{F,T,F,F,F ,F},{T,F,F,F,F,F},{F
,F,F,F,F,F}};

void doTransition(int x, int y, uint8_t currState)
{
 for (int i=0;i<6;i++)
 {
 if (rules[currState][i])
 {
 switch (i)
 {
 case 0:
 swapDiag1(x, y);
 break;
 case 1:
 swapDiag2(x,y);
 break;
 case 2:
 swapHoriz1(x,y);
 break;
 case 3:
 swapHoriz2(x,y);
 break;
 case 4:
 swapVert1(x,y);
 break;
 case 5:
 swapVert2(x,y);
 break;
 }
 }
 }
}

void initMap()
{
 srand(time(0));
 for (int i=0;i<HEIGHT;i++)
 {
 for (int j=0;j<WIDTH;j++)
 {

 150

 //test[i*WIDTH+j] =
128;//j/(float)WIDTH*256;//rand()%255;//rand()%127;
 if (i>= HEIGHT/4 && i < HEIGHT-HEIGHT/4 && j >= WIDTH/4 &&
j < WIDTH-WIDTH/4) test[i*WIDTH+j] = 128 + rand()%1 28;
 }
 }
 //test[1600] = 0xff;
 //test[221] = 0xff;
}

#define getConfiguration(i,j) ((getCell(i+1,j+1)>th resh?8:0) +
(getCell(i,j+1)>thresh?4:0) + (getCell(i+1,j)>thres h?2:0) +
(getCell(i,j)>thresh?1:0))

void nextGeneration()
{
 evenodd ^= 1;
 for (int i=evenodd;i<HEIGHT;i+=2)
 {
 for (int j=evenodd;j<WIDTH;j+=2)
 {
 doTransition(i, j, getConfiguration(i,j));
 }
 }
}

void randomThresh()
{
 thresh = rand()%255;
}

void draw()
{
 for (int i=0;i<HEIGHT;i++)
 {
 for (int j=0;j<WIDTH;j++)
 {
 uint8_t c = getCell(i,j);
 if (c > 127)
 {

boxRGBA(pSurface,i*size,j*size,(i+1)*size,(j+1)*siz e,255,255,255,255);
 }
 else
boxRGBA(pSurface,i*size,j*size,(i+1)*size,(j+1)*siz e,0,0,0,255);
 }
 }
}

void randomRules()
{
 srand(time(0));
 for (int i=0;i<16;i++)
 for (int j=0;j<6;j++)
 {
 rules[i][j] = 0;

 151

 rules[i][j] = rand()%50>25?T:F;
 }
}

int main(int argc, char *argv[])
{
 initMap();

 if (SDL_Init(SDL_INIT_VIDEO) < 0)
 {
 cout << "Error Initializing SDL Video" << e ndl;
 SDL_Quit();
 return 1;
 }
 pSurface = SDL_SetVideoMode (SCREENWIDTH , SCR EENHEIGHT ,SCREENBPP
, SCREENFLAGS) ;

 while (1)
 {
 //nextGeneration();
 draw();
 SDL_Flip(pSurface);
 //SDL_Delay(40);

 SDL_PollEvent(&keyEvent);
 switch (keyEvent.type)
 {
 case SDL_KEYDOWN:
 switch (keyEvent.key.keysym.sym)
 {
 case SDLK_DOWN:
 SDL_Quit();
 return 0;
 break;
 case SDLK_UP:
 randomThresh();
 break;
 case SDLK_LEFT:
 //initMap();
 randomRules();
 break;
 case SDLK_RIGHT:
 SDL_SaveBMP(pSurface, "test.bmp");
 break;
 case SDLK_SPACE:
 //evenodd ^= 1;
 for(int i=0;i<5;i++)
 {
 nextGeneration();
 draw();
 SDL_Flip(pSurface);
 }
 break;
 }
 break;
 }
 while (keyEvent.type == SDL_KEYDOWN){

 152

SDL_PollEvent(&keyEvent);
}

 }

 system("PAUSE");
 SDL_Quit();
 return EXIT_SUCCESS;
}

 153

7. DEVELOPMENT ENVIRONMENT

Slackware Linux 11.0:
Bash 3.1.17
GNU Nano Editor 1.3.12
GCC 3.4.6
GNU gprof 2.15.92.0.2

Windows XP SP2:
BloodShed Dev-C++ 4.9.9.2
Mingw/GCC 3.4.2
SDL 1.2.8
SDL_gfx 2.0.13

Other Software:
Uliscan 21 Dec 98 (Mauer's)
PuTTY 0.58
WinSCP 4.0
Microsoft Word
Microsoft Excel
Microsoft Visio
Microsoft Paint
PDF Creator

	Cellular automata for dynamic S-boxes in cryptography.
	Recommended Citation

	\376\377\000C\000e\000l\000l\000u\000l\000a\000r\000 \000A\000u\000t\000o\000m\000a\000t\000a\000 \000f\000o\000r\000 \000D\000y\000n\000a\000m\000i\000c\000 \000S\000-\000b\000o\000x\000e\000s\000 \000i\000n\000 \000C\000r\000y\000p\000t\000o\000g\000r\0

