archives-ouvertes

Proceedings of AUTOMATA 2010: 16th International
workshop on cellular automata and discrete complex
systems
Nazim Fates, Jarkko Kari, Thomas Worsch

» To cite this version:

Nazim Fates, Jarkko Kari, Thomas Worsch. Proceedings of AUTOMATA 2010: 16th International

workshop on cellular automata and discrete complex systems. Nazim Fates and Jarkko Kari and

Thomas Worsch. INRIA Nancy Grand Est, pp.356, 2010, 978-2-905267-74-0. inria-00549645

HAL Id: inria-00549645
https://hal.inria.fr /inria-00549645
Submitted on 22 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/inria-00549645
https://hal.archives-ouvertes.fr

AdTOTATA

16th International Workshop on
Cellular Automata & Discrete Complex oystems

L, + . Proceedings

/ Edited by:
RNazim Fates
Jarkko Rari
Thomas Worsch

)

Q N M
r - - . T { > \ Ya [
F RN 2 e >
v q fs ol e R b ~ - -
S = (ST LN v e
> N : ¥ e vy
7 N\ -

Rancy, France
2’ 14-16 June
LT 2010

‘;—“

N

..- ’N
'/
)

Automata 2010

16" International Workshop on
Cellular Automata and
Discrete Complex Systems

organised by INRIA Nancy - Grand Est
held at LORIA, Nancy
under the auspices of IFIP

June 14 — 16, 2010

Editors:
Nazim Fates, Jarkko Kari and Thomas Worsch

Preface

This volume contains all the contributed papers presented at AUTOMATA 2010, the 16th inter-
national workshop on cellular automata and discrete complex systems. The workshop was held
on June 14-16, 2010, at the LORIA laboratory in Nancy, France. AUTOMATA is an annual
workshop on the fundamental aspects of cellular automata and related discrete dynamical sys-
tems. The spirit of the workshop is to foster collaborations and exchanges between researchers
on these areas. The workshop series was started in 1995 by members of the Working Group 1.5
of IFIP, the International Federation for Information Processing.

The volume has two parts: Part I contains 9 full papers that were selected by a program
committee from 21 submissions. These papers will also appear as proceedings volume AL of
Discrete Mathematics and Theoretical Computer Science (DMTCS). The program committee
consisted of 25 international experts on cellular automata and related models, and the selection
was based on 2-4 peer reviews on each paper. Part II contains 18 short papers of work-in-
progress and/or exploratory papers. Both paper categories combined, the workshop received 37
submissions.

Papers in this volume represent a rich sample of current research topics on cellular automata
and related models. The papers include theoretical studies of the classical cellular automata
model, but also many investigations into various variants and generalizations of the basic concept.
The versatile nature and the flexibility of the model is evident from the presented papers, making
it a rich source of new research problems for scientists representing a variety of disciplines.

In addition to the papers of this volume, the program of AUTOMATA 2010 contained four
one-hour plenary lectures given by distinguished invited speakers:

e Enrico Formenti (University of Nice-Sophia Antipolis, France)

Jean Mairesse (University of Paris 7, France)
e Ferdinand Peper (Himeji Institute of Technology, Japan)
e Guillaume Theyssier (University of Savoie, France)

The organisers are indebted to the invited speakers, who kindly accepted to pay part of their
travel as a support to the conference.
The organizers gratefully acknowledge the support by the following institutions:

e European Society for Mathematical and Theoretical Biology (ESMTB)

e Rgion Lorraine and Mairie de Nancy

e Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
e Communauté urbaine Grand Nancy

e Nancy Université Henri Poincaré

e Nancy Université 2

e Nancy Université Institut national polytechnique de Lorraine

As the editors of these proceedings, we thank all contributors to the scientific program of the
workshop. We are especially indebted to the invited speakers and the authors of the contributed
papers. We would also like to thank the members of the Program Committee and the external
reviewers of the papers.

May 28th, 2010
Nazim Fates, Jarkko Kari, Thomas Worsch

Program Committee

Andy Adamatzky University of the West of England, UK

Stefania Bandini University of Milano - Bicocca, Italy

Pedro de Oliveira Mackenzie Presbyterian University, Brasil
Andreas Deutsch Dresden University of Technology, Germany
Nazim Fates INRIA Nancy Grand-Est, France, co-chair

Paola Flocchini University of Ottawa, Chanada

Enrico Formenti University of Nice-Sophia Antipolis, France
Henryk Fuks Brock University, Canada

Jarkko Kari University of Turku, Finland, co-chair

Martin Kutrib University of Gieflen, Germany

Anna Lawniczak University of Guelph, Canada

Alejandro Maass University of Chile, Chile

Danuta Makowiec Gdansk University, Poland

Maurice Margenstern University of Metz, France

Kenichi Morita Hiroshima University, Japan

Nicolas Ollinger University of Provence, France

Ferdinand Peper National Institute of Information and Communications Technology, Japan
Juan Carlos Seck Autonomous University of Hidalgo State, Mexico
Georgios Sirakoulis Democritus University of Thrace, Greece

Klaus Sutner Carnegie Mellon University, USA

Guillaume Theyssier ~ University of Savoie, France

Hiroshi Umeo University of Osaka Electro-Communication, Japan
Laurent Vuillon University of Savoie, France

Thomas Worsch University of Karlsruhe, Germany

Jean-Baptiste Yunes University of Paris 7, France

External Referees

Carsten Mente University of Dresden, Germany
Niloy Ganguly Indian Institute of Technology
Pierre Guillon University of Turku, Finland
Andreas Malcher University of Gieflen, Germany

Charalampos Zinoviadis University of Turku, Finland

Organizing Committee

Nicolas Alcaraz

Olivier Boure

Anne-Lise Charbonnier
Vincent Chevrier
Sylvain Contassot-Vivier
Nazim Fates (chair)
Rachida Kasmi

Nikolaos Vlassopolous

ii

Table of Contents

Author index v

Part I: full papers

Leemon Baird, Barry Fagin
Faster Methods for Identifying Nontrivial Energy Conservation Func-

tions for Cellular Automata 1
S.-J. Cho, U.-S. Choi, H.-D. Kim, Y.-H. Hwang, J.-G. Kim
60/102 Null Boundary Cellular Automata based expander graphs 21

Henryk Fuk$
Probabilistic initial value problem for cellular automaton rule 172 31

Eric Goles and Mathilde Noual

Block-sequential update schedules and Boolean automata circuits 45
Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

The fractal structure of cellular automata on abelian groups 55
Martin Kutrib and Jonas Leféevre and Andreas Malcher

The Size of One-Way Cellular Automata 75
Maurice Margenstern

A weakly universal cellular automaton in the hyperbolic 3D space with

three states 95
Matthias Schulz

Minimal Recurrent Configurations and DAGs 115
Predrag T. Tosié

Complexity of Counting the Fixed Points 131
Part II: short papers
Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

Universality of 2-State Asynchronous Cellular Automaton 153
Heather Betel and Paola Flocchini and Ahmed Karmouch

Asymptotic behaviour of self-averaging continuous cellular automata _ 173

Maurice Courbage and Brunon Kaminski and Jerzy Szymanski
On entropy and Lyapunov exponents of dynamical systems

generated by cellular automata 187

iii

Pedro P.B. de Oliveira and Rodrigo Freitas
Relative Partial Reversibility of Elementary Cellular Automata

Patrick Ediger and Rolf Hoffmann
Evolving Probabilistic CA Agents Solving the Routing Task

Nazim Fates
Randomness solves density classification

S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury
CAvium - Strengthening Trivium Stream Cipher Using Cellular Au-

tomata

Anna T. Lawniczak and Bruno N. Di Stefano
Multilane Single GCA-w Agent-based Expressway Traffic Model

T. Ito, M. Fujio, S. Inokuchi, Y. Mizoguchi
Composition, Union and Division of Cellular Automata on Groups _____

Shiladitya Munshi and Sukanta Das and Biplab K. Sikdar
Characterization of Single Hybridization in “Non-Interesting” class of

CA For SMACA Synthesis
Hidenosuke Nishio

A Generalization of Automorphism Classification of Cellular Automata

Fumio Ohi)
Dynamical Properties of Rule 56 Elementary Cellular Automaton of Wol-

fram Class II

Markus Redeker
Gliders and Ether in Rule 54

Thimo Rohlf and Jiirgen Jost
Dynamics of 1-d cellular automa with distance-dependent delays

Emmanuel Sapin and Olivier Sapin
How do gliders move?

Burton Voorhees
Stable Mixtures in Probabilistic Induction of CA Rules

Thomas Worsch
A Note on (Intrinsically?) Universal Asynchronous Cellular Automata .

Charalampos Zinoviadis
Undecidability of the Openness problem of multidimensional cellular au-

tomata

iv

195

209

221

231

245

255

265

277

287

299

309

319

329

339

351

Author index

Adachi, Susumu

Baird, Leemon
Betel, Heather

Cho, Sung-Jin
Choi, Un-Sook

Chowdhury, Dipanwita Roy

Courbage, Maurice

Das, Sukanta
Di Stefano, Bruno N.

Ediger, Patrick

Fagin, Barry
Fates, Nazim
Flocchini, Paola
Freitas, Rodrigo
Fujio, Mitsuhiko
Fuks, Henryk

Giitschow, Johannes
Goles, Eric

Hoffmann, Rolf
Hwang, Yoon-Hee

Inokuchi, Shuichi
Ito, Takahiro

Jost, Jiirgen

Kaminski, Brunon
Karmakar, Sandip
Karmouch, Ahmed
Kim, Han-Doo
Kim, Jin-Gyong
Kutrib, Martin

153

173

21
21
231
187

265
245

209

221
173
195
255

31

55
45

209
21

255
255

309

187
231
173
21
21
75

Lawniczak, Anna T.
Lee, Jia

Lefevre, Jonas

Malcher, Andreas
Margenstern, Maurice
Mizoguchi, Yoshihiro
Mukhopadhyay, Debdeep
Munshi, Shiladitya

Nesme, Vincent
Nishio, Hidenosuke
Noual, Mathilde

Ohi, Fumio
de Oliveira, Pedro P.B.

Peper, Ferdinand

Redeker, Markus
Rohlf, Thimo

Sapin, Emmanuel
Sapin, Olivier

Schulz, Matthias
Sikdar, Biplab K.
Szymanski, Jerzy
Tosi¢, Predrag T.
Umeo, Hiroshi

Voorhees, Burton

Werner, Reinhard F.
Worsch, Thomas

Zinoviadis, Charalampos

245
153
75

75
95
255
231
265

%)
277
45

287
195

153

299
309

319
319
115
265
187
131
153
329

%)
339

351

Automata 2010 — 18Intl. Workshop on CA and DCS DMTCS proc.AL, 2010, 1-20

Faster Methods for Identifying Nontrivial
Energy Conservation Functions for Cellular
Automata

Leemon Baird, Barry Fagin

! Academy Center for Cyberspace Research, Department of @em@cience, US Air Force Academy, Colorado
Springs, Colorado USA 80840

The biggest obstacle to the efficient discovery of conseeresigy functions for cellular auotmata is the elimination
of the trivial functions from the solution space. Once tBisccomplished, the identification of nontrivial conserved
functions can be accomplished computationally through@ppate linear algebra.

As a means to this end, we introduce a general theory of ticaaserved functions. We consider the existence of
nontrivial additive conserved energy functions ("noriaig”) for cellular automata in any number of dimensionghwi
any size of neighborhood, and with any number of cell staMssgive the first known basis set for all trivial conserved
functions in the general case, and use this to derive a nuaflmgatimizations for reducing time and memory for the
discovery of nontrivials.

We report that the Game of Life has no nontrivials with enesgyydows of size 13 or smaller. Other 2D automata,
however, do have nontrivials. We give the complete list athfunctions for binary outer-totalistic automata with
energy windows of size 9 or smaller, and discuss patternsawe dbserved.

Keywords: nontrivial conserved energy function, trivial conserveergy function, 1D cellular autamata, 2D cellular
automata, Game of Life

1 Preliminaries: basic definitions

We consider cellular automata withstates inmn dimensions. Thaeighborhoodf a cellular automaton
is the region of surrounding cells used to determine the sete of a given cell. Theindow of an
energy function for a cellular automaton is the region ofaadpt cells that contribute to the function.
Both neighborhoods and windows aralimensional tensors, with the size of each dimension §pdas

a positive integer. Given the size of such a tensor, it isul¢efdefine the following 3 sets of tensors.

Definition 1.1 Cellular automata are composed of cells, each of which isnie ofk states (or colors)
at any given time. The sétis the set of such colors, and the gktis that set augmented with another
color named *. (* denotes a special state with certain prdjgsrthat simplify our proofs. It is explained
in more detail in the pages that follow.)

C:{0,1,2,...7k—1} (1.2)
1365-80500) 2010 Discrete Mathematics and Theoretical Computer SeiédMTCS), Nancy, France

2 Leemon Baird, Barry Fagin

C.=CU{*} 1.2)

It is sometimes useful to choose one color to be treated alhecin all such cases, the color 0 will be
chosen.

Definition 1.2 Ann-dimensional cellular automaton rule is a functidhthat gives the color of a given
cell on the next time step as a function of a neighborhood ki§ centered on that cell on the current
time step. The neighborhood is ardimensional tensor of size; x - -- x w,,, where eachwv; is an odd,
positive integer.

R:CWxXtm o C (1.3)

Definition 1.3 An n-dimensional cellular automaton is andimensional tensor whose elements are in
C, and which is updated on each time step according to a celadégiomaton ruleR, applied to every cell

in parallel. The rule is a function applied to each cell angliteighbors, where neighbors wrap toroidally
(i.e. the top edge is considered adjacent to the bottomghedige is adjacent to the right, and so on for
each dimension).

Definition 1.4 The successor function advances a region within a celluldomaton one time step by
applying a ruleR to a regionM of sizes; x --- x sy,

T . (Cwlxn-xw,,, N C) W CS1X X80 C(517w1+1)X"'X(311,7w1:,+1)
which is defined as:

T(R,M)=M WhereMill,_,,,in = R(M(i1...i1+w1—1),..‘,(in..<in+wn—1)) (1.4)

Note thatl'(R, M) is defined for anV/ that is only a portion of the cells, and so it does not wrap adou
toroidally. Instead, it returns a tensor that is smallenthAin each dimension. Also note that the ellipses
on the right side of the equation are used in two differentsvdyach element of the result comes from
applying theR function to only a portion of thé/ tensor, which includes those elementsd6fvhose first
coordinate is in the rangéy, i; + wy — 1], and whose second coordinate is in the rafiges + ws — 1],
and so on up to theth coordinate being in the randg,, i,, + w, — 1].

Definition 1.5 A linear additive energy function (or energy function) isuadtion f : C51 % *s» — R
that assigns a real number to a window of sizex - - - x s,, within a cellular automaton.

Definition 1.6 The total energy;,; : C"** " *“» — R of a given staté/ of an entire cellular automaton
universe withu; x - - - x u,, cells, with respect to a given energy functipns

ewot(U) = f(Uw) (1.5)
w

whereU is the universe state for a cellular automatd¥i,is the position of the energy window within that
universe, andJyy is that window within the universe, which wraps toroidalttlze edges of the universe.

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 3

Definition 1.7 A conserved linear additive energy function (or a consefuedtion) for a given cellular
automaton rule is an energy function that for a universe of aize, and for any given state of that
universe, will assign the same total energy to that univeaseoth that state and its successor.

Definition 1.8 A trivial conserved linear additive energy function (or &tal) is an energy function that
for a universe of any size, will assign the same total enesgihat universe regardless of its state. A
nontrivial conserved linear additive energy function (onantrivial) for a given cellular automaton rule
is a conserved energy function that is not trivial.

Definition 1.9 Givenn positive integerssy, ..., s, defining the size of an-dimensional tensor, the
setB(s1,...,sn) is the set of all tensors ovet of that size. This set is partitioned into two sets,
Z(s1,...,8n), the zero-sided tensors, which have at least one side timadices the origin element and is
filled entirely with zero elements, ait(sy, . . ., s,,), the non-zero-sided tensors, which do not have such
a side. The origin element is the element of the tensor atilmeél, 1,...,1).
B(81,...,8y) =Co X %0n (1.6)
Z(s1,--,80) ={T € B(s1,...,80) | FiVj¥s; To, ... 611,801,008 = 0} a.7)
Z(81,..80) = B(s1,...,80) \ Z(51,--.,5n) (1.8)

Soin 1 dimension, the zero-sided vectors are those whobeifas the first element. In 2 dimensions,
the zero-sided matrices are those with a top row of all zenoa leftmost column of all zeros, or both.

It is useful to define a matching functidif that can be used in the construction of various functions
over these tensors. The function returns 1 iff two tensove lketements that match, where the * symbol is
treated as matching any color.

Definition 1.10 Givenn-dimensional tensors ovér,, the function
H : Corxxsn x Csrxxsn — {0,1} is defined as

1 if VZVSZ Asl,.“,sn = le.’4..
VASIA,»~757L =%
\/le,.“,s =%

0 otherwise

H(A,B) = (1.9)

Given ann-dimensional tensor, it is useful to unwrap it into a 1D girivf characters. This will be
done inrow major order For matrices, this means the elements will be read fromdefight across the
top row, then left to right across the second row, and so omdovthe bottom row. Tensors of other
dimensionalities are unwrapped similarly, with the lasheinsion changing most quickly, and the first
dimension changing most slowly. It is useful to have a funtii,,,,.,(T') that unwraps the elements of
tensorT’, then converts the resulting string to an integer by tregtias a number in base with the first
element being the most significant digit, and the last bdiedeast significant.

4 Leemon Baird, Barry Fagin

Definition 1.11 An n-dimensional tensoid with elements irC can be converted to an integer by the
functionV,,,,,,, : C*1* " *5» — N, which treats the elements of the tensor as digits igsehere the
elements are taken in row major order, treating the first asl#ast significant digit, and the last as the
most significant.

S1 S2 Sn n

anum(A) - Z Z e Z Ail,ig,..,,in H k(ij_l)l_[:i:]*l s (110)

i1=11da=1 in=1 Jj=1

For this definition, the rightmost product is understooddd. lfor all cases where the lower bound exceeds
the upper.

Definition 1.12 An n-dimensional tensor with elementsdncan be converted to a binary vector by the
functionV; : C51 % *sn — {0,1}(*""27"") 'which is defined as

1 ifi=Vyum(M)+1

i (1.12)
0 otherwise

Vi(M) = v wherev;, = {

The vectorV, (M) has one element for each possible color pattern for a tentine@same size a&/.
That vector will be all zeros, except for a 1 in the positionresponding to the patteri/.

Definition 1.13 A functionf : C****®» — R can be converted to a real vector withi**2--*~ elements
by the functiord : (C*****» — R) — R*"™" 'which is defined as

V(= Y, f(M)-Vi(M) (1.12)

MeB(s1,...,5n)

This vector is a convenient way to represent an energy fomcti completely specifies the energy function,
by listing the output of the function for every possible inpWe will define various classes of energy
functions by simultaneous linear equations, treating tleenents of this vector as the variables.

Note that the energy function window is independent of the&ghborhood. Energy functions can be
defined over regions different from the scope of the trassitule of the CA. Our work with 1D CAs in
[1], for example, has identified conserved energy functisitis windows of sizé x 5, 1 x 6 and larger,
for CAs that have neighborhoods of size 3.

Definition 1.14 Given tensorM of sizem; x --- x m,, which is a region within am-dimensional
universe, and given an energy window size ef (si, ..., s,), a vector representing the total energy of
all energy windows that fit withidZ can be found with the function

S189...5n
e Nn % Cm1>< Xn Nk

which is defined as

mi1—s1+1 ma—s2+1 My —Sp+1

e(s, M)y= > ST > ViMiy iyt i tsn 1) (1.13)

i1=1 ip=1 in=1

The e(s, M) function slides the energy window to all possible posititimst fit entirely within the
matrix M, and finds the energy at each position. It then sums all thegersecoming from identical

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 5

patterns, and constructs a vector with the total energywe@rfrom each possible pattern. The sum of
the elements of this vector would simply be the total enefgy/o But it is useful to maintain the vector
of separate values when generating sets of linear equdtiahdefine the trivials, the nontrivials, or the
conserved functions.

Definition 1.15 For a positive integen, the functionV : N* — N is defined as

2" —1

N(si,..oysn) = kLot (1.14)
b=1

whereb; is theith bit of integer written in binary, with bit 1 being least significant and hibeing most.

In 1 and 2 dimensions this reduces to:

N(c) =kt (1.15)

N(r,¢) = kUr=e 4 grie=b) _ pr=1(e-1) (1.16)

It will be proved below that this gives the cardinality of nyaof the sets that will be considered here.
It equals the number of zero-sided tensors of a given sizentimber of trivials, and the number of unit
complements. And when subtracted from a simple power of @ieltds the number of non-zero-sided
tensors, the number of equations defining the conservedidmse and the number of equations defining
the nontrivials. These terms are defined and the counts gimslew.

Definition 1.16 In n dimensions, the seven transforms that operate on tenssizesf; x - - - x s,

Pp Q% %sn oS X (1.17)

P, : NXCE1 < Xsn _y g% Xsn (1.18)
Prop : NXC3VXXsn _y 0510 Xsn (1.19)
Ppp t Nx QX Xsn _, osuxXsn (1.20)
Prp : NXCSUX %8 _y gs1xxsn (1.21)
P :Cilx---xs" _ C:1><-~-><s,,, (1.22)

e (1.23)

6 Leemon Baird, Barry Fagin

are defined to be:

ifVjii; =[s;/2
Po(M) = M whered!, =" Vi = [8;/2] (1.24)
Lrtn M;, ..., otherwise
, , * ifig =1
P.(d,M) = M"whereM; , = i (1.25)
tretn M;, ... i, otherwise
Prot(dv]\/{) = M/ Where]\/[ill,...,zn = AIM ctd—1, 14+(ig modsg) ,ig41,..,in (126)
PLD(d]W) _ P*(dv ZM) if VJVZJ ‘]\/['il7~~~7’id—1717’id+17~~yin € {07 *} (l 27)
' M otherwise '
Prn(d, M) = Prot(Pe(d, M)) i V5Vi; My, iy y1igg,....in € {0, %} (1.28)
’ M otherwise
PL(M)ZPLD(].,PLD(2, PLD(TL]\/I))) (129)
PR(]\/[) :PRD(LPRD(Q, PRD(’I’I,]W-))) (130)

The functionP,,.(d, M) rotates the elements of tensdf along dimensionl, so that one side that
included the origin moves to the opposite side. The funcfiensets the central element to zero. The
function P, transforms a zero-sided tensor by replacing the 0 elemenisach all-zero side with *
elements. AndP; does the same, then rotates it so each modified side moves tpposite side. The
functionsP,, P, p, andPrp are only used here to define the other functions, and won’sbd again.

The following gives three examples 6f, and P applied to zero-sided matrices of size 5. In each
example M is a zero-sided matrix, where the all-zero side is on theteft, and both, respectively:

0
M = 000
(010] 1 {0]0)

00000
M = Ho
0000

00000
M = 0f1000
ofloflo

Definition 1.17 The functionP; : C51% " *sn

PL(M) =

Pp(M) =

* 0o
*0ploo0

* k k * %
Ho
0000
* k k *k %

*Hl000
*Eloflo

Pr(M) = OMOfI*

Pr(M) = 0000

Pr(M) = gofox

*

(1.31)
ofoox
Ho

(1.32)
* % % % %
71000*

(1.33)

* k k k ok

— C(@s1-1)xx(2sn 1) takes a smalh-dimensional ten-

sor and pads it with zero elements on many of its sides toemddargen-dimensional tensor. In each
dimension, if the small tensor was of sizeén that dimension, then the large tensor will be of sizg— 1

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 7

in that dimension. The zero elements are added in such a a&thi last nonzero element in the original
tensor becomes the center element in the new tensor.

For example,
000000000
(0]1 1[0] (0JoJo] 1(0]1 1[0)0]
P7 | Okl000 | = 0O0OO0OKIO000 (1.34)
00000 000000000
000000000

In this 2D example, the small matri¥ is of size3x 5, andPz (M) is of size(2-3—1)x (2-5—1) = 5x9.
Note that thisM happens to have 4 nonzero elements, arranged in a sort ofpé skfahe elements of
M are read in row major order (i.e. left to right across the o, then left to right on the second row,
etc.), then the last nonzero element to be read is the bottdine &/. The P, function pads with zeros in
such a way as to yield a large matrix of the correct size, vhittt last nonzero element in the exact center
of the large matrix.

Definition 1.18 For a given tensor size; x --- X s,, the set7 is defined to be the following set of
functions

T(s1ye-y8n) ={fm | M€ Z(s1 X+ X))} (1.35)
where
1 if M =0
fu(2) = {H(x7PL(M)) — H(z, PR(M)) otherwise (1.36)

2 Theoretical results

Proofs of the theorems below are provided in a separate dppavailable from the authors.
Theorem 2.1 The cardinality of the seE(s1,...,5,) ISN(s1,...,5n).

Theorem 2.2 The cardinality of the SeE (s, ..., s,) iS k1525 — N(s1,...,58,).

Theorem 2.3 The set of coefficient vectors for one minimal set of lineara¢iqns that define the trivial
conserved functions with energy windows of size (sy, ..., s,) is {e(s, Pz(A)) — e(s, Po(Pz(A))) |
Ae Z(s1,...,80)}

Theorem 2.4 The set of coefficient vectors for one set of linear equativaisdefines the conserved func-
tions with energy windows of size= (s1, ..., s,,) for cellular automaton rule? with neighborhood of
sizew = (w1, ..., wy,) IS
{e(s, Pz(A))—e(s, Po(Pz(A)) — e(s, T(R, Pz(A))) + e(s, T(R, Po(Pz(A))))
|A€Z_(sl+w1 *1,...,Sn+wn*1)}

Theorem 2.5 The set7 (s4, ..., s,,) is @ basis set for the space of all trivial additive conserfigittions
with energy windows of sizg X --- X s,,.

8 Leemon Baird, Barry Fagin

Theorem 2.6 A complement of the coefficient vectors for the equationsidgfihe trivials for energy
windows of size; X, ..., xs, is{Vi;(M) | M € Z}.

Note that by the definition of complements, this implies tivaen searching for conserved functions,
without loss of generality we can constrain the energy fionstto assign an energy of 0 to any window
that is a zero-sided tensor. This corresponds to deletirtginecolumns in the matrix that defines the
conserved functions. After that deletion, there will bausioins to those equations if and only if nontrivials
exist. If such solutions do exist, then those solutions aganteed to be nontrivial conserved functions,
and the union of those solutions with the trivials will spae space of conserved functions. This allows
faster searches for nontrivials.

Figure 1 summarizes all the theorems of this paper, giving &xamples of thel/ matrix for each

concept. Figure 2 applies the ideas of this paper to thetsasifl1] and [3], expressing the basis functions
as a linear sum of the matching H-functions of Definition 1.10

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 9

‘ . 0 ORIOEIO 00000
Energy window matrix goo 0 11171 1[N
Count: ™ 0000 EEEEl 00000

Zero-sided matrix

Sizeir ¢ 0 00000 00000 00000
Nr sy ke 4 =D 0 1o ORI000 00000
: i1 0 OfOI0 00000

7]‘:(7‘—1)((:—1)

0 00000 00000 00000
e o pement function 0 o 0000 00000
f(@) = H(z, M) (0]0/1[0) 0 Oglog10 00000
* I *kkkk *kkkk
M =* M M=* IOOO
Trivial conserved function *% %C%
Size:r x ¢ , flz)=1
f(z) = H(z, M) — H(z, M) I* % ooo*
M = * M= M =
0 % *k k%
01000 0000 [0] 0000
Sa;zerosided matrix 000 %dooo 50000 0000
Count:k"™ — N(r, c) 000! 000 00000 00000

Equations defining the
trivial conserved functions
Size:(2r — 1) x (2¢ — 1)

O§I0000000 000000000 000000000 000000000
0
0=e(M)—e(M")

0000000 000100000 000000000 000000000
00K10000 000kKI0000 QO%OOOO 000Q[10000

00000000 000000000 00 0000 000000000
000000000 000000000 000000000 000000000

Non-zero-sided matrix 0000] Booogoo 000000 000000
Size: (r +2) % (c+2) 0000 0000] 000000 000000
Cou 000000 00000 0000000 0000000

(+2>(2) 000000 0*0000 000000 0000000
k" 2 _ N(r+2,¢c+2) 0000K0 00000 f1000000 0000000

Equations defining

0[D00OKIOFI00000 0000000000000 000000F000000 0000000000000
oooooﬂgﬂ
the conserved functions ogoooo 0

00000 00000] 0000000 0000000000000 0000000000000
00000 000000000 0000000000000 0000000000000

Size: (2r + 3) x (2¢ + 3) 0f100000000000 0000000000 000000FI000000 0000000000000
pY OB0000K000000 000000M000080 0000000000008 000000H00000

0=e(M) —e(M") 0000000000000 0000000000000 0000000000000 0000000000000
0000000000000 0000000000000 0000000000000 0000000000000

—e(s(M e(s(M’ 0000000000000 0000000000000 0000000000000 0000000000000
(())+ (()) 0000000000000 0000000000000 0000000000000 0000000000000

Fig. 1: Summary of the main theoretical results of this paper, vatir £xamples of each concept. The proofs are for
arbitrary dimensions, neighborhood sizes, and number lofgdbut the figure shows only 2D examples, for a CA
with a3 x 3 neighborhood, ané = 2 colors. In each casé/’ is M with the central bit set to 0. For the equations,
the large matrix is formed by padding the small matrix withozesuch that the last 1 bit ends up in the center of the
large matrix (where “last” is the last 1 found when travegsihe elements in row major order). In each of the four
sections, the listed concepts all have the same count. Ron@e, the number of zero-sided matrices of a given size
equals the number of unit complement functions, which exjtied number of trivials.

10 Leemon Baird, Barry Fagin

CA Basis CABasis CABasis
170 £ (=) =H(z, 1) 24f(z) = H(w, O00R) 33f(z) = H(x, 000HO0OH00™®
204 15 g 217 (s, 000H00oHRILEY
12 f(2) =H(x.HO) AR = e socklooolERES)
— H(=
15 z) = - — H(>, 000K00OKKIORO)
EX @) =, T T H(~ 000HokIDDORkY)
B + H () 000HOEEBIORNE!)
43) — + H (=, 000NEIORO0 OFI* *
51 108f(w) = = H(xz, HOH0O) +2H(§,*0000000)
140 I ggx,uouoo) " H (. HOOEBIOE®I0000)
o T21(x, BBO0% + (o, Qoommiongloons)
x) =H(x, , *
200 f (z) =H (x,) + H(z, [EI0H) T H(z.OOOHU R0)
+ H(=, 000§El0| *
2 f(=) =H(z,000) 132f (2) =H (=, OHORI0) T Hgf oouooomouoog
3 + H(x, O*HOF¥I000F00)
- 23 f(x) = H(z OOKEI00) + H (a, O*IOKKEIOKI0 O)
4 f(x) =H(x, OHO) H (. g0 0ft) idggdc o*.o-o ooo;
@,
) —H(z, fI* - H(z.OO E1OrR1000 0)
10 f(2) =H (x, @¥0) 50 f(z) = H(x, OEEIO0H) = R onso
178 + H (a, g0 OFH0) +_H(x, 00K)
+3H (2, ORI ONEHIOFEI*)
56 :H,O — H (x, 00NNIOKERIONKIO
%@ ET “'iog 77 f1 (w) =H (=, OBI00H) n ng no'c')ﬂolo'ﬁuo%'é*;
=H (, (100EE0 + H(m,lOOlOODO-)
138 f(x) = H(z, B00) F2(=) (r, HOOMO) +25(w ooma 0000*)
+H (o, %) 232f1 (z) = ng ﬁ%ﬁ(jgg; - ng Eoouomooo og
=, :
1 f(x) =H(x, #000) +§Ez’08%'ﬂ) ngf Eggaoolﬂog
—H(x, 15 —H('YOOO OFRI0)
11 f(z) = H(x, BOOR) fo(z) = H(x, BI0OHE) - H(f £100] 0)
27 +H () BOEB) 2 — H(w, Hoomlopsmo st
(o) — H Ppy— + H (e, HOMSIOBIO00HL)
29 f(z) = H(x, F{00) =) +H E$ g) + H(ax, OEES
e i
H(z, ORI @ "
+H (=, B0) +H}z mlo‘aﬂﬂ,,.> izggm,mog%grﬁg::
— - e >,
R 5@ = He B0 +H (=, EEEEORE) T EERonRl0000-%)
73 f(z) =H (x, OREI00KNI0) ;Qggﬁ,momogogou)
72 f(x) =H (=, OEMO0) — H(x, 00.000)
7 f(z) = H(z, 000EEI000%) +2H (=, (N0
5 f1(x) = Hgl OEO"H% jrrggl Ogrl}?gggﬂlj) — H(z, L!!JOEJJOFJJOH)
x, B0 OF N
H (x, MOKOX) +H (x, uily) 164f (z) = H(ac OO[!0OF10 0F10 0%)
1 H(x, HOOMO) +H (=, ﬁ H (a, Ol OF&I O OF%10)
f2() = Hi= BAOWO) 94f(x) = H (v, OUENI0OOMENEION)
— + H (2, OO 0K 0} Ot)
19 f(z) = H(r,ﬂouoo) (&, ORWRIORO OBORT*)
H =, Bo0%) OFBB OF10 OFEI0)

104fy (x) = H (-, OOMOFORNIORIONO00)
+H (x, 0OHOEMERIOR00x)
~+H (, OOK§I0 OpgI00 0 **
+ H (o, OO0 OFRI0 OFIO* *)
+H (-, 0OREA0 OFI0 O Opt)
+ H (-, 0OREI0 OFI0 OFEEA¥)
fo (=) = H(x, OOEEI0OFEI0OFEI00)

Fig. 2. 1D Basis functions. For each CA, this lists the lowest-ordentrivial conserved functions. The
given functions, combined with the trivials, constitute asis set for the space of all conserved func-
tions for that CA. The table contains all 88 of the non-isopmic primitive CAs, except those that
are known to have no nontrivials (0,8,32,40,128,136,16880,30,90,154), and those that have no known
nontrivials and have been proved to have none at least up tb iacluding size 16 energy windows
(106,150,6,9,13,18,22,25,26,28,37,41,45,54,57,584628,105,110, 122,126,130,134,146,152,156,162).

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 11

3 Computational results

The challenge in identifying cellular automata with a noemat additive energy conservation function
(hereafter referred to as a "nontrivial”) is the enumenatid the trivial functions and their elimination
from the solution space. The actual calculation of the naiats can then be reduced to the calculation
of the null space of the system of corresponding state sppegiens. Thus the theorems and definitions
of the previous section may be used as the basis for compuuightdentification of cellular automata with
nontrivials of various orders. Computationally, this pgeds as follows:

1) Choose a CA and energy window size, s2).

2) For all possible matrices M given by Theorem 2.4, gendtateorresponding state space equations.

3) To remove the trivials from the solution space, deletectlemns associated with the zero-sided
tensors as determined by Theorem 2.6. This has the additienafit of significantly reducing the size of
the energy vectors and, therefore, the state space matiwasle.

4) Determine the rank of the resulting matrix. If it is fulinlg the system of equations has no solution,
and therefore no nontrivial exists for the given CA and windgize. If the matrix is rank-deficient, a
nontrivial exists. It is completely characterized by thaibavectors that are the columns of the matrix’s
null space.

In [1], we gave a complete taxonomy of binary nontrivials id» cellular automata up for energy
windows up to size 16. Using the definitions and theoremsipusly presented, we now extended these
results to binary 2D automata, for energy windows up to size 9

There are a total of*’ k-colored 2D cellular automata (ignoring isomorphic exg}i This number
is so large that any investigation other than a random sagdi effectively impossible. Accordingly,
drawing substantive conclusions about unrestricted 2Dleelautomata seems to the authors extraordi-
narily difficult. To reduce the scope of the problem and makeoae complete investigation possible, we
consider onlyouter totalisticCAs: Those for which the next state of the cell is a functioly @f the total
number of colors of a given type in the region surroundingdéké and the cell itself. For binary CAs,
this means that only the total number of 1's in a cell's nemtiood (including its own value) must to be
calculated to determine the cell’'s next state. Conway'’s &afi.ife is a cellular automaton of this type.

Restricting the search space to outer totalistic automgtéfisantly reduces the size of the problem.
For a 2D CA, the neighborhood is of size 9, and therefore tte# tmmber of occupied cells in a cell's
neighborhood ranges from 0 through 8. For binary automai@ o6 four outcomes are possible: (S)ame,
(B)irth, (D)eath, and (F)lip (Flip changes 0 to 1 and vicesa&r Thus any outer totalistic CA can be
represented as a character string of the form S,B,D,F. Ukiagotation, if we count the neighbors from
0 to 8 from left to right, Conway’s Game of Life would be writtes "DDSBDDDDD”. We refer to this
description at the CA'sule vector Note that the use of symbols S and F permits the incorpaorafithe
central state into the transition rule.

It is known that renumbering the colors of a CA in reverse o@ated changing the outcomes corre-
spondingly produces an CA identical to the original, up mmsrphism. Using the proposed notation,
this corresponds to reversing the order of the letters, pimg® with F, and swapping B with D. The rule
vector of every CA can be manipulated in this way to produceique and distinct isomorph, so the total
number of unique totalistic binary CAs48/2 = 2'7, This is considerably smaller than the non-totalistic
case.

The definitions and theorems in this paper give the dimessidrthe matrices to be analyzed as a
function of the energy window (independent of the CA beinglgred). We show the matrix sizes for

12 Leemon Baird, Barry Fagin

some 2D examples in Table 1.

Energy window Energy window
height(sy) width (s3) [logs rows] [logs cols]
1 2 16 1
1 3 19 2
1 4 23 3
2 2 20 4
1 5 26 4
1 6 29 5
2 3 25 6
1 7 32 6
1 8 35 7
2 4 29 8
1 9 39 8
3 3 30 9

Tab. 1: State matrix sizes for various energy windows

Column three shows the ceiling of the log base 2 of the maximumber of energy vectors needed
to determine the existence of a nontrivial. Column four shitie number of entries in each vector. This
is given by the total number of possible energy function gal@***2) minus the number of zero-sided
tensors given by Definition 1.15.

Because these matrices have far more rows than columns,peetedmost all of them to be full rank,
and therefore few nontrivial conservation functions sda@axist over the range of cellular automata. Since
full rank can be determined very quickly while rank-defi@gieannot be known until all the possible state
space vectors given by Theorem 2.3 have been examined éar lindependence, it would be inefficient
to build the full state space matrix for each CA and then datelits rank. Instead, we sift the sands of
cellular automata through a three-stage computationas sie

The first stage uses a "quick and dirty” algorithm to discartbenata with no nontrivials. This elim-
inates over 99% of the candidates. The second stage tal@satatthat have passed the first stage and
performs a little more work to try and drive the set of statacgpmatrices to full rank. This eliminates
about another 90% of the candidates it analyzes. The thagksbperates only on automata that have
passed the first two stages, performing exact arithmetiguai the optimizations of Theorem 2.3 to de-
termine whether or not a given CA has a nontrivial conseoveftiinction. If it does, its basis is calculated
and reported. Each stage is implemented in MATLAB.

In stage |, we compute the energy vector of Definition 1.14foe tensor at a time, attempting to add
it to an existing energy vector set via Gaussian eliminatioaensure that the rows in the state space ma-
trix at any time are always linearly independent. Beforehsaddition, however, we delete the columns
corresponding to the zero-sided tensors for the indicatedgy window. The total number of deleted

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 13

columns is given by Definition 1.15. None of the optimizasatiscussed in the proof of Theorem 2.3 are
performed at this stage. Instead, universe states areajedeandomly, the energy vectors of their cor-
responding tensors are calculated, and Gaussian eliminiatperformed on each vector relative to those
energy vectors already admitted into the state space mathxen the number of linearly independent
energy vectors is equal to the number of columns (the numbossible energy function values minus

the number of zero-sided tensors), full rank has been aetijand the CA/energy window pair under test
is known not to correspond to a nontrivial conservation fiamc

Since states are generated randomly in this stage, as apfwosehaustive enumeration of the appro-
priate tensors as given by Theorem 2.3, the number of statesrixbefore giving up on the possibility of
reaching full rank is a user-definable parameter. Emplyicak have found that setting N at 32x the max-
imum rank of the matrix gives a good tradeoff between quiakgotation on the one hand and admitting
too many false positives on the other.

During this stage, all arithmetic is performed modulo a $mpéme, to eliminate the possibility of
roundoff error or overflow. If full rank is reached, the matwould be full rank in exact arithmetic as
well, so the answer is correct. If full rank is not reachedwnitthe indicated time window, the matrix may
or may not be rank-deficient, so the CA is marked as a candidastage Il computation.

In stage I, candidate CA/window pairs that pass througHiteestage are subject to repeated random
state generation with a larger value of N for multiple attésnpNo other optimizations are performed
at this time. If no full rank matrix is produced (i.e. no limgaindependent energy vector set of the
cardinality given by Definition 1.14 is found), the pair is rked for analysis by stage III.

Stage 11l computation employs on-the-fly Gaussian elinigmator one-at-a-time energy vector gener-
ation, similar to the first two stages, but using double @ieciarithmetic and enumerating the state space
exactly as described in the proof of Theorem 2.3. To keep ¢inepuitations from overflowing, vectors
are reduced modulo the GCD of all their nonzero entries duttiis process, which means this stage is
the most computationally intensive. If Gaussian elimioan the entire set of energy vectors does not
produce a linearly independent set of Definition 1.14 caality) then constructed state space matrix has a
null space. That null space is calculated, and reportededsasis for all nontrivial conservation functions
for that particular CA/window combination.

To guard against the possibility of numerical error, thgést value observed during stage Il calcula-
tion is tracked and reported, to ensure that any possilifioverflow or loss of precision will be detected.
For all calculations reported here, this maximum value haays been well below that which could in-
duce error in double precision arithmetic. So we are confidenresults are correct. Nonetheless, as an
added safety check, we have implemented code which acceppat a CA, an energy window, and a
stage Il basis set reported as characterizing a nontriVidésts each vector in the basis set over large
numbers of randomly selected states by evaluating the gifiengtion through brute force dot product
calculation. In all cases, the resulting functions repblig stage Ill were conserved.

Table 2 shows the results of our computations for all outtligiic binary 2D cellular automata up
to isomorphism, for all energy windows up to order 9. It exteifil] to give a complete taxonomy of
conservation functions for all automata of this type. Fegu8 and 4 are similar to Figure 2, extended to
two dimensions. Figure 5 summarizes our current knowledd®aonservation functions.

14 Leemon Baird, Barry Fagin
CA# Rule rule vec (num neighbors) min | basis| comments
NCF| size
0|{1|2|3|4|5|6|7|8
0 S012345678¢ S| S| S| S| S| S| S| S| S| 1x1 | n/a |identity, conserves all
2 S1234567§ D| S| S| S| S| S| S| S| S| 1x2| 1 |conserves [11] pairs
8 S0234567§ S| D| S| S| S| S| S| S| S| 2x2| 5 |conserves 2x2 patterns
with >3 1's
10 S234567§ D SIRSIRS S| S| 2x2| 5 |identicalto8
21 B012/S01234567) B| B| B| S| S| S| S| S| S|3x3| 1
32 S01345674 S| S| D| S| S S| S| 2x2| 1 |conserves 2x2 pattern witl
all 1's
34 S134567¢ D| S| D| S| S| S| S| S| S| 2x2| 1 |identicalto 32
40 S034567¢§ S| D| D| S| S| S| S| S| S| 2x2| 1 |identicalto 32
42 S34567¢ D| D| D| S| S| S| S| S| S| 2x2| 1 |identical to 32
16386 B7/S1234567 D| S| S| S| S| S| S| B| S| 2x2| 4
16387 B07/S1234567)l S| S| S| S| S| S| B| S[3x3| 11
21845 B01234567/S| B| B| B| B| B| B| B| B| S| 3x3| 1 [conservesringofl’s
around a0
65532 B1234567/S| S S| 2x3| 1
65533 B01234567/S0 B S| 2x3 | 1 |identical to 65532
65534 B1234567/S{ D S| 2x3 | 1 |identical to 65532
65535 B01234567/S S| 2x3 | 1 |identical to 65532
65537 B08/S01234567 B| S| S| S| S| S| S| S| B|2x3| 7
65538 B8/S1234567| D| S| S| S| S| S| S| S| B|2x2| 8
65539 808/81234567- S S| S| S| S| S| S| B|2x3| 7 |identical to 65537
65541 B018/S01234567 B| B| S| S| S| S| S| S| B| 3x3| 1 |conserves [001 011 010]
65545 B08/S23456| B| D| S| S| S| S| S| S| B|2x3| 1 |conserves the difference
between [101 111] and
[111 101]
65546 B8/S23456| D| D| S| S| S| S| S| S| B| 2x2| 4 |conserves 2x2 patterns
with >3 1’s
65547 B08/S234567 D|S|S| S|S|S S B|2x3| 1 |[identicalto65545
65549 B018/S0234567 B S| S| S| S| S| S| B|3x3| 1 |[identicalto 65541
81921 BO078/S01234567 B| S| S| S| S| S| S| B|B|2x3| 1
81923 B078/S123456 S S| S| S| S| S| B|B|2x3| 1 |identicalto81921
131069 B012345678/S(B B|2x3| 1 |[identicalto 65532
131070 B12345678/S| D B| 2x3| 1 |identicalto 65532
131071 B012345678/ B|2x3| 1 |[identicalto 65532
131073 B0/S0123456 B| S| S| S| S| S| S| S| D| 2x3| 2
131075 B0/S123456 S| S| S| S| S| S| S| D|2x3| 2 |identical to 131073
131077 B01/S012345 B| B| S| S| S| S| S| S| D| 3x3| 1 |identical to 65541
131081 B0/S023456 D S|S|S|S|S|S|D|3x3| 9
131083 D|S|S| S|S|S| S|D|3x3| 9 |[identicalto131081
131085 S| S| S| S[S| S D|3x3]| 1 |[identicalto 65541
147459 S| S| S|S[S|B|D|3x3| 9
163483 S| S| S| S| S| D|D|3x3| 1 |conserves[011 100 101]
180227 S| S| S[S|S D|3x3| 1 |[identicalto 163843
196605 D|2x2| 4
196607 D| 2x2| 4 |ldentical to 196605
196611 2x3 | 2 |ldentical to 131073
196619 3x3 | 9 |lIdentical to 131081
262143 1x2 | 1 |Conserves [10] pairs

Tab. 2: Conservation functions of ordet 9 for 2D CA's

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 15

The first three columns of Table 2 are all different ways ohiifging the same automaton. The first
column is the decimal integer represented by a CA's ruleorgabtained by treating the symbols S,B,D,F
as the integers 0,1,2,3 respectively, and viewing the retdor as a number in base 4 with the most
significant digit on the right. The second column shows therGl& using the notation in [8]. Column
three is the CA's rule vector.

Columns four through six describe the nontrivial conseovefunction found. Column four shows the
dimensions of the energy window at which the first nontrivials discovered. Column five shows the
number of basis vectors in the null space of the CA's stateirifatr an energy window of the indicated
size. Column six contains, where appropriate, commentxiiésg the conservation function. A blank
entry in this column means that either no simple descripgiists or that describing the pattern would be
too complex to fit within the indicated space.

Symmetry arguments will show that analogous conservatiootfons for anyn x n window can also
be found for one that is x m. Thus the only energy windows examined were those that videast as
wide as they were tall.

16 Leemon Baird, Barry Fagin

CA Basis CA Basis CA Basis
174762f (z) =H (x, i) 200288 (@) = H(e, OB) 174752 f1 (=) :H(z,)
87381 f(z) =H (x, 00) - H(z,m) Fo () :H(T’m)
174760f () =H (=, i) fo(z) = H(x, Of) fa(@) :H(z,ﬁ)
= — H(x, M)
174730 f3(x) = H(x, Of)) e, o)
21845 f1 (z) = H(x, Of) 5 (x) =H(x,
21847 _ H(z_m)
—H () -
_ fa@ = H g v A T
fa(@) = H(z, O)) 152017 - H (2, g
g i
—H(=, E) 185918
402961 () — F(w. OBy 256681 f(x) = H(x, 00
fae) = HGe.owy PO = H) BT S T ggp
= H(e,) +H(, goa)
— H (, %) flog
° EA —H (o, o)
—H(o. g fo(z) = H(w, Of1) 0
H(%ﬂ) 7H(m’g§>
fa(e) = H(z, Of) -
+H(;r,Hﬂ) f3(e) = H(z, o) 349289f (=) = H("%E’ﬂ)
— H(I,E(i) *H(amﬁ)
191144f1 (z) = H(x, 00)
Ol
- fa(z) = H(m-?g) 109225 fq (@) =H (x, HOK)
— H(x, O) 1
il] b
fa@) = Hw 00) (=) = Hiz B £2(2) =H(z, ofe)
— H(x, 00 fe(x) = H(x,H0)
9o ¢ L 3925 1() = 1o Pl
f3(x) = H(x, Of1) fr(x) = H(zym) —H(a:,Eoﬂ)
— H(x,) +3H (x, OfY)
1] 1) = H)
fa(z) = H(z, OH) fg(z) = H(z, ON) Fa(a) = H“”’Eiﬂ)
+ H(I,;ﬂ) e
fa(x) = H(wygi)ﬂ)
- H(Ivgﬁ)
2 go) fo(w) = Hx HH)
+2H(z,%lé) fe(x) = H(x, OH)

fr(z) = H(T'ﬂﬂﬂ)

Fig. 3: 2D Basis functions. For each CA, this lists the lowest-ondentrivial conserved functions. The given
functions, combined with the trivials, constitute a basisfer the space of all conserved functions for that CA. The
table contains all of the non-isomorphic, 2-coldrx 3 neighborhood, outer totalistic CAs that have nontrividls o
size2 x 3 or smaller (the3 x 3 nontrivials are shown in Figure 4).

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata

CA Basis

CA Basis

109223 =H (x, OH10
109231 (=) (=)
43687

240303

196607f (v) =H (=, i)
1y

125609 =H
125609 f1(x) (z,)
&509s"

fa () =H (x, HOB)

i

F3(x) =H (x, BOB)
0

fala) :Hu.gﬁg)

000

f5(@) =H<z,3§§>

fo(x) :H<z.§ﬁ8>

0

fr(x) =H(x, 00H)

o

fg(x) =H(x, 00H)

coo

fg(x) =H(x, 000)

?e
o

60073 f1 (x) =H (x, #O*

22

fala) =H(x, °'§E)
3 (@) :H(I'gﬁ?
fale) =H(x, ﬁﬂ%)
f5(x) =H(x, %%3
fo(x) :Hu.gﬁg)

000
f7 (@) :H<m,3ﬁ§>

fg () =H(ww3ﬁ8)
0

z) =H(x, 00|
fo(z) =H(a s)

17478% (z) =

H(x, 000)+ H(z, 000)+
00| 00

00f 0]

— H(z, 00%)—H (z, 000)+
00 00
flox 0

— H(=z, 88¥)+H(m~ Qgg)*
[11p] 111

~ H(x, 00)— H(x, O0B)—
A

+2H (o, O — H (x, OB —
OR10 0% 0

- H(a:,;ﬁ%)—H(m,OiO)f

* *flo
*fo

- H(z,ﬁgg)—mm,%)—
]

— H(x, M)~ H(x, O8M)—
Hgo 00

- H(z,ﬁymziﬂa)f
ol x

- H(z,gﬁ)—H(z.aﬁ)f
000 B

H(x, 000)— H(x, 000)
* 0] 00

H(z, J00)— H(=, O0M)
0] 00

by Hou
H(z, 00§> — 2H(x, 00f)
00 00

90

H(x, 0) — 2H (x, 00')
00

H(z, 080) H«m;@é)
Eog Bo

H(z.gﬁ)— H(w, OH%)
& O
H(x, Of%)— H(x, OH0)
A
H(x, 0H0)— H(w, Of%)
B

e g o

Hoo 16

H(z,ww H(z,ﬁ)

+ H(:i;,é)ﬁ)—H(m,%gg) — 2H (w, %“)7 H(w, %oo)

O 1[0 1]
- H(:r,%OO)—H('r,QO*)— H(w,gggy H(x, gg
1118 *HO go

— H(x, H [01] H(xz,000)— H(x, &%

(z g l) (z, l; !)+ (I,OO) (z OD)

000 floo

- H(m,gé)—H(L,ggg)—

008

- H(I,E0§)+H(I Bmo)—

000

- H(z,%g)JrH(m,?gﬁ)*

1

— H(w,w)JrH(m,EEgIH

— H(s, S8~ Iz, (EE) -

*00 *00

- H(IvU)JrH(EVﬁ)Jr
119
11[¢
- H(%%ﬁ)*f{(rvm‘!)*
- H(E,F&)JrH(T,)—
111
hd 11}

H(zvgg%) 7214(1,8%)
H(z,%%o)— H(w, m81)

[TERd

H(zx,)7 H(zx, Eﬂ')
H(m,ﬁg) —QH(m,FB)
0 H

H(z,)+ H(x,m0)
.

H(myﬁo‘)* H(Eyﬁ)

O™

H(:x;,@)— H(:x;,w)
H(z, 51
111
119

Fig. 4: 2D Basis functions (continued). These are 3he 3 nontrivials, continued from figure 3.

17

18 Leemon Baird, Barry Fagin

raer Isomorpns, ule rder Isomorpns, ule
Order CA(isomorphs) Rul \HUH0000 Order CA(isomorphs) Rul 10000
00 100
EOE go godomo
[s'S} 0(255, 00000000 2(68,207,221 Xy 0000mEOO
oS L64,339,2532; Xyz 00000000 360095518 Xxvz 0000HER0
eI Xz oooumumo 5(85 X goo0Rfw
X 300 Wz 00100000 4(48.187,243) Yz 00§10
o dlesasoag) Tz OolloN000 stags9.is) xvzey Qofiooof
3 60(105155,195) x+y 00MEAN00 A112171.201) xyz+2z _ 00MOA0
oo 0(165 X+Z OIOgIOID 43(113) XYy+XZ+YZOU |DEO||
oo 06(120,169,225) xy+z 0 H ofo 51 00 g 0
3 128(254) Xy 16000000 1400196.205220) wZsy HOOOUY
X 136(192238,252) 9z Hacomo0e 212 wyexzryz 1000810
> 130 yse 000 0Hi0 00(236 SCATRR T
oo 4(166,180,210) xY+z 100MEON0 16,191,247) Yz oo00mo
X 188(234.234.248) X 8ﬁo 500 352119 00000m68
oo 4,234,248) XYz+z 1] 4
> 159,218))Xy+ 00000 10(80,175,245) Xz 0000|%5|0
< 111123 Xy+XZ 0000HGOW 56(08.185227) xY+Xyz OOWENO000
S 67953 xhyz Qoooliig 76(205) xyzsy’* OBOORI 00
< 83 Yz 000H00f 38(174,208.244) XVz+z 1000H0R0
< 51 Xixyz+vz 00 0fl 0ul 0 72(202.216228) Xyixz MOMOANO0
< 167,103) Xyz+YZ 0000@OOM 4 127 N7 60000008
< 21167181) xY7+Xz 000[UON0 4 5517,81,117) W5z odoononk
S BRES Bb Bl f el B skl
S R
218 H87107121) NBzv:00HOR00H 4 sb(szassoin yZivz OOROOMND
Sle semio s 88'?'@%5‘ 4 IGMIeTi200) Xyevz 8% 8% 0
S + Xy+yz
<16 87(99) XY 00 1 95 X g0o00uon
<16 38(114.163177) xv+xz 00MMHO 2 Xz+Y 00§10 |%
218 teisiiad X5y oonnnalo ARens0.231) oKz 000%%0
S1e 7aEelnane’ yzel OROOHORO 6(210 WziXy? 0OHOOM00
Sh R w Rl © o n sl
Xy
S 10(124,137,193) >2§/z+y+z ohhohnn% 3 Nakz+vz 600 |og |%|
<18 122(161 xixYZez . OWIUEONO 0(179) Xvz+y - 00ullo
> 26(129’ XY+Xz+yZ 0 g 0 7 Xy+XZ+yz Og %g %
218 1314812518 332 A0000aM 0 2% oahy Hai8uoso
> ,158,. +. +y: XY+XZ+yz
<16 1a6(182) X ZiY? fioono0H o 33100203,217) Yyss 68HolR00
S o i 8 SIS ot
> XZ+ ., . +. Z
218 Tealrensece2) Sz HORGOORO 12 SN 80 100008
1 170(240; z 10M0 |0g0 3 164(218) XyZ+xz gU oomo
I 1840926 vz Hollullode 14 odiss) xixyziz OpomAilE0
1 204 y HOOOOHOO0 14 104(233) XixvZ+yz OAOR000

Fig. 5: Summary of results for the primitive CAs (1D, 2-color, ndighhood of 3 cells). In each half of the table,
the first column gives the energy window size for the smalhesttrivial. A value ofoo indicates that it is known
no nontrivial can exist. A value of 16 indicates that no nontrivial exists with energy window afesil6 or below.
The next column has the CA name, and the names of the isonsd@#s. The next is the formula for the successor
function, where cells have state 0 or 1, three consecutile ae called x, y, z (with capitalized inverses, so X=1-x
etc.), and the formula modulo 2 gives the new state for y. Iiirtke successor function is shown graphically, giving
the new state as a function of the state in that cell and itsadiate neighbors (shown at the top of the column).

Faster Methods for Identifying Nontrivial Energy Conseiwa Functions for Cellular Automata 19

4 Analysis

Some patterns are clearly visible in Table 2, Figure 3, Figuand Figure 5. For all CA's for which non-
trivial conservation functions exist, there is a great agdlomogeneity in the middle range of neighbor
counts. For example, any given CA in the table has the samesiti@n rules for neighbor counts 3-6,
and most have identical transition rules for neighbor ce@a7. We conjecture this is combinatorically
driven. That is, for the middle range of neighbor countsreéhere so many different ways to distribute
a fixed number of neighbors among eight cells that a low-acdaservation function cannot incorporate
them all. By contrast, there is only one way to arrange zemigit neighbors around a cell, eight ways
to arrange one or seven, and so forth. Near the minimum andmoax of the neighbor count range,
the number of possible configurations is sufficiently sniedkta low-order conservation function is more
likely to emerge.

We also note that all CA's with rule vectors of the form xFFHF%, xSSSSSSSB, and xDSSSSSSB
have nontrivial conservation functions. All CA's of the ldxSSSSSSSx have a nontrivial as well, unless
exactly one of the x’s is 'S’.

Finally, our results show that all known nontrivials coperd to energy windows for which the width
and the height differ by no more than one. Whether this halgks for all nontrivials remains an open
question.

5 The Game of Life

Because of the special significance of Conway’s Game of IGf& #174666, rule B3/S23, rule vector
DDSBDDDDD), we have examined it for nontrivial energy comnvsgion functions up to order 13. None
have been found.

6 Conclusions and Future Work

Table 2 and Figures 3 through 5 represent a complete taxomdraly known nontrivial conservation
functions for 1- and 2-dimensional binary cellular automap to isomorphism. We have discussed some
of the patterns we have observed.

[1] introduced the notion of core nontrivials, recognizthgt cellular automata could exhibit different
nontrivials of higher orders that are not simple extensiohtower ones. We have yet to apply this
idea to the automata shown here. Thus the functions we raponly the first core nontrivials found.
The existence of multiple cores for 2D binary cellular auédaremains an open question. Detecting
such cores requires only well-understood modificationsutoexisting code, and is on our list of future
enhancements.

Number-conservingD cellular automata [2] are automata with transition rties conserve the sum of
the number of states in a neighborhood. A number-consefuimgion is one kind of energy conservation
function defined in Definition 1.8, where the function is slynfhe sum of all terms in the window. Our
work therefore includes number-conservation as a speagd.cThe theory described here applies to all
cellular automata with finite states and arbitrary dimenaiity. The results for 2D automata are all new.

Continuing improvements in computing power and furthenesfients of our codes should enable us to
identify nontrivials at increasingly higher orders. Théseence of nontrivialss fomn x n energy windows
with [m — n| > 1 remains an open question. Higher dimensional CAs, norigttaCAs, and k-colored
CAs could also be explored.

20 Leemon Baird, Barry Fagin

As yet, an elegant, unifying description of cellular autéan@elating their decision rules and a given
energy window to a nontrivial conservation function rensagtusive. While the general problem is un-
decidable, we have mapped out the space for lower ordersiaad/tmuter totalistic CAs well enough to
suggest some ideas for a more elegant classification scleméhte present ad hoc one we are currently
forced to adopt. Such a scheme may in fact exist, or it may irefoeever elusive, an fundamentally com-
plex property inherent in the nature of computational awttam We hope further work may yet resolve
this question.

7 Errata and Acknowledgments

Readers unfamiliar with automata conservation functioag mish to review [1]. In the course of prepar-
ing this paper, we noticed errors in the first three tablesuofooevious results. For the sake of complete-
ness, we present the necessary corrections to [1] here:

TABLE 1: Replace 98 with 94, replace 40 with 46

TABLE 2: Replace 136 with 200

TABLE 3: Replace 136 with 200, replace 248 with 232

The authors are grateful for the support of the Air Force Arag Center for Cyberspace Research,
and to the reviewers for their helpful comments.

References

[1] L. Baird and B. FaginConservation functions for 1-d automata: Efficient algomis, new results,
and a partial taxonomyJournal of Cellular Automata (2008), no. 4, 271-288.

[2] Nino Boccara and Henryk Fukdlumber-conserving cellular automaton rulésindam. Inform52
(2002), no. 1-3, 1-13.

[3] B. Fagin and L. BairdNew higher-order conservation functions for 1-d cellulat@mata Proceed-
ings of the IEEE Symposium on Atrtificial Life, April 1-5 2007.

[4] H. Fuks,Remarks on the critical behavior of second order additivairants in elementary cellular
automata Fundamenta Informatica&8 (2007), 329-341.

[5] T. Hattori and S Takesuéidditive conserved quantities in discrete-time latticeayical systems
Physica D49 (1991), 295-322.

[6] L. Kotze and W.H. Steelfinite dimensional integrable nonlinear dynamical systepp. 333-346,
World Scientific Publishing, New Jersey, 1998.

[7] M. Pivato,Conservation laws in cellular automatdlonlinearityl5 (2002), 1781-1793.

[8] Wikipedia, Life-like cellular automatonhttp://en.wikipedia.org/wiki/Life-like_
cellular_automaton , March 2010.

[9] S. Wolfram,A new kind of scien¢&\Volfram Media Inc., 2002.

Automata 2010 — 16™ Intl. Workshop on CA and DCS DMTCS proc. AL, 2010, 21-30

60/102 Null Boundary Cellular Automata
based expander graphs

Sung-Jin Cho'" and Un-Sook Choi? and Han-Doo Kim?® and Yoon-Hee
Hwang! and Jin-Gyoung Kim!
! Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea

2Department of Media Engineering, Tongmyong University, Busan 626-847, Korea
38chool of Computer Aided Science, Institute of Basic Science, Inje University, KimHae 621-749, Korea

Expander graphs are useful in the design and analysis of communication networks. Mukhopadhyay et al. intro-
duced a method to generate a family of expander graphs based on nongroup two predecessor single attractor Cellular
Automata(CA). In this paper we propose a method to generate a family of expander graphs based on 60/102 Null
Boundary CA(NBCA) which is a group CA. The spectral gap generated by our method is maximal. Moreover, the
spectral gap is larger than that of Mukhopadhyay et al.

Keywords: Expander graphs, 60/102 NBCA, Spectral gaps, Bipartite graphs, Eigenvalue.

1 Introduction

Expander graphs were first defined by Bassalygo and Pinsker and their existence first proved by Pinsker
in the early 1970s (10). Also expander graphs have utility in computational settings such as in the theory
of error correcting codes and the theory of pseudorandomness as well as a tool for proving results in
number theory and computational complexity (6; 8; 11). Expander graphs are useful in the design and
analysis of communication networks. Mukhopadhyay et al. introduced a method to generate a family
of expander graphs based on nongroup two predecessor single attractor Cellular Automata(CA). In this
paper we propose a method to generate a family of expander graphs based on 60/102 Null Boundary
CA(NBCA) which is a group CA. The merit of our method is that it use regular, modular and cascadable
structure of 60/102 NBCA (1; 3; 4) to generate regular graphs of good expansion property with less
storage. The spectral gap generated by our method is maximal. Moreover, the spectral gap is larger than
that of Mukhopadhyay et al. (9).

This work was supported by the Pukyong University Research Fund in 2009(PK-2009-26) .
1365-8050 (© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

22 S.-J. Cho, U.-S. Choi, H.-D. Kim, Y.-H. Hwang, J.-G. Kim

2 Preliminaries

CA consist of a number of interconnected cells arranged spatially in a regular manner, where the state
transition of each cell depends on the states of its neighbors. The CA structure investigated by Wolfram
(12) can be viewed as a discrete lattice of sites (cells), where each cell can assume the value either 0
or 1. The next-state of a cell is assumed to depend on itself and on its two neighbors (3-neighborhood
dependency). If the next-state function of a cell is expressed in the form of a truth table, then the decimal
equivalent of the output is conventionally called the rule number for the cell.

Neighborhood state 111 110 101 100 011 010 001 000
Next state 0 0 1 1 1 1 0 0 rule 60
Next state 0 1 1 0 0 1 1 0 rule 102

The top row gives all eight possible states of the three neighboring cells (the left neighbor of the ith
cell, the ith cell itself, and its right neighbor) at the time of instant . The second and third rows give the
corresponding states of the ith cell at the time of instant ¢ + 1 for two illustrative CA rules.

Informally, expander graph is a graph G = (V, E) in which every subset S of vertices expands quickly,
in the sense that it is connected to many vertices in the set S of complementary vertices.

Definition 2.1. (8) Suppose G = (V, E) has n vertices. For a subset S of V define the edge boundary
of S, 05, to be the set of edges connecting S to its complement S. That is, S consists of all those edges
(v,w) such that v € S and w ¢ S. The expansion parameter for G is defined by

.]
h(G)_swgflsI}z/z 5]

where | X | denotes the size of a set X.

Example 2.2. Suppose G is the complete graph with n vertices, i.e., the graph in which every vertex is
corglected to every other vertex. Then for any vertex in .S, each vertex in S is connected to all the vertices
in S, and thus |0S| = |S| x |S] = |S|(n — |S]). It follows that the expansion parameter for G is given by

. n
h(G) = S:lggm(n —18]) = [5

]

It is a marvellous fact that properties of the eigenvalue spectrum of the adjacency matrix A(G) can be
used to understand properties of the graph G. This occurs so frequently that we refer to the spectrum
of A(QG) as the spectrum of the graph G. It is useful because the eigenvalue spectrum can be computed
quickly, and certain properties, such as the largest and smallest eigenvalue, the determinant and trace, can
be computed extremely quickly (8).

Let G = (V, E) be an undirected graph and A(G) be the adjacency matrix of the graph G. And let
Ai(A(G))(1 < i < n) be eigenvalues of A(G). Then A(G) is a real symmetric matrix and thus diagonal-
ized. Without loss of generality we can assume that A (A(G)) > M (A(G)) = -+ > A\ (A(G)).

60/102 Null Boundary Cellular Automata based expander graphs 23

Lemma 2.3. (1) Let C be a CA where state transition matrix 7" and C’ be the complemented CA derived
from C where state transition operator 7. And let T" denote p times application of the complemented CA
operator 7. Then

T'fle)=IeTeT’ & & T '|F(z) & T"f(z)

where T is the characteristic matrix of the corresponding noncomplemented rule vector and F'(x) is an
n-dimensional vector (n=number of cells) responsible for inversion after XNORing. F'(z) has ’1” entries
(i.e., nonzero entries) for CA cell positions where XNOR function is employed and f(z) is the current
state assignment of the cells.

3 Properties of the eigenvalue spectrum

In this section, we give properties of the eigenvalue spectrum of the adjacency matrix A(G) of an undi-
rected graph G.

The following three theorems are well-known.

Theorem 3.1. Let G be an undirected d-regular graph whose adjacency matrix is A(G). Then
M (A(G)) =d.

Theorem 3.2. Let G be an undirected d-regular graph. Then G is connected if and only if \; (A(G)) >
A2(A(G)).

Theorem 3.3. Let G be an undirected d-regular graph. Then G is bipartite if and only if \;(A(G))
7An+1_1',(A(G))7Z' = 17 2, e, N

Now we define the gap for the d-regular graph G to be the difference A(G) = d — A\2(A(G)).

Theorem 3.4. (2) Let G be a d-regular graph with spectrum X\ (A(G)) > X (A(G)) > ---
An(A(Q)). Then

Y

< W(G) < /2dA(G)

Example 3.5. Let G be an undirected graph with the adjacency matrix A(G) as the following:

0100O0O0OO0O1200O0O0O0OO0ODO
101000O0O0OO0OO0OO0OT1O0O0O0T1
0100O0O0OO0O1O0O0O0OO0OO0OO0OZ20
00O0O0O10100100O01O00
00O0101000O0O0O0Z2O0O00
00O0O0O1O01000O01O0O0O0T1
00O0101000O020O0O0O0O0
T — 101 0000O0OO0O1O0O0OO0OT1O0OQO0
2 000O0O0O0OO0OO0OT1TO0O0OGO0OO0OO0T1
00010001101 00O0O0°O0
00O0O0O0O0OO0OZ2O0O010O0O0O0O0T1
0100O0100O0O0OOODT11TO0T1O0
00O0O0O0Z20000O0O0OT1TO0T1TO0O0
000100O0100O0O0OT1TO0T1TO0
002000O0O0O0O0OO0OT1O0T1O00
01000100101 00O0O00O0

24 S.-J. Cho, U.-S. Choi, H.-D. Kim, Y.-H. Hwang, J.-G. Kim

Then A1 (A(G)) = 4,22(A(G)) = M3(A(G)) = 2v2,M(A(G)) = A(A(G)) = 2,X6(A(G)) =
= M1(A(Q)) = 0, \2(A(G)) = AMi3(A(G)) = =2, Ma(A(G)) = Mi5(A(G)) = —2\[2, M6(A(G)) =
—4. Moreover, A(G) = 4 — 2v/2. Thus 2 — /2 < h(G) <4v2 - V2.
Since A1 (A(G)) > A (A(G)) and A\ (A(G)) = —A7-i(A(G))(t =1,2,---,16), G is connected and
bipartite.

4 60/102 NBCA based expander graphs

In this section we show a construction of a family of random d-regular graphs using 60/102 NBCA. Let
C be the n-cell 60/102 NBCA whose state transition matrix 7' is as the following:

1000 --- 000
0110 ---000
0011 ---000

T=\. . Lo
0000 --- 110
0000 --- 011
0000 00 1

Hereafter we write 7'by T' =< 60, 102,102, - - -, 102 >.

Clearly the characteristic (resp. minimal) polynomial ¢(z) (resp. m(z)) of T'is ¢(z) = (+ 1)™ (resp.
m(z) = (z + 1)"1). Since m(x) = (x + 1)"~1, we can obtain the following result. The proof of
Theorem 4.1 is very similar to the proof of Theorem 3.4 in (3).

Theorem 4.1. Let C be the n-cell 60/102 NBCA with state transition matrix 7" =< 60, 102,102, - - -, 102 >.
Let C’ be the complemented CA derived from C with complement vector (ay, - - -, an—1,1)*(a; € {0,1},i =
1,2,---,n — 1 where x* is the transpose of the given vector x) and state transition operator 7. If
ord(T) = 2%, then the following hold:

(a) all the lengths of cycles in C’ are the same.

20 if2el < p—1 <29
(b) O’I"d() {2a+1’ if?’L*1:2a+1.

Remark A By Theorem 4.1, the state transition diagram of C" does not have any attractor.

Example 4.2. Let C be the 4-cell 60/102 NBCA whose state transition matrix is 7' =< 60, 102, 102,102 >.
Then the structure and the state transition diagram of C are as the following.

Let F; = (0,0,0,1)!. Then by Lemma 2370 = 1,71 = 2, T2 = 7,73 = 4, T4 = 5, -+,
T14 =11 and T15 = 8. Thus we obtain the state transition diagram G of the state transition operator T’
of the complemented CA C} with complement vector F; = (0,0, 0,1)! of C. Also we see that ord(T) =
ord(T) = 4 and all lengths of cycles in C are all the same by Theorem 4.1. Diagrma

Fig. 2 shows the state transition diagram G and G of the complemented CA with F} = (0,0,0,1)*
and I, = (1,1,1,1) respectively whose two adjacency 8 x 8 matrices A(G1) and A(G>) respectively
using Example 4.2 are as the following.

25

60/102 Null Boundary Cellular Automata based expander graphs

000
0110

;

clock

0011

T=

¥

® » 00O

b o o —f o

"
%

W

001

0
(19—

Fig. 1: The structure and the state transition diagram of C

H0O0OO0OOOHOOOCOOOOOO

Co0O0O0OHOHOOCOOOOOO

) is as the following:

0 1
1 0
0 0
1 0
0 0
0 0
01
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
G)i

0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0

OHOHOOOOQECOOROOOO

COHOHOOOQOOOQOOOOQ

C000O0O-HOHOOOOOOOO

OC00000CO-HOO0O0O0O O

OC0O0O0O0O0OCOCOCOO0OHOH

OCo0O0O0O0O0OCOHOOOOOHO

OCoo0O0OO0O0OCOOHOHOOOO

OCoo0O0O0O0OCOOCOHOHOOO

1 and G5. Then A

0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
G

0000000 HOHOOO

CO0O000OOCOCOCOOO -~

A(G2)

C0O000O0OCOHOHOOOOO

C000000O0COCOHOHOO

OC0000000COCO0O~HO O

OC0O0O0O00COO0O0OHOHOO

0000000000000 HO

OCo0o0O0OO0O0OCOO~HOOOOO

coocooo0COMOHOOOOO

00000 COOHOOOOO

H0O0OO0OHOHOOOOOOOOO

00000 HOHOOOOOOOO

CO0O0O0OHOHOQOOOOOOOO

C0O00O0O-HOHOOOQOOOO

COHOO00O0O0OOO0QO0O000Q

OHOHOOOCOOOOOOOOO

HOHOOO0OOCO0OO0O0OO0O0OOO0OO

OHOHOOCOOCOOOOOOO

Let GG be the graph obtained by the union of the graphs

A(G1)

HOOOOOHOHMOHOOOOO

Co0O0COHOHOOOHOHHO

HOCOOOCHOOCOOOHOOO

OCHOHOQOOCOOOOHOHHO

COHOHOOOOOOO—HOOQ

oOHOHOOOCOOHOOOOOH

COHOHOOOHOHOO OO

coocooOHOHOHOOOOOH

HO0OHOO0O00O0OHOO0O0OO0OHO

cCoo-HOoOHOOOOOOO-HOH

C0O0O0HOHOHOOOOOHO

Co0OO0OHOHOOOHOHOOOO

C0OO00CHOHOOOHO OO

OHOCCOOHOHOHOOOO

HOHO0O0O0O00O0OHOHOOO

OHOOOOOHOOOOO-HOH

AG) =

The characteristic polynomial of A(G) is 2°(z — 4)(z + 4)(x — 2)*(x + 2)*. Hence the eigenvalues

of A(G) are Ay = 4, A2

—4.

-, %, 1)t (resp.
Let G (resp. Gs) be

As = —2, Aig
(07 *y 00

TX @ Fs.

0, A2

x,1)Y. Alsolet ThX = TX @ Fy and To X
the graph obtained from C] (resp. C5). And let G be the union of two graphs G; and G2 whose adja-

A1l
cency matrix is A(G1) and A(G2) respectively. Then G is a bipartite 4-regular graph.

:>\5:2’)\6:"':

(1,*7..

Therefore by Theorem 3.2 and Theorem 3.3 G is connected and bipartite. Fig. 3 shows the graph G with
Theorem 4.3. Let C be the 60/102 NBCA whose state transition matrix is 7. Let C} (resp. C})

the adjacency matrix A(G).
be the complemented CA derived from C with the complement vector F}

Fy

26 S.-J. Cho, U.-S. Choi, H.-D. Kim, Y.-H. Hwang, J.-G. Kim
(13—(6) (19—
(2—(9) 8
—(4) (a—(7

(g

@— Q—C
©
S
@—® @—

Fig. 2: The state transition diagram G, (resp. G2) of the complemented CA with ; = (0,0,0,1)" (resp.
Fr=(1,1,1,1))

Table 1 shows the eigenvalue spectrum of A(G) which is the union of G; and G2. In Table 1 let
F; = (0,1,1,1) and F» = (1,1,0,1)%. Then the eigenvalue spectrum of A(G)is A\ = 4,y = -+ =
As =2, ="-=X1 =0, A2 =+ = A5 = —2, A\ = —4. Therefore in this case the graph G is a
bipartite 4-regular graph.

Table 2 shows the result of an experimentation performed with the 60/102 NBCA based regular graph.
It measures the value of the two largest eigenvalues for random 60/102 NBCA based graphs for degree
4,8,12 and 16. Our results show that the spectral gap and hence the expansion increases proportionately
with the number of union operations (¢). Table 3 shows that the spectral gap by the our method is larger
than the spectral gap by Mukhopadhyay’s method (9).

Theorem 4.4. Let C be the n-cell 60/102 NBCA. Also let x = (x1,x2, -+, x,)" be a state of the
state transition diagram of the state transition matrix 7" of C. Then the immediate predecessor y =
(y1,y2," -+, yn)" Of x satisfies the following:

Y = T1,Yn = Tn, Y = Tk @yk-‘rl (kzzaan_l)

Remark B It is easy to see that the inverse matrix 7! of T is of the following form.

So the required time to get the immediate predecessors is O(n). For the given n-cell 60/102 NBCA,
the construction of d-regular graphs which have the maximum spectral gaps depend on the relationship
between F; and Fy. For example, in Table 1 let F; = (0,0,0,1)" and > = (1,1,1,1)". Then the spectral

60/102 Null Boundary Cellular Automata based expander graphs 27

Fig. 3: The graph G

gap is 2 which is the maximum value in the 4-regular graph.

Now let
Fll = (07a27a37"'7an727071 ‘ai S {071}>Z:2>7n_2}

{)
Fio ={(0,a9,as3, -+,an—2,1,1)|a; € {0,1},i =2,--- ,n—2}
Fy1 ={(1,az2,as, - +,an-2,1,1)]a; € {0,1},0=2,---,n — 2}
{(1,az2,as3, - -,an—2,0,1)]a; € {0,1},i =2,---,n — 2}
and let U = (Fy1 x Fa1) U (Fia X Fya).

Choose the complement vectors Fy, Fy such that (F7, Fy) € U. Let G (resp. G2) be the graph with
Fy (resp. F5). Then we can construct an expander graph where spectral gap is maximal.

S.-J. Cho, U.-S. Choi, H.-D. Kim, Y.-H. Hwang, J.-G. Kim

Table 1. The eigenvalue spectrum of A(G)
The eight vectors on the first row(resp. column) are the complement vectors Fj(resp. F5)

] | oooo | oot0 [o0 [orio [oot [oot | o | o1 |
1000 | -42) 4D 42 41
1100 | 0(10) 24) 0(10) 24 4D 41 41 4D
4(4) 0) 44 04) 2.82842) | -2.8284(2) | -2.8284(2) | -2.8284(2)
2(4) 2(4) -2(2) -2(2) -2(2) -2(2)
43) 403) 0(6) 0(6) 0(6) 06)
1010 -4(1) -4(2) -4(1) -4(2) 2(2) 2(2) 2(2) 2(2)
1o | 2@ 0(10) 24 0(10) 2.82842) | 2.82842) | 2.8284(2) | 2.8284(2)
0(4) 44) 04) 4(4) 41 41 4(1) 41
2(4) 2(4)
4(3) 43)
1001 -4(2) -4(1) -4(2) -4(1)
1101 012) 2(4) 012) 24)
2.8284(2) | -2.8284(2) | 2.8284(2) | -2.8284(2) 42 0(6) 42) 06)
-2(2) -2(2) -2(2) -2(2) 2(4) 2(4)
0(6) 0(6) 0(6) 0(6) 41 4
1011 20) 20) 20) 20) -4(1) 4(2) -4(1) -42)
1111 | 2.8284(2) | 2.8284(2) | 2.82842) | 2.8284(2) 2(4) 0(12) 2(4) 0(12)
4(2) 42) 42) 4(2) 0(6) 42) 0(6) 42)
2(4) 2(4)
4(1) 4(1)

Table 2. Spectrum of the 4-cell 60/102 NBCA based regular graph

No. of Complement Degree First Second Spectral g/t
Union (t) vector Eigenvalue | Eigenvalue | Gap (g)
1 1,15 4 4 2 2 2
3 1,3,9,15 8 8 4 4 1.33
5 1,3,59,11,15 12 12 2 10 2
7 1,3,5,7,9,11,13,15 16 16 0 16 2.2857

Table 3. Comparison of Mukhopadhyay’s spectral gaps with our spectral gaps

No. of Union (t) | g/t(Mukhopadhyay’s method) | g/t(Our method) |
1 0.76 2
3 1.03 1.33
5 1.14 2
7 1.54 2.2857

60/102 Null Boundary Cellular Automata based expander graphs 29

The following algorithm shows computing the four neighbors of a vertex in G which is the union of G
and Gs.

Algorithm. Computing neighbors of a vertex in G
Input: Complement vectors (Fy, F5) € K and a state x € G.
Output: The four neighbors (S, Sa, P1, P2) of x.
Step 1: Find the next state S; (resp. S») of x using the operator T'; (resp. T'5).
Sl :Tlx: TXEBFl
Sy =Tox =Tx & Fy
/* Find the immediate predecessor P; (resp. P») by using Theorem 4.4 in Step 2 and Step 3 */
Step 2: Compute W :=x® Fyand V :=x & F>.
Step 3: For W = (wy,wa, -, wy,) and V = (v1,va, -+, v,), find Py := (p11,p12,+ ", P1n) and
P = (p217p227 s 7p2n)

P11 = W1, Pln = Wn, P1k = Wk D P1k+1

P21 = V1, P2n = Un, P2k = Uk D D2k+1

where k = 2,---,n — 1.

In general the description of an expander d-regular graph grows exponentially with the number of ver-
tices as the increase of the size of 60/102 NBCA. However as we require to store only two complement
vectors F and F3, this problem is solved by the above algorithm.

5 Conclusion

In this paper, we proposed a method to generate expander graphs with good expansion properties based
on group 60/102 NBCA. The expansion properties by our method is better than the expansion properties
proposed by Mukhopadhyay et al.

References

[1] P. Pal Chaudhuri, D. Roy Chowdhury, S. Nandi, and S. Chattopadhyay. Additive cellular automata
theory and its application i, ieee computer society press, california. /IEEE Computer Society Press,
California, 2000.

[2] J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. in problems in analysis(papers
dedicated to solomon bochner, 1969, 195-199). Princeton Univ. Press, 1970.

[3] S.J. Cho, U.S. Choi, H.D. Kim, and Y.H. Hwang. Analysis of complemented ca derived from linear
hybrid group ca, computers and mathematics with applications. Computers and Mathematics with
Applications, 53:54-63, 2007.

30 S.-J. Cho, U.-S. Choi, H.-D. Kim, Y.-H. Hwang, J.-G. Kim

[4] SJ. Cho, U.S. Choi, H.D. Kim, Y.H. Hwang, J.G. Kim, and S.H. Heo. New synthesis of one-
dimensional 90/150 linear hybrid group cellular automata. /EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26:1720-1724, 2007.

[5] W.Diffie and M. Hellman. New direction in cryptography. IEEE Transaction on Information Theory,
pages 644654, 1976.

[6] D.Peleg and E.Upfal. Constructing disjoint paths on expander graphs. Combinatorica, pages 289—
313, 1989.

[7] O. Goldreich. Candidate one-way functions based on expander graphs. Cryptology ePrint Archieve,
Report 200/063, pages 1-9, 2000.

[8] S. Hoory, N. Lindal, and A. Wigderson. Expander graphs and their applications. Bull. AMS, 2006.

[9] D. Mukhopadhyay and D.R. Chowdhury. Generation of expander graphs using cellular automata
and its applications to cryptography. LNCS, 4173:636-645, 2006.

[10] M.S. Pinsker. On the complexity of a concentrator. In 7th International Telegraffic Conference,
pages 1-4, 1973.

[11] M. Sipser and D. Spielman. Expander codes. IEEE Transactions on Information Theory, 42:1710—
1722, 1996.

[12] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys., 55:601-644, 1983.

Automata 2010 — 16™ Intl. Workshop on CA and DCS DMTCS proc. AL, 2010, 31-44

Probabilistic initial value problem for cellular
automaton rule 172

Henryk Fuks |

Department of Mathematics, Brock University, St. Catharines, ON L2S 3A1, Canada

We present a method of solving of the probabilistic initial value problem for cellular automata (CA) using CA rule
172 as an example. For a disordered initial condition on an infinite lattice, we derive exact expressions for the
density of ones at arbitrary time step. In order to do this, we analyze topological structure of preimage trees of
finite strings of length 3. Level sets of these trees can be enumerated directly using classical combinatorial methods,
yielding expressions for the number of n-step preimages of all strings of length 3, and, subsequently, probabilities of
occurrence of these strings in a configuration obtained from the initial one after n iterations of rule 172. The density
of ones can be expressed in terms of Fibonacci numbers, while expressions for probabilities of other strings involve
Lucas numbers. Applicability of this method to other CA rules is briefly discussed.

Keywords: cellular automata, initial value problem, preimage trees

1 Introduction

While working on a certain problem in complexity engineering, that is, trying to construct a cellular au-
tomaton rule performing some useful computational task, the author encountered the following question.
Let f:{0,1}* — {0, 1} be defined as

To ifxl = 0,
ry ifxy =1.

f(@1, 22, x3) :{ ey

This function may be called selective copier, since it returns (copies) one of its inputs x5 or 3 depending
on the state of the first input variable x;. Suppose now that s be a bi-infinite sequence of binary symbols,
ie.,8 = ...5.25_1505152..., ¢ € Z. We will transform this string using the selective copier, that is,
for each i, we keep s; if it is preceded by 0, or replace it by s; 1 otherwise, so that each s; is simulta-
neously replaced by f(s;—1, S;, Si+1). Consider now the question: Assuming that the initial sequence is
randomly generated, what is the proportion of 1’s in the sequence after n iterations of the aforementioned
procedure?

The author acknowledges partial financial support from Natural Sciences and Engineering Research Counclil of Canada, in the
form of a Discovery Grant.

1365-8050 (© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

32 Henryk Fuks

Function defined by eq. (1) is a local function of cellular automaton rule 172, using Wolfram number-
ing, and the aforementioned question is an example of a broader class of problems, which could be called
probabilistic initial value problems for cellular automata: given initial distribution of infinite configura-
tions, what is the probability of occurrence of a given finite string in a configuration obtained from the
initial one by n iterations of the cellular automaton rule? In what follows, we will demonstrate how one
can approach probabilistic initial value problem using cellular automaton rule 172 as an example.

2 Basic definitions

LetG = {0,1,...N —1} be called a symbol set, and let S(G) be the set of all bisequences over G, where by
a bisequence we mean a function on Z to G. Set S(G) will be called the configuration space. Throughout
the remainder of this text we shall assume that G = {0, 1}, and the configuration space S(G) = {0,1}%
will be simply denoted by S.

A block of length n is an ordered set bgby . ..b,_1, wheren € N, b; € G. Let n € IN and let 5,, denote
the set of all blocks of length n over G and B be the set of all finite blocks over G.

For r € N, a mapping f : {0,1}?>" ™!+ {0, 1} will be called a cellular automaton rule of radius r.
Alternatively, the function f can be considered as a mapping of By, 1 into By = G = {0, 1}.

Corresponding to f (also called a local mapping) we define a global mapping F : S — S such that
(F(8))i = f(Sizry---ySiy...,Siqr) forany s € S.

A block evolution operator corresponding to f is a mapping f : B +— B defined as follows. Let r € N
be the radius of f, and let a = aga; ...a,—1 € B, where n > 2r + 1 > 0. Then

f(a) = {f(ai, ait1, ..., air2r) Hig (@)

Note that if b € Ba,4+1 then f(b) = £(b).

We will consider the case of G = {0,1} and r = 1 rules, i.e., elementary cellular automata. In this
case, when b € Bs, then f(b) = £(b). The set B3 = {000, 001,010,011, 100, 101,101,110, 111} will be
called the set of basic blocks.

The number of n-step preimages of the block b under the rule f is defined as the number of elements
of the set f~"(b). Given an elementary rule f, we will be especially interested in the number of n-step
preimages of basic blocks under the rule f.

3 Probabilistic initial value problem

The appropriate mathematical description of an initial distribution of configurations is a probability mea-
sure 1 on S. Such a measure can be formally constructed as follows. If b is a block of length £, i.e.,
b = bob; ...bx_1, then for ¢ € Z we define a cylinder set. The cylinder set is a set of all possible config-
urations with fixed values at a finite number of sites. Intuitively, measure of the cylinder set given by the
block b = by . .. bx_1, denoted by p[C;(b)], is simply a probability of occurrence of the block b in a place
starting at 4. If the measure p is shift-invariant, than p(C;(b)) is independent of 4, and we will therefore
drop the index ¢ and simply write p(C(b)).

The Kolmogorov consistency theorem states that every probability measure p satisfying the consistency
condition

plCi(by ... bg)] = p[Ci(by - .. b, 0)] 4+ p[Ci(by ... by, 1)] 3)

Probabilistic initial value problem for cellular automaton rule 172 33

extends to a shift invariant measure on S (Dynkin, 1969) .For p € [0, 1], the Bernoulli measure defined
as u,[C(b)] = p/(1 — p)*~9, where j is a number of ones in b and k — j is a number of zeros in b, is
an example of such a shift-invariant (or spatially homogeneous) measure. It describes a set of random
configurations with the probability p that a given site is in state 1.

Since a cellular automaton rule with global function /" maps a configuration in S to another configura-
tion in S, we can define the action of F' on measures on S. For all measurable subsets E of S we define
(Fu)(E) = u(F~'(E)), where F~1(E) is an inverse image of F under F.

If the initial configuration was specified by 1,,, what can be said about F'"* u,, (i.e., what is the probability
measure after n iterations of F')? In particular, given a block b, what is the probability of the occurrence
of this block in a configuration obtained from a random configuration after n iterations of a given rule?

The general question of finding the iterrates of the Bernoulli measure under a given CA has been
extensively studied in recent years by many authors, including, among others, Lind (1984); Ferrari et al.
(2000); Maass and Martinez (2003); Host et al. (2003); Pivato and Yassawi (2002, 2004); Maass et al.
(2006) and Maass et al. (2006). In this paper, we will approach the problem from somewhat different
angle, using very elementary methods and without resorting to advanced apparatus of ergodic theory and
symbolic dynamics. We will consider iterates of the Bernoulli measure by analyzing patterns in preimage
sets.

For a given block b, the set of n-step preimages is £ ~"(b). Then, by the definition of the action of F' on
the initial measure, we have

(F" 1) (C (D) = pp (F7(C(1))) @
and consequently

(Fhup)(C) = > mpla).)

acf—n(b)

Let us define the probability of occurrence of block b in a configuration obtained from the initial one by n
iterations of the CA rule as

Po(b) = (F"1p)(C(D))- ©)

Using this notation, eq. (5) becomes

Pu(b)= Y Pola). (7

acf—n(b)

If the initial measure is 1, /5, then all blocks of a given length are equally probable, and Py(a) = ﬁ
where |a| is the length of the block a. For elementary CA rule, the length of n-step preimage of b is
2n + |b], therefore

P, (b) = 27111727 card £ (b). (8)

This equation tells us that if the initial measure is symmetric (y; /2), then all we need to know in order to
compute P, (b) is the cardinality of £~"(b). One way to think about this is to draw a preimage tree for b.
We start form b as a root of the tree, and determine all its preimages. Then each of these preimages is
connected with b by an edge. They constitute level 1 of the preimage tree. Then, for each block of level 1,
we again compute its preimages and we link them with that block, thus obtaining level 2. Repeating this
operation ad infinitum, we obtain a tree such as the one shown in Figure 1. In that figure, five levels of the
preimage tree for rule 172 rooted at 101 are shown, with only first level labelled.

34 Henryk Fuks

Fig. 1: Preimage tree for rule 172 rooted at 101.

Note that card £~"(b) corresponds to the number of vertices in the n-th level of the preimage tree.
One thus only needs to know cardinalities of level sets in order to use eq. (8), while the exact topology
of connections between vertices of the preimage tree is unimportant. The key problem, therefore, is to
enumerate level sets. In order to answer the question posed in the introduction, we need to compute P, (1)
for rule 172, which, in turn, requires that we enumerate level sets of a preimage tree rooted at 1. It turns
out that for rule 172 the preimage tree rooted at 1 is rather complicated, and that it is more convenient to
consider preimage trees rooted at other blocks. In the next section, we will show how to express P, (1) by
some other block probabilities. From now on, f will exclusively denote the block evolution operator for
rule 172.

4 Block probabilities

Since f~1(1) = {010,011, 101,111}, we have Py1(1) = P,(010) + P,(011) + P, (101) + P, (111).
Due to consistency conditions (eq. 3), P,(010) + P,,(011) = P, (01), and we obtain

Poi1(1) = P,(01) + P,(101) + P, (111).)

Probabilistic initial value problem for cellular automaton rule 172 35
This can be transformed even further by noticing that P, (01) = P, (001) + P, (101), therefore

Po(1) = Po_1(001) + 2P, _1(101) + P,_1(111). (10)
By using eq. (8) and defining ¢,, = P,,(1) we obtain

card f~"T1(001) + 2 card £7"1(101) + card £~ T1(111)
92n+1

. (11)

Cn =

This means that in order to compute c,,, we need to know cardinalities of n-step preimages of 001, 101,
and 111.

5 Structure of preimage sets

The structure of level sets of preimage trees rooted at 001, 101, and 111 will be described in the following
three propositions.

Proposition 5.1 Block b belongs to £~™(001) if and only if it has the structure

b=%%...x001 %% ...%, (12)
—— N——r

n n

where represents arbitrary symbol from the set {0, 1}.

Let us first observe that f~1(001) = {00010,00011, 10010, 10011}, which means that £ =1 (001) can be
represented as * * 001 x . Similarly, therefore, f -2 (001) has the structure * = x001 %+, and by induction,
for any n, the structure of £~"(001) must be % ... x001x % ... O

—— ——

n n

Proposition 5.2 Block b belongs to £~"(101) if and only if it has the structure

b=x%*...xaias...a,1101, (13)
n—1
where a; € {0,1} fori =1,...,n and the string a1as . . . a,, does not contain any pair of adjacent zeros,

that is. a;a;41 # 00 foralli=1,...,n— 1.

Two observations will be crucial for the proof. First of all, f~1(101) = {01101, 11101}, thus £~!(101)
has the structure x1101. Furthermore, we have f~!(1101) = {011101, 101101, 111101}, meaning that if
1101 appears in a configuration, and is not preceded by 00, then after application of the rule 172, 1101
will still appear, but shifted one position to the left. All this means that if b is to be an n-step preimage of
101, it must end with 1101. After each application of rule 172 to b, the block 1101 will remain at the end
as long as it is not preceded by two zeros.

Now, let us note that f~1(00) = {0000, 0001, 1000, 1001, 1100}, which means that preimage of 00 is
either 1100 or x00x. Therefore, we can say that if 00 is not present in the string ajas . . . a,, it will not
appear in its consecutive images under f. Thus, block 1101 will, after each iteration of f, remain at the
end, and will never be preceded by two zeros. Eventually, after n iterations, it will produce 101, as shown

36 Henryk Fuks

in the example below.

O~ =

o O OO
SO O OO
— = = =
O e O
= O e e O
—O = = O
— D ek

— O -

What is left to show is that not having 00 in a;as . . . a,, is necessary. This is a consequence of the fact
that £(x00x) = 00, which means that if 00 appears in a string, then it stays in the same position after
the rule 172 is applied. Indeed, if we had a pair of adjacent zeros in ajas . .. a,, it would stay in the
same position when f is applied, and sooner or later block 1101, which is moving to the left, would come
to the position immediately following this pair, and would be destroyed in the next iteration, thus never
producing 101. Such a process is illustrated below, where after three iterations the block 1101 is destroyed
due to “collision” with 00. O

O~

o O O O
SO O OO
[ev i an B en B e B e B an}
— e e = =
—_ O e O
= O = m O
— D ek

— -

Proposition 5.3 Block b belongs to £~"(111) if and only if it has the structure

b:**...*alag...an+57 (14)
n—2
where a; € {0,1} fori =1,...,n and the string aias . . . a,, satisfies the following three conditions:

(i) aja;+1 00 foralli=2...n+4;
(ii) any3aniaanys # 110 and anq 06,430,144 7# 110;
(iii) if araz # 00, then apy10n4+2an4+3 7 110.

We will present only the main idea of the proof here, omitting some tedious details. It will be helpful to
inspect spatiotemporal pattern generated by rule 172 first, as shown in Figure 2. Careful inspection of this
pattern reveals three facts, each of them easily provable in a rigorous way:

(F1) A cluster of two or more zeros keeps its right boundary in the same place for ever.

(F2) A cluster of two or more zeros extends its left boundary to the left one unit per time step as long as
the left boundary is preceded by two or more ones. If the left boundary it is preceded by 01, it stays
in the same place.

(F3) Isolated zero moves to the left one step at a time as long as it has at least two ones on the left. If an
isolated zero is preceded by 10, it disappears in the next time step.

Probabilistic initial value problem for cellular automaton rule 172 37

1
e ————

3 EPRE I

T
T
n

T

s

T

Fig. 2: Example of a spatiotemporal pattern produced by rule 172.

Let us first prove that (i)-(iii) are necessary. Condition (i) is needed because if we had 00 in the string
as . ..Gan4s5, its left boundary would grow to the left and after n iterations it would reach sites in which
we expect to find the resulting string 111.

Moreover, string ajas . . . a,+5 cannot have 011 at the end position, one site before the end, or two sites
before the end. If it had, O preceded by two 1’s would move to the left and, after n iterations, it would
reach sites where we want to find 111. The only exception to this is the case when apga; = 00. In this
case, even if 011 is in the second position from the end, it will disappear in step n — 1. This demonstrates
that (ii) and (iii) are necessary.

In order to prove sufficiency of (i)-(iii), let us suppose that the string b satisfies all these conditions
yet £(b) # 111. This would imply that at least one of the symbols of £”(b) is equal to zero. However,
according to what we stated in F1-F3, zero can appear in a later configuration only as a result of growth
of an initial cluster of two of more zeros, or by moving to the left if it is preceded by two ones. This,
however, is impossible due to conditions (i)-(iii). O.

6 Enumeration of preimage strings

Once we know the structure of preimage sets, we can enumerate them. For this, the following lemma will
be useful.

Lemma 6.1 The number of binary strings aias . . . a, such that 00 does not appear as two consecutive
terms a;a;41 is equal to Fy, o, where F, is the n-th Fibonacci number.

This result will be derived using classical transfer-matrix method. Let g(n) be the number of binary
strings ajas . . . a,, such that 00 does not appear as two consecutive terms a;a;+1. We can think of such
string as a walk of length n on a graph with vertices v; = 0 and v, = 1 which has adjacency matrix A
given by Ay; =0, A1 = Ay = Ao = 1. One can prove that the generating function for g,

oo

G(A) =) gn+1)A", (15)

n=0

38 Henryk Fuks
can be expressed by G(A\) = G11(\) + G12(A) + Ga1(A) + Gaz(A), where

(—1)i+ det(I — AA : 4, 1)

Gij = det(I — \A) ’

(16)

and where (M : j,4) denotes the matrix obtained by removing the j — th row and ¢ — th column of M.
Proof of this statement can be found, for example, in Stanley (1986). Applying this to the problem at hand
we obtain

—(2+X)
G\) = ————. 17
W= e an
By decomposing the above generating function into simple fractions we get
3 1 1_ 3
=vVH—5 —5— b
G()\) = 10 2 2" 10V2 18
) A+ A+1—9 (18)
where ¢ = % + % 5 is the golden ratio. Now, by using the fact that
1 [e%s) 1 n+1
_—=— — A" 19
A+ ,;) ((G) 1
and by using a similar expression for m, we obtain
G(A) =) Fuys\", (20)
n=0
. : : Al € Sk _
where F, is the n-th Fibonacci number, F;,, = T This implies that g(n) = F,42. O
Proposition 6.1 The cardinalities of preimage sets of 001, 100, 101 and 111 are given by
cardf7"(001) = 4", 2D
cardf~"(101) = 2" 7'F, 1o, (22)
cardf7"(111) = 2"F,4s. (23)

Proof of the first of these formulae is a straightforward consequence of Proposition 5.1. We have 2n
arbitrary binary symbols in the string b, thus the number of such strings must be 22" = 47,

The second formula can be immediately obtained using Lemma 6.1 and Proposition 5.1. Since the
first n — 1 symbols of £~™(101) are arbitrary, and the remaining symbols form a sequence of n symbols
without 00, we obtain

card f~"(101) = 2" "1 F, 5. (24)

In order to prove the third formula, we will use Proposition 5.3. We need to compute the number
of binary strings ajas . ..a,+5 satisfying conditions (i)-(iii) of Proposition 5.3. Le us first introduce a
symbol a;; g . . . ayy; to denote the string of length £ in which no pair 00 appears. Then we define:

e A is the set of all strings having the form aj s . . . a5,

Probabilistic initial value problem for cellular automaton rule 172 39

e A, is the set of all strings having the form oy . .. 12110,

A, is the set of all strings having the form o s . .. @, 11101,

Ag is the set of all strings having the form a; a5 . . . a, 11010,

Ay is the set of all strings having the form a5 . .. a, 11011,

B is the set of all strings having the form 001 . . . 42,

B; is the set of all strings having the form 001a; s . . . ay, —1 110,

B is the set of all strings having the form 001 . .. a,—21101.

The set) of binary strings ajas .. .ay,+5 satisfying conditions (i)-(iii) of Proposition 5.3 can be now
written as
Q=A\ (A1 UAsUA3U A) UB\ (B U By). (25)

Since A; ... A4 are mutually disjoint, and B; and Bs are disjoint too, the number elements in the set €2 is

card Q = card A — card A; — card As— card A3 — card Ay (26)
+ card B — card By — card Bs,

which, using Lemma 6.1, yields
card () = Fn+7 - (Fn+4 + Fn+3 + Fn+2 + Fn+2) + Fn+4 - (Fn+1 + Fn) (27)

Using basic properies of Fibonacci numbers, the above simplifies to card {2 = 4F}, ;3. Now, since in the
Proposition 5.3 the string a; . . . a,5 is preceded by n — 2 arbitrary symbols, we obtain

card £7"(111) = 2" 2 - 4F, 13 = 2" F 43, (28)

what was to be shown.

7 Density of ones

Using results of the previous section, eq. (11) can now be rewritten as

_ 47171 + 2n71Fn+1 + 2n71Fn+2

en o , ©9)
which simplifies to
or, more explicitly, to

br o L OEVOE (- VEE 31)

8 22n+5,/5

Obviously, lim,,_, ¢, = %, in agreement with the numerical value reported in Wolfram (1994). We can
see that c,, converges toward c., exponentially fast, with some damped oscillations superimposed over

40 Henryk Fuks

0.835 — ‘
numerical ¢
083 | theoretical |
~ 0.825 1
8
Q
o 082+¢ 1
J
T, 0815} i
+ L]
UC
~ 081 I e . - . P’ P
0.805 r 1
08 & I I I I
1 2 3 4 5 6 7 8 9 10
n
Fig. 3: Plot of the ratio Cn+l 7 €0 o5 a function of time step n. Numerical results were obtained by iterating rule
Cn — Coo

172 on a a configuration of length 10® with periodic boundary conditions.

the exponential decay. This is illustrated in Figure 3, where, in order to emphasize the aforementioned
oscillations, instead of ¢,, we plotted the ratio

dn _ Cpn4+1 — Coo (32)

Cp — Cxo

as a function of n. One can show that d,, converges to the half of ratio divina (golden ratio), /2 =~
0.809016, as illustrated in Figure 3. We can see from this figure that the convergence is very fast and
that the agreement between numerical simulations and the theoretical formula is nearly perfect.

8 Further results

Results obtained in the previous two sections suffice to compute block probabilities for all blocks of
length up to 3. Proposition 6.1 together with eq. (8) yields formulas for P, (001), P,,(101), and P, (111).
Consistency conditions give P,(01) = P,(001) 4+ P,,(101). Furthermore P, (10) = P,(01) due to the
fact that P,,(10) + P,,(00) = P,(01)+ P,(00) = P,(0). Applying consistency conditions again we have
P,(1) = P,(10) + P,(11), hence P,(11) = P, (1) — P,,(10), and, similarly, P,,(00) = P, (0) — P, (10).
This gives us probabilities of all blocks of length 2. Probabilities of blocks of length 3 can be obtained in

Probabilistic initial value problem for cellular automaton rule 172 41

a similar fashion:

P,,(000) = P,,(00) — P,(100),
P,(110) = P,(11) — P,(111),
P,(011) = P,(11) — P,(111),

P,(010) = P, (01) — P,,(011)

The only missing probability, P,,(100) is the same as P,,(001) because P,,(100) + P, (000) = P, (001) +
P,,(000) = P,,(00). The following formulas summarize these results.

P, (000) =5/8 — 27" 2F, 3 — 27" E, o,
P, (001) = 1/8,

P,(010) =1/8 = 27" 3F, 4,

Po(011) = 27" L, 10,

P, (100) = 1/8,

P,(101) = 27"*F, 5,

P,(110) = 27" 1L, 1o,

P,(111) = 27" 3F, 3,

where L, = 2F,,+1 — F), is the n-th Lucas number. We can also rewrite these formulas in terms of
cardinalities of preimage sets using eq. (8), as stated below.

Theorem 8.1 Let f be the block evolution operator for CA rule 172. Then for any positive integer n we
have

cardf7"(000) = 5-4" —2"ME, 32" F, L,
cardf~"(001) = 4",
cardf7"(010) = 4" —2"F, .1,
cardf~"(011) = 2" 'L,
cardf7"(100) = 4",
cardf~™(101) = 2"7'F, 1o,
cardf~™(110) = 2" 'L,,o,
cardf " (111) = 2"F, 3,
Yt —(1—9)"

where F,, is the n-th Fibonacci number, F,, = , Y= % + % 5, and L,, is the n-th Lucas

number, L, = Y™ + (1 —)™

V5

9 Concluding remarks

The method for computing block probabilities in cellular automata described in this paper is certainly
not applicable to arbitrary CA rule. It will work only if the structure of level sets of preimage trees is

42 Henryk Fuks

sufficiently regular so that the level sets can be enumerated by some known combinatorial technique.
Altough “chaotic” rules like rule 18, or complex rules such as rule 110 certainly do not belong to this
category, in surprisingly many cases significant regularities can be detected in preimage trees. Usually, this
applies to “simple” rules, those which in Wolfram classification belong to class I, class II, and sometimes
class III. Rule 172 reported here is one of the most interesting among such rules, primarily because the
density of ones does not converge exponentially to some fixed value as in many other cases, but exhibits
subtle damped oscillations on top of the exponential decay. Furthermore, the appearance of Fibonacci and
Lucas numbers in formulas for block probabilities is rather surprising.

One should add at this point that the convergence toward the steady state can be slower than exponential
even in fairly “simple” cellular automata. Using similar method as in this paper, it has been found in Fuks
and Haroutunian (2009) that in rule 14 the density of ones converges toward its limit value approximately
as a power law. The exact formula for the density of ones in rule 14 involves Catalan numbers, and the
structure of level sets is quite different than the one reported here. Rule 142 exhibits somewhat similar
behavior too, as reported in Fuks (20006).

As a final remark, let us add that the results presented here assume initial measure (/5. This can
be generalized to arbitrary p,. In order to do this, one needs, instead of straightforward counting of
preimages, to perform direct computation of their probabilities using methods based on Markov chain
theory. Work on this problem is ongoing and will be reported elsewhere.

References
E. B. Dynkin. Markov Processes-Theorems and Problems. Plenum Press, New York, 1969.

P. A. Ferrari, A. Maass, S. Martinez, and P. Ney. Cesaro mean distribution of group automata starting
from measures with summable decay. Ergodic Theory Dynam. Systems, 20(6):1657-1670, 2000.

H. Fuks$. Dynamics of the cellular automaton rule 142. Complex Systems, 16:123—138, 2006.

H. Fuks$ and J. Haroutunian. Catalan numbers and power laws in cellular automaton rule 14. Journal of
cellular automata, 4:99-110, 2009.

B. Host, A. Maass, and S. Martinez. Uniform Bernoulli measure in dynamics of permutative cellular
automata with algebraic local rules. Discrete Contin. Dyn. Syst., 9(6):1423—-1446, 2003.

D. A. Lind. Applications of ergodic theory and sofic systems to cellular automata. Phys. D, 10(1-2):
36-44, 1984. Cellular automata (Los Alamos, N.M., 1983).

A. Maass and S. Martinez. Evolution of probability measures by cellular automata on algebraic topologi-
cal markov chains. Biol. Res., 36(1):113-118, 2003.

A. Maass, S. Martinez, M. Pivato, and R. Yassawi. Asymptotic randomization of subgroup shifts by linear
cellular automata. Ergodic Theory and Dynamical Systems, 26(04):1203-1224, 2006.

A. Maass, S. Martinez, and M. Sobottka. Limit measures for affine cellular automata on topological
markov subgroups. Nonlinearity, 19:2137-2147, Sept. 2006.

M. Pivato and R. Yassawi. Limit measures for affine cellular automata. Ergodic Theory Dynam. Systems,
22(4):1269-1287, 2002.

Probabilistic initial value problem for cellular automaton rule 172 43

M. Pivato and R. Yassawi. Limit measures for affine cellular automata. II. Ergodic Theory Dynam.
Systems, 24(6):1961-1980, 2004.

R. P. Stanley. Enumerative combinatorics. Wadsworth and Brooks/Cole, Monterey, 1986.

S. Wolfram. Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading, Mass.,
1994.

44

Henryk Fuks

Automata 2010 — 16™ Intl. Workshop on CA and DCS DMTCS proc. AL, 2010, 45-54

Block-sequential update schedules and
Boolean automata circuits

Eric Goles''2 and Mathilde Noual®*f

1 University Adolfo Ibaiiez, Peialolen, Santiago, Chile

2Complex Systems Institute of Valparaiso, ISCV, Valparaiso, Chile

3 University of Lyon, ENS-Lyon, LIP, CNRS UMR 5668, F-69007, Lyon, France
4Rhéne—Alpes Complex Systems Institute, IXXI, F-69007, Lyon, France

Our work is set in the framework of complex dynamical systems and, more precisely, that of Boolean automata
networks modeling regulation networks. We study how the choice of an update schedule impacts on the dynamics of
such a network. To do this, we explain how studying the dynamics of any network updated with an arbitrary block-
sequential update schedule can be reduced to the study of the dynamics of a different network updated in parallel. We
give special attention to networks whose underlying structure is a circuit, that is, Boolean automata circuits. These
particular and simple networks are known to serve as the “engines” of the dynamics of arbitrary regulation networks
containing them as sub-networks in that they are responsible for their variety of dynamical behaviours. We give both
the number of attractors of period p, Vp € N and the total number of attractors in the dynamics of Boolean automata
circuits updated with any block-sequential update schedule. We also detail the variety of dynamical behaviours that
such networks may exhibit according to the update schedule.

Keywords: Boolean automata network, cycles/circuits, attractors, discrete dynamical system, update/iteration sched-
ule

1 Introduction

From the point of view of theoretical biology as well as that of theoretical computer science, it seems to
be of great interest to address the question of the number of different asymptotic dynamical behaviours of a
regulation network. Close to the 16th Hilbert problem concerning the number of limit cycles of dynamical
systems [10], this question has already been considered in a certain number of works [3, 2, 13]. In the
same lines and with a similar will to understand the dynamical properties of (regulation) networks, we
decided to focus on the dynamics of Boolean automata networks.

Two aspects of these networks caught our attention. The first one is that, as Thomas [15] already
noticed, the “driving force” of their dynamics lies in their underlying circuits. Indeed, a network whose
underlying interaction graph is an acyclic digraph can only eventually end up in a configuration that will
never change over time (aka. fixed point). A network with retroactive loops, on the contrary, exhibits

fcorresponding author

1365-8050 (© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

46 Eric Goles and Mathilde Noual

more diverse dynamical behaviour patterns. This is why, before attempting to explain theoretically the
dynamics of Boolean automata networks whose interaction graphs are arbitrary, we decided to pay special
attention to the simple instance of Boolean automata networks that are Boolean automata circuits®.

The other essential aspect of Boolean networks, or more generaly, of regulation networks, that we
concentrated on is their update schedule, that is, the order according to which the different interactions
that define the system occur. Robert [14] highlighted the importance of update schedules on the dynamics
of a system. In [7], the focus was put on the parallel update schedule that updates all automata of a
network synchronously at each time step of a discretised time scale. Now, although biological knowledge
about the precise schedules of gene regulations lack, one may argue reasonably that genes involved in a
same cellular physiological function are highly unlikely to perform there regulations in perfect synchrony
although biologists seem to agree that a certain amount of synchrony is not, on the whole, implausible.
In this paper, we consider a looser version of the parallel update schedule, namely, the general block-
sequential schedule that updates every automaton of a network exactly once at every step according to a
predefined order but which does not impose that all automata be updated at once. In other words, block-
sequential schedules define blocks of automata to be updated sequentially while within the blocks, the
automata are updated synchronously.

Section 2 introduces some definitions relative to general Boolean automata networks as well as some
preliminary results. Section 3 focuses on Boolean automata circuits and on their dynamics under arbitrary
block-sequential update schedules‘™.

2 Networks and their dynamics

We define a Boolean automata network of size n as a couple N = (G,F) where G = (V,A) is a
digraph of order |V| = n called the interaction graph of the network. The nodes of G are assimilated
to the automata of V. Vectors of {0, 1}" are seen as configurations of N. Their i*" components are the
states of nodes s € V. F = {f; : {0,1}" — {0,1} | ¢ € V} is the set of local transition functions
of the network. For each node ¢ € V, and each configuration zz € {0,1}", f;(x) depends only on the
components z; such that (j,4) € A. For the sake of simplicity, we consider abusingly, in some cases, that
fi is a function of arity deg~ (i) = |{j € V| (j,i) € A}| instead of n.

To define the dynamics of NV, an update schedule s of the states of nodes needs to be specified. In this
paper, we consider only block-sequential update schedules, that is, functions s : V' — {0,...,n—1} such
that for any node ¢ € V, s(i) gives the date of update of node 7 (¢ + ;(LZ)T s Smaz = maz{s(i) | i € V})
between any two time steps ¢ and t+1. Thus, within a time step ¢, the states of all nodes are updated exactly
once. Without loss of generality, we suppose that update schedules s impose no “waiting period” within a
time step: min{s(i) |t € V} =0andV0<d <n—1, F €V, s(i) =d+1 = Fj €V, s(j) =d. The
parallel update schedule denoted here by 7 is the update schedule such that Vi € V, (i) = 0. It updates
all nodes at once. A sequential update schedule is a block-sequential update schedule s that updates only
one node at a time: Vi # j, s(i) # s(j). The number of different update schedules of a set of n elements
is known to be exponential in n [6].

Example 2.1 Let V = {0,...,5}. The functionr : V — {0, ...,5} suchthatr(2) =0, r(3) =r(4) =1
and r(0) = r(1) = r(5) = 2 is a block sequential update schedule. The function s : V — {0,...,5}

(‘) and which also happen to be a simple instance of threshold Boolean automata networks [11].
() Results presented in this paper and their proofs are detailed in [12].

Block-sequential update schedules and Boolean automata circuits 47

such that s(5) = 0, s(3) = 1, s(1) = 2, s(0) = 3, s(2) = 4 and s(4) = 5 is a sequential update
schedule. A more practical way of denoting r, s and the parallel update schedule is the following:

r=(2)(3,4)(0,1,5) s=(5)(3)(1)(0)(2)(4) m=(0,1,2,3,4,5).

0 @ D
@ 3 ®
G ® ® ® (5) ®
@ @ @
G=G" G* G
7 Ii(t-i- 1)
ev ™ [- ee00e@ | r=@690,15)
s Jo(ws(t +1)) Jo(zs(t+1))
0 folzs(1)) — foo fa(aa(t)) — foo a0 fales(t))
P Fr(ea(0), a5(t 1 1)) Fi(wa(t + 1), 25(0))
L] ne®o®) @ heo®) | = h(Faas),es(0)
(2 fa(zs(t+1)) (25
2 Joles (1)) et r 1) fo(es(1))
3(T2 3(T2 f3(m2(t+ 1))
3 Falea(t)) fa(wa(t)) el)
o Fa(ma(t 4 1)) o
4 fa(zs(t)) = fao f5(zo(t)) fa(zs(t))
5 fs(zo(2)) fs(zo(2)) fs(zo(t))

Fig. 1: Above: interaction graphs associated to the three different update schedules considered in example 2.1. Below:
a table giving the dependencies between states of nodes according to the update schedule of the network.

A network N = (G, F), updated according to a block-sequential update schedule s is denoted by N(s).
Its dynamics is defined by the following global transition function:

o = {0y
F{ e (@) fi () W

where Vi € V, f7 is the local transition function of node i relative to s and is defined by:

Z; if 5(j) = (i)

fi(x) if s(j) < s(i). @

fi@) = fiaeD), vjeV, = {

48 Eric Goles and Mathilde Noual

In particular, if s = 7 then Vi € V, f7 = f; and the global transition function simplifies to: F™(z) =
(fo(x),..., fn—1(x)). When there is no ambiguity as to what network is being considered, for any initial
configuration = € {0, 1}", we write z = z°(0) and 2°(t) = F!(z) (where F is composed ¢ times) and
when there is no ambiguity either on s, we write x = 2(0) and x(t) = F! (). With this notation, (1) and
(2) mean that Vi, j € V such that (j,7) € A, z;(t + 1) depends on z;(t) if s(j) > s(i), and on z;(t + 1)
if s(j) < s(4).

For a network N updated with a particular update schedule s, we define a new interaction graph G* =
(V, A®), the interaction graph relative to s (see figure 1) such that A* = {(j,4) | #7(t+1) depends on x5 (t)}.
By an easy induction, this set of arcs can be shown to be equal to:

A® = {(4,1) | there exists in G a directed path {vg = j, vy ...,v; =i}
from j to i such that s(j) > s(v1) and V1 <k <, s(vg) < s(vks1)}. (3)

An important point is that when s = 7w, G™ = G. Further, define N* = (G*, F*) to be the network whose
interaction graph is G* and whose set of local transition functions is F° = {f? | i € V'}. Then, as one
may check, the dynamics of N?(r) is identical to that of N(s): the global transition functions of both
networks are equal to Fs. As a result, provided a characterisation of the graphs G°, we may bring our
study of networks updated with arbitrary block-sequential update schedules back to the study of networks
updated in parallel.

The dynamics of a network /N updated with an update schedule s is described by its iteration graph
Z(N(s)) (and also, from the previous paragraph by the iteration graph Z(N*(x))) whose nodes are the
configurations of N and whose arcs are the transitions (x(t), (¢t + 1)) from one configuration to another.
Since the set of configurations of any finite sized network is finite, all trajectories necessarily end up loop-
ing, ie, Vx(0) € {0,1}", 3t,p, x(t + p) = z(t). Astractors of N (s) are orbits of such configurations
2(t) for which there exists a p € N such that 2(¢) = x(¢ + p). The smallest such p is called the period of
the attractor. Attractors of period one are called fixed points.

3 Boolean automata circuits

As mentioned in the introduction, we pay special attention here to a particular instance of Boolean
automata networks called Boolean automata circuits [7]. A circuit of size n is a digraph denoted by
Cn = (V, A). Its set of nodes V = {0, ...,n — 1} is identified with Z/nZ so that, considering two nodes
iand j, ¢ + j designates the node i + j mod n. The set of arcs of C,, is A = {(i,i + 1) | i € Z/nZ}. A
Boolean automata circuit is a Boolean automata network whose interaction graph is a circuit. Since any
node ¢ in this graph has a unique incoming neighbour, ¢ — 1, its local transition function f; is either equal
to the identity function id : a € {0,1} — a or to the negation function neg : a € {0,1} — —a =1 — a.
In the first case, the arc (i — 1,4) is said to be positive and in the second case it is said to be negative.
When there is an even number of negative arcs in the circuit, then the the sign of the (Boolean automata)
circuit is said to be positive. Otherwise it is said to be negative.

Let C = (C,,,F) be a Boolean automata circuit of size n whose set of local transition functions is
F ={fi|i € Z/nZ}). Let s be an arbitrary block-sequential update schedule of C. For any node i € V/,
let us note:

i* = max{k <il|s(k)>s(k+1)}.

Block-sequential update schedules and Boolean automata circuits 49

where the maximum is taken cyclically so that the number of arcs on a path from ¢* to ¢ is is minimal.
From (3), it holds that A® = {(i*,4) | ¢ € V'} and it can be shown that Vi € Z/nZ, f7 = F[i,i* + 1]
where:

fiofj—io...0f; ifi <j

Vij € V. Fljii = i) <i
1,7 [jl] {fjofj_lo'.'ofoofn_lo...ofi 1f]<7,

Following the remarks made in the previous section, the dynamics of C'(s) is identical to that of C*(7) =
(Cs,F®) where F° = {F[i,i* + 1] | i € Z/nZ}. Let us describe the digraph C?. To do this, we first
define the inversions of C relative to s:

inv(s) = A\ A ={(,i+1)|s(i) <s(E+1)}

For nodes of an inversion (4,7 + 1), 7, (¢t + 1) depends on (¢ + 1) instead of x(¢) as is the case
when s(i + 1) < s(i) and when, in particular, s = 7. Obviously, the number of inversions is strictly
smaller than n. The only block-sequential update schedule that has no inversions is the parallel update
schedule 7. From the characterisation of A® given in equation 3, we derive that the nodes i* (i.e., the
nodes i € Z/nZ, 3j € Z/nZ, i = j*) form a circuit in C$ of size n — |inv(s)|. The |inv(s)| other
nodes that do not belong to this circuit depend on one and only one node in it (as in Figure 2). And since
the composition of all functions f; is necessarily equal to the composition of all functions F'[i,¢* + 1], the
sign of this circuit is equal to the sign of the original circuit C,,. From this description of the network C*,
we may now derive the following result:

Al

Fig. 2: a. The underlying interaction graph Cg of a network C' = (Cg, F). b. The interaction graph of C*° where
s =1(2)(3,4)(0,1,5) and inv(s) = {(2, 3), (4, 5)}. The underlying circuit of size 4 in this second interaction graph
has as set of nodes {0,1,3,5} ={i € Z/6Z | 3j € Z/6Z, i = j"}.

Y
A

Proposition 3.1 Ler C = (C,,, F) be a Boolean automata circuit of size n and let s and r be two block-
sequential update schedules of C. Then:

(i) The dynamics induced by s, that of C(s), and the dynamics induced by r, that of C(r), are identical
if and only if inv(s) = inv(r).

(ii) Ifinv(s) # inv(r), then the dynamics induced by s and by r have no attractor of period p > 1 in
common.

(iii) If |inv(s)| = k, then for any p € N, C(s) has as many attractors of period p than any Boolean
automata circuit of size n — k, of same sign as C' and updated with the parallel update schedule.

50 Eric Goles and Mathilde Noual

Proof: (i) follows directly from theorem 1 of [5] and (iii) is derived from the description of the structure
of C# made in the previous paragraph. To prove (ii), suppose that (i,7 + 1) € inv(r) \ inv(s) and that
there exists © = 2°(t) = 2" (¢) € {0,1}" such that °(t + 1) = 2" (¢ + 1). Then:

i (t+2) = fipa(2j(t+2)) = Fli+ 1" + 1] (23 (£ + 1))
and
i (t+2) = fira (i (t+ 1)) = fipa (27 (t + 1)) = Fli + 1,0 + 1] (23 (1))

where i* = max{k < i|s(k) > s(k+1)} (as above). By the injectivity of F'[i + 1,4* + 1], this implies
that if x°(t + 2) = 2" (¢t + 2) then x;« (¢t + 1) = x;+ (t). Now, if = belongs to an attractor that is induced
identically by both s and r, then V¢t € N, z°(t) = z"(t). As result, in this case, V¢ € N, x5 (t + 1) =
al. (t) = x5, (t) (i.e., the state of node ¢* is fixed in the attractor). As one can check this leads to states of
all nodes being fixed in the attractor which therfore is a fixed point. O

In relation with point (ii) of Proposition 3.1 above, recall that if the dynamics of a network has fixed
points for a certain update schedule, then it has the same fixed points for every other update schedule.
The important consequence of point (iii) of Proposition 3.1 is that from the results in [7] concerning
the number of attractors of Boolean automata circuits updated in parallel, we may derive the number of
attractors of each period and in total of any Boolean automata circuit updated with any block-sequential
update schedule:

Corollary 3.1 Let C = (C,, F) be a Boolean automata circuit of size n and s a block-sequential update
schedule of C such that |inv(s)| = k:

e If C is positive, then the total number of attractors in the dynamics of C(s) is given by T;‘ below.
For any integer p, the number of attractors of period p is either O if p does not divide n — k or it is

Af:
1 n—=k 1 P
T = . . 9P AT = 2. £y.9d
P L e P

pln—k

e If C is negative, then the total number of attractors in the dynamics of C(s) is given by T, below.
For any integer p, the number of attractors of period p is either 0 if n — k cannot be written
n—k=qx % where g € Nis odd, oritis A :

1
= Y u)(g)-?, A, =

odd p|n

g

> u(d)-2

1
P i a2

Above, (i is the Mobius (see [9, 1]) function and 1 the Euler totient function.

Following Proposition 3.1, we define the equivalence relation between update schedules that relates r
and s if and only if inv(s) = inv(r). [s] denotes the equivalence class of s for this relation. Proposi-
tion 3.2 below sums up some results concerning this relation:

Proposition 3.2 Let C = (C,,, F) be a Boolean automata circuit of size n.

(i) The total number of distinct dynamics induced by the different update schedules of C'is ZZ;& (Z) =
2" — 1.

Block-sequential update schedules and Boolean automata circuits 51

N

Fig. 3: Interaction graph relative to one of the n equivalence classes of update schedules that have n — 1 inversions.
Each one of these classes is characterised by the unique node ¢ € Z/nZ that is such that (¢, + 1) is nor an inversion
and contains exactly one update schedule which is sequential, namely, the update schedule s; = (i4+1)(:+2) ... (i—
1)(4) such that inv(s;) = {(4,5 + 1), j # i}. Because there is a loop over node ¢ in this graph, the dynamics of
C'(s) contains only fixed points if C,, is positive and only attractors of period 2 if C,, is negative.

(ii) In every class [s], s # 7, there exists a sequential update schedule. Given the set of inversions of
the class, a sequential update schedule can be constructed effectively in O(n) steps.

(iii) Given a set of p > 1 configurations of C, A = {x(0),...,x(p — 1)}, we can determine in O(p - n)
steps whether there exists a block-sequential update schedule s such that C(s) has A as an attractor
of period p. If such an update schedule exists, with Algorithm 5 below, in O(p - n) steps, we can
compute its set of inversions as well as a sequential update schedule inducing the same dynamics.

Algorithm 1: Finding a sequential update schedule that induces a particular attractor of a given
Boolean automata circuit if it exists

Input: C = (C,,F) and A= {z(0),...,z(p—1)}.

begin
1 In O(p-n) steps, compute the set A" ={y(t) = Fr(z(t—1)) | 0 <t <p};

2 In O(p-n), compute the set inv={(i—1,9) | It <p, z;(t) #v(t)} ;

3 In O(n) steps, compute a sequential update schedule s using the
set nv;

4 In O(p-n) steps, compute the set A;={F!/(z(0))=2%t) | 0<t<p} and
check that A;=A. 1If not, then no update schedule induces A as
an attractor;

5 Otherwise, output s.

Proof: Point (i) of Proposition 3.2 above is a direct consequence of points (i) and (ii) of Proposition 3.1
and of the fact that the number of distinct equivalence classes of update schedules with £ inversions is (Z)
(i.e., the number of different sets of k£ inversions).

52 Eric Goles and Mathilde Noual

To prove Point (ii), let us show that for every set of k < n inversions, there exists a sequential update
schedule s that satisfies exactly these k inversions. Thus, let inv be a set of |inv| = k inversions and let
G = (V, A) be the acyclic digraph whose set of nodes is that of C,, (i.e., V' = {0,...,n — 1}) and whose
set of arcs is A = {(i,4+ 1) ¢ inv} U{(i + 1,4) | (¢, + 1) € inv} (in other words, G is obtained
by inverting all arcs of C,, that belong to inv). Then, any sequential update schedule s whose set of
inversions is ¢nv satisfies the following:

V(i,7) € A, s(i) > s(7)

so that such a sequential update schedule s can be obtained in linear time using a topological ordering
algorithm on digraph G.

Finally, to prove Point (iii) and Algorithm 5, suppose that s is an existing block-sequential update
schedule that induces A as an attractor, i.e., V¢t < p, z°(t + 1) = f#(z(t)) = x(t + 1). Let us show
that its set of inversions inwv(s) is necessarily equal to inv. Suppose that (i — 1,4) ¢ inv(s). Then,
Vi <p, zi(t+1) =25t +1) = fF(x(t) = fi(r;—1(t)) = yi(t + 1) and consequently, (i — 1,7) ¢ inwv.
Now, Vi € Z/nZ, again, let i* = max{j < i, (i*,i* + 1) ¢ inv(s)}. It is easy to prove that the state
of any node j such that 3¢, 7 = ¢* necessarily changes in all attractors induced by s and in particular in
A. Suppose that (i — 1,4) € inv(s). Let T < p be such that ;- (T") # x;~(T + 1). Then, the following
holds:

2i(T +2) = 23(T +2) = Fli,i* + 1)(z;+ (T + 1)) and
Yi(T+2) = filzia(T + 1)) = fi(ai (T + 1)) = fi o Fli — 1,5 + (2 (T))

so that z;(T 4 2) # y;(T + 2) and consequently (i — 1,%) € inv. i

4 Conclusion

Following the work presented in this paper, we believe that most combinatoric problems concerning
the dynamics Boolean automata circuits updated with block-sequential update schedules have now been
dealt with. We know the exact value of both the total number of attractors and the number of attractors of
period p, Vp € N, in the dynamics of positive and negative Boolean automata circuits of any size updated
with the synchronous, sequential and the block-sequential update schedules. We also know how many
different dynamics can be induced by the set of block-sequential update schedules of a Boolean automata
circuit.

One important question, however, remains unanswered: “What are the sizes of the equivalence classes
of block-sequential update schedules that yield the same dynamics?”. For the very particular cases of [r]
and of the classes of update schedules with n — 1 inversions (where n is the size of the circuit) we know
that the size of the classes is 1. We also obtained a very intricate formula for the size of classes of update
schedules having consecutive inversions only. It implies that the sizes of such classes is exponential as
may certainly be that of many other classes. One motive (amongst others) for studying this question
follows from A. Elena’s work. In his PhD thesis [8], Elena computed statistics of the number of attractors
of threshold Boolean automata networks as well as of their periods averaging over all networks (of sizes
between 3 and 6) and all update schedules. For both, he found particularly small values. Now, as we
have already mentioned, it is known that underlying circuits play an important role in the dynamics of

Block-sequential update schedules and Boolean automata circuits 53

a network with an arbitrary structure. Knowing the answer to this question would help us to understand
better the averages found by Elena.

Therefore, beyond this question, we believe that there are two obvious extensions needed of our com-
binatoric analysis of the dynamics of circuits: one towards more general networks, that is, networks with
arbitrary underlying interaction graphs. In line, with [4], this would need to relate the dynamics of arbi-
trary networks with that of there embedded circuits. The second extension needed is in the direction of
other update schedules. Although understanding the dynamics of networks under block-sequential update
schedules is a first notable step, these update schedules remain rather unadapted to the modelisation of
biological networks. One may indeed argue that it is rather unrealistic that a network updates infallibly
every one of its nodes exactly once and according to the exact same order at every time step. It seems
more likely, that, on the contrary, some nodes may be updated more often than others and that the updating
of nodes may depend on some parameters in a way that cannot be translated by giving an order of update
as do block-sequential update schedules.

Acknowledgements
We thank the Basal project-CMM and the Fondecyt 1100003.

References
[1] T. M. Apostol. Introduction to analytic number theory. Springer-Verlag, 1976.

[2] J. Aracena, J. Demongeot, and E. Goles. Fixed points and maximal independent sets in and-or
networks. Discrete Applied Mathematics, 138:277-288, 2004.

[3] J. Aracena, J. Demongeot, and E. Goles. On limit cycles of monotone functions with symmetric
connection graph. Theoretical Computer Science, 322:237-244, 2004.

[4] J. Aracena, J. Demongeot, and E. Goles. Positive and negative circuits in discrete neural networks.
IEEE Transactions on Neural Networks, 15:77-83, 2004.

[5] J. Aracena, E. Goles, A. Moreira, and L. Salinas. On the robustness of update schedules in boolean
networks. Biosystems, 97, 2009.

[6] J. Demongeot, A. Elena, and S. Sené. Robustness in regulatory networks: a multi-disciplinary
approach. Acta Biotheoretica, 56(1-2):27-49, 2008.

[7] J. Demongeot, M. Noual, and S. Sené. On the number of attractors of boolean automata circuits.
WAINA, Perth, Australia, 2010. IEEE Press. To appear.

[8] A. Elena. Robustesse des réseaux d’automates booléens a seuil aux modes d’itération. Application
a la modélisation des réseaux de régulation génétique. PhD thesis, Université Joseph Fourier -
Grenoble, 2009.

[9] C.FE Gauss and A. A. (tr.) Clarke. Disquisitiones Arithemeticae. Yale University Press, 1965.

[10] D. Hilbert. Mathematical problems. Bulletin of the American Mathematical Society, 8:437—479,
1902.

54 Eric Goles and Mathilde Noual

[11] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Journal
of Mathematical Biology, 5:115-133, 1943.

[12] M. Noual. On the dynamics of two particular classes of boolean automata networks: Boolean au-
tomata circuits and or networks. Technical report, TIMC-IMAG (Grenoble) and CMM (Santiago de
Chile), 2009.

[13] A.Richard and J.P. Comet. Necessary conditions for multistationarity in discrete dynamical systems.
Discrete Applied Mathematics, 155(18):2403-2413, 2007.

[14] F. Robert. Discrete Iterations. Springer-Verlag, 1986.

[15] R. Thomas. On the relation between the logical structure of systems and their ability to generate
multiple steady states or sustained oscillations. Springer Series in Synergetics, 9:180-193, 1981.

Automata 2010 — 16" Intl. Workshop on CA and DCS DMTCS proc. AL, 2010, 55-74

The fractal structure of cellular automata on
abelian groups

Johannes Giitschow!, Vincent Nesme!, and Reinhard F. Werner!

Unstitut fiir Theoretische Physik, Universitit Hannover, Appelstrafie 2, 30167 Hannover

It is a well-known fact that the spacetime diagrams of some cellular automata have a fractal structure: for
instance Pascal’s triangle modulo 2 generates a Sierpinski triangle. Explaining the fractal structure of the
spacetime diagrams of cellular automata is a much explored topic, but virtually all of the results revolve
around a special class of automata, whose main features include irreversibility, an alphabet with a ring
structure and a rule respecting this structure, and a property known as being (weakly) p-Fermat. The class
of automata that we study in this article fulfills none of these properties. Their cell structure is weaker and
they are far from being p-Fermat, even weakly. However, they do produce fractal spacetime diagrams, and
we will explain why and how.

These automata emerge naturally from the field of quantum cellular automata, as they include the classical
equivalent of the Clifford quantum cellular automata, which have been studied by the quantum commu-
nity for several reasons. They are a basic building block of a universal model of quantum computation, and
they can be used to generate highly entangled states, which are a primary resource for measurement-based
models of quantum computing.

Keywords: fractal, abelian group, linear cellular automaton, substitution system

Introduction

The fractal structure of cellular automata (CA) has been a topic of interest for several decades.
In many works on linear CA, the authors present ways to calculate the fractal dimension or to
predict the state of an arbitrary cell at an arbitrary time step, with much lower complexity than
by running the CA step by step; however, their notions of linearity are quite different. Often
only CA that use states in Zp(i) are studied; other approaches are more general, but still make
certain assumptions on the time evolution or the underlying structure of the CA. In this work
we try to loosen these restrictions as far as possible. We consider one-dimensional linear CA
whose alphabet is an abelian group. We show how they can be described by # x n matrices with
polynomial entries and use this description to derive a recursion relation for the iterations of the
CA. This recursion relation enables us to formulate the evolution of the spacetime diagram as a

@ We use the simple notation Z, for the cyclic group of order d, instead of Z /dZ, as we are concerned with finite groups
only.

1365-8050 (© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

56 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

(a) Time evolution of ® with scalars in Z,. (b) Time evolution of ® with scalars extended to Z,.

Figure 1: (a) is a projection of (b) induced by Z3 — Z3.

matrix substitution system, which in turn gives us the means to calculate the fractal dimension
of the spacetime diagram.

Our interest in the fractal structure of CA on abelian groups stems from our study of Clifford
quantum cellular automata (CQCA) [SVWO08]. We first noticed the self similar structure while
studying their long time behaviour [GUWZ10, Giit10]. A CQCA maps Pauli matrices to tensor
products of Pauli matrices times a phase. If we neglect the phase, we can identify the Pauli matri-
ces X, Y, Z with the elements of Z3 via the mapping X +— (é), Y — (%), Z— ([1)), 1+ (8). Using
this mapping we can simulate CQCA with linear CA on the alphabet Z3. The CA corresponding
to CQCA have to fulfill rather strong conditions: they have to be reversible and preserve a sym-
plectic form which encodes the commutation relations of the Pauli matrices [SVWO08]. While our
analysis is now much more general, our main example ®, whose spacetime diagram is shown
in figure 1a, is the classical part of a CQCA.

Our paper is organized as follows: in section 1 we give our definition of a linear cellular
automaton, introduce the formalism we will be working with, and state the main result: every
linear cellular automaton has a fractal structure. We also introduce the example ® which will
be the focal point of this article. In section 2, we give an intuitive idea as to why the spacetime
diagram of @ exhibits a fractal structure. We then proceed, in section 3, to expose an algorithm
taking as input the local transition rule and outputting a description of the spacetime diagram.
This allows us to compute salient features of these fractals, such as their fractal dimension and
their average colour.

1 Definitions
1.1 Generalities on summable automata
1.1.1 Monoids

We want to discuss “summable automata”, for which it makes sense to talk about the influence
of a single cell on every other cell, and where the global transition function can be reconstructed
by “summing” all these influences. So, if 2 denotes the alphabet, instead of the usual local tran-
sition function ©! — ¥, a summable automaton is naturally defined by a function & — %!. What

The fractal structure of cellular automata on abelian groups 57

is then the minimal structure on X that would make such a definition work? These influences
have to be “summed”, so we need an operation on X. Since the strip is infinite, an infinitary
operation would do, but that wouldn’t give us much to work with. Instead, it seems reasonable
to consider a binary operation +. In the same spirit, when we think of the superposition of
influences coming from each cell, no notion of order between the cells is involved; even if in the
one-dimensional case a natural order can be put on the cells, it would be less than clear what to
do in higher dimensions. We require therefore that + be associative and commutative. The last
requirement comes from the fact that, given only the global transition function, we want to be
able to isolate the influence of one cell; that is why we demand that + have an identity element,
which makes now (%, +) an abelian monoid. Of course, in order for all of this to be relevant, the
transition function has to be a morphism.

Let I be some finite subset of Z and f a morphism from X to X!. From f one can define the
global transition function as an endomorphism F of *Z by

¥z — xZ

Bl tien — (Zﬂrni)i) : @
nezZ

iel

Let o be the right shift on £z, i.e. o(r), = r,—1. We have F o0 = ¢ o F, which means F is
translation invariant. Also, F(r), depends only on the values r,,_; for i € I; since [is finite, F is
a one-dimensional cellular automaton on the alphabet X, with neighbourhood included in —1I.
Conversely, if F is an endomorphism of ¥Z defining a cellular automaton over the alphabet X,
then one can choose a neighbourhood I, and define, fori € I,

f(s)i = F(8);,)
where 5 is the word of X7 defined by 5, = { s ifn = 0 , e denoting the neutral element of
e otherwise
.
1.1.2 Groups

We will now consider the case when X is a (finite abelian) group. For p prime, let ¥, be the
subgroup of ¥ of elements of order a power of p; then X is isomorphic to [][X,, and every
P

endomorphism of £Z factorises into a product of endomorphisms of the Z%’s. It is therefore
enough to study the case of the (abelian) p-groups: let us assume X is a p-group.

It is a well-known fact (see for instance section I-8 of [Lan93]) that X is isomorphic to Zpkl X
Zpkz X oo X Zpkd with k; > k31 > ... > ki = k. Consider an endomorphism « of £ and
let € denote (0,...,0,1,0,...,0), where the 1 lies in position j. When i > j, there is a natural

embedding s; ; of Zpki into Zpkf’ namely the multiplication by pki=k

" € N. Since ¢; has order
pkf ,u(e)i € Zpki has to be in the image of s;; when i < j. We can therefore associate to « the

endomorphism of Z‘;k given by the matrix A(a) € .#4(Z) defined by A(«);; = phikig (ej)

1

58 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

For instance, if G is Z3y x Z4 X Zj, and « is defined by «(1,0,0) = (3,2,1), «(0,1,0) =
(24,0,1) and «(0,0,1) = (16,2,0), then the corresponding matrix of .#3 (Z3;) would be

3 31
A@)=1{ 16 0 1
16 2 0

Let us give a summary of the construction we have just exposed.

Proposition 1 For every finite abelian p-group G and endomorphism a of G, there are positive integers k
and d, an embedding s of G into ZZ . and an endomorphism A(wa) of Zi . such that the following diagram

commutes:

G 5 G

g I ®
de A (lX) de

p p

This implies that to study the behaviour of CA on abelian groups, it is enough to study the
case where these groups are of the form Z‘;k.

1.1.3 R-modules

We will actually consider the more general case where R is a finite commutative ring, and X is a
free R-module of dimension d, i.e. isomorphic to R?. The first reason for doing so is that it does
not complicate the mathematics. It will also appear more efficient to understand, for instance,
F,4 as a 1-dimensional vector space over itself than as a 4-dimensional vector space over FF;: the
former simply bears more information, and therefore implies more restrictions on the form of a
CA, so that more can be deduced.

For any ring B, B [u,u"!] denotes the ring of Laurent polynomials over B; it is the ring of
linear combinations of integer powers (negative as well as nonnegative) of the unknown u.
Applying this to B = Hompg (X), we can associate to the function f the Laurent polynomial
7(f) € Homg (X) [u, u~1] defined by

T(f) = Y fCuu. 4)

nez

T is an isomorphism of R-algebras between the linear cellular automata on the alphabet
with internal composition rules (+,0) and Homg (Z) [#,u™1], which can be identified with

Ay (R [u,u~1]) because X ~ R?; we are going to think and work in this former algebra, so from
now on a linear cellular automaton T = 7(f) will be for us an element of .#; (R [u, u_l]).

1.2 Related work

Many papers have been published about the fractal structure of cellular automata spacetime
diagrams. We give here a short review and point out the differences to our approach. When we
mention d and k we are referring to .#; (Zy[u, u™']).

The fractal structure of cellular automata on abelian groups 59

3p

2p

(a) Time evolution of O starting from & = ((1)) (b) Time evolution of a general nearest neighbour p-Fermat
CA.

Figure 2: This figure shows that © cannot be a p-Fermat CA. In a p-Fermat CA at least the white
areas are filled by the neutral element ¢; © has a different pattern.

[Wil87] In this work, Willson considers the case d = 1, k = 2. In order to determine the fractal
dimension of the spacetime diagram, he analyses how blocks of length # in the configura-
tion of time step t are mapped to such blocks in steps 2t and 2t + 1, a technique we also
use in section 3.

[Tak90, Tak92] Takahashi generalises Willson’s work to the case d = 1, with no restriction on
the value of k.

[HPS93, HPS01] Haeseler et al. study the fractal time evolution of CA with special scaling prop-
erties, the weakest of them being “weakly p-Fermat”, where p is some integer, which in-
cludes the case d = 1, k = p. Let us briefly introduce the p-Fermat property and show
why the CA studied by us do not have to be p-Fermat. Let 77, be the scaling map

w(@»—{ by ifx=py)

e otherwise

A CA Tis weakly p-Fermatif foralls € X,n € Nand x € Z, T (5), = e & m,T"(5)x = e.

Let us now consider

0= (1 411y) € a@lnu) ©

We will use this example throughout the paper. It generates the time evolution depicted
in Figure 2a. A general nearest-neighbour p-Fermat CA produces a time evolution that
reproduces itself after p steps in at most three copies located at positions { —p;0; p}. After
2p steps we have five copies at most. This creates areas filled with the neutral element e
shared by all p-Fermat CA for a fixed p. In figures 2a and 2b we can easily see that © does
not exhibit these areas. Thus it is not p-Fermat. Furthermore p-Fermat CA that are not
periodic are irreversible, while we also allow reversible CA, © being again one example.

60 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

[AHPS96, AHP97] Allouche et al. study recurrences in the spacetime diagram of linear cellu-
lar automata, from the angle of k-automatic sequences, which we will not define in this
paper. However they require X to be an abelian ring and the CA to be a ring homomor-
phism, which is again essentially the case d = 1.

[Mo0097, M0098] Moore studies CA with an alphabet A on a staggered spacetime, where every
cell c is only influenced by two cells a and b of the last time step. The update rule is
c = a e b. He requires (A, o) to be a quasigroup and studies different special cases. First
let us note that these CA are irreversible, while ours don’t have to be. Thus, although it
is possible to bring our CA in the form of a staggered CA, the results of Moore do not
apply. In his setting, our CA would be of the form ¢ = aeb = f(a) + g(b) for some
homomorphisms f and g. For (A, e) to be a quasigroup means

Va,be Adlx,yc A aex=bAyex=0. (7)

In our case, the required equalities translate respectively as g(x) = b — f(a) and f(y) =
b — g(a). The right-hand sides are each arbitrary elements of A, thus f and g have to be
isomorphisms, as indeed required in [Mo097].

The angle of study of Moore is also different: he does not exactly study fractal properties
of the CA, but rather the complexity of the prediction — “What will be the state of this cell
after t steps?”. Describing the spacetime diagram with a matrix substitution system is an
alternative way of proving that prediction is an easy task — for instance it makes it NC.

[Mac04] Macfarlane uses Willson’s approach and generalises parts of it to matrix-valued CA,
his examples including ®. However, the transition matrix is obtained heuristically — “by
scrutiny of figure 9” — from the spacetime diagram, instead of being algorithmically de-
rived from the transition rule (as in the present work). The conclusion (section 6) suggests
that the analysis of © is easily generalisable to matrices of various sizes over various rings,
so in a sense the present article is but an elaboration of the concluding remark of [Mac04],
although we have to say we do not find this generalisation to be that obvious.

The heart of the proof is in section 3. In a nutshell, whereas most of the techniques used in our
article can be traced back to older articles, the new one that allows us to extend the analysis to a
larger class of automata is the introduction of « in equation (20). The idea in doing so is to get
rid of the complicated noncommutative ring structure and go back to a simple linear recurrence,
as state in Proposition 4. Since a linear recurrence is precisely where the analysis started from,
it could seem at first sight that nothing is gained in the process, but the new recurrence actually
does not define a cellular automaton. Instead of defining line 7 4 1 from line n, it cuts right
through to line mn, thus establishing a scaling property.

1.3 Different CA

While we use ©, which has very special properties (being reversible, over a field of characteristic
two, and described by a 2 x 2 matrix) as our example throughout the paper, the analysis applies
of course to all other linear CA. In this section we give a short overview over the variety of

The fractal structure of cellular automata on abelian groups 61

(a) Time evolution of ©,,. (b) Time evolution of T, .

Figure 3: Spacetime diagrams of non-clifford CAs.

spacetime diagrams these CA generate. Let us start by small changes to ©. For our first example
we keep m = k = 2, but change the determinant to #. We only change one entry of the matrix:

0 u
”_(1 u1+1+u)' ®

The spacetime diagram is displayed in figure 3a and shows how much difference a small change
in the update rule can make for the spacetime diagram.
Let us now modify ® in a more subtle fashion:

0 1
®k_4_<1 u_1—|—1+u)' ©)

The hidden difference with @ is the underlying ring, which has now been extended from Z,
to Z4. Or_4 contains in some sense more information than @, since © is induced from ®;_4 by
the projection Z, — Z;. Consequently, the spacetime diagram of © is nothing but a projection
of that of ®y_4, as illustrated in figure 1b.

The last CA we want to present lies in ./, (]F4[u, u_l]), where IFy is the finite field of order 4,
here identified with IF5[w]/(w? + w + 1). The corresponding matrix is

0 w
Tr, = (ul (wH+Dul+w+u > (10)

If one wants to avoid calculations in IF4, this CA can be translated to a CA in .#} (Zz [u, u_l]),
namely

0 0 0 1
T . 0 0 1 1
Fy — w0 wl4u uwldl

0 wul uwul+1l 1+u

Its spacetime diagram, shown in figure 3b, contains patches of checkerboard pattern. Some-
how, they trivialise most of the usual properties of the figure: for instance they make its fractal
dimension 2, even if the fractal structure can hardly be considered trivial. In order to access

62 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

more interesting properties, it is possible to blank this pattern out, considering it as just “another
shade of white”. This can be trivially done on the matrix substitution system, by removing the
states from which the blank state is inaccessible.

1.4 Coloured spacetime diagrams

The mainstream setting when studying the fractal structure of spacetime diagrams is monochro-
matic; we introduce colours in the picture.
Instead of considering simple compact subsets of the plane, we will have a finite set of colours

¢ and compact subsets of (]Rz)(g. Let b ¢ € be the additional “blank” colour and ¢ : & —
¢ U {b} a colouring of ¥ such that ¢(0) = b. To determine a coloured spacetime diagram, we
need furthermore to be given an automaton T € .#; (R [u, u‘l]), an initial state ¢ € R, and an
integer n. The corresponding coloured spacetime diagram is then the rescaled diagram obtained
by iteratively applying T n times on .

Formally, forn,i,j € IN, let Sn,i,]- be the full square centred in % (i,j) and whose edges, parallel
to the axes, are of length % To each positive integer n and colour ¢ € ¥ is associated a compact
subset of the plane &, (c) which is the union of the S, ; /s such that 0 < j < nand ¢ (Tf (@);) =c.
The coloured spacetime diagram of order 7 is then the function &, : ¢ — 22,(c). A sequence of
coloured patterns (%), of spacetime diagrams is said to converge to some coloured pattern
P if forevery c € €, (Pu(c)),en cOnverges to P (c) for the Hausdorff distance.

We can now state our main result.

Theorem 1 Let G be a finite abelian p-group. For every cellular automaton over G that is also a group
homomorphism, there exists a positive integer m such that for every fixed initial state the coloured space-
time diagrams of order p™" converge when n goes to infinity.

In general, to know about the fractal structure of a cellular automaton over some finite group
G, write G as a product of p-groups and study each p-component of the spacetime diagram in-
dependently; according to Theorem 1, each component generates a fractal pattern. Then, since
the logarithms of the prime numbers are rationally independent, it is possible to find a sequence
of resized spacetime diagrams that converges towards a superposition of these different com-
ponents with arbitrary independent rescaling coefficients, but there is no direct generalisation
of the theorem. For instance, even in the simple case of Pascal’s triangle modulo 6, there is no
real number & > 0 such that the diagrams of order [a#"]| converge; however those of order t,
will converge as soon as the fractional parts of log,(,) and log,(t,) both converge, and then
their limits determine the limit pattern. The situation is described very briefly in the section 5 of
[Tak92].

1.4.1 Matrix substitution systems

We will show how to find a suitable description of the limit pattern in the rest of this article. We
now explain exactly what it means to generate a coloured picture by rules of substitution, and
how to take the limit of all these pictures. This is a generalisation of the usual monochromatic
description that can be found for instance in [MGAPS85, Wil87, HPS93], and which corresponds
in our setting to the case where all the colours are mapped to “black”.

The fractal structure of cellular automata on abelian groups 63

Let V be a finite alphabet; because we want colours, compared with the usual definition of
a matrix substitution system, we don’t have to include a special “empty” letter. A matrix sub-

stitution system is then a function & : V — vIuT ; for some integer r. Together with a set
of colours ¢ and a colouring ¢ : V' — ¢, it defines coloured patterns, much in the same way
cellular automata do. With the previous notations, at each step 7, the pattern &, is the union of
squares Sy ; ; of different colours, for different i’s and j’s; each one of them is indexed by some
letter in V.

Then at step n + 1, each coloured square of colour c indexed by v € V present in the nth step
pattern is replaced by r? smaller squares that pave it; these smaller squares are given by %(v)
and indexed accordingly. To such a matrix substitution system we can associate a multigraph
I' = (V, E) where the set of vertices is V and we put as many edges from v to w as there are w’s
in 2(v).

A plain matrix substitution system is one of the usual kind: no colouring, and V contains a
special letter € such that Z (¢) is a matrix full of ¢’s and ¢(¢) = b. In the multigraph associated to
a plain matrix substitution system, ¢ is excluded from the set of vertices.

We want to generalise the usually property of convergence of the patterns defined by plain
matrix substitution systems. This will be done by the conjunction of the two following proposi-
tions. Let us first remind some notions on graphs: the period of a graph is the greatest common
divisor of the lengths of all the cycles in I'; a graph is aperiodic if it has period 1.

Proposition 2 If every strongly connected component of T' is aperiodic, then (Py), o converges.

Proof: To each colour ¢ € ¢ we associate the plain matrix substitution system 2°¢, obtained
from 2 simply by turning some letters into e. For v € V, let X.(v) be the set of
integers n such that there exists a path of length n in I' connecting v to a letter of the
colour c. Since the strongly connected component containing v is aperiodic, X (v) is
either finite or cofinite. Those letters v € V such that X, (v) is finite are sent to ¢, and
this defines 2°. If X.(v) is finite and v’ can be reached from v, then X (v') is also
finite; therefore, ¢ is indeed a substitution system. Let M be such that for every
v € V, either X.(v) or its complement is strictly bounded by M.

Let us now compare two sequences of figures. The first one is (£, (c)), the subpat-
tern of colour c defined by 2. The second one is (5), the one obtained from 2¢; we
know that it converges to some compact Z5,. By construction, 22,1 p(c) is included
in &5, and for every black square of &5, there is a black subsquare in 2, y(c).
The Hausdorff distance between &, (c) and &7 therefore converges to 0, so that
(Pn(c)) converges to Z5,. O

For a graph T, let T* = (V, EF) be defined by
(vo,v¢) € EF = (Juy,...,00_1 €V Vie{0,...,k—1} (v;,vi1) € E). (11)

Proposition 3 For every (multi)graph I, there exists k such that every strongly connected component of
T is aperiodic.

64 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

Proof: Each strongly connected component A of T has a period p(A), so that AP(*) is aperi-
odic. Let kg be the least common divisor of the p(A)’s; then each strongly connected
component of T induces an aperiodic graph in %0, but it is possible that, in the pro-
cess, it broke down into several connected components, so that [0 might not have
the required property. The procedure then has to be repeated from I'*0 to obtain o1,
and so on. Since the strongly connected components of %0 *¥i+1 are included in those
of Tkoki, this process reaches a fixed point, which is a graph with the required prop-
erty. O

Ergo, a coloured matrix substitution system defines a convergent coloured pattern when con-
sidering the steps that are a multiple of some well-chosen integer m. So, in order to prove
Theorem 1, all we need to do is find such a substitution system. This will be done in a special
case in the next section, and in the general case in section 3.

2 A special recursion scheme for @

The aim of this section is to give the most direct and natural explanation of the fractal structure
generated by © that we are aware of. Modulo some caveat, it applies effortlessly to all invertible
elements T of .#> (R[u, u’l]), where R is a finite abelian ring of characteristic 2. This section
is not vital to the proof of the general case presented in 3, and can therefore be skipped by the
impatient reader.

We will deduce informally the basic structure of the spacetime diagrams from a simple re-
cursion relation for the 2"-th powers of T. The characteristic polynomial of T, Pr(X), is equal
to X2 + (tr T) + det T. According to Cayley-Hamilton theorem, Pr(T) = 0, so T?> + (tr T) T +
(det T) T = 0. Multiplying this equationby T~!, we get T = (det T) T~! + (tr T) I. Let us denote
T = (detT) T-1 detT = uf, which we will name the dual of T; since we are in characteristic 2,
by repeatedly taking the square of this equality, we obtain

vneN T =T + & T)* L (12)

Taking the trace of this equation, we get tr T2 = tr T?"; in particular, tr T = tr T so Equa-
tion (12) is also valid when swapping T and T. Let It be a finite set, and the A;’s elements of R
such that tr T = } ;¢ A;u'. Then we have

vneN (aT)” =Y (A u?' (13)

i€ly

We do not yet specify the initial state; as a matter of fact, it will prove to be largely irrelevant.
The only thing we ask for now is that it is nontrivial (and finite).

Consider for instance ®; we have det® = 1 = u*%and A; = x (-1,01} (7). We start with the
spacetime diagram corresponding to 2" steps; it is rescaled to a triangle with vertex coordinates
{(0,0),(—1,1),(1,1)}. Taking equations (12) and (13), we can see that the state at the 2"-th
time step can be decomposed into a sum of several copies of the initial state (the positions are
governed by the coefficients of the trace) and a configuration that can be derived by applying
T?" to the initial state. In the next 2" steps, this configuration will contract itself to the initial

The fractal structure of cellular automata on abelian groups 65

state, which is shifted according to € as T is the inverse of T composed with the shift . The
copies of the original initial state evolve according to T. This is illustrated in Figure 4. The figure

Ay

Figure 4: The whole figure is the sum of |I| 4 2 parts

suggests to divide the spacetime diagram into four parts A, B, C, and D as shown in Figure 5a
which overlap only on a single cell strip at the borders.

2 a

(a) The first substitution rule. (b) The second substitution rule.

Figure 5: The first and the second substitution rules.

Ay, Az, ad A4 are copies of Ay, and V is marked by an upside down A because it is the reverse
evolution of the initial state under the CA ® — so actually it should logically be named V or ¥,
but since it always appears upside-down while A always appears straight on its feet, there is no
risk of confusion.

Let us assume that the sequence of rescaled spacetime diagrams up to step 2" actually con-
verges. Then that means A; should be, in the limit, a copy of the whole picture A, downsized
by a factor 2, so we rename it A. This gives us the first substitution rule, represented in Fig-
ure 5a. The other three parts are still unknown, and we will name these patterns B, C and D.
Equation 12 tells us what the other substitution rules are.

Since Equation 12 remains true after swapping T and T, V admits likewise a partition into
V, d, O and d. Summing all the parts shown in Figure 4, we get the top rightmost pattern
of Figure 7. Superimposing our first substitution rule (Figure 5a) with our second step of the
decomposition, we get the new substitution rules represented by Figures 5b, 6a and 6b.

All the other substitution rules are deducible from these ones. First they are linear: for in-
stance the substitutions for C + D is the sum of the substitutions for C and D, as shown in
Figure 6¢c. We don’t know a priori what the sum of two patterns is, but we know that summing
a pattern with itself should give 0, for we are working in characteristic 2. In this case A + A and
B + B cancel out. In figure 7, one can see how the characteristic white spaces emerge from the
above substitution rule.

66 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

C C+D C+D D
C NN D J__ Nl
A A
(a) The third substitution rule.
D C
C+D
(c) The fith substitution rule. (d) The sixth substitution rule.

Figure 6: The third and the fourth substitution rules.

The problem with this scheme is that what is happening goes beyond simple juxtaposition of
patterns. There can be cancellation at the border between patterns. And, sure, we know C 4 C
is blank, but how do we know C + D, for instance, is not? Well, generally we don't. If the initial
state is itself blank, then the whole figure would be, and all tiles being blank is certainly a fixed
point for all the substitution rules.

In this case, however, everything turns out well. It should first be noticed that in every part
of the picture not tagged as “blank”, an A pattern can be found by refining a few more steps.
Formally, let G = (V, E) be the graph whose vertices are the different possible tiles (i.e., in this
case, A, B,C,D,V,d,D,d, and the sums modulo 2 of tiles having compatible shapes, including
the blank tile 0), and edges represent the transition rule in the following way: each vertex has
four edges coming out of it, each one pointing to one of its subtiles. In our case, the graph
has the property that the set of vertices accessible from A, minus 0, form a strongly connected
component.

We may then distinguish two cases: either A has a point in its interior, or it has points only on
its border triangle. In the first case, the unique non-empty compact defined by the substitution
rule is actually the figure we're looking for. Indeed, it follows from the property of connexity
— cf. Proposition 2 — that every non-zero tile actually appearing in the decomposition of the
figure has a non-empty interior. Thus, no matter what happens at the boundary between tiles,
the figure constructed this way will always converge to the same compact.

3 Recursion and matrix substitution system

We will now present a general method to calculate the fractal dimensions and average colour
of the spacetime diagrams of linear CA in .#4(Z,[u, u~1]). We will again demonstrate the
method using our example ®, whereas the derivation is carried out for the general case. Thus
the algorithm works as well on all the CA obeying our definition, e.g. the CA presented in
section 1.3, as it works on ©. Of course with larger neighbourhoods and groups of higher order
the substitution system becomes larger and larger, so that one might want to use a computer to
derive the substitution system.

The fractal structure of cellular automata on abelian groups 67

Figure 7: Three decomposition steps for the spacetime diagram of ®. One can clearly see the
characteristic white spaces emerging.

Our approach is the following: from the minimal polynomial IT of the CA T (or any other
polynomial fulfilling IT(T) = 0) we derive a recursion relation for the Ty’s, the coefficients
in u* of TY. We then forget about every other piece of information we might have on T, to
concentrate only on this recursion: this shows that the fractal structure, except for contingent
blank spaces, can be essentially derived just from the minimal polynomial of T. We further

develop our recursion scheme for T until we can express every Ty in terms of the T/ of the first
m time steps with coefficients a;(x —i,y). With a simple grouping of cells we deduce a matrix
substitution system that enables us to generate the spacetime diagram of step + = k"*! directly
from step t = k". Using this substitution system we can calculate the fractal dimension, the
average colouring, and given an initial state also the whole space time diagram.

Now let IT(X) € R[u, u~!][X] be a monic polynomial such that IT1(T) = 0:

m—1)
(X)) = X" - Y A, X (14)
j=0

According to the Cayley-Hamilton theorem, which we can apply in our case because T is an
endomorphism of a finite-dimensional free module over an abelian ring (see Theorem 3.1. of
[Lan93]), the characteristic polynomial of T fulfills this condition, therefore we can always find
such a polynomial. Let Z be the finite set of exponents i’s such that the coefficient in u' of TT,
seen as an element of R[X][u, u~"], is nonzero, so that we can write Ar;; = ¥ Aryu’. Z is not

i€eT

to be confused with the neighbourhood of the CA, I, which won't play any role from now on.

68 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

For any x,y,n € N, (x +y)? = xP + yP[p], and if x = y[p"] then x? = yP[p"+!]. Therefore,

forany x,y € Randn € IN, (x + y)pHH = (x”" +yP")P'"". Since the powers of T commute
pairwise, we get

-1 -1 pit

P
n+21 D n+’ 1 n+l—1' nt+l—1;
v (Z I, 7) = Z (ZAH”u’”> TP . (15)
j=0 \iez
For each i, j, the sequence)\ jis ultimately periodic. There exists therefore integers N and

M such that for all 7, j, A = A% i, Let k = pN; substituting n by M + Nn in (15), we get

H A
pi1 P
Tkan+2(171)m _ Z (Z)\1—[L > Tkan+lf1j ‘ (16)
j=0 \ieZ
Hence, if we note m’ = pM+2(=1); and expand this equation, we find that there is some finite

subset 7' of Z and some elements y; ; of R, for i € 7" and j € [0;m’ — 1], such that foralln € N,

'—1

m
TF™ = Y N R T (17)

j=0 ieT’

We have now used everything we needed to know from the multiplicative structure on the
ring of matrices. As announced at the end of section 1.2, we will now get rid of it and con-
centrate only on the linear recurrence relation that we have just derived. Remember that T/ €

My (R [u,u=1]), and we are interested in the coefficient of T/ in ul, denoted Tj so that T/ =

lgl T] u'. We thus get the following relation: T Y =Yier Z] 0 Lo T T]lz,,l , which we rewrite
in this form:

L=)} W fi;,y)() (18)
(i,j) €T’ < [0;m' 1]
where f;i(y) = —k"iand g;i(y) = y — k" (m’ — j), which of course works with any 7, but
we will choose n = [log; %J In order to emphasise that the rest of the proof will use only a
minimal structure, we state in the next proposition what will actually be proven, and change the
notation from T, which was an element of .# (R[u, u’l]), to E, an element of a more arbitrary
R-module. It is straightforward to check that T fulfils the hypotheses of the proposition.

Proposition 4 Let M be a finite R-module, k a positive integer, A\ a finite set of indices, and for i € A,
Ui € R, fi : [m; 40— Z and g; : [m; +oo[— IN such that for all y € [m; +oo] and t € [0;k — 1],

e gi(y) <y

The fractal structure of cellular automata on abelian groups 69

o filky+1t) = kfi(y) and gi(ky +t) = kgi(y) +t

Forx € Z x N, let E,y(€ M be such that when y > m,

== L mE) (19)
iEA

Then there exists a finite set E and a function e : Z x IN — E such that
o E] is a function of e(x,y);
o fors,t € [0;k—1], e (kx +s,ky + t) is a function of s, t, and e(x, y).

The introduction of a new function e in this proposition comes from the need of a scaling
property, expressing that the state at point (kx + s, ky + t) can be deduced from the state at point
(x,y). Such a property does not follow immediately from Equation (19), but it is possible to
expand the state space from M to E, and to put more information into than e than into &, so as to
fulfill the scaling property. An immediate consequence of this proposition is that the spacetime
diagrams of E} of order k" can be described by coloured matrix substitution systems, so that
Theorem 1 will follow from Proposition 3. Let us now prove Proposition 4.

If y > m, we can apply Equation (19) with a unique 7 to give an expression of ZJ in terms of a

linear combination of = ”y s with y’ < y. Starting from any point (x,y) € Z x N and performing

these operations recurswely we get to the expression

182

=Y szwxyE (20)

icZ j=
which we take as a definition of a; ; (x,). Since the relation (19) is invariant under translations
of the parameter x, we have &;;(x,y) = ag;(x —i,y). Noting a; := ag;, we get the following
equation:
m—1 .
Bl = aj(x — i,y)E. (21)
i€Z j=0

Let us now show that a. (kx +s,ky +t), for s,t € [0;k— 1], is a function of s, t, and the
a. (x',y)’s, where x” ranges over some neighbourhood of x. By substituting x with kx + s and y
with ky + ¢ in Equation (19), we get

=ky+t =kgi(y)+t
Skxts .Z/:\Vi“k(x+fi<y))+s‘ (22)
1€

Because the indices and exponents of & on the left and right side of this equation have under-
gone the same transformation (x,y) — (kx + s, ky + t), we arrive recursively at this point

m—1
oky+t —kj+t
“kxts T Z Z ‘X](x — 1 y)‘_‘k1+s (23)
ieZ j=0

70 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

which we want to compare to the following equation, directly deduced from (21):

-1
Egiz Y Z wj(kx +s—1i, ky+t)E (24)
icZ j=0

Of course, there can be terms in (23) with kj 4+t > m, so that the decomposition is not over:
it then needs to be performed to its end. What we could have wished for would have been
for a.(kx 4+ s,ky 4+ t) to depend only on a. (x,y). This is not quite true, instead the final de-
composition of (23) relates the coefficients DC]'(kx +s—i,ky+t) of the B u in (24) to sums of the
aj(x —i,y)’s. Therefore a.(kx + s,ky + t) depends on the a. (x +1i,¥)’s for i ranging over some
set 2. However, this not much of a problem, as a simple grouping will take care of it — a tech-
nique commonly attributed to [Wil87]. Let us show that Z is finite. Since j € [0;m — 1] and
t € [0;k — 1], the kj + t appearing as an exponent of Z in (23) is in [0; km — 1]. We therefore have
to use at most (k — 1) m recursive calls to (19) in order to get down to coefficients &3 with y < m,
each one of them decreasing the exponent by at least 1. Each one of them also increases the
index by f;(y); since both A and [0; km — 1] are finite, the set of possible f;(y)’s is also bounded
by some M, and the total variation in the index, i.e. Z, is then bounded by (k — 1) mM; let us
say 9 C [[dmin; dmax]]-

Let us now introduce By, (x,y) = (a.(x —1,Y));cqr, Wwhere 2" = [0min; dmax], dmax being
such that dmax > dmax + Pm%—‘ and Jmin such that dpin < dmin — 1 + [“““+1—‘. This time,

for s,t € {0;...;k—1}, Bri. (kx +s,ky +t) does really depend only on Bry. (x,y). Indeed,
Bri,. (kx + s, ky —I— t) (a.(kx +s —i,ky+1));cq, and each a. (kx +s —i,ky + t) depends only

on (tx. (x—l— {TJ -7, y)) ; the choice of 2’ has been made so that j — {%J € 2'. This

concludes the proof of Proposition 4, since we can choose E = MI%"—11*7" with e(x,y)(j,i) =
aj(x —1i,y).

3.1 Example: ©
In the case of ®, Equation (23) becomes

T2y+t . W2+t
S0x4s T 2“80 ‘—‘21+s +ae(x —1,y)E5 (25)

The first term is now elementary, but the second one has to be decomposed once more, i.e.

=24+t _ = =14t =14t =14+t
=2i+s T 2i+s +a —2i+s—1 + 2i+s + —2i+s+1/ (26)
which is the end of it if t = 0, but not if ¢t = 1, where we get
=3 _ =0
its = SM2iqs—1 +& ‘—‘21+s +& ‘—‘21+s+1 +& ‘—‘21+s 2 + = ‘—‘21+s+2 (27)

The substitution rule of ag,. can then be written in the following way, where for convenience

X@,1 |
2,0

a@, is represented as

The fractal structure of cellular automata on abelian groups 71

ag.(2x%,2y+1) | ae,.(2x +1,2y + 1)
2o, (¥, Y) — a@f(2x,2y) a@ﬂ(Zx—kl,Zy)
reo (X, y) +ap1 (x —1,y) +ae1 (x+1,y) 0
— ‘X@,l(x/]/) agll(x,y) -+ DC@/l(x -+ 1, y)
0‘@,1(9‘7/ y) 06@,1()(, y) + 0@ (x + 1,y)
2,0 (YY) +aeq (x,y) 0

If we follow exactly what has been said in the general case, we ought to consider the grouping
{—=2;---;3}. However, this general bound is obviously too rough in the case of ®, where we
will just have to take {—1;2}. We will represent the grouping in the form

v (x—1y) wapi(x,y) aei(x+1y) agi(x+2y) .
reo(x —1,y) weo(xy) weo(x+1y) aeo(x+2,y)

The alphabet has thus size 256, and the substitution system is described by

0 at+c+f 0 b+d+g at+c+f 0 b+d+g 0
a b ¢ d a+b b b+c c b b+c c c+d
e f g h - a+b b b+c c b b+c c c+d
0 b+ f 0 c+g b+ f 0 c+g 0

Let us denote by A the matrix having a 1 in position a4 and 0 elsewhere, B the matrix having
a 1 only in position b, and so on. For these matrices, we will denote the sum of matrices by a
simple juxtaposition: AB will mean A + B, as the matrix multiplication has no meaning in this
context.

Since Tg = (Sxng, the starting position, with which we describe the whole line number 0,
. . . B|A
is - J[O[H[GJF[EJO]--- . Since we have, for instance, the rule[F | — T E the
graph derived from this substitution system is aperiodic; that means that, in whatever way
A, B,C,... are represented, either as coloured dots or as white dots, the pattern converges, and
the fractal structure is described by this matrix substitution system (see Section 1.4).

To calculate the fractal dimension of our spacetime diagram we use the transition matrix of the
matrix substitution system, which contains the information about the images of all states. The
line corresponding to F would contain a 1 in the rows of A, B, E, and F and zeros elsewhere. As
every cell gives rise to four new cells the sum of all entries in each column of the matrix is 4. We
thus deal with a sparse 256 x 256 matrix. The base 2 logarithm of the second largest eigenvalue
of this matrix is the fractal dimension of the spacetime diagram (cf. for instance [Wil87]). Here

this gives a fractal dimension of log, %Tm o~ 1.8325, as also found in [Mac04].

Let us note that up to this point our analysis for ® is word for word valid for all CA in
M (Zy[u,u1]) of determinant 1 and trace #~! + 1 + u. The additional information is only used
for the actual colouring of the picture. In general all CA with the same minimal polynomial have
the same substitution system, and in dimension 2 the minimal polynomial is entirely determined
by the trace and the determinant. The fractal we get if we use the substitution system starting
from --- JO|H|G|F[E|O]--- isshown inFigureS8.

72 Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

Figure 8: The general fractal time evolution of a linear CA with k = m = 2, determinant 1 and
trace u~! + 1 + u. Only the areas where the whole group of as is 0 is marked white. Thus the
image appears to have less white than the coloured picture. In the limit of infinite recursion this
effect vanishes, thus the fractal that is generated is actually the same.

In the case of ® the connection between the substitution system and the coloured picture

is very simple; let us take { = ((1)) as the initial state. Then the state of cell x after y itera-

tions is ©%¢ = ¥ (aeo(x —i,y)0) +ae1(x —,y)0}) & = aeo(x,y)1& + Lae(x —i,y)0O}E.
1 1
0 1

11

: 1 _
Since @ = (0 1

), @% — @)1_1 — (00) and @11 = 0O wheni ¢ {—1;0;1}, we have

TI¢ = (zg'gg’ 5 %) . This gives us a colour assignment for each state of the matrix substitu-
tion system, which corresponds to simply dropping all states that include neither B nor F.

We can now determine the average hue of the spacetime diagram making use of the eigenvec-
tor corresponding to the second largest eigenvalue of the transition matrix [Wil87]. Let us say
((1)), ((1)) and (%) are respectively coded by the colours cig, co1 and c13; let ¢; be the white colour.
We determine which symbols of the alphabet belong to each of the colours by looking only at

the part (“Q'O(X’y)). Then we just add up all the weights of symbols with the same color in the
a1 (%)

eigenvector. We get the following unnormalised coefficients: c1g: 2(4 + v/17), cor: 2(4 + V/17),
and c11: 5+ V17.

In figure 1a, this colour code was used: c19p =, o1 = M and 11 = M. We must therefore
have the following average hue: H

Conclusion

We have shown that every cellular automaton inducing a morphism of abelian groups produces
a selfsimilar spacetime diagram. We exhibited an algorithm taking as input the local transi-
tion rule and outputting a description of these patterns. We only studied the one-dimensional
case in this article, but the analysis can be carried over to higher dimensions with not much

The fractal structure of cellular automata on abelian groups 73

more ado. Instead of .#; (R[u,u"']), a n-dimensional linear cellular automaton would then
be an element of .#;(R[u1, uy 1w, Uy Ly, u;1]), matrix substitution systems would become
(n + 1)-dimensional array substitution systems, the system of indices in section 3 would be
further complicated, and the spacetime diagrams would be harder to display. However, the
generalisation does not present any theoretical difficulty.

We list here some open questions and possible future developments.

e Possibly, the m in Theorem 1 can always be taken to be 1. This is known to be true in the
cyclic case, i.e. when d = 1, cf [Tak92].

e The algorithm presented in this article, producing a description of the spacetime diagram
in the form of a matrix substition system, has a high complexity, due to the large size of
its output. Is this a necessary evil, or can more efficient descriptions be found? Could
for instance the more elegant triangle-based substitution scheme presented in section 2 be
naturally generalised?

e To what extent can the algebraic structure be weakened? Instead of the alphabet being an
abelian group, could we consider an abelian monoid? Is it possible to get rid of commuta-
tivity and/or associativity?

Acknowledgements

The authors would like to thank Jean-Paul Allouche, Bruno Durand, Cris Moore and Volkher
Scholz for their useful feedback and bibliographical hints. They also gratefully acknowledge
the support of the Deutsche Forschungsgemeinschaft (Forschergruppe 635), the EU (projects
CORNER and QICS), the Erwin Schrodinger Institute and the Rosa Luxemburg Foundation.

References

[AHP97] Jean-Paul Allouche, Fritz von Haeseler, Heinz-Otto Peitgen, A. Petersen, and
Guentcho Skordev. Automaticity of double sequences generated by one-
dimensional linear cellular automata. Theoretical Computer Science, 188(1-2):195-209,
November 1997.

[AHPS96] Jean-Paul Allouche, Fritz von Haeseler, Heinz-Otto Peitgen, and Guentcho Skordev.
Linear cellular automata, finite automata and Pascal’s triangle. Discrete Applied
Mathematics, 66(1):1-22, April 1996.

[Gut10] Johannes Giitschow. Entanglement generation of Clifford quantum cellular au-
tomata. Applied Physics B, 98(4):623—-633, March 2010.

[GUWZ10] Johannes Giitschow, Sonja Uphoff, Reinhard F. Werner, and Zoltan Zimborés. Time
asymptotics and entanglement generation of Clifford quantum celluar automata.
Journal of Mathematical Physics, 51(1), January 2010.

74

[HPS93]

[HPSO01]

[Lan93]

[Mac04]

[Mac09]

[MGAPS85]

[Mo0097]

[Mo0098]
[MOW84]

[SVWO08]

[Tak90]

[Tak92]

[Wil87]

Johannes Giitschow, Vincent Nesme, and Reinhard F. Werner

Fritz von Haeseler, Heinz-Otto Peitgen, and Guentcho Skordev. Cellular automata,
matrix substitutions and fractals. Annals of Mathematics and Artificial Intelligence,
8(3—4):345-362, September 1993.

Fritz von Haeseler, Heinz-Otto Peitgen, and Guentcho Skordev. Self-similar struc-
ture of rescaled evolution sets of cellular automata. International Journal of Bifurcation
and Chaos, 11(4):913-941, 2001.

Serge Lang. Algebra. Addison-Wesley publishing company, third edition, 1993.

Alan J. Macfarlane. Linear reversible second-order cellular automata and their first-
order matrix equivalents. Journal of Physics A: Mathematical and General, 37:10791—
10814, 2004.

Alan J. Macfarlane. On the evolution of the cellular automaton of rule 150 from
some simple initial states. Journal of Mathematical Physics, 50(6):062702, 2009.

Benoit B. Mandelbrot, Yuval Gefen, Amnon Aharony, and Jacques Peyrire. Fractals,
their transfer matrices and their eigen-dimensional sequences. Journal of Physics A:
Mathematical and General, 18:335-354, 1985.

Cristopher Moore. Quasi-linear cellular automata. Physica D, 103:100-132, 1997.
Cristopher Moore. Non-abelian cellular automata. Physica D, 111:27-41, 1998.

Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram. Algebraic properties of
cellular automata. Communications in Mathematical Physics, 93:219-258, March 1984.

Dirk M. Schlingemann, Holger Vogts, and Reinhard F. Werner. On the structure of
Clifford quantum cellular automata. Journal of Mathematical Physics, 49, 2008.

Satoshi Takahashi. Cellular automata and multifractals: dimension spectra linear
cellular automata. Physica D, 45(1-3):36-48, 1990.

Satoshi Takahashi. Self-similarity of linear cellular automata. Journal of Computer
and System Sciences, 44(1):114-140, 1992.

Stephen J. Willson. Computing fractal dimensions for additive cellular automata.
Physica D, 24:190-206, 1987.

Automata 2010 — 18Intl. Workshop on CA and DCS DMTCS proc.AL, 2010, 75-94

The Size of One-Way Cellular Automata

Martin Kutrib! and Jonas Lé&fvré and Andreas Malchér

Hnstitut fur Informatik, Universitat Giessen
Arndtstr. 2, 35392 Giessen, Germany
{kutrib,malche} @informatik.uni-giessen.de
2 Ecole Normale Supérieure de Lyon

46 Allée d'ltalie, 69362 Lyon, France
jonas.lefevre@ens-lyon.fr

We investigate the descriptional complexity of basic of)ers on real-time one-way cellular automata with an un-
bounded as well well as a fixed number of cells. The size ofthenaata is measured by their number of states. Most
of the bounds shown are tight in the order of magnitude, thahe sizes resulting from the effective constructions
given are optimal with respect to worst case complexity. veosely, these bounds also show the maximal savings
of size that can be achieved when a given minimal real-timé& @Qlecomposed into smaller ones with respect to
a given operation. From this point of view the natural prablef whether a decomposition can algorithmically be
solved is studied. It turns out that all decomposition peals considered are algorithmically unsolvable. Therefore
a very restricted cellular model is studied in the secontigfahe paper, namely, real-time one-way cellular automata
with a fixed number of cells. These devices are known to cephe regular languages and, thus, all the problems
being undecidable for general one-way cellular automatarne decidable. It is shown that these decision problems
areNLOGSPACE-complete and thus share the attractive computational ity of deterministic finite automata.
Furthermore, the state complexity of basic operationsHesé¢ devices is studied and upper and lower bounds are
given.

Keywords: cellular automata, state complexity, descriptional caxity, formal languages, decidability

1 Introduction

Cellular automata are a well-motivated and well-invesgdamodel for massively parallel computations
which have widely been investigated from a computationphcdy point of view (see, for example, the
surveys [9, 10]). Basically, one-way cellular automataliaesar arrays of identical copies of deterministic
finite automata, sometimes called cells, that work synabwsly at discrete time steps. Each cell is
connected to its immediate neighbors to the right. The impunitially written into the cells.

Though real-time one-way cellular automata are one of thekest classes of cellular automata, the
class of languages accepted by them contains rather categlieon-context-free and non-semilinear
languages and almost all important decidability questtansed out to be undecidable [16] and not even
semidecidable [12].

1365-8050 © 2010 Discrete Mathematics and Theoretical CoenjBcience (DMTCS), Nancy, France

76 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

Opposed to the computational capacity and complexity tiseriftional complexity concerns the size
of a system. One typical question is, for example, how swtlgim real-time one-way cellular automaton
can represent a language in comparison with other modelgl, Bl more general introductions to and
surveys of descriptional complexity are given. The desicnial complexity of real-time one-way cellular
automata and the related model of real-time iterative arhag been studied in [12, 14].

An important branch of descriptional complexity is the stofithe complexity of operations. Here, one
considers language operations such as union, interseotiosaversal, under which the language classes
of the devices in question are closed. Of interest are optm@structions with regard to the size of
description. Thus, the goal is to find upper bounds that dieestfficient size necessary to represent the
result of applying an operation, and lower bounds that dieesizes necessary in the worst case. Since,
in general, the minimization or even reduction of the sizeafgiven one-way cellular automaton is algo-
rithmically unsolvable, there is no general method to priimeminimality of a given device. Moreover,
the precise upper bounds on the size may depend on undecjtaiplerties. So, tight bounds in the order
of magnitude are to some extent best possible.

There are many ways to measure the size of a system. For deigronfinite automata the number
of states is a reasonable and popular measure. Since hatlieatepresentation of a cellular automaton
consists of the representation of their cells, the numbetates is a reasonable size measure for cellu-
lar automata, too. For deterministic and nondeterminfstite automata the state complexity of many
operations has been investigated. Recent surveys of sesititt regard to deterministic finite automata
are [19, 20], where also operations on unary regular langgiage discussed. In [1] an automata indepen-
dent approach based on derivatives of languages is preséma¢turned out to be a very useful technique
for proving upper bounds for deterministic finite automapemtions (cf. [2, 3]). A systematic study of
language operations in connection with nondeterministitefiautomata is [5]. The operation problem
for two-way deterministic finite automata has been inveséd recently in [8].

In this paper, we study the state complexity of real-time-oamg cellular automata and we consider
the Boolean operations union, intersection, and complé¢stien as well as the operation of reversal. We
obtain upper and lower bounds which are tight in order of nitage. Interestingly, the state complexity
of the Boolean operations is very similar to that of deteistia finite automata. This is not longer true
for the operation of reversal. Here, deterministic finiteoaata have an exponential blow-up whereas the
blow-up for real-time one-way cellular automata is at mestdyatic. In contrast to the composition of two
languages by using an operation, the somehow “inverse’l@mobf decomposing a given language into
two languages with the help of an operation is studied. Glgidwe goal is to find a shorter representation
of the given language by decomposition. It turns out thalhslecomposition problems are algorithmically
unsolvable with regard to the Boolean operations and ralers

These undecidability results together with the undecidgloif almost all commonly investigated ques-
tions motivates the study of a restricted model, the reaétbne-way cellular automata with a fixed num-
ber of cells, which have been introduced in [13]. The comiprtal power of the restricted model is
equivalent to the regular languages and, thus, all the pnoblundecidable for general one-way cellular
automata become decidable. It is shown that these decisidmems areNLOGSPACE-complete and
thus share the attractive computational complexity of mheirgistic finite automata. Furthermore, the state
complexity of basic operations for these devices is studi@lupper and lower bounds are given.

The Size of One-Way Cellular Automata 77

2 Definitions

We denote the positive integers and z€do1, 2, ...} by N. The empty word is denoted by the reversal

of a wordw by w?, and for the length ofy we write |w|. For the number of occurrences of a subwerd
in w we use the notatiofw|,. We useC for inclusions andc for strict inclusions. In order to avoid
technical overloading in writing, two languagésand L’ are considered to be equal, if they differ at
most by the empty word, that i, \ {\} = L’ \ {\}. Throughout the article two devices are said to be
equivalentf and only if they accept the same language.

A one-way cellular automaton is a linear array of identiocatedministic finite state machines, some-
times called cells. Except for the rightmost cell each ormimected to its nearest neighbor to the right.
We identify the cells by positive integers. The state trémsidepends on the current state of a cell it-
self and the current state of its neighbor, where the rigktroell receives information associated with a
boundary symbol on its free input line. The state changespédce simultaneously at discrete time steps.
The input mode for cellular automata is called parallel. ©ap suppose that all cells fetch their input
symbol during a pre-initial step.

Definition 1 A one-way cellular automatofOCA) is a system(S, F, A, #,0), whereS is the finite,
nonempty set otell states FF C S is the set ofaccepting statesA C S is the nonempty set dhput
symbols# ¢ S is the permanerfsoundary symbolands : S x (S U {#}) — S is thelocal transition
function

A configurationof a one-way cellular automatas, F, A, #,6) at timet > 0 is a description of its
global state, which is formally a mapping : {1,2,...,n} — S, forn > 1. The operation starts at
time 0 in a so-callechitial configuration which is defined by the giveninput = a;az - - -a,, € A*. We
seteg (i) = a4, for1 < i < n. Successor configurations are computed according to thmlfi@nsition
functionA. Letc, t > 0, be a configuration withe > 2, then its successet. 1 is defined as follows:

ié(Cf(i),ct(i +1),ie{1,2,...,n—1}

B Ct 1(2) b
Ct+1 —A(Ct) — { i 5(@5(”)7#)

ct+1(n)

Forn = 1, the next state of the sole celldéc;(1),#). Thus,A is induced by.

3]

Fig. 1: A one-way cellular automaton.

An inputw is accepted by an OCAMM if at some time step during the course of its computation the
leftmost cell enters an accepting state. Tdreguage accepted byt is denoted by (M). Lett : N — N,

t(n) > n, be a mapping. If allv € L(M) are accepted with at mog{w|) time steps, therM is said to
be of time complexity.

Observe that time complexities do not have to meet any fudbeditions. This general treatment is
made possible by the way of acceptance. An inpus accepted if the leftmost cell enters an accepting
state at some timé < ¢(Jw|). Subsequent states of the leftmost cell are not relevantwveer, in
the sequel we are particularly interested in fast OCAs dperan real-time that is, obeying the time
complexityt(n) = n.

78 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

So, any OCA is defined by the state $ktthe set of input symbold, the set of accepting statég
and the transition function. That means, fostates we have at moat - 2 . p(*+1) different OCAs,
where, in addition, some of them are isomorphic. Since therénfinitely many languages acceptable by
real-time OCAs, trivially, the number of states has to beaumued.

3 State Complexity of Basic Operations

We consider the state complexities of the Boolean opera@mnl reversal under which the class of lan-
guages accepted by real-time one-way cellular automatsed [16]. First, we provide exemplarily
an infinite language family over a binary alphabet that rexpugrowing size when accepted by real-time
OCAs. These languages and variants thereof are of tangibnéage for our purposes. As mentioned
before, the problem is to prove a lower bound for the numbetates necessary, since no general tools
are available. Our lower bound misses the upper bound bytateanly.

For all integers: > 2 let

Li = {00 |i,j>1}.
Lemma 2 Letk > 2 be an integer. Theh+ 4 states are sufficient for a real-time OCA to acckpt

Proof: The languagd.;, is accepted by the real-time OCA = (S, F, A, #,5), whereA = {a,0},
S: {a70717"'7k_ 17<7+7- }IF = {+}v and

0(a,#) =- d(p,a) =p+1, O<p<k*2

o(a,-)=- o(k—1 a)

o(<,-) =+ (<, a) =

(<, +) =+ o(p,<) = p+1 0<p<k-—2
(k

0k —1,) =<
5(<,9)=0,0<qg<k—1

Here and in the sequel we assume tacitly that the staietishanged wheneveéris not defined.

Basically, the idea of the construction is to set up-ary counter in the leftmostcells, where states
0,1,...,k—1representthe digits anda carry-over to be processed by the left neighbor cell. Tatest
and- are used to implement a signal, which is initially startedhia rightmost cell. It moves to the left,
passes through thecells with a non-accepting state, and checks whether kdl gkEthe counter passed
through have been indicating a carry-over in the step befondy in this case the accepting state is used.

O

By almost the same reasoning the same upper bound for thedemmiptL,, of L, is shown.

Corollary 3 Letk > 2 be an integer. Theh + 4 states are sufficient for a real-time OCA to accBpt

Proof: We adapt the proof of Lemma 2 by definidg= {a, +} and modifyingd such thav(p, +) = +,
forallp € S,0(a,0) = +,0(0,#) = +,0(a,#) =-,0(a,-) =-,0(<,-) =-,ando(p,-) = +, for
0<p<k-1. O

Now we turn to the lower bounds.

The Size of One-Way Cellular Automata 79

Lemma4 Letk > 2 be an integer. Then at ledstt 3 states are necessary for a real-time OCA to
acceptly,.

Proof: Let M be a real-time OCA with state ssStacceptinglL;. We consider accepting computations
on inputs of the formd?a/*" and, first, treat subcomputations as follows. The left pageguences of
adjacenta-cells runs through cycles according &6, a) = a1, 6(a1,a1) = aa, d(az,a2) = as, ...
Denote the cycle length by,. Clearly,c, is at most|S|. Therefore, forj large enough, the leftmost
cells initially carrying a0 eventually also will run through cycles whose length is deddyc,. Finally,
we have a possible signal from right to left initiated &, #). Let 6(a,#) = s1, 6(a1,$1) = s2,
0(ag, s2) = ss, ... Again, the signal eventually becomes cyclic with cyelegth, sayc;. Clearly,c, is
at most S|2.

Now we turn to states. Assumsg is at mostk’ — 1. Since0’a*’ is accepted, the inpa* g ce-cs
must be accepted, too. But fotarge enough(k? — 1) - ¢, - cs = k' - ¢4 - s — cq - C5 iS NOt @ multiple
of k. Therefore, at leagt states:y, zo, . . ., 2, are necessary to set up the cycle length

Furthermore, at least one stateis necessary to realize the signal from right to left, wharbas to be
different froma, and both are non-accepting states. Otherwise, there weutslsignal and the whole
computation could not accept in time. Clearly, neithgrss, s3, ... nor the states, ay, as,as,... and
21,22, . .., 2 Can be accepting. So, in addition, one accepting stageecessary.

If a1 € {z1, 2, ..., 2}, at some time during the cycle the leftméstells are synchronously in state
while further cells to their right are in statg as well. So, some input belonging fg. would be rejected.
Similarly, if s1 € {z1, 22, ..., 2, }, then at some time theth cell from the left is in state; and, thus,
simulates the arrival of the signal, while the signal hasysbtarrived. So, an input not belonging £q
would be accepted.

Altogether, we have at least tihet 3 states{z1, 2o, . .., 2k, a1, 51, +}. a

As before, by almost the same reasoning the same lower bourle complement,, of L, can be
shown.

Corollary 5 Letk > 2 be an integer. Then at leastt 3 states are necessary for a real-time OCA to
acceptly,.

3.1 Intersection and Union

Basically, the upper bounds for intersection and union &taioed by constructions based on the well-
known two-track technique. That is, on two different traekseptors for both languages are simulated
independent of each other. However, in general, an inputés@ed when the leftmost cell enters an
accepting state at some arbitrary time step. So, in genibedleftmost cell will enter accepting as well as
non-accepting states during a computation. While thisesas problem for union, where a cell accepts
when at least one of its registers is accepting, for the $etdion, where a cell accepts when both of its
registers are accepting, we have to provide further st@itesse are used to indicate that a register already
has passed through an accepting state.

Theorem 6 Letm,n > 1 be integersM; be anm-state real-time OCA witht; non-accepting states,
andM be ann-state real-time OCA with, non-accepting states. Then-n-+ry-n+m-ro+7ry -1 €
O(m - n) states are sufficient for a real-time OCA to accefb1,) N L(My).

80 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

Proof: We apply the two-track technique where each register rereesnbhether it has passed through
an accepting state. First we modivl; = (S;, F;, A, #,4;), fori € {1,2} to M; = (S, I, A, #,0:),
whereS; = S; UR; with R, = { s’ | s € S; \ F; }, F; = F; U R;, and

(52'(8,75) if ses; \ F;
bi(s,t) = < 8i(s,t) if s € Fyandd;(s,t) € S \Fz :
0i(s,t) if s € F; ando;(s,t) €
5i(st) = di(s,t)" if s € R; andd;(s,t) € 5; \F
ST 1 di(s,t) if s’ € Ryanddi(s,t) € Fi

Clearly, M,; and M; are equivalent. NowM = (S, F, A, #,6) acceptsL(M,) N L(My), where
S = Sl X Sg, F= F1 X F2, andé((sl,SQ), (tl,tg)) = (51(81,t1),52(82,t2)). O

For the union the construction is slightly simpler. In th&se it is not necessary to remember whether
a register has passed through an accepting state. Therfreext upper bound follows immediately.

Theorem 7 Letm,n > 1 be integerspM; be anm-state real-time OCA an#1, be ann-state real-time
OCA. Thenm -n € O(m - n) states are sufficient for a real-time OCA to accbph,) U L(My).

Now we can utilize the languagés. for showing lower bounds which are tight in the order of magni
tude.

Theorem 8 Let m,n > 6 be integers such that — 4 andn — 4 are relatively prime. Then at least
(m—4)(n—4)+ 3 € Q(m - n) states are necessary in the worst case for a real-time OCécapathe
intersection of amn-state real-time OCA and anstate real-time OCA language.

Proof: Letk = m — 4 and{ = n — 4 be relatively prime. The witness languages for the assedioL;,
accepted by am-state real-time OCA andl, accepted by am-state real-time OCA. The intersection
Ly N Lgis Lyg = {0%7**" | 4,5 > 1}. By Lemma 4, any real-time OCA acceptitig., has at least
k-£+3=(m—4)(n—4)+3 € Q(m-n) states. O

Theorem 9 Let m,n > 6 be integers such that — 4 andn — 4 are relatively prime. Then at least
(m —4)(n—4) + 3 € Q(m - n) states are necessary in the worst case for a real-time OCécéapéathe
union of anm-state real-time OCA and anstate real-time OCA language.

Proof: Letk = m — 4 and/ = n — 4 be relatively prime. Now the witness languages for the sisser
are L, accepted by am-state real-time OCA anfl, accepted by an-state real-time OCA. Their union
is Li.¢, for which atleast - ¢ + 3 € Q(m - n) states are necessary by Corollary 5. O

The Size of One-Way Cellular Automata 81

3.2 Complementation

The precise upper bounds on the state complexity of sometpes depend on the states that can appear
on the diagonal of the space time diagram, that is, the states— i + 1), 1 < i < n. Given an OCA
we consider the set of statésthat can appear on the diagonal in some possible computatidrdenote
their number byi. For convenience, we simply writtates that can appear on the diagonal

For deterministic devices the closure under complememtégioften shown by interchanging accepting
and non-accepting states. The reason why this does not waygrieral for OCAs is once more that the
leftmost cell may enter accepting as well as non-acceptatgsduring a computation.

Theorem 10 Letn > 1 be an integer andt be ann-state real-time OCA with non-accepting stateg,
states that can appear on the diagonal and also at otheiopssirom whichg are non-accepting. Then
n+r+d+ g € O(n) states are sufficient for a real-time OCA to accepi).

Proof: We sketch the construction of a real-time O@A’ acceptingl (M). Basically, M’ simulatesM,

but since the cells o may enter accepting as well as non-accepting states ducoigputation, none of
the states of\1 can be accepting in’. Instead, copies of thenon-accepting states are used in order to
remember whether a cell has passed through an acceptiadpsfate. In order to accept the complement
of L(M) all of these new states are also non-accepting. Finallyffices to send a signal from right to
left along the diagonal that causes every cell passed thrinay has not entered an accepting state before
to accept. To this end, the states that appear on the diagavato be identified as signal. This is trivial
for the states of\l which appear only at the diagonal. For thasstates that can appear on the diagonal
and also at other positions (8f1), copies are used for this purpose. Furthermore, on thed&gf M’
there may appearnew non-accepting states indicating that the cell has ethiim accepting state before.
For these now new copies have to be used to accept. O

Theorem 11 Letn > 5 be an integer. Then at least — 3 € ((n) states are necessary in the worst case
for a real-time OCA to accept the complement ofastate real-time OCA language.

Proof: Fork > 2 the assertion is witnessed by the language
Lep={0%7 |i>1,j>k"}.

First, we construct & + 3)-state real-time OCAM = (S, F, A, #,6), which accepts itA = {a,0},
S=4{0,1,...,k—1,a,<,-}, F={<},and

0p,a)=p+1,0<p<k-—2 d(k—1,)=<
5(k71a) < 0(<,9)=0,0<¢<k-1
0(<,a) = O(a,#) =-
0p,<)=p+1,0<p<k-2 o(a,-)=-

So, the real-time OCAM hasn = k + 3 statesy = k + 2 non-accepting stated,= k + 1 states that can
appear on the diagonal and at other positions, from whiehk are non-accepting.

82 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

In order to show the lower bound on the number of states nagetsaccept the complement bf i,
we argue as follows. At leagt states are necessary to set up a cycle of lehgth the i leftmost cells
(cf. proof of Lemma 4). Clearly, these states are all norepting. Going into further details, at time
stepk cell 7 has to switch to a different set of at ledsstates. This is caused by the fact that the cycle of
all the leftmost cells has to continue and, in addition, tedin only change to an accepting state until time
stepk. In general, cell < j < i has to switch to the different set bfstates at time steff —7+! + i — j.
Again, these new states are all non-accepting.

Furthermore, one additional state different fraris necessary to send a signal from right to left such
that some cell initially carrying & can change to an accepting state at all. Finally, an acapgtéte itself
is necessary. In total, at lea¥t + 3 = 2n — 3 € Q(n) states are necessary. O

3.3 Reversal

Now we turn to the non-Boolean operation reversal.

Theorem 12 Letn > 1 be an integer and1 be ann-state real-time OCA with set of input symbols
and setD of states that can appear on the diagonal. The[D| + |A| + 3 € O(n?) states are sufficient
for a real-time OCA to acceft(M)%.

Proof: Let M = (S, F, A, #,0) be real-time OCA with sebD of states that can appear on the diagonal.
In order to obtain a real-time OCAA1’ for the languagd. (M), basically, the arguments of the local
transition function are interchanged. In addition, we h@vpay special attention to the boundary state.
Moreover, M’ cannot simulate the last step.® (see Figure 2). So, the construction has to be extended
slightly. Each cell has an extra register that is used to kitauransitions ofM under the assumption
that the cell is the leftmost one. The transitions of the tefiinost cell now correspond to the missing
transitions of the previous simulation. However, the cotapan of the leftmost cell af is simulated on
the diagonal ofM’ together with the additional register. So, if an acceptiagesappears on the diagonal,
it has to be sent to the left. On the other hand, if an accestiaig appears in the additional register, it
has to cause the cell to accept but must not be sent to th&tgftve conclude the construction.di’ by
providing a signal from right to left which collects the réésywhere state- is the accepting state to be
sent to the leftgd is the accepting state not to be sent to the left, arslthe non-accepting state of the
signal. FormallyM’ = (S’, F’, A,#, ') is constructed as follows.

S = (D X S)UAU{-'-a@a'}v = {+a®}1

forall s1, s € A,

' (s1,52) = (8(s1.#), 0(s2, 51)) ando (s, #) = {+ el
- if sy g_f F
foralld;,ds € D, s1,s9 € S,
8 ((dy, 81), (da, 82)) = (8(s1,d1),6(s2,51)),
8 ((di,81),+) =+,
+ if 81 € F
5((dr,1),-) = &/((dr,s1).©) = { © [f 51 ¢ Fando(s,,di) € F. 5

- otherwise

The Size of One-Way Cellular Automata 83

OCA M OCA M’

Fig. 2: Construction showing the simulation of a real-time O@ADby a real-time OCAM’ on reversed input. The
stateseq, e, e3 are from{+, @, - }. Statee, depends oris and1ly = §(13,23).

Theorem 13 Letk > 2 andn be an integer of the forn2k + 7. Then at leas(n?) states are necessary
in the worst case for a real-time OCA to accept the reversahafstate real-time OCA language.

Proof: Fork > 2, the witness language for the assertion is
Lpx={w0|w e {a,b}*, |w| > k? |w|, = 0mod k, |w|p =0 mod k },

which is accepted by @2k + 7)-state real-time OCA.

The formal construction is given below. We start with theaidd the construction. All cells initially
carrying ana or b, behave as follows. In a first register they shift their inputcessively to the left. In
a second register, they remember their original input. Imira tregister they count modufothe number
of input symbols shifted through that correspond to theinamput symbol, that is, an-cell counts all
incoming symbols and its owra, ab-cell counts all incoming symbolsand its ownb. This behavior is
realized by the first group of transition rules below.

In addition, initially ak-ary counter with two digits is set up at the right end. The fiigit is initialized
by the transitionsi(a, 0) or 5(b,0) while the second digit is initialized by the transitiof0,#). The
counter moves to the left. In addition to counting, both @idiave two further registers. One register of
the first digitindicates by or- whether the last-cell passed through has counted a numbergymbols
that is congruend modulok. The other register does the same farells. This behavior is realized by
the second group of transition rules below.

In order to distinguish between the first and the second digite moving counter, the second digit
is primed. On every step to the left, the cell carrying theoselcdigit simply takes the contents of the
indicator registers of the first digit into their own indioategisters, and counts until a carry-over appears.
Subsequently, the digit changes to an indicatdm its counting register which says that the counter has
passed through at least cells. So, the cell carrying the second digit is in an acogpstate if and only
if the indicator+ is in all of its registers. The behavior of the second digiealized by the third group of
transition rules below.

More precisely, the languagkr i is accepted by the real-time OCAM = (S, F, A, #,0), where
S ={a,b,0}U{a,b}x{a,b} x{0,1,..., k=1 U{+, - }x{+,- }x{0,1,...,k=1,0", 1" ... (k=1) +},

84 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

A ={a,b,0}, F = {(+,+,+)}, and, forz,y, s,t € {a,b},p,q € {0,1,... .,k — 1},

0(a,a) = (a,a,2 mod k) 0((z,s,p), (y,t,9)) = (y,s,(p+1) mod k), if s=y
é(a,b) = (b,a,1) 6((z,5,p),(y,t,0)) = (y,5,p), fs#y

o(b,b) = (b,b,2 mod k)

d(b,a) = (a,b,1)

and forz, s € {a,b},u,v € {+,- },p,q € {0,1,...,k — 1},

(S(L?O)_ -’+’1

6(b7 0) - (+7') 1)
(+,v,(g+1) mod k) if s=aandp=0
(-,v,(g+1)mod k) if s=aandp#£0

S -

(@ s,p), (u,0,9) (u,+,(¢g+1) mod k) ifs=bandp=0
(u,-,(¢g+1)mod k) if s=bandp#0

and foru, v, w, z € {+,- },

6(0,#) = (+,+,0)

5((u,v,p), (w,z,q)) = (u,v,¢'), 1 <p<k—-10<g<k-1
d((w,v,0), (w,2,¢")) = (w,v,(g+1)), 0<g< k-2
5((,0,0), (1, 2, (k = 1)) = (1,0, +)

5((u, v, p), (w, 2,4)) = (u,v,+), 0 <p <k —1

Without further proof we state that any real-time OCA acirepthe reversalLj; , needs at least
Q(k?) = Q(n?) states. |

Since the upper bounds on the state complexity of compleatientand reversal depend on the states
that can appear on the diagonal of the space time diagrasnétural to ask whether the constructions
are effective. That is, to ask whether it is decidable whtektes appear on the diagonal. More general, the
decidability of reachability problems such as whetherdheran input and a time step at which a given
configuration is reached by a given real-time OCA, or at whiicte a certain cell enters a given state, are
of particular interest. We will show that the first questisriecidable whereas the latter is undecidable.

Lemma 14 Let M = (S, F, A, #,) be a real-time OCA, > 1 be an integer, and: {1,2,...,n} — S
be a configuration. Then it is decidable whether there is patiw € A™ such thatM reaches: on
inputw.

Proof: We consider a brute-force algorithm which generates ssoedyg all inputs of length, simu-
lates the computation of1 on these inputs until it becomes cyclically at latest at tetep|S|™, and
finally checks whether the given configurationccurred. As soon as such an input has been identified,
the algorithm stops and returges Otherwise, the algorithm stops after having negativelycgled all
possibilities and returnso. a

The Size of One-Way Cellular Automata 85

Lemma 15 Let M = (S, F, A, #,) be a real-time OCAs be a state fron%, andi > 1 be a cell. Then
it is undecidable whether there is an input A* such that on input cell i enters state at some time
t > 0.

Proof: Assume that the question is decidable. Then we can checkdoy accepting state € F whether
there is an input such that leftmost cel= 1 enterss at some time > 0. If this is not true for alls € F,
then L(M) is empty andL(M) is not empty otherwise. But in [12, 16] it has been shown thé i
undecidable whether or not a given real-time OCA acceptsiiygy language, a contradiction. O

In particular, the last lemma reveals that it is not decidathich states appear on the diagonal. So,
the constructions relying on these states are not effedtiegvever, the effectiveness can be obtained by
using the whole state set instead. On the other hand, we bgegytwith unnecessary additional states
for the effectiveness. Thus, to some extent tight boundsarotder of magnitude are best possible.

4 Unsolvability of Decompositions

So far, we have derived tight bounds in the order of magnifiedeéhe number of states we have to
pay when applying operations on real-time OCAs. Conversbbse bounds also show the maximal
number of states that can be saved when a given minimalireal®CA is decomposed into smaller
ones. For example, given a minimalstate real-time OCA that is equivalently to be represebtethe
union of two smaller real-time OCAs, we know that the prodofcthe sizes of the smaller devices is
at leastn. Therefore, at least,/n states are necessary for the decomposition into two snddidces.
From this descriptional complexity point of view, naturabplems concern the question of whether such
decompositions can algorithmically be solved. Givelrary operation under which the family of real-
time OCA languages is closed, does there exist an algoritlatndecomposes any given real-time OCA
into £ smaller ones if such a decomposition exists? We refer to gratiiems agperation decomposition
problems It turns out that such algorithms cannot exist for the of@na in question. The proofs are
reductions of undecidability problems for real-time OCAs[12, 16] it has been shown that it is neither
decidable whether a given real-time OCA accepts no inpup(erss) nor whether it accepts all inputs
(universality).

Theorem 16 ([12, 16]) The emptiness and universality problems for real-time O@#sundecidable.

Theorem 17 The union decomposition problem for real-time OCASs is alfpomically unsolvable.

Proof: In contrast to the assertion, we assume there is an algotiithnsolves the union decomposition.
We obtain a contradiction by showing that in this case thetarags for real-time OCAs is decidable.
Clearly, any OCA has at least as many states as input symolzover, there is an OCA accepting the
empty language which has exactly as many states, where fithenois accepting.

In order to decide whether a given real-time OCA accepts patirwe proceed as follows. First we
inspect the set of accepting states. If it is empty, the ansyes If it contains at least one input symbol,
the answer is10. Otherwise we apply the union decomposition algorithm. sliaaresult the algorithm
reports that there is no decomposition, the answeoi.df the algorithm results in two smaller OCAs, we
recursively apply the decision process to these devicew. tNe answer iyesif and only if both smaller
OCAs accept the empty language.

86 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

Why does this procedure give the correct answer? This igatfdr the cases where the set of accepting
states is empty or contains at least one input symbol. Ifretise the union decomposition algorithm is
applied, we know that there is at least one accepting noutistate. So, if the OCA accepts the empty
language, there is always a possible decomposition intetadler OCAs having only input states which
are all non-accepting. a

The same result for the intersection decomposition protf@iows dual to the proof of the union
decomposition problem. Now, a reduction of the undecidswf universality is used. Note that there is
an OCA accepting all inputs which has exactly as many stategat symbols all of which are accepting.

Theorem 18 The intersection decomposition problem for real-time O@Aalgorithmically unsolvable.

The next results concern the unary language operationsleamptation and reversal.

Theorem 19 The complementation decomposition problem for real-tin@A® is algorithmically un-
solvable.

Proof: Assume in contrast to the assertion that there is an algoritfat solves the complementation
decomposition. Given a real-time OCK, we apply the algorithm successively until it reports tetre

is no further decomposition, whereby the number of appbicatis counted. Then we inspect the result
and determine whether it has as many states as input symimhl @o, whether these are all accepting
or all non-accepting. So, we can decide for the result whiétlaecepts the empty language or all inputs
or another language. The result is equivalenfMbif the number of applications is even. Therefore,
in this case we know whethe¥1 accepts the empty language or all inputs or another langugen
the other hand, the number of applications is odd, we knowtlrdrehe complement of accepts the
empty language or all inputs or another language. So, we eeidelemptiness and universality.®, a
contradiction. a

Theorem 20 The reversal decomposition problem for real-time OCAsg®dthmically unsolvable.

Proof: As in the proof of Theorem 19, given a real-time OQA we apply the algorithm successively
until it reports that there is no further decomposition. Thee inspect the result and decide whether it
accepts the empty language or all inputs or another lang&igee the reversal of the empty language is
the empty language and the same for the language of all weedsan decide emptiness and universality
of M, a contradiction. O

5 Real-time OCAs With a Fixed Number of Cells

Since for real-time OCAs almost all classical decidabitityestions are undecidable [16] and not even
semidecidable [12], real-time OCAs are on the one hand a olymrallel model, but on the other hand
very unwieldy from a practical perspective. It would be neting to know which resources of real-time
OCAs have to be restricted in order to obtain decidable tuest In [11] real-time OCAs with sparse
communication have been investigated, but still a very bamabunt of information communicated in
one time step suffices to yield undecidability of the abovesgions. Other resources to be bounded are

The Size of One-Way Cellular Automata 87

classically time and space. Obviously, real time is the murh time needed for useful computations.
Concerning space constraints, logarithmic or sublogauithspace bounds have been investigated for
Turing machines [17] and real-time iterative arrays, whiffer from real-time OCAs by a sequential
processing of the input. It has been shown for the latter mfdd#, that logarithmic space still leads
to undecidability whereas sublogarithmic space reducesdmputational capacity of the model to the
regular languages. For real-time OCAs it is not clear yet lagarithmic or, in general, sublinear space
bounds should by defined properly. One problem to overcortiaisthe restricted model should be not
more powerful than the unrestricted model. Consider aritinély defined real-time OCA on unary input
which possesses a logarithmic number of cells depending®tength of the input. Then it would be
possible to accept the non-regular languggé” | » > 1} by implementing a binary counter in the
provided cells. Since the latter language cannot be acddgtany real-time OCA, we obtain a stronger
model.

Thus, it might be useful to consider in a first step real-tim@X3 with a fixed number of cells. This
model has been introduced and investigated in [13] withnetgadescriptional complexity aspects. Since
the computational capacity of the model is equivalent tad¢igelar languages, all above-mentioned decid-
ability questions become decidable and it is particulartgriesting to compare this parallel model for the
regular languages with the classical model of determimnfgtite automata (DFAs) from a descriptional
complexity point of view. Here, we will complement the resudhown in [13] by investigating the state
complexity of the Boolean operations and reversal. Funtioee, the computational complexity of the
decidable problems turns out not to be more complicatedttietrfor deterministic finite automata.

A k cells one-way cellular automaton works similar to the uttieted model, but the input is processed
as follows. At the beginning alt cells are in the quiescent state. The rightmost cell is theageiving
the input. At every time step one input symbol is processdidbother cells behave as usual. The input is
accepted, if at some time step the leftmost cell enters agpdiog state. Since the minimal time to read
the input and to send all information from the rightmost telfthe leftmost cell is the length of the input
plusk, we provide a special end-of-input symboto the rightmost cell after reading the input.

Definition 21 A k cells one-way cellular automatghC-OCA) is a tupleM = (S, F, A, so, V, k, 6;,9)
whereS is the finite, nonempty set afell statesF' C S is the set ofaccepting statesi is the nonempty
set ofinput symbols sy € S is the quiescent statev ¢ S U A is the end-of-input symbolk is the
number of cellsands, : S x (AU {v}) — S is thelocal transition function for the rightmost cell
satisfyingo, (so, V) = s, @andd : S x S — S is thelocal transition function for the other cellsatisfying
(50, S0) = So-

A configuration of akC-OCA at some time step> 0 is a pair(c;, w;), wherew, € A* denotes the
remaining input and; is a description of thé cell states, formally a mapping : {1,2,...,k} — S.
For an inputw = ajas - - - a,, € A* the initial configuration at timé is defined by (i) = 59,1 <i < k
andwy = w. Successor configurations are computed according to thaliansition functiomA. Let
(ct,wy), t > 0, be a configuration, then its successor configuration is eéfis follows:

(ct+1,wer1) = Aler,we) <= { (C;ZJ:E)) %(c((())Ct(t)—i_1 ety

wherea = v andw;y; = A, if wy = A, anda = a; andwyr1 = asas---an, if wy = aras---an.
Thus,A is induced by, and?.

88 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

ai1asaz -+ -apVVV--- ‘

Fig. 3: Initial configuration of a 5 cells one-way cellular automa(dC-OCA).

An input stringw is accepted by @C-OCA if at some time step during its computation the leftmos
cell enters an accepting state. Real-timekf6rOCAs is defined agu| + k time steps.

Now, we investigate the state complexities of the Boolearaions and reversal f&C-OCAs and we
start with two lemmas which will be useful to show lower boand

For all integers: > 2 and? > 2 let

Loy ={a'|i=0mod ¢*}.

Lemma 22 Letk > 2 andl > 2 be integers. Theh+ 2 states are sufficient for a real-tim€-OCA to
acceptly ;..

Proof: To accept the languagey , one has to set up afhary counter in thé: cells and to check, when
the whole input has been read, whether the leftmost cell GBasrgted a carry-over in the last but one time
step. Thus, we neet}- 1 states to realize theary counter and one additional accepting state for the final
check. Altogether; + 2 states are sufficient to accept . O

Lemma 23 Letk > 2 andl > 2 be integers. Then at ledsstates are necessary for a real-tin@ OCA
to accepm,k.

Proof: Let M be akC-OCA acceptingL, ; with s states. We first show tha! has to distinguish at
least¢* configurations. By way of contradiction, we assume thatetae two different inputa™ and
a™ with 0 < n < m < ¢* — 1 leading to the same configuration Fromc we obtain on further input
a’" " a configuration”. Sincea"™*"~" = o** € L, we have that/(1) is an accepting state. Then,
amrtt-n belongs tal, ; as well. On the other hand, we can derive: m — n < ¢¥ which implies that
am " =n & [, .. This is a contradiction.

Hence, M must be able to represent at le&stdifferent configurations and we obtain thdt > ¢%.
Thus,s > /. O

5.1 Intersection and Union

The constructions for real-timeC-OCAs accepting the intersection or union of languagesyated by
two given real-timekC-OCAs are very similar to the constructions for real-timéA3 given in Theo-
rem 6 and Theorem 7. The constructions are again based owdhteack technique. Additionally, for
intersection one has to keep track whether some registeailtessly passed through an accepting state.
Altogether, both constructions lead to the same bounds a&namit the details here.

The Size of One-Way Cellular Automata 89

Theorem 24 Letk > 2 andm,n > 1 be integersM, be anm-state real-timé:C-OCA with r; non-
accepting states, andl, be ann-state real-timé C-OCA withr, non-accepting states. Then-n +ry -
n+m-re+r1-1r2 € O(m - n) states are sufficient for a real-tim€-OCA to accepL(M1) N L(My).

Theorem 25 Letk > 2 andm,n > 1 be integersM; be anm-state real-timé:C-OCA and M, be
ann-state real-timeé:C-OCA. Thenm - n € O(m - n) states are sufficient for a real-tifi€-OCA to
acceptL, (M) U L(My).

Next, we will obtain that both upper bounds are tight in ordiemagnitude by showing the following
lower bounds.

Theorem 26 Letk > 2 be an integer and let,, n > 4 be integers such that andn are relatively prime.
Then at leastm — 2)(n — 2) € Q(m - n) states are necessary in the worst case for a realkitn©CA
to accept the intersection of am-state real-timéC-OCA and am-state real-timé&C-OCA language.

Proof: Letm,n > 4 be two integers which are relatively prime. We consider #rgliaged.,,, ;, and
L,, i and obtain thaL,,, x N\ Ly i = Lmn,k. Dueto Lemma24,, , andL, ; can be accepted with + 2
andn + 2 states, respectively. Owing to Lemma 23 we know that evalytime kC-OCA accepting the
intersectionL,,, needs at leastn states. O

Theorem 27 Letk > 2 andm,n > 4 be integers such that andn are relatively prime. Then at least
(m —2)(n—2) € Q(m - n) states are necessary in the worst case for a realftitn@®CA to accept the
union of anm-state real-timé C-OCA and am-state real-timé C-OCA language.

Proof: Letm,n > 4 be two integers which are relatively prime. We consider thiem of the languages
L, andL, ;. DuetoLemma?2Z,, ; andL, j can be accepted with+2 andn+2 states, respectively.
Let M be akC-OCA acceptingL,, U L, i, With s states. It remains for us to show that> mn.
To this end, we prove thaét has to distinguish at leagtnn)* configurations. Then, we obtain that

s® > (mn)* which implies thats > mn.

By way of contradiction, we assume that there are two diffemgputsa? anda? with 0 < p < ¢ <
(mn)* — 1 leading to the same configurationLetp’ = p mod n*, ¢’ = ¢ mod n*, p” = p mod m*,
and¢” = ¢ mod m*. At first, we can show that’ # ¢’ orp” # ¢". Otherwise, we would have that
p' = ¢ andp” = ¢". Thenp =t -n* 4+ p’ andg = ¢’ - n* + p’ which implies that; — p is a multiple of
n*. Analogously, we obtain that— p is a multiple ofm”. Thus,q — p is a multiple of(mn)*. This is a
contradiction, sincé < q — p < (mn)¥.

From now on we assume without loss of generality fiiag ¢’ andp’ < ¢’. Otherwise, we consider
p” # ¢ or interchange the roles @f andq’ or p” andq”, respectively. Led < I < n* be the unique
integer such that’ +1 = n*. Then,p+1 = 0 mod n*. Furthermore, we have that < ¢’+1 < 2n* which
implies thatg+1 # 0 mod n*. Finally, we consideg -+ and distinguish two cases.df-1 # 0 mod m*,
then we know that?t! Ly 1 anda?t! ¢ L, U Ly, . From configuratiore we obtain on further input
a' a configuration’. Sincea?*! € L,, 1, we have that’(1) is an accepting state. The#f,"! belongs to
L,, U L, i, as well which is a contradiction.

If ¢ + 1 = 0 mod mF, then we know tha”” + I = ¢t"m”*. Now, we considet” + | + n* and obtain
thatg” + 1 + n* = t"m* + n* is not a multiple ofm”*. Then,q + 1 + n* # 0 mod m*. Moreover,

90 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

¢ + 1+ n* is not a multiple of2*, sinceq’ + 1 is not. Thusg + 1 + n* # 0 mod n*. Finally, p’ + 1 + n*
is a multiple ofn¥, sincep’ + Lis. S0,p + I + n¥ = 0 mod n* and we know that?*'+"" ¢ L, , and
atti+n® & Ly 1 ULy, ;. From configuratiom we obtain on further iantt””k a configuratior”. Since

aPtiHnt ¢ L, ,, we have that” (1) is an accepting state. Theﬂ,“*”k belongs tal,, U L., i as well
which is a contradiction and concludes the proof. O

5.2 Complementation

The construction of a real-timeC-OCA accepting the complement of the language acceptedybyea
real-timekC-OCA is slightly different to the construction for reatre OCAs given in the proof of Theo-
rem 10. However, the blow-up concerning the number of siateisnilar and we can show that the upper
bound is tight in order of magnitude as well.

Theorem 28 Letk > 2 andn > 1 be integers andA be ann-state real-timé:C-OCA with r non-
accepting states. Thé&fn + r) € O(n) states are sufficient for a real-til€-OCA to accepL.(M).

Proof: Let.S andF’ denote the set of states and accepting statelsl pfespectively. At first, we have to
modify M such thatM only accepts when the whole input has been processed. Tentijshe rightmost
cell emits a signal when it reads the end-of-input symbotfierfirst time. This signal moves to the left
and remembers the state of the cell passed through, resggctFinally, the signal will arrive at the
leftmost cell exactly when the whole input has been proakasel all information has been sent to the
leftmost cell. At this time step we want to make the final diecisvhether to accept or to reject the input.
So, the leftmost cell has to remember whether it has enterede@epting state at some time before. This
can realized the same way as before by introducing a copyeohtim-accepting statés' of the state
setS \ F' of M and modifying the local transition function suitably. Théime modified automatom
accepts, if and only if the leftmost cell is in some stat&'afl when the signal arrives. In order to accept
the complement of.(M) = L(M), it suffices to let the automaton accept, if and only if thentefst cell
is in some state of \ ' when the signal arrives.

Disregarding the realization of the signal, the number atest needed is + . The implementation of
the signal may at most double this number and we ol@int- r) states as an upper bound. O

Theorem 29 Letk > 2 andn > 3 be integers. Then at least— 1 € Q(n) states are necessary in the
worst case for a real-timeC-OCA to accept the complement of arstate real-timé C-OCA language.

Proof: We consider the witness languages
Ly ={a|i>n*}.

First, we construct afn + 1)-state real-timéC-OCA accepting.;, ;.. To this end, one has to set upan
ary counter and to define the state denoting a carry-oveeasly accepting state (see also Example 2.1
in [13]).

On the other hand, eveRC-OCA accepting

;,k:{ai|i<”k}

needs at least states, since at least configurations have to be distinguished. O

The Size of One-Way Cellular Automata 91

5.3 Reversal

The construction of a real-timeC-OCA accepting the reversal of the language accepted byem gi
real-timekC-OCA is completely different to the construction for réiake OCAs given in the proof of
Theorem 12 where a quadratic upper bound is shown. Here, ivelMain an exponential upper bound
which is almost tight in order of magnitude.

Theorem 30 Letk > 2 andn > 1 be integers andA be ann-state real-timé:C-OCA. Then at most
on"=n" 741 4 1 € O(2n") states are sufficient for a real-tik€-OCA to accepL(M)~.

Proof: We present the intuitive construction. At first, we convéftto an equivalent DFAV having at
mostn* — n*~! 4 1 states according to the construction given in [13]. Th¥his converted to a DFA
NE accepting the reversal df(N). By using the standard constructiok[? has at mospn’ "' +1
states. FinallyNV'® is converted to an equivalehC-OCA M. Due to the construction given in [13] we
need one additional state which gives the upper bound cthime |

The above construction arises the question whether it iadhthe best possible. In particular, the
construction does not make use of the parallelish@fOCAs. The next lemma provides a lower bound
which roughly says that the construction cannot be impraweparallelized essentially with regard to
kC-OCAs. This shows that reversal is a very expensive operédr kC-OCAs whereas only a quadratic
blow-up occurs for real-time OCAs.

Theorem 31 Letk > 2 andn > 3 be integers such that > k. Then at leasﬂ(Q("*l)H) States are
necessary in the worst case for a real-timi2 OCA to accept the reversal of arstate real-timé C-OCA
language.

Proof: We consider the witness languages
nx={a" {a,b}' [i>0}.

To accept the languagdg; ,, we can use the same construction as in the proof of Theoreift2&, L), ,
can be accepted with + 1 states.
Now, let M be akC-OCA accepting

LR = {{a,b}la"" |i>0}

with s states. We first show that! has to distinguish at leagt” configurations. By way of contradiction,
we assume that there are two differentinputs € {a, b}”k leading to the same configurationSinceu
andv are different, we obtain without loss of generality that zaa® andv = ybat with 0 < ¢ < nF —1.
From configuratiore we obtain on further inpl.tt’”k*t*1 a configuration'. Sinceua™ t-1 € L;;f“;;, we
have that’/(1) is an accepting state. Them™' —t-1 belongs toLgf}c as well. This is a contradiction,
sinceva™ ~=1 ¢ L.

Since M must be able to represent at leat different configurations, we obtain thgt > on” Thus,

nk nk T — .

§>2% >20n = 27"~ sincen > k. O

92 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

We may summarize the state complexity of the operationsexduass follows. The state complexity of
intersection and union fdrC-OCAs of sizem andn, respectively, is ir©(mn). The state complexity of
complementation for &C-OCA of sizen is in ©(n). The upper bound of the state complexity of reversal
for akC-OCA of sizen is in O(2"") and the lower bound is if2(2("~D" "),

5.4 Computational Complexity

Finally, we discuss the computational complexity of typidacidability questions. For real-time OCAs
these questions are known to be undecidable. Here, we shoththquestions are decidable f@-OCAs
with k& > 2 and, moreover, aldLOGSPACE-complete. Thus, the questions faZ-OCAs have the same
computational complexity as for deterministic finite autden

Theorem 32 Letk > 2 be an integer. Then farC-OCAs the problems of testing emptiness, universality,
inclusion, and equivalence a¥-OGSPACE-complete.

Proof: First, we show that the problem of non-emptiness belond 0GSPACE. SinceNLOGSPACE
is closed under complementation, emptiness belon§. OGSPACE as well. We describe a two-way
nondeterministic Turing machin&! which receives an encoding of sorh€-OCA A on its read-only
input tape and produces on its write-only output tape an angasor no while the space used on its
working tape is bounded b@(log |cod(.A)|). Then, the work space is bounded &Ylogn) as well
wheren denotes the maximum of the number of stategliand the size of the input alphabetdf since
both parameters are part of the encodingdodn the input tape afM. It is shown in [13] that4 can be
converted to an equivalent DFA’ having at most* — n*~! 41 states. It has been shown in [7] by using
the pumping lemma for regular languages that!’) is not empty if and only if.(A’) contains a word
of length at mosi*. Thus, the idea for the Turing machiné is to guess a word of length at most
and to check whether it is accepted Ay We implement oM '’s working tape a binary countér which
counts up tax*. With the usual construction this needs at m@éibg n*) = O(klogn) = O(logn) tape
cells. Additionally, we have to keep track of the currentesteof thek cells of A. Clearly, the state of
each cell can be represented®@ylog n) tape cells. Altogether, a configuration.dfcan be represented
by O(log n) tape cells. NowM guesses one input symhgl M increases the countét, and updates all
cells of A according to the transition function of encoded on the input tape. This behavior is iterated
until either the simulated leftmost cell of enters an accepting state df or the countelC' has been
counted up taz*. In both casesM halts and outputgesin the first case and output® in the latter.
Altogether, M decides the non-emptiness.dfand uses at most a logarithmic number of tape cells with
regard to the length of the input.

For the problem of non-universality of a givéfc-OCA A we test the non-emptiness oft&-OCA
A’ accepting the complement &f.A). The only difference to the above construction is that weettav
simulate a computation il’ instead ofA. To this end, we consider the construction for the compleémen
given in Theorem 28. Having programmed this modificationhef transition functions of &C-OCA in
the finite control of the Turing machin#1 suitably, we can simulate a transition df when reading
and translating a transition of from the input tape. Additionally, we have to observe that tlumber
of states of4’ increases only by a linear factor of 4. Thus, it suffices fa tounterC' to count up
to (4n)*. Altogether, we obtain that non-universality is NLOGSPACE. Due to the closure under
complementation, universality is RLOGSPACE as well.

The Size of One-Way Cellular Automata 93

The constructions for testing inclusion and equivaleneesamilar. For twokC-OCAs . A; and A;
we have that(A4;) C L(Ay) if and only if L(A;) N L(A3) is empty. Due to the construction given in
Theorem 24, we can reduce the question of inclusion to thstiuneof testing the emptiness ok&-OCA
whose size is linearly bounded with regard to the sizélpfind.A,. By similar observations as for non-
universality, we obtain that the problem of inclusion iNhOGSPACE. Finally, two kC-OCAs.A; and
A, are equivalent if and only if both (A1) N L(A2) andL(A;) N L(Az) are empty. Thus, equivalence
is in NLOGSPACE as well.

The hardness results follow directly from the hardnesdtegr DFAS (see, e.g., the summary in [18]),
since any DFA can be effectively converted to an equival@HOCA [13] which simulates the given
DFA in the rightmost cell and sends an additional acceptiatego the leftmost cell when the end-of-
input symbol is read and the input is accepted by the DFA. @isly, this construction can be done in
deterministic logarithmic space. a

References

[1] Brzozowski, J.: Quotient complexity of regular langesag In: Descriptional Complexity of Formal
Systems (DCFS 2009), Otto-von-Guericke-Universitat Megurg (2009) 25-42

[2] Brzozowski, J., Jiraskova, G., Li, B.: Quotient corepity of ideal languages. In: Latin 2010:
Theoretical Informatics. LNCS, Springer (2010) to appear

[3] Brzozowski, J., Jiraskova, G., Zou, C.: Quotient cdexjty of closed languages. In: Computer
Science Symposium in Russia (CSR 2010). LNCS, SpringerQR@lappear

[4] Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H.alkher, A., Wotschke, D.: Descriptional
complexity of machines with limited resources. J. UE&002) 193-234

[5] Holzer, M., Kutrib, M.: Nondeterministic descriptioheomplexity of regular languages. Int. J.
Found. Comput. Scil4 (2003) 1087-1102

[6] Holzer, M., Kutrib, M.: Descriptional complexity — antimductory survey. In: Scientific Applica-
tions of Language Methods. Imperial College Press (2018pfear

[7] Hopcroft, J.E., Ullman, J.D.: Introduction to Automatdeory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts (1979)

[8] Jiraskova, G., Okhotin, A.: On the state complexityopferations on two-way finite automata. In:
Developments in Language Theory (DLT 2008). Volume 52578€IS, Springer (2008) 443-454

[9] Kutrib, M.: Cellular automata — a computational pointvaéw. In: New Developments in Formal
Languages and Applications. Springer (2008) 183-227

[10] Kutrib, M.: Cellular automata and language theory. Encyclopedia of Complexity and System
Science. Springer (2009) 800-823

[11] Kutrib, M., Malcher, A.: Cellular automata with sparsemmunication. In: Implementation and
Application of Automata (CIAA 2009). Volume 5642 of LNCS, i8mer (2009) 34-43

94 Martin Kutrib and Jonas Le&fvre and Andreas Malcher

[12] Malcher, A.: Descriptional complexity of cellular auhata and decidability questions. J. Autom.,
Lang. Combz (2002) 549-560

[13] Malcher, A.: On one-way cellular automata with a fixeadnher of cells. Fund. Inforn8 (2003)
355-368

[14] Malcher, A.: On the descriptional complexity of iteiet arrays. IEICE Trans. Inf. SysE87-D
(2004) 721725

[15] Malcher, A., Mereghetti, C., Palano, B.: Sublineaghase bounded iterative arrays. In: Automata
and Formal Languages (AFL 2008), Hungarian Academy of $eig2008) 292—-301

[16] Seidel, S.R.: Language recognition and the synchatium of cellular automata. Technical Report
79-02, Department of Computer Science, University of |0h@70)

[17] Szepietowski, A.: Turing Machines with Sublogarittm8pace. Volume 843 of LNCS, Springer
(1994)

[18] Yu, S.: Regular languages. In: Handbook of Formal Laggs. Volume 1. Springer (1997) 41-110
[19] Yu, S.: State complexity of regular languages. J. Autdrang. Comb6 (2001) 221-234
[20] Yu, S.: State complexity of finite and infinite regulangpuages. Bull. EATCS6 (2002) 142-152

Automata 2010 — 18Intl. Workshop on CA and DCS DMTCS proc.AL, 2010, 95-114

A weakly universal cellular automaton in the
hyperbolic 3D space with three states

Maurice Margenstern

! Université Paul Verlaine- Metz, IUT de Metz,

LITA EA 3097, UFR MIM,

Campus du Saulcy,

57045 METZ Cédex 1, FRANCE

e-mail: margens@univ-metz.fr

Web pagehttp;//www.lita.sciences.univ-metz.fr/margens

In this paper, we significantly improve a previous result bg same author showing the existence of a weakly
universal cellular automaton with five states living in tlypérbolic3 D-space. Here, we get such a cellular automaton
with three states only.

Keywords: universality, cellular automata, hyperbolic geomesd, space, tilings

1 Introduction

In this paper, we follow the track of previous papers by thmeauthor, with various collaborators or
alone, see [2, 7, 13, 14, 10, 9], which make use of the same raxlel, theaailway mode) see [16, 5, 9].

In order to be within the space constraint for the paper, \serefer to the above mentioned paper both
for what is the railway model and for what is hyperbolic getmyieFor the latter one, we just mention
something new in Section 2. A more developped version of #pepcan be found carXiv, see [11].

In the previous papers, the number of states of a weakly tsaVeellular automaton was reduced from
24 states to 9 ones in the pentagrid and fixed at 6 for the heéghtalg [10], | succeded to reduce this
number to 4 in the heptagrid.

The reduction for 6 states to 4 states, using the same modsloltained by replacing the imple-
mentation of the tracks of the railway model. In all previqepers, the track is implemented as a
one-dimensional structure where each cell of the track Wwasother neighbours on the track exactly,
considering that the cell also belongs to its neighbourhdde locomotive follows the track by succes-
sively replacing two contiguous cells of the track: the €eltcupied by the front and by the rear of the
locomotive. The locomotive has its own colours and the trekanother one which is also different from
the blank, the colour of the quiescent state. In the mentigrager, this traditional implementation is re-
placed by a new one. There, the track is no materialized lygested only. It is delimited byilestones
which may not define a continuous structure.

1365-80500) 2010 Discrete Mathematics and Theoretical Computer SeiédMTCS), Nancy, France

96 Maurice Margenstern

At this point, my attention was drawn by a referee of a subimis® a journal explaining the 4-state
result that it is easy to implement rule 110 in the heptagriihg three states only. This is true, but this
trick produces an automaton which is not really a planarraaton and does not improve our knowledge
neither on rule 110 nor on cellular automata in the hypeduéine. This implementation with three states
can also be easily adapted to the dodecagrid of the hyperhblispace and suffers the same defect of
bringing in no new idea.

In this paper, we follow the same idea of milestones as in.[X0re too, the milestones are imple-
mented in two versions. However, thanks to the third dinmmghe same pattern can be used to change
directions, either inside a plane of the hyperb@lie space or to switch from one plane to another one.
This configuration is used to avoid crossings, replacingithg bridges, as this was already performed
in [7]. Sections 3 and 4 thoroughly describe the implemémntaif the model in the hyperbol&D space.
Section 5 explains how to check the rotation invariance efthes. For the correctness of the rules them-
selves, we refer the reader to [11] where they are fullydiste Section 5, we also give a short account on
the computer program which we used to perform the simulaiahto check the correctness of the rules.

This will conclude our proof of the following result:

Theorem 1 (Margenstern)- There is a cellular automaton in the dodecagrid of the hypéd3 D space
which is weakly universal and which hastates. Moreover, the cellular automaton is rotation irngat
and its motion actually makes use of the three dimensions.

By the latter expression, we mean that the automaton carenotduced to a lower dimension by a
simple projection. We refer the reader to [9, 7] for a discus®on the notion of weak universality.
The reader is also referred to [11] for figures and tables,nwtided here in order to comply to page
constraints.

2 Navigation in the dodecagrid

Here, we use the ideas of [8, 9] to define navigation toolstferdodecagrid. Using Schlegel diagrams,
see [7, 8, 9], we can also define a splitting of the hyperi3dliicspace into 8 corners around a point which
is a common vertex. Next, we split the corner as indicatedgnre 1.

Figure 1 Splitting a corner of the dodecagrid. On the left-hand sttie, splitting of a corner. On the middle, the
splitting of a half-octant. On the right-hand side, the #pig of a tunnel. Note that the faces are numbered according
to the convention introduced [i, 9].

The idea of the representation is, as in the pentagrid, tafésiwhich allow to get a bijection of a tree
with the tiling restricted to the corner. If we allow the reffien of any dodecahedron of the tiling in its
faces, we shall get many doubled replications as explam{&].i

A weakly universal cellular automaton in the hyperbglie space with three states 97

We refer the reader to [8]. However, the splitting suggestgdrigure 1 is a bit different from that
indicated in [8]. The difference is that the splitting of kg 1 is more symmetric and it involves three
basic regions instead of four ones in the splitting of [8].

In the paper, we shall not directly use the tree. Taking ictmant that most of the circuitry will occur
in a planelly, we shall use projections onid,. Now, we can chosé, to be plane of a face of a fixed
dodecahedron. In this way, the restriction of the dodedagril, is a copy of the pentagrid. And so, for
the projections we have in mind, we can use the pentagrid.

In II,, each tile of the pentagrid is a face of exactly one tile ofdoeecagrid ovefl,. We draw a
Schlegel diagram of the corresponding dodecahedron witthface which lies odl,. We shall call this
apseudo-projection ontoll. Imagine that we have four tilgg, Y, G and B defined by their respective
colour, orange, yellow, green and blue. Imagine that amailed?”, a white one, se€s through its face 1,
the same face being numbered Sinthe face 1 of” being that which is shared witfi. Then, we can
see two other tiles o/, a red one and an orange one, on faces 10 and 6 respectively.

Figure 2 Two different ways for representing a pseudo-projectiotihenpentagrid. On the left-hand side: the tiles
have their colour. On the right-hand side: the colour of & i# reflected by its neighbours only.

On the left-hand side of Figure 2, the tiles keep their colour

We can see that this raises a problem with the tiles whicharempthe faces 6 and 10 of the til&, in
caselV would be blue, for instance. For: what colour should be tfifaae 6? Will it be the colour ofV/
or the colour of the other dodecahedron which shares it With Another problem is given, for instance
by the faces 1 ot” andG, assuming that the face 1 6f is that which see¥’. In fact, as can easily be
seen by the fact that these faces are both perpendiculdy tnd that they share a common edge lying
in ITy, these faces coincide. The fact that they have differemuzahight be misleading.

This can be avoided by fixing a convention. In order to keep ashinformation as possible in the
pseudo-projection, we shall consider that a face of a tiksdmwt show the colour of the tile but the colour
of its neighbour sharing the same face. The right-hand didiégoire 2 shows the same configuration as
the one of the left-hand side, but under the new conventidson,Ao make the figure more readable, we
do not draw the pseudo-projection of a tile who would be whiith only white neighbours among those
of its neighbours which do not toudly. Now we can see that we can use the fact that two differensface
coincide in the3 D space by indicating the colour of the other tile.

98 Maurice Margenstern

Later on, we shall adopt this second solution to representeiiular automaton. Indeed, the cells of
the cellular automaton are the dodecahedra of the dodecagglithe colour of a tile is given by the state
of the cellular automaton at the considered dodecahedron.

Before turning to the next section, we have an important rema

We have already indicated that, in the pseudo-projectamed which share an edge but which belong
to different dodecahedra do coincide in the hyperbalitspace. The consequences are important with
respect to the neighbours of a titewhere, by neighbour, we mean a polyhedron which shares a face
with 7. On the left-hand side part of Figure 2, we can see four sraedi$ coloured with, o, g andb on
two white dodecahedra which we c@if; andW,, with 1 being a neighbour of the central cell alid
a neighbour of the green neighbour of the central cell. Weviam these coloured faces as dodecahedra
obtained from the dodecahedron to which the face belongsftigction in the very face. Call these
dodecahedra by the colour of their defining faces. Considedlie planes of the faces and their relations
with Iy, it is not difficult to see that the dodecahedrandg are neighbours as well as the dodecahedra
andb. However, despite the fact that the corresponding face® slteedge, the dodecahedrando are
not neighbours. However, aso andW; share a common edge, there is a fourth dodecahedrsmaring
this edge which is not represented in the figure. Néwplays an important role for bothando as it
is a neighbour for both of them. The same remark holds for tteedahedrg andb for which there is
a dodecahedrofy, a neighbour of both dodecahedra, sharing a common edgevilsd/,. Moreover,
it can be seen thay andd, are also neighbours: their common face is in the plane of dhenton face
of W, andW5, which also contains the common facera@dndg as well as the common face efndb.

Both couples: with ¢ ando with b can also be seen on the right-hand side part of Figure 2. Hrere
also two other coloured small faces: a purple one on the aidiie, call it p as well as the dodecahedron
which it defines. There is also a pink one on the green dodécahavhich is a neighbour of the central
one. Call the pink dodecahedran It is not difficult to see that the following pairs of dodeealha are
neighbours in the dodecagritland =, = andp as well agp ando. Moreover, the four dodecahedsab,

« andp share a common edge which belongs to the same line as the dcte svpports the edge shared
by W1, Ws, the central tile and-.

At last, remark that the plane of a face of a dodecahedratefines two half-spaces: the half-space
which does not contai® contains one neighbour dd exactly. The half-space which contaifscon-
tains all the other neighbours @ also. This can be seen as a consequence of the convexity of the
dodecahedron.

Now, we can turn to the implementation of the railway modehia dodecagrid.

3 Implementation of the tracks

The implementation of the model is much more difficult in tiypérbolic3 D-space than in the hyperbolic
plane. Speaking about implementations in the hyperbcdingl | often use the metaphor of a pilot flying
with instruments only. This can be reinforced in the casehefhyperbolic3 D-space by saying that
this time we are in the situation of an astronaut who can dotherahing than fly with instruments
only: sometimes, the astronaut may look at the earth. It @ngaktic image, however of no help for
the navigation in cosmos. For the dodecagrid, we hope traiméthod explained in Section 2 shows
that the situation is after all a bit better than in cosmos.e Tigures which we can obtain from the
projections defined in Section 2 may help the reader to hawaisfactory view of the situation. We
have to never forget that the views we can obtain are draaiigtisimplified images of what actually

A weakly universal cellular automaton in the hyperbdglie space with three states 99

happens. However, always bearing in mind that the imageslasy's a local view, a good training based
on rigorous principles may transform them into an efficieol t

Remember that in most its parts, the track followed by thereative runs on a fixed plane of the
hyperbolic3D space. We shall see that we can assume that this plafig. iSOnly occasionally, it
switches to other planes, perpendiculaflg. In particular, this is the case for the implementation of
crossings: as in [7], we take advantage of the third dimensi@rder to replace them by bridges. Also
for the sensors which decorate the switches, we shall takefiv®f the third dimension to differentiate
the configurations of the various switches.

In this section, we deal with the tracks only, postponingtiiglementation of the switches to Section 4.

3.1 The pieces

Below, Figure 3 illustrates a copy of the most common eleroéttte tracks, which we call thetraight
element It consists of a single dodecahedron, the track itself,kethby four blue dodecahedra, the
milestones which are neighbours of this dodecahedron.

Note the numbering of the faces on the figure: it follows thevemtion mentioned in Section 2. In
Figure 3, picturega) and(b), face 0 is not visible but it is visible in the other pictur&milarly, face 5
and face 2 respectively, are not visible in pictufeswith (d) and(e) with (f) respectively. Due to the
role of the elements in the circuit, we shall say that face thésentry of the element and that faces 3
and 4 are it®xitsin the case of picture@) and(b). In the case of pictureg) with (d) and(e) with (f)
respectively, the entries are face 4 with face 10 and facet8fate 8 respectively. We shall sayit 3,
exit 4, exit 8 or exit 10if we need to make it more accurate. Itis important to nofizg exits and entries
can be exchanged: we can have exit 1 and entry 3 but not exi &mtny 4. Such a change of direction
is necessary, but it will be realized by another element.h&srble of entry and exits can be exchanged,
we shall use the wordxit in general descriptions with the possible meaning of boteratny or an exit
through the possibly indicated face.

NN Ae,\

s $2/
9"&

@ (b) (@ () Q)
Figure 3 An ordinary element of the track. Flgu(e) is a view from above. Figur@) is a view from the back of
facel. The locomotive enters the element via facand exits via facg or face4. It also may enter via facg or
face4 and then it exits through face
In Figures (¢) and (d), the element is a bit turned around fateand the exits are now facgt) and (10). In
Figures(e) and (f), the element is turned around fag) too, but in the opposite direction, and the exits are how
faces3 ands.

The motion in the opposite direction is always possible.

Remember the convention we introduced in Section 2. In mgstds of the paper, if not otherwise
mentioned, the colour of a cell can be deduced from the cslofithe face of its neighbours. As an
example, in the pictures of Figure 3, the milestones are &hakthey are neighbours of the element.

As the name suggests, the milestones are usually fixed etentkay are not changed by the passage
of the locomotive. This means that the milestones alwaysaetue, while the track is white as most
cells of the space itself: the white state plays the role effhiescent state: if a cell is white as well as all

100 Maurice Margenstern

its neighbours, then it remains white.

In Figure 3, the pictures represent various positions osdme elements which can be obtained from
each other by a rotation a face of the dodecahedron or by aiprofisuch rotations. We refer the reader
to Subsection 5.1 where this problem is examined. In the digpictures(a) and (b) show a situation
wherelly is the plane of face 0. In the picturgs and(d), it is that of face 5. In the picturdg) and(f),
it is that of face 2. The milestones can be viewed as the naditeziion of a catenary over the track itself,
assumed to be put on the plane of the element.

Figure 4 illustrates another element of the track which wie a&&orner. This element allows the
locomotive to perform a turn at a right angle. This posdipil very important and absolutely needed, as
we shall see later.

(a) (b)
Figure 4 The corner element of the track. Figufe) is a view from above. Figuré) is a view from the back of
facel. The locomotive enters the element via fa@nd exits via face. It also may enter via fac2 and then it exits
through facel.

As we can see from Figure 4, the corner has more milestonemairio then a straight element: 7
milestones instead of 4 ones. However, the face of a cornékyds white, while for a straight element
the face oril is usually blue.

3.2 Vertical and horizontal segments

When finitely many straight elements are put one after eawérpowith the entry of one of them shared by
the exit of the previous one, we say that these elements eirgsavertical segment vertical for short,
provided that the plane of these elements is the same anth#ratis a line of this plane which supports
one side of each element which we call thedeline. Figure 5 illustrates the basic example of a vertical.
The guideline supports a side of the faces 0 of the elemedtthencommon plane is that of the faces 5.

In the representation of Figure 5, the dodecahedra areqtegj@n the plane of face 5.

In the left-hand side picture of the figure, number the elemehthe figure from 1 to 7. We can see
that the elementis in contact with the element1 withi € {1..6}. Consider elements 3 and 4, the latter
one occupying the central pentagon of the picture. The eaftelement 4 and the entry 1 of element 3
appear as different faces of dodecahedra: each one is @wwjeside the face 5 of the dodecahedron.
Now, by definition, the entry 1 of element 3 and the exit 4 ofél@ment 4 coincide. Indeed: elements 3
and 4 have their faces 5 on a common plane. They also havesttles 0 on the guideline. The entry 1
of element 3 and the exit 4 of element 4 are perpendiculaetgtiideline and they share a common side:
they are the same face.

As we stressed in Section 2, this situation is important aeghall not repeat this point systematically.
It is a property of the hyperboligD space which we have to bear in mind while looking at the figures

Note that in the figure, the entry 1 of an element is conneciddtive exit 4 of the previous one. Of

A weakly universal cellular automaton in the hyperbglie space with three states 101

course, the segment can be run in the opposite direction:ahexit 4 becomes an entry 4 and an entry 1
becomes an exit 1.

In the righ-hand side picture of Figure 5, we represent ardtind of track which we shall calior-
izontal segments Such tracks consists of finitely many elements which can figerw as a word of the
form (SeC)*, whereSe denotes a straight element aficlenotes a corner. The entry of the corner abuts
an exit of the straight element. It is not always the same éwifact, there is an alternation of the exits
which makes a Fibonacci word: if we associateSta”' the number of the exit of the straight element
which abuts the entry of the corner, then this defines a homglnigm of(SeC)* on a factor of lengttk
of the infinite Fibonacci word. Indeed, all corners are putidiiack node of the Fibonacci tree. Straight
elements are put on either white or black nodes. This can loe mare accurate as follows. The straight
elements of the segment are in contact of cells of the le\aflthe tree while the straight elements them-
selves are in the level+1. The corners of the segment are all in the leve2. Now, when the straight
element is put on a white node, the exits are through facesl 4akVhen it is put on a black node, the
exits are through faces 1 and 10. This explains the conmeofia horizontal segment with the infinite
Fibonacci word, also see [6].

Figure 5 Pseudo-projection on the plane of the track of its elemelgfi:hand side, case of a vertical segment;
right-hans side, case of a horizontal one.

In the right-hand side picture of Figure 5, all the cells, ldfemost one excepted, constitute an illustra-
tion of a horizontal segment. Note that the leftmost elerders not belong to the horizontal segment but
it realizes the connection with a vertical segment.

3.3 Bridges

As already mentioned in this section, crossings of the pleailvay circuit are replaced by bridges. We
can arrange the crossing in such a way that two vertical setghg andV; cross each other. Assume
thatV, will remain in the planél, of its faces 5 whild/; will make a detour in the pland, , perpendicular
to Iy, which contains the guideline of its projection orig. In II; the track will follow a horizontal
segment which will take the cells of two circles of cellslin: at a distance 2 or 3 from the cel of 1,
which has a contact with boff, andII;. Figure 6 represent such a bridge using two pseudo-projeti

102 Maurice Margenstern

one onto the planHj, on the left-hand side of the figure, and the other onto thegdlg on its right-hand
side. We shall say that the projection ofig is the view from above and that the projection ofitpis
the frontal view, both ways of views referring to the bridgeeif.

Let us have a closer look at the figures.

In the view from above, we can see two vertical segments: oae from the right-up part of the figure
to the left-bottom one. It can be easily recognized as a cbfhyeovertical segment illustrated by Figure 5.
Here, it contains two tiles coloured with light brown. We Bleall this track the top-down track. The
other track goes from the left-upper part of the figure andsgoehe right-bottom one. We shall call it
the left-right track. We can see the guideline of the top-dtnack. It is the intersection of the plands
andIl;.

Still in the view from above, we can see golden yellow markghanlight brown tiles and two green
marks on the central tile. The golden marks indicate thatdpedown track goes on these tiles. The
green marks indicate the two piles of the bridge, the lightdor tile being their basement. Number the
cells of the projection of the top-down track in the view fraimove from 1 to 7, 1 being the number of
the topmost cell. Cell 4 is the central cell and it belonghleft-right track: the top-down track follows
a horizontal segment dii; which can be seen in the frontal view, see the right-handgsaateof Figure 6.
The departure/arrival of the horizontal segment is defineddlls 6 and 2 which can be seen on both
views. In the frontal view, the trace &f, can easily be seen: it is the border between the coloured tile
and the others which remain blank, on the bottom part of thedigThere are seven coloured cells along
this line in the frontal view: they are exactly the cells nienfrom 1 to 7 in the view from above. In the
frontal view, cell 6 is on the left-hand side.

Figure 6 Pseudo-projections of two tracks crossing through a brid@mn the left-hand side: pseudo-projection
ontoIly; on the right-hand side: pseudo-projection orilig. The exit faces are marked by a golden yellow colour
on the right-hand side figure. The piles of the bridge are redrlith green on the central cell, their basement are
marked with light brown. In the frontal view, the colour o&tbell are exceptionally given to its faces which are not
in contact with a cell of a track. This is to underline the e@ts of the bridge on which the track relies.

Cells 6 and 2 are an application of what we have mentionedlis&ation 3.1, about the different ways
to rotate a straight element in order to access to anotheepl@ell 6 is alike the picturg:) of Figure 3.
Its faces 0 and 5 are in contact with the guideline. Now, exite8/ be used to go into the plane of face 0

A weakly universal cellular automaton in the hyperbdglie space with three states 103

which is perpendicular to the plane of face 5. This will be #it@rting point of our bridge. Note that
face 0 of cell 6 is orfil;. From this tile, the bridge follows a horizontal segmentlunarrives at cell 2
which is in contact with bothI, andIl;. Notice that cell 2 is alike the pictur) of Figure 3, and that
its face 4 is the face where the track of the bridges agairsjthie top-down track. Note that in cell 2,
face 0 is oI, as this is the case for cell 6. Looking at the cells of the hwrial segment in the frontal
view, we can notice that the straight elements have a mitesidhich is below;: this means that there
are milestones on both half-spaces definedIby Now, for the corners, all the milestones are in a same
half-space defined bi; . For the straight elements, their exits are most often tbesfd and 4. However,
from time to time, the exits are the faces 1 and 10. In Sulme&i2 we have seen the reason of these
variants. As can be seen on the frontal view, all corners arepa black node of the Fibonacci tree and
straight elements can be either on a black node or on a whie Brom Subsection 3.2, we know that
when a straight element is on a white tile, the exits are thedd and 4. When it is on a black tile, it is
the faces 1 and 10.

3.4 The motion of the locomotive on the tracks

Presently, we describe the motion of the locomotive on #&sks. We refer the reader to [11] for figures
for all the possible motions on the tracks and through a $witc

This motion is very different from the simulation of [7]. Tiee the tracks were materialized by a spe-
cific colour and the locomotive simply occupied two contigaaells of the track. Here, if we consider the
track as constituted of the blank cells surrounded by natess as in [9, 14, 13, 10], then the motion of the
locomotive is very similar. In particular, it is exactly tsame as the planar simulation described in [10].
Accordingly, restricting our attention to the cells of thadk, we have the following one-dimensional
rules for the motion of the locomotive:

B WW- B W W B
R B W— R W B R— R
WRB— W B RW- W
W W R-> W RWW W

As can easily be deduced from the rules, the locomotive stsesf two contiguous cells: one is blue,
the front, the other is red, the rear.

With the just mentioned principles in mind, we can easilyidethe rules for the motion of the loco-
motive. See [11] for the systematic writing of the corresgiag rules and for illustrative figures.

From the rules we can devise, it is worth noticing that thenelets can be freely assembled, provided
that they observe the principle which we have fixed: exitsroéement are 1 and 2 for corners, they are
land 3,1and4,1and8or1and 10 for a straight element. Otinebications are ruled out by the rules.

4 Implementation of the switches

In order to describe the switches, we shall focus on the megmwitch which has the most complex
mechanism among the switches. In fact, this mechanismtsrfitwo connected parts and B. In the
study of the other switches, we shall see that fixed switckesnechanism alone and that the flip-flop
switches use mechanisBialone.

All switches will share the following common features. Thaeg assumed to be on the same plHpe
However, certain parts of the above mechanisms are on btftsgaces defined bii,. This is why we

104 Maurice Margenstern

shall present two figures for each switch: one is a pseudqtion from above ont®l,, the other is a
pseudo-projection onto the same plane, but from below. We tmremember that in such a case, the
left-hand side and the right-hand side are exchanged aswelbckwise and counter-clockwise motions.

Next, for two of them, the switches have both a left- and atrlggnd side version. In the left-, right-
hand side version respectively, the active passage seadisctbmotive to the left-, right-hand side track
respectively. However, for the fixed switch, a left-handesi@rsion is enough. A right-hand side fixed
switch is obtained from a left-hand side one as follows:rafte switch, the left-hand side track crosses the
right-hand side one in order to exchange the directionsnk$ito the bridge which we have implemented,
this is easily performed.

The switches will be presented according to a similar scheme

First, we describe what we call thédle configuration: it is the situation of the switch when it is not
visited by the locomotive. All switches are the meeting poirthree tracks. The meeting tile is a straight
element and, in the figures, which will represent idle configions only, it is placed at the central tile.
The track which arrives to the entry 1 of this element repressthe arrival for an active crossing of the
switch. Exit 3 gives access to the track which goes to thealedt exit 4 gives access to the track going
to the right. In the computer program used to check the sitimnathe cells of the tracks are numbered
from 1 to 11 and from 12 to 16. In the figures, we can see cellsIDtand 12 to 15 only. Cells 1 to 5
constitute the arriving track. They follow a vertical segrhehich arrives to the leading tile of a quarter
constructed around the central cell. We shall number tligséy 1, as the exit to which the track leads.
Cell 2 is the farthest visible cell from the central cell,I¢els the leading tile of sector 1. The central cell
is cell 6. Cells 7 to 10 constitute the track which leaves thigch through exit 3. They are displayed in
a vertical segment included in a sector lead by cell 7 and lvisicalled sector 3, after exit 3. Cells 12
to 15 constitute the vertical segment which leaves the tMitmugh exit 4. These cells belong to sector 4
headed by cell 12, see Figure 7 for instance.

A closer look shows that the tracks are not exactly along toadr the cell which is in contact with
an exit of the central cell, is a straight element whose facedh II,. The next cell, cell 4, 8 and 13
respectively is a corner, again with its face Olén The remaining two cells constitute a vertical segment
in the way we have defined them with a milestone belywith respect to the other milestone which we
consider as upon this plane.

With these conventions, we can start the study of each swithshall see the memory switches, the
fixed switch and the flip-flop switches in this order.

4.1 Memory switches

As mentioned in the beginning of this section, the memorydweis are the most complex construction in
our implementation.

In the paper, we represent the left-hand side memory switbh see Figure 7. The reader can see the
figure corresponding to the right-hand side memory switdi in.

In the figure, there is a big disc and a smaller one. The bigidiagpseudo-projection onid, from
above, while the smaller one is a pseudo-projection ontsémee plane from below. In both discs, we
apply the convention about the colour of the cells.

In the memory switch, there are twsensors two markers and twocontrollers. The sensors are
cells 17 and 18 which are neighbours of the cells 7 and 12 céisply through their faces 0. Cells 7
and 12 are called thecanned cellsinspected by their sensors. Tapper controller is cell 20 which is
the second common neighbour of cells 7 and 12 albhuehe first common neighbour is the central cell.

A weakly universal cellular automaton in the hyperbglie space with three states 105

We consider that cell 20 has its face 0dg. Thelower controller is cell 19 which is the neighbour of
cell 20 through its face 0: cell 19 is thus beld¥ and we also consider that its face 0 isTdp. The
two markers are cells 21 and 22: they are neighbours of ceth@ugh its faces 8 and 10 respectively.
Now, the sensor of cell 7 is blue and that of cell 12 is red. Birly, cell 21 is red and cell 22 is blue.
The colours of the sensors and of the markers allow to idetti# left-hand side memory switch. In a
right-hand side memory switch, the colours of the sensalsl@mmarkers are exchanged: cells 21 and 18
are blue, cells 22 and 17 are red.

Figure 7 The idle configuration of a left-hand side memory switchigepnted by the two pseudo-projections, one
from above: the big disc; the other from below: the small disc

The working of the memory switch is the following.

A blue sensor is indifferent to the direction of the locomaetiit may cross the cell it scans in both
ways. A red sensor does not behave the same. First, it peetfentocomotive to enter the cell it scans
in an active passage. In a passive passage, it detects thegpasf the locomotive, it allows it to pass
through the cell it scans, but it reacts to the passage bygihgiits colour: as the blue sensor does not
see the red one, the red sensor cannot change its colourgo Ibichanges it to white. This is detected
by the lower controller, usually blue, which becomes red.ewthe lower controller is red, both sensors
change their colour: the blue one to red the now white oneue.bAnd the lower controller goes back
to blue. Now, the upper controller, usually blue, also distédte passive passage through the non-selected
track: its markers allow it to differentiate cell 7 from cé&. And so, when the front of the locomotive
leaves cell 7 or cell 12 when this cell is on the non-seleatackt the upper controller becomes white
and then red. It becomes white to prevent the locomotive foeing duplicated on the selected track:
the locomotive must go through entry 1. Then it becomes retheasame times as the lower controller
becomes red. When the upper controller is red, both marketsa@ge their colour and at the next time,
the upper controller returns to blue.

We have no room in this paper for figures about the motion ofldbemotive. We refer the reader
to [11] for such figures. In that document, the reader mayfaisitables of the execution of the computer

106 Maurice Margenstern

program which simulated the various motions. For the mersaiijch, we give one such table here: the
table which corresponds to the motion of the locomotive wihgmassively crosses the switch from the
non-selected track, see Table 1.

In a heading line, the trace indicates the visited cells kyrthumber as well as theirimmediate neigh-
bours, also numbered, when they may be changed during tiheBadow this leading line, for each time,
the state of a cell is given in the column corresponding tmitnber. Looking at the numbers, we can
see that the simulation program considered two more celth@itrack arriving to the switch than what
is shown by the figure. In this table, we can see that the sefasal the markers play an active role and,
at the end of the role, they are exchanged. Accordingly,dberhotive entered a left-hand side memory
switch and it leaves a right-hand side memory switch.

Note that Table 1 shows exactly when each sensor and cantieitriggered. The front of the loco-
motive is in cell 12 at time 2. This makes cell 20 and 18 becgmihite. As already noticed, the red
sensor cannot change to blue as the blue sensor, which csematither cell 12 nor cell 18, did not yet
realized that a change must occur. At time 3, the front of titsemnotive is now in cell 6, the central cell,
and cells 20 and 18 are now white. This is the signal for botitrafiers to flash the red signal which
will trigger the exchange of colours in the sensors and imtlaekers. The signal is sent at time 4 and the
exchange of colours happens at time 5: starting from tha,tthne memory switch is now a right-hand
side one.

Table 1 Run of the simulation programme. A corresponding figure carfdund in[11]. The passive crossing

through the non-selected track correspond to céllsip to 16, in the reverse order and then to cellsip to6 in the
reverse order too.

passive crossing of a memory switch, left-hand side,
through the NON selected track :
1 3 4 5 6 7

[y

=== = = = = = O
-

sS=s=s == = = 5 &~
-

13 14 15 16 17 18 19 20 21 22

time B R W BR B B R
time
time
time
time
time
time

=== == =N
oW = = = = =
S=s=s === = = ©
=== === = = ©

2 13
W W
W B
B R
R W
W W
W W
W W
W W

~NoO O WN O
=== = = = = =
= O W= = = = =
= = 0w = = =
=== =T w=s ==
=== = = 5 =5
=== = =™
= === = = =
=== = = =
D W MWW W W w
W ww= = ©
O wwWwowww
W wwo™w=ww
W wwxox DD
oW W W W W W w

time

In [11], it can be checked that the right-hand side memoryctwieacts in a similar way to its passive
crossing by the locomotive through the non-selected trackarticular, when the locomotive leaves the
switch, it is now a left-hand side one.

4.2 Fixed switches

Figure 8 illustrates the idle configuration of a fixed switéfs announced at the beginning of Section 4
we can see on the figures that the idle configuration of a fixéttisws, in some sense the half of the
configuration of a left-hand side memory switch. The poirtihéa there is no lower controller and that the
sensors and markers are now fixed milestones. Two of thehi,&eahd 21, are always red and the others,
cell 17 and 22 are always blue. Now, the fixed switch keeps pipeucontroller. As already noticed, the
red milestone prevents the locomotive to go through theseleeted track in an active passage. However,
as also noticed in the study of memory switches, the changelodir in the sensor of cell 12 is not enough

A weakly universal cellular automaton in the hyperbglie space with three states 107

to prevent the locomotive to go from the central cell bothdth 5, as required, and to cell 7 which should
be avoided. Cell 7 cannot itself prevent such a passage dedaees cell 6 but it does not see at the same
time cell 12. Now, we have seen in Subsection 4.1 that therupperoller is able to perform this tasks:
as soon as it sees that the front of the locomotive is in celltizcomes white. As cell 7 sees this new
colour at the same time when the front of the locomotive iseith&, it allows it to reject the access of the
locomotive to the selected track.

Figure 8 The idle configuration of a fixed switch. The big disc is a viemnfabove, the small one a view from
below.

It is not difficult to check that Figure 8 implements this chas. It was just enough to neutralize the
lower controller by changing its colour from blue to blank.ofover, the cell itself has no other non-
blank neighbour than the sensors. Similarly, as the sessarsnarkers are fixed milestones, this means
that their neighbours are all blank, except the cell of thigkchwwith which they are in contact: cell 7 or 12
for the sensors, cell 20 for the markers. Consequently,ghéguration of the fixed switch is a bit simpler
than that of the left-hand side memory switch. It also reggiiess non-blank cells.

Table 2 Run of the simulation programme corresponding to the passivssing through the non selected track. The
corresponding cells are cell2 up to 16, in the reverse order and then cellap to6 in the reverse order too.

passive crossing of a fixed switch, NON selected track :
1 2 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22
W W W W B R W B R B R

=

time
time
time
time
time
time
time

S ===s=====
=== = = =
TwWw=s = = = = =W
ST oW === =
SO ws=s = = =
S =S IJwWw= = =
=== === = = =
=== = = = =

9
w
W
W
W
W
W
W
W

~N O O WN R, O
=== = =
== === = =
=== o W=
=== 3w
======
S ====== =
=== = =
W wwwww
D WD HD DD
S ====== =
W wWwwWwo™=ww
=== ==~
0w wwwwww

time

We refer the reader to [11] for figures illustrating the thpassible crossings of the switch by the
locomotive. There, each figure is accompanied by a tabletwstiows a trace of the execution of the

108 Maurice Margenstern

simulating program corresponding to that crossing. Hemreproduce Table 2 only which gives the
trace of a passive crossing through the non-selected track.

Table 2 also allows us to check that a half-control, namedy tf cell 20 was enough to guarantee
the correct working of the switch. It also shows that it waswagh to block the changing of sensors by
transforming them into milestones. This is an interestiompwhich shows us another advantage which
we can take from the third dimension.

Indeed, in previous simulations in the hyperbolic planetenheptagrid, with six or four states, we had
a curious phenomenon during the active passage of the Ida@amd also during a passive crossing for
the fixed switch too. In these simulations, the passage dbtt@motive created a duplicate of its front
towards the wrong direction. However, as this new front watfaollowed by a red rear, it was possible to
erase it, simply by appending a few rules.

4.3 Flip-flop switches

Figure 9 show the idle configuration of the left-hand side-figp switches. The corresponding figure
for right-hand side switches can be seen in [11]. As annaliatéhe beginning of Section 4 we can
see on the figures that the idle configuration of a flip-flop slwiwitch is, in some sense the half of the
configuration of a memory switch of the same laterality. Tl@pis that there is no upper controller
and, consequently, no markers. However, the sensors ataltbecontroller are still present. The lower
controller is exactly the same as in the memory switches andrks in the same way. Contrarily to the
fixed switch, the sensors are not milestones. They are tnsselike in the memory switch.

Figure 9 The idle configuration of the left-hand side flip-flop swit@te big disc is a view from above, the small
one, a view from below.

However, they are a bit different from the sensors of the mgrswitch as they work in a different
way. The difference can be noticed in the small discs of lgirand Figures 9. In Figures 7, the sensors
are marked by a group of three red milestones, on pairwistgrarus faces, one of them being the face
which is opposite to that in contact with the scanned celFifjures 9, the sensors are marked by a ring
of five milestones whose contact faces with the sensor atedrthe face which is opposite to the face
in contact with the scanned cell. Also, the face opposité#ad which is shared with the scanned cell is
blue as it is in contact with a blue milestone. Similar figufasthe right-hand side memory or flip-flop

A weakly universal cellular automaton in the hyperbdglie space with three states 109

switches can be found in [11].

Table 3 Run of the simulation programme. A corresponding figure aafobind in[11]. The active passage visits
the cells of the selected track: cellsip to11 in this order.

active crossing of a left-hand side flip-flop switch :

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
time 0 : W R B W W W W W W W W W W W W W B R B W W W
time 1 : W W R B W W W W W W W W W W W W B R B W W W
time 2 : W W W R B W W W W W W W W W W WBR B W W W
time 3 : W W W W R B W W W W W W W W W W B R B W W W
time 4 : W W W W W R B W W W W W W W W WBR B W W W
time 5 : W W W W W W R B W W W W W W W W W®R B W W W
time 6 : W W W W W W W R B W W W W W W W W R R W W W
time 7 : W W W W W W W W R B W W W W W W R B B W W W

This difference is explained by the fact that the workingref sensors is very different from that of the
memory switch, quite the opposite: in the memory switch,lthe sensor is passive and the red sensor
blocks the access to the non-selected track in the activeagasand turns to white when the front of the
locomotive appears in the scanned cell in a passive crasbirtpe flip-flop switch, the red sensor only
blocks the access to the non-selected track and the bluerdsrstive: when the front of the locomotive
leaves the scanned cell, it becomes white, triggering tteh ftd the lower controller at the next time
which, to its turn, makes the sensors exchange their colour.

This can be checked in Table 3 and similar tables of [11]. Thmtfof the locomotive is in the scanned
cell at time 4, so that the blue sensor is white at time 5. Asiéindase of the memory switch, as cell 17
and 18 do not see each other, the blue sensor cannot turn tmmeediately. It becomes white which
triggers the flash of the controller at time 6 and the exchafgmlours between the sensors at time 7
only.

5 About the rules and the computer program

We have no room for the rules which are displayed in [11]. Hmvewe have a preliminary work on
rotation invariance which is by itself interesting.

In order to write the rules of the cellular automaton, we lshaé the numbering of the faces of a
dodecahedron which was mentioned in Section 2 and which s&din Sections 3 and 4. However, there
was no fixed rule to connect the numbering of a cell to that ogighbouring one except for the cells
of the track, as we did in Subsection 3.2. This is not a big lgmokeas, in fact, the rules which we shall
devise have an important property: they estation invariant , which means that they are not changed
by a motion which leaves the dodecahedron globally invaaad which preserves orientation.

In the plane, the characterization of rotation invariamcthe rules is easy to formulate: it is necessary
and sufficient that the rules are not changed by a circulanpgtion on the neighbours. In the case of
the pentagrid, this means that once we fixed a rule, we autcetigtappend to the table of rules the other
four permuted images of the rule. Here, the characteriaagifar less trivial. In [7], we could avoid this
problem by imposing a stronger condition on the rules, nguteebestrongly lexicographically different
from each other. This means that to each rule, we associabecaofithe formA’f1 ..Ar whereAy, ..., A,

110 Maurice Margenstern

are the states arfg are non-negative numbers satisfying+ ... + &, = v+1, wherev is the number of
neighbours of the cell, the cell being not counted. This wassible with 5 states and | could not keep
this condition for 3 states. This is why we first study how t@ck rotation invariance for our cellular
automaton in the hyperbol&D space.

5.1 Rotation invariance

The question is the following: how does a motion which leahesdodecahedron globally invariant affect
the numbering of its faces, an initial numbering being fixedaSection 2?

BQ Bd DQ BG B»Q 94 9@ DQ Bﬂ BQ

BG Bvﬁ BQ BQ 9‘1 9(ﬁﬁ Bﬂ DQ Bﬂ

ﬂﬂ DQ Bﬂ B@l 9‘2 ﬁ-ﬂ B'l 9@ Dﬂ DQ
B¢ ﬂ»‘l

ﬂﬁ BQ 9ﬂ Bﬂ B'l BQ

Figure 10 The map of the positive motions leaving the dodecahedrdratijoinvariant.

Table 4 The faces around a given face.

[EEY
N
w
N
al

0 1 5 4 3 2
1 0 2 7 6 5
2 0 3 8 7 1
3 0 4 9 8 2
4 0 5 10 9 3
5 0 1 6 10 4
6 1 7 11 10 5
7 1 2 8§ 11 6
8 2 3 9 11 7
9 3 4 10 11 8
10 4 5 6 11 9
11 6 7 8 9 10

A weakly universal cellular automaton in the hyperbdglie space with three states 111

In fact, it is enough to consider motions which preservestientation, we shall sagositive motions.

As such a motion leaves the dodecahedron globally invariamansforms a face into another one. Ac-
cordingly, fix face 0. Then its image, sdy, can be any face, face 0 included. Next, fix a second face
which shares an edge with face 0, for instance face 1. Thamége, sayfi, is a face which shares
an edge withfy. It can be any face sharing a face wifhh Indeed, letf, be another face sharing an
edge withf;. Then, composing the considered positive motion with atimtearoundf, transforming
f1 into fo, we get a positive motion which transforrig 1) into (fo, f2). This proves that we get all
positive motions leaving the dodecahedron globally irasatri by first fixing the imagg, of face 0 and
then by taking any facg; sharing an edge withiy. Note that oncefy and f; are fixed, the images of
the other faces are fixed, thanks to the preservation of ileatation. Accordingly, there are 60 of these
positive motions and the argument of the proof shows that #ine all products of rotations leaving the
dodecahedron globally invariant.

Figure 10 gives an illustrative classification of all thesttions. The upper left picture represents the
image of a Schlegel diagram of a dodecahedron with the ootattroduced in Section 2. Each image
represents a positive motion characterized by the couplarobers under the image: it has the fofsnfy,
wherefj is the image of face 0 anfl is the image of face 1. The figure represents two sub-takde$, e
one containing 30 images. Each row represents the possiblges off1, fo being fixed. The image of
face 0 is the plane of projection of the dodecahedron. Thgéntd face 1 takes the place of face 1 in
Figure 1. As an examplepy = 0 for the first row of the left-hand side sub-table, and in thst fiow,
the first image giveg; = 1, so that it represents the identity. The other images ofdierepresent the
rotations around face 0.

The construction of Figure 10 was performed by an algorittmingi Table 4. For each face of the
dodecahedron, the table gives the faces which surroundtieiischlegel diagram, taking the clockwise
order when looking at the face from outside the dodecahedhis order coinciding with increasing
indices in each row. This coincides with the usual clockvaisger for all faces as in Figure 1, except for
face 0 for which the order is counter-clockwise when lookabgve the plane of the projected image. The
principle of the drawings consists in placirfg onto face 0 and; onto face 1. The new numbers of the
faces are computed by the algorithm as follows. Being gikemew numberg, andf; of two contiguous
facespg andy; in the Schlegel diagram, the algorithm computes the posifg; as a neighbour afg
in the table. This allows to placA on the right face. Then, the algorithm computes the new nusriife
the faces which are around in the table: itis enough to take the positiongfas a neighbour ap; and
then to turn around the neighboursff looking at the new numbers in the rofy of the table, starting
from the position offy. This gives the new numbers of the faces which surround fade i$ easy to
see that we have all faces of the dodecahedron by turningndrfage 1, then around face 5, then around
face 7 and at last around face 8. As in these steps, each rddades starts from a face whose new
number is already computed, the algorithm is able to comiht@ew numbers for the current round of
faces, using Table 4 to find the new numbers. Let us call tigisrithm therotation algorithm .

Thanks to the rotation algorithm, it is easy to compute rhtated forms of a rule of the cellular
automaton.

Let nno...n117’ be a rule of the automaton. In this formatis the current state of the cell angi) is
the state of the neighbour through facalso called neighbour and’ is the new state of the automaton.
Remember that the current state of a cell is its sate attiamal that its new state is its state at timrd.
Call nno...m1 the context of the rule. Letu be a positive motion leaving the dodecahedron globally
invariant. Therotated form of the rule defined by: is MMpu(0)---NMua1)n’ and, similarlynn,, o ...n.a1) is

112 Maurice Margenstern

therotated form by u of the context of the initial rule. We say that the cellulataunaton isrotation
invariant if and only two rules having contexts which are rotated foofheach other always produce the
same new state.

Now, thanks to our study, we have a syntactic criterion tcckhhis property. We fix an order of the
states. Then, for each rule, we computeaiiigimal form . This form is obtained as follows. We compute
all rotated forms of the rule and, looking at the obtainedterts as words, we take their minimum in the
lexicographic order. The minimal form of a rule is obtaingddppending its new state to this minimum.
Now it is easy to see that:

Lemma 1 A cellular automaton on the dodecagrid is rotation invati#rand only if for any pair of rules,
if their minimal forms have the same context, they have theegzew state too.

Now, checking this property can easily be performed thaokké rotation algorithm.
We refer to [11] for the detailed study of the rules. The rnide&n there have the property that the
minimal forms of their contexts are pairwise distinct.

5.2 About the computer program

As indicated in the introduction, | wrote a computer progiamrder to check the correctness of the rules.
The program was written id D A95 and it implements the algorithms mentioned in the paper.

Before giving a short account on the program itself, |1 wouke Ito stress that using a simulation
program for this purpose is mandatory. The computationsareomplex for a man, at least for me,
that the help of the computer allows me to check that the raesorrect. What is meant by this latter
expression? We mean two things: a syntactical one and a siemae. The syntactical correctness is
that there is no pair of rules with the same minimal contexingj rise to different new states. This is
the minimal condition when working with deterministic agfir automata, which is of course the case
here. In this work, we reinforced the condition by checkinmgtttwo rules with the same minimal context
always give rise to the same new state: this guaranteeihatitomaton is not only correct, but that it is
also rotation invariant.

Now, the semantic correctness means that the rules do whetpeet from them to do. This is far more
complex to check and this cannot be completely ascertaipgadnf. Again, the computer program is
useful in this regard. We can implement the simulation inghfegram and then run it. If everything goes
smoothly through, we can believe that the implementati@oisect. There is no guarantee of that. There
is no automatic checking that the implementation is a cotrgperbolic implementation. There is also
no proof that the program itself is correct. However, théirsgis rather involved and while adjusting the
program, many errors in my first table of rules were found leyghogram. As an example, the program
also indicated me the need to cover face 11 of cells 7 and 1Ranilue milestone: otherwise, the set of
rules would not be rotationally invariant.

About the program implementation itself.

First, | implemented the algorithms to compute the miniroahf of a rule and, taking advantage of this
implementation, the programme computed the PostScrigiram for Figure 10. All traces given in the
tables of Section 4 were computed during the execution gbtbgram by the program itself.

Each test of a crossing of the switch by the locomotive watopmied within the same implementation
frame: the cells of the tracks were gathered in a table oé&afiThe big table has 22 entries corresponding
to the numbering of the cells explained in Section 4. For éagdéx of the big table, a table of 14 entries
gives various information on the cell in its current statgg &s neighbours. The neighbours correspond

A weakly universal cellular automaton in the hyperbdglie space with three states 113

to faces and are numbered from 0 up to 11 as in the paper. Fbrfaee, it is indicated whether the
neighbour through the face has a permanent state or a v@oael. As an example, a milestone seen
from a face of a cell of the track is permanently blue. Whenrthighbour has a variable state, the table
indicates the index of this neighbour in the big table. It fiee big table is first a list of the variable cells
and, at this occasion, it collects a useful information dleach cell. The program also computes a bigger
trace where at each time, the big table is dispatched in &iflil Table 5 gives two short pieces of this
trace, taken during an active passage of the locomotivenetX. We can see the information which was
just indicatedp meaning 'variable’ ang’ meaning 'fixed’. The other indications are self-explaining

Table 5 Two pieces of the big trace of the program, correspondinghtogimulation of an active passage of the
locomotive through a left-hand side memory switch, atahitme.

6 -1 01 2 3 4 5 6 7 8 910 11 17 B W W B W W W W W W R R R
W W W B W W B B B W W W W f v £ v £ £ £ £ £ £ f f f
v f v £f v v £ £ f £ f f f 7 19
5 7 12 18 R W W W W W B W WR R W R
7 W B W B W W B B B W W W B f v £ £ f f v £f f f f f f
vvv f f v v £ f f £ f f 12 19
17 6 8 20 19 B B W R BRI RURURWW W R
8 W W W B W W B B B W W W W f v £ £f v v f f f f f f f
v f v £f f v £ £ £ £ f f f 20 17 18
7 9 20 B B WRWWURU RRRWIBR
9 W W W B W W B B B W W W W f v £ £ v v f f f v f v f
v f v £ £ v £ £ £ f f f f 19 12 7 21 22
8 10 21 -1 0 1 2 3 4 5 6 7 8 910 11
10 W W W B W W B B B W W W W R B W W W W W W W W R R R
v f v £ f v £ £ £ £ f f f v v £ £ f f £ £ £ f f f f
9 11 20
11 -1 0 1 2 3 4 5 6 7 8 910 11 22 B B W W WWW W W W R R R
W W W B W W B B B W W W W v v f £ f f £ £ £ f f f f
v f v £ £ £ £ £ £ £ f f f 20
10
12 W R B W W B B B W W W B

<
<

13

< =

[
o= 0
< = o < =

N

o

=

w

As the program performed a successful execution of all ptessrossings and also along various ver-
tical and horizontal segments with some mix of them, we carckamle that the proof of theorem 1 is
complete. |l

References
[1] M. Cook. Universality in elementary cellular automatamplex System&004),15(1), 1-40.

[2] F. Herrmann, M. Margenstern, A universal cellular autdom in the hyperbolic plan&heoretical
Computer Scienc€2003),296, 327-364.

114 Maurice Margenstern

[3] M. Margenstern, Implementing Cellular Automata on thé@mgular Grids of the Hyperbolic Plane
for New Simulation ToolsASTC’2003, (2003), Orlando, March, 29- April, 4.

[4] M. Margenstern, The tiling of the hyperbolidD space by the 120-cell is combinatordgurnal of
Universal Computer Scienc&((9), (2004), 1212-1238.

[5] M. Margenstern, Two railway circuits: a universal ciiicand an NP-difficult oneComputer Science
Journal of Moldova9, 1-35, (2001).

[6] M. Margenstern, Tilings of hyperbolic spaces: the $plg method and group theofyORDS’2003
TUCS General Publicationd3, (2003), 31-35.

[7] M. Margenstern, A universal cellular automaton with fatates in the 3D hyperbolic spadaurnal
of Cellular Automatéel(4), (2006), 315-351.

[8] M. Margenstern, Cellular Automata in Hyperbolic Spaceslume 1, TheoryOCP, Philadelphia,
(2007), 422p.

[9] M. Margenstern, Cellular Automata in Hyperbolic Spacédume 2, Implementation and computa-
tions,OCP, Philadelphia, (2008), 360p.

[10] M. Margenstern, A universal cellula automaton on thpthgrid of the hyperbolic plane with four
states;Theoretical Computer Sciend@010),doi:10.1016/j.tcs.2010.04.015.

[11] M. Margenstern, A weakly universal cellular automaitothe hyperbolid D space with three states,
arXiv:1002.4290[cs.DM], (2010), 54pp.

[12] M. Margenstern, G. Skordev, Tools for devising celildatomata in the hyperbolic 3D spaéain-
damenta Informaticaé8, N°2, (2003), 369-398.

[13] M. Margenstern, Y. Song, A universal cellular autonmatm the ternary heptagriélectronic Notes
in Theoretical Computer Scienc23 (2008), 167-185.

[14] M. Margenstern, Y. Song, A new universal cellular au&tom on the pentagridarallel Processing
Letters 19(2), (2009), 227-246.

[15] D.M.Y. Sommerville, An introduction to the geometry Nf dimensions, Dover Publ. Inc., New-
York, 1958.

[16] I. Stewart, A Subway Named Turing, Mathematical Reticee in Scientific American(1994), 90-
92.

[17] S. Wolfram. A new kind of sciencé&\olfram Media, Inc.(2002).

Automata 2010 — 18Intl. Workshop on CA and DCS DMTCS proc.AL, 2010, 115-130

Minimal Recurrent Configurations of Chip
Firing Games and Directed Acyclic Graphs

Matthias Schulz

IKarlsruhe Institute for Technology,

Department for Computer Sciences

Am Fasanengarten 5, 76128 Karlsruhe, Germany
schul z@r a. uka. de

We discuss a very close relation between minimal recuri@mfigurations of Chip Firing Games and Directed Acyclic
Graphs and demonstrate the usefulness of this relatiorvioyggi lower bound for the number of minimal recurrent
configurations of the Abelian Sandpile Model as well as a fdveaind for the number of firings which are caused by
the addition of two recurrent configurations on particulapns.

Keywords: Chip Firing Games, Sandpile Model, Minimal Recurrent Camfagions, DAGs, Addition of Recurrent
Configurations

1 Introduction

The Abelian Sandpile Model was introduced by Bak, Tang andséfifeld in 1987 [1] as a model to
explain% noise. We assign each point ofiax n grid a number of grains of sand, then taking points
which contain at least four grains of sand and let one grgpleto each of the four adjacent points; if a
point on the edge of the grid is chosen, grains fall out of gfsten.

This dynamic is closely related to Chip Firing Games, andr@hand Ellis proposed a variation of
Chip Firing Games in 2002 [3] such that the Abelian SandpitEl® can be seen as a special case of this
model.

Dhar found many nice properties of so-called recurrent goméitions of the Abelian Sandpile Model
which are together with a natural operatioran Abelian group, see [5]. These findings can be generalized
for Chung and Ellis’ Chip Firing Game, as shown in [3].

Recurrent configurations of the Abelian Sandpile Model oipGfiring Games are characterized by
containing enough grains of sand/chips; in this paper weladk at configurations which contain as
few chips as possible for a recurrent configuration, and bfe @ prove a close relation to directed
acyclic graphs (DAGs). This relation somewhat resembleshifection between the set of recurrent
configurations of the Sandpile Model and the set of spannigstwith roots at the border of the grid
which was shown in [8] and generalized for Chip Firing Ganmgig].

These recurrent configurations which we will call minimahyla significant part when considering
minimization problems on the set of recurrent configuratjonost naturally when minimizing the nuber
of firings that occur when relaxing the sum of two recurrentfigurations as in [9].

1365-805Q0) 2010 Discrete Mathematics and Theoretical Computer SeiédMTCS), Nancy, France

116 Matthias Schulz

First, we will introduce the basic concepts for Chip Firingrées, before examining the relation be-
tween minimal recurrent configurations and a subset of th&®aén the graph underlying the Chip Firing
Game. We can use this to prove a lower bound for the numberrdfimal recurrent configurations of the
Abelian Sandpile Model.

Then we will define a dynamic on DAGs which corresponds to §readic of the Chip Firing Game.
Using this correspondence we will be able to give the infimdnhe number of firings that occur when
we start the Chip Firing Game on a cylindrical grid with thensof two recurrent configurations.

2 Preliminaries

2.1 Basic Definitions

An undirected graplty = (V U S, E) is called aCFG-graphiff 1 andS are disjoint, each vertexe S
is adjacent to exactly one vertexc V' and there exists a path from each verntex V' to a vertexs € S.

A Chip Firing Game (CFG) on a CFG-graph defines a transitida far configurations: : V- — Ny
where we interpret(v) as the number of chips the vertexontains:

If a vertexv € V contains at leasteg(v) chips, whereleg(v) is the degree of in the GraphU, the
vertexv is calledcritical and can firej.e. give one chip to each adjacent vertex and ldsg(v) chips.

Chips which are given to vertices Bisimply vanish from the game. Figure 1 gives an example; black
vertices stand for vertices ifi.

Fig. 1: The vertex in the upper left corner fires, and we get the cordigan on the right.

If we start with a configuratiom and get configuratiom’ after vertexv € V has fired, we write
¢ = ¢,(c). We can write

¢u(c) = c—deg(v)es + D ew,

v'|{v,v'}EE

e, being the configuration given througty € V : e, (u) = d,(u).

Minimal Recurrent Configurations and DAGs 117

A configuration which contains a vertex which is able to fireafledcritical; a configuration which is
not critical is calledstablg and the set of stable configurations is dendtgd

2.2 Relaxations of Configurations

It has been shown (for example in [3]) that we reach a stabiéiguration after a finite number of firings,
no matter which critical configuration we start from. We ¢hi process of these firings theaxation of
C.

Fork € Ny listing the vertices which fired during the firsisteps of the relaxation efis called &firing
sequencef ¢ of lengthk.

It is also shown in [3] and [5] that the stable configuratiomateed does not depend on the sequence of
firings - there exists a unique stable configuratipn we reach when starting with configuratiopand
even the number of times a given vertefires during the relaxation is unique. The vecfprassigning
each vertex the number of times it fires during the relaxatdifonis called thefiring vectorof c.

Throughout this paper, when comparing different firing eesor different configurations, we will use
the relation< defined througle < d <= Vv € V : ¢(v) < d(v).

2.3 The Operation @ and Recurrent Configurations

Definition 1 We define the operatian onCY through

Ve,deCV icdd = (c+d)re. 1)
(The operationt is the usual pointwise addition of functions.)

It is shown in [3] that® is commutative and associative, and also that there existbset of stable
configurationsRY such that(RY, @) is an Abelian group. These configurations are catteclrrent
configurations

The structure of the Abelian groyRY, @), called theSandpile Groumf the graphl/, has been the
object of research fdi being a complete graph or aawheel in [4] orU being a tree in [7]. Furthermore
the geometrical structure of the neutral element of saidgias been discussed in [2].

Definition 2 We definé ¢ CY as the configuration which assigns to each vettéixe number of vertices
in S which are adjacent te. The configuratiom is called theburning configuration of/.

A generalization of Dhar’s Burning Algorithm from [8] gives the following equivalence:

Vee CY :ce RY «= there exists a firing sequence for- b which contains each vertex exactly
once.

(Note that for allc € CY the firing sequence af+ b contains each vertex at most once.)

For the rest of this paper, we will say that a sequeha# vertices is a firing sequence for a recurrent
configuratiorc if F'is a firing sequence far+ b of length|V|.

We are now able to proceed to the actual subject matter ofpégier, the set of minimal recurrent
configurations.

118 Matthias Schulz

3 Minimal Recurrent Configurations and Firing Graphs

Definition 3 A recurrent configuratior: € RY is called minimal recurrentf for all verticesv € V
satisfyinge(v) > 0 the configuratiore — e, is not recurrent.
The set of all minimal recurrent configurations dnshall be denote®Y

min*
In other wordsR Y, is the set of minimal elementsRY’ with regard to the partial ordex as defined
above.

These minimal recurrent configurations occur naturally mvbee tries to lower the number of firings
that happen during the relaxation of the sum of two recurcenfigurations: The functiorf : N} —
mathbbNY , ¢ — f. is monotonously increasing with regards<o this means thaf..q < fo 4 if
¢ < ¢ andd < d' is true, and we get minimal results for some minimal recureenfigurations:, d.

To get a better understanding of minimal recurrent configma, we usdiring graphs a concept also
used by Gajardo and Goles in [6]:

Definition 4 Letc € RY be a recurrent configuration andl = (v, . . ., vjv|—1) a firing sequence for.
We define théring graphGr = (V U S, E’) by choosing
E' ={(vi,v;) | {vi,v;} € EAi < jtU{(s,u) | s€ SA{s,u} € E} (2)
We also say that? is a firing graph fore.

Example: The configuration given in Figure 2 has the firingueegest” = (0,1,2,3,4) and F’ =
(1,0,2,3,4). The resulting firing graph& r andG . are shown in Figure 3.

Fig. 2: A CFG-GraphU and a recurrent configuration @f the black vertices are the verticesSn

Note thatF is always a topological ordering 6t restricted tol/, which implies thatGr is always a
directed acyclic graph. Note also that for each efige)} € E either(u,v) or (v,) is an edge irG; we
will call such acyclic graphDAGs onU andS-DAGs onU if S is the set of sources @f.

The set of allS-DAGs onU shall be denote®y,.

Minimal Recurrent Configurations and DAGs 119

.\ (£) @'@

Fig. 3: The firing graphs for the firing sequendes, B, C, D, E) (left) and(B, A, C, D, E) (right).

Definition 5 As we will be discussing indegrees and outdegrees of vsriticgifferent graphs, we define
for a directed graphG = (V U S, E’) the functions

indeg :V US — Ny, v {ue VUS| (u,v) € E'} (3)
outdeyq, :V U S — Ny, v {ue VUS| (v,u) € E'}. (4)

Note that for allv € V' and all DAGSG onU the equationndeg(v) + outdeg(v) = deg(v) is true.

Lemma 1 Letc € RY be a recurrent configuration an@ be anS-DAG onU.
ThenG is a firing graph ofc iff for all verticesv € V' the statementutdeg (v) < c(v) is true.

Proof: If G is a firing graph of: there exists a firing sequenéeof ¢ such thatG = G is true.

It follows that the number of chips fallen to a vertexefore it fires is the number of neighbors firing
before it in the firing sequende plus the numbers of neighbordas inS. These are exactly the vertices
from which an edge goes toin G.

As v has enough chips to fire after the chips of the neighbors wredi above have fired, it follows
c(v) + indeg(v) > deg(v), which leads ta:(v) > outdeg(v), which proves one direction.

For the other direction, assume thatc V' : c(v) > outdeg(v) is true. LetF" = (v, ..., vy |—1) be
a topological ordering of7 restricted tol.

We show that? is a firing sequence far+ b:

We define fol0 < i < |V| the configuratior; : V — Z as

COIC+b,Vi€{0,...,|V|—1}ICZ'+1=(;5W(CZ‘) (5)

In other wordsg; is the configuration we get after the fiistertices of the sequence have fired.
To show thatF is indeed a firing sequence, we have to prove that foi #ie inequatiorr; (v;) >
deg(v;) is true.

120 Matthias Schulz

The number of chips; contains inc; is the sum of the number of chips contained ire, the number
of neighbors; has inS and the number of neighbors which fired beforén F'; in other words

ci(vi) = c(v;) + indeg(v;) > outdege(v;) + indeg(v;) = deg(v;) (6)

This completes the proof.
O

Note that we didn’t use the fact thathas to be a recurrent configuration for the second part of the
proof; indeed, we have shown we can find a firing sequence-fa¥ comprising all vertices of” exactly
once ifYv € V : ¢(v) > outdeg(v) is true.

This means that all configurations= C satisfyingvv € V : ¢(v) > outdeg(v) are recurrent, a fact
we state in the following lemma:

Lemma 2 LetG be anS-DAG onlJ andc € CY a configuration satisfyingv € V : ¢(v) > outdegg(v).
Thenc is a recurrent configuration and is a firing graph ofe.

As the sources of7 are exactly the vertices i§' this means that for alb € V the inequation
outdeg(v) < deg(v) — 1 holds. Therefore such a configurationlways exists irC.

We also can use the firing graphs to prove a lower bound forah@er of chips a recurrent configura-
tion contains:

Corollary 1 We define?y, C F as the set of all edges ii incident to two vertices ify.
Then the following inequation holds:

Vee RV > c(v) > |Ey| 7
veV

Proof: Letc € RY be a recurrent configuration arel = (V U S, E') be a firing graph of. Using
Lemma 2, we get

Vee RY : Z c(v) > Z outdeg(v) (8)

veV veV

Thereforec contains at least as many chips as there are edgé@ssiarting from a vertex € V. As
each edgdu, v} € Ey satisfie{u,v) € E' V (v,u) € E’ and no edge itz goes from a vertex € V' to
avertexs € S, we gety ", outdeg(v) = |Ev| which proves the claim.

O

We know that in a recurrent configuratiowith firing graphG each vertex contains at leasttdeg; (v)
chips. Loaoking at configurations where each vertecontains exactlyutdeg (v) chips leads us to the
following theorem:

Theorem 1 A configurationc € CY is minimal recurrent iff there is ai$-DAG G such thatvv ¢ V :
c(v) = outdeg(v) is true.

Minimal Recurrent Configurations and DAGs 121

Proof: If an S-DAG G exists such thatv € V : ¢(v) = outdeg(v) is true, Lemma 2 tells us thatis a
recurrent configuration an@ is a firing graph ot.

Looking at the proof of Corollary 1 we also g¥t, . c(v) = >,y outdegs(v) = |Ev|, which is
the smallest number of chips a recurrent configuratioVaran contain.

For all verticesv € V the configuration: — e, contains fewer thapFy | chips, so none of these
configurations can be recurrent.

Thereforec is a minimal recurrent configuration.

Now, letc be a minimal recurrent configuration agtla firing graph ofc. We know thatve € V :
c(v) > outdeg(v) is true.

We definec’ € RY as the configuration satisfying € V : ¢/(v) = outdegs(v).

We getc > ¢/; asc is a minimal recurrent configuratiod, must be the same configurationasvhich
completes the proof.

O

As we found that the&S-DAG G claimed to exist for minimal recurrent configuratiéGhin Theorem 1
is a firing graph of, we get the following corollary:

Corollary 2 If ¢ is a minimal recurrent configuration an@ is a firing graph ofc, Vo € V : ¢(v) =
outdeg(v) is true.

We have shown that there exists a relation betwe®AGs onU and minimal recurrent configurations
onU. We now show that we can even find a bijection between the seiroimal recurrent configurations
onU and the set o6-DAGs onU.

To do so, we have to show that no minimal recurrent configomatias more than one firing graph,
which is shown in the following theorem:

Theorem 2 A minimal recurrent configuration has only one firing graph.

Proof: Suppose the minimal recurrent configuratiomas two different firing graph&, = (V U S, E4)
andGs = (VU S, Es).

Thenwe gevv € V' : outdegg, (v) = c(v) = outdeg,(v) according to Corollary 2.

Consider the sef’ = {(u,v) € E; | (v,u) € E»} of edges which are if7; but notinG; and the set
Ve={veV|ueV: (uv)eCV(v,u) € C} of vertices incident to edges (.

Then the graplizc = (Vo, C) is a subgraph off; and as such a DAG, which means it that it contains
a sinku with outdegree zero and a vertexsuch tha(v, u) € C.

As u is a sink inG¢, each vertex)’ satisfying(u, v’) € E; also satisfiegu,u’) € Es, as the edge
(u,u") would otherwise be contained .

We also know thatu, v) € E», as(v,u) € C. Therefore the outdegree ofin G is at least one higher
than the outdegree afin G, which is a contradiction.

Thereforec can have no two different firing graphs.

O

Theorem 2 shows that we can easily assigiyddAG G to each minimal recurrent configuratiofy
choosingG as the unique firing graph ef We now show that this function is a bijection, which we will
afterwards use to prove a lower bound on the number of minieeairrent configurations if the underlying
graphU is a grid.

122 Matthias Schulz

Definition 6 We define : RV

min

— DY as the function which is defined through

Ve e RY. - 1(c) is the firing graph af.

min

We also define the functign: DY — RY,

min

through

VG € DY Vv € V : (p(G))(v) = outdegg(v)

Corollary 3 The functiong andp are inverse functions and therefore bijections.

Proof:

Letc € RU. be a minimal recurrent configuration. We knatwy € V : ¢(v) = outdeg +())(v) =
(p((c)))(v) according to Corollary 2, which means that 7 is the identity orRY ...

LetG € DY be anS-DAG of U. The configuratiop(G) is a minimal recurrent configuration according
to Lemma 1. A7 is a firing graph ofp(G) according to Lemma 1 ane(G) has only one firing graph
according to Theorem 2, it follows thatp(G)) = G, and therefore o p is the identity orDY.

Thereforep = 7!, which means that andp are bijections.

O

We will use this bijection to prove a lower bound for the numbEminimal recurrent configurations
of the Abelian Sandpile Model:

Lemma 3 Letn,m € N, be two positive numbers aidd = (V U S, E) ann x m grid with the vertices
of S connected to the vertices of the borders of the grid, suchetheh vertex in the corner of the grid is
adjacent to two vertices if and all other vertices on the borders are adjacent to examtly vertex inS.
Then|RY . | >n-2nm=1) 4. 2m(r=1) _ gy,
This means that the number of minimal recurrent configuretigrows exponentially with both the
height of the grid as well as the width of the grid.

Proof: As there are exactly as many minimal recurrent configuratmml/ as there ar&-DAGs onU,
we will count a subset af-DAGs onU to get our lower bound. We will refer to verticess V' via their
coordinates in the grid, starting witd,0) e Vto(n —1,m —1) € V.

Fork € {0,...,n — 1} we call a directed grapf = (V U S, E’) k-dividedif

Vi, j)eVi<kANi+1l<n=((i,5),(i+1,5) € E, 9)
i>kNi+1<n=((i+1,5),0,5) €L (10)

andvs € S : outdeg(s) = 1.
See Figure 4 for an example.

Itis easy to see that/adivided directed graph is always a DAG whose source$are eaclk-divided

graphGisin Dg"*'":

If G contained a cycle and we started going round the circle wtetdge (i, 5), (i + 1, 7)) we would
eventually need to get back from a vertex with first componepfl to a vertex with first componenf
i.e. G would also need to contain an edde+ 1, k), (¢, k)) which contradicts our definition.

Minimal Recurrent Configurations and DAGs 123

)
O
®-O0—0—0<@
®-O0—0—0<@
O
®

Fig. 4: A 1-divided3 x 4 grid. No matter how the directions of the vertical edges leenwertices € V are chosen,
the resulting graph is a DAG with sourcesSn

This means that for each edf@, j), (i,j+1)} € E we can choose whetherto inclu@e,), (¢, j+1))
or((i,5 +1),(4,7)) in E’, which gives u2"™~! possibilities to choose krdivided graph for a giver.
As we haven different possibilities fot, this makes:2"(" 1 differentS-DAGS onU,, .
Defining analogously-split directed graphs far € {0,...,m — 1} gives usm2™(~1 different S-
DAGs.
The only graphs counted twice are graphs whichiadivided as well ag-split for some numbers
andl; these arevm different graphs, and we ge”(™ 1 +m2m(=1 _nm differentS-DAGSs onU,, ..
O

Apart from counting minimal recurrent configurations, wa eese the relation between DAGs 6h
and minimal recurrent configurations to find recurrent camfigions such that the relaxation of the sum
of these configurations takes as few firings as possible.

To do so, we first take a look at DAGs with a set of sources diffefrom.S and define a DAG Game
on these graphs which corresponds directly with the proagsgsrtices firing in the Chips Firing Game
on the same underlying graph..

4 The DAG Game

The DAG Game is played with directed acyclic graphs on a CR&ply/ = (VU S, E'). The simple rule
is as follows:

We start with a DAGG; = (V U S, E1) onU. In the next step, we take a sourcef G; which does
not lie in S (if such a source exists) and turn it into a sink by switchimgdirections of all edges incident
tov.

In other words the resulting gragh, = (V U S, E») is defined by

Vu,u' € Vi (u,u') € By <= ((u,u') € By Au#v #£u)V ((v,u) € By Au' =) (11)

See Figure 5 for an example.

If G2 contained a cycl€' this cycle could not contain the sink since no edges which are not incident
to v have been changed would also be a cycle i, which contradict€7; being a DAG. Thereforé&rs
is a DAG, too.

124 Matthias Schulz

1

Fig. 5: The central vertex gets turned into a sink as a step in the DAG Game. The outdefedkadjacent vertices
increases by one.

Let us look at the configurationg;, andcc,, again defined by

Vv €V :cg, = outdegg, (v). (12)

The only vertices for whickg, (v) # cq, (v) is true arev and the vertices adjacentto

In fact, ¢, (v) = deg(v) andeg,(v) = 0, while for each neighbos’ of v the equatioreg, (v') =
ca, + listrue.

This means that we get, by firing the vertex in cg, .

We use the fact that we can consider the relaxation of a cawafign corresponding to a DAG/
with sources outsidé' as repeating steps of the DAG Game starting witlo show that configurations
corresponding to two families of DAGs di relax to minimal recurrent configurations.

Definition 7 A DAGG on U whose set of sinks includésis called aSup-5-DAG, denoted~ € DY_ .
A DAGG onU whose set of sinks includes no verteXirs called aNot-S-DAG, denoteds € Dg,.

We now show that configurations corresponding to SHPAGs or Not-S-DAGs always relax to min-
imal recurrent configurations.

Lemma 4 LetG be a SupS-DAG onU.
Thencg relaxes to a minimal recurrent configuration.

Proof: Consider a sequendes = co,c1,...,¢c,r = (ca)rer) SUch that for0 < i < k — 1 we get
Ci+1 = ¢y, (c;) for some vertex, € V.

We show by induction that for eaéte {0, ... k} there exists a Sus-DAG G; onU suchthat; = cg,
is true, which is obviously the case foe 0.

If there exists a Sup-DAG G; such that; = c¢, and there exists a vertex with ¢, (¢;) = ¢;4+1 this
means thabutdeg, (v;) > deg(v;).

Sinceoutdeg g, < deg(v;) this meansutdegq, (v;) = deg(v;) andv; is a source of7;. Turningwv;
into a sink as described above then givesiys; such thatcg,,, = ci41. All vertices in S still are
sources inG;11.

The last DAGG), has no sources outsideascg,, is stable. This means,, is anS-DAG andc¢;, =

(CG)Tel € R%in .

Minimal Recurrent Configurations and DAGs 125

Lemma5 LetG = (V U S, E’) be a NotS-DAG onU.
Thencg relaxes to a minimal recurrent configuration.

Proof: First, we show that each vertexc V fires at least once during the relaxationcef
We define the functiop : V' — Ny such that for alb € V p(v) is the length of the longest path from
a source’ of G to v, formally:

v— max{k € Ny | 3’ € V : v is a source irG and there exists a path fromto v in G of lengthk}.

Instead of looking at the CFG dynamics for the configuratise,consider the corresponding DAG
Game dynamics fof.

Assume that there exists a vertex V which does not turn into a sink during the relaxatiorz@fand
let v be a vertex with this property for whigh(v) is minimal.

Since for allv’ € V satisfying(v’,v) € E’ the valuep(v’) is less tharp(v) (asp(v) = max{p(v’) |
(v',v) € E'} + 1) this means all these verticeSget turned into sinks during the DAG Game.

This implies that each edde’, v) gets turned into the edde, v’).

No vertexu’ with (v,u") € E’ can become a source as the edge.’) never gets turned téu', v)
whenv cannot turn into a sink.

This means that after all verticeswith (v/, v) have been turned into sinks, there is an edge fedm
each adjacent vertex

This meang is a source and can fire in the corresponding configuratiortradicting our assumption.

After each vertex € V with an adjacent vertex € S has been turned into a sink, all vertices S
have become sources, and we get a SUHPAG G’ whose corresponding configuratiog relaxes to a
minimal recurrent configuration as shown in Lemma 4.

O

The nice thing about these lemmas is the fact that one gets-& ®2AG if one switches the direction of
each edge in a Nof~-DAG and vice versa, while the result of the relaxation alsvesya minimal recurrent
configuration.

These property is quite helpful when considering the mination of the number of firings during the
addition of two recurrent configurations, as will be showihia following section.

5 Minimizing and Maximizing Firing Vectors

In this section we will look at how often a vertexc V' can fire during the relaxation of a configuration
ca with G being a DAG orlJ.

We will use the result to consider the question of how mangdsithere will be at least when relaxing
the sum of two recurrent configurations, a problem discubgelde author in [9] where we were able only
to give a heuristic algorithm producing recurrent configiorss whose sum causes “few” firings during
the relaxation.

We can use Lemma 5 to prove a nice and, as we will see laterhedpful property of the configurations
dy;,dy € RY defined as follows:

126 Matthias Schulz

Definition 8 For a CFG-graphU = (V U S, E) we define the configuratiatf; : V' — Ny, v — deg(v)
and the configuratiod; € RY throughiy = (dy;)rei-

As we will now deal with firing vectors, the following lemmahyprove useful:

Lemma 6 Lete,d : V — Ny be configurations, not necessarily stable.
Thenfc+d = fc+d7~cl + fd-

Proof: Any firing sequencé for d is also a firing sequence fort+ d, as can be easily verified.
After F' we have gotten from + d to ¢ + d,..;, SO we get a firing sequence for- d by concatenating
F and a firing sequencl’ for ¢ + d,..;, which means thaf..q = fetd,., + drel IS true.
O

The configuratiord;; has a nice property concerning minimal recurrent configomat as it is very
easy to find two minimal recurrent configurationandd whose relaxed sum ig;; also, we can find a
close relation between the firing vectorof d and the firing vector of the configuratiafy, — ¢, and that
in fact the firing vector of: + d gets minimal when the firing vector df, — ¢ gets maximal.

Lemma7 LetG = (V U S, E') € DY be anS-DAG. Then there exists a NOHDAG G’ € DY_ such
thatcg + cqr = db.

Proof: We getG’ = (V U S, E”) by replacing each edde:, v) € E’ through the edgév, u), formally
E" ={(u,v) | (v,u) € E'}.
For allv € V each vertex: adjacent tov either satisfiegv,u) € E’ or (v,u) € E”, meaning that
outdeg(v) + outdegey (v) = deg(v).
Since all vertices € S are sources i, they are sinks iz, which completes the proof.
O

Theorem 3 Letc € RY

uration satisfying @ ¢’ = dy .
Then the following is true:

(I) d = (d/U - C)rel
(i) ¢ is a minimal recurrent configuration.

(iil) ferer = fay, — fa,—c

be a minimal recurrent configuration and € RY . be the recurrent config-

min

Proof:

(i) Let G be the firing graph fot; thenG € DY.
We turn the direction of each edge Gfto get the grapl:’ as in Lemma 7, and get; + cg =
dy = co =dy —cg =diy —c.
SinceG’ € DY_ we get(d; — ¢)ra € RY,,,, from Lemma 5.
Thereforedy = (¢ + (dj; — ¢))ret = (¢ + (dfy — €)ret) = ¢ D (dfy —)rel-
As ¢ is unique, we get’ = (dj; — ¢)rer.

Minimal Recurrent Configurations and DAGs 127

(i) This was shown in the proof to item (i).
(iii) This follows directly from item (i) and Lemma 6.

a

We can use Theorem 3 to find minimal recurrent configuratiomsse sum causes as few as possible
firings and relaxes tdy: All we have to do is maximize the number of firings during tetaxation of
dy; — ¢, which we will do presently.

To minimize the number of firings during the relaxation of uen of two recurrent configurations one
must analyze the pairs of recurrent configurations whosexeel sum is the configuration;; defined by
Yo € V : my(v) = deg(v) — 1. This means that we can find the minimal number of firings dytire
relaxation of the addition of two recurrent configuratiohdg = my; is true for the grapl/. We will
give a natural example.

Lemma 8 For each vertex € V and each vertex € S letp(v, s) be the length of the shortest path from
vtosandrw(v) = min{p(v, s) | s € S} be the length of the shortest path frento a vertex inS.

LetG be a DAG onJ andcg be the corresponding configuration.

Then each vertex fires at mostr(v) times during the relaxation af;.

Proof: Assume there is a vertexc V which fires more tham (v) times during the relaxaton ef;; letv
be a vertex with this property such thatv) is minimal.

Letv’ € V U S be a vertex adjacent towith =(v") = 7(v) — 1; such a vertex exists on the shortest
path fromw to a vertex inS.

We consider the DAG Game corresponding to the relaxatieg:@nd discuss the edge betweeand
v,
As (v") < m(v) it follows thatv’ fires at mostr(v') = w(v) — 1 times; this means that we have at
mostr(v) — 1 changes from the edde’, v) to (v, v") during the DAG Game.

We also know thav fires at leastr(v) + 1 times; this means that the edge v') changes at least
m(v) + 1 times to(v’, v) during the DAG Game.

This means thafv, v") changes at least two times more ofter{# v) than vice versa. This is impos-
sible, which proves the claim.

O

Lemma 9 For eachv € V 7(v) € Ny shall be defined as in Lemma 8.
We define a sequente, . . ., vy us|—1) of all vertices inv’U S such thati, j € {0,...,|[VUS|-1}:

i <j=m(v)>m(vj).
The DAGG = (V U S, E’) defined by(v;,v,) € E' <= {v;,v;} € EAi < j satisfies the following:
Each vertex € V fires exactlyr(v) times during the relaxation of;.

Proof: Assume the claim is false. Létbe the smallest number such that there exists a vertexV’
satisfyingr(v) > k andv fires exactlyk times during the relaxation ef;.

Let; be the smallest number such thdw;) > k andwv; fires exactlyk times during the relaxation of
cq.

If (vi,v;) € E’ we know thatr(v;) > k andv; fires at least times during the relaxation ef; since
k is minimal.

128 Matthias Schulz

We also know all vertices; with j < i fire at leask + 1 times sincer(v;) > n(v;) > k in these cases
ands is minimal.

After all verticesv; with (v;,v;) € E' have firedk + 1 times and all vertices; with (v;, v;) € £’ have
fired k times andv; has firedk times,v; has lost: - deg(v;) chips and gaine@k + 1) - indegs(v;) + k& -
outdeg(vi) = k - deg(v;) + indeg(v;) chips.

Thereforev; contains at this moment; (v;) + indeg(v;) = deg(v;) chips and can fire A+ 1st time,
which contradicts the definitions farandv;.

This proves the claim.

O

Note that we can get a N&t-DAG G as described in Lemma 9 by turning the directions of all edges
of the firing graphG” given by the firing sequend@y|_1, vy |—2, ... ,vo) Which starts with vertices
adjacent to vertices if.

We now use these DAGs to minimize the number of firings durhmg relaxation of two recurrent
configurations.

Theorem 4 Letmy € RY be the configuration defined by € V : my (v) = deg(v) — 1.
Letc, ¢ € RY be two recurrent configurations. The DAGsand G’ are defined as above.

(i) Letc” € RU. Dbe a minimal recurrent configuration satisfyin < ¢'.

min

Thenf(:’”ru’ < fc+c’-
(i) We definee = my — (c@). Thenc® (¢ @ e) = mand foy(wge) < fere

(III) If dy = my thenf(CG)ml+CG, < fc+c/ is true.

Proof:

(i) This follows directly from the fact that each firing seque forc” + ¢’ is a firing sequence far+ ¢/
which possibly can be continued.

(“) fc+(c’€9e) + fc’+c = fc+c’+c = fc+c’ + f(c@c’)+e = fc+c’ according to Lemma 6-f(c+c’)+e =0
since ¢ @ ¢’) + e = mis stable.)
This proves the claim.

(iii) Items (i) and (i) show that there exist minimal recent configurations;,c; € RU . such that
c1®ce =dy andfe, ¢, < ferer IS true.
We knowfe, +c, = fa;, — fa;,—c, from Lemma 3.

We also know there exists a DAG” such thatl;; — ¢; = ¢ is true and that each vertexe V/
fires at mostr(v) times during the relaxation ef; .

Thereforefccu < ch andf(cc)rngrcG/ = fd’U - fc"g < fd’U - ch// = fcl-'rcz follows.
]

While there is no algorithm known which produces recurr@mifigurations such that the sum of these
configurations produces a minimal number of firings durirgrélaxation for the usual Abelian Sandpile

Minimal Recurrent Configurations and DAGs 129

Model, the relation between minimal recurrent configuraiandS-DAGs has given us an easy way to
find such configurations when the graph has a special property

A nice example for a grapti satisfyingdy = my is a cylindrical grid of even height with the vertices
of S being above the uppermost and below the lowermost columtieafrid.

If the grid induced by is an x m cylindrical grid andm is even, we can compute that the relaxation
of two recurrent configurations leads to at Iezazst(Tf—Q2 — 1) firings.

6 Results

We have shown that there exists a close relation between BAGsand minimal recurrent configurations
(minimal with respect to the pointwis€) of the CFG played o#/, which we used to get a lower bound
for the number of minimal recurrent configurations of thedgle model. Of course, this lower bound
could still be improved.

We also found out that graphs corresponding to DAGRUch that either all vertices i# or no vertices
in S are sources off relax to minimal recurrent configurations, which made itystasshow that for each
minimal recurrent configurationthe recurrent configuratiati such that & ¢’ = dy is minimal recurrent
itself.

We could also give a formula for the firing vectdr, .~ and find the DAGG such that forc = c¢
the firing vectorf.. .. becomes minimal. This result was used to give the minimalbenof firings that
occur when the sum of two recurrent configurations on a cyiliadigrid gets relaxed.

These results show that the correspondence between mirgmarent configurations and DAGs is
quite helpful for analyzing recurrent configurations of ghRiring Games. Future work could try to use
this correspondence to find pairs of minimal recurrent caméijons whose sum leads to as few firings as
possible for underlying graphs not satisfying the conditjiven in Theorem 4.

Also looking at configurations; whereG is a directed but not acyclic graph might give new insights
into the structure of recurrent configurations and configoma “nearly” being recurrent.

References

[1] P. Bak, C. Tang, and K. Wiesenfel8glf-organized criticality: An explanation of the 1/f ngifhys.
Rev. Lett.59(1987), 381-384.

[2] Y. Le Borgne and D. RossiQn the identity of the sandpile groppiscrete Math256(2002), no. 3,
775-790.

[3] F. Chung and R. EllisA chip-firing game and dirichlet eigenvaly&iscrete Mathematicd57(2002),
341-355.

[4] Robert Cori and Dominique Rossi@n the sandpile group of a grapEuropean Journal of Combi-
natorics21(2000), 447-459.

[5] D. Dhar, P. Ruelle, S. Sen, and D. N. Vernddgebraic aspects of abelian sandpile modél®HYS.A
28(1995), 805.

[6] A. Gajardo and E. Gole;rossing information in two-dimensional sandpjl@&seoretical Computer
Science369(2006), no. 1-3, 463 — 469.

130 Matthias Schulz
[7] L. Levine, The sandpile group of a tre&ur. J. Comb30(2009), no. 4, 1026-1035.

[8] S. N. Majumdar and D. DhaEquivalence between the abelian sandpile model ang the> 0 limit
of the potts modePhysica A: Statistical and Theoretical Physi&5(1992), 129-145.

[9] M. Schulz, On the addition of recurrent configurations of the sandpilede] Cellular Au-
tomata (H. Umeo, S. Morishita, K. Nishinari, T. Komatsuza&nd S. Bandini, eds.), Springer
Berlin/Heidelberg, 2008, pp. 236—243.

Automata 2010 — 18Intl. Workshop on CA and DCS DMTCS proc.AL, 2010, 131-152

On the complexity of enumerating possible
dynamics of sparsely connected Boolean
network automata with simple update rules

Predrag T. T&ic

Department of Computer Science, University of Houston
501 PGH Hall, 4800 Calhoun Rd, Houston, Texas 77204-301@, US
ptosic@uh.edu

We study how hard is to determine some fundamental propesfidynamics of certain types of network automata.
We address the computational complexity of determining hwamy different possible dynamic evolutions can arise
from some structurally very simple, deterministic and spbr connected network automata. In this as well as our
prior, related work, we try to push the limits on the undertysimplicity of two structural aspects of such network
automata: (i) the uniform sparseness of their topologied,(a) severely restricted local behaviors of the indiatlu
agents (that is, the local update rules of the network nodes)

In this endeavor, we prove that counting the Fixed Point @&Rfigurations and the predecessor and ancestor con-
figurations in two classes of network automata, called Sstipleand Synchronous Dynamical Systems (SDSs and
SyDSs, respectively), are computationally intractablebfgms. Moreover, this intractability is shown to hold when
each node in such a network is required to update accordifiy domonotone Boolean function, (i) a symmetric
Boolean function, or even (iii) a simple threshold functibiat is both monotone and symmetric. Furthermore, the
hardness of the exact enumeration of FPs and other typesfijomations of interest remains to hold even in some
severely restricted cases with respect to both the netvaptdagy and the diversity (or lack thereof) of individual
node’s local update rules. Namely, we show that the coumtinglems of interest remain hard even when the nodes
of an SDS or SyDS use at most two different update rules frofmengestricted class, and, additionally, when the
network topologies are constrained so that each node hgg ealO(1) neighbors for small values of constant

Our results also have considerable implications for otlgardte dynamical system models studied in applied math-
ematics, physics, biology and computer science, such asiditthmetworks and spin glasses. In particular, one
corollary of our results is that determining the memory cégeof sparse discrete Hopfield networks (viewed as
associative memories) remains computationally intrdetaben when the interconnection and dependence structure
among the nodes of a Hopfield network is severely restricted.

Keywords: network and graph automata, cellular automata, Hopfieldandss, discrete dynamical systems, compu-
tational complexity, enumeration probler#-completeness

1 Introduction

We study certain classes nétwork automatshat can be used as an abstraction of the large-scale multi-
agent systems made of simple reactive agents, of ad hoc coivation networks, and, more generally,

1365-80500) 2010 Discrete Mathematics and Theoretical Computer SeiédMTCS), Nancy, France

132 Predrag T. To%

of dynamical systems whose complex dynamics stems fromlicgupf and interaction among their rela-
tively simple individual components. These network or graptomata can also be viewed as a theoretical
model for the computer simulation of a broad variety of cotagianal, physical, biological and socio-
technical distributed infrastructures. We are interegtetthe computational complexity of determining
several fundamentalonfiguration space propertiesf such network automata. The complexity of an-
swering questions about, for instance, the existence fi@],number [67, 69] or the reachability [8] of
fixed pointqthat is, the stable configurations) of an appropriate ads®twork automata can be argued
to provide important insights into trellective dynamicef multi-agent systems found in distributed ar-
tificial intelligence [69], as well as other complex physjdaological, and socio-technical networks that
are abstracted via those formal network automata.

In this paper, as well as in related prior work (see, e.g.7[6.0, 11, 9, 66, 61, 62, 69]), the general
approach has been to investigate mathematical and corigmatatonfiguration space properties of such
network automata, as a formal way of addressing the fundeahgmestion: what are the possilglobal
behaviorsof the entire system, given the simple local behaviors o€disponents, and the interaction
pattern among those components?

Our own focus in the context of dynamic behaviors of completwork and graph automata has been on
determininghow many possible dynamj@nd in particular how many of certain types of configuradion
can such discrete dynamical systems have -henvdhardare the computational problems of determining
the exact or approximate number of those various types digumations [60, 61, 62, 63, 64, 69, 67].
We have been particularly interested in addressing thelgmobf counting how manyixed point(FP)
configurations such network automata have, and how hare isaimputational problem of counting those
FP configurations. In this paper, we show computationahat&bility of determining the exact number
of the fixed point configurations of sparSequential and Synchronous Dynamical Systerasvell as
discrete Hopfield networksvhose node update rules are rather severely restrictededver, we show
that intractability of the exact enumeration of fixed poimtgds even when the maximum node degree in
the underlying graph is bounded by a small constant. We &lsw similar intractability results for the
problems of exact enumeration of all predecessors and edistors of a given SDS, SyDS or Hopfield
network configuration. It follows from those results that; the networked dynamical systems that can
be abstracted via a class of formal network automata, a aogrld generally unpredictable global dy-
namics can be obtained even via uniformly sparse couplifigisnple, monotonic local interactions. The
implication for Hopfield networks is that determining theiemory capacity (when viewed as a model
of associative memory) is computationally intractablesrewhen the structure of the underlying weight
matrices of discrete, binary-valued Hopfield network is e&ay particular and restricted kind.

2 Preliminaries

In this section, we define the discrete dynamical system taaledied in this paper, as well as their
configuration space properti€Sequential Dynamical SystenfSDSs) are proposed in [10, 11, 12] as an
abstract model for computer simulations. These modelstese successfully applied in the development
of large-scale socio-technical simulations such asTRANSIMS project at the Los Alamos National
Laboratory [13]. A more detailed discussion of the motiwatbehind these models, as well as their
application to large-scale simulations, can be found i6]9,62] and references therein.

Definition 2.1 A Sequential Dynamical Syste(8DS) S is a triple (G, F,II) whose components are as
follows:

Complexity of Counting the Fixed Points 133

1. G(V, E) is a connected undirected graph without multi-edges orlselps. G = G g is referred
to as theunderlying graphof S. We often use to denotgV'| andm to denotg E|.

2. The state of a nodg, denoted by;, takes on a value from some finite domdn, In this paper,
we focus oD = {0,1}. We used; to denote the degree of the node Further, we denote
by N (i) the neighbors of node; in G, plus nodey; itself. Each node; has an associatedode
update rulef; : DEHL D, for1 <i <n. We also refer tgf; as thelocal transition function.
The inputs tof; are s; and the current states of the neighborsqf We useF = Fg to denote
theglobal mapof S, obtained by appropriately composing together all the lagadate rulesf;,
t=1,...,n.

3. Finally,II is a permutation of the vertex Sét= {v1, v, ..., v, }, specifying the order in which the
nodes update their states using their local transition fiorcs. Alternatively]I can be envisioned
as a total ordering on the set of nodes V. In particular, we ¢gw the global map as a sequential
composition of the local actions of eacfy on the respective node statg where the node states
are updated according to the orddi.

The nodes are processed in Heguentiabrder specified by the permutatifin The processing associated
with a node consists of computing the new value of its stateraling to the node’s update function, and
changing its state to the new value. In the sequel, we sh@hdfightly abuse the notation, and not
explicitly distinguish between an SDS's node itself, and its states;. The intended meaning will be
clear from the context.

Definition 2.2 A Synchronous Dynamical System (SyDS) = (G, F) is an SDSwithout the node
permutation. In an SyDS, at each discrete time step, all ttaes perfectly synchronously in parallel
update their state values.

Thus, SyDSs are similar to the finite classical paralglular automataCA) [22, 23, 25, 28, 76, 77],
except that in an SyDS the nodes may be interconnected inbétnaay fashion, whereas in a classical
cellular automaton the nodes are interconnected in a refadhion (such as, e.g., a line, a rectangular
grid, or a hypercube). Another difference is that, whilehia tlassical CA all nodes update according to
the same rule, in an SyDS different nodes, in general, magiffeeent update rules [9, 61].

Given the importance of the number of stable configuratidrstéopfield network viewed as asso-
ciative memory29, 24], we next define discrete Hopfield networks. We wileBly summarize what has
been known about the problem of counting their stable cordigpns in the subsequent sections.

Definition 2.3 Adiscrete Hopfield networfDHN) [29] is made of: binary-valued nodes; the set of node
states is, by conventiofi—1, +1}. Associated to each pair of nodés, v;) is (in general, real-valued)
weight w;; € R. Theweight matrixof a DHN is defined a8/ = [w;;]};_,. Each node also has a fixed
threshold, h; € R. A nodev; updates its state; from time step to stept + 1 according to alinear
threshold functiorof the form

n
it sgn(z W 3:3 — hy) Q)
j=1

where, in order to ensure that € {—1,+1}, we definesgn(0) = +1.

134 Predrag T. To%

In the sequel, we will often not bother to explicitly distiigh between an S(y)DS’s or DHN's node,
v;, and this node’s state, denotedfor S(y)DSs and:; for Hopfield networks; the meaning will be clear
from the context.

In the standard DHN model, the nodes update synchronoughaiallel, similarly to the classical
cellular automata and the SyDSs as defined above. Howasgnchronous Hopfield networkshere
the nodes update sequentially, one at a time, have also he#iads[20, 29]. In these sequential DHNSs,
however, it is not required that the nodes update accordimdixed permutatiotike in our SDS model.
We emphasize that these differences are inconsequersiidainas the fixed points are concerned.

In most of the Hopfield networks literature, the weight malii is assumedgymmetrici.e., for all
pairs of indiceqs, j}, w;; = w;; holds. A DHN is callecsimpleif w;; = 0 along the main diagonal of
Wforall i =1,...,n [20].

Much of the early work on sequential and synchronous dynalnsigstems has primarily focused on
the SDSs and SyDSs with symmetric Boolean functions as ttle npdate rules (e.g., [6, 7, 10, 11, 67]).
By symmetricis meant that the future state of a node does not depend onrdke ia which the input
values of this node’s neighbors are specified. Instead utued state of; depends only on the states of
nodesv; in N (i), i.e., on how many ob;’s neighbors are currently in the state = 1. In particular,
symmetric Boolean SyDSs correspond to totalistic (Bodleafiular automata as defined by S. Wolfram
[74, 75, 76]. The computational complexity of counting wais configurations in SDSs and SyDSs with
symmetric Boolean update rules is addressed in [61, 67].

We consider in this paper the SDSs, SyDSs and Hopfield nesmwith the local update rules that
are restricted taononotoneBoolean / binary-valued functions. Our preliminary hasseesults about the
counting problems in monotone Boolean SDSs and SyDSs caouvel fin [60, 62]. The SDSs with
the local transition rules that are both monotone and symicnate, in essencesequential threshold
cellular automatd65, 66, 68] that are defined over arbitrary finite graphs,mssed to the usual regular
Cayley graphf the classical cellular automata [22]. We will consideg thonotone update rules that
are not necessarily symmetric; however, these monotonéeBodunctions will be required to be of a
linear threshold kind, so that our subsequent results wioudly analogous results for discrete Hopfield
networks [29, 30], whose update rules are, by default, adwaguired to be linear (but not necessarily
monotone) threshold functions.

We next define the notion ahonotoneBoolean functions. This definition of monotonicity readily
extends to other partially ordered domains sucK-a$, +1} that has been commonly used in Hopfield
networks literature.

Definition 2.4 Given two Boolean vectors(= (z1,z2,...,z,) and Y = (y1,y2,...,yn), definea
binary relation “<" as follows: X <Y if z; <y; forall 7, 1 <i < n. Ann-input Boolean functiorf
is monotonaf X <Y implies that f(X) < f(Y).

Notice that the notion of monotonicity given in Definitiord2allows us to compare only Boolean
vectors of the same length.

Definition 2.5 A configuration of a Boolean SDS = (G, F,II) or an SyDSS’ = (G, F) is a vector
(b1,b2,...,b,) € {0,1}™. A configurationC can also be thought of as a functiah: V' — {0,1}".

The global mapcomputed by an S(y)DS, denotedF” = Fg, specifies for each configuratioa
the next configuration reached b§ after carrying out the updates of all the node states, whéthe
parallel or in the order given bY. Thus, the magFs : {0,1}™ — {0,1}" total function on the set of

Complexity of Counting the Fixed Points 135

global configurations. This function therefore defines theahics ofS. We say thatS moves from a
configurationC to a configurationFs(C) in a single transition step. Alternatively, we say that 5)
S moves from a configuratiorC at timet¢ to a configurationFg(C) at timet + 1. Assuming that
each node update functigh is computable in time polynomial in the size of the descoipf S, each
transition step will also take polynomial time in the sizelud S(y)DS’s description.

Definition 2.6 Theconfiguration spacglso calledphase spagePs of an SDS or SyDS is a directed
graph whose nodes are configurations and whose directedsexdgsuretransitionsfrom a configuration
to its successor configuration. More formally, there is a@einPs for each global configuration a$.
There is a directed edge from a vertex representing configama’’ to that representing configuratio6
if Fs(C')=C.

Note that, since an SDS or SyDS is deterministic, each vantég phase space has the out-degree of
1. Since the domaif® of state values is assumed finite, and the number of nodes B@#E)DS is finite,
the number of configurations in the phase space is also flhttee size of the domain (that is, the number
of possible states of each node)y, then the number of global configurationsiy, is |D|".

We next define some prominent types of configurations thaifgrarticular interest insofar as capturing
the important qualitative (and quantitative) propertiés aliscrete dynamical system’s global behavior
(that is, its dynamics).

Definition 2.7 Given two configurationsC’ and C of an SDS or SyDSS, configuration C’ is a
PREDECESSOROf C if Fg(C') =C, thatis, if S moves fromC’ to C in one global transition step.
Similarly, C’ is an ANCESTOR of C if there is a positive integet > 1 such thatFis*(C’) = C, thatis,
if S evolves fromC’ to C in one or more transitions.

In particular, a predecessor of a given configuration is aiapease of an ancestor.

Definition 2.8 A configuration C of an S(y)DSS is a GARDEN OF EDEN (GE) configuration if C
does not have a predecessor.

Definition 2.9 A configurationC of an S(y)DSS is a FIXED POINT (FP) configurationif F5(C) = C,
that is, if the transition out o’ is back toC itself.

Note that a fixed point is a configuration that is its own predsor. Also note, that the fixed point
configurations are also often referred testable configurationgesp. in the Hopfield networks literature);
we will use the two terms interchangeably throughout theepap

2.1 The Basics of Computational Complexity of Counting

We next define the computational complexity classes pénggito the counting problems that we shall
work with in the sequel. We also define the notion(weakly) parsimonious reductiomisat are used to
reduce one counting problem to another.

Definition 2.10 A counting problem¥ belongs to the clasgP if there exists a polynomial time bounded
nondeterministic Turing machine (NTM3uch that, for each instande of ¥, the number of nondeter-
ministic computational paths this NTM takes that lead toegtance of this problem instance equals the
number of solutions of (¥).

136 Predrag T. To%

For an alternative but equivalent definition of the cl#Bsin terms ofpolynomially balanced relations
we refer the reader to [51].
The hardest problems in the clg&3 are the#P-complete problems.

Definition 2.11 A counting problen¥ is#P-complete if and only if (i) it belongs to the cla#B, and (ii)
it is hard for that class, i.e.every other problem iréP is efficiently reducible ta.

Thus, if we could solve any particul#P-complete problem in (deterministic) polynomial time, the
all the problems in clasgP would be solvable in (deterministic) polynomial time, ahd entire clasgP
would collapse td.®

As one would expect, the counting versions of the standactide NP-complete problems, such as
SATISFIABILITY or HAMILTON CIRCUIT, are#P-complete [51]. What is curious, however, is that the
counting versions of some tractable decision problemd) asdBPARTITE MATCHING or MONOTONE
2CNF SATISFIABILITY, are als@tP-complete [71, 72].

Definition 2.12 Given two problemdI and II', a PARSIMONIOUS REDUCTION from II to I is a
polynomial-time transformatiory that preserves the number of solutions; that is, if an inseah of II
has n; solutions, then the corresponding instang@l) of II also hasn,) = n; solutions.

In practice, one often resorts to reductions that are “alrpassimonious”, in a sense that, while they
do not exactly preserve the number of solutiong,in the previous definition can be efficiently recovered
from n,) .

g(I)

Definition 2.13 Given two problemslI and II', a WEAKLY PARSIMONIOUS REDUCTIONfrom 1II to

II' is a polynomial-time transformationy such that, if an instanced of II has n; solutions, and
the corresponding instancg(l) of II' has ng(ry Solutions, thenn; can be computed from,ry in

polynomial time.

We observe that angarsimoniouseduction is also, triviallyeakly parsimonious

All of our results on the computational complexity of coungtivarious kinds of configurations in SDSs,
SyDSs and discrete Hopfield networks will be obtained by cadpcounting problems about certain types
of Boolean formulae that adknown to be#P-complete to the problems about S(y)DSs or Hopfield nets
of a desired, appropriately restricted kind. That such ctdos suffice follows from the well-known
property of every problem that sard for a given complexity class; for the record, we state thapprty
in the context of the clagsP in the Lemma below.

Lemma 2.1 [51] Given two decision problenis andII’, if the corresponding counting problegall
is known to betP-hard, and if there exists a (weakly) parsimonious reducfiomII toII', then the
counting problemiI1” is #P-hard, as well.

3 Related Work

Various models o€ellular andnetwork automathaave been studied in a variety of contexts, from uncon-
ventional models for parallel and distributed computing (€22, 47, 68]), to complex dynamical systems
[24, 25, 38], to theoretical biology [43, 44]. Beside thessliaal (parallel) cellular automata [22, 28] and

) strictly speaking, sincéP is a class ofunction problemgas opposed to the classesdsfcision problemsuch asP, NP and
PSPACB), if an#P-complete problem turns out to be solvable in determinjstignomial time, that would imply thd@#P = P.

Complexity of Counting the Fixed Points 137

their sequential or asynchronous variants [34, 66, 68hayes the most studied class of models of network
or graph automata are tiopfield network$29, 30].

Computational aspects of the classical Cellular Automatgelbeen studied in many contexts. Prior
to the 1980s, most of the theoretical work dealt with infir@a and the fundamental (un)decidability
results about the global CA properties. Some examples df gtaperties of infinite CA are surjectivity,
injectivity, and invertibility of a cellular automatonglobal map see, e.g., [2, 49, 52]. Systematic study
of other computational aspects of CA, from topological tonfal language theoretic to computational
complexity theoretic, was prompted in the 1980s by the satmwork of S. Wolfram [74, 75, 76]. Among
other issues, Wolfram addressed the fundamental chastgof CA in terms of their computational
expressiveness and universality. He also offered the ficadly accepted classification of all CA into
four qualitatively distinct classes in terms of the struaticomplexity of the possible computations or,
equivalently, dynamical evolutions. The state of the artgieing to a broad variety of computational
properties of CA in both theoretical and experimental dorediy the end of the "golden decade” of
cellular automata research (the 1980’s) can be found in [28]

Since most interesting global properties of sufficientiyngml infinite CA have been shown to be
formally undecidable, the computational complexity proftleat is, as contrasted with the computability
theory) has been mainly concerned with the computationzas offinite CA, or those pertaining to
finite subconfigurationsf infinite CA. Most work within that framework has focused the fundamental
decision problemabout the possible CA computations. We include below a veoytsurvey of some of
the more important results in that context.

The firstNP-complete problems for CA are shown by Green in [26]; thesdblems are of a general
REACHABILITY flavor, i.e., they address the properties of HERWARD DYNAMICS of CA. Kari studies
the reverse dynamics, more specifically, the reversikalitgt surjectivity problems about CA [39]. Sutner
also addresses tlBACKWARD DYNAMICS problems, such as the problem of an arbitrary configuration’
PREDECESSOR EXISTENGEAnd their computational complexity in [57]. In the samegrasutner es-
tablishes the efficient solvability of the predecessorterise problem for an arbitrary CA withfaxed
neighborhood radiusin [14], Durand solves the injectivity problem for arbitye2-D CA but restricted
to thefinite subconfigurationsnly; that paper contains one of the first resultcoNP-completeness of a
natural and important problem about CA. Furthermore, Ddi@atdresses theEVERSIBILITY PROBLEM
in the same, two-dimensional CA setting in [15]. Some goagtesys on various directions of computa-
tional complexity-theoretic research on cellular autaaren be found in [40, 47].

The SDS and SyDS models introduced in Section 2 are closklieceto thegraph automatgGA)
models studied in [46, 50] and tlome-way cellular automatstudied in [54]. In fact, the general finite-
domain SyDSs exactly correspond to the graph automata ditiliand Remila in [50]. Barrett, Mortveit
and Reidys [10, 11, 48] and Laubenbacher and Pareigis [#Bkfigate the mathematical properties of
sequential dynamical systems. Barrettal. study the computational complexity of several problems
about the configuration space structure of SDSs and SyD®seTgroblems include theBRCHABILITY ,
PREDECESSOR EXISTENCENd FERMUTATION EXISTENCE problems [7, 8]. Problems related to the
existence of th&sARDEN OF EDEN and theFIXED POINT configurations are studied in [9]. In particular,
NP-completeness for the problem BfXED POINT EXISTENCE (FPE) in various restricted classes of
Boolean S(y)DSs is proven in [9]. However, the FPE problerobees easy when all the nodes of a
Boolean S(y)DS are required to update accordingiémotone functions.

The subarea of computational complexity that addressestioguor enumeration of various combi-
natorial structures dates back to the seminal work of L.avlin the late 1970s [71, 72]. Counting

138 Predrag T. To%

problems naturally arise in many contexts, from approxémaisoning and Bayesian belief networks in
Al (e.g., [55]), to network reliability and fault-toleraad70], to theoretical biology [3], tphase transi-
tionsin statistical physics, which is a large body of work in ifggbme representative references include
[4, 35, 36, 38]).

It has been observed, however, that the progress in unddistethe complexity of counting problems
has been much slower than the progress related to our uadéirsy) of decision and search problems
[27, 70]. Since the reductions used in proving counting [gmis hard have to preserve the number of
solutions, rather than just whether a solution exists or thaty are in general more difficult to devise
than the reductions used to establish, 8scompleteness of the corresponding decision problems. For
example, most standard reductions used to establish catignél hardness of certain decision or search
problems on graphs tend to “blow up” the underlying grapbreby destroying the local structures that
impact the number of those problems’ solutions [27].

One area where this understanding of the complexity of ¢gngtias been particularly poor, is whether
the general counting problems that are provably hard refmaid when various restrictions are placed
on the problem instances [70]. Some of the relatively recestlts in that context, such as those on
the hardness of counting planar graphs[32], and especially irsparse graph$27, 70], have directly
inspired our recent work (see [60, 61, 62, 67]), as well asrihestigations summarized in this paper.

Counting problems naturally arise in the context of discdtnamical systems, as well. Indeed, being
able to efficiently solve certain counting problems is eakfor the full understanding of the underlying
dynamical system’s qualitative behavior. The most obvimusting problem is to determine (or estimate)
the number ofttractorsof the dynamical system [3]. As noted earlier, we refer teséhattractors and
other, not necessarily attractisgable configurationas to thefixed pointgFPs); we do not address the
issue of distinguishing among different types of thoselstabnfigurations (e.g., attractive vs. repulsive,
etc.) in this paper.

For example, in the context of Hopfield networks, the intetgtion of the FP count is that it tells us how
many distincpatternsa given Hopfield network camemorizg3, 29, 30]. Computational complexity of
counting FPs and other structures of interest in discrefeiklld networks is addressed in [18, 19, 20]. We
shall discuss in the next section how our results in this psipengthen those in [18, 19] for tigmmetric
discrete Hopfield nets with integer weight matrices Anear thresholdupdate rules.

4 Complexity of Counting Various Configurations of Monotone
SDSs, SyDSs and Discrete Hopfield Networks

Our general approach to establishing the computationadtebility of the counting problems of inter-
est about SDSs, SyDSs and Discrete Hopfield Nets (DHNs) witidbfollows. We first identify certain
restricted variants of Boolean Satisfiability problem, wha@ounting versions (that is, determining how
many satisfying truth assignment an arbitrary Boolean fdanin a particular, restricted form has) are
known to be intractable, that i#P-complete. We then construct an S(y)DS or DHN and show that ex
actly enumerating a particular kind of such network aut@matconfigurations (e.g., its fixed points) is
at least as hard as exactly enumerating the satisfyingrassigts of the Boolean formula. For showing
intractability of counting problems, we use weakly parsimoois reductions that approximately preserve
the number of solutions; for details on complexity of congtin general, and (weakly) parsimonious re-
ductions from one counting problem to another in particuerrefer the reader to any standard reference
on computational complexity, such as the book by C. Papadauai[51].

Complexity of Counting the Fixed Points 139

MonotoneBoolean functions, formulae and circuits [73] have beerrsively studied in many areas of
computer science, from machine learning to connectionigtets in Al to VLSI circuit design. Cellular
and other types of network automata with the local updatsrdstricted to monotone Boolean functions
have also been of a considerable interest (e.g., [9, 66 pFbblem of counting FPs afionotond3oolean
SDSs and SyDSs is originally addressed in [60, 62]. It is shtwere that, in general, counting FPs of
such S(y)DSs either exactly or approximately is computiy intractable. This intractability holds
even for the graphs that are simultaneously bipartite,gslaand very sparsen average[60, 62, 64]. In
particular:

Lemma 4.1 [62] Counting exactly the fixed points of a monotone Boolean SCXYDS defined over a
star graph, and such that the update rule of the central nddkestar is given as 8oN 2CNF formula
of sizeO(n), wheren is the number of nodes in the star graph#R-complete.

Moreover, by the results of D. Roth [55], subsequently giteaned by S. Vadhan [70], the problem of
approximatelycounting FPs in the setting as in Lemma 4.1 abowRshard [62].

To summarize, enumerating the fixed pointsnodnotoneBoolean SDSs and SyDSs defined on bi-
partite, planar and sparse on average underlying grapastlyis #P-complete, and for anye > 0,
approximatinghe number of FPs in such monotone S(y)DSs to wiin * is NP-hard. Our next goal
is to show that the hardness of the exact enumeration of FPsdnotone S(y)DSs holds even when the
underlying graphs are required to beiformly sparseWe will also argue that, as a consequence of our
construction in the proof of Theorem 4.2 below, the probléernumerating stable configurations of other
types of discrete dynamical systems, such as the discrgiéettbnetworks, is also in general computa-
tionally intractable. Moreover, that intractability hslfor those discrete dynamical systems even when
they are defined on very sparse underlying graphs or networks

Given the importance of the number of stable configuratidrstdopfield network viewed as asso-
ciative memorye.g., [24]), we next summarize what has been known abougrtitdem of counting their
stable configurations.

In [18], Floreen and Orponen establish the following tweiesting resulté?

Theorem 4.1 (i) The problem of determining the number of fixed point caméitions of a simple discrete
Hopfield network, with a symmetric weight matbix = [w;;] such that all the weights);; are integers
andw;; = 0 along the main diagonal, #P-complete; and

(ii) the problem of determining the number of predecessafigarations of a given configuration of a
simple discrete Hopfield network, with a symmetric weightrind?” = [w;;] such that all the weights
w,; are from the sef—1,0,+1} andw;; = 0 along the main diagonal, i#P-complete.

For proving (i), Floreen and Orponen devise a Hopfield nétvibat is quite dense, i.e., with many
non-zero weightsv;;. This would correspond to an SDS or SyDS where there areniveily speaking,
several nodes each of which having many neighbors. In cetmtrar result in Lemma 4.1 allows only for
a single node that has a large neighborhood; see [60, 62]doe details.

Prior to moving to our main results, for the sake of complessnwe state the following

Lemma 4.2 Counting FPs of an arbitrary SDS or SyDS all of whose nodesBas#ean-valued linear
threshold rules igtP-complete.

(@ We slightly rephrase the statement of these results froniitiear algebra language originally used in [18] into thectlite
language we are using throughout this paper, in order to riekeomparison and contrast with our own results clear.

140 Predrag T. To%

4.1 Counting Configurations of Uniformly Sparse SDSs and SyDSs
with Monotone Update Rules

The first major result of this paper pertains to the componteati complexity of counting the fixed point
configurations of monotone Boolean SDSs and SyDSs that éiredeveruniformly sparsainderlying
graphs.

One of the original motivations behind our interest in thatgem was to improve upon the complexity
of counting results in [18, 19]. We shall show below that thsult (i) from [18] discussed above can be
considerably strengthened along several dimensions.igitae hardness of counting FPs will be proven
to still hold even when the following restrictions on the plem instances argimultaneouslymposed:

— the underlying graphs will be required to beiformly sparse with no node degree exceeding 3;

— all linear threshold update rules will be restrictedmtonotonefunctions by disallowing negative
weights;

—only two (positive) integer values for the weights will Heeed; and

—each S(y)DS node will choose one from only two allowed monetinear threshold update rules.

We remark that, since each node of an SDS or SyDS in the Thettvanfollows is required to have
only O(1) neighbors, the issue @ncodingof the local update rules, that is discussed in detail in,[62]
is essentially irrelevant in the present context. In paféic even a truth table with one row for each
combination of the values of a given node’s neighbors is jEsitvle [61, 62].

In the sequel, BoL-MON-S(Y)DS will stand for anonotone Boolea8SDS or SyDS.

Theorem 4.2 Counting the fixed points oBooL-MON-S(Y)DSs exactly is #P-complete, even when
all of the following restrictions on the structure of such&fy)DS simultaneoushhold:

e the monotone update rules atmear threshold functions

the S(y)DS is with memory, and such that, along the main diaigav;; = 1 for all indices,
1<i<nm;

at most two different positive integer weights are used lophéacal update rule;

each node has at most three neighbors in the underlying goditis S(y)DS;

only two different monotone linear threshold rules are usgdhe S(y)DS’s nodes.

Proof: We first describe the construction of @BL-MON-SyDS from an instance of Boolean mono-
tone 2CNHMoON-2CNF) formula [21] such that no variable appears in mora theee different clauses.
We then outline why is this reduction from the problem of ciinm satisfying assignments of such a
formula to the problem of counting FPs in the resulting Syixe&kly parsimoniou1].

Let’'s assume that a BIN-2CNF Boolean formula is given, such that thereaneariables;n clauses,
each variable appears in at least one clause, and no vaeppkars in more than three clauses. In
particular, these requirements together imply that O(n), but we shall keepn andn as two distinct
parameters for clarity.

The corresponding SyDS is constructed as follows. To each variable in the formulaiesponds a
variable node, and to each clause, a clause node. In additbboned clause nodis introduced for each
of the originalm clause nodes. Thus, the underlying graph®has exactlyr + 2m nodes. A variable
node is adjacent to a clause node if and only if, in the Booleanula, the corresponding variable appears

Complexity of Counting the Fixed Points 141

in the corresponding clause. Each clause node is adjacéstdimne. Finally, the cloned clause nodes
form a ring among themselves.

Therefore, the underlying graph of this SyDS looks as in feégul.

In the sequel, we shall slightly abuse the notation andwdm®thto denote a variable in the Boolean
formula, and the correspondinvgriable nodein the S(y)DS or discrete Hopfield network we are con-
structing. Similarly, in this proof as well as throughout tfest of the pape€;; will denote both clauses
in the Boolean formulae and clause nodes in the S(y)DSs ofiéldmetworks that are being constructed
from those formulae. Again, the intended meaning will becfeom the context.

c G (o C, G
(o} G C, C, G
S . <&
X, X, X X X

Fig. 1: Figure 4.1: The underlying graph of a bounded-degree monotone lineaskold Boolean S(y)DS in the
construction of Theorem 4.2. The original clause nodes aeked C;, the cloned clause nodes are primed, as in
Cj, and the variable nodes are denoteday

With these conventions in mind, we now define the update figlethe clause nodes, cloned clause
nodes, and variable nodes of the constructed SyDS. Thectldaese nodes’, and the variable nodes
x; will update according to the Boolea#&ND rule. The original clause nodeS,, will update according
to the following monotone linear threshold update rule:

o, {1, it 2C)+Cj +aj, +a5, > 4 @
0, otherwise

wherex;, , x;, is a shorthand for the two variable nodes that are adjacehetolause nod€';.
The given construction can be slightly rephrased, in ordemiphasize that the resulting SyDS also
satisfies thesymmetry requiremests it is usually defined in the Hopfield networks literaturaqely, so

142 Predrag T. To%

that the underlying matrix of weights is a symmetric matfir.that end, the BooleaAND rule used by
the cloned clause nodes can be written in an equivalent, bre finear-threshold-like”, form:

®)

o {1, if 20, +CL+C)_, +Clyy > 5
J 0, otherwise

Notice that the function defined in equation (3) evaluatesifand only if all of its inputs are 1, and thus,

indeed, the given formula is nothing but a linear-thresHide way of writing the ordinary BooleaAND

on four inputs. If this latter convention on how we write thedate rules at the cloned clause nodes and

the variable nodes is adopted, then the resulfirigin be also viewed as a discrete Hopfield network with

parallel node updates. We will turn to the related compyexdtcounting results in the context of Hopfield

networks in the next subsection.

We now show that the reduction from the counting problemaiV2 CNF-SAT to the counting prob-
lem #FP for the constructed SyDS is, indeed, weakly parsiousn To that end, we summarize the case
analysis. If, at any time step one of the cloned clause nod€§ evaluates to 0, that will ensure that,
within no more than’: steps, all the cloned clause nodes will become 0, and stawtie @ thereafter.
This will also cause all the original clause nodes’ statgs and, consequently, also all the variable
nodes’ states;, to become 0, as well. Thus, if at any point a single clonedsgahode’s state becomes
0, the entire SyDS will eventually collapse to the “sink” fixgoint0™*2™. Clearly, this sink FP does not
correspond to a satisfying assignment to the original Boofermula.

Now, the only way that no cloned clause node ever evaluatéssahat the following two conditions
simultaneously hold:

—eachC;, andC}, isinitially in the state 1, fol < k < m; and

—theinitial states;; of the variable nodes are such that they correspond to &sagjsruth assignment
to the variables in the original Boolean formula.

If these conditions hold, then each such global configungti®, C™, C"™) = (a7,,1™,1™) isa
fixed point of S, wherex?,, € {0,1}™ is a short-hand for an-tuple of Boolean values that corresponds
to a satisfying truth assignmeft,, ..., z,,) to the underlying monotone 2CNF formula. Moreover, the
satisfying truth assignments of the original Boolean folarare in a one-to-one correspondence with
these non-sink FPs af.

Since no variable in the ®IN-2CNF formula from which we are constructing the SyDS appé&ar
more than three clauses, each variable nodie the SyDS has at most three neighbors. Since we use
2CNF, each clause nodg; has two variable node neighbors, plus one cloned clauséibeig”;, for
the total of three neighbors. Finally, each cloned clausterid clearly has exactly three neighbors.
In particular, by the result of C. Greenhill in [27], we cankeahe underlying graph of SyDS be
3-regular, and théP-completeness of the counting problem #FP will still hold.

We also observe thanly twodifferent monotone linear threshold functions are usetécbnstruction
above; furthermore, when the update rules are written iridira as in expressions (2) and (3), it is im-
mediate that at most two different integer weights are useach of those two linear threshold functions.
Hence, the claim of the Theorem follows insofar as monotoveat threshold SyDSs are concerned.

Finally, by the invariance of FPs with respect to the nodeatgardering [48], it follows that exactly
enumerating FPs of monotone linear threshold SDSs definediformly sparse graphs #P-complete,
as well. []

Complexity of Counting the Fixed Points 143

In the construction above, the SyDS dynamics frewerystarting global configurations that is not
of the form (27, 1™, 1™) will eventually converge to the sink stai&*+2™. In particular, thebasin of

sat»
attractionof C = 0"*2™ includes all configurations of the forfa” ..., 1™,1™), wherez®, .., is a
shorthand for an orderedtuple of Boolean values that corresponds touasatisfying(i.e., falsifying)
truth assignment to the corresponding variabies..., z,, in the original MON-2CNF formula. The
rest of the configurations in the sink’s basin of attractiom such thatC™, C'™) # (1™,1™), where
2" € {0,1}" is arbitrary.

Hence, in order to determirexactlythe size of the basin of attraction for the sink stéte- 0»+2™,
that is, the number of that configuration’s ancestors, wettiesble to exactly determine the number
of falsifying truth assignments to the originaldWi-2CNF Boolean formula. It is easy to see that one
can find an orderin@l under which the same claim holds for the correspondiopBMON-SDS. As a
consequence, we have

Corollary 4.1 The problem of counting exactly all taacestorsf an arbitrary configuration of 800L-
MON-S(Y)DS, denoted#ANCc, is #P-hard. Moreover, this intractability result holds even whall re-
strictions fromTheorem 4.2are simultaneously imposed on the S(y)DS’s structure.

4.2 Counting Configurations of Discrete Hopfield Networks

We now turn to the corresponding hardness of counting iefldiscrete Hopfield networks with appro-
priately restricted weight matrices. We start with the peafof fixed point enumeration in the context of
Hopfield nets where each of the nodes has exactly one bit ofanemnamely, its own (binary-valued)
current state.

Theorem 4.3 Determining the exact number of stable configurations of mlpel or asynchronous dis-
crete Hopfield network ig#P-complete even when all of the following restrictions onwheeght matrix
W = [w;;] simultaneously hold:

e the matrix is symmetricw;; = w;; for all pairs of indicesi, j € {1,...,|V|} (where|V| denotes
the number of nodes in the underlying graph of this DHN);

e w;; = 1 along the main diagonal for ali € {1,..., |V|};

wy; € {0,1,2} for all pairs of indicesi,j € {1, ...,|V|};

each row and each column d# hasat most thredalternatively,exactly thregnonzero entries off
the main diagonal.

Proof sketch: In case of the DHNs whose nodes update synchronously inlglatike claim holds by

virtue of Theorem 4.2, since an SyDS that is constructed adkerproof of that theorem can also be
viewed as a parallel discrete Hopfield network whose weigtris satisfies all the above listed con-
ditions{ Insofar as the asynchronous DHNs whose nodes update imaaybitequential orders are
concerned, while indeed those sequences of node updatsoekee repetitions of a fixed permutation
as in the corresponding SDSs, this difference can be edsilyrs to be immaterial insofar as the fixed
point configurations are concerned. Therefore, Theoremaldo8it discrete Hopfield networks is nothing

(i) For simplicity of the argument, in this proof sketch we anedigng the syntactic difference that the state space of & irod
Hopfield network is{—1, +1}, not{0, 1}.

144 Predrag T. To%

but rephrasing Theorem 4.2, with parallel DHNs in place ddSg with monotone linear threshold update
rules, and asynchronous/sequential DHNs replacing SD®sthe same kind of update rules. []

Next, we consider the problems of enumerating predeceasavsll as all ancestors of a given Hopfield
network configuration. We shall establish the computaticoanplexity of those two related counting
problems in the context agimpleDHNs, whose weight matrices satisfy; = 0 for Vi € {1, ..., |V|}.

Before we proceed with a formal reduction from the problemaWR2CNF-SAT to the problem
#PRED of enumerating all predecessor configurations of a given Didhfiguration, we establish the
following additional conventions. First, the reductioriiviie from the MoN-2CNF Boolean formulae
with each variable appearing in at least one, and in at mstifatively, exactly) four clauses. Second,
we will abandon the usual convention in the Hopfield netwditksature that the underlying graph is fully
connected (i.e., a clique), and instead consider thoss piwertices{v;, v; } such thatv;; = w;; = 0 not
to be connected by an edge at all. We will require that the tiyidg DHN weight matrixiV is symmetric
in the usual, Hopfield network sense; as a consequence, tleglyimg graph of such a discrete Hopfield
network will be undirected, which is also in accordance vathr convention about S(y)DSs. Third, in
the construction used in proving Theorem 4.2, we will eliaténthe cloned clause nodé$ and, instead,
connect the ordinary clause nodes into a ring.

We recall that, in a DHN, the set of possible states of a nodeaditionally {—1,+1} (instead of
{0, 1}); while not essential, we will adopt this practice through test of the paper when it comes to the
discrete Hopfield networks. With that in mind, we define thdatp rule of a clause nodg¢; to be
Cj — {+1, if 2C5-1 + 20j+1 +xj +x, >3 4)

—1, otherwise

For each variable; in the MoN-2CNF formula from which we are constructing our DHN,dgtlenote
the number of clauses in whiah appearsthus, under the stated assumptions, for every{1, ..., |V},
we havea; € {1,2,3,4}. We now define the variable node update rules as

xT; — +1’ if Z{]‘.:L,ECJ»} Cj > a;—1 (5)
—1, otherwise

Thus a variable node; updates tot1 if and only if all of the clause node§';;) corresponding to
those clauses in the formula in which variableappears are currently in the staté.

Finally, we observe that the resulting weight mati%, while symmetric and with all entries;; €
{0,1,2}, also hasw;; = 0 along the main diagonal; therefore, the constructed Hapfiekwork is
simple(i.e.,memorylesg[18, 20].

We are now ready to establish the third main result of thisspap

Theorem 4.4 The problen#PRED of determining the exact number of predecessors of a givefigeo
ration of asimplediscrete Hopfield network P-complete. Moreover, this claim holds even when all of
the following restrictions on the Hopfield net’s weight nvall” = [w;;] are simultaneously imposed:

e the matrix is symmetricw;; = w;; for all pairs of indicess, j € {1, ..., |V|};

e w;; = 0 along the main diagonal for ali € {1, ..., |V|};

Complexity of Counting the Fixed Points 145
e w;; € {0,1,2} forall pairs of indicesi, j € {1, ..., |V};
e each row and each column hasmost / exactly founonzero entries.

Proof sketch: The claim of the Theorem will follow from the fact that theiséting truth assignments
to the Boolean variables,, ..., x,, in the original MON-2CNF Boolean formula are in a one-to-one cor-
respondence with the set of all predecessors of the confignia-1)"*™ in the Hopfield net constructed
from that formula. In the Hopfield network context, we willeidtify the Boolean value A SE of a
variable in the MoN-2CNF formula with the corresponding DHN variable nodeidet-1, whereas the
Boolean value RUE of a variable in the formula will be mapped to the staté of the corresponding
DHN variable node.

The case analysis is similar to that in the proof of Theoretn 4n particular, every configuration
with at least one clause nodg; in the state(—1) will eventually converge to the sink fixed point
(z",C™) = ((-1)™,(=1)™). Among the configurations of the for(@", C™) = (z", (4+1)™), those
and only those such that thetuplex™ corresponds to a satisfying truth assignment to the oriidyian-
2CNF Boolean formula will evolve to the other fixed point cgufiation,(1™,1™) = (+1)"*™. More-
over, this convergence {a-1)" "™ is easily seen to take a single parallel transition. Thahispredeces-
sors of(+1)"*™ are precisely the configurations of the fofaf,,, (+1)™).

[|

It immediately follows from the discussion in the proof siteabove thaall ancestors of the config-
uration C = (+1)™*™ are also this configuration’s predecessors; that is, thgergence from every
configuration in the basin of attraction @f takes exactly one (global) parallel step.

Corollary 4.2 The problemitANc of determining the exact number of all ancestors of an aabjtconfig-
uration of a simple discrete Hopfield network is, in the waase #P-hard. Moreover, this intractability
holds even when all the restrictions frorheorem 4.4n the Hopfield network instances are simultane-
ously imposed.

We remark that the #RAc problem for S(y)DSs and DHNs is indeg&-complete whenever thegasin
of attractionof a fixed point — or, for that matter, of an arbitrary configioa that has ancestors — of
the dynamical system in questionsBallow This shallowness, in particular, ensures that the prolaem
enumerating ancestors of all generations is in the ét®sslowever, for arbitrary basins of attraction that
need not necessarily be shallow, the question arises, whiettan always be verified in polynomial time
if one configuration is an ancestor of another configuratiofact, the results in [8] imply that, given two
arbitrary configurationsC and C’ of a monotone Boolean SDS or SyDS, determining wheitieis an
ancestor ofC (alternatively, whethelC is reachablefrom C’) is, in generalPSPACE-complete.

The implication of the results in [8] for the complexity ofwating ancestors of an arbitrary configu-
ration of a monotone Boolean S(y)DS or a discrete Hopfield/ogt with a nonnegative and symmetric
weight matrix is that the problem ##c need not be in the clagtP. In particular, it is an open prob-
lem whether #AiC € #P under thesparsenessestrictions as in our three main results earlier in this
paper. Therefore, all we can offer at this stage is a moreeggasve characterization of the complex-
ity of #ANC in comparison to the complexity of #FP andr#D — hence thétP-hardness, rather than
#P-completeness, statements about the problemdétis Corollaries 4.1 and 4.2.

146 Predrag T. To%

5 Summary

We have shown in [61, 62, 60, 64] that the problem of enunmggatie fixed point configurations of two
related classes of Boolean network automata, called Séguand Synchronous Dynamical Systems is,
in general, computationally intractable. We continue teaeagal line of inquiry from our prior work in
the present paper, as well. We now focus on those SDSs andsSg&@x$ of whose nodes is required
to update its state according to a monotone Boolean funaioth whose underlying network topologies
are uniformly sparse, so that, in particular, each node hgs@(1) neighbors. Our main result in this
paper is that exactly counting the fixed points of monotomépumly sparse Boolean SDSs and SyDSs
such that no node has more than three neighbatB-isomplete. This result immediately implies similar
intractability results for the sparse discrete Hopfieldwoeks. Viewing Hopfield networks as a model
of associative memory, our results imply that determinirgotly how many different patterns can be
stored in such an associative memory is, in general, cortipngdly intractable. This computational
intractability remains to hold even when imhibitive connectiongi.e., no edges with negative weights)
are allowed, and, simultaneously,no row or column of thegwematrix has more than four nonzero
entries. Moreover, our hardness result still holds evethfose DHNs with integer weight matrices all of
whose entries are from the ggtl, 2.

Similarly, determining the exact size of the basin of aticatof a given stable configuration of a dis-
crete Hopfield network with a symmetric weight matrix is elfuimtractable; moreover, this intractability
result holds even when the Hopfield network is required taigle, with a uniformly sparse weight ma-
trix, and the same restrictions on the allowed values of hisig;; as in our corresponding result about
the enumeration of the stable (or, in the SDS terminologgdfipoint) configurations.

Insofar as the future work is concerned, it needs to be poiate that our results in this paper, as
well as similar in spirit results in our prior work [60, 61, 623, 67, 64, 69] all pertain to the worst-case
complexity of counting the stable configurations and otlrerctures of discrete dynamical systems. Of a
considerable interest to statistical physics, conneigigx and large-scale multi-agent systems research
communities, however, is the problem of determining ave@mplexity of the relevant decision, search
and counting problems about the underlying system’s dyosmi

Another important problem is that of the hardness of appnaxé counting of the fixed points and other
types of configurations of interest; we have partially sdltieat problem for certain classes of underlying
network topologies and node update rules [60, 62, 67, 64]nbufor the particular restricted classes of
topologies and update rules for which we have establishedhd@indness of exact counting in this paper
and the extended technical report [63]. Hence, the appm@teirounting in the settings discussed in the
present paper, as far as we know, is still open.

To summarize our contribution in the present paper, thdtesuTheorems 4.2 - 4.4, and in particular
the constructions in their corresponding proofs (see @8d fpr details), clearly indicate that there are
various restricted classes of uniformly sparse Booleanorétautomata and Hopfield networks for which
exactly enumerating the stable configurations (FPs), alsasehe predecessor and the arbitrary ancestor
configurations, are all computationally intractable in #herst case. These hardness results have some
interesting implications and interpretations — for exae the context of pattern storage capacity of
sparsely connected Hopfield networks viewed as associat@mories. However, what is the average
complexity of these important counting problems (and irtipalar, under what specific assumptions are
those average or expected case problems tractable), aeeopi&h problems. We hope to address the
average case complexity of those and other similar couptiolglems about discrete dynamical networks

Complexity of Counting the Fixed Points 147

in our future work.

Acknowledgements

Many thanks to my colleague Ricardo Vilalta, as well as Depant of Computer Science and Texas
Learning & Computation Center (TLC2) at University of Homrst

References

(1]

(2]

(3]

(4]

(5]

(6l

(7]

(8]

(9]

(10]

(11]

[12]

(13]

M. Anthony. “Threshold Functions, Decision Lists, arftetRepresentation of Boolean Functions”,
NeuroCOLT Techn. Report Series (NC-TR-96-028), Janua®619

S. Amoroso, Y. Patt. “Decision procedures for surjeityiand injectivity of parallel maps for tessella-
tion structures” Journal of Computer and System Scien@&3SS), vol. 6, pp. 448 — 464, 1972

R. J. Bagley, L. Glass. “Counting and Classifying Attiars in High Dimensional Dynamical Systems”,
Journal of Theoretical Biologyol. 183, pp. 269—-284, 1996

F. Barahona. “On the computational complexity of Isirmnsglass models”,Journal of Physics A:
Mathematical and Generalol. 15, pp. 3241 — 3253, 1982

C. Barrett, B. Bush, S. Kopp, H. Mortveit and C. Reidys.etfsiential Dynamical Systems and Appli-
cations to Simulations”, Technical Report, Los Alamos biadil Laboratory, September 1999

C. Barrett, H. B. Hunt Ill, M. V. Marathe, S. S. Ravi, D. JoBenkrantz, R. E. Stearns. “Dichotomy
Results for Sequential Dynamical Systems”, Los Alamos oweti Laboratory Report, LA-UR—00—
5984, 2000

C. Barrett, H. B. Hunt lll, M. V. Marathe, S. S. Ravi, D. JoBenkrantz, R. E. Stearns. “Predecessor and
Permutation Existence Problems for Sequential Dynamigstiens”, Los Alamos National Laboratory
Report, LA-UR-01-668, 2001

C. Barrett, H. B. Hunt lll, M. V. Marathe, S. S. Ravi, D. JoBenkrantz, R. E. Stearns. “Reachability
problems for sequential dynamical systems with threshatdtions”, Theoretical Computer Science
vol. 295, issues 1-3, pp. 41-64, February 2003

C. L. Barrett, H. B. Hunt, M. V. Marathe, S. S. Ravi, D. J. $&mkrantz, R. E. Stearns, P. T. Tosic.
“Gardens of Eden and Fixed Points in Sequential Dynamicate®ys”, Discrete Mathematics and
Theoretical Computer Scien¢(BMTCS), spec. ed. Proc. AA DM-CCG, pp. 95-110, 2001

C. Barrett, H. Mortveit, and C. Reidys. “Elements of &ahy of simulation II: sequential dynamical
systems”Applied Mathematics and Computatjorol. 107 (2-3), pp. 121-136, 2000

C. Barrett, H. Mortveit and C. Reidys. “Elements of adheof computer simulation Ill: equivalence
of SDS”, Applied Mathematics and Computatjorol. 122, pp. 325-340, 2001

C. Barrett and C. Reidys. “Elements of a theory of corepsimulation I: sequential CA over random
graphs” Applied Mathematics and Computatjorol. 98, pp. 241-259, 1999

R. Beckman et. al. “TRANSIMS — Release 1.0 — The DallastrWorth case study”, Tech. Report LA
UR 97-4502, Los Alamos National Laboratory, Los Alamos, Néexico, 1999

148 Predrag T. To%

[14] B. Durand. “Inversion of 2D cellular automata: some @exity results”, Theoretical Computer
Sciencevol. 134 (2) , pp. 387 — 401, November 1994

[15] B. Durand. “A randomNP-complete problem for inversion of 2D cellular automataTheoretical
Computer Sciengevol. 148 (1) , pp. 19 — 32, August 1995

[16] B. Durand. “Global properties of 2D cellular automatal E. Goles, S. Martinez (eds.);Cellular
Automata and Complex System&luwer, Dordrecht, 1998

[17] C. Dyer. “One-way bounded cellular automatafiformation and Contrglvol. 44, pp. 54 — 69, 1980

[18] P. Floreen, P. Orponen. “On the Computational Compjeaf Analyzing Hopfield Nets”, Complex
Systemsvol. 3, pp. 577-587, 1989

[19] P. Floreen, P. Orponen. “Attraction radii in binary Higtd nets are hard to computeNeural Compu-
tation, vol. 5, pp. 812-821, 1993

[20] P. Floreen, P. Orponen. “Complexity Issues in Disctétgfield Networks”, Neuro—COLT Technical
Report SeriesNC-TR-94-009, October 1994

[21] M. R. Garey and D. S. Johnson‘Computers and Intractability: A Guide to the Theory of NP-
completeness”W. H. Freeman and Co., San Francisco, California, 1979

[22] M. Garzon. “Models of Massive Parallelism: Analysis of Cellular Autata and Neural Networks”
Springer, 1995

[23] E. Goles, S. Martinez.“Neural and Automata Networks: Dynamical Behavior and Apgtions”,
Mathematics and Its Applications series, vol. 58, Kluw&9a

[24] E. Goles, S. Martinez (eds.YCellular Automata, Dynamical Systems and Neural Netwbrkdathe-
matics and Its Applications series, vol. 282, Kluwer, 1994

[25] E. Goles, S. Martinez (eds.)Cellular Automata and Complex Systemdlonlinear Phenomena and
Complex Systems series, Kluwer, 1999

[26] F. Green. “NP-Complete Problems in Cellular Automa@dmplex Systemsol. 1 (3), pp. 453-474,
1987

[27] C. Greenhill. “The Complexity of Counting Colouringsd Independent Sets in Sparse Graphs and
Hypergraphs”,Computational Complexifyol. 9, pp. 52—72, 2000

[28] H. Gutowitz (Editor).“Cellular Automata: Theory and Experiment’North Holland, 1989

[29] J.J.Hopfield. “Neural networks and physical systenth@mergent collective computational abilities”,
Proc. National Academy of Sciendg$SA), vol. 79, pp. 2554—-2558, 1982

[30] J. J. Hopfield, D. W. Tank. “Neural computation of deciss in optimization problems”Biological
Cyberneticsvol. 52, pp. 141-152, 1985

[31] B. Huberman, N. Glance. “Evolutionary games and corapaimulations”, Proc. National Academy
of SciencegUSA), vol. 90, pp. 7716-7718, August 1993

Complexity of Counting the Fixed Points 149

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

H. B. Hunt, M. V. Marathe, V. Radhakrishnan, R. E. StearfThe Complexity of Planar Counting
Problems”, SIAM Journal of Computingrol. 27, pp. 1142-1167, 1998

L.P. Hurd. “On Invertible cellular automataZomplex Systemsjol. 1(1), pp. 69-80, 1987

T. E. Ingerson and R. L. Buvel. “Structure in asynchrescellular automata”’Physica D: Nonlinear
Phenomenayol. 10 (1-2), pp. 59-68, January 1984

S. Istrail. “Statistical Mechanics, Three-Dimensadity and NP-completeness: I. Universality of In-
tracatability for the Partition Function of the Ising Mod&tross Non-Planar Lattices (Extended Ab-
stract)”, Proceedings of the 32nd ACM Symposium on Theory of Comp(8h@C '00), Portland,
Oregon, pp. 87 — 96, 2000

M. Jerrum. “Two-dimensional monomer-dimer systems@mputationally intractable”]. Statistical
Physicsvol. 48, pp. 121-134, 1987. Erratum in vol. 59, pp. 1087-810®90

M. Jerrum, A. Sinclair. “Approximating the permanentSIAM Journal of Computingvol. 18, pp.
1149-1178, 1989

M. Jerrum, A. Sinclair. “Polynomial-time approximati algorithms for the Ising model'SIAM Journal
of Computingvol. 22, pp. 1087-1116, 1993

J. Kari. “Reversibility and surjectivity problems oéltular automata” Journal of Computer and System
Sciencesvol. 48, pp. 149 — 182, 1994

J. Kari. “Theory of cellular automata: A surveyTheoretical Computer Scienceol. 334, pp. 3 — 33,
2005

R. Karp, M. Luby. “Monte-Carlo algorithms for enumemat and reliability problems”,|EEE Sympo-
sium on Foundations of Computer Sciende. 24, pp. 56 — 64, 1983

R. Karp, M. Luby. “Monte Carlo algorithms for the planaultiterminal network reliability problem”,
Journal of Complexityvol. 1, pp. 45 — 64, 1985

S. A. Kauffman. “Metabolic stability and epigenesigandomly connected netsJournal of Theoret-
ical Biology, vol. 22, pp. 437 — 467, 1969

S. A. Kauffman. “Emergent properties in random compeomata”,Physica D: Nonlinear Phenom-
ena Volume 10, Issues 1-2, pp. 145-156, January 1984

R. Laubenbacher and B. Pareigis. “Finite Dynamicalt&ys"”, Technical report, Department of Math-
ematical Sciences, New Mexico State University, Las Crudesy Mexico, 2000

B. Martin. “A Geometrical Hierarchy of Graphs via Cddm Automata”, Proc. MFCS’98 Satellite
Workshop on Cellular Automata, Brno, Czech Republic, Aud@98

M. Mitchell. “Computation in Cellular Automata: A Sealted Review”, in T. Gramms, S. Bornholdt,
M. Gross, M. Mitchell, T. Pellizzari (editorsyNonstandard Computation’ pp. 95-140, Weinheim:
VCH Verlagsgesellschaft, 1998

H. Mortveit, C. Reidys. “Discrete sequential dynaniisgstems”, Discrete Mathematics vol. 226
(1-3), pp. 281-295, 2001

150

[49]

(50]

(51]

[52]

(53]

(54]

(55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

(64]

Predrag T. To%

J. Myhill. “The converse of Moore’s Garden-of-Eden ¢hem”, Proc. Amer. Math. Socvol. 14, pp.
685-686, 1963

C. Nichitiu and E. Remila. “Simulations of Graph Autotag Proc. MFCS’98 Satellite Workshop on
Cellular Automata, Brno, Czech Republic, August 1998

C. Papadimitriou:‘Computational Complexity; Addison-Wesley, Reading, Massachusetts, 1994

D. Richardson. “Tessellations with local transforioas”, J. of Computer and System Sciences (JCSS)
6, pp. 373-388, 1972

C. Robinson.“Dynamical systems: stability, symbolic dynamics and &iacCRC Press, New York,
1999

Zs. Roka. “One-way cellular automata on Cayley graphdieoretical Computer Sciencg&32 (1-2),
pp. 259-290, September 1994

D. Roth. “On the Hardness of Approximate Reasonindttificial Intelligence vol. 82, pp. 273-302,
1996

K. Sutner. “De Bruijn graphs and linear cellular autdgaia Complex Systemsol. 5 (1), pp. 19-30,
1990

K. Sutner. “On the computational complexity of finitelloéar automata”, Journal of Computer and
System Sciencé3CSS), vol. 50 (1), pp. 87-97, February 1995

K. Sutner. “Computation theory of cellular automat&toc. MFCS’98 Satellite Workshop on Cellular
Automata, Brno, Czech Republic, August 1998

C. Schittenkopf, G. Deco and W. Brauer. “Finite autoaatodels for the investigation of dynamical
systems”Information Processing Lettersol. 63 (3), pp. 137-141, August 1997

P. Tosic. “On Counting Fixed Point Configurations iniStetworks”, Advances in Parallel and Dis-
tributed Computational Models Workshop (APDCM’05), Bmoc. of the 19th IEEE Int'l Parallel &
Distributed Processing Symposiurdenver, Colorado, April 2005 (CD-Rom)

P. Tosic. “On Complexity of Counting Fixed Point Configtions in Certain Classes of Graph Au-
tomata”, Electronic Colloquium on Computational ComplexiBeport ECCC-TR05-051, April 2005

P. Tosic. “Counting Fixed Points and Gardens of Edenexjugntial Dynamical Systems on Planar
Bipartite Graphs”,Electronic Colloquium on Computational Complexifeport ECCC-TR05-091,
August 2005

P. Tosic. "Computational Complexity of Some EnumeratiProblems About Uniformly Sparse Boolean
Network Automata”Electronic Colloquium on Computational ComplexiBeport ECCC-TR06-159,
2006

P. Tosic. “On the Complexity of Counting Fixed PointdaBardens of Eden in Sequential and Syn-
chronous Dynamical Systemdhternational Journal on Foundations of Computer SciefidéCS),
vol. 17 (5), pp. 1179-1203, October 2006

Complexity of Counting the Fixed Points 151

(65]

[66]

[67]

[68]

(69]

[70]

[71]

[72]

(73]

[74]

[78]

[76]
[77]

P. Tosic, G. Agha. “Concurrency vs. Sequential Intvlags in 1-D Threshold Cellular Automata”,
APDCM Workshop, inProc. of the 18th IEEE Int'l Parallel & Distributed Procesgj Symposium
Santa Fe, New Mexico, USA, April 2004

P. Tosic, G. Agha. “Characterizing Configuration Spgoé Simple Threshold Cellular Automata”,
Proc. of the 6th Int'l Conference on Cellular Automata fors@arch and Industr¢yACRI'04), Amster-
dam, The Netherlands, October 2004; Springeesture Notes in Computer ScieneNCS) series,
vol. 3305, pp. 861-870

P. Tosic, G. Agha. “On Computational Complexity of Cting Fixed Points in Symmetric Boolean
Graph Automata”, inProc. of the 4th Int'l Conference on Unconventional Compota(UC’05),
Sevilla, Spain, October 2005; Springel’scture Notes in Computer ScienteNCS) series, vol. 3699,
pp. 191-205

P. Tosic, G. Agha. “Parallel vs. Sequential Thresho@l@ar Automata: Comparison and Contrast”,
in Proc. of the First European Conference on Complex Sys{&@€£S’05), paper # 251; European
Complex Systems Society, Paris, France, November 2005

P. Tosic, G. Agha. “On Computational Complexity of Réthg Dynamical Evolution of Large Agent
Ensembles”,Proc. of the 3rd European Workshop on Multiagent Syst@hBVAS’05), pp. 415-426,
Flemish Academy of Sciences, Brussels, Belgium, Decenb@5 2

S. Vadhan. “The Complexity of Counting in Sparse, Raguand Planar Graphs”SIAM Journal of
Computing vol. 31 (2), pp. 398-427, 2001

L. Valiant. “The Complexity of Computing the Permanigntheoretical Computer Scienceol. 8, pp.
189-201, 1979

L. Valiant. “The Complexity of Enumeration and Relilityi Problems”, SIAM Journal of Computing
vol. 8 (3), pp. 410-421, 1979

I. Wegener. “The Complexity of Boolean Functions” Teubner Series in Computer Science, Wiley,
1987

S. Wolfram. “Computation theory of cellular automataCommunications in Mathematical Physics
vol. 96, 1984

S. Wolfram. “Twenty problems in the theory of cellulartamata”, Physica Scripta,T9, pp. 170-183,
1985

S. Wolfram.“Theory and applications of cellular automata’'World Scientific, 1986

S. Wolfram (ed.).“Cellular Automata and Complexity (collected papers)Addison-Wesley, 1994

152 Predrag T. To%

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 153-172

Universality of 2-State Asynchronous Cellular
Automaton with Inner-Independent Totalistic
Transitions

Susumu Adachi and Jia Leé! and Ferdinand Peperand Hiroshi
Umec

INano ICT Group, National Institute of Information and Conmiwations Technology, Japan
2College of Computer Science, Chong Qing University, China
3Dept. of Computer Science, Osaka Electro-Communicatidadgsity, Japan

This paper proposes a computationally universal 2-dinoeadisquare lattice asynchronous cellular automaton, in
which cells have merely two states. The transition functiba cell is a nonlinear function of the states of the living
neighboring cells. This function depends on the positidreeds in the neighborhood with respect to the center cell.
The neighborhood consists of cells at orthogonal or dialgdisgances 1, 2, or 3 from the center cell. The proposed
cellular automaton igner-independent— a property according to which a cell’s state does not deperits previous
state, but merely on the states of cells in its neighborhdbé.asynchronous update mode used in this paper allows an
update of a cell state to take place — but only so with a cepabability — whenever the cell’s neighborhood states
matches an element of the transition function’s domainvehsiality of the model is proved through the construction
of three circuit primitives on the cell space, which are ensal for the class of Delay-Insensitive circuits.

Keywords: asynchronous cellular automaton, inner-independeratlistt rule

1 Introduction

Cellular Automata (CA) [18, 7, 22, 9] are dynamic systems hich the space is organized in discrete
units called cells that assume one of a finite set of stateesdhells are updated in discrete time steps
according to a transition function, which determines thessguent state of each cell from the state of the
cells inside a certain neighborhood of the cell.

Asynchronous Cellular Automata (ACA) [10] are CA in whichchecell is updated at random times.
Though ACA are mostly applied to simulations of natural ptreena, there have been efforts to use
them for computation, as the lack of a central clock has éxgepotential for implementation by nan-
otechnology. The most recent among these models—and theeffioent in terms of hardware and time
resources—use so-calléelay-Insensitive (DIgircuits that are embedded on the cell space to implement
computation. DI circuits are asynchronous circuits thatrabust to delays of signals [8, 20, 12, 2, 3, 16].

The number of cell states required for achieving computalioniversality is an important measure
for the complexity of a CA model, and it is especially releivéor implementations by nanotechnology.

154 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

Researchers aim to minimize this number as much as possilieyarious degrees of success: the ACA
model with a traditional von Neumann neighborhood requfices cell states [14], whereas the model

with Moore neighborhood in [2] and the hexagonal model ing8th require six states. The model in

[17] has cells with three states, whereby the neighborh®edm Neumann, but it requires a special type
of transition function in which more than one cell needs taipdated at a time in each transition. The
more recent model in [6] has cells with only two states, whegrihe neighborhood is Moore, but the

neighborhood radius is 2, i.e., it is defined as the 24 ceifgylgat orthogonal or diagonal distances 1 or 2
(Moore distance 1 or 2) from a cell.

In [5] an inner-independent totalistic rule is used in a $yooously timed 2-state CA, which also has
a neighborhood defined as the 24 cells lying at orthogonakbayothal distances 1 or 2 (Moore distance 1
or 2) from a cell. This model’s transition function is tole and simple: if the number of state-1 cells
in this neighborhood is four, the next state of a cell is 1eothise 0. The property of inner-independence
may especially be useful for physical realizations: in [S]relation with classical spin-glass systems is
discussed.

In this paper we propose a square lattice CA with inner-ietieient totalistic rule, that has a larger
neighborhood than the model in [5, 6], with cells at distaite2, or 3 (Moore distance 1, 2, or 3). Unlike
in the modelin [6], however, the proposed model uses tiangitiles that are totalistic, making it a firstin
the context of asynchronous CA. Computational universalithe model is proved through formulating
three primitive modules for DI circuits, and mapping themtba cell space. These modules—the so-
calledP-Merge Fork, and theR-Counter—form a universal set for the class of DI circuits, meanirgf th
any arbitrary DI circuit can be constructed from them. Tlaasition function of the proposed CA model
can be described in terms of 332 sub-totalistic rules in tvbech number is the sum of the state-1 cells in
each domain depending on the distance between the cell acetiter cell. In order to reduce the number
of the rules, we adopt a full totalistic rule that is obtaimedhe linear combination of the sum of the state-
1 cells in each domain. The coefficients of them are deteminliyea genetic algorithm. Consequently,
the number of the rules is 330.

This paper is organized as follows. Section 2 describeshifee tprimitive modules for DI circuits in
more detail. The basic CA model is described in Section 3pvicdd by a description of the Genetic
Algorithm in Section 4. Section 5 the implementation of sibexchange on the cell space, as well as of
the three DI modules. This paper finishes with conclusiosaashort discussion.

2 On Delay Insensitive Circuits

A DI circuit is an asynchronous circuit in which signals maydubject to arbitrary delays, without these
being an obstacle to the circuit’s correct operation [Lmposed of interconnection lines and modules,
a DI circuit uses signals—encoded as the change of a lires-sito transfer information from the output
side of a module to the input side of another module. The spésignals is not fixed.

A set of primitive modules from which any DI circuit can be stnucted is proposed in Patra [19]. This
set, consisting of the so-calléderge Fork andTria, is universal, but it suffers from the problem that the
Tria requires a large number (six) of input and output linesich is hard to implement on a CA using
cells with only four neighbors each. One way around this |gnolis to relax some of the conditions on DI
circuits, like in [21, 15], where lines are allowed to carrpma than one signal at a time. The advantage
of suchbuffering linesis more design freedom, and this translates into simplactres of circuits and
simpler primitive modules. This paper will employ this cept, allowing the use of primitive modules

Universality of 2-State Asynchronous Cellular Automaton 155

with at most four input or output lines (Fig. 1):

I, O, 0,
0 I I— -0,

I, 0, I,

(@) (b) (c)

Fig. 1: Primitive modules for the DI circuits. (a) P-Merge, (b) Foakd (c) R-Counter.

1. P-Merge (Parallel Merge). A signal on input linel; (I2) in Fig.1(a) is assimilated and output to
O. Simultaneous signals dh andl, are assimilated as well, and will be output as two subsequent
signals taO.

2. Fork: A signal on input line in Fig.1(b) is assimilated and duplicated on both outpwgdin;, and
0.

3. R-Counter (Resettable Mod-2 Counter) Two subsequent signals dnin Fig.1(c) are assimilated
and they give rise to one output signal®g. This is calledMlod-2 Counteifunctionality, because
of the double signal required &t to reinstate the initial “zero” state of the module. Altetinely,
when there is one signal on eachlgfandI,, the module outputs a signal €, after assimilating
its inputs; this accounts for tHeesetperation. A signal on only the input ling keeps pending
until a signal on eithef; or I is received. A signal on only the input lifg keeps pending until a
signal onl; is received.

In the next section these modules will be implemented on diespace, such that DI circuits can be
constructed.

3 Rules for the model and their Construction

The ACA model consists of a 2-dimensional square array d$,ceach of which can be in either of the
states, 0 (dead) and 1 (alive). The neighborhdid of a cellC; ; consists of the 48 cells at orthogonal
or diagonal distances 1, 2 or 3 froff) ; (Moore-neighborhoogd

Our previous work [6] was done on a non-totalistic 2-state@which the cell neighborhood consists
of 24 cells at distances 1 or 2 from the center cell (Fig. 2(&® have shown the computational univer-
sality of the model with inner-independent symmetric rulest are rotation-symmetric and reflection-
symmetric, meaning that their equivalents rotated by ipleisi of 90 degrees are also transition rules, and
so are their reflections.

In this paper, we use rules that are totalistic, i.e., thaede only on the number of living cells in the
neighborhood, but not on the center cell's state. Such radesallednner-independent totalisticWe

156 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

derive the rules in our new model from the rules in the previmodel, and on the way allow for some
ad-hoc rules to limit the number of rules that are generafedthis end, we first construct a so-called
semi-totalistic transition rules: these are rules in whioh neighborhood is divided into nine types of
cells according to the scheme in Fig. 2(b). The domain of tHe table of the semi-totalistic model

9 8 7 6 7 8 9
9 24 23 22 21 8 5 4 3 4 5 8
10 1 8 7 20 7 4 2 1 2 4 7
1 2 (i.j) 6 19 6 3 1 (i.j) 1 3 6
12 3 4 5 18 7 4 2 1 2 4 7
13 14 15 16 17 8 5 4 3 4 5 8

9 8 7 6 7 8 9

(a) (b)

Fig. 2: (a) Moore distance 1 and 2 neighborhood of the ¢&lj) in the non-totalistic model in [6]. The numbers
denote the indices of the cells in the transition rules, iikéhe left part of Table 1. (b) Moore distance 1, 2, and 3
neighborhood of the cefl, j) in the semi-totalistic model in this paper. The numbers 1deote the class to which
each cell in the neighborhood belongs, like in the right pafable 1.

consists of nine integers corresponding to the classesdfelis in a neighborhood. These nine integers
indicate the number of cells of that class that are alive. ddvdomain of the rule table consists of one
integer that encodes the next state of the cell (O or 1).

A non-totalistic rule is transformed into a semi-totatistille in roughly the following way:

e For every configuration on which a non-totalistic rule is légxh the encoding of the Left-Hand-
Side of the rule as in Fig. 2(a) is written as an encoding asggnZb). The Right-Hand-Side of the
rule (0 or 1) remains the same.

e In most cases, this will give a semi-totalistic rule with ague Left-Hand-Side (see Table 1).

¢ In case a conflict arises (Fig. 3), i.e., if the same Left-H&mdk corresponds to rules with two dif-
ferent Right-Hand-Sides (0 and 1), then the configuratiowbith the rules are applied is slightly
adjusted such as to change the Left-Hand-Sides of the rntemake them unique in the rule set.

After the semi-totalistic rules have been obtained, westigam them into totalistic rules. This requires
that for all the possible combinations of nine integers mithle set, we map each combination into one

Universality of 2-State Asynchronous Cellular Automaton 157

Tab. 1: Transformation of non-totalistic rule of a signal into settialistic rule with Moore neighborhood 1, 2, and
3. C)p,q denotes the cells states in the Moore neighborhagddenotes the number of living cellsin(k = 1, ..., 9)
domain.C’ denotes the next state.

| No. | neighbor state€’,, , [[ne(k=1..9) [C"]
1 | 0100000001110000000000001 101200200 | 1
1011010100000000001000000 321000000
0000010000000011010000000 101200100
0000010000000001010000000 100200100
0101100000000100000000001 210100000
0101100000000110000000001 211100000

o0 Rl WIN
allallellelle]

Fig. 3: An example of conflicting rules. The marked cell in the leftfigmust become 0, and the rule is 312402311.:0.
The marked cell in the right figure must become 1, and the suB42402311:1.

unique integer, without conflicts occurring. The transitfanction is expressed in totalistic form in the
following way. A weighted sunX of the number of cells in each class is determined by the equat

9
X = Z Wknk (l)
k=1

whereW, is the weight for neighborhood cells in classindny, is the number of such cells in class
as given by the semi-totalistic transition rule in the ridble. Once we have determined the value of
X, we associate it with an output valug X) that encodes the next state of a cell. The main issue in
this transformation is of course to determine suitable Wsi§l’;, such that no conflicts in rules arise.
One suitable set of values of the weights are given in tablethé Appendix. These values have been
determined by a Genetic Algorithm, which we describe in teetisection.

Updates of the cells take place asynchronously, in the wéined in [2, 6]. According to this scheme,
one cellis randomly selected from the cell space at eachteptizp as a candidate to undergo a transition,
with a probability lying between 0 and 1. If the summationtw heighbors of the selected cell match the

158 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

X-value of a transition rule, the corresponding transit®oarried out.

4 Genetic Algorithm

The weights in the totalistic transition function are detared by using the so-callggarameter-free
genetic algorithm (PfGA)23, 24, 1]. The algorithm merely uses random values or grititias for
setting almost all genetic parameters. A ‘population’ ia BfGA is defined as a sub-group composed of
individuals, and a population size is the number of the iiadigls in the population. The procedure of the
PfGA is as follows,

e Step 1: The first individual is generated from a whole seapaits randomly and is inserted into
the population.

e Step 2: The second individual is generated from a whole begrace randomly and is inserted into
the population.

e Step 3: Two parent®; and P, are brought out from the population, and two childténandCs
are generated by multiple-point crossover operation fitogrparents. The number of the crossover
points is determined randomly.

e Step 4: Mutation is applied to one of the children at the pbillig of 1/2, in which a randomly
chosen portion of the chromosome is inverted (i.e., bipéib).

e Step 5: By applying this selection rule, one to three setkotdividuals are pushed back to the
population. If the population size becomes one, return backep 2. Otherwise, return back to
Step 3.

There are four different cases in the selection rule depegati the fithess of the parents and the children
as follows,

e Case 1: If both of the fitness values of the children are b#isar those of the parents, both of the
children and the better parent are selected.

e Case 2: If both of the fitness values of the children are wdraa those of the parents, the only
better parent is selected as shown in case 2 of the table.

e Case 3: If the fitness of the better parent is better than fithedoetter child, the better parent and
the better child are selected as shown in case 3 of the table.

e Case 4: If the fitness of the better child is better than théhebetter parent, the only better child
is selected as shown in case 4 of the table. In this case, ltlee iodividual is generated randomly
and is pushed back to the population.

The population size increases in case 1, and decreasesédr2casor the most function to solve, the
occurrence rate of the case 1 is less than that of the caseeefohe, the population size does not diverge
infinitely (always less thar-4). The advantages of the PfGA are compact and fast convegglre to the
small population size.

Universality of 2-State Asynchronous Cellular Automaton 159

The genotypes of the nine weights are encoded by nine 16ratybstrings that are concatenated to
form a string 0fd x 16 = 144 bits. Mutations are applied to this 144-bit string by usipecslledinverse
mutations Suppose a string is describedgd), g(2), ...,g(i —1),9(2), gt + 1), ...,9(G—1),9(3), 9(G +
1),...,9(143), g(144)], whereg(k) = 0 or 1, and suppose the Genetic Algorithm generates the random
valuesr; = i andry = j with j > 4, then these bits and all bits between them are reverseg kg0
becomed — ¢(k) for k = i, ..., j. Consequently, the mutated gene then becdg@s, ¢(2), ..., g(i —
1),1-g(i),1 = g(i+1),..1 = g(G = 1),1 = g(j), g(j + 1), ..., g(143), g(144)].

The fitness function is expressed as the number of transities, and the algorithm aims to minimize
this number. To this end, for each rule the weighted surm (1) is computed. This sum is the base to
divide rules into two classes:

1. Normal rules: these are rules that have the sameXwand the same function valug(X),
2. Forbidden rules: rules with the same simbut a different function valué'(X).

Forbidden rules are penalized by adding the val® to the fitness function.
We conducted 100 trials, each consisting of 10000 genastiesulting in a number of rules of 330.
The weights corresponding with these rules are:

W, = 15012, W, = 11538, W3 = 13551,
Wi = 8808, W5 = 1804, W = —4716,
Wy = —4634, Wy = 18054, Wy = 1612

However, these weights are not unique: other values thatmisper evaluations of the totalistic transition
function are also possible.

5 Implementing DI-Circuits on the Totalistic CA

Implementation of SignalsThe propagation of signals over the cell space is governgtidyransition
table (Table.1). Here we use the rule-based notation,rtiha the totalistic transition function notation.
The configuration at the left in Fig. 4 will transform throutitese rules via intermediate configurations
into the configuration at the right in the figure, which is tlaene configuration as the left one, but then
shifted one cell to the right.

The transition rules are designed such that they can onlpjbléed in a strictly defined sequential order,
even if the update mode is asynchronous. This ensures ihbilig} of signal propagation or any other
operations involved in computation [4]. The design of rides® takes into account the case in which two
subsequent signals appear on the same signal line (not deneh In this case the two signals will not
interfere with each other and keep a distance of at least ttelis between them.

Implementation of Modules The three modules introduced in section 2 are representddeocell
space by the configurations in Fig. 5.

The configuration of the P-Merge in Fig.5(a) processes one®input signals as shown in Fig. 6. The
rule table is not shown here, but the final rule function isegiby Appendix.

The configuration of the Fork in Fig.5(b) processes one igfrtal as shown in Fig. 7. The rule table
is not shown here, but the final rule function is given by Apgign

The configuration of the R-Counter in Fig.5(c) processesarm®o signals as shown in Fig.8. The
rule table is not shown here, but the final rule function isgiby Appendix. Fig.8(a) illustrates the case

160 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

T |
~ >F==i<‘ ~ e TR
ol T o e o
mE | mm [mmn mEE | T mE
e M e T) e T
- 5\%I=. g

- |

Fig. 4. The basic configuration of a signal (left figure) is transfedmnder the direction of transition rules 1 to 6
through the steps to the same configuration (right figurdjezshone cell to the right.

===. HE BN
o N |
B g gui
H Bl | HER
HE
N
(a) (b) (©

Fig. 5: Configurations of the primitive modules. (a) P-Merge, (b)k-and (c) R-Counter.

Universality of 2-State Asynchronous Cellular Automaton

(a)

(b)

[]

||

||
\H\

[[[[[]
Enmumn
EE =N
||
||

EEEREN

L]

N

[||
mII
NN
||

Fig. 7: Processing of a signal by the Fork, giving two output signals

161

162 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

[] [] [

i i ||

[N [[N [[
(a) (b)

LI
||
H.H

(©) (d)

Fig. 8: Processing of signals by the R-Counter. (a) A signal inparnfthe left line becomes a pending signal stuck
inside the R-Counter. (b) Mod-2 Counter functionality: aa®d signal from the left input line results in a signal
output to the line at the right. (c) Reset functionality: uhfrom a reset signal to an R-Counter containing a pending
signal results in (d) a signal output to the line at the top.eWthere are two input signals in addition to a pending
signal already input from the left, the R-Counter has theiaghbetween two possible operations. The operation
illustrated here is the Mod-2 counting operation.

Universality of 2-State Asynchronous Cellular Automaton 163

in which a single signal is input to the left line of the R-Céem This signal will remain stuck in the
R-Counter—we say that the signal is pending—while no furfirecessing takes place until one more
signal is received.

When one more signal is received from the same input line @lg)) an output signal is produced (at
the right), whereby the R-Counter reverts to its initial igaration (Mod-2 Counter functionality).

When a Reset signal is input to the R-Counter in which a sigragnding (Fig. 8(c)), an output signal
is produced from the line at the top, whereby the R-Counteerte to its initial configuration (Reset
functionality).

When there are signals at both input lines, while a signaltiffom the left is already pending, then the
R-Counter has the choice to produce either of the outpetstie output at the right line or the output at
the top line. One signal remains pending in both cases, buitrth at which it remains pending depends on
the choice made by the R-Counter. Fig. 8(d) shows the caskighithe R-Counter chooses to conduct the
Mod-2 counting operation, leaving the reset signal pendliing choice as to what operation is conducted
by the R-Counter is arbitrary. We refer to the ability to makeh a choice aarbitration.

In addition to the condition that the set of primitive modiiie universal, it is necessary to ensure that
the primitive modules can be laid out on the cell space sudb &rm circuits. For this it is necessary
to form curves on the cell space to turn a signal left and riffotrtunately, this is an easy task, because
it can be implemented by the P-Merge. One more structureigh@juired to form circuits is a signal
crossing. Assuming that signals lack an inherent abilitgrtzss each other, we resort to the design of a
circuit specialized for this task. This circuit, shown igF®, consists of merely one R-Counter, two Forks
and two P-Merges. This way of using the arbitration funaidy of the R-Counter is much simpler than
previously reported in literature [21], making the resdtcircuit for signal crossings relatively small.

P

(a) (b)

Fig. 9: (a) Circuit to cross signals without the need to intersecesviA signal orY; will be directed toO,, whereas
a signal onl> will be directed toO-. Simultaneous signals oh and > will be processed correctly, due to the
arbitration functionality of the R-Counter. (b) Implematibn of the crossing circuit on the ACA. The circuit is
mapped on the cell space, while its topology is preserved.

164 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

The configurations of the modules thus allow us to simulatestto the right and left of signals, as well
as crossings of signals. Unlike the synchronous CA modeébjindifficult issues concerning the signal
phase and the periodicity of signals on the cell space do cairdn the proposed ACA model: there
is an almost unlimited freedom in laying out modules on thiésgace, which is only restricted by the
underlying DI circuit topology. In other words, it is quiteaightforward to construct any arbitrary DI
circuit on the cell space.

Next example the S-module (1-bit memory) as shown in Fig.rikDFig. 11.

T
4—0—»
O— s1
{
D)
.1'.'.?
BT
T
S0 —(O) O
O S0
O T1
O TO

Fig. 10: Circuit of an S-module (1-bit memory).

Universality of 2-State Asynchronous Cellular Automaton 165

" X o=
i "
it ™ n
x L T
b A
i = BN
L = 4
i 5 ol
P B =
B B -
= * = " oE e =
o M
* 2
s X
= =

Fig. 11: Implementation of an S-module on the ACA.

166 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

6 Conclusions and Discussion

This paper proposes a 2-dimensional 2-state ACA with inméependent totalistic rule, meaning that
a cell's update does not depend on its own state but only oneardicombination of the states of the
neighboring cells. The model is proved computational uisiakeby showing how a universal set of three
primitive modules can be embedded on the cell space. Sieqaitimitive modules have at most four input
or output lines each, this embedding fits well into the sqlettiee topology of the cell space.

The number of required transition rules in both rule table are function is 330, which is relatively
high, when compared to other ACA models. Physical reabratiof ACA models tend to require less
rules, which is a strong motivation to reduce the numberlefrin the model. This study, however, should
be interpreted as the first proposal in which totalistic ininéependent transition rules are combined with
an asynchronous mode of updating. The transition rules elidanfigurations resemble those in [6].
This is a direct consequence of the totalistic rules beiny/elé in a mostly systematic way from the
non-totalistic rule. Without the ad-hoc elements inclugedur method, we would end up with a rule
set that is many time bigger. Reducing this rule set, whiladpéully able to automate the method is a
follow-up step that we consider. In general for such an aatechapproach to work, the neighborhood
size employed by the resulting rule set will be larger theat tf the original rule set, because of the
need to avoid conflicting rules. Because of this, the numbeules will tend to increase in the rule
transformation process.

References

[1] S. Adachiand H. Sawai: “Effects of migration methods argllel distributed parameter-free genetic
algorithm,” Electronics and Communications in Japan (RaElectronics) Vol. 85 (2002) 71-80

[2] S. Adachi, F. Peper and J. Lee: “Computation by asynabusly updating cellular automata”, J.
Stat. Phys. 114 (1/2) (2004) 261-289

[3] S. Adachi, F. Peper and J. Lee: “Universality of Hexaddksynchronous Totalistic Cellular Au-
tomata”, Cellular Automata, LNCS 3305 (2004) 91-100

[4] S. Adachi, J. Lee, and F. Peper: On signals in asyncheoeliular spaceslEICE Trans. inf. &
syst, E87-D(3):657—668, 2004.

[5] S. Adachi, J. Lee, F. Peper and H. Umeo: “Kaleidoscopeifaf: la 24-neighborhood outer-totalistic
cellular automaton”, Physica D 237 (2008) 800-817

[6] S. Adachi, J. Lee and F. Peper: “Universal 2-State Asyoshus Cellular Automaton with Inner-
Independent Transitions”, Proc. of 4th International Vébrdp on Natural Computing (IWNC 2009),
Proceedings in Information and Communications Techno{B¢@T 2), Springer-Japan (2009) 107—
116

[7] E. R. Berlekamp, J. H. Conway and R. K. Guy: “Wining Ways FFour Mathematical Plays”, vol.
2, Academic Press, New York (1982)

[8] S. Hauck: “Asynchronous design methodologies: an aesrl; Proc. IEEE 83 (1) (1995) 69-93
[9] A. llachinski: “Cellular Automata”, World Scientific Falishing, Singapore (2001)

Universality of 2-State Asynchronous Cellular Automaton 167

[10] T. E. Ingerson, R.L. Buvel: “Structures in asynchros@ellular automata”, Physica D 10 (1984)
59-68

[11] R. M. Keller: “Towards a theory of universal speed-ipdadent modules”, IEEE Trans. Comput.
C-23 (1) (1974) 21-33

[12] J. Lee, S. Adachi, F. Peper, K. Morita: “Embedding unsa delay-insensitive circuits in asyn-
chronous cellular spaces”, Fund. Inform. 58 (3/4) (2003220

[13] J. Lee, S. Adachi, F. Peper, K. Morita: “Asynchronousgeof life”, Physica D 194 (2004) 369-384

[14] J. Lee, S. Adachi, F. Peper, and S. Mashiko. Delay-isitiga computation in asynchronous cellular
automataJournal of Computer and System Sciend®201-220, 2005.

[15] J. Lee, F. Peper, S. Adachi, S. Mashiko: “Universal Ddlasensitive Systems With Buffering
Lines”, IEEE Trans. Circuits and Systems. 52 (4) (2005) 7482

[16] J.Lee, F. Peper, S. Adachi, K. Morita: “An Asynchron@sdlular Automaton Implementing 2-State
2-Input 2-Output Reversed-Twin Reversible Elements”)&l Automata, LNCS 5191 (2008) 67—
76

[17] J. Lee and F. Peper. On brownian cellular automataPrbt. of Automata 20Q08ages 278-291,
UK, 2008. Luniver Press.

[18] J. von Neumann: “The Theory of Self-Reproducing Autteriaedited and completed by A. W.
Burks, University of lllinois Press (1966)

[19] P. Patra, D. S. Fussell: “Efficient building blocks faldy insensitive circuits”, in: Proceedings of
the International Symposium on Advanced Research in Asgmeus Circuits and Systems, IEEE
Computer Society Press, Silver Spring, MD, (1994) 196-205

[20] F. Peper, J. Lee, S. Adachi, S. Mashiko: “Laying outwitg on asynchronous cellular arrays: a step
towards feasible nanocomputers?”, Nanotechnology 12003) 469-485

[21] F. Peper, J. Lee, F. Abo, T. Isokawa, S. Adachi, N. Mat&ui Mashiko: “Fault-Tolerance in
Nanocomputers: A Cellular Array Approach”, IEEE Trans. Neth. 3 (1) (2004) 187-201

[22] S. Wolfram: “Cellular Automata and Complexity”, Addis-Wesley, Reading, MA, USA (1994)

[23] S. Kizu, H. Sawai, and T. Endo: “Parameter-free Genatgorithm: GA without Setting Genetic
Parameters,” Proc. of the 1997 Int. Symp. on Nonlinear Themd its Applications 2/2 (1997)
1273-1276

[24] H. Sawai and S. Kizu: “Parameter-free Genetic Algaritmspired by Disparity Theory of Evolu-
tion,” Proc. of the 1997 Int. Conf. on Parallel Problem Sotyfrom Nature (1998) 702-711

168 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

Appendix: Tables of Transition Rules

Tab. 2: Semi-totalistic rules (part 1).

| No. | ng | C"] No | ng | C" || No | ng | C" || No | nk | O]
Signal
1 | 101200200 1 2 | 221110000 1 3 | 222110000 1 4 | 341000000 O
5 | 102210100 O 6 | 101210100 O
P-Merge
7 | 101200220 1 8 | 101200420 1 9 | 101210200 O 10 | 101210201 O
11 | 101211211 O 12 | 101220220 1 13 | 101311220 O 14 | 101311221 0
15 | 101311222 0 16 | 101420110 1 17 | 101420111 1 18 | 101420410 1
19 | 102210200 O 20 | 102210201 O 21 | 102211211] 0 || 22 | 102311121 O
23 | 102311221 0 24 | 112420210] O 25 | 112420211 O || 26 | 112420231 O
27 | 113420210, 0 28 | 121310210| 0 29 | 121610310 1 30 | 122211111] O
31 | 122310220] 1 | 32 | 122310230 1 33 | 141642000 1 34 | 203421420, 0O
35 | 203421520 0 || 36 | 212522230 1 37 | 221111111] 1 38 | 221211121] 1
39 | 222111101 1 | 40 | 222111111 1 || 41 | 222211121] 1 || 42 | 222211122 1
43 | 222221021 1 || 44 | 223221120] 1 || 45 | 223622420, 1 || 46 | 223622520 1
47 | 231210110, 1 || 48 | 232210110{ 1 || 49 | 232210111 1 50 | 232210131 1
51 | 232620320, 0 52 | 242641200 0 53 | 313522430 1 54 | 321313421 0
55 | 321313431 0 || 56 | 321323532 0O 57 | 322313421 0 || 58 | 322320220 0O
59 | 322420120, O 60 | 322710420 1 61 | 323310410, 1 62 | 331112311] 1
63 | 331112321 1 64 | 331122422| 1 65 | 331202211| 1 66 | 332220111 1
67 | 332320221 1 68 | 332511420 1 69 | 333320200, 1 70 | 333421120, 1
71 | 333421220 1 72 | 333421300 1 73 | 334421220] 0 || 74 | 334421320, O
75 | 341000020, O 76 | 341000220, O 77 | 341021220, 0 || 78 | 341220210 O
79 | 341221210 0 || 80 | 341410010 O 81 | 341411210; O || 82 | 341420000 O
83 | 341420001 O || 84 | 343201220 O 85 | 343201230, O || 86 | 424410410 1
87 | 433521130| 0
Fork

88 | 101211221 0 || 89 | 101220221| 1 90 | 101420231 1 91 | 101420400 1
92 | 102211221] 0O 93 | 111320222| 0 94 | 112320222 0 || 95 | 112321310 O
96 | 113320221 0 97 | 121600200 1 98 | 122421331] 1 99 | 222221020, 1
100 | 222621130] 1 || 101 | 223221020] 1 || 102 | 223621130 1 || 103 | 223623440, 0
104 | 231221121] 1 || 105 | 232211220 1 || 106 | 312323331 0 || 107 | 312413321 O
108 | 322601420 1 | 109 | 323201400 1 || 110 | 331212311| 1 | 111 332212432 1
112 | 332220100, 1 || 113 | 333220100 1 || 114 | 341020220 O || 115 | 341220200 O
116 | 341400222 0 || 117 | 341420110 O || 118 | 342421220, O | 119 | 343310220, 0O
120 | 343522230, 0 || 121 | 344522230 O

Universality of 2-State Asynchronous Cellular Automaton 169
Tab. 3: Semi-totalistic rules (part 2).
No.] m JC [No] n [CO[No| m [CO[No| m [C
R-Counter
122 | 001220221 0 || 123 | 001221242 0 || 124 | 022622400, 0 | 125| 022622401 O
126 | 022622410 0 || 127 | 022622510] O || 128 | 041741484 0 | 129 | 041741584 0O
130 | 042603620 1 || 131 | 042603630| 1 || 132 | 101200222 1 | 133 | 101200422 1
134 | 101210211} O | 135| 101210221 O || 136 | 101211110, O | 137| 101211311 O
138 | 101220442 1 | 139 | 101221242 1 || 140 | 101320221 O | 141 | 101321221 O
142 | 101321231 0 || 143 | 101420442 1 || 144 | 101421440, 1 | 145| 101421441 1
146 | 101620641 1 | 147 | 101621640 1 || 148 | 102210211 O | 149 | 102211110, O
150 | 102211311 0 || 151 | 102320221 O || 152 | 102320231 O | 153 | 102321231 O
154 | 111321321] 0 || 155 111321332 O || 156 | 111411321 O || 157 | 111421331 O
158 | 112321321 0 || 159 | 113422210 O || 160 | 113422310, O | 161 | 120311221 O
162 | 120311222 0 || 163 | 121311221] O || 164 | 121421640, 1 | 165 | 122431321 O
166 | 122431322 0 || 167 | 122431331] O || 168 | 122431332 0 | 169 | 122602620, 0
170 | 122602630] 0 || 171 | 123422130] O || 172 | 123423200 1 | 173 | 123423201 1
174 | 123423310 1 || 175| 123431321 O || 176 | 123622410, 1 | 177 | 123622510, 1
178 | 132432331 1 || 179 | 133432331 1 || 180 | 133432332 1 | 181 | 140841484 0O
182 | 140842484 0 | 183 | 141641284 1 || 184 | 141642284 1 | 185| 201200422 0
186 | 202423200 0 || 187 | 202423201] O || 188 | 202640642 O | 189 | 202640742 0O
190 | 212311110 O || 191 | 212311210] O || 192 | 212512220, O | 193 | 212512241 O
194 | 213511210] O || 195 | 220311221] O || 196 | 220311222 0 | 197 | 221110111 1
198 | 221111221) 1 || 199 | 221220121] 1 || 200 | 222110111| 1 | 201 | 222110121 1
202 | 222111221) 1 || 203 | 222220121| 1 | 204 | 222231131 1 || 205| 222313421 1
206 | 222422220 1 || 207 | 222423220| 1 | 208 | 223231131 1 || 209 | 223323230 1
210| 223333130, 0 || 211 | 223412220| 1 | 212 | 223412230 1 || 213 | 223422120, O
214 | 223502321 1 || 215| 223623210| 1 | 216 | 224423400 1 || 217 | 224423401 1
218 | 224432120 0 || 219 | 224433120| 0 | 220 | 231321221 1 || 221 | 231421231 1
222 232213321) 1 || 223 | 232213331 1 || 224 | 232213431 1 || 225| 232223432 1
226 | 232223532 1 || 227 | 232321221 1 || 228 | 232321322 1 || 229 | 232331231 1
230 | 232412421) 0 || 231 | 232421221] 1 | 232 | 233213321 1 || 233 | 233223432 1
234 | 233331221] 1 || 235 233332231 1 || 236 | 241841284 1 || 237 | 243502521 O
238 | 243603420, 0 || 239 | 243603430 0 | 240 | 243603521 O || 241 | 304641642 0O
242 | 304641742 0 || 243 | 321402411 1 || 244 | 321421231 1 || 245| 322402411 1
246 | 322402421 1 || 247 | 322412422| 1 | 248 | 322421231 1 || 249 | 322741562 0O
250 | 323403420, 1 || 251 | 323403430| 1 | 252 | 323422210 O || 253 | 323422220, 0O
254 | 323422221 0 || 255 | 323422241 0 || 256 | 323441242 1 || 257 | 323441342 1
258 | 323503521 1 || 259 | 323522241 1 | 260 | 323542452 0 || 261 | 323622400 1

170 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

Tab. 4: Semi-totalistic rules (part 3).

No. | Nk | C" [No | g | C"]| No | Nk | C" || No | Nk
R-Counter

263 | 323623200 1 || 264 | 323623201

267 | 323702721 268 | 323702731

271 | 332411210 272 | 332412411

275 | 332422522 276 | 332431221

265 | 323641642
269 | 324422220
273 | 332413331
277 | 333313321

262 | 323622401
266 | 323641742
270 | 330221331
274 | 332422210

278 | 333341352
282 | 333411231
286 | 333423310
290 | 333442652
294 | 341000222
298 | 341021242
302 | 341220441
306 | 342021042
310 | 342323432
314 | 343422200
318 | 344403420

279 | 333411210 280 | 333411211
283 | 333412411 284 | 333421110
287 | 333431221 288 | 333431222
291 | 334421110 292 | 334421111
295 | 341001000 296 | 341001022
299 | 341100220 300 | 341201022
303 | 341221440 304 | 341321441
307 | 342220042 308 | 342313321
311 | 342602420 312 | 342602430
315 | 343422201 316 | 343602620
319 | 344403430 320 | 344422200

281 | 333411220
285 | 333422310
289 | 333441352
293 | 334421131
297 | 341020242
301 | 341220242
305 | 341421440
309 | 342313331
313 | 343313321
317 | 343602630
321 | 344422201

322 | 413422220
326 | 433532210
330 | 434410410

323 | 414432220 324 | 423641442
327 | 433532220 328 | 433612421
331 | 434521220 332 | 444613331

325 | 430221331
329 | 433642352

o|lo|o|r|o|lo|o|o|o|r| k| k| k k| kol Q

PR O OOOOO0O|IOOR ORI PR RFREF
PP O OOOIOOoOOoOOoOR POk ORI
OO0 O O|IO|OOO|R PR FOOIF

Universality of 2-State Asynchronous Cellular Automaton 171

Tab. 5: Totalistic transition rules.

X | F(X) |
38715 40327 43349 49031 52266 53665 53878 56687 56900 58381
62582 63227 67216 70238 71719 71932 72550 74162 76435 78666
78915 80278 80527 81987 82139 82331 83120 85270 87047 88653
89235 90052 91664 92086 94078 94926 96231 96239 96720 98712
100023 100197 100385 100598 100763 100962 101278 10278689002103603
104739 105064 105397 105596 106676 108901 113748 11393682914114927
116097 116695 116910 117739 118652 122373 124936 12568754826128478
130033 130382 130471 131579 131763 131916 132129 13298174934134803 O
134964 135187 135486 138487 138528 138998 139355 140387847140141432
142990 143579 144602 145191 145845 146959 149037 14914735849151981
152086 152322 153042 153593 154635 156188 156971 15699967157159829
160192 160969 164826 165013 165274 165528 165532 16598762366167144
168487 169636 169739 169803 169990 170035 170079 17040258171173024
173101 174242 174519 174927 178564 179254 179278 18125584283184048
184325 185347 186909 189635 189741 190184 191155 19213554392192622
194818 197332 197590 199719 202102 202224 202733 21495195214225547
227775 228502 236029 242780 247748 251569 256203 261756539265266472

36911 48867 63751 66921 66975 73019 76243 76627 77263 78239
80823 82435 83076 87579 90814 92295 94165 95219 95777 100145
100999 101130 103129 105846 106691 107585 108593 10895344310111029
111243 111783 113460 113466 113909 114441 114550 115072367116116981
117979 118199 120258 120649 120830 120961 122144 12334290023124307
124580 124715 125283 125347 126192 127783 127992 12960417%30131043
131734 131957 132818 133032 133284 134250 134381 13443051234136450
136511 136893 137253 137666 138030 138312 138865 13888419840140525 1
141067 141186 141735 141805 142486 143008 143417 14361484144144946
145508 146369 147421 147858 148197 149654 149812 15121777451152179
153207 153715 153863 154316 154531 155590 158201 15834981958160863
160918 161409 162293 162300 163021 163205 163363 16497523865165366
165452 165475 166251 166271 167847 171069 171132 17151288273174201
175844 176246 179463 181267 181398 181470 183010 18356112184184683
185420 185901 186295 195021 199129 201615 202175 20711503208211541
211749 212669 218638 219009 219118 228819 237627 26695967271304303

172 Susumu Adachi, Jia Lee, Ferdinand Peper, Hiroshi Umeo

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 173-186

Asymptotic behaviour of self-averaging
continuous cellular automata

Heather Betel' and Paola Flocchini! and Ahmed Karmouch!

LSchool of Information Technology and Engineering,
University of Ottawa, Ottawa, Ontario, KIN 6NS5, Canada.
email:{hbetel, flocchin, karmouch}@site.uottawa.ca

In this paper we continue the study of the asymptotic dynamics of fuzzy cellular automata (FCA) concentrating on a
class of FCA rules called self-averaging rules. We begin with the elementary case. We know that all self-averaging
rules converge to % starting from configurations with values in (0, 1); we now start the study of how fuzziness
propagate in a binary CA by showing that indeed the presence of a single fuzzy value is sufficient to force some
rules of this class to converge to % We also study the way in which self-averaging rules converge, and we show that
their fluctuations around % obey, in a specific sense, a Boolean rule. We then turn our attention to the more general
case of larger neighbourhoods and higher dimensions. We show the same tendency to % and describe propagation of
fuzziness in a class of rules. We also describe their asymptotic behaviour using a generalisation of the elementary
results.

Keywords: fuzzy cellular automata, asymptotic behaviour, convergence, continuous cellular automata.

1 Introduction

Discrete dynamical systems known as cellular automata (CA) were first introduced by Von Neumann
as models of self-organizing/reproducing behaviours (21). Since then, they have come to be used in
fields as divergent as ecology and theoretical computer science(e.g., see (5; 14; 22)). CA are discrete
in space, time and state. Kaneko introduced a modification, continuous cellular automata (or coupled
map lattices), which were discrete in space and time, but continuous in state. They were conceived of
as simple models exhibiting spatio-temporal chaos, and now have applications in many different areas
including fluid dynamics, biology, chemistry, etc. (e.g., (12; 13)).

Introduced in (6; 7) to study the impact that state-discretization has on the behaviour of these sys-
tems, fuzzy cellular automata (FCA) are a particular type of continuous cellular automata where the local
transition rule is the “fuzzification” of the local rule of a corresponding Boolean cellular automaton in
disjunctive normal form®”. They have since gained currency as a modeling tool in pattern recognition
(e.g., see (15; 16; 17)), and to mimick nature (e.g. (8; 20)), and have been used to investigate the effect

® These are not to be confused with a variant of cellular automata, also called fuzzy cellular automata, where the fuzziness refers
to the local rule (e.g., see (1))

174 Heather Betel and Paola Flocchini and Ahmed Karmouch

of perturbation (e.g. noisy source, computational error, mutation, etc.) on the evolution of Boolean CA
(11). The asymptotic dynamics of elementary FCA (i.e., with dimension and radius one) has been ob-
served through simulations in (9) where an empirical classification has been proposed. The asymptotic
behaviour of some FCA rules has only recently been analytically studied (e.g., see (4; 10; 18; 19)); in
particular it has been shown in (18; 19) that none has a chaotic dynamics, thus supporting the empirical
evidence of (9). Finally, methods for controlling the dynamics of fuzzy rule 90 have been investigated in
(23).

In order to study the behaviour of FCA and its relationship to the behaviour of the corresponding
Boolean rules, particular classes of elementary Fuzzy CA with common properties have been identified
(for example, weighted average rules, self-averaging rules, generalized majority rules) (4; 3). Of particu-
lar interest are the results concerning self-averaging rules whose analytical form, in the elementary case,
is as follows: f(z,y,2) = f'(y,z)x+ (1 — f'(y,2))(1 — z) (analogously for variables y and z) for some
function f’. We know that self-averaging rules with initial values in (0, 1) converge to % Moreover, it
has been shown in (3) that when the variable averaged is y they correspond to Boolean additive rules,
and they are the only rules displaying a peculiar self-oscillating behaviour around the fixed point (earlier
observed in rule 90 (10)): their dynamics around their convergence point of % obey the rule table of the
corresponding Boolean rule.

In this paper we continue the study of this class of rules in infinite CA with any dimension and neigh-
borhood.

We first focus on elementary self-averaging rules and we study their asymptotic behaviour when the
initial configuration contains some Boolean and some fuzzy values. We know that when the initial config-
uration is fully Boolean they all display complex dynamics; when it is fully fuzzy (i.e., values are in the
open interval (0, 1)) they all converge to % We start the study of how fuzziness propagate in a binary CA
by showing that indeed the presence of a single fuzzy value is sufficient to force some rules of this class
to converge to % We also conclude the study on the way in which self-averaging rules converge showing
that each behaves in the proximity of % following a simple CA rule and observing that such behaviour can
also be observed in the corresponding Boolean rule, hidden in apparent complexity.

We then generalize some of the results on convergence and oscillation for larger neighbourhoods and
higher dimensions. We show that fully fuzzy configurations will converge to % and give sufficient condi-
tions for a single fuzzy value causing an entire system to converge to % Although it is difficult to provide
an exhaustive description of the asymptotic fluctuations for this infinite class of rules, we do provide
generalizations of the results obtained for the elementary rules and a framework for understanding what
happens in the arbitrary case.

2 Definitions

A d-dimensional infinite Boolean cellular automata can be described by a quadruple C(Z%,{0,1}, N, g)
where: Z< represents the set of cells; {0, 1} is the set of possible Boolean states of the cells; N is the
neighbourhood of a cell and can be defined in different ways but usually contains the cell itself plus the
neighbouring cells up to a certain radius; and g : {0, 1}Vl — {0, 1} is the local function, also called the
rule of the automaton. Given an initial configuration, CY, that is, a mapping cv:.74 - {0, 1}, cell states
are synchronously updated at each time step by the local function applied to their neighbourhoods. A
configuration is the resulting map C* : Z% — {0, 1} at any time t. A finite d-dimensional Boolean cellular
automaton has a finite number of non-zero states in an infinite quiescent background. So C*(z) = 0 for

Asymptotic behaviour of self-averaging continuous cellular automata 175

all but finitely many z € Z?. Circular cellular automata can be thought of as infinite CA with a periodic
repeating pattern, or as a finite circular d-dimensional grid.

The local rule g of a Boolean CA is typically given in tabular form by listing the 229%" binary tuples
corresponding to the 2291 possible local configurations a cell can detect in its direct neighbourhood, and
mapping each tuple to a Boolean value r; (0 < i < 229t1 —1): (00---00,00---01,...... ,11---10,
11---11) — (rg, - -+, T924+1). The binary representation (rg, - - -, r924+1) is often converted into the dec-
imal representation) _, r;, and this value is typically used as the “name” of the rule (or rule number). Let
us denote by d; the tuple mapping to r;, and by 77 the set of tuples mapping to one. The local rule can
also be canonically expressed in disjunctive normal form (DNF) as follows:

g(’U, .. \/ /\ d s(3+a)

1<229t1l j=—qq

where d;; is the j-th digit, from left to right of d; (counting from zero) and UQ (resp. vl) stands for —wv;
(resp. vj)ie. A =—a:q vji Y+ will be equal to one precisely when VU_q - -+ Vg viewed as a single binary
number is equal to d;. Cellular automata with dimension and radius one are Called elementary.

A fuzzy cellular automaton (FCA) is a particular continuous cellular automaton where the local rule is
obtained by DNF-fuzzification of the local rule of a classical Boolean CA. The fuzzification consists of a
fuzzy extension of the Boolean operators AND, OR, and NOT in the DNF expression of the Boolean rule.
Depending on which fuzzy operators are used, different types of fuzzy cellular automata can be defined.
Among the various possible choices, we use the following: (a V b) is replaced by maz{1, (a + b)},
(a A D) by (ab), and (—a) by (1 — a). Whenever we talk about fuzzification, we are referring to the
DNF-fuzzification defined above. The resulting local rule f : [0,1]?T! — [0, 1] becomes a real function

that generalizes the canonical representation of the corresponding Boolean CA:

fo—g,-+ vg) = Z i H (), dijtq) ey

i<229tl j=—qq
where [(a,0) =1 —aandl(a,1) = a
Consider, for example, elementary CA 18 whose local transition rule in tabular form is given by:
(000, 001,010,011, 100,101, 110,111) — (0,1,0,0, 1,0, 0, 0). The local transition rule can also be writ-
ten in DNF form as: g(v_1,vo,v1) = (-v—1 A =wg Av1) V (v—1 A =g A —w1), and the corresponding
fuzzification is: f(v_1,v0,v1) = (1 —v_1)(1 —vg)vy + v_1(1 — vg)(1 — vy).
Throughout this paper, we will denote local rules of Boolean CA by ¢ and their fuzzifications for the
corresponding FCA by f. Forany 7 € Z%, we will further denote Ct()by zt,, where Ct : Z% — [0, 1]
i

in the fuzzy case. When there is no confusion, as in the 1-dimensional case, the vector notation will be
omitted.

A rule is said to converge to an homogeneous configuration (...p, p,p, .. .) if, starting from an initial
configuration (..., z¥_;, 29,29, ,...) witha? € (0, 1) for all i, we have that Ve > 0 37 such that V¢ > T
and Vi: |z} — x§+1| < e. In this case, we will say that rule f converges to p.

In this paper, we are interested in the behaviour of self-averaging rules, a particular class of fuzzy CA.
Self-averaging rules can be written as the weighted average of one of their variables with its negation as

(i) note that, in the case of FCA, maz{l, (a+b)} = (a+b)

176 Heather Betel and Paola Flocchini and Ahmed Karmouch
follows (where z; is the variable being averaged):
(o, - xp1)f (o, @1, Tig1, -, Tpe1) T+

(1= (o, s Tic1, Tig1, s Tne1)) (1 — 25).

Note that the function f could be the local function for a large 1-dimensional neighbourhood or for a
neighbourhood of larger dimension. In the particular case of elementary FCA, we have: f(z,y,z) =
'y, 2)xr+ (1 — f'(y,2))(1 — x) (analogously for variables y and z). For example, elementary rule
30 can be written as: [(1 — y)(1 — 2)]z + [(1 — y)z + y(1 — 2) + yz](1 — x) and it is easy to see
that, in this case, f'(y,2z) = (1 — y)(1 — z). A two-dimensional example would be the following rule:
F(@ig Tigjats 1,5y Ti g1, Tim1,5) = fao(@i a1, Tiv1,j, Tim1,5)Ti5 + f216(Ti g1, Tiv1g, Tim1,5) (1=
x;,;) where fio and fo14 are the complementary elementary functions. Note that in this example x; ;1
is a dummy variable since its value does not affect the result of the function. Table 1 contains all the
elementary self-averaging rules where % indicates the value (1 — x).

Rule Equation

Jeo(,y,2) = fio2, f153, f19s (@)y + (z)y

fgo(:l?, Y, Z) = f164 (f)Z + (:Z?)f
f105(z, 9, 2) (Zy +27)z + (Tg + zy)Z
fis0(z,y, 2) (Zz+z2)y + (Tz + x2)y
f30(x,y,2) = fse, 135, f140 | (¥Z)x + (yz + yZ +y2)z
J15(2,y,2) = frs, f39, f101 (yz)r + (YZ + yZ + y2)7
Jro6(, 1, 2) = fi20, f169, foos | (XY + Ty + xy)z + (2y)Z
J154(a,2) = f166, f180, fo10 | (By + 2Ty + wy)z + (29)2
fros(z, ¥, 2)= faor (Zz 4+ Zz 4+ 22)y + (x2)7
J156(2,.2) = f1o8 (2 4+ 2z +x2)y + (22)y
fsa(x,y,2) = frar (ZZ2)y + (Zz + 2Z + x2)y
f57(2,y,2) = fog (Z2)y + (22 + 22 + 22)y

Table 1: Self-averaging elementary fuzzy CA rules.

3 Elementary Self-Averaging Rules
3.1 Convergence

In (2), we showed that from an initial configuration on (0, 1) all self-averaging rules will converge to
%. We are now interested in their asymptotic behaviour when the initial values are in the closed interval
[0,1]. In (18), Mingarelli proved the convergence to % for some of the rules considered here for finite
configurations in quiescent backgrounds (i.e., entirely consisting of cells in state Os). In other words, we
would like to see to what extent the presence of continuous values influences the dynamics of these rules.
In fact, for some self-averaging rules we will see convergence to % even with a single initial fuzzy value.
Similar results hold for rules 60 and 90. We first state two simple lemmas.

Lemma 1 Given z € (0,1) then ax + (1 — a)(1 — z) € (0,1) forall « € [0, 1].

Asymptotic behaviour of self-averaging continuous cellular automata 177
PROOF Without loss of generality, assume © <1 —zthenz < azx+ (1 —a)(1—2) <1 —a:
ar+(l-—ao)l-z)<al—-2)+(1-a)(l—2)=(1—-2) <1,
and
ar+(1-—a)l—z)>arx+(1—a)r=2>0.
|

Lemma 2 Given o € (0,1) and x € [0,1] then |(ax + (1 — a)(1 —z)) — 3| < [z — 1],

PROOF Without loss of generality, assume x < 1 — x and let x = % — ¢ for some € € [0,%]. Then

2
1—z=1+¢c So|z— 1| = eand we need to show that [(az + (1 — a)(1 — z)) — 3| <.

oz +(1=a)1=2)~ 3| = la(z 9 +1-a)5+0) 3]

I
o1+
l’

™

|
[\

Q

a

|

I

The following convergence theorem holds for self-averaging rules which are permutive in every vari-
able.

Theorem 1 A single non-binary value in the initial configuration is sufficient to force convergence to 5
Sor rules f1o5 and f150.

PROOF We assume that we have one non-binary value in our initial configuration at . First note that,
for rules 105 and 150, we can write these equations as self-averaging rules of any of their three variables.
So the equations for 2% |,], and z{ can all be written in the ax + (1 — o)(1 — z) where a € {0,1}
and x € (0,1). Then by Lemma 1 all three of these values must be fuzzy. Thus for any given cell ¢,
xt € (0,1) for all ¢t > |i| and the convergence follows from (2). g

We now turn to rule 90. In this case a single fuzzy value does not force the entire CA to converge to %,
but it makes half of the cells converge. We can show that for total convergence we need two strategically
placed fuzzy values.

Theorem 2 Given rule 90 and an initial configuration (- -, 2%, 23,29, ---) with one i such that value
2 is in (0,1), every other value converges to % along a diagonal.

PROOF First note that if 2} is in (0, 1) then 2/} and 2!T] are in (0,1). This follows from Lemma 1

i+1
: ionee ttl st ot t ot 1 _ ot t=t
and the following equations: x;77 = T; »x; + =;_»%;, and x;1] = T;x;, o + T;T;, . Furthermore,

the sequence !, xfﬂ, xfig, .. converges to 1 by Lemma 2, noting that we can assume that the value

of |1 — 2a] in the proof will be less than |1 — 2zf|. Now assume, renumbering if necessary, that our
initial fuzzy value was 20. Then for any i, x|
a convergent sequence as described. g

isin (0, 1) from the equations above, hence forms part of

178 Heather Betel and Paola Flocchini and Ahmed Karmouch

Theorem 3 Given an initial configuration X = (---,2%,, 20,29, ---) with at least one even number i
and one odd number j such that the values x? and :c? (that is, 2 values that are an odd number of spaces
apart) are in (0, 1), rule 90 converges to 5.

PROOF Assume that the even value is 0. Then as in the proof above, at time t = 1, #1 ; and z{ will both
bein (0,1). Att = 2, 22 ,, 22 and 23 will all have fuzzy values. Continuing on in this way, we see that
for any i 2! will have a fuzzy value for all ¢ > 7 such that the party of ¢ and 4 are the same. Similarly, if we
also have a fuzzy value with odd index, for all i there exists a 7' such that x} has a fuzzy value whenever
t > T and 7 and ¢ have opposite parity. Hence all values must converge to %]

Note that in a circular CA of odd length, a single fuzzy value would be sufficient for rule 90 to converge
to % because every cell can be seen as being an even distance from every other cell; with a circular CA of
even length the results of Theorem 3 would apply.

For rule 60, the results are a little different. With only a finite number of non-binary values, we can
only show that rule 60 converges to % to the right of all such values.

Theorem 4 Given fuzzy rule fgo and at least one non-binary value in the initial configuration at :c?, then
forall j > 1 x‘; will converge to % ast — oo.

PROOF By Lemma 1, z! will remain in (0, 1) for all £. Now since z! is the weighting factor in the
calculation of xfﬂ, forall t > 0 z! 41 will be a fuzzy value. In fact, for any j > i, for any t > j — 1,
gc; will be a fuzzy value and by Lemma 2, they will all be converging to % since the value of |1 — 2q/| is
decreasing at each iteration. g

Corollary 1 Given fuzzy rule feo and an initial configuration such that for all © there exists a j < i such
that IE? is non-binary, then this configuration will converge to % everywhere. In particular, given a single

non-binary value in a circular CA, all values will converge to %

Again note that in a circular CA, since there is no notion of left and right, a single value is enough to
force convergence everywhere.

3.2 Behaviour around the Fixed Point
1

We are now interested in the way in which each of these rules converges to 5. In this section, we show
that if we are close enough to the point of convergence, we can determine if the output, f(z,y, z) will be
greater than or less than % based on the individual values of x, y, and z and their relationship to % In the
range for which this relationship is fixed, we can write the results as a truth table with greater than and
less than symbols. If we then interpret the less than symbols as Os and the greater than symbols as 1s, we
can deduce the equivalent binary behaviour of these rules as they approach %

In (2), we began the discussion of the behaviour of the self-averaging rules as they approached the point
of convergence. We now conclude it by describing how they fluctuate according to an elementary CA rule.
These rules can be divided into two categories: those where the variable averaged is y can be shown to be
all the elementary additive rules, and in (3) it has been shown that such rules are self-oscillating, that is,
the truth table of their behaviour in proximity to their fixed point can be constructed from the truth table
for the rule itself simply by replacing Os with "< and 1s with ”>”. The remaining rules behave as an
entirely new rule in the proximity of %, a shift, an inversion or a combination of both. We sketch the proof
for two of these rules, figs and fi56; the corresponding behaviour for the others is reported in Table 3.

V2 V2

To begin, observe that if z and y are in (1 — 32, *32), then zy, Zy, =y, Ty are less than 1.

Asymptotic behaviour of self-averaging continuous cellular automata 179

Lemma 3 of + af is greater than % if and only if both (3 and o are greater than % or both are smaller.

rly| =z f108|156 T 1Y |z | 9204
< << < 0]0]0 0
< | < | > < 01011 0
< | > < > 01110 1
<|>|> > 0111 1
> | << < 11010 0
> | < | > < 1101 0
> > < > 11110 1
> > | > > 111 1

Table 2: Rules 108 and 156: fluctuations around %

Theorem 5 Rule f19s converges to %, its fluctuations around % obeying Boolean rule go4.

PROOF We recall rule 108 in the form of a self-averaging rule:
(Zz+ Tz +22)y + (22)7.

If we let « = ZZ + Zz 4 2z and 3 = y, then from Lemma 3 f(x,y, 2) is greater than § if y > % and
IZ+ITz+xz>ory < 5and Tz + Tz + 2z < 5. But 2 + Iz + 2z > 5 if and only if zz < 3.
From the observation above, for z, z € (1 — %, ?), xz is always less than % S0 Tz + Tz + xZ is always
greater than % Hence, under these conditions on x, z, fi0s(z,y,2) > % if and only if y > % In other
words, rule 108 fluctuates around % obeying Boolean rule 204, g(z,y,2) = y.n

Analogously we obtain:

Theorem 6 Rule f155 converges to %, its fluctuations around % obeying Boolean rule go4.

Rule | behaviour around 3
f30 g15(x,y,2) =7

Rule | behaviour around 3 fas g15(z,y,2) =T
feo g60 fios | giro(w,y,2) =2
foo 990 fisa | giro(w,y,2) =2
f105 g10s fios | gooa(w,y,2) =
f150 9150 fis6 | gooa(w,y, 2) =

f54 951(%1/,2) =Y
fs7 gs1(x,y,2) =9

Table 3: CA-like behaviour around the fixed point of self-averaging elementary fuzzy CA rules (the rules equivalent under conju-
gation, reflection, or both are not indicated).

180 Heather Betel and Paola Flocchini and Ahmed Karmouch

3.3 Observations

Let us now reconsider the Boolean rules in light of the asymptotic behaviour of their fuzzy equivalents. We
have seen that the auto-fluctuating rules continue to exhibit the same behaviour as their binary equivalents
even as they converge. But what about the other rules? Can their convergent behaviour be seen in anyway
in their corresponding Boolean rules? In fact, testing has shown that the same convergent behaviour as
we have described here does occur. Line by line comparisons of Boolean rules 30, 45, 106, 154, 108, 156,
54, and 57 with the Boolean equivalent of the asymptotic functions of their fuzzy rules (that is, rules z, Z,
Z, 2, Y, Y, Y, and ¥, respectively) show that they agree with these rules over 84% of the time, starting from
random initial configurations.

Consider rules 106 and 154 illustrated in Figure 1. There is clearly, in both of them, a strong component
of the rule z to which fi06 and fi54 converge. Rule 57 in Figure 2 appears to converge to z as well.
However, this rule will sometimes have strong z components and sometimes strong x components. In
fact, what it appears to be converging towards is a grid pattern (...10101010...) with “errors”. The
behaviour of such a pattern under rules z § and z is identical. Anomalies in the grid of the form 010010
are mapped to 101001 which appears to obeying f(x,y,z) = x but can equally be seen as an error or
exception to the rule f(z,y, z) = §, while anomalies of the form 101101 map to 011010 which can again
be either z or y with errors. Although rules 30 and 45 appear to be almost completely random, from the
testing described above we observe that they obey Z (i.e., z} = xt) more than the 84.80 and 84.92 percent
of the time, respectively, which is considerable. Rules 108 and 156, by contrast, can easily be seen to
converge quickly to y with some errors.

4 General Self-Averaging Rules

In this section, we extend the results of the previous section to larger neighbourhoods and higher dimen-
sions. In particular, we will give conditions under which generalized self-averaging rules will converge
to % everywhere and will give some indication of how a single fuzzy value will affect the system asymp-
totically. We will then describe the asymptotic oscillation of certain easily described subsets of the more
general case.

4.1 Convergence

In this section, we extend the proofs of convergence to self-averaging rules of any neighbourhood size or
dimension.

Theorem 7 Given initial configurations in (0,1), all self-averaging rules converge to %

PROOF Considering any of the self-averaging rules, we can see that for the weights to be precisely equal
to 0 or 1, we must have values equal to 0 and 1 in the calculation. With initial configuration in (0, 1), this
will never happen by Lemma 1. Thus by Lemma 2, all values must approach % Since the weight factor
« is a sum of products of values which are approaching %, |1 — 2a/| is bounded away from zero and one,
hence all values must converge to % [

How a fuzzy value will propagate depends on how many of its neighbours it affects. One way for
a single fuzzy value to infect an entire system is if it is used non-trivially in the calculations of all the
values in its von Neumann neighbourhood of range 1. This would imply that all of the values in its von
Neumann neighbourhood are in the neighbourhood N of the cellular automaton and that they are not
dummy variables.

Asymptotic behaviour of self-averaging continuous cellular automata 181

(a) 30

(c) 106 (d) 154

Figure 1: Boolean evolution of self-averaging rules: 30, 45,106,154.

Theorem 8 Assume a self-averaging rule has a single non-binary value in its initial configuration. Fur-
ther assume that the neighbourhood of a cell includes the von Neumann neighbourhood and that the
function is non-trivially permutive in the von Neumann neighbourhood. Then the entire configuration will
converge to %

PROOF Assume, without loss of generality, that Iﬁ’ isin (0, 1). Then at time ¢ = 1, every cell in the von
Neuman neighbourhood of range 1 of Ty will be in (0, 1) by Lemma 1 since the local rule is permutive
in T Inductively, at time ¢, the von Neumann neighbourhood of range ¢ will be fuzzy. Given any T,
it is in the von Neumann neighbourhood of range T" of Ty for some 7. So at time T+ 1 its von Neumann

neighbourhood of range 1 will consist entirely of fuzzy value. Hence by Lemma 2, xX, is converging to

i
%fort>T+1.|

182 Heather Betel and Paola Flocchini and Ahmed Karmouch

(a) 54 (b) 57

(c) 108 d) 156

Figure 2: Boolean evolution of self-averaging rules: 54, 57, 108, 156.

We would expect one-sided convergence if only % of the range 1 neighbourhood was used non-trivially
and a multi-dimensional rule 60 effect, that is, a fixed pattern of every other cell converging to %, if
the local rule used the cell itself and the cells in its range 2 neighbourhood that are not in the range
1 neighbourhood. We obtain rule 90 from the cells in range 1 except for the centre cell. In multiple
dimensions, this causes every other cell to converge to % along “diagonals”, or, thought of another way, at
every other time step.

4.2 Behaviour around the Fixed Point

As far as possible, we now generalize the results observed for the elementary self averaging rules.

First, recall that additive rules can be defined as the XORs of several variables or their negations. We can
extend this definition to fuzzy rules by identifying additive rules with their fuzzifications. With additive
rules, exactly half the entries in the truth table are equal to 1 and for all variables x;, there are exactly as
many terms in x; for which the function f is equal to one as there are terms in Z; for which f is equal to
one.

Theorem 9 All additive rules are self-averaging rules exhibiting self-oscillations.

Asymptotic behaviour of self-averaging continuous cellular automata 183

PRrROOF That additive rules are self-averaging follows from the definitions. Re-numbering if necessary, we
can write any additive rule f(zq,- -, z,—1) as

flxo, - xn1) = afxo, -, Tn—2) B Tp_1
= (]- - Oé(LL‘(), e ,xn—2))xn—l
+o(zo, -, Tn—2)(1 — Tp_1)

which is clearly a self-averaging rule.

We prove the self-oscillations by induction on the number of variables. From (3), we know that this is
true for functions in 3 or fewer variables. We assume that the hypothesis is true for n variables, and show
that it must be true for n 4 1 variables. Consider the additive function f in n + 1 variables. Re-numbering
if necessary, we can write f as

f(an e wrn) = O[(l’o, T 1'71,—1)1'71, + 05('1'0’ T wxn—l)'fn-

Now in order for f to be additive, & must also be additive. We know that f will be greater than % when both
z, and « are greater than %, or when both are lesser. But by induction, « exhibits self-oscillations hence
will be greater than % precisely when its Boolean function would evaluate to 1. Under these conditions,
when z, is equal to 1, g(xo, - - -,) = 1. The proof follows in the same way for a < %. g

At the other extreme, we have rules where the value being self-averaged appears only once either
directly or negated. These rules can easily be shown to converge towards that variable or its negation,
whichever appears more often.

Theorem 10 Given a Boolean self-averaging rule g(yo, -+, Yn—1) =

ag(Yo, Yim1,Yit1, s Yn—1)Yit+ Qg(Yo, 5 Yim1, Yit 1, s Yn—1)Ti

with weight function o, such that there is only one element y € {0, 1}~ such that ag(y) = 0, then the
fuzzification f of g converges to a shift.

PROOF Let y = (3) 71 and consider the interval (1 —~y,~y). If all variables x; are on this interval then so

are Z;. Furthermore, the product of up to n — 1 such variables is less than [(%)ﬁ]”_1 = 5. Thus, when
the entire configuration is on this interval, f is greater than % precisely when x; is. Hence it fluctuates as
the shift g(yOa to 7yn71) =Yi- 1

Note that as the neighbourhood size grows, the interval on which the function behaves as a shift also
Srows.

For functions in between these two extremes, the extent to which they behave as a shift will depend on
how unbalanced the weighting factors are.

5 Conclusions

In this paper we have concentrated on a class of fuzzy rules called self-averaging rules, whose asymptotic
behaviour has previously been studied when all initial values were fully fuzzy (i.e., they all belonged to
the open interval (0, 1)). In this paper we have started to look at their behaviour when the initial values
are in [0, 1]. The presence of the extremes of the interval generally has a strong impact on the asymptotic
behavior of a CA and a complete study of this impact will be the subject of future investigation. We have

184 Heather Betel and Paola Flocchini and Ahmed Karmouch

then described the asymptotic fluctuations of this class of rules (with fully fuzzy initial configurations)
around their fixed point.

In the second part of the paper, we have partially extended the results of (2) to CA in any dimension
and any neighbourhood, showing that, in this case also, fully fuzzy configurations converge to % and
giving sufficient conditions for a single fuzzy value to cause the entire CA to converge to % We have also
partially generalized the results on the asymptotic fluctuations for this class of rules for higher dimensions
and larger neighbourhoods. Further work is necessary to better understand how to fully generalize the
fluctuating properties of these rules.

Acknowledgements
This work was partially supported by NSERC.

References

[1] A. 1. Adamatzky. Hierarchy of fuzzy cellular automata. Fuzzy Sets and Systems, (62):167-174,
1994.

[2] H. Betel and P. Flocchini. Fluctuations of fuzzy cellular automata around their convergence point.
In Proc. of the International Symposium on Nonlinear Theory and its Applications, Japan, 2009.

[3] H. Betel and P. Flocchini. On the relationship between boolean and fuzzy cellular automata. In Proc.
of the 15th International Workshop on Cellular Automata and Discrete Complex Systems, volume
252, pages 5-21, 2009.

[4] H. Betel and P. Flocchini. On the asymptotic behavior of circular fuzzy cellular automata. Journal
of Cellular Automata, 2010. To appear. Preliminary version in Proc. 15th Int. Workshop on Cellular
Automata and Discrete Complex Systems, 2009.

[5] N. Boccara and K. Cheong. Automata network epidemic models. In Cellular Automata and Coop-
erative Systems, volume 396, pages 29-44. Kluwer, 1993.

[6] G. Cattaneo, P. Flocchini, G. Mauri, C. Quaranta-Vogliotti, and N. Santoro. Cellular automata in
fuzzy backgrounds. Physica D, 105:105-120, 1997.

[7] G. Cattaneo, P. Flocchini, G. Mauri, and N. Santoro. Fuzzy cellular automata and their chaotic
behavior. In Proc. International Symposium on Nonlinear Theory and its Applications (NOLTA),
volume 4, pages 1285-1289. IEICE, 1993.

[8] A.M. Coxe and C.A. Reiter. Fuzzy hexagonal automata and snowflakes. Computers and Graphics,
27:447-454, 2003.

[9] P. Flocchini and V. Cezar. Radial view of continuous cellular automata. Fundamenta Informaticae,
87(3):165-183, 2008.

[10] P.Flocchini, F. Geurts, A. Mingarelli, and N. Santoro. Convergence and aperiodicity in fuzzy cellular
automata: revisiting rule 90. Physica D, 42:20-28, 2000.

Asymptotic behaviour of self-averaging continuous cellular automata 185

[11] P. Flocchini and N. Santoro. The chaotic evolution of information in the interaction between knowl-
edge and uncertainty. In R. J. Stonier and X. H. Yu, editors, Complex Systems, Mechanism of
Adaptation, pages 337-343. 10S Press, 1994.

[12] K. Kaneko. Theory and Application of Coupled Map Lattices. John Wiley & Sons Ltd, 1993.

[13] G. Keller, M Kunzle, and T. Nowiki. Some phase transitions in coupled map lattices. Physica D,
59:39-51, 1992.

[14] C. G. Langton. Studying artificial life with cellular automata. In Evolution, Games, and Learning.
North Holland, 1986.

[15] P. Maji. On characterization of attractor basins of fuzzy multiple attractor cellular automata. Fun-
damenta Informaticae, 86(1-2):143-168, 2008.

[16] P. Maji and P. P. Chaudhuri. Fuzzy cellular automata for modeling pattern classifier. /IEICE Trans-
actions on Information and Systems, 88(4):691-702, 2005.

[17] P. Maji and P. P. Chaudhuri. RBFFCA: A hybrid pattern classifier using radial basis function and
fuzzy cellular automata. Fundamenta Informaticae, 78(3):369-396, 2007.

[18] A. Mingarelli. The global evolution of general fuzzy automata. J. of Cellular Automata, 1(2):141—
164, 2006.

[19] A. Mingarelli. A study of fuzzy and many-valued logics in cellular automata. J. of Cellular Au-
tomata, 1(3):233-252, 2006.

[20] C. A. Reiter. Fuzzy automata and life. Complexity, 7(3):19-29, 2002.
[21] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, 1966.
[22] S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, 1986.

[23] S. El Yacoubi and A. Mingarelli. Controlling the dynamics of the fuzzy cellular automaton rule 90.
In Proc. of 8th International Conference on Cellular Automata for Research and Industry (ACRI),
pages 174-183, 2008.

186 Heather Betel and Paola Flocchini and Ahmed Karmouch

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 187-194

On entropy and Lyapunov exponents of
dynamical systems
generated by cellular automata

Maurice Courbage' and Brunon Kaminski’! and Jerzy Szymanski®!

Y Laboratoire Matiére et Systemes Complexes (MSC), Université Paris 7 - Diderot, Case 7056, Bdtiment Condorcet,
porte 718A, 10, rue Alice Domon et Léonie Duquet, (France), E-mail: maurice.courbage @univ-paris-diderot.fr

2 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Torur,
(Poland), E-mail: bkam@mat.uni.torun.pl, jerzy @mat.uni.torun.pl

The paper presents a new proof of the inequality between entropy and Lyapunov exponents given by Shereshevsky
(1992) in the ergodic case.

1 Introduction

In [4] Shereshevsky associated to every dynamical system generated by a cellular automaton (CA-system)
two remarkable real functions, called Lyapunov exponents, describing the dynamics of the system. One
can consider these functions as analogues of Lyapunov exponents for smooth dynamical systems.

The main result of [4] contains an interesting inequality giving the connection between entropy and the
Lyapunov exponents of a CA-system. One can look at this result as an analogue of the well knows Ruelle
inequality in the theory of smooth dynamical systems.

The goal of our paper is to give a complete proof of the above inequality in the ergodic case. The
motivation of our work are some gaps in the original proof in [4]. The main tools applied by us are some
ideas of Tisseur ([5]) and the Ornstein-Weiss theorem being a generalization of the Breiman-McMillan-
Shannon theorem.

2 Definitions and auxiliary results
Let X = S%, S ={0,1,...,p— 1}, p > 2 and let B be the o-algebra generated by cylindric sets. We
equip X with the distance d defined as follows (cf. [4])

0 if =y,

d(‘ray) = 2 if Zo 7£ Yo,
exp(=N(z,y)) if z#y,z0=1yo

TPartially supported by Polish MNiSzW grant N N201 384834
FPartially supported by Polish MNiSzW grant N N201 384834

188 Maurice Courbage and Brunon Kamiriski and Jerzy Szymariski

where N(x,y) =sup{n > 0; x; = y;, |i| <n}, z,y € X.
We denote by o the shift transformation of X and by f the automaton transformation of X generated
by an automaton local rule F, i.e.

(0$)i = Ti+1, (fx)l = F(:Ei—m cee >$i+r)7 1€ Za
F:8*+* .6 reN.
For any p,q € Z, p < q and x € X we denote by ﬁ(xp_r, ..., Z¢4+r) the concatenation

F(:Up,m e 7xq+r) = F(xpfr» e 7xp+r)F(xp+1fra e »prrlJrr) e F((Eq,r, e vxq+r)~

It is obvious that

f@)(p,q) = f(@)pf(@)pt1... f(z)g = ﬁ(zp—rv ey Tgtr)-

By an interval in Z we mean a set which consists of all integers which belong to an interval in R.
Let I C Z be aninterval and let z = (z;), y = (y;) € X. We shall write z = y(I) if x; = y;, 7 € I.
Letz € X and s, p, g € Z be such that p < g. Following Shereshevsky ([4]) we put

Wi(z) ={y € X;y = x(s, +o0)},
Wy (z) ={y € X;y = 2(—00, —s)}.

Clzr)={ye X; y=2(p, 9}
For a given n > 1 one defines

AZ(z) = inf {s > 0; f"(WE(x)) € WE (f"2)}

and
Iy () = inf {s > 0;Vo<i<n [(Wy () C W (fiz)}
It is clear that _ B B
(@) = max (A (@), ..., Af ().

We put
A (z) =supAF(oiz), IF =suplt(oix).
JEL JEZ
It easy to see that
I (2) = max (AT (2),..., A (2)).
It is shown in [4] that the limits
N (@) = Tim LA ()

exist a.e. and they are f and o-invariant and integrable.

The limit A" (resp. A7) is called the right (left) Lyapunov exponent of f.

It is easy to show that

0<)\i(x) <r

and

() = Tim)

n— o0 n

On entropy and Lyapunov exponents of dynamical systemsgenerated by cellular automata

Lemma 1 For any natural numbers n,p,i such thatn > 0,0 <1i <n, p > 2r and x € X we have

remt® @) ety (Fa).

Proof: We shall use in the sequel the abbreviation I = [* ().

Lety € C’:tlf‘ly(l) (x). We have to show that

It is clear that the sets

W+

—p—i

(@nW- (), W'

—p—ly —p=If

() nWwZ _,_(x)

—p—ln
consist of single elements. Let us denote them by z and w, respectively. Thus we have
z:x(fpflf{,+oo), z:y(foo,erl;)

and
From (2) and (3) it follows that ‘ }
['(z) = f"(x)(=p, +00)
and

fi(w) = fi(z)(~00,p)

forevery 0 < ¢ < n.
Indeed, applying the formula (cf. [2])

o WE (obx) =wt

Fa (a‘”‘bx) ,a,b,ceZ,r e X.

We get
% H(x) pi —p—1F(z
f (ij—l:[(ar)(x)) — Pt)f (WJ (a p—1()m))
+l: x + — 7l: x) fi
c gPthal)WT;(gfpfzfz(z)z) (o Pl (@) ¢ x)
c Gth(x)W; » (C,fpfzm) fz'x)
—W* (fiz), 0<i<n.

This means that (4) is satisfied. Similarly we show the inclusion

f (W’ (x)) CW_,(flz), 1<i<n.

—p—ln (x)

what gives (5).

189

ey

(@)

3)

“)

®)

190 Maurice Courbage and Brunon Kamiriski and Jerzy Szymariski

Now we start to show (1) by induction w.r. to i € {0,...,n}.
The property (1) is obviously true for i = 0 because I > 0.
Let us now suppose that for some 0 < ¢ < n — 1 it holds

Vo<k<if*(y) = f*(@)(—p,p).

‘We shall show that _ _
N y) = @) (—p, p).-

First we shall prove that (6) implies

Vo<r<i fH(z) = fFu)(-p—r(i+1-k),r),
fFw)y =) (—rp+rii+1-k).

Let us prove the first equality. The proof of the second one is analogous.

(6)

)

®)

We argue by induction w.r. to k € {0,...,i}. The validity of (8) for k = 0 follows at once from the

inequalities p > r, I, It > 0.

nr'n

Suppose now that
Vo<k<ir f*(2) = fA(y)(—p = r(i+1—k),7).
We shall show that
) =) (=p = i = K),).
We have
FHYE) (—p—r@i—k),r) = F (ff(2)(—p—r(i + 1 - k),2r)) =
=F (fk(z)(—p —r(i+1-— k:),r)) F (fk(z)(—r +1, 2r)))
The assumption (9) tells that
@) =y (—p—rii+1-k),r).

We claim that _ _
F (fk(z)(—r, 2r)) =F (fk(y)(—r +1,2r)).

Indeed, the equality (4) gives ‘ A
f(z) = f*(z)(—p, +o0)
for any 0 < ¢ < n. Hence in particular

fF(2) = (@) (=p, +00)

and so, since p > r, we get
fk(z) = fk(x)(—r +1,2r).

We have k < i —1,1. e. K+ 1 < and therefore applying (6) we have

A y) = A @) (—p,p).

®)

(10)

1)

12)

On entropy and Lyapunov exponents of dynamical systemsgenerated by cellular automata
Hence by (12) and p > r we get
F (fk(z)(—r +1,2r)) = F (f*@)(-r+1,2r) =

k
= ff“(x)(lﬂ’) =y ,r) =
=F (fk(y)(—r + 1727")) .
Therefore returning to (11) we have
@ik =
=F () (=p—ri+1=k),n) F (f*)(—r+1,2r) =

)
= ") (=p —r(i — k), 0) f*H(y)(1,r) =
="y (-p—r

which gives (10) and so (8).
Substituting k£ = 7 in (8) we get

fi2) = fiy)(=p—r.7),
fr(w) = f(y)(=r,p+ 7).
Now we shall finish the proof showing (7), i.e. the equality
f) = @) (-p.p).
We have

) (=pop) = F (F{y)(—p—rp+7)) =

(—p
= F(f'@)p—rn)F(f@)r+lp+r)=
a4 — ((2)(p—rr)F(fZ(w —r+1,p+r)) =
= [T 0) T (w)(1,p) =
WO = (@) (=p, 0) £ (2)(0,p) = [(2)(—p, p)

which gives the desired result.

191

13)

(14)

O

Theorem 1 For any Borel probability measure invariant w.r. to o and f and ergodic with respect to f or

o it holds
hu(f) < (AT + A7) hu(o).
Proof: Let GG be the set of all z € X for which the limits
+
lim L (=)

n— oo n

=\ (2)

exist and the functions A*, A\~ are constant. It follows from our above considerations that u(G) = 1.

5)

192 Maurice Courbage and Brunon Kamiriski and Jerzy Szymariski

Letp € N, p > 2r and § > 0 be arbitrary. By (15) there exists N = N such that

+
n

forn > N.
Now Lemma implies

femtn® @) cer, (),

—p—IF (x)
forany 0 <7 < mn.
We put
NE@) = [(A\E+0)n] +1, gp=e

Let

B, (f,x,ep) = {yGX d(fky,ka) < &p, nggn}.

Our aim is to show the inclusion

A (8
B, (f,x,ep) D Cp;: Ag()é)(x), zeG.

It follows from (16) that I:F(z) < AX(5),n > N.
A
Lety € Cp+)\Jr()é)(). Hence by (17) we get

< fk(cpH o\)C
c fk (CPH" (z)) c

p l+(:r
c CP,(ffz), 0<k<m, n>N.

This means that

(ffy),, = (ffz), , -p<m<p
and so

N (f*y, fz) > p,

i.e.

d(ffy, ffr) <e™®, 0<k<n

In other words y € B,,(f, z,e,) which proves (18).
Let now

An=A,00,p) ={meZ; —p— At (0) <m<p+A,(5)}

— n

and let P denote the zero-time partition of X .

It is clear that
C’Z::)";f) (\/ o™) , n>N.

meA,

(16)

A7)

(18)

On entropy and Lyapunov exponents of dynamical systemsgenerated by cellular automata
Therefore (18) implies
1% (Bn(f»x75p)) > 1% << \/ G'mP> (1‘)) .
meA,

Now we shall check that (A,,) = (A4,(d, p)) is a Fglner sequence for any § > 0, p > 1.
Indeed, for any g € Z, g > 0 we have

(9+An)NAy={meZ; —p+g— X\ (6) <m <p+ X, (5}

for any n > 0.
Hence for such n we have

[(g+An) N An] _ (20— g+ A5 (8) + AT (d) +1)

|A,| (2p + An () + AE(9))
and so ‘(A) A |
. g+ An)N A,
hm —_— = 1

In the same way one can show that the above is true for g < 0. Hence (A,,) is a Fglner sequence.
Applying the Ornstein-Weiss theorem (cf. [3]) and the fact that P is a generator for o we get

71113;0 ﬁlogu << \/ amP> (a:)) = hu(P,0) = h,(o)

meEA,

for z € G. Therefore applying (19) and (20) we have

T (_i 1ogu(Bn(f,x,gp>)) < (M A7 +20) (o),

n—oo

p>1,6>0andx € G.
Now taking the limits as § — 0 and p — oo we get

hu(foz) < (AT +X7) hu(o),
and applying the Brin-Katok formula (cf. [1]) we obtain the desired inequality

hu(f) < (AT +27) hu(o).

References

193

19)

(20)

[1] M. Brin and A. Katok. On local entropy. Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes

in Math., 1007:30-38, 1983.

194 Maurice Courbage and Brunon Kamiriski and Jerzy Szymariski

[2] M. Courbage and B. Kaminski. Space-time directional Lyapunov exponents for cellular automata. J.
Stat. Phys., 124(6):1499-1509, 2006.

[3] D. S. Ornstein and B. Weiss. The Shannon-McMillan-Breiman theorem for a class of amenable
groups. Israel J. Math., 44(1):53-60, 1983.

[4] M. A. Shereshevsky. Lyapunov exponents for one-dimensional cellular automata. J. Nonlinear Sci.,
2(1):1-8, 1992.

[5] P. Tisseur. Cellular automata and Lyapunov exponents. Nonlinearity, 13(5):1547-1560, 2000.

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 195-208

Relative Partial Reversibility of Elementary
Cellular Automata

Pedro P.B. de Oliveirf& and Rodrigo Freitas

Universidade Presbiteriana Mackenzie

!Faculdade de Computagao e Informatica?Ros-Graduagio em Engenharia Elétrica
Rua da Consolacao 896, Consolacédo

01302-907 S&o Paulo, SP - Brazil

We address the notion of partial reversibility of cellulat@nmata rules. The elementary space is the focus of all
analyses, which rely upon the individual initial configimat for which a given rule is reversible or not, under
periodic boundary conditions. These are represented it iwltkefined herein as the reversibility pattern of the rule.
By lexicographically sorting the elementary space acewydid this construct, the space becomes partitioned into 45
classes of reversibility equivalence, where their posgiprovide an indication of their relative reversibilitygiee.

The analysis of some of the classes unveil very intriguirggpprties of their rule members. Preliminary ideas towards
modelling the reversibility degree of the classes are dised. It is tempting that the results can be generalised to
other rule spaces and that they can be used towards definialgsaiute measure of partial reversibility degree of a
rule, but there are difficulties ahead that require furtloersiderations.

Keywords: Cellular automata, reversible rules, partially revessihlles, reversibility pattern, elementary spaee,
parameterZ parameter.

1 Introduction

A well-studied property of some cellular automata (CAs)agersibility, that is, the property possessed
by some rules of having their temporal evolution regenerbtekward in time, regardless of the original
initial configuration, by running the inverse rule of theginial [Toffoli and Margolus(1990)]. Reversibil-
ity in CAs is such a well characterised concept that it has\hmessible to derive many fundamental
results associated with it, such as the undecidability efffoperty for CAs in dimensions larger than 1
[Kari(2005)], algorithms to enumerate all reversible atieensional CAs [Boykett(2004)], etc.

But what if one would be willing to define a notion pértial reversibility, such that CA rules could then
be compared in terms of thedegreeof reversibility? To provide some first insights into issu@slving
this question is the motivation of this paper.

In order to go about that, our analyses rely upon the indadidhitial conditions for which a given
CA rule is reversible or not. And for the sake of simplicitye westrict the analyses to the elementary CA
space, i.e., the set of one-dimensional cellular automatia? states per cell, and next-nearest neighbours

196 Pedro P.B. de Oliveira and Rodrigo Freitas

(neighbourhood size of 3 cells), that comprises 256 rules.tiBe insights given from this CA space can
be readily extended to further one-dimensional CA spaces.

One motivation for addressing the notion of partial re\wlisy is the possibility of probing the notion
for its own sake, looking at possible ways to measure it, iptestheoretical models that can account for
the measures, its relations to other CA properties, sucly@andical behaviour, etc. And because there
cannot be an algorithm for establishing the reversibilft¢As in dimensions larger than 1, the possibility
of devising a was to ‘measure’ the partial reversibility dgof a rule would certainly be useful, in that it
would help pointing at specific rules that would stand a ckafdeing reversible.

Reversibility is a property found in only a handful of ruldsaay space; for instance, for the elementary
rules, only 6 of them are reversible, out of the 256 possililest So, from an applications perspective, the
idea of defining partial reversibility may also be appealioginstance, just as reversibility has had a role
in conceiving algorithms for encryption (as in [Seredyretial.(2004)Seredynski, Pienkosz, and Bouvry]),
one might also think of devising algorithms based on theamotif partially reversible rules which, as for
one advantage, might lead to a much larger set of rule optmuase in such algorithms.

The focus of this paper is on threlative partial reversibility of the rules, that is, the possilyilibf
discriminating rules in terms of their relative degree afamsibility. Given the ill-defined nature of partial
reversibility, it seems natural to study first the relativgion of the concept, before an attempt to devise
an absolute notion. This is precisely what is carried outégaper.

The next section discusses a way to check the reversibilitge-dimensional cellular automata through
their pre-images, as well as the relations of this featutevtoparameters that can be defined for a CA.
The following section introduces the conceptrefersibility patternof cellular automata, which is the
basis for the subsequent discussions on partial revetgilflome concluding remarks are made at end,
pointing at the following paths to be pursued in the work. pdésentation is couched in terms of the
elementary space.

2 Reversibility Checking in Cellular Automata

2.1 Direct testing of the pre-images

A cellular automaton (CA) is reversible if there existsarerserule to the latter, which can undo the tem-
poral evolution backwards of the original CA, thus leadilaglkto its initial configuration (IC), whichever
it is.

In order to establish a rule to be reversible, all initial igarations must have one and only one pre-
image, the irreversible rules thus entailing some configuma to have multiple or no pre-image at all.
Figure 1 illustrates the situation, by displaying the basif attraction of the elementary rule 38, with
lattice size 6, where the dots represent 2Rgossible lattice configurations, and the edges their corre-
sponding pre-images; notice that while the configurationsyiclic circuits are reversible, the others are
not.

One procedure for checking whether a given one-dimensioAalle is reversible or not is described
in [Wolfram(2002)]. In this procedure, all initial configations must be tested up to a certain maximum
lattice sizen,,..., and what it does is checking whether each IC has one and nalgm@-image. Although
it has been proven that the required upper boungljs, = k%" (k2" —1)+2r +1, with k representing the
number of cell states andbeing the neighbourhood radius, [Wolfram(2002)] statesttere is empirical
evidence for the necessity of considering only the smabéwen, ., = k>". In fact, all empirical tests

Relative Partial Reversibility of Elementary Cellular Autata 197

Figure 1: Basins of attraction for elementary rule 38 wittida size 6.

we carried out, involving reversible rules from various atimensional spaces, are in tune with such a
statement.

Noticing that the procedure above may require significammatational effort, one might think about
possible less demanding alternatives, which includesdbal ipossibility of their being directly drawn
from the rule table of a CA. Two such parametersanda) are discussed next, since both, by definition
and by their own way, are related to the pre-images of a CAantk therefore, may somehow be related
also to reversible rules.

2.2 Z-parameter

The reverse algorithm proposed in [Wuensche and LessetjfLlé@mputes all pre-images, if any, of a
global configuration, or determines whether the currem¢dtas no pre-image at all, i.e., if itis a Garden-
of-Eden (GoE) configuration.

The Z parameter is directly derived from this algorithm. As a @dupre-image is being built from a
given configurationZ provides the probability of the next unknown state in thatipnage being uniquely
determined. As a result, it indicates the density of GOE guméitions or the density of pre-images from
the basin of attraction of the corresponding rule. Thush&igralues ofZ imply lower density of GoE
configurations and less ‘bushy’ basins of attraction; ireothiords, higher values of imply fewer pre-
images from a configuration and longer paths of subsequeritpages in the basin of attraction of the
configuration.

The Z parameter is composed B, s, andZ,; n:. Zi. 5+ is obtained by running the reverse algorithm
from left to right in the partial pre-image, whilg,;,.. is obtained by running the same algorithm from
right to left. Z is defined as the largest value among the latter two. As sheHhatger the value of, the
‘more’ reversible is the rule, the largest value 1 happefonghe reversible rules.

2.3 Parameters acand a”

Motivated by the analysis of the relationship between theiprages of a global configuration and the
reversibility of cellular automata, the parameter was defined in [Schranko and de Oliveira(2010)].

198 Pedro P.B. de Oliveira and Rodrigo Freitas

Consider a CA withk states per cell (defined over the alphabet {0,1,...,k — 1}), neighbourhood
with m cells, and transition rul¢. Now, lettingB,,, represent the set of (basic) blocks of sizgin %,
then the set of pre-images 8, is Ba,,_1 and its size is givetBs,,,_1| = k2™ ~L. Accordingly, in its
simplest form thexparameter can be defined as follows:

o= ﬁzh where T' = U {|f_1(b)|} @

i€T beEBm

00(\ /11 1\ /oo
/1\ 01?0\110 {y
oof 011 100 101

Figure 2: Pre-images of all blocks, for the binary CA rule Mith 2 cells in the neighbour-
hood [Schranko and de Oliveira(2010)].

A clarification of the definition can be obtained by calcuigtiv for the binary CA rule 11 withn = 2;
Figure 2 illustrates the situation. As sudb, = {00, 01, 10,11} and|Ba.a—1| = |Bs| = 23 = 8. The
application of f~! to each blockh € B, entails|f~1(00)| = 0, [f~1(01)| = 2, |f~!(10)| = 2 and
|f~1(11)| = 4; then, by uniting the values ¢of ~*(b)|, one of the valueg is removed, so that the sum of
the remaining values becomgs, . , 4, i = 6, thus leading tex = 6/8 = 0.75.

The definition in [Schranko and de Oliveira(2010)] is adwyaitore general, in that it can account for
any hyper-rectangular neighbourhood. But the essentidlatthey show the existence of a relation
betweeny, the distribution of pre-images into basic blocks and reidity, so that if a cellular automaton
is reversible, then the number of pre-images for each basaklis equally distributed, and takes its
minimum value. Naturally, this is in tune with the fact thiaétdistribution of all pre-images of surjective
CArules is balanced.

Notice that, in the definition of, the predecessor blocks associated with the basic blocksudé can
be seen as the required pre-images to generate the badis hlwoon-periodic boundary conditions. In
analogy with this, we define herein a new parameter, dendtedhich is a slight variation oy, with the
only difference being that? relies upon the actual pre-images of the possible configursor arbitrary
blocks), inperiodicboundary condition. In doing se? also becomes somehow related to reversibility,
and this is the issue for present purposes.

Sincea relies upon the pre-image of each block, one could also mueiste effects of using not only
the latter, but also the pre-images of the latter, or theimages of the pre-images of the latter, etc. As
such, we can generalise the definitiornaih terms of the level (or ‘order’, so to speak) of the pre-irsag
considered, which leads to the notion ofath order«, where the original definition ot becomes in
fact thelst ordera, or a1, and correspondinglys, a3, and so on. These alternatives are also considered
in the analyses below. But notice that, although it might &le possible to refer to theth ordera?, this
is not useful, since the values af are the same for all orders, because all pre-images of amy ard
exactly the same.

Relative Partial Reversibility of Elementary Cellular Autata 199
3 Towards Partial Reversibility

3.1 Reversibility pattern of a rule

In order to define partial reversibility, every cyclic imiticonfiguration of a particular rule should be
examined from the point of view of its number of pre-images.

Hence, a concept is proposed here, nammelyersibility patternof a rule, which is in the basis for
the characterisation of partial reversibility of the rudmd relies on testing all the initial configurations
of the lattice, from the minimum size = 1, up to the maximunm,,.,. Our approach follows the
procedure in [Wolfram(2002)], that checks whether a givea-dimensional CA rule is reversible or not,
as mentioned earlier. Since our tests rely on the eleme@amules, for whichk = 2 andr = 1, it turns
out that, while the theoretical upper bounaiig,. = 15, the empirical value i®,,,,, = 4.

For example, the reversibility pattern for elementary r2Jeas worked out through the empirical
mmex = 4,18 ({2, 2, 2, 2, §, {1, 1, 1, 5, {4}, {2}), where the four multisets refer, respectively,
to the lattice sizes equals to 4, 3, 2 and 1, and every number in a multiset cornelspto the num-
ber of pre-images of a given configuration of size Hence,{2, 2, 2, 2, § represents that, out of the
2+2+2+2+8=16 possible 4-bit-long ICs, 4 of them are not reiée because each one has 2 pre-images,
1 is not reversible because it has 8 pre-images, and themerga ICs (not explicitly appearing in the
multiset) are not reversible because they are GoE confignstsimilarly, {1, 1, 1, 5 represents that,
out of the 1+1+1+5=8 possible 3-bit-long ICs, 3 of them aneersible because each one has a single
pre-image, 1 is non-reversible because it has 5 pre-imagesthe remaining 4 ICs (not explicitly ap-
pearing in the multiset) are not reversible because the@ate configurations; and so on. Naturally, for
present purposes it only really makes sense to considarlaizes which are at least the same as the
neighbourhood size; here we display all values qiist for the sake of simplicity.

As a consequence, it can be argued that the elementary ras & small partial reversibility degree,
or, it is partially reversible, since some of its initial digurations are reversible and some are not.

But, how can one state that a given rule is ‘more’ (partiagyersible than another? Let us consider the
elementary rules below and their corresponding reveitilhtterns, also derived from,,,,, = 4. By
comparing the reversibility patterns of rules 62 and 44 énse reasonable to consider the latter as more
reversible than the former, since they only differ in theoimfiation associated with lattice size= 3,
which favours rule 44. But the comparison is not as clear,nnd@mparing rules 151 and 223; after all,
while the former has 12 reversible ICs and the latter onlytlid former is totally non-reversible for lattice
sizen = 3 which is not the case for the latter. So, which criteria sHcag taken into account so that
a comparison can be made is an issue that requires furthestigation. This is what is done next, by
analysing the consequences of sorting the elementaryinute® distinct ways.

62 = ({1,1,1,1,2,2,2,2,22{1,1,1,2,3,{2, 2, {2})

44 = (1,1,1,1,2,2,2,2,22{1,1,1,1,1,1,2 {2, 2}, {2})
151 = (1,1,1,1,1,1,1,1,1,1)6{3,5,{1,1, 2, {2})

223 = (1,1,1,1,1,1,19,{1,1,1,5,{1, 1,2, {2}

3.2 Relative partial reversibility in the elementary space

For what follows, the elementary space is accounted formt#rims of its 256 rules, but in reference to
its 88 classes of dynamical equivalence [Wolfram(2002)¢heone being referred to by the rule with the

200 Pedro P.B. de Oliveira and Rodrigo Freitas

smallest rule number in the class. Naturally, such an agpreaffices since every rule in a class has the
same reversibility pattern.

Given the difficulties raised above in respect to deterngirtime relative partial reversibility among
rules, here we look at the entire space, trying to obtairghtsi for the issue. The idea is to derive
the reversibility pattern of all rules in the elementary Q#ase and order them lexicographically, from
(supposedly) the least to the most reversible rules. Asearg the first section, only after devising a
reasonable rationale for relatively measuring partiaérewility should one think to step forward towards
an absolute measure, which is not within the scope of theeptemper.

Even for a relative measure, based upon the notion of rdispattern, one decision that has to be
made concerns the two valuesrof,..., discussed earlier. After all, they were derived as comgsghat
should be respected when establishing the (full) revditsibf a rule; hence, their usage might simply not
be applicable for present purposes. So, a better undenstpofithe effects of using one value 0f,,,.
or the other, or even another, is definitely one of the isdugisnteed being addressed here.

Along this line, the first ordering scheme to be looked at ineethe standard, direct lexicographical
order entailed by the reversibility pattern of a rule. Fafiog this scheme, each part that makes up the
reversibility pattern is individually and subsequentlgen, starting at the first (associated with the largest
lattice size), and used as the basis for the relative sorfiagthe sake of easy reference, let us denote this
approach as thdirect sorting scheme of the reversibility patterns.

For instance, with the empirical,,.. = 4, elementary rules 1, 11 and 27, would be lexicographically
sorted, in relative terms as follows:

1 = ({1,1,1,1,1,1} {1, 7, {1, 3, {1, 1})
11 = ({1,1,1,1,1,2,2,2,2,8{1,1,2,2,2,{1, 3}, {1,1})
27 = (1,1,1,1,1,2,2,2,28{1,1,1,1,1,1, 1,1 {1, 3}, {1,1})

On the other hand, the second relative sorting scheme amesidhere is based upon the reversibility
pattern of a rule considered as a whole, by merging its thes pato a single set, therefore, with no
distinction among the individual lattice sizes. This tydesorting is referred to below as trabsolute
scheme.

Considering once again the elementary rules 1, 11 and 2if,&hsolute lexicographical sorting is
shown below. Notice that it is more appealing now that rules2@uld be assumed to be more partially
reversible than the others, since it has the largest nunilseversible initial configurations.

1 = {1,1,1,1,1,1,1,1,1,3,7,}1
11 = {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3
27 = {1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1,2,2,2,2,8,3

The examples above have all been with the smallest valug,@f. But in order to evaluate the effect
of using the largest value, Table 1 depicts a comparisoneofwlo. Notice that the implicit number of
GoE configurations of each rule is not being taken into actoun

Relative Partial Reversibility of Elementary Cellular Autata 201

Table 1: Direct and absolute lexicographical sortings efélementary space, for the two upper-bound
values of lattice size drawn from [Wolfram(2002)].

Direct Sorting | Absolute Sorting
Nmaz = 4 | Nmaz = 15 || Nmaz = 4 | Nmaz = 15
{0} {0} {0} {0}
{90} {105, 15¢ {90} {46}
{46} {24} {126} {24}
{2.8 {10} {46} {36}
{126} {46} {24} {126}
{36} {12, 34 {36} {90}
{24} {126} {60} {60}
{60} (36} (2.8 {10}
{5, 160 {90} {12, 34 {12, 34
{9, 130 {60} {10} 2,8
{12, 34 (2,8 {18,72 {11,138
{13,162 {11, 138 {62,110 {4, 32
{57, 156 (4,32 {9,130} {1,128
{33,132 {1,138 {1,128 {43,142
{43,142 {43,142 {94,122 {29, 184
{94,122 {29, 184 {37, 164 {18, 72
{18, 72 {18, 72 {11, 13, 58, 78, 138, 162 {13, 162
{37,164 {13, 162 {38, 44 {5, 160
{10} {5, 160 {5, 160, {3,119, 136, 209
{62,11¢ {3, 19, 136, 209 {4,32 {27,172
{38, 44 {27,172 {30, 108 {9, 130
{1,128 {9, 130} {23,232 {6, 40}
{11, 138 {77,178 {22,104 {77,178
{27,172 {6, 40} {33,132 {33,132
(4,32 {33,132 {26,74 {23,232
{23,232 {23,232 {25,152 {28, 50, 56, 76
{77,178 {28, 50, 56, 76 {14, 42 {35, 140
{30, 106 {35, 140 16, 40} {38, 44
{14, 42 {38, 44 {54, 108 {14, 42
{58, 78 {14, 42 {3, 19, 136, 209 {54,108
{28, 50, 56, 76 {54, 108 {73, 14§ {58, 78
{26, 74 {58, 78 {27, 28, 50, 56, 57, 76, 156, 172 {7,168
{35, 140 {7,168 {35, 140 {94,122
{41,134 {94,122 {43,142 {26, 74
{3, 19, 136, 209 {57, 156 {41,134 {73, 148
{25,152 {26, 74 {77,178 {57, 156
{73, 146 {73, 148 {45, 154 {41,134
{45, 154 {41,134 {7,168 {25,152
{22,104 {25,152 {105, 15¢ {62,110
{6, 40} {62,110 {29, 184 {37,164
{29, 184 {22,104 {15, 51, 170, 208 {22,104
{7,168 {37,164 {105, 15¢
{54, 108 {30, 108 {30, 106
{105, 15¢ {45,154 {45,154
{15, 51, 170, 204 | {15, 51, 170, 20% {15, 51, 170, 208

The first general observation is that the table shows thabénabsolute sorting scheme the results

202 Pedro P.B. de Oliveira and Rodrigo Freitas

were quite different from those in the direct sorting schetmefact, notice that the list generated with
nmaz = 4 contains rule classes that have not appeared before, artieHest is shorter than the one with

nmaee = 15. AlS0, the length of the latter list (45 classes) is exadtlygame size as both lists of the direct
sorting scheme, all rule classes also being the very sanee, ttough some of them placed at distinct
positions.

Analysing the direct sorting scheme, Table 1 also makesdeat that the position of the set of (linear)
rules{105, 15¢ in both lists strikes as just too different from each otherotder to examine why that
might have been so, if suffices to check the reversibilitggratof rule 105, withn,,,,, = 15; one can
readily observe that a clear pattern is generated for ettcdelaize, namely, that the rule is fully reversible
for every lattice size not multiple of 3, and not reversibteeswise, in which case one quarter of the
ICs have 4 pre-images each and the remaining three-quartefSoE configurations; Table 2 illustrates
the situation, with the smaller value,,.. = 6, for the sake of concisiveness. This is an intriguing
observation, with no obvious explanation and apparenttypneviously reported in the literature, that
points at the validity and usefulness of the concept of hdity pattern of a rule defined herein.

Table 2: Reversibility pattern of elementary rule 105, witaximum lattice size,,,, = 6.

Lattice size| Reversibility pattern

{4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
1, 1, }
{1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1

{44

{1,1,1, %

{11

PNWhOOO

Comparing the two lists of the direct sorting scheme the equence of using the distinct values of
n.maee DECOMES evident: almost all rule classes had their posititiared from one list to the other. This
means that, while the upper-bounds defined in [Wolfram(J0&2 sufficient for establishing whether a
rule is reversible or not, they do not equally apply to deiaimg (relative) partial reversibility. In fact,
this even questions the appropriateness of using the tangper-bound, thus raising the possibility that
another value ofi,,,., should be used instead, or, in the worst case, of even quagiithe existence at
all of a truthful upper-bound.

In order to address these questions, Figure 3 was createdl| f@lues ofn,,,, from 1 to 18, plotting
the positions of all rule classes from Table 1 that appedrardnger list of the absolute scheme (which are
the same as those in the direct sorting scheme). The higheotition of a rule class, the more reversible
it is. The positions refer to the absolute sorting scheméhaball points plotted for every,,,... are the
result of computing the reversibility pattern for all latisizes from 1 ta,,,.. It is clear from the figure
that, although there is no convergence for each and everyglags, the vast majority of them do converge,
and the few of those that do not, at least become fairly st with a local fluctuation. Naturally, in
order to know for sure what happens afterwards for rule elassich as 10 or 23, 232, the figure would
have to be extended for further values®f,,...

Relative Partial Reversibility of Elementary Cellular Autata 203

115, 51, 170, 20F
145, 154
(30, 108
1105, 150
137,164
(22,104
(62,110
(25,152
141,134
(73,148
126,74
(57, 156
194,122
17,168
(58,78
(54,108
(14,42
138,44
(35, 140
(28,50, 56, 76
(33,132

13,19, 136, 20¢
(13,162
(18,72
143,142
(29,184
11,128
4,32
(11,138
112,34
2.8
(10,

(60,

(90,
(126

136)
24
(46|
; ©

|
|

Figure 3: Position of each rule class for all lattice sizgg,. from 1 to 18, considering the absolute
sorting scheme.

So, all the points above put into perspective suggest teatisolute sorting scheme seems to be more
adequate to represent partial reversibility of rules ttenather. And in fact, except in the explicit neces-
sity of addressing the issue for a specific lattice size gtlieeno apparent reason to weigh the individual
sizes, thus leading to their being taken into account asghesiwhole ensemble.

3.3 Relating partial reversibility with CA-based parameter values

It would be useful to model partial reversibility, by resog to a simple, computationally non-intensive
method. As mentioned earlier, the one in [Wolfram(2002gslaot fit this criterion, so that it can really
be thought of as providing the basis for an empirical meastiige quantity. Naturally, a good candidate
for a model, as hinted at in Section 2, could be CA-based patersiwhose values could be more easily
worked out, including the desired possibility of drawing tralues directly from the rule table of a CA.

But in order for one such parameter to be a real candidate réquired that the partition of the ele-
mentary space induced by their values do not compromiseiteelasses entailed by the lexicographical
sorting scheme judged as the most adequate (the absolet@sthn other words, any candidate param-
eter cannot split the rule classes that are obtained outeddlsolute sorting scheme, regardless of their
values. This is what is checked next.

The parameters at issue were primarily those discussetbpsty in the paperZ, «, oz, ag anda?),
but also others from the literature, according to [Oliveital.(2001)Oliveira, de Oliveira, and Omar], re-
lated to estimates of the dynamical behaviour of CA rulesSensitivity Neighbourhood Dominange
Absolute ActivityandAbsolute Propagation

204 Pedro P.B. de Oliveira and Rodrigo Freitas

With the dynamically-oriented parameters, ®ensitivityand A only the class{3, 19, 136, 209) is
split. For the other parametefs€ighbourhood Dominan¢@bsolute ActivittandAbsolute Propagation
almost all classes are split; but this is not surprisingesiltthese parameters show no similarity between
the rule classes they induce in the elementary space ang deoised from the sorting schemes.

With the other parameters, ony? does not compromise the classes of the sorting schemesyagwe
the set of rule classes it induces is much smaller than ther Jateaning that it also has no similarity with
the classes induced by the sorting schemes.

As for parametersy, as andas, they all show that only one rule clasg3(19, 136, 209 again) of
the absolute sorting scheme is split. Finally, for param&téwo classes of the sorting schemes are split,
{28, 50, 56, 7§ and, once again{,3, 19, 136, 200. Table 3 shows the rule classes entailed fiofa
andZ, respectively.

Table 3: Rule classes of the elementary space induced by andZ.

Rules | o | Rules | a | Rules |
{15, 27, 29, 43, 45,51 | 0.125 || {15, 30, 45, 51, 60, 90, 10% 0.125 {0} 0
57,777,142, 154, 156, 106, 150, 154, 170, 204
170, 172,178, 184, 204
{10, 12, 24, 34, 36, 0.25 {35, 43, 140, 14p 0.25 {1,2,4,8,32,128 0.25
46, 58, 60, 78, 9p
{11, 13, 14, 25, 26, 28, | 0.375 {29, 184 0.3125 {3,5,6,9, 10, 12, 18, 23, 0.5
35, 37, 38, 42, 44, 50, 24, 29, 33, 34, 36, 40, 43
56, 74, 76, 138, 140, 46, 72,777,126, 130, 132
152, 162, 164 136, 142, 160, 178, 184, 232
{23, 105, 150, 23p 0.5 {27, 46, 57, 156, 172 0.375 {19, 35,50, 76, 140,200, | 0.625
{3,5,7,9, 19, 33,41, 73| 0.625 {23, 77,178, 23p 0.40625 {7,11, 13, 14, 22, 25, 26, 27| 0.75
130, 132, 134, 136, 146, 28, 37, 38, 41, 42, 44, 546,
160, 168, 200 57,58, 62,73, 74, 78, 94, 104

108, 110, 122, 134, 138, 146
152, 156, 162, 164, 168, 172

{2,4,6,8,18,30,32,40| 0.75 {7,168 0.4375 || {15, 30, 45, 51, 60, 90, 105,| 1
54, 62, 72, 94, 106, 106, 150, 154, 170, 204
108, 110, 122
{0,1,22,104,126,128 | 1 {13, 28, 50, 56, 76, 162 | 0.46875
{26, 41, 54, 58, 0.5
74,78, 108, 13}
{11, 138 0.53125
{38, 44, 62, 119 0.5625

{9, 14, 22, 33, 37, 42, 0.59375
104, 130, 132, 164

{6, 18, 40, 72 0.625
{19, 73, 146,200} 0.65625
{3, 36, 126,136} 0.6875
{25, 94,122, 159 0.71875
{2,5,8,10, 169 0.75

{12, 24, 34 0.8125
{1,128 0.84375
{4,32 0.90625

{0} 1

Relative Partial Reversibility of Elementary Cellular Autata 205

Another intriguing fact becomes apparent when attemptindentify a possible cause for why the rule
class{3, 19, 136, 200is split so often. Taking elementary rule 3 as the represgataf that rule class, its
reversibility pattern withm,,,.. = 15 shows a peculiar behaviour. Table 4 exemplifies the sitnatihere
each column is related to the reversibility pattern assediavith a given lattice size. More precisely,
for a givenn, each cell in table displays the number of initial configimas of sizen that have a certain
number of pre-images. These two quantities are, respégtiie numbers appearing in each row, in the
form: the number of IdJshe number of pre-imagksSo, for example, with lattice size 15 (column 1),
there are 1364 ICs with only one pre-image (row 1), 960 ICh ®ipre-images each (row 2), etc.

Table 4: The number of initial configurations of sizethat have a certain number of pre-images, for
elementary rule 3.

Lattice size)
5 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4]

3

1364[1] | 841[1] | 521[1] | 324[1] | 199[1] | 121[1] | 76[1] | 49[1] | 29[1] | 16[1] | 11[1] | O[] | 4[1] | 1[1] | 2[1]
960[2] | 560[2] | 325[2] | 180[2] | 99[2] | 60[2] | 36[2] | 16[2] | 7[2] | e[2] | 5[2] | 1[7] | 1[4] | 1[3]
600[3] | 350[3] | 195[3] | 108[3] | 66[3] | 40[3] | 1831 | 8[38] | 7[3] | 6[3] | 1[11]

180[4] o1[4] | 39[4] | 18[4] | 11[4] 5[] | o5 | 8[5] | 75] | 1[18]
375[5) | 210[5] | 117[5) | 72[5] | 44[5] | 20[5] | 98] | 8[8] | 1[29]
195[6] 8a[6] | 396] | =24[6) | 11[6] | 10[8] | 9[13] | 1[47]

230[8] | 126[8] | 78[8] | 48[8] | 22[8] | 10[13] | 1[76]
45[9] 21[9] | 13[9] 6[9] | 11[13] | 10[21]
90[10] | 42[10] | 26[10] | 12[10] | 11[21] | 1[123]
135[13] | 84[13] | 52[13] | 24[13] | 11[34]
4s[15] | 28[15] | 13[15] | 12[21] | 1[199]
45[16] | 28[16] | 13[16] | 12[34]
90[21] | 56[21] | 26[21] | 12[55]
30[24] | 14[24] | 13[34] | 1[322]
15[25] 7[25] | 13[55]
30[26] | 14[26] | 13[89]
60[34] | 28[34] | 1[521]
15[39] | 14[55]
15[40] | 14[89]
15[42] | 14[144]
30[55] | 1[843]
15[89]
15[144]
15[233]
1[1364]

Now, let us take from the table, for every lattice size, thgdat number of pre-images associated with
any initial configuration, that is, the number of pre-imagéthe most non-reversible ICs for each lattice
size; in the notation of the table, these are the ones haenfptm 1humbet for lattice sizes 2 to 15, and
the 2[1] for size 1 (since this is the only possibility). As@nsequence, the following numerical sequence
is generated, from the smallest lattice size to the lardes; 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521,
843, 1364.

It turns out that these numbers constitute exactly the #eechucas numbers, a series of integer digits
akin to the well-known Fibonacci sequence [Weisstein(IP1@ore specifically, the:-th term in the
sequence above is exactly theh Lucas number, for varying from 1 to 15. Itis quite an interesting and
intriguing fact to realise that the Lucas numbers seem tectlir govern the amount of least reversible

206 Pedro P.B. de Oliveira and Rodrigo Freitas

initial configurations of every size, that is, those having kargest possible number of pre-images for the
CArrule at issue.

Equally as striking is that the sequence of the number ofrsiide ICs is also governed by the Lucas
numbers, although not as directly as before. In fact, camsids,, the number of the most reversible ICs
with lattice sizen, andL,, then-th Lucas numbes,, is given by:

LO if n=1
L, if n > 1 andn is odd @)
S L, —2 if n>1andnisevenanc/2is odd

L,+2 ifn>1andnisevenand/2iseven

Lucas numbers have already appeared in the context of thsdymamical systems, specifically, in
recursive integer sequences [Wolfram(2002)]; howevefiaiaas we know, no connection has been made
so far in the literature involving Lucas numbers and the glddehaviour of CA rules, or with elementary
rules in particular.

4 Concluding Remarks

Here we studied the possibility of defining the notion of @reversibility of an elementary CA rule. Our
focus was on the relative comparisons between the rulesrd&fing a lexicographical sorting scheme of
the rules we showed that it makes sense to point at a rule beong reversible than another.

Although how our results generalise to larger one-dimerajcbinary CA spaces has not been at-
tempted, it seems likely this can be done. In fact, a key ratitw for the research has been the possibility
of modelling partial reversibility, according to the lessdearnt from the elementary space, so that this
can be applicable to other rule spaces.

The experiments carried out involving the absolute sortiogeme clearly showed that both upper
bounds defined in [Wolfram(2002)h(,... = 4 andn.... = 15, in the case of the elementary space) do
not suffice for establishing the relative partial revel#tippf a rule. Nevertheless, the valug,,, = 15
seems acceptable when compared with,. = 18, the largest value we computed; the ideal upper bound
is unknown.

The experiments also allowed to consider the elementaeyspidce as partitioned into 45 classes of
reversibility equivalence. Whether this can really be rdgd as true in the limit of an infinite lattice size
is something that cannot be asserted by now. Although th&ilfibity is really tempting, a theoretical dif-
ficulty would have to be accommodated, derived from the faat teversibility over cyclic configurations
does not suffice for granting reversibility of a rule on anestricted lattice ([Kari(2005)]). And since this
applies to any CA space, this same difficulty would have todwed in order to generalise the notions
addressed here, towards larger one-dimensional binary@ées and CA spaces with larger dimensions
and/or larger number of states per cell.

By relating partial reversibility with CA-based parametatues, including those drawn from the rule
tables, it is clear thaZ and« (including its variationsw?, as, «a3) has some correlation with partial
reversibility. Therefore, it may be possible to use thenmbimed somehow, as models of partial re-
versibility. Evaluating this idea is one of the steps ahead this direction, understanding the precise
role of these parameters is a key ingredient, one indicdt@ng thato might possibly be considered a
measure of the surjectivity degree of a CA.

Relative Partial Reversibility of Elementary Cellular Autata 207

Another issue also open for further investigation is to carpewith a way to calculate the partial
reversibility degree of an elementary rule. This has to bdevs that we can forego the notion of relative
partial reversibility in favour of the absolute notion.

A related conceptual question refers to the definition ofdlosest possibleartially inverse rule that
would correspond to a given partially reversible rule. Tikia very ill-defined concept that should only
be addressed after the previous questions have been vefulbalooked at.

The usefulness of the notion we introduced here, of reviitgipattern, has been made evident with
all the issues above but also because it allowed to unveiirihg properties, apparently unknown so far,
involving the partial reversibility of elementary rules5l8nd 3, and the other members of their respective
reversibility classes. And since we have not inspectedratheivalence classes that display curious
behaviour suggested from Figure 3, such B3} or {23, 232, it will not be a surprise if further intriguing
phenomena involving their partial reversibility do spring. Nevertheless, the explicit consideration of
the GoE configurations in the reversibility pattern of a riglget another issue that needs to be looked at.

Acknowledgements

We acknowledge the travel grant provided by Universidadesibiteriana Mackenzie for attending the
workshop, and thank very fruitful comments provided by tedewers of our original manuscript.

References

[Boykett(2004)] T. Boykett. Efficient exhaustive listingéreversible one dimensional cellular automata.
Theor. Comput. S¢i325(2):215-247, 2004. ISSN 0304-3975. doi: http://dkaig/10.1016/j.tcs.
2004.06.007.

[Kari(2005)] J. Kari. Theory of cellular automata: a surv@heor. Comput. S¢i334(1-3):3-33, 2005.
ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.t€¥2.11.021.

[Oliveira et al.(2001)QOliveira, de Oliveira, and Omar] Gliv@ira, P. de Oliveira, and N. Omar. Defini-
tion and applications of a five-parameter characterizatfoone-dimensional cellular automata rule
space Atrtificial Life, 7(3):277-301, 2001.

[Schranko and de Oliveira(2010)] A. Schranko and P. P. B. lideefta. Relationships between local dy-
namics and global reversibility of multidimensional cédiluautomata with hyper-rectangular neigh-
borhoods.Unpublished manuscrip2010.

[Seredynski et al.(2004)Seredynski, Pienkosz, and BqumrySeredynski, K. Pienkosz, and P. Bouvry.
Reversible cellular automata based encryptionNé&twork and Parallel Computing (LNCS Series)
volume 3222, pages 411-418, 2004.

[Toffoli and Margolus(1990)] T. Toffoliand N. H. Margolukvertible cellular automata: a revieRhys.
D, pages 229-253, 1990.

[Weisstein(2010)] E. W. Weisstein. Lucas number. httpattmvorld.wolfram.com/LucasNumber.html,
2010.

[Wolfram(2002)] S. Wolfram A new kind of sciencéNolfram Media, 2002.

208 Pedro P.B. de Oliveira and Rodrigo Freitas

[Wuensche and Lesser(1992)] A. Wuensche and M. Le3#er.Global Dynamics of Cellular Automata
volume Reference Vol 1 ddanta Fe Institute Studies in the Sciences of Complexdglison-Wesley,
1992. IBSN 0-201-55740-1.

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 209-220

Evolving Probabilistic CA Agents Solving the
Routing Task

Patrick Ediger and Rolf Hoffmannh

Technische Universitat Darmstadt, FB Informatik, FG Resfarchitektur, Hochschulstr. 10, 64389 Darmstadit,
Germany

Givenis a2D field of nxn = N cells (communication nodes) with border. The goal was teestiie routing problem
with NV agents, each of them having the task to transport a messagefsource to a target. This task is also known
as multiple target searching. The whole agent system waglewds a uniform cellular automaton. The agents shall
have a probabilistic behavior in order to avoid deadlocldlaelocks. Three types of agents were defined: (1) FSM
controlled agents (with an embedded finite state machine&ydy a genetic algorithm), (2) XY agents using the
XY-routing technique, and (3) MXY agents (modified XY aggnt$o all agents’ behaviors an optimal amount of
randomness was added. It turned out thatfor= 256 the best FSM agents solved the task within 84 generations,
14% faster than the MXY agents, and 31.5% faster than the Xntag The added randomness was lowest (1.8%)
for the FSM agents. Additional tests have showed that thebeurof generations can further be reduced by 17.5%
for N = 256, using 420 additional empty cells in an enlarged field of ¢ize- 11)?.

Keywords: CA Agents, Routing with Agents, Multiple-Target SearchiMulti-Agent Systems, Evolving Proba-
bilistic Behavior, FSM Controlled Agents

1 Introduction

We are presenting a method that allows evolving the proiséibibehavior of moving CA agents in order
to solve a given task, exemplified by the routing problem. fidwging problem with agents can also be
seen as a multiple target searching problem where each segnthes for its individual target. A moving
CA agentis a set of CA rules modeling the agent’s behavidriwihe CA paradigm. In particular, we are
modeling agents that can decide upon their actions by thefuse embedded control automaton (finite
state machine).

In order to communicate between processors on a chip an gt network has to be supplied.
We assume that the communication is based on packets/nesssagsported from a source to a target
(destination) processor. A lot of research has been caot¢dn order to find the best networks with
respectto latency, throughput, fault tolerance, and sdrstead of improving the known design principles
we want to follow a novel approach based on agents that toahsgessages. Routing a message can be
deterministic(unique path is taken) adaptive(alternative links are selected during message passing).
Our goal is to find an optimal adaptive routing technique gisirtelligent agents. Each agent selects
dynamically on its own the links using a control algorithnattvas evolved by a genetic procedure. We

210 Patrick Ediger and Rolf Hoffmann

will specialize our investigation to theD grid structure with cyclic connections, in which the prosms
and the network components are located at dedicated pusitio

Related Work. A Cellular Automata (CA) based path planning algorithm inltiraigent systems has
been proposed in Tavakoli et al. (2008), where many agentstbdind the same target. Our investigation
is related to this work, but a main difference in our task &t tsach agent has its own individual target.
Target searching in agent systems has been researched ynvarations: with moving targets in Loh
and Prakash (2009); Goldenberg et al. (2003); Koenig eRaDY), and in single-agent systems in Korf
(1990). Here we restrict our investigation to stationargéts and multiple agents having only a local
view. Adaptive routing algorithms with mobile agents haeeb presented in Caro and Dorigo (1997);
Dhillon and Mieghem (2007) using software agents inspiredrt behavior. In contrast to these works, a
simple finite state machine controls our agents, and thesgeaintended to be implemented in hardware.

This contribution continues our preceding work on routirithvagents on 2D grid (Ediger and Hoff-
mann (2009, 2010)). In Ediger and Hoffmann (2009) four mgithodels with agents were proposed and
compared (undirected agent, randomized undirected adieatted agent, randomized directed agent).
There it turned out, that many of the evolved directed ageete very reliable, but that deadlocks could
not be avoided securely. In Ediger and Hoffmann (2010) thieregd spatial distribution of communication
nodes was investigated. It turned out that one or two frees@olffers, spaces) between communication
nodes were optimal with respect to the overall reachablenwonication time.

Other routing algorithms were investigated for regalBrgrid structures (mesh) including non-adaptive
techniques, e. g., XY-routing in de Mello et al. (2004) andpatie techniques, e. g., hot potato routing. In
Busch et al. (2001) greedylocal anddynamichot potato algorithm is presented. Our technique produces
adaptive routing algorithms that are local and not necégsaeedy. The test cases in this paper are all
staticaccording to Busch et al. (2001)alt packets are injected at time zé&rdout could also be applied
to dynamic systems:riodes may inject packets into the network repeatedly ovengduratiori (Busch
et al. (2001)).

In other former works, we investigated multi-agent systémSA with different tasks, like the Crea-
ture’s Exploration Problem in Halbach et al. (2006) or thétatAll Communication task in Ediger and
Hoffmann (2008b). In these investigations we used differeethods of optimization like genetic pro-
gramming (Komann et al. (2009)), genetic algorithms (Edagel Hoffmann (2008a)), sophisticated enu-
meration (Halbach (2008)) and time-shuffling techniquesdér and Hoffmann (2008b)). A transactional
CA model for multi-agent systems was developed in Spichet.g2009). In general our work is also
related to works like: evolving optimal rules for CA (Sipf@©97); Sipper and Tomassini (1999)), detect
centroids with marching pixels (Komann et al. (2007)), dettion of pedestrian behavior (Schadschneider
(2008)) or traffic flow (Schadschneider and Schreckenb&dg3)).

The remainder of this paper is organized as follows. In $aciwe explain the agents’ task and the
CA model in more detail. The method of evolving the probakitiFSM controlled agents is described in
Section 3. The performance of the evolved agents is comayaidist the XY-routing agents in Section
4. Section 5 concludes, and proposes further investigation

2 The Task and the Modeling of the Agents

2.1 The Routing Task

Given is a2D grid of n x n = N cells with border. A cell can dynamically be either of type EW,
OBSTACLE or AGENT. Obstacles are used to model the bordethey can be used to model broken

Evolving Probabilistic CA Agents Solving the Routing Task 211

cells in a network. Each cell can be used as a source and/tartet of a message. Therefore, a cell
can act as a communication node or processanessage transfes the transfer of one message from a
source to a target. A set of messages shall be cailesbage seA message set transferthe successful
transfer of all the messages belonging to the set. The agkalisperform message transfers, the whole
system we calhgent systeminitially the agents are located at their source positiofisen they move
to their targets. When an agent reaches its target, it isetel& hereby the number of moving agents is
reduced until no agent is left. This event defines the endefithole message set transfer. In order to
simplify this investigation we constrained the problem:

e The numbes of source cells is equal to the numbeof target cells, and it is equal to the number
k of agents, and it is equal ¥: k = s = d = N. This means that initially an agent is placed in
each cell of the array without spaces. Nevertheless thetaderigned in Section 3 will be able to
cope with cellular arrays that initially contain spaces.

e The cells on which the agents are placed initially are cadledrce cells. Each agent has stored
initially a target location. Source locations may act ages for other agents, too. The targets are
mutually exclusive (each agent has a different target).

e Initially an agent cannot be placed already on its targetsGage transfers within a cell without
movement are not taken into consideration).

e No new messages are inserted into the system until all mess#ghe current set have reached
their targets. This corresponds to a barrier-synchroioizdétetween successive sets of messages.

The goal is to find for a given number &f (agents, messages per set, sources/targets) the optimal
agents’ behavior in order to transfer a message set (avkoage all possible sets) as fast as possible. We
are searching for behaviors that are reliably, meaningttieaimessage set transfer can be accomplished
successfully for any given initial configuration. From fagninvestigations (Ediger and Hoffmann (2009,
2010)) we have learned that agents with deterministic iehaway run into deadlocks or livelocks.
Therefore, we are using here agents with a probabilistiatien

2.2 CA Modeling of FSM Controlled Agents

The whole agent system (environment with moving agents)adeted as ainiform CA, e.g. all cells
obey to the same local rule. Uniform CA can also mad®i-uniformCA. In our case this is implemented
by the use of aelltypefield as a part of the cell's state. Dependingaatitype the relevant subrule is
activated. Thecelltypecan dynamically be changed by a subrule, e.g. (AGENTEMPTY) for the
center cell and (EMPTY-~ AGENT) for thefront cell (the cell where the agent is moving to). The cell
under consideration, also callednter cellor own cellC, is connected to its neighbors within Manhattan
distance of 2. The updating scheme is synchronous.

Modeling Moving. Modeling moving agents as CA can be described by two compienerules
(own rule R¢, neighbor’s ruleRy) (Fig. 1(a)). If an agent moves from its own location C to of@®
neighbor locations N, the own rule deletes the agent anddigdbor’s rule copies it. In addition, conflicts
have to be detected and resolved in the case that a cell canriip®ne agent (or a limited number). If
more than two agents want to move to the same neighbor, ethagents have to wait or one agent is
selected. The neighboring cells (where the agent wants te e and the own cell have to perform the

212 Patrick Ediger and Rolf Hoffmann

(a) (b)
R (delete self)

. OO
N . (copy from) > <

Fig. 1: (a) Modeling the moving of an agent in CA requires a couplenaf tonsistent rules (sender rule- deletes
agent, receiver ruld?x copies agent). (b) Conflict resolution has to be computedhénsender cell) and the
receiver cell (V) based on the same information. A neighborhood of distannet# agent’s direction is required in
order to solve the conflict.

Tab. 1: A state table representing the best found control autonfatahe large environments\{ = 256, see Sec. 4,
best of V20). Depending on current control state and ingthiespairs ofnext statéoutputare given.

CONTROL INPUT
STATE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 /0[50 [006230632231 71]42]12]00][22]30[71]11]31]31
1 6/2 | 30| 20|02 | 41| 7/3 |12 |71|41| 10 |50]|20]|52]|6/2)|11|72]|71]|51
2 2/2 | 52|50 | 42| 1/1| 03| 6/1|11|21|30|O00]|6/0]|30]| 71| 01]|6/2]|6/1]|5/1
3 3/0 | O/1 | 4/3 | 4/2 | 1/2 |51 | 12 |01 | 41|50 /| 20]|6/0]|01]|22)|51|72]| 31|71
4 3/0 | 0/0 | 6/3 | 4/2 | 5/2| 22| 41 | 7/2|6/3| 30| 50| 20| 22| 6/2]| 30| 6/2]| 01| 41
5 31| 7/0 | 5/3 | 7/2 | 22| 10| 7/2| 21|01 | 42| 00 | 50| 42| 02 | 2/3| 6/2| 41 | 53
6 6/2 | 6/0 | 6/3 | 42 | 7/2| 1/0 | 6/1 | 2/1 | 5/3 | 4/2 | 2/0 | 1/0 | 6/2 | 0/2 | 4/3 | 4/1 | 5/1 | 0/1
7 4/2 | 7/0 | 7/0 | 12 | 52 | 41 | 2/2 | 41 | 3/1 | 42 | 7/0 | 5/0 | 3/2 | 52 | 1/0 | 6/1 | 1/1 | 3/1

same conflict resolution scheme using the same amount ahiaiton consistently. In order to access
this information by the neighboring cells as well as by thea@ell, in general an extended neighborhood
is required (Fig. 1(b)). I. e., C needs to read the state ofrthre cell N, and in addition the states of the
neighbors of N in order to detect a conflict. An empty cell Nd®the state of its four neighbors in order
to detect an agent that wants to move to it, or to detect a confti Ediger and Hoffmann (2008a) CA
rules are given describing the moving more formally.

Modeling Behavior. An agent shall react on certain inputs coming from the emvirent or from other
agents. If an agent behaves according to an internal digotitat is not trivial, we will call the agent
“intelligent”. We are using a finite state machine (FSM, Meglpe) defining a control algorithm. The
outputs of the control algorithm activate certain actiohke control algorithm together with its actions
define the behavior (or the “algorithm”) of an agent. The wehagent represents a Moore automaton,
which is the type of automaton that is standard in CA.

We represent such control automata by a transition tabke (Madefining the next control state and the

control output. It can be implemented easily by a table store read-only memory. The number of FSMs
that can be coded in a table withr control inputs #s states, angty control outputs ig# s#a)(#5#Y).
As the number of FSMs and the storage capacity is explodinly reispect to these parameters, this
implementation is of practical use only for a limited comyifie. Nevertheless, interesting non-trivial
algorithms can be coded with a limited complexity. — Tab. @&vehan example withtz = 18 inputs,
#s = 8 control states ang¢ty = 4 control outputs.

Note that the number of control algorithms which fulfill c@rt properties (only one representative of

Evolving Probabilistic CA Agents Solving the Routing Task 213

direction, agent irz7);;ont (B) swap qongition
o priority
targetpt?s./non, conflicting agent (C) 717]16|8]8
own position move ndom = ‘6 3@
2 control inputs condition variable R
i j 111 212
CONTROL I R 0
mapping AUTOMATON ' ranc(ijom 414a|3|5]|5
cond.
9 control i
7 control actions
(colors)

8 basic actions

@) (b)

Fig. 2: Control Unit (a). The current direction, and the own andeampsition of the agent are mapped to 9 control
inputs (“colors”). An agent can observe 9 target areas (splwhere the target may be located (b). Two additional
control inputs are (Bv C), altogether 18 control inputs. The control automaton mat@s 4 control outputs (the
conditional actions). The action mapping maps the outmutie 8 basic actions.

equivalents, state reduced, only one representative ofagqats under permutations of the state/input/out-
put encoding, fully connected, etc.) is much smaller, bilitiss number is growing exponentially. In
Halbach (2008) algorithms are given that allow enumeraiimy algorithms that fulfill certain properties.
In order to keep the complexity of the control automaton umdasonable limit, the inputs are reduced
by aninput mapping functiofiFig. 2(a), Fig. 2(b)), and the control outputs are mappeallarger set of
basic actions by aaction mapping functiofusing control outputs and other conditions).

Depending on the random variable R, the conditional ac8aither taken from the control automaton
with probability (1 — p) or is random with probability. Thereby the whole behavior gets probabilistic.

The Cell's State and Rule. The state of each cell is structured int®lltype direction own and
target position priority, control state random variable R(Fig. 3). The celltype is iI{AGENT, EMPTY,
OBSTACLE}. Space cells are modeled by EMPTY cells in the initial configion. Each agent has
a moving direction (toN, toE, toS, or toW) computed in thereat generation for the next generation.
Depending on the own position (can be read from the envirooeby the use of a position counter that
is updated according to each moving step) and the targeigroghe agent can compute its shortest path
(resp. the most advantageous next direction) to the tafiget.action taken by the agent depends (i) on
the random variable R, (ii) on the inputs, and (iii) the ageairrent control state. The eight basic actions
are k€ (0,1, ...,3)):

e “Move and Turn"mT}: move forward and simultaneously tuknx 90° clockwise
e “Stay and Turn’sT}: stay and turrk x 90° clockwise

The following shortcuts can be usef; = N (noturn), 7y = R (turnright), 7> = B (turn back)T5 = L
(turn left), then the basic actions aré\, mR mB, mL, sN, sR sB, sL.

An agent can perform one out of fooonditional actions The conditional action is defined by the
control automaton iR = 0, or is random (one out of four) iR = 1. R is a random variable that is set to
one with a probability op, otherwise to zero. The changing of the random variablerfopmaed in every

214 Patrick Ediger and Rolf Hoffmann

m ()
(if AGENT) direction

| - < | 4 neighbors —
in front own position

A target position .
: actions
— priority —
v
1 control state
| > -

| (if EMPTY) CONTROL UNIT
A 4 neighbors

: around _ | Rrandom variable /

Fig. 3: Structure and neighborhood of an intelligent agent. Theastare determined by a control unit that is
embedded in the cell. If the cell type is AGENT, then the 4 hbays in front are relevant. If the cell type is EMPTY,
then the 4 surrounding neighbors are relevant.

generation by a random generator available in every celerdlby the behavior of the agents becomes
probabilistic. A conditional action depends on the moviogditionm: Tj: if m thenmT}, elsesTy,.

This means that an agent moves forward whenever it can {rue). Note that in addition to a move-
ment the direction may be changed. The moving conditionvergbym = (B A C) V swap. B means
that there is an agent in fron€ means that another agent (the “conflicting agent”) is altbéecemove
to the empty cell in front. The moving condition gets falehere is a blocking agent in fronf), or if
the conflict resolution forbids the agent to move becauséhan@gent gets priority{). The condition
swapmeans that the agent in front points back to the own agenellyehe head-on meeting agents are
swapped. Note that swapping is very useful in order to avimiddings and deadlocks.

In case of a conflict (2-4 agents meet at a “crossing” and goitite same crossing cell), the crossing
cell acts as an arbiter. There alle= 24 priority schemes (possible permutations) to resolve thmlico
for at most 4 agents. The agent with the highest priorityjcdtby the crossing, wins and moves to the
crossing point. For example, if the crossing priority sckém(3, 1, 0, 2) and one agent from direction 1
and another one from direction 3 want to move to the crossimgt then the agent coming from direction
3 will win (is predecessor in the list) and moves. The loseag and perform one of the turning actions
tk. The 24 schemes are equally distributed over the cell speiteiinitial configuration (stored in every
cell one after the other, repeated cyclically).

Depending on the direction, the own position and the tasgeisition, 9 target areas are distinguished
(Fig. 2(b)). The target area 0 contains only the front cetluf~of them are the 4 main directions (lines,
main axes), that are defined by the following condition: #ugét can be reached (be seen) by going
straight forward (where required after rotation). Anotfair areas are given for the sectors in between
these lines. Target areas can be interpreted as differtscavhich an agent can observe. Our agents
can observe all 9 different colors (If necessary, the nurobeolors could be reduced in order to reduce
the inputs for the control automaton to be evolved (Sec. 3).)

The control automaton computes first the preferred cormwitiaction. Then the moving condition (in-
cluding the swapping option) is checked. Thereby the agdayis to the given situation in its immediate
local neighborhood, because if a desired link is blockedilitthoose an alternative link in the next step,
determined by the control automaton and by the priority sehstored in the front cell. The cell rule can
be informally described as follows:

Evolving Probabilistic CA Agents Solving the Routing Task 215

o If celltype is EMPTY, calculate which of the four neighbagioells with cell type AGENT pointing
to the own cell has the highest priority. If such an agenttexiopy the control state, direction and
the other information and use it in the own control automdtodetermine (in the own cell) the
turning decision of the agent. Finally change the celltypAGENT. If the own cell is the target of
the agent, then the celltype remains EMPTY (agent is delatedrget).

o If celltype is AGENT, detect whether the movement to the froall is possible (including the
swapping option and taking into account the priority schatoeed in the front cell). If the agent
can move, change the cell type to EMPTY.

3 Types of Agents and Investigations

The goal is to find optimal agents to solve the routing probkgth n» x n = N = 16, 56, 256 cells and
agents. These different cases are cal&BE(N) Three types of agents will be used: FSM controlled
agents (Sec. 3.1), and for comparison (Sec. 3.2) XY-rowtgents (XY) and modified XY-routing agents
(MXY).

3.1 Method of Determining the FSM Controlled Agents

The probabilistic algorithm is defined by the control al¢fom of the finite state machine and the proba-
bility p of the randomness parameter. Therefore the genome is cechpban FSM state table (as shown
in Tab. 1) and a probability. In this investigation can take on discrete values with a precision of 0.1%.
A randomized FSM controlled algorithm will be called FSM(

Our method to find (near) optimal algorithms consists of tiing steps:

1. (Evolving A training setof 20 initial configurations was used to evolve a first set 608, algo-
rithmsT3000. An island model as described in Ediger and Hoffmann (20Baiger et al. (2009)
was used. Five islands were used with a population size of&@0mes (initially randomly gener-
ated) and an immigration rate of 2%. Six runs were performesylting in5 x 100 x 6 = 3000
algorithms. The fitness value was evaluated for each cotligerby using only one simulation of
the CA. Itis equal to the number of steps (1/“speed”), thatabents need to complete the message
set transfer (averaged over the 20 configurations).

New automata were constructed during the evolution progsisg) a uniform crossover with two

parent automata like in Ediger and Hoffmann (2008a); Edéged. (2009). Thereby the next state
of a control state and its associated output (condition@m®@can be taken from either one of the
parents. The probability (stored in the genome) of the oiffigpis the average of the probabilities
taken from the parents. In addition, each gene (next statpug probability) is changed with a

mutation rate of 0.9%.

2. (Fitness Correction The fitness values of the evolved algorithms T3000 are netipe because
they are evaluated by one simulation only. Different sirtiafes lead to slightly different fitness
values because the CA rule is probabilistic. Therefore tB8@Balgorithms were simulated again,
each 1,000 times. Thereby the confidence into the fithesevalas increased significantly. Then
the algorithms T3000 were ranked and the top 20 were seléotddrther processing, let us call
themT20.

216 Patrick Ediger and Rolf Hoffmann

& s B s |
| fenoy B ‘AR
H2T>TH EVWeeR
| Jonet B saewN

Fig. 4: Manually designed initial configurations fof = 16 that lead to livelocks or deadlocks if the control algorithm
is unrandomized and equal for all agents. In case (a) thettafgeach agent is placed in its front cell. In case (b) the
target is placed straight ahead of the agent, two cells imt ffbhe target positions are not depicted here.

3. (Ranking We want to produce algorithms that are successful and faahy initial configuration.
Until now the algorithms were optimized for the training sey. Therefore another, larger set,
called ranking setcontaining 1,000 configurations was used. It consists of 1@@8lom initial
configurations and 2 manually designed configurations shioviaig. 4. We have designed these
two special configurations in such a way that livelocks ordiieeks will occur if unrandomized
algorithms (deterministic FSMs, deterministic XY-rogi(see below)) were used. The algorithms
T20 were simulated 10,000 times (fdf = 16, 64 cells), and only 1,000 times (fa¥ = 256) in
order to limit the computation time. Then they were rankedding the set oR20 algorithms.

4. (Variation) As randomnesg of an algorithm was evolved for the training set only and asityi-
ulating once, its confidence is low. We are searching for titér@l randomness for the ranking
set. Therefore the randomness was varied using discretessalith a precision of 0.1%; lower and
higher values were used in an iterative way in order to findftenal value. The simulations were
carried out 10,000 times (faV = 16, 64) resp. 1,000 times (foN = 256) on the 1,000 initial
configurations of the ranking set for different valuegofThe set of algorithms that results from
variation is called/20.

3.2 Randomized XY-Routing Agents and Modified XY-Routing Agents

For comparison, XY-routing agents (X¥)and modified XY-routing agents (MXY) were defined and
simulated. These agents can see the same colors as the F8blledragents, and they can perform the
same basic actions. The state of an XY or an MXYdségction own positiontarget positior).

An XY first reduces the difference of the x-coordinates betvthe current and target position until it
gets zero, then it reduces the y-difference.

An MXY computes in each step the optimal moving directiomirthe cell in front towards the target
on the shortest path. If there are two equivalent directitiven it takes an arbitrary choice. If the front
cell is free, then the agent will move and turn towards thgetrlf the front cell is blocked and there are
alternative directions, then the agent takes an arbititaojce.

For certain configurations, it turned out that that the XYd 8MXYs formed clusters (deadlocks and
livelocks) from which they could not escape. Therefore,dapabilities of the XYs and the MXYs were
enhanced by adding randomness in a similar way as it was dotieef FSM agents. An X¥{) is an XY
that turns to a random direction with a randomnesg,and behaves as an XY fot ¢ p). The same
holds for MXY(p). The optimal randomness was searched in the same way a#bhdesabove in step 4
(variation) (Sec. 3.1).

) The “normar” XY-routing procedure uses four message bsffsr cell, whereas here only one buffer for the agent is geaki

Evolving Probabilistic CA Agents Solving the Routing Task 217

Tab. 2: Fitness and randomness values of the Topl algorithms of REOV20, the MXY) algorithm and the
XY (p) algorithm for eacHCASE(N)on the Ranking Set. Note that the best algorithm of R20 is Boessarily the
best algorithm of V20.

N=16 N =64 N = 256
fitness P fitness P fitness P
Top1l of V20 14.8 | 1.2% 36.7 1.3% 84.0 1.8%
Topl of R20 154 | 4.5% 37.6 0.6% 86.4 4.4%
MXY (p) 15.8 | 6.5% 411 | 9.1% 97.8 | 11.9%
XY(p) 179 | 8.4% 50.2 | 14.7% | 122.7 | 18.5%

Tab. 3: Average, minimum and maximum of the randomnesg the FSM algorithms in R20 and V20.
FSMs) of V20, optimalp FSMs) of R20, evolvedy
N=16 | N=64 | N=256|| N=16 | N=64 | N=256
Average randomness|| 3.1% 1.89% 2.19% 3.1% 4.78% 5.69%
Minimum randomness|| 0.9% 0.8% 1.2% 0.1% 0.6% 2.9%

Maximum randomness| 5.6% 3.1% 3.2% 6.1% 7.6% 7.5%

4 Performance of the Agents

4.1 Performance of the Randomized Algorithms

The fitness (1/“speed”) of the found algorithms is shown ib.T2. For eachCASE(N)the fithess is
ordered with this precedence: (1) Topl-F$M6f V20, (2) Topl-FSMyp) of R20, (3) MXY(p), (4)
XY(p). Thus the evolved FSM controlled agents (after randomwasation) are 6%/11%/14% faster
than the MXY) agents, for the cas€€ = 16/64/256. By variation of the randomnegs(of FSM(p) in
R20) the performance was improved by 2-4% (result of vamsis V20).

The largest possible distance between an agent and its targe initial configuration ign — 1) +
(n — 1). Supposing, that such an agent is facing a border at the tiegirthere is one additional step
necessary to turn in the right direction. In such a worst siétsation the message (and thus the message
set) could be transported 2m — 1 steps (assuming a perfect algorithm and no conflicts), widghals 7,
15, or 31 for the different cases. ®ASE(16R.1 times this limit is needed by the best algorithm (V20),
in CASE(64}he factor is 2.4 and iICASE(256}he factor is 2.7. This means that the agents move slower
to their targets, when there are more agents, because thenawfoconflicts per agent per time step is
increasing.

4.2 The Optimal Randomness

It was observed that, the better the algorithm performsiaiver is the optimal randomness. The optimal
randomness increases with for the MXY (p), the XY (p) and the Top1 V20 algorithms (Tab. 2). After
the ranking step, i. e., after evolving, the average randmmsof the R20 algorithms increases wikh
too (Tab. 3). For the average randomness of the V20 algosithmd the randomness of the Topl R20
algorithm, this does not hold faZASE(16) A higher randomness value is needed to efficiently resolve
the higher amount of conflicts in configurations with morergge

Comparing the randomness values after evolving and ramdtingthe values after variation, it can be

218 Patrick Ediger and Rolf Hoffmann

125 -

Top1-FSM(p) —+— : T o000 XX
88 [TOP2-FSM(p) ---%--- 120 + *
Top3-FSM(p) - %--- o .
Top4-FSM(p) -8 115
Top5-FSM(p) — - X 5 : Top1-FSM(p) —+—
87 = 110 b * XY e
2 < 2 MXY " oo
o & 2 105 | .
o st i x
£ 4 £ 100 - *
= = K - X
P 95 |-
90 |
aa | 85 7M
1 1 1 1 1 1 1 J 80 1 1 1 1
0 0.01 002 003 004 005 006 0.07 0.08 0 0.05 0.1 0.15 0.2
Randomness p Randomness p

() (b)

Fig. 5: Curves showing the fitness values f@ASE (256 epending on the randomness. The set of curves (a) shows
the top 5 FSMg) algorithms of V20. The curves (b) show the fitness valueshefXY(p), the MXY(p) and the
Topl-FSMp) algorithm of V20. ForCASE(16)and CASE(64)not depicted here), the values are different, but the
tendency is the same.

observed that a rather high randomness was evolved anctatected downwards by variation. After
variation, also the range of randomness in which the 20 dlgos are placed becomes smaller (Tab. 3).

By performing the variation step, a fitness curve dependintpe randomness can be developed. These
curves of the best randomized FSMs have a similar progme¢big. 5(a)). Furthermore, the optimal
randomnesgp of the FSM based evolved algorithms is much lower than them@btrandomness of the
MXY (p) and the XYp) (Tab. 2, Fig. 5(b)). This is true for all tested cases.

4.3 Adding Spaces between the Communication Nodes

An additional test was carried out in order to verify formesults saying that 1-2 spaces between each
agent will improve the speed of the agents. We investigatili configurations withk = 256 agents
and a grid size ofn + i) x (n +). This results ir2in + i2 spaces (empty cells, buffers)was varied
between 1 and 15. For each of the different casesanking set of 1,000 configurations was generated,
placing the spaces randomly. The Topl-F@Mdlgorithm of V20 of CASE(256)was simulated 1,000
times on each ranking set. It turned out thatifer 11 it performs best: 69.3 time steps on average, which
is an improvement of 17.5% against the configurations with0 (84 time steps). For = 11, there are
420 spaces. Thus the best ratio of agents to spaces is 1.64.

5 Conclusion

Agents modeled within the CA paradigm were developed thatetciently solve the routing problem.
Three types of agents were defined: (1) FSM controlled adevitis an embedded finite state machine
evolved by a genetic algorithm), (2) XY-routing agents, §dmodified XY-routing agents (MXY). To
each of them a randomnesgofvas added: With the probabiliythey choose an arbitrary moving action
in order to avoid deadlocks and livelocks. The FSM agent®\iiest evolved on a small training set
of initial configurations, then their fitness values wererected using more simulations, then they were

Evolving Probabilistic CA Agents Solving the Routing Task 219

ranked on a large training set, and finally the evolved rantEss parameterwas varied in order to find

its optimal value. It turned out that the FSpj@gents are the fastest, the MX¥Y(@gents are slower, and
the XY (p) agents are the slowest. Furthermore, if an agent perfoettartihen it uses a lower randomness
(it is “more deterministic”). An additional test showed tlihe speed of the FSM] agents can further
be improved by introducing additional spaces between thenwonication nodes. Using64 x k space
cells fork = 256 agents, the speed could be improved by 17.5%. — Future quesire: Is a regular
distribution of the space cells better than a random distidn? Is it better to use different node locations
for sending and receiving messages? How fault tolerantiagient system, replacing some of the spaces
by obstacles?

References

C. Busch, M. Herlihy, and R. Wattenhofer. Routing withoutwIControl. INSPAA pages 11-20, New
York, 2001. ACM SIGACT, ACM SIGARCH, ACM Press.

G. D. Caro and M. Dorigo. AntNet: A Mobile Agents Approach tdaptive Routing. Technical Report
97-12, IRIDIA, Université Libre de Bruxelles, Belgium, Md9 1997.

A. V. de Mello, L. C. Ost, F. G. Moraes, and N. L. V. Calazans.alBation of Routing Algorithms on
Mesh Based NoCs. Technical Report 040, Faculdade de latizag Pontificia Universidade Catolica
do Rio Grande do Sul, 2004.

S. Dhillon and P. V. Mieghem. Performance Analysis of theMettAlgorithm. Computer Networks1
(8):2104 — 2125, 2007.

P. Ediger and R. Hoffmann. Optimizing the Creature’s RuleAly-to-All Communication. INEPSRC
Workshop Automata-2008. Theory and Applications of Calldltomata, Bristol, UKpages 398—-410,
2008a.

P. Ediger and R. Hoffmann. Improving the Behavior of Creasuby Time-Shuffling. In H. Umeo,
S. Morishita, K. Nishinari, T. Komatsuzaki, and S. Bandieditors,ACRI|, volume 5191 ofLNCS
pages 345-353. Springer, 2008b.

P. Ediger and R. Hoffmann. CA Models for Target Searchingrgieln P. P. B. de Oliveira and J. Kari,
editors,Proceedings of Automata 2009: 15th International WorksbopCellular Automata and Dis-
crete Complex SystemsicsJo€ dos Campos, Brazipages 41-54, 2009.

P. Ediger and R. Hoffmann. Routing Based on Evolved Agents23rd PARS Workshop on Parallel
Systems and Algorithms, Hannover, Germarages 45-53, 2010.

P. Ediger, R. Hoffmann, and M. Halbach. Evolving 6-statechuata for Optimal Behaviors of Creatures
Compared to Exhaustive Search. In R. Moreno-Diaz, F. Bichhd A. Quesada-Arencibia, editors,
EUROCASTvolume 5717 oLNCS pages 689-696. Springer, 2009.

M. Goldenberg, A. Kovarsky, X. Wu, and J. Schaeffer. Mubidgents Moving Target Search. In
G. Gottlob and T. Walsh, editorglCIA, pages 1536—-1538. Morgan Kaufmann, 2003.

220 Patrick Ediger and Rolf Hoffmann

M. Halbach. Algorithmen und Hardwarearchitekturen zur optimiertenfZdhlung von Automaten und
deren Einsatz bei der Simulatiofifkstlicher KreaturenPhD thesis, Technische Universitat Darmstadt,
2008.

M. Halbach, R. Hoffmann, and L. Both. Optimal 6-State Algloms for the Behavior of Several Moving
Creatures. In S. El Yacoubi, B. Chopard, and S. BandinipesliARCRI, volume 4173 oL NCS pages
571-581. Springer, 2006.

S. Koenig, M. Likhachev, and X. Sun. Speeding up Moving-&®garch. In E. H. Durfee et al., editor,
AAMAS, Honolulu, Hawaii, USAages 1144-1151. IFAAMAS, 2007.

M. Komann, A. Mainka, and D. Fey. Comparison of Evolving Wmifi, Non-uniform Cellular Automa-
ton, and Genetic Programming for Centroid Detection withhddaare Agents. In V. E. Malyshkin,
editor,PaCT, volume 4671 of NCS pages 432—-441. Springer, 2007.

M. Komann, P. Ediger, D. Fey, and R. Hoffmann. On the Effettiof Genetic Programming Compared
to the Time-Consuming Full Search of Optimal 6-State Auttamén L. Vanneschi, S. Gustafson, and
M. Ebner, editorsiEuroGP 2009LNCS, Tubingen, Apr.15-17 2009. Springer.

R. E. Korf. Real-Time Heuristic SearchAtificial Intelligence 42(2-3):189-211, 1990.

P. K. K. Loh and E. C. Prakash. Performance Simulations ofiNgp\arget Search Algorithmdnt. J.
Comput. Games Technp2009:1-6, 2009.

A. Schadschneider. Conflicts and Friction in Pedestrianddyins. In H. Umeo, S. Morishita, K. Nishi-
nari, T. Komatsuzaki, and S. Bandini, editof€R], volume 5191 oL.NCS pages 559-562. Springer,
2008.

A. Schadschneider and M. Schreckenberg. Cellular Automistmdels and Traffic FlowJ. Phys A 26:
L679, 1993.

M. Sipper. Evolution of Parallel Cellular Machines, The Cellular Pmi@mming Approachvolume 1194
of LNCS Springer, 1997.

M. Sipper and M. Tomassini. Computation in Artificially Eveld, Non-uniform Cellular Automata.
Theor. Comput. Sgi217(1):81-98, 1999.

A. Spicher, N. Fates, and O. Simonin. From Reactive MuljeAts Models to Cellular Automata -
lllustration on a Diffusion-Limited Aggregation Model. loaquim Filipe et al., editofCAART, pages
422-429. INSTICC Press, 2009. ISBN 978-989-8111-66-1.

Y. Tavakoli, H. H. S. Javadi, and S. Adabi. A Cellular Autom&ased Algorithm for Path Planning in
Multi-Agent Systems with A Common GoalJCSNS, International Journal of Computer Science and
Network Security8(7):119-123, 2008.

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 221-230

Randomness solves the density classification
problem with an arbitrary precision

Nazim Fates

YINRIA Nancy — Grand Est& LORIA, campus scientifique, BP 239, F-54506 Vandeeuvre lés Nancy, France

The density classification problem consists in making a population of cells decide, by using only local rules, whether
an initial random configuration contains more Os or 1s. This problem is known for having no exact solution in the
case of deterministic one-dimensional cellular automata. We propose a probabilistic cellular automaton that solves
the problem with an arbitrary precision. The precision of the classification can be increased with an appropriate tuning
of the CA but comes at a cost of an increased average number of steps times to converge.

Keywords: density classification problem ; probabilistic CA ; discrete dynamical systems

1 Introduction

The density classification problem is one of the most studied “inverse” problems in the field of cellular
automata. Its interest stems from the paradox that it requires a cellular automaton, or more generally a
discrete dynamical system, to compute a trivial task: to decide whether an initial binary string contains
more Os or more 1s. In its most “classical” formulation, the cells are arranged in a ring and each cell
can only read its own state and the states of the neighbouring cells. The challenge is to design a local
behaviour of the cells that would drive the system to converge to a uniform fixed point, consisting of all 1s
if the initial configuration contained more 1s and all Os otherwise. In short, the cellular automaton should
decide whether the initial density of 1s was greater or lower than 1/2.

The impossibility to centralise the information is the main difficulty of this problem. All the compu-
tations are local, that is, they are restricted in space and time by the very nature of a two-state cellular
automaton. To reach a global consensus which consists of a uniform state, the cells need to compute
the state that is most present in their neighbourhood and then to propagate this information to the other
cells. However, this can be achieved only with a trade-off between two contradictory objectives: to decide
locally which state is most present and, as the cells have no memory, to simultaneously propagate this
information to the other cells.

The problem has attracted a sustained attention since its early formulations [5]. Studies were mainly
conducted an experimental basis, for instance by using genetic algorithms to find good rules (see e.g. [7]
and references therein). On the analytical side, one of the most surprising discoveries was a negative
statement: there exists no perfect (deterministic) density classifier that uses only two states [6]. This draft
paper presents a kind of “counterpart” to this negative theorem: even though it is impossible to find a

222 Nazim Fates

perfect solution, the density classification problem may be solved with an arbitrary precision, i.e., with a
probability of success arbitrarily close to 1.

Our main idea is to use randomness to solve the dilemma between the local majority decisions and
the propagation of the most frequent state on a global scale. We follow the path opened by H. Fuks
who proposed a probabilistic CA which classifies density by a purely “diffusive” mechanism. In our
construction, the trade-off between local majority computations vs. large-scale diffusion is achieved by
tuning a single parameter. This parameter corresponds to a weight between two well-known deterministic
rules, namely the majority rule and the “traffic” rule. We show that the probability of making a good
classification approaches 1 as the value this parameter is set closer to 0. The drawback of such a gain of
precision is an increase in the average time it takes to converge to a uniform state.

2 Formalisation of the problem

In this section, we define the Elementary Cellular Automata and their probabilistic counterpart.

2.1 Basic notations

Let £ = Z/nZ be the set of n cells arranged in a ring. We restrict our study to the binary case, the set of
states is {0, 1}. A configuration is a string x € {0, 1}* that associates to each cell a state. The set of all
configurations of size n is denoted by {0, 1},

An Elementary Cellular Automaton (ECA) is a one dimensional binary CA with nearest neighbour
topology, defined by its local transition rule, a function f : {0,1}3 — {0, 1} that specifies how to
update a cell using only nearest-neighbour information. For a given ring size n, the global transition rule
F : {0,1}* — {0, 1}* associated to f is the function that maps a configuration z* to a configuration
21 such that:

. 1 /
Vie L,z = f(af_y, 2,20,)

A Probabilistic Elementary Cellular Automaton (P-ECA) is also defined by a local probabilistic tran-
sition rule f but the next state a cell is known only with a given probability. In the binary case, we
define f : {0,1}3 — [0,1] where f(z,y, 2) is probability that the cell updates to state 1 given that its
neighbourhood has the state (z,y, 2).

We define the global transition rule F associated to a P-ECA f as the probabilistic function that assigns
to each random configuration ' a random configuration z'*! such that:

Vie L, o = B flaly,atat) }

where :cf“ denotes the random variable that is given by observing the state of cell i and Bf(p) are
i.i.d. Bernoulli random variables, i.e., random variables that equal to 1 with probability p and to 0 with

probability 1 — p.

2.2 Density Classifiers

We say that a configuration x is a fixed point for the global function F' if we have F'(z) = z with
probability 1. We say that a global function F is a (density) classifier if 0% and 1% are its two only fixed
points.

Randomness solves density classification 223

Tab. 1: Table of the 8 active transitions and their associated letterd that define the notation by transitions of the 256
ECAs.

A B C D E F G

000 | 001 | 100 | 101 | 010 | 011 | 110 | 111
1 1 1 1 0 0 0 0

For a classifier C, we define the probabilistic event that C correctly classifies a configuration z as the
probability that there exists a finite time 7" such that: CT(x) = 1 if d(x) > 1/2 and CT(z) = 0 if
d(z) < 1/2.

To evaluate the “quality” of a classifier requires to introduce a quantitative measures. We use here the
“uniform density quality” UDQ, defined as the limit for the ring size growing to infinity of the probability
of good classification if the initial strings are constructed as Bernoulli strings, i.e., we choose d uniformly
in [0, 1] and construct a random configuration where each cell has a probability d to be in state 1.

2.3 Structure of the P-ECA space

Obviously, the classical deterministic ECA are particular P-ECA with a local rule that takes its values
in {0, 1}. The space of P-ECA can be described as an eight-dimensional hypercube with the ECA in its
corners. This can be perceived intuitively if we see P-ECA rules as points of the hypercube, to which
we apply the operations of addition and multiplication. More formally, taking p P-ECA Fi, ..., Fj and
w1, . .., wy real numbers in [0, 1] such that Zf:o w; = 1, the weighted average of the P-ECA (F;) with
weights w; is the P-ECA g such that:

k
Va,y,z € {0,1}, g(z,y,2) = > _pi-f(z,y,2)
=0

As a consequence, one may choose any combination of 8 P-ECAthat form a basis as vector coordinates
of the 8-dimensional hypercube. The most intuitive basis is the 8 ECA that have only one transition that
leads to 1: the weights of this combination correspond to the values f(z,y, z).

Equally, one may express a P-ECA as a weighted average of the 8 (deterministic) ECA that have only
one active transition, i.e., only one change of state in their transition table. Such ECA are labelled A,
B, ..., H according to the notation introduced in [2] and summed up in table Tab. 1. Formally, for every
P-ECA f, there exists a 8-tuple (pa, pB, - - ., pu) such that:

f=paA+p.B+---+pu.H

We denote this relationship by f = [pa, ps, ..., pu]r, where the subscript T stands for (active) “transi-
tions”.

This basis has the same advantages as for the deterministic case (see ref [3]). In particular one can notice
that the quantities pa, pB, pc, pp and pg, Pr, PG, pu concern the cells with state 0 and 1, respectively. The
group of symmetries of a rule can easily be obtained: the left-right symmetry permutes pg and pc, and
pr and pg, whereas the 0-1 symmetry permutes pa and py, pp and pg, etc.

3 Fuks density classifier

Let us first consider the probabilistic density classifier proposed by Fuks [4]. For p €]0,1/2], the local
rule C1 is defined with the following transitions:

224 Nazim Fates

Fig. 1: Three evolutions of Fuks classifier C1 with n = 51, p = 1/2, and same initial of density ~ 0.4. Time goes
from bottom to top ; white cells are O-cells and blue cells are 1-cells. (left) evolution will most probably end with a
good classification (0°); (middle) equal probabilities of good classification; (right) evolution will probably end with
a bad classification (1£).

Randomness solves density classification 225

N 000 001 010 011 100 101 110 111
p(lIN) 0 p 1-2p 1—p p 2p 1—-p 1

This rule is a density classifier as 0~ and 1 are its only fixed points. With notations introduced above,
we write:
Cl =[0,p,p,2p,2p,p,p,0)
=p.BDEG + p.CDEF

where BDEG = 170 and CDEF = 240 are the left and right shift respectively. This means that Fuks’
rule can be interpreted as applying, for each cell independently: (a) q left shift with probability p, (b) a
right shift with probability p, and (c) staying in the same state with probability 1 — 2p (see Fig. 1). We
also note that this rule is invariant under both the left-right and the 0-1 symmetries ; indeed, we have:
PB = PC = PF = PG, PA = pu and pp = pg.

Theorem 1 For every x € {0, 1}*, the probability of good classification of is equal to max {d(z),1 —
d(x)}, where d(z) is the density of x.

This property was observed experimentally with simulations explained partially by combinatorial ar-
guments [4]. We now propose a proof that uses the analytical tools developed for asynchronous ECAs [3]
and completes the results established by Fuks.

The proof stands on the following lemma, see [3].

Lemma 1 If (X) is a process that takes its values in {0, ..., n}, such that:
e (Xy) is a martingale on {0, ..., n}, ie, E{ X; 11 |, Fy } = X,
e (X3) is a Markov process with 0 and n as the two only absorbing states,

then the probability of absorption by state n is equal to X /n, the probability of absorption by state 0 is
equal to (n — Xgp)/n.

Proof Proof of Theorem 1: We denoted by |z|p the number of occurrences of a pattern P in z. Let
us now simply take X; = |z*|; and show that Lemma 1 applies to X;. For sake of simplicity, we write
a(x) = |zlooo, b(x) = |Tloo1s .- -, h(x) = |z|111 (see Tab. 1) and drop the argument = when there is
no ambiguity.where |z|p denotes the number of occurrences of p in x. The following equalities hold [3]:
b+d=e+ fic+td=e+g;b=c=f=g.

We thus have:

]E{ X —Xt} =pb+pc+2pd—2pe—p.f—pg
pb+d—e—f)+plc+d—e—g)
0

On the other hand, X and X, are the only two absorbing states of the Markov chain, so X; € {1,n — 1}
implies that z* is not a fixed point

Let T be the random variable equal to the time where the system reaches an absorbing state, then 7" is
a stopping time and we can write:

E[Xr] =0.Pr[X7 = 0] + n. Pr[X1 = n]

226 Nazim Fatés

Fig. 2: Three evolutions of C2 with n = 51 and e = 1/4 and for the same initial condition of density 25/51 ~ 0.49.
The two first evolutions give a good classification (all 0) in less or approximately 100 time steps; the third evolution
is not finished at time ¢ = 100, but it will evolve toward a bad classification.

and
E[Xr] = Xo.
We find that the probability that the chain stops on X, = n, that is on the fixed point 1%, is equal to
Xo/n, e, itis equal to the initial density. O

From this, we derive that the probability of good classification of any configuration x is equal to
max{d(z),1 — d(z)}. The uniform density quality of C1 is thus equal to 3/4 (obtained y a simple
integration).

It is possible to estimate the convergence time of this classifier by using the same techniques as for
the asynchronous ECAs [3]. Indeed, by noting that the Markov chains that describe C1 and the shift are
similar, this time should scales as n? /p. However, a precise proof of this statement yet remains to be done.

4 Qur proposition
For € € [0, 1], let us consider the following P-ECA:

N 000 001 010 011 100 101 110 111
p(1|N) 0 0 0 1 1—€e 1 € 1

Intuitively, this probabilistic rule can be considred as a mixing of two elementary rules.

Randomness solves density classification 227

e For ¢ = 0 we have ECA 184, which is a well-known rule, often called the “traffic’’ rule. This
rule is number conserving, i.e., the number of 1s is conserved as the system evolves (see e.g., [1]).
Observing the evolution of the rule, we see that a 1 with a 0 at its right moves to right while a 0
with a 1 at its left is moved to the left. So all happens if the 1s were cars that tried to go to the right,
with possible traffic jams. These jams resorb by going in the inverse directions of the cars (when
possible).

e For ¢ = 1, we have ECA 232 which is the “majority rule”. This rule acts by selecting the state that
is most present in the neighbourhood of the cell.

With the notations introduced above, we have:

C2 =[0,0,1-¢1,1,0,1—¢,0]r
=eDE+ (1—-¢€).CDEG

For e €]0, 1], the effect of the rule is the same as if, for each cell and each time, we would apply ECA
232=DE with probability ¢ and ECA 184=CDEG with probability 1 — € (see Fig. 2). This combination
generates a surprising property: although the system is stochastic, there exists an infinity of configurations
which can be classified with no error.

Definition 1 For q € {0, 1}, a configuration x is a g-archipelago if all the cells in state q are isolated,
i.e., if x does not contain two adjacent cells in state q.

Theorem 2 For a given odd ring size n, for each p € [0, 1(, there exists an € such that for each configu-
ration x € {0, 1}%, the probability of good classification of x by C2 is greater than 1 — p.

The theorem stands on the two lemmas that follow.

Lemma 2 For a given odd ring size n, an archipelago is well-classified with probability 1.

Proof (Sketch): The proof is simple and relies on two observations. Witout loss of generality, let us
assume that x is a 1-archipelago, we then have d(x) < 1/2. First, the successor of an archipelago is an
archipelago (effect of ECA 184). Second, each isolated 1s can disapear with probability €. As a result, all
the 1 will eventually disappear and the system will attain the fixed point 0%, which corresponds to a good
classification.

O

Lemma 3 For a given odd ring size n, for every p € [0,1(, there exists a setting € of the classifier
such that every configuration configuration x € {0, 1}£ has a probability greater than p to evolve to a
1-archipelago (to a O-archipelago) if d(x) > 1/2 (if d(x) < 1/2, respectively).

Proof (Sketch): The proof relies on the well-known properity of rule 184 to evolve to an archipelago in
at most n/2 steps.

For a given p and given n, without loss of a generality, let us consider a configuration = such that
d(x) < 1/2. Let us consider the probability that the rule does not behave like rule 184. This can happen
only on the “b” and “f” cells, i.e., on the cells whose neighbourhood are 100 and 110, with probability e of
each such cell. As we have b = f = g = ¢, we can write b + f < n/2. At each time step, the probability

228 Nazim Fates

paie that the evolution of C2 and rule 184 differ on one step is thus majorated by: pqig < €"/2. For T
steps, it is is majorated by: pagig < 1 — (1 — e"/z)T.
For a given T, by using the equality above, we find that it is sufficient to take:

€< (1 -~ —p)l/T)Q/n

to guarantee that the probability of occurence of a difference during 7" steps is less than p.
This inequality is a only gross majoration but it shows that, by taking e small enough, the probability
that a configuration x with d(x) < 1/2 evolves to a O-archipelago can be made arbritrarily small. |

Combining the two lemmas to prove the theorem is straightforward: for e small enough, the system
evolves to an archipelago which has the same density as the initial condition (prop. of rule 184). It is then
well-classified as it will progressively “drift” towards the approriate fixed point. Note that in most cases,
there is no need that these two phases occur sequentially. This indicates that the bounds given above can
be largely improved.

The estimation of the time of convergence of this classifier is more complex than for Fuks classifier, as
it is not easy to see which quantities are conserved during the evolution of the system. However, by noting
that the probability of changing the density of a configuration vanishes as e vanishes, it is clear that the
convergence time of the classifier diverges as € tends to 1 and as the quality of classification tends to 1.

5 Discussion

This work-in-progress report presented preliminary results on how a probabilistic cellular automaton can
be used to solve the density classification problem with an arbitrary precision. Our proposition consisted
in finding a “blend” between two rules that have appropriate properties to solve this particular problem.
It is interesting to determine how to “blend” other rules, especially rules with a larger radius or on higher
dimension grids. Far from solving the problem, the existence of such a rule suggests that the quality of
classification cannot be taken as the unique criterion for evaluating the classifiers. Instead, it is some
trade-off between quality and time to give an answer that has to be looked for.

The first informal experiments conducted showed us a good quality of classification, with an answer
given within a short simulation time, at least for small-size configurations. For instance, for a ring size of
n = 51 and € = 0.1, most initial configurations are correctly classified provided their density is not 25/51
or 26/51, i.e., if they are not “too close” from density 1/2. It is now necessary to estimate this data with
large statistical measures. Determining these measures analytically is also a challenging problem. We
believe that the techniques used to estimate Fuks classifier could be adapted to our classifier, even though
such an adaptation does not seem straightforward.

Most of the results so far have been given by using the uniform density quality. As far as we know, it is
an open problem to find a classifier that would have has a uniform configuration quality which differs from
1/2. In other words, is there a classifier which would give a non-random answer when the configurations
are uniformly chosen with large-size grids?

Acknowledgements

The author wishes to express his gratitude to H. Fuk$ for the stimulating debates held during Summer
2007 and Spring 2010. The author asks for the indulgence of the readers as many points still need to be
clarified or corrected ; remarks and comments on this draft will be most welcome.

Randomness solves density classification 229

References

[1] Nino Boccara and Henryk Fuks, Number-conserving cellular automaton rules, Fundamenta Infor-
maticae 52 (2002), no. 1-3, 1-13.

[2] Nazim Fates, Robustesse de la dynamique des systemes discrets : le cas de I’asynchronisme dans les
automates cellulaires, Ph.D. thesis, Ecole normale supérieure de Lyon, 2004.

[3] Nazim Fates, Michel Morvan, Nicolas Schabanel, and Eric Thierry, Fully asynchronous behavior of
double-quiescent elementary cellular automata, Theoretical Computer Science 362 (2006), 1-16.

[4] Henryk Fuks, Nondeterministic density classification with diffusive probabilistic cellular automata,
Physical Review E 66 (2002), no. 6, 066106.

[5] P. Gacs, G. L. Kurdiumov, and L. A. Levin, One-dimensional homogeneous media dissolving finite
islands, Problemy Peredachi Informatsii 14 (1987), 92-98.

[6] Mark Land and Richard K. Belew, No perfect two-state cellular automata for density classification
exists, Physical Review Letters 74 (1995), no. 25, 5148-5150.

[7] Gina M. B. Oliveira, Luiz G. A. Martins, Laura B. de Carvalho, and Enrique Fynn, Some investiga-
tions about synchronization and density classification tasks in one-dimensional and two-dimensional
cellular automata rule spaces, Electronic Notes in Theoretical Computer Science 252 (2009), 121-
142.

230 Nazim Fates

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 231-244

CAvium - Strengthening Trivium Stream
Cipher Using Cellular Automata

Sandip Karmakar, Debdeep Mukhopadhyay, Dipanwita Roy Chowdhury

Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur,
India

Cellular Automata configurations are known to be able to generate good pseudorandom sequences. Linear Cellular
Automata and LFSRs are equivalent in pseudorandom sequence generation, but those structures could be easily
cryptanalysed due to their lack of nonlinearity. It is noted in this paper that, introduction of both nonlinear and linear
rules in Cellular Automata structures can reach the desired setup state of a cipher much faster than the LFSR and
NFSR based contemporary systems and provides comparatively secure design. The eStream stream cipher Trivium,
in spite of, being secure in its full round operation, till date, has a large number of cryptanalysis on reduced versions
of it. Trivium also has a long key setup process. In the present paper, we present a modification of the Trivium stream
cipher using Cellular Automata which is shown to be faster in operation and is much secure than the original cipher.
The proposed modification also has a shorter key setup process than Trivium.

Keywords: Cellular Automata, Trivium, Stream Cipher, Strengthening Trivium, Cryptography, Cryptography using
Cellular Automata

1 Introduction

Cellular Automata are self-evolving systems of cells each of which updates itself per cycle following a rule
embedded into it. Cellular Automaton (CA) is known for its ability to generate pseudorandom sequences
needed for various applications like VLSI testing and coding theory, Wolfram (1986). Several researchers
have attempted to apply the pseudorandomness of CA to cryptography. The cryptanalysis of linear CA
based cryptographic techniques, Paterson et al. (1997) show that nonlinearity is needed for cryptographic
applications. A 3-neighbourhood nonlinear CA each of whose cells updates itself by the nonlinear rule
30 has long been considered a very good pseudorandom sequence generator. It passed various statistical
tests for pseudorandomness with good results, Wolfram (1985), until Willi Meier and Othmar Staffelbach
proposed an attack on pseudorandom sequences generated by rule 30 CA, Meier and Staffelbach. (1991),
which would break any such system of 300 cells in complexity of about 2'? operation. Other attacks on
rule 30 CA were also reported, Koc and Apohan. (1997). These findings show that for cryptography, the
data stream generated by CA needs to satisfy additional properties. In this paper, we use CA in connection
with feedback nonlinearities as structured in the Trivium stream cipher to illustrate the use of CA in cipher
design.

232 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

Trivium, introduced in the eStream project is among the top 5 stream ciphers at the end of the project.
The cipher is very simple in design yet quite secure in operation. Although Trivium is still secure in
its full round of operation, it is not secure in its reduced round versions. A very small growth rate in
algebraic degree has lent Trivium to various trivial attacks like algebraic attacks, statistical attacks and
higher order differential attacks in reduced rounds. The weakness rendered in Trivium due to the small
growth rate of essential cryptographic properties is compensated by its long key setup process, which
completes in 1152 cycles of operation. After the setup process, the cipher represents a secure structure
against the cryptanalysis methods till encountered. However, as mentioned, a number of cryptanalytic
results on reduced round Trivium are known. Linearization, correlation attacks, algebraic attacks were
reported immediately after the introduction of the cipher. The proposal of AIDA has proved to be the
strongest form of attack against Trivium. Till date AIDA can recover up to 793 reduced rounds of Trivium
and Cube testers can distinguish up to 885 rounds of Trivium from a random sequence. Scan based
side channel attack presented a cryptanalysis on full operational Trivium hardware. Though the cipher is
still considered safe from a full operational attack, certain modifications on the cipher both to strengthen
against reduced round attacks and also to speedup the setup process of the cipher can be proposed. The
aim of the modifications would be to accelerate growth rate of essential cryptographic properties of a
cipher system.

In this paper, we propose a CA based modification of the Trivium stream cipher which strengthens it
against almost all the attacks encountered against reduced round Trivium so far. The modified cipher also
provides a faster key setup process. The modified cipher will be called CAvium. We show quantitatively
that CAvium is resistant against linear and higher order differential cryptanalysis and also resists corre-
lation and algebraic attack. It is also demonstrated to be safe against scan-based side channel attacks. A
hardware and software performance comparison of CAvium with Trivium is also given.

This paper is organized as follows. Following the introduction, section 2 discusses preliminaries. In
section 3, we present a brief description of Trivium and list known attacks on it. CAvium is proposed in
section 4. Section 5 analyzes the security strength of the proposed cipher. Performance of CAvium against
existing attacks is presented in section 6. An overall comparison of CAvium and Trivium is presented in
section 7. The paper is concluded in section 8.

2 Preliminaries

In this section, we present the basic terminology used in this paper.
A variable or its negation (x or Z) is called a literal. Any number of ’and’-ed literals is called a
conjunction. For example, x.y.—z is a conjunction.

Definition 1 Algebraic Normal Form: Any Boolean function can be expressed as XOR of conjunctions
and a Boolean constant, True or False. This form of the Boolean function is called its Algebraic Normal
Form (ANF).

Definition 2 Balanced Boolean Function: If the Hamming weight of a Boolean function of n variables is
on—1 it is called a balanced Boolean function.
Thus, f(z1,22) = x1 @® x4 is balanced, while f(z1,z2) = x1.22 is not balanced.

Definition 3 Nonlinearity: Let, f be a Boolean function of variables, x1,xs, ...z, and A be the set of
all affine functions in x1, T2, . . . T,. The minimum of the Hamming distances between f and the Boolean
Sfunctions in A is the nonlinearity of f.

CAvium - Strengthening Trivium Stream Cipher Using Cellular Automata 233

Hence, nonlinearity of f(x1,x2) = x1.x2 is 1.

Definition 4 Walsh Transform: Let X = (X,,,..., X1) and & = (w1, . ..wy,) both belong to {0,1}" and
X=X, ®...X1.wn. Let f(X) be a Boolean function on n variables. Then the Walsh transform of
J(X) is a real valued function over {0,1}" that can be defined as W(@) = Y01} (—1)f(Xexe
The Walsh transform is sometimes called the spectral distribution or simply the spectrum of a Boolean
function.

Definition 5 Resiliency: A function f(X,, ...X1) is m-th order correlation immune (CI) iff its Walsh
transform Wy satisfies W¢(w) = 0; for 1 < wt(w) < m. Further, if f is balanced then W¢(0) = 0.
Balanced m-th order correlation immune functions are called m-resilient functions. Thus, a function
f(Xn, ..., X1) is m-resilient iff its Walsh transform W satisfies Wy (@) = 0; for 0 < wt(@) < m.

For example, resiliency of f(x1,22) = x1 @ x2 is 1, but resiliency of f(x1,x2) = 1.2 is 0.
d-Monomial test is a statistical test for pseudorandomness introduced independently in Filiol. (2002)
and Saarinen. (2006). It investigates the Boolean function representation of each output bit in terms of
input bits. If a Boolean function of n Boolean variables is a good pseudorandom sequence generator, then
it will have %(g) d-degree monomials. The distribution is binomial. A x? test with one degree of freedom
is applied to count to measure how unbiased the count is. A deviation will indicate non-randomness. For
example, consider the function f(z1,2z2,23) = 1 ® xo, it has 2, 1-degree monomials and 0, 2 degree
monomial. The ideal number of 1, 2 and 3 degree monomials would be %(i’) =1.5, %(g) =1.5 and %(g)
= 0.5. It turns out that it has 2, 1-degree monomials more and 1 2-degree monomial less, hence it is
expected to be non-pseudorandom. On the other hand, f(x1,z2,23) = x1 @ x2.x3 is expected to be a

good pseudorandom generator.

Definition 6 Cellular Automata: A cellular automaton is a finite array of cells. Each cell is a finite state
machine C = (Q, f) where Q is a finite set of states and f a mapping f : Q" — Q. The mapping f,
called local transition function. n is the number of cells the local transition function depends on. On each
iteration of the CA each cell of the CA updates itself with respective f.

The number of neighbouring cells, f depends on, may be same or different on different directions of
the automaton. f may be same or different for cells across the automaton. The array of cells may be
multi-dimensional. Hence, a huge number of CA configurations are possible. In this paper, we model
rules as Boolean functions, so that, @ = {0,1}. Each cell of the system is initialized with a Boolean
value. Collectively, over the automaton it is referred to as the seed.

Definition 7 Dimension: Dimension of the cell array is called the dimension of the CA.
In this paper, we have considered 1-dimensional CA only.
Definition 8 Neighbourhood: Adjacent cells of a cell are called the neighbourhood of CA.

A 1-dimensional CA, each of whose rule depends on left and right neighbour and the cell itself is called a
3-neighbourhood CA. Similarly, if each cell depends on 2 left and 2 right neighbours and itself only, it is
called 5-neighbourhood CA. A CA whose cells depend on 1 left and 2 right neighbouring cells is called a
4-neighbourhood right skew CA. A left skewed 4-neighbourhood CA can be defined similarly.

Definition 9 Rule:The local transition function for a 3-neighbourhood CA cell can be expressed as fol-
lows:

234 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

ai(t +1) = flai(t), qi+1(t), qi-1(t)]
where, f denotes the local transition function realized with a combinational logic, and is known as a rule
of CA, Nandi et al. (1997). The decimal value of the truth table of the local transition function is defined
as the rule number of the cellular automaton.

For example, for 1-dimensional 3-neighbourhood CA,

Rule 30: f = q;—1(t) ® (qi+1(t) + ¢i(t)), where + is the Boolean “or’ operator and @ is the Boolean
’XOR’ operator.

Rule 60: f = q;—1(t) @ qi(t).

Rule 90: f = qi—1(t) ® qit1(1).

Definition 10 Uniform Cellular Automaton: A CA whose local transition function is same for all the cells
is called uniform cellular automaton.

Definition 11 Hybrid Cellular Automaton: A CA whose local transition function is not same for all the
cells is a hybrid cellular automaton.

Definition 12 Linear Cellular Automaton: A CA whose local transition function ANF does not involve
the . (Boolean and) operator in any of the cell is called the linear cellular automaton. For example, rule,
f = qi—1(t) ® qi+1(t) employed in each cell is a linear cellular automaton, where q;_1(t) and g;4+1(t)
denotes left and right neighbours of i-th cell at t-th instance of time.

Definition 13 Nonlinear Cellular Automaton: A CA whose local transition function is non-linear, i.e., in-
volves at least one . (Boolean and) operator, for at least one of the cells is a nonlinear cellular automaton.
For example, rule, f = q;—1(t).qi+1(t) employed in each cell is a nonlinear cellular automaton, where,
¢i—1(t) and q; 1 (t) denotes left and right neighbours of the i*" cell at t'" instance of time.

Any CA can be utilized to generate pseudorandom sequences of different degree of security by first
selecting a seed and then updating each cell according to the transition functions. State values from the
middle cell of the cell array may be taken output to represent generation of pseudorandom sequences.

3 Trivium

In this section, we present the algorithm of Trivium operation. We also brief the known attacks against
Trivium.

3.1 Description of Trivium

Trivium was introduced in the eStream cipher project in, Canniere and Preneel (b) by Christophe De
Canniere and Bart Preneel. It is a synchronous stream cipher. Developers focused on a block cipher based
design principles while constructing Trivium, Canniere and Preneel (a). The cipher works on 80-bit secret
key and 80-bit public initial vector (IV). Hence, the expected security strength of the cipher is 28 It takes
1152 rounds to initialize itself. Key stream bits are output only after this initialization phase is over. Once
initialized, it can produce up to N = 2%4 pseudorandom key stream bits. We give a short description of
operation of Trivium below. A detailed description can be found in the eStream website.

Trivium consists of 288 internal 1-bit state registers, (s1, Sa, - . . , Sass). Operationally, the registers are
organized as three right shift registers of lengths 93, 84 and 111 bits, respectively. These three registers are,
key bit registers, IV bit registers and constant bit registers. As already mentioned, the cipher operates in

CAvium - Strengthening Trivium Stream Cipher Using Cellular Automata

235

two phases, initialization and key stream generation. Both the phases however execute the same algorithm.

The algorithm is presented next.

for ¢
ty

to

t3

Zq

ty

to

i3

., 803)

~»8177)

(s1, 82, -
(894, S95, - -
., 5288)
end for

(81787 5179, - -

|

1

T

1to N do

S66 + S93

S162 + S177

S243 + S288

t1 +1t2 +t3

t1 + S91-S92 + S171
to + S175-S176 + S264
t3 + S286-S287 1 S69

(t3,51,52,-..,502)
(t1, 594,595, - - ., 5176)
(t2, S178, S179, - - - , S287)

The registers ¢;, ¢, and t3 are temporary registers and z; is the i*" output key stream bit.
During initialization, the above algorithm is executed for 4 x 288 = 1152 cycles. But, this phase does not

output any key stream bit, z;.
80-bit key, {kl,]{327 ..
as follows:

(51, 82,y ...y 593)
(894) 895,y 8177>
(5178, 5179, - - - , S288)

oy kSO} and 80-bit IV, {ivl, Vs, ..

«—
«—
«—

(k1, ka, - .
(ivl,ivg, .
(0,0,...,0,1,1,1)

., ivgg } are loaded in the internal state registers

., ksg0,0,...,0)

.,Z"Ugo,O,...,O)

The key stream generation phase updates internal state registers according to the algorithm. The key

stream bit, z; is output at each cycle in this phase.

3.2 Weaknesses of Trivium

A number of cryptanalytic results on Trivium stream cipher is known. Though almost all of them are on
reduced round versions of Trivium, those nevertheless, demonstrate weaknesses of the cipher. Till date
793 rounds of Trivium could be cryptanlyzed by recovering key with less than brute-force complexity
and 885 rounds of Trvium can be distinguished from a random sequence. Most notably, higher order
differential attack, AIDA happened to be vastly successful against the cipher. Table 1 lists the significant

attacks reported on Trivium.

We would briefly discuss the main reasons of success of the mentioned attacks.

236 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

Tab. 1: Trivium:Known Attacks

Attack Rounds Distinguisher/Key Recovery
Linearization, Turan and Kara 288 Key Recovery
Correlation Attack, Maximov and Biryukov Bivium Distinguisher
Algebraic Attack, McDonald et al. Bivium without Setup phase Key Recovery
Scan-Attack, Agarwal et al. Full Trivium Key Recovery
AIDA (or Cube Attack), Vielhaber (2007) 793 Key Recovery
Cube Tester, Aumasson et al. (2009) 885 Distinguisher

e Linearization Attack: Linearization of a cipher is possible only when a cipher does not grow faster
in nonlinearity. 288 rounds of Trivium could be linearized implies lack of such nonlinearity growth.
A quantitative measure of nonlinerity of Trivium is given in table 3. The lack of enough growth is
due to low nonlinearity addition with iterations.

e Algebraic Attack: Full Bivium without setup phase can be analyzed directly using SAT-solver. This
is again mainly due to addition of low nonlinearities with iterations.

A CA based modification is hence proposed here in view of preventing against the above reported
attacks even on reduced round versions of Trivium.

4 CAvium Proposal

CAvium is a CA based modification of the Trivium stream cipher. Basically, CAvium replaces only the
Shift Register of Trivium with a hybrid < 30, 60, 90, 120, 150, 180, 210, 240 > CA. Here, < 30, 60, 90,
120, 150, 180, 210,240 > hybrid CA means rule 30, rule 60, ..., rule 240 CA cells placed alternatively.
The basic principle of the design is utilization of parallelization of CA combined with essential crypto-
properties of it.

Like Trivium, CAvium also consists of 288 internal 1-bit state registers, (si, Sa,...,S288). Reg-
ister s; operates on CA rule 30, register so operates on CA rule 60 etc. Register sg has rule 240
embedded and again register sg operates on rule 30 and so on. So, there are 36 repetitions of each
of the CA rules over the 288 bit register. Operationally, the registers are organized as three hybrid
< 30,60,90,120, 150, 180,210,240 > CA of lengths 93, 84 and 111 bits, respectively. These three
CAs are, key bit CA, 1V bit CA and constant bit CA respectively. In this construction, we have however
dropped the discontinuities among the registers, so for example, sg3 and sg4 are adjacent to each other.
Thus for example, neighbouring cells of sg4 are sg3 and sg5. Similar is the case with sg3, s177 and s17g.
Like Trivium, this cipher also operates in two phases, initialization and key stream generation. Both the
phases as before execute the same algorithm. The algorithm is depicted next.

fori = 1toN do
t1 = Ses+ So3
to = Si62 + S177

t3 = S243 + S288

CAvium - Strengthening Trivium Stream Cipher Using Cellular Automata 237

zi = t1+ta+ts
t1 = 11+ 591.802 + 5171
ta = to2+ S175.S176 + S264
t3 = 13+ S286-S287 + S69
(81,82,...,893) « (t3,CA(s1),CA(s2),...,CA(s92))
(894,895, - - -, 8177) — (t1,CA(S94), CA(895),...,CA(s176))
(s178, 8179, - -+, S288) — (t2, CA(s17s), CA(s179),...,CA(S287))
end for

Here, C'A(s) refers to the Boolean value obtained in the cell s upon operation in < 30, 60, 90, 120, 150,
180, 210,240 > hybrid CA rule.

The registers ¢;, ¢, and t3 are temporary registers and z; is the i*" output key stream bit.

During initialization the above algorithm is executed for 4 x 36 = 144 cycles. But, this phase does not
output any key stream bit, z;. 80-bit key, {k1, k2, . .., kso} and 80-bit IV, {ivy,ivs, ..., ivge} are loaded
in the internal state registers as follows:

(817827...7893) — (k17k27...7k80,0,...70)
(594,895,...,5177) — (ivl,ivg,...,iUgo,O,...,O)
—

(3178751797---73288) (0,0,...,0,1,1,1)

The key stream generation phase updates internal state registers according to the algorithm. The key
stream bit, z; is output for each cycle at this phase.

5 Cryptographic Properties of CAvium

In this section, we describe the cryptographic advantages we obtain with our modification of the stream
cipher Trivium. The following properties are known to be important for security of ciphers:

1. Balancedness

2. Nonlinearity

3. Correlation Immunity
4. Algebraic Degree

5. d-monomial test

Nonlinearity and correlation immunity are the most important requirements among the first four. Good
nonlinearity characteristics indicate that the cipher is expected to be safe against linear cryptanalysis and

238 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

Tab. 2: CAvium:Cryptographic Characteristics of the Output Bit

Iteration | Balancedness | Nonlinearity | Algebraic Degree | Resiliency
1 Balanced 0 1 1
2 Balanced 0 1 3
3 Balanced 384 2 5
4 Balanced 1792 3 6

Tab. 3: Trivium:Cryptographic Characteristics of the Output Bit
Iteration | Balancedness | Nonlinearity | Algebraic Degree | Resiliency

1 Balanced 0 1 1
70 Balanced 16 2 3
71 Balanced 32 2 3
83 Balanced 384 3 4
98 Balanced 1792 3 5

also from algebraic attacks. However, good nonlinearity characteristics does not imply correlation immu-
nity, ie, good nonlinear ciphers can display correlations among key, plaintexts and ciphertexts. Hence, a
fair mix of nonlinearity and correlation immunity is required. Algebraic degree characteristics are also
important for resistance against algebraic attacks. Below we show the characteristics of the above prop-
erties for the CAvium stream cipher. A comparison with corresponding characteristics of Trivium is also
given.

5.1 Balancedness

Table 2 illustrates the balancedness property of the CAvium output bit with iterations. All the output
bit expressions are balanced in the initial 4 iterations. Table 3 illustrates the balancedness property of
Trivium output bit expression with iterations. With respect to balancedness property both the ciphers
generate balanced functions as output in the considered rounds.

5.2 Nonlinearity

Table 2 shows the nonlinearity of CAvium with pass of iteration and table 3 shows comparable nonlineari-
ties of Trivium stream cipher. In only 4 cycles of operation nonlinearity of CAvium reaches a nonlinearity
of 1792 which is reached by Trivium output bit at iteration 98. This high growth rate of nonlinearity
guarantees protection against linear cryptanalysis.

5.3 Algebraic Degree

Table 2 shows the growth of algebraic degree of the output bit of CAvium with iterations. It can be
observed that in CAvium the algebraic degree increases almost linearly. Table 3 lists the minimum number
of iterations required in case of Trivium at which algebraic degrees 2 and 3 are reached. Clearly, CAvium
has a much faster growth rate of algebraic degree compared to Trivium. Ciphers having large algebraic
degrees are resistant against linearization and algebraic attacks. So, CAvium is expected to be stronger
than Trivium with respect to these attacks both in reduced round version and the full key-IV setup version.

CAvium - Strengthening Trivium Stream Cipher Using Cellular Automata 239

Tab. 4: CAvium:d-monomial Test Result Output Bit

Iteration | Deg.-1 | Deg.-2 | Deg.-3 | Deg.-4 | Deg.-5 | Deg.-6
1 2 0 0 0 0 0
2 4 0 0 0 0 0
3 6 2 0 0 0 0
4 6 8 2 0 0 0
5 7 14 12 6 0 0
6 8 14 36 32 8 2

Tab. 5: Trivium:d-monomial Test Result Output Bit

Iteration | Deg.-1 | Deg.-2 | Deg.-3 | Deg.-4
1 2 0 0 0
70 4 1 0 0
161 16 11 2 0
239 29 65 38 1

5.4 Resiliency

Table 2 tabulates the resiliency of CAvium output bit with iterations and resiliency of Trivium output bit
is given in table 3. Those tables reveal that higher resiliency is achieved by CAvium at a much lower
number of iterations, for example, Trivium output bit achieves resiliency 5 at iteration 85 while CAvium
reaches it at iteration 3. Due to the faster growth of resiliency of output bit of CAvium, it is expected to
show resistance against correlation attacks.

5.5 d-monomial Test

d-monomial test proposed independently in, Filiol. (2002) and Saarinen. (2006) is a statistical test for
measuring randomness of ciphers. The test compares the closeness of the number of d** degree n variable
terms with the expected ideal number of d*" degree n variable terms of a truly random Boolean function.
An ideal random Boolean function will have % X (Z) d degree terms. We tabulate in table 4 the d-monomial
test values for the first 6 iterations of the output bit of CAvium.

The growth in number of terms in the resultant Boolean expression and the number of different degree
terms in the output equation are both high. This kind of distribution is expected to resist higher order
differential attacks and distinguishers. In table 5 we tabulate the d-monomial test result of the Trivium at
the iterations 1, 70, 161 and 239, i.e. at iterations where algebraic degrees are incremented. Note that,
Trivium has a better diffusion of various degree terms compared to CAvium.

Considering table 4 once again, note that, at iteration 6 only the number of nonlinear terms in the
expression of the output bit is more than 90, which is more than double the number of nonlinear terms at
iteration 5, it can be expected that any attempt to linearize the expression for algebraic attack will have to
deal with exponential number of nonlinear terms with pass of iterations. Hence, algebraic attacks are not
expected to yield good result against CAvium.

240 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

If we compare over all the properties we have experimented against CAvium stream cipher, we can see
that CAvium reaches the desired property values at very small number of iterations. Hence, the reduction
in number of cycles required to initialize the cipher is not expected to leave any weakness in CAvium.

6 Performance against Existing Attacks

In this section we reason that the number of cryptanalytic results demonstrated against reduced versions
of Trivium may not be successful against CAvium.

1. Linear Cryptanalysis: Linearization attack, Turan and Kara and linear circuit approximation, Khaz-
aei and Hassanzadeh were demonstrated against Trivium in 288 round reduced version. Linear
cryptanalysis on CAvium will not be successful because :

o The high growth rate of algebraic degrees of CAvium (refer table 2).

e Table 2 shows the growth of nonlinearity of the output bit of CAvium with iterations. It can
be noted that the growth rate of nonlinearity is much steeper than Trivium.

e Table 4 indicates that the number of linear terms also increase with iterations. As linear terms
add exponentially to the nonlinearity growth of a Boolean expression, linearization is not
expected to work.

Hence, linear cryptanalysis will not be successful on CAvium.

2. Algebraic Attacks: Algebraic attack, McDonald et al. using SAT-solver was reported on reduced
version of Trivium called Bivium-A. Algebraic cryptanalysis is dependent on the algebraic degree of
a cipher. The increase of number of nonlinear terms of a cipher also increase the attack complexity.
So, the high algebraic degree growth rate and exponential increase in number of nonlinear terms
will prevent algebraic attacks on CAvium.

3. Scan-based Side Channel Attack: A scan-based side channel attack was reported on full round of
Trivium on hardware implementation, Agarwal et al.. Scan-chain based attack on Trivium worked
because of the invertibility of the states of the cipher. The same will not be possible for CAvium
because of the presence of non-invertible CA rule 30. Though rule 30 is partially reversible, pres-
ence of linear rules in the CA configuration reduces the probability of the reversion exponentially
with iterations. Hence, scan-based side channel attack will not be successful on CAvium.

4. Cube Attack/AIDA attack: Till date the most successful attacks on reduced round versions of Triv-
ium were cube attacks (or AIDA attacks). This attack exploits the fact that the distribution of the
d-degree terms is deviant from ideal in d-monomial test. A large algebraic degree of a cipher will
prevent the attack from practically being implemented. Also, the result of d-monomial test of CAv-
ium is much better than Trivium. The density of d-degree terms is though far from ideal in case
of CAvium also; the closeness with ideal values is better than Trivium. The increase in different
degree nonlinear terms with iterations are pretty fast and closer to ideal compared to Trivium. For
example, in CAvium between round 5 and 6, degree 3 and degree 4 terms increase by 24 and 26
respectively which is close to ideal. Note that, Trivium has better growth in linear terms with iter-
ations compared to CAvium (table 4). But, ideal values in higher degree terms are more important
in resistance against AIDA than low degree terms. Hence, cube attack on CAvium is also expected
not to be successful on any reasonable number of rounds on CAvium.

CAvium - Strengthening Trivium Stream Cipher Using Cellular Automata 241

7 CAvium vs. Trivium

In this section, we enumerate the advantages and disadvantages of CAvium over Trivium.

1. Firstly, the startup process is made about 10 times faster over Trivium. Trivium stream cipher takes
1152 cycles of operation to get ready to produce key stream bits. Though after the initial setup,
Trivium is able to generate 264 key stream bits - for small and even moderately large encryptions,
1152 cycles only for key and IV setup is large. CAvium, on the other hand, takes 144 clock cycles
to complete key and IV setup. Keystreams are generated from 145" clock cycle only. After key
and IV setup, CAvium can also generate 254 key streams. Hence, the introduction of CA in Trivium
design makes the cipher operation faster and suitable for even small length encryptions.

2. The small Cellular Automata based nonlinearity insertion in Trivium has led to a wide range of
key recovery and distinguisher attacks on the cipher including linearization, correlation attacks and
algebraic attacks. As we have shown in the table above, CAvium has a much steeper nonlinearity
growth rate than Trivium. Also, CAvium has a large number of linear terms in its Boolean ex-
pression due to the presence of linear CA rules in its configuration. The presence of linear terms
mandates inclusion of those rules in the linear approximation and the other nonlinear terms de-
creases linearization bias. Altogether, linearization bias of CAvium is much lower than Trivium
even for reduced versions of it. Again, due to the construction of CAvium the increase in number
of nonlinear terms of the output bit, z = ¢1 + ¢2 + ¢3 is exponential.

3. The proposed construction performs better in d-monomial test than Trivium. Hence, higher order
differential (e.g., AIDA) key recovery attacks and distinguishers would be difficult for CAvium. In
comparison, we have known a large number of higher order differential attacks on Trivium.

4. Due to the nature of CA construction, we know that, after ¢ cycles of operation, a CA cell depends
on 2t + 1 neighboring cells. So, after 55 clocks of operation, every cell is dependent on every other
cell of the 288 bit state register. Therefore, the highest nonlinearity is propagated to the other cells
in at most 55 cycles. Note that, 144 cycles is the time required to set up key and IV hence the
highest nonlinearity is propagated to all the cells at least twice. It also means that algebraic degree
grows exponentially at most after 55 cycle of operation.

5. Though we have not given any theoretical proof of cycle length of CAvium, our experiment suggests
a minimum of about 2% cycle length is possible. However, it is a open problem whether there is
any cycle of length of < 264 in CAvium.

6. The algebraic degree growth rate of CAvium is also quite high. If a simple linearization technique
is used in CAvium for algebraic attack, even after 15 clock cycles, there will be more than 100 new
variables. Hence, possible algebraic attacks will also not be plausible in case of CAvium.

7. Correlation of the CA structure is reduced due to the introduction of linear rules in the CA register.
The measure presented above shows that correlation decreases exponentially with iteration, which
is also a triumph over the original Trivium design, in which due to the presence of linear shift
register, correlation does not decrease exponentially with number of cycles of operation. Hence,
though a uniform rule 30 CA, Meier and Staffelbach. (1991) may be susceptible to correlation
attack, CAvium structure would be safe against any correlation attacks.

242 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

8. Knowing the full state of the Trivium stream cipher after any cycle of operation could reveal the
key of the cipher. This is due to the reversible nature of the Trivium nonlinear equations. This
could lead to scan chain based attacks as depicted in, Agarwal et al.. The knowledge is however
of little relevance for CAvium, since the presence of nonlinear non-invertible rule 30 in the CA
operation prevents any such inversion. Further though rule 30 is partially invertible, the presence of
linear rules along with the nonlinear rules reduces the probability of inversion exponentially as the
correlation decreases. Hence, a scan based attack with non-secure scan chains can not also break
the system.

8 Conclusion

In the current paper, we have presented a modification of the eStream stream cipher winner Trivium,
Canniere and Preneel (b). The proposed modified cipher has comparatively better nonlinearity, algebraic
degree, resiliency characteristics than Trivium. Also, CAvium achieves the mentioned characteristics
faster than Trivium, as fast as, 10 times than Trivium. The faster growth rate of cryptographically essential
properties has also helped CAvium to reduce the longer setup process of Trivium, so that, CAvium takes
only 144 clock cycles of operation to complete setup compared to 1152 clock cycles taken by normal
Trivium operation. It is also reasoned that the proposed modification is expected to be resistant against
attacks such as linearization, algebraic cryptanalysis, correlation attacks, scan-based side channel attacks
and higher order differential attacks such as AIDA (or Cube attack) even in reasonable reduced round
versions. Though not explicitly mentioned the d monomial characteristics of CAvium demonstrates that
differential attacks also may not be successful against CAvium. Again extensive experiment is conducted
to determine small cycle lengths of CAvium but we expect a cycle length of < 254 may not be possible,
though no theoretical explanation is provided. The operation of CAvium could be a bit slower than
Trivium. Hence, CAvium is a secure modification of Trivium with much faster setup.

The construction of CAvium is based on an underlying mixed CA consisting of linear and nonlinear
rules. The fast growth of nonlinearity, resiliency, algebraic degree is attributed mainly to the presence
of nonlinear rule (rule 30). In essence the only Trivium specific operation included in CAvium is the
introduction of three nonlinear terms per cycle of operation. A comparison of d-monomial characteristics
of Trivium and CAvium will show that the essential growth in nonlinearity and algebraic degree is due to
the presence of nonlinear rule 30. So in fact a plain construction of a cipher consisting only of the 288 bit
CA may be a good cipher candidate for study. It can be mentioned that a good d-monomial characteristic
can be the one and only desirable property of a good cipher. Hence, construction of stream ciphers using
CA as the only building block is an interesting area of study.

References

M. Agarwal, S. Karmakar, D. Saha, and D. Mukhopadhayay. Scan-based side channel attack on stream
ciphers and its countermeasures. INDOCRYPT, 2008.

J.-P. Aumasson, 1. Dinur, W. Meier, and A. Shamir. Cube testers and key recovery attacks on reduced-
round md6 and trivium. In FSE, pages 1-22, 2009.

C. D. Canniere and B. Preneel. A stream cipher construction inspired by block cipher design principles.
eSTREAM, ECRYPT Stream Cipher Project, 2006, a.

CAvium - Strengthening Trivium Stream Cipher Using Cellular Automata 243

C. D. Canniere and B. Preneel. Trivium specifications. eSTREAM, ECRYPT Stream Cipher Project, 2006,
b.

E. Filiol. A new statistical testing for symmetric ciphers and hash functions. Proc. Information and
Communications Security 2002, Volume 2513 of LNCS, pages 342-353, 2002.

S. Khazaei and M. Hassanzadeh. Linear sequential circuit approximation of the trivium stream cipher.
eSTREAM, ECRYPT Stream Cipher Project, 2005.

C. Koc and A. Apohan. Inversion of cellular automata iterations. Computers and Digital Techniques, IEE
Proceedings - Volume - 144, Issue: 5, pages 279-284, 1997.

A. Maximov and A. Biryukov. Two trivial attacks on trivium. eSTREAM, ECRYPT Stream Cipher Project,
2007.

C. McDonald, C. Charnes, and J. Pieprzyk. Attacking bivium with minisat. eSTREAM, ECRYPT Stream
Cipher Project, 2007.

W. Meier and O. Staffelbach. Analysis of pseudo random sequences generated by cellular automata.
EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT, 1991.

S. Nandi, S. Chattopadhyay, P. P. Chaudhuri, and D. R. Chowdhury. Ca and its applications: A brief
survey. In Additive Cellular Automata - Theory and Applications, volume 1, 1997.

K. G. Paterson, S. R. Blackburn, and S. Murphy. Theory and applications of cellular automata in cryptog-
raphy. In IEEE Transactions on Computers, Volume 46, Issue 5, 1997.

M. J. O. Saarinen. Chosen-iv statistical attacks on e-stream stream ciphers. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/013, pages 5-19, 2006.

M. S. Turan and O. Kara. Linear approximations for 2-round trivium. eSTREAM, ECRYPT Stream Cipher
Project, 2007.

M. Vielhaber. Breaking one.fivium by aida an algebraic iv differential attack. Cryptology ePrint Archive,
Report 2007/413, 2007. “http://eprint.iacr.org/”.

S. Wolfram. Cryptography with cellular automata. In CRYPTO: Proceedings of Crypto, 1985.

S. Wolfram. Random sequence generation by cellular automata. In Advances in Applied Mathematics,
Volume-7, pages 123—-169, 1986.

244 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 245-254

Multilane Single GCA-w Agent-based
Expressway Traffic Model

Anna T. Lawniczak® and Bruno N. Di Stefar@®

! Department of Mathematics Statistics, University of Guelph,

50 Stone Road East, MacNaughton Building, Guelph, ON Cahdda 2W1
alawnicz@uoguelph.ca

2Nuptek Systems Ltd

Toronto, Ontario, Canada M5R 3M6

b.distefano@ieee.org, Bruno.DiStefano@nupteksystems.

3The Fields Institute for Reserach in Mathematical Sciences

222 College Street, Toronto, Ontario M5T 3J1, Canada

We presents a brief description of a stream of research dmiaigand expressway traffic modeling and simulation. A
first model has been developed starting from ECA Rule 184 pplyimg concepts similar to the ones employed in the
Nagel Schreckenberg model. The second model is based othkd Cellular Automata”(GCA) and the “Global
Cellular Automata with Write access”(GCA-w) developed byifRHoffmann and his collaborators. This allows for
faster execution and for the elimination of some potent@iflicts during execution. We present an example of
digital experiment that can be used to help traffic engingedeciding the topology of entry and exit ramps on an
expressway.

Keywords: Cellular Automata, Global Cellular Automata, Global CiluAutomata with Write access, Highway
Traffic Modeling, Expressway Traffic Modeling.

1 Introduction

Depending on jurisdiction where one resides, the same tfpeaol may be called an “expressway”or
a “freeway”. We refer to the term “expressway”’to indicateiaded highway for high-speed vehicular
traffic with controlled access, via entfy exit ramps, and no intersections at grade. We are conducting
research, by modeling and simulation, on the effects of floal @ongestion on “travel time”"through a
realistic long expressway. “Travel time”is “the total timequired for a vehicle to travel from one point
to another over a specified route under prevailing condstidd]. The difference between our work and
published research previously conducted by others is thatim to model much longer expressways, e.g.
at least 1000 km, and a much higher number of vehicles, eafistie traffic conditions over several days,
e.g. a week. Additionally, all models we have seen do not fieatires that are very important from an
engineering point of view, such as the ability to track indiial vehicles during their trip, from entry ramp
to exit ramp. We need this ability to simulate wireless vihiacking for only a small subset of vehicles.

246 Anna T. Lawniczak and Bruno N. Di Stefano

We plan on using this model for practical traffic engineerapgplications. This paper is structured as
follows: section 2 gives some introductory information abmicroscopic, individually based highway
traffic models, section 3 contains the description of a danld 2-D CA (Cellular Automata) agent based
model previously developed by us, section 4 describes alamdtsingle GCA-w (Global Cellular Au-
tomata with Write access) agent based model developed hydusalains its computational advantages,
section 5 presents and example of digital experiment thabeaused to help traffic engineers in deciding
the topology of entry and exit ramps on an expressway. Fuytiarened work is described in section 6.

2 Microscopic, Individually Based Highway Traffic Models

Traditional macroscopic models of the 50s, such as the LWRein@.ighthill, Whitham, Richards), [2]
and [3], are characterized by a large number of parameteéh®wian immediately intuitive equivalent
when conducting empirical investigations. Microscopicdeis based on cellular automata (CA) such as
the one of Cremer and Ludwig, [4], and the Nagel Schreckenimerdel, [5], have solved this problem.
Their model can be seen as an extension of ECA (ElementaryRi)184. This rule accurately describes
the motion of a vehicle at constant speed of one cell per ttegpand null acceleration. This is unrealistic,
but is a good starting point to apply extensions to Rule 18#rmagy be needed. It is important to notice
that Rule 184 is deterministic and cannot simulate redi¢rafith accidents. The Nagel Schreckenberg
model solves the problem adding stochastic behaviour,gelasize neighbourhood that can be used to
implement variable speed and non null acceleration. TheeNaghreckenberg model is the origin of a
very significant stream of research of derived researchfwdastance [6], [7], [8], [9], and [10]. This
stream is still uninterrupted and very rich of results.

However, most of this research has been conducted from tepgtive of physics and statistical physics,
to investigate dynamical aspects of highway traffic, sedrfstance [11] and [12]. Most such models
lack features that may be required in some engineeringegijans, such as the ability to track individual
vehicles during their trip, from entry ramp to exit ramp, kg exactly on which cell a vehicle is at each
time step. However, the Nagel Schreckenberg model is alatastys the starting point of the design of
new models.

Nagel and Schreckenberg proposed a stochastic model basedaghbourhood of 5 cells and six dis-
crete velocities. The model consists of four steps that late applied simultaneously to all cars:

e Acceleration

e Safety Distance Adjustmentglowing down due to other cdls
e Randomization

e Change of Position

During the “Acceleration”’phase, at each time step, if thieei¢y of the vehicle at the end of the previous
time step iy < vmaz, the velocity is incremented by one unit- > v + 1. If the velocity of the vehicle

at the end of the previous time stepiis= v,.q., the velocity is left unchanged (null acceleration).
During the “Safety Distance Adjustment”, if a vehicle hhempty cells in front of it and its velocity,
after the Acceleration phase, would cause the vehicle tercawistance larger than d, then the vehicle
decelerates, that is, it reduces its velocity/tar— > min{d, v}. If the d cells in front of the vehicle are
empty, no deceleration is required.

Multilane Single GCA-w Agent-based Expressway Traffic Mode 247

As stated by Nagel and Schreckenberg, the randomizaiscgs$ential in simulating realistic traffic flow
since otherwise the dynamics is completely determiniitimkes into account natural velocity fluctua-
tions due to human behaviour or due to varying external ctiorag”[5]. Randomization is an extension
to the traditional deterministic paradigm of ECA and candaend in all realistic highway traffic models
based on CA. The “Change of Position"assumes that the neseiteb,, for each can causes advancing
by v, cells: z,— > x,, + v,.

The implementation of this model requires to modify the CAgaigm and to make the evolution of the
CA not only dependent on the state of the neighbourhood bata the current velocity of each vehicle.
This implies that each cell is characterized not only by @nes or absence of a vehicle but also by a
pointer to a data structure containing the current velogitthe vehicle. Here we do not use the word
“pointer”in the sense of the C/C++ programming languageirbthe sense of “link, connection”. AlImost
all models that we have examined implement variable vel@tin the Nagel and Schreckenberg model,
the only substantial difference being the number of celi$ the vehicle may need to advance to achieve
its maximum speed.

Nagel and Schreckenberg write tha@tfrough the steps one to four very general properties oflsilzge
traffic are modeled on the basis of integer valued probaislisellular automaton rule$

We have perused the literature looking for ways in which heve handled multilane highway traffic.
We have found 2-D CA implementations and Multi-CA implenagitns (i.e., one per lane). In the case
of 2-D implementations the highway is represented by a CAsising of a number of rows equal to
the number of lanes being modeled and by a large number &f gtesenting the entire length of the
highway. Lane changing is accomplished by simply movindhaddjacent cell on a different row. We
developed a model of this type in the early stages of our rekefil3]. We describe it in Section 3.
Multi-CA implementations threat every CA as a separate rdae transition rules apply equally to every
CA. Lane changing simply implies moving to the cell having #ame cell number in the adjacent CA.

3 Our Multilane 2-D CA Agent Based Model

As afirst step, we have developed a two dimensional CA exyeassaffic model “capable of realistically
simulating: a multi-lane expressway with multiple entrydagxit ramps situated at various locations,
vehicle following, speed increment up to maximum speedcsatide on a per vehicle basis, lane change
to pass or to go back to the right-most lane as it may be redjliyeroad rules in some jurisdictions,
slowing down or stopping to avoid obstacles.”, [13]. We exgmted the expressway by means of a CA
consisting of a number of rows equal to the number of lanesgmiodeled and by a large number of cells
representing the entire length of the expressway. Eaclwesllassumed to be 7.5 m long, as in most of
the literature of microscopic, individually based highviegffic models, e.g. [5] and [14]. This has been
chosen because it corresponds to the space occupied byptbal tyar plus the distance to the preceding
car in a situation of dense traffic jam. The traffic jam denisityiven by 1000/7.5 m approximately equal
to 133 vehicles per km,. We accomplished lane changing bplgimoving to the adjacent cell on a
different row, i.e. that is a cell with the same column numéued a different row number, incrementing
the row number when moving to the left and decrementing themember when moving to the right.
This model is characterized by variable size neighbourhoddhplement safe driving distances. For
every vehicle these safe driving distances are a functigheofehicle velocity and of where the vehicle
is at a given moment during the simulation.

Traffic is modeled applying the same algorithm at each tirap,sthen each cell of each lane is examined

248 Anna T. Lawniczak and Bruno N. Di Stefano

in sequence and, if occupied by a vehicle, the vehicle névigalgorithm is applied. Each vehicle is an
agent capable of deciding which action to take within a ceriamber of predefined actions. Implemen-
tation details can be found in [13].

Executing the software for a given configuration of the madehlns executing three nested loops. The
external loop is the time loop, the next loop is the row loam ¢he innermost loop is the column loop.
At the end of each step of each loop the end of loop conditioesied by the software even if this is not
explicitly evident to the user of the software.

3.1 Our Multilane Single GCA-w Agent Based Model

Thus, modeling traffic is equivalent to executing two largeds, an external time loop and an internal
space loop. In reality, as we will see when describing thdémentation the space loop is replaced by a
number of loops where various operations are performeddonesece. Thus, after an initialization of all
data structures used in the model, all execution time of théehis spent in these two loops. At each time
step, vehicles are generated at each entry ramp accordagriedefined vehicle generation probability
that can be specified individually for each entry ramp. Inithplementation, the software reads an input
configuration file containing a description of the entire mgsway. One of the predefined commands
describes each entry ramps and the characteristics of thiele® entering at that ramp. This command
can be repeated multiple times for each entry ramp, ingtigdkie different traffic characteristics at various
times of the day (e.qg., rush hour, day time, night time, way, dveekend, etc). For each instance of this
command it is possible to specify:

e “Entry lane number”(always lane zero, that is the rightmase, except when entry cell is cell
number zero, that is the entry to the expressway);

e “Entry cell number”(the location of the entry ramp from theginning of the highway);

e “Start Time”"and “End Time”measured in time steps from thgibaing of the simulation when the
specified creation probability applies;

e “Vehicle creation probability”during the specified timeenval,
¢ Probability that the vehicle will be instantiated with tlast cell of the expressway as its destination;
¢ “Maximum speed”that the vehicle will be able to reach whitevelling on the expressway;

e Probability that the vehicle will be instantiated with a rmaym speed equal to the one specified in
the command.

The final destination probability and the maximum speed @hdly define not only the obvious proba-
bilities implied by their names, but also the behaviour &f tomplementary probabilities. In other words
if Pd is the probability that the vehicle is instantiatedhwast cell as its destinatiofil — P,) is the proba-
bility that the vehicle will go elsewhere, to other exit rasnf he specific exit ramp is assigned randomly.
Similarly, if P,,,.. iS the probability that the vehicle will be instantiated vithe specified maximum
speed,(1 — P,maz) IS the probability that the vehicle will be instantiated hwa different maximum
allowable speed. The specific different speed will be assigandomly.

After all vehicles have been generated for each entry raney, are queued and placed on the ramp data
structure (a first-in-first-out queue).

Multilane Single GCA-w Agent-based Expressway Traffic Mode 249

At this point, each vehicle on the highway, represented byffardnt instance of an agent, executes
its navigation algorithm, that is the algorithm allowingattying lane, if required, advance, accelerate,
decelerate, etc. The navigation algorithm is what we hageri®ed as a large conceptual space loop.
Once the execution of this loop has been completed, timecigtinented. We compare the predefined
destination (exit ramp) of each vehicle with a neighbourhobthe cell where the vehicle is currently
located. Those vehicles that have reached their exit rampeanoved from the expressway. Exit ramps
are listed in the input configuration file without any othergraeter than a keyword and the number
corresponding to the cell where the exit ramp is located.

Information about all vehicles is logged to an output daa filhis information is not aggregate informa-
tion, but it is individual information about the location @&ch vehicle at the end of the execution of each
time step. This output file allows calculating, off line, hetend of the simulation, the exact travel time
of each vehicle, from entry ramp to exit ramp. The averagdldifia individual travel times is the travel
time as earlier defined. Aggregate information is output thfferent data file where we store: current
time step number, total number of vehicles instantiate@| rmumber of vehicles on the road, and total
number of vehicles delayed in entry ramps. Thus, it is péssiinfer how many vehicles have exited at
this time.

When the maximum simulation time, as defined in the input goméition file, is reached, some house-
keeping work is carried on and the execution is terminatétk Favigation algorithm is divided into the
following subsets:

e Change lane to the right if required (e.g., if no vehicle mhespassed, as required by the rules of
traffic, or if the vehicle is approaching its exit ramp);

e Change lane to the left if required (e.qg., if a slower vehias to be passed or an obstacle has to be
avoided);

e Advance, either at constant speed, if travelling at maxinfuehicle specific) speed, or accelerat-
ing/decelerating as it may be required by the traffic siturgti

e Randomly, as specified by a command in the input configurdiienaccording to a predefined
probability, execute an erratic behaviour if required.

For each of the above subsets, lane number and cell numbeérittatzed to zero. Two buffers (i.e.,
arrays) are setup: OldBuffer is set up to contain a snapshlee@urrent traffic situation, with the location
of each vehicle; NewBuffer is empty. For each lane, all cetls examined individually. If the cell is
empty, i.e. there is no vehicle at that cell, nothing happdfs vehicle is located in the cell under
consideration, the algorithm required by the subset bekegwged is applied. All algorithms are of CA
(Cellular Automata) like algorithms and are applied to tledl and a neighbourhood, i.e. a number of
cells around it. Each lane is treated as a CA. Changing lalogisally equivalent to jumping from one
CA to another one. However, the actual implementation udesihgle GCA. When all cells have been
scanned and the related processing has been done, NewBudfgried into OldBuffer and the display is
refreshed if the model is being executed in graphic mode.

Modeling multilane highway traffic with CA introduces sometgntial conflict whenever more than one
vehicle “wants to move”to the same cell. This is not diffarBom what happens in real life when, for
example, a car is arriving at high speed on the leftmost landeamother car is changing lane from the
centre lane to the leftmost lane. In real life, drivers caange their actions because time is continuous

250 Anna T. Lawniczak and Bruno N. Di Stefano

and because decision making is continuous and instantan&oa CA model, because all decisions are
made based on the state of the CA at titve and implemented at timg we can have a conflict. In a
traditional ECA, no vehicle can move ahead of another vehgd there is no conflict. Ina 1-D CA, even
if higher speeds are modelled, no vehicle can move aheadtii@nvehicle, so there is no conflict. In a
2-D CA, there is a potential conflict.

The “Global Cellular Automata with Write access”(GCA-w)védoped by Rolf Hoffmann and his col-
laborators allows solving the potential conflicts, [15]6]1[17], [18], and [19]. In the GCA-w model
each occupied cell can have write access to the neighbodisssrupdate its neighbours’ private member
variable. Thus, before moving, a vehicle can issue a signidie other vehicles in potential conflict and
give them an early warning of its intention of moving to a givelIl. This is simply done by setting a flag
in a private member variable of the other vehicle.

We have decided to assign the value of 3 seconds to each gmemtus, the minimum speed of a vehicle
advancing by one cell at each time step is equivalent to 9 Kth&i is, 7.5 x 3600/3 = 7.5 x 1200 = 9000
m/h). This allows representing most realistic and legaédpebserved in Canadian expressways, with a
vehicle advancing by a maximum of 11 cells per time step, ith&9 km/h, as the speed limit is at 100
km/h. This is different from the model of Nagel and Schrediem, which uses 1 second per time step.
We are currently comparing the results of our model withisgialtraffic data in Ontario to decide if our
choice is appropriate or needs to be revisited.

Details about our “Multilane Single GCA-w Agent Based Mddah be found in [20].

3.2 Example of Digital Experiment

As an example of the type of digital experiment that can bedooted with the software package im-
plementing our highway traffic model, we show how it can beduseverify the impact of the relative

position of entry and exit ramps on travel time.

We consider two topologies: “Expressway with Entry RampcBding Exit Ramp”as in Figure 1 and
“Expressway with Exit Ramp Preceding Entry Ramp”as in Fég2ir

Traftic Direction

-

)

Entry Eamp Exit Ramp

Fig. 1: Expressway with Entry Ramp Preceding Exit Ramp

Multilane Single GCA-w Agent-based Expressway Traffic Mode 251

Traffic Direction

»

Exit Ramp Entry Eamp

Fig. 2: Expressway with Exit Ramp Preceding Entry Ramp

The actual choice of one topology or the other depends on rfgatgrs, such as if the intersecting road
is above or below the expressway. For the purpose of this pbeawe ignore such factors and we focus
only on the impact of the two topologies on travel time.

We assume that the stretch of expressway under considerstd® km long and, thus, consists of 4000
cells (i.e. 3000/ 7.5 = 4000). We consider only one directobitravel, rightward (i.e. west - east).
We assume that for Figure 1 the entry ramp is located at c@0ZRm 15 from the beginning of the
expressway under consideration) and that the exit rampégéd at cell 2200 (km 16.5 from the beginning
of the expressway. This is an approximation for the sakernpkgcity in this example. In reality, entry
and exit ramps involve more than one cell. In both cases gigmost lane and the ramp run parallel for
about 20 cells. When the entering or exiting vehicle is ugn®groper speed or down to proper speed, it
will leave the ramp or move to the ramp as it may apply. LikewisFigure 2 the exit ramp is located at
cell 2000 (km 15 from the beginning of the expressway undasideration) and the entry ramp is located
at cell 2200 (km 16.5 from the beginning of the expresswayin&sgure 1 in reality, entry and exit ramps
involve more than one cell.

Table 1 shows the travel time, from entry ramp to exit rampegia certain vehicle creation probability
(shown in the leftmost column) and given a certain probghihiat the created vehicle will head to cell
number 4000. For each couple of probabilities, vehicle t@agprobability and probability that the
created vehicle we head to cell 4000, we show also total numibears. As expected this number
increases with the vehicle creation probability. From #mperiment not much can be said about the
impact of the probability that the created vehicle will heéadell 4000.

Table 2 is constructed similarly to Table 1. It makes senseotopare only the travel time of the cars
travelling from cell number O to cell 4000 (actually cell nbem 3999, because the other travel segments
are of different length in Table 1 and Table 2. The travel twhéhese cars is consistently shorter in the
experiment of Table 2. Presumably this is due to the facttti@atopology with “Exit Ramp Preceding
Entry Ramp”removes cars from the expressway before newatarsitroduced, thus locally reducing the
density of cars. Also in the “Entry Ramp Preceding Exit Ratopblogy and car moving from lane 1 to
lane 0 to exit may slow down a car that just entered the expasshus slowing down also other cars.

252 Anna T. Lawniczak and Bruno N. Di Stefano

Probability of Heading To Probability of Heading

Cell 4000=0.3 To Cell 4000 = 0.5
Creation Probability at Cell 0 = 0.3 0—2200; 202 time steps 0 — 2200; 201 time steps
0—3999; 365 time steps 0—3999; 365 time time setps
2000— 3999; 184 time steps 2000— 3999; 184 time steps
Total # of Cars: 1678 Total # of Cars: 1674
Creation Probability at Cell 0 = 0.4 0—2200; 202 time steps 0 — 2200; 202 time steps
0—3999; 366 time steps 0—3999; 366 time steps
2000— 3999; 184 time steps 2000— 3999; 184 time steps
Totak# of Cars: 1996 Total # of Cars: 1986
Creation Probability at Cell 0 = 0.5 0—2200; 204 time steps 0 — 2200; 205 time steps
0—3999; 369 time steps 0—3999; 369 time steps
2000— 3999; 186 time steps 2000— 3999; 187 time steps
Total # of Cars: 2349 Total # of Cars: 2339

Tab. 1: Average Travel Time for Expressway with Entry Ramp Precgdirit Ramp - Simulation Time = 3600 Time
Steps

Probability of Heading To Probability of Heading

Cell 4000=0.3 To Cell 4000 =0.5
Creation Probability at Cell 0 = 0.3 0—2200; 182 time steps 0 — 2200; 182 time steps
0—3999; 364 time steps 0—3999; 364 time time steps
2000— 3999; 164 time steps 2000— 3999; 164 time steps
Total # of Cars: 1691 Total # of Cars: 1684
Creation Probability at Cell 0 = 0.4 0—2200; 182 time steps 0 — 2200; 182 time steps
0—3999; 364 time steps 0—3999; 364 time steps
2000— 3999; 164 time steps 2000— 3999; 164 time steps
Totak# of Cars: 2005 Total # of Cars: 1994
Creation Probability at Cell 0 = 0.5 0—2200; 182 time steps 0 — 2200; 182 time steps
0—3999; 364 time steps 0—3999; 364 time steps
2000— 3999; 164 time steps 2000— 3999; 164 time steps
Total # of Cars: 2363 Total # of Cars: 2347

Tab. 2: Average Travel Time for Expressway with Exit Ramp Precedingry Ramp - Simulation Time = 3600 Time
Steps.

Multilane Single GCA-w Agent-based Expressway Traffic Mode 253

We would like to emphasize that this experiment has beerepted only as an example of the capability
of the model and of the resulting digital laboratory. Thisdg a complete study of the effect of topology
of the relative position of entr§ exit ramps over travel time. A much larger number of experita@re
required to reach conclusions, accounting for differemregsway topologies (i.e., number of entry and
exit ramps), different traffic densities (i.e. vehicle diea probability at each ramp). Also the length of
the expressway under consideration is expected to be a.fdéoare actually conducting these and other
experiments and we plan to discuss them elsewhere.

4 Future Work

We are currently validating our model with information framaffic engineers. We plan on using this
model for practical traffic engineering applications, ttiraate how some technological innovations af-
fects travel time between two access ramps, an entry rampraggit ramp, once certain highway traffic
parameters are known at certain points of the highway. Oncem is primarily with effects of flow and
congestion through a long highway on travel time. The tetdgiocal innovations include wireless com-
munication from roadside transmitters to vehicles, wsgleommunication among vehicles, etc. We are
also investigating ways of reducing the computational bgad of handling entry and exit ramps. We are
considering parallelizing our code for execution under RENET, a consortium of Canadian academic
institutions sharing a network of high performance commjteee [21].

Acknowledgements

A.T. Lawniczak acknowledges partial financial support frite Natural Science and Engineering Re-
search Council (NSERC) of Canada. B.N. Di Stefano acknagédedull financial support from Nuptek
Systems Ltd. A.T. Lawniczak acknowledges support from SIEAIET in the form of computing facili-
ties and resources for the Linux implementation and testfrilge software. The authors thank The Fields
Institute for Research in Mathematical Sciences for priogithospitality and Prof. Danuta Makowiec and
Prof. Rolf Hoffmann for providing inspiring conversation.

References

[1] Transportation Engineering - Online Lab Manu&) 2000, 2001, 2002, 2003, Oregon State
University, Portland State University, University of ldgtGlossary
http://www.webs1.uidaho.edu/niatt_labmanual/Chapter s/
TrafficFlowTheory/Glossary/index.htm

[2] M.J. Lighthill, G.B. Whitham, Proc. R. Soc. A229, 317 8%).
[3] P.I. Richards, Operations Research 4, 42 (1956).
[4] M. Cremer, J. Ludwig, Mathematical and Computers in Satian 28, 297 (1986).

[5] Nagel K., Schreckenberg M. (1992). A cellular automatoodel for freeway traffic. J. Physique | 2,
2221 -2229.

[6] W. Knospe, L. Santen, A. Schadschneider, M. SchreckenBys. Rev. E70, 016115 (2004).

254 Anna T. Lawniczak and Bruno N. Di Stefano

[7] W. Knospe, L. Santen, A. Schadschneider, M. SchreckenbePhys. A33, L477 (2000).

[8] W. Knospe, L. Santen, A. Schadschneider, M. SchreckenBys. Rev. E65, 056133 (2002).
[9] M. Schreckenberg, A. Schadschneider, K. Nagel, N. ltyy?Rev. E51, 2939 (1995).

[10] P. Wagner, K. Nagel, D. Wolf, Physica A 234, 687 (1997).

[11] D. Chowdhury, L. Santen, A. Schadschneider, Phys. B29, 199 (2000).

[12] D. Helbing, Rev. Mod. Phys 73, 1067 (2001).

[13] Anna T. Lawniczak and Bruno N. Di Stefano, DevelopmehCé model of highway traffic, in
Adamatzky A., Alonso-Sanz R., Lawniczak A., Martinez G. Nlgrita K., Worsch T. (Editors),
Automata-2008. Theory and Applications of Cellular AutaengLuniver Press, 2008), 14 pages

[14] Maerivoet S. and De Moor B.(2005). Cellular Automatadéts of Road Traffic, in Physics Reports,
vol. 419, nr. 1, pages 1-64, November 2005.

[15] Hoffmann, R., Volkmann, K.-P., Waldschmidt, S.: Glolgellular Automata GCA: An Universal
Extension of the CA Model. In: Worsch, Thomas (Editor): AGRinference (2000).

[16] Hoffmann, R., Volkmann, K.-P., Waldschmidt, S., Hegn@/.: GCA: Global Cellular Automata,
A Flexible Parallel Model. In Proceedings of: 6th Interoatl Conference on Parallel Computing
Technologies PaCT 2001, Lecture Notes in Computer Scidrd€$ 2127), Springer (2001).

[17] Hoffmann, R., Volkmann, K.-P., Heenes, W.: GCA: A mas$y parallel Model. IPDPS 2003, IEEE
Comp. Soc.

[18] Ehrt, Chr.: Globaler Zellularautomat: Parallele Atgbmen. Diplomarbeit, Technische Universitat
Darmstadt, 2005. http://www.ra.informatik.tudarmstddtforschung/publikationen/.

[19] Heenes, W., Hoffmann, R., Jendrsczok, J.: A Multipssme Architecture for the Massively Par-
allel Model GCA. IPDPS/SMTPS 2006, IEEE Proceedings: 2@tarhational Parallel; Distributed
Processing Symposium.

[20] A.T. Lawniczak, B.N. Di Stefano. Digital Laboratory #igent-based Highway Traffic Model, Acta
Physica Polonica B Proceedings Supplement Vol. 3, No. 2,useb 2010, pp 479-453.

[21] https://www.sharcnet.ca/

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 255-264

Composition, Union and Division of Cellular
Automata on Groups

Takahiro Itd and Mitsuhiko Fujid and Shuichi InokucHiand Yoshihiro
Mizoguch?

!Graduate School of Mathematics, Kyushu University, JAPAN
ZDepartment of Systems Design and Informatics, Kyushuutsof Technology, JAPAN
3Faculty of Mathemaics, Kyushu University, JAPAN

We introduce the notion of 'Composition’, 'Union’ and 'Dsion’ of cellular automata on groups. A kind of notions
of compositions was investigated by Sato (1994) and Mai(z898) for linear cellular automata, we extend the notion
to general cellular automata on groups and investigatadphaperties. We observe the all unions and compositions
generated by one-dimensionzineighborhood cellular automata ov&p including non-linear cellular automata.
Next we prove that the composition is right-distributiveeowunion, but is not left-distributive. Finally, we conckud

by showing reformulation of our definition of cellular autata on group which admit more than three states. We also
show our formulation contains the representation usinmé mpower series for linear cellular automata in Manzini
(1998).

Keywords: Cellular automata, Groups, Models of computation, Aut@mat

1 Introduction

The study of cellular automata was initiated by von Neumd®88) and have been developed by many
researchers as a good computational model for physicaegssimulation. Recently cellular automata
have been investigated in various fields including compst&nce, biology, physics, since they provide
simple and powerful models for parallel computation andirefphenomena.

In this paper, we investigate cellular automata on groupsfasnal model of computation. To compose
simple cellular automata into a complex cellular automatamintroduce the notion of 'Composition’ of
cellular automata on groups. The notion of automata on grovgs first treated as a special case for
automata on graphs (Caley graphs) which represent grotfisda (1994); Rémila (1998). Watanabe and
Noguchi (1982) investigated the decomposition of finiteoadta from the view point of spatial networks
using groups. Pries et al. (1986) investigated cellulaomata as a tool for implementing hardware
algorithms in VLSI. They considered configurations decitbgda cellular automaton as a group and
divided configurations into simple configurations usingugr@roperties. Sato (1994) introduced group
structured linear cellular automata and the star operatidocal transition rules. The star operation is a
kind of composition of cellular automata but the definitidiit és different from ours. Manzini (1998) also

256 T. Ito, M. Fujio, S. Inokuchi, Y. Mizoguchi

investigated the linear cellular automata using the forpoaver series and their product to find inverse
local transition functions. The product of formal powerissrare equal to our composition of cellular

automata for linear cases. An abstract collision systertoiptlial. (2008) is considered as an extension of
a cellular automaton, the notion of 'composition’ for antaaet collision system of¥-sets is investigated

in Ito (2010).

This paper follows on from Fujio (2008). He introduced thengmsition of cellular automata on groups
in order to reduce a complex behaved dynamics into simples.okVe introduce a formal definition of
cellular automata on group ov&s. In our framework, operations on cellular automata 'Unjobivi-
sion’ and 'Composition’ are introduced. Unions of all 2-gieborhood cellular automata are investigated.
Compositions of all 2-neighborhood cellular automata ée mvestigated and determined the subset of
3-neighborhood cellular automata which are generated byposing two 2-neighborhood cellular au-
tomata. Next we prove that the composition is right-disttile over union, but is not left-distributive.
Finally, we conclude by showing reformulation of our defunit of cellular automata on group which ad-
mit more than three states. We also show our formulatioredesithe representation using formal power
series for linear cellular automata in Manzini (1998).

2 Cellular Automata on Groups

Definition 1 Let G be a group. A cellular automaton ofi is a triple C = (G, V,V’) of a groupG,
subsetd” ¢ G andV’ c 2V. For V/, we define functions, : 2V — {¢, {e}} by

_Je (X gV
ZV’(X)_{{e} (X e V),

andFg : 2¢ — 2¢ by Fo(c U glv:/ (g ten V). We call the map, a local transition function and

geG
F¢ a global transition function.

Proposition 2 LetC; = (G, V1, V{) andCsy = (G, Vo, VJ) be cellular automata. If
e € Fo,(c) < e€ Fg,(c) (foranyc € 2€)

thenFe, = Fe,

Proof. SinceFc,(c) = {g € Glly/(g7'enVi) = {e}} = {g € Glg~'en V1 € V{}, we have
g € Fe,(c)@gilcﬂvl eVisecFo (g le)eee Fo,(gc) &g tenth € Vy & g € Fp,(c).
O

In the followings, we consider the set of all integ&ss an additive groug = (Z, +,0). So usual
one dimensional cellular automata with 2-states are repted as cellular automata on the grédupe
define 2-neighborhood and 3-neighborhood 2-states cellulamata in the next definition.

Definition3 For k > 1 andn € {0,1,--- 22" — 1}, we define cellular automat&' A(k,n) on Z
by CA(k,n) = (Z,V,V,) whereV = {0,1,--- ,k — 1}, and V] is the subset 02" which satisfies

n= ZXGV’ 22iex ¥,
We noteC' A(1,0) = (Z,{0},¢) andCA(1,1) = (Z, {0}, {0}).

Composition, Union and Division of Cellular Automata on Gps 257

Example 4 Since6 = 2+22 = 22° 422" we haveC'A(2,6) = (Z, {0, 1}, {{0}, {1}}}). Since90 = 2+
28494496 — 921 92°+27 | 92" 92'42% \ve haveT' A(3,90) = (Z, {0, 1,2}, {{0}, {2}, {0, 1}, {1,2}}).
The elementX in V! represents the state of neighborhood which induce the ta&tdss'l’. For a rule
number 90, we have the following table:

Neighborhood] 111 | 110 | 101 | 100] 011 [010] 001 000
XeV, {0,1,2} | {1,2} | {0,2} | {2} | {0,1} | {1} [{0} | &
ly (X) ¢ {ey | ¢ |dep| {et | & [{ef]| @

The configuratior: C Z represents places where the state iSincen € Fe(c) < Iy (nlenV) =
{e} ©&n~lenNV e V' & cnnV € nV’, the next state atis 1 if c N nV € nV'. For 3-neighborhood
case we are choosing = {0,1,2}, the left-hand side of the state is changing. It seems to berbe
that we chooséd” = {—1,0,1} but it is not convenient for even-neighborhood case. Ourbened
3-neighborhood cellular automafaA(3,) is a shifted version of usual numbered elementary cellular
automata. Later, we define a cellular automaton SHIFT wheginasent a shift operation and a operator
‘composition’ (&) of two cellular automata. After that the usual numberedneletary cellular automata
is represented as SHIRTC'A(3, n).

Example 5 SHIFT= (Z, {—1,0}, {{—1},{—1,0}}) is a cellular automata on groug.

Z? is also considered as a group, so it is easy to represent aditatinsional cellular automata such
as The Game of Life (Berlekamp et al. (1982)) as a cellulasraata on a group.

Example 6 LIFE = (Z?, Viire, Ve) is a cellular automata on grou?, where

e (O B0 () () (e
Viee = {ve2|(#v=23)V (#v=4A (8) c o).

We note thattv is the number of elements in a get

One dimensional cellular automaton @ns embedded into the two dimensional cellular automaton on
Z?. We define two natural embeddingsY andEY in the following.

Definition 7 For a cellular automateC' = (Z,V, V'), we define a cellular automatg X (C) on Z2 by
EX(C) = (2%, Vex(c): Vix(ca)) Where

Vexwe)y = {(ﬁ) |z eV}, and

Vivey = ((§) 1sexyx ey,

We also define a cellular automatgy’ (C') onZ* by EY (C) = (Z*, Vey(c)), Viy () Where

{(g) |z € V}, and

Vey (o)

Vv, = U(3) leex)Ixevy,

258 T. Ito, M. Fujio, S. Inokuchi, Y. Mizoguchi

[n\m [l O T T T 2T 3 4] 5] 6 [7] 8] 9 [10] 11]12] 18] 14]15]
0 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
1 T T 3 3 5 5 7 7 9 9 11 [11 | 13 | 13 | 15 | 15
2 2 3 2 3 6 7 6 7 10 | 11 | 10 | 11 | 14 | 15 | 14 | 15
3 3 3 3 3 7 7 7 7 11 | 11 | 11 [11 | 15 | 15 | 15 | 15
4 4 5 6 7) 5 6 7 12 | 13 | 14 | 15 | 12 | 13 | 14 | 15
5 5 5 7 7 5 5 7 7 13 | 13 | 15 | 15 | 13 | 13 | 15 | 15
6 6 7 6 7 6 7 6 7 14 | 15 | 14 | 15 | 14 | 15 | 14 | 15
7 7 7 7 7 7 7 7 7 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15
8 B 9 10 | 11 | 12 | 13 | 14 | 15 | 8 9 10 | 11 | 12 | 13 | 14 | 15
9 9 9 11 | 11 | 13 | 13 | 15 | 15 | © 9 11 | 11 | 13 | 13 | 15 | 15
10 10 | 11 | 10 | 11 | 14 | 15 | 14 | 15 | 10 | 11 [10 | 11 | 14 | 15 | 14 | 15
11 11 | 11 | 11 | 11 | 15 [15 | 15 | 15 | 11 | 11 [11 | 11 | 15 | 15 | 15 | 15
12 12 | 13 | 14 | 15 | 12 | 13 | 14 | 15 | 12 | 13 | 14 | 15 | 12 | 13 | 14 | 15
13 13 | 13 | 15 | 15 | 13 | 13 | 15 | 15 | 13 | 13 | 15 | 15 | 13 | 13 | 15 | 15
14 14 | 15 | 14 | 15 | 14 | 15 | 14 | 15 | 14 | 15 | 14 | 15 | 14 | 15 | 14 | 15
15 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15

Fig. 1: Table of unions C'A(2,n) U CA(2,m)

Definition 8 Letl < k < k,0 < 2 < k' — k andCA(k,n) = (Z,V,V’). CA(k,n)* is defined by
CA(k,n)¥ =(Z,{0,1,--- |k — 1}, V") where

V' = {81 UUU82|81 S 51,82 S SQ,’U S V/}7
o (&0 @=0

210 2=t} (3 > 0)
§ = 2lerio)

We note thaFCA(k,n)g’ = Foakn) andFCA(an)f/ =SHIFTOFcA(kn)-

Definition 9 (Union) LetC; = (G, V4, V() andC> = (G, Va, V) be cellular automata ol. The union
CiuCy of Cy anng is defined bﬁl UCy = (Gj7 Viu VQ, ‘/1/ @] ‘/2’)

Definition 10 (Division) LetC = (G, V, V') be a cellular automaton of. If there exisC, = (G, Vi, V)
andCs = (G, Vi, V3) be cellular automata o7 such that” = V; U V; andV’ = V) UV, then we calll
Cy andCs are division ofC' and C'is dividable byC; andCs.

Example 11 The class of all 2-neighborhood cellular automat@ A(2,n) |n = 0,..,15} is gener-
ated by{CA(2,0), CA(2,1), CA(2,2), CA(2,4), CA(2,8)} using 'union’ operations. For example,
CA(2,13) is dividable byC'A(2,1), CA(2,4), andCA(2,8). Fig 1 is the table of unions fof' A(2,n)
(n=0,..,15).

Definition 12 (Composition) LetC; = (G, V1, V{) andCy = (G, V», V3) be cellular automata oi.
The compositio; ©Cs of C; andCs, is defined by?; ©Cy = (G, V; - Vi, V/OVY) where

Vi- Vo = {U102€G|’U1€V1,’U2€V2}and
Viov) = {(Xe2""V{veVi|v XNV e Vi) e V).

Example 13 LetC = (Z, V, V') be a cellular automaton o whereV = {0,1} andV’ = {{0},{1}}.
We havel - V = {0,1,2}. Sincel~{0,1} N {0,1} {0 — 1,1 — 1} n{0,1} = {0} and0~'{1,2} N
{0,1} = {1 — 0,2 - 0} n {0,1} = {1}, we haveV'OV’ = {{0},{2},{0,1},{1,2}}. So we have
CA(2,6)0CA(2,6) = CA(3,90).

Composition, Union and Division of Cellular Automata on Gps 259

[n\m J[o T 1 T 2 [3 T 4 1 5] 6 [7] 8] 9 [10 11] 12 [18] 14 [15 |
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 255 | 236 | 209 | 192 | 139 | 136 | 120 | 128 | 55 36 17 0 3 0 T 0
2 0 16 34 18 68 68 66 64 8 24 34 28 12 12 2 0
3 255 | 252 | 243 | 240 | 207 | 204 | 195 | 192 | 63 60 51 48 15 12 3 0
4 0 2 12 12 18 34 24 8 64 66 68 68 48 34 16 0
5 255 | 238 | 221 | 204 | 187 | 170 | 153 | 136 | 119 | 102 | 85 68 51 34 17 0
6 0 18 46 60 116 | 102 | 90 72 72 90 | 102 | 116 | 60 46 18 0
7 255 | 254 | 255 | 252 | 255 | 238 | 219 | 200 | 127 | 126 | 119 | 116 | 63 46 19 0
8 0 1 0 3 0 17 36 55 | 128 | 129 | 136 | 139 | 192 | 209 | 236 | 255
9 255 | 237 | 209 | 195 | 139 | 153 | 165 | 183 | 183 | 165 | 153 | 139 | 195 | 209 | 237 | 255

10 0 17 34 51 68 85 102 | 119 | 136 | 153 | 170 | 187 | 204 | 221 | 238 | 255
11 255 | 253 | 243 | 243 | 207 | 221 | 231 | 247 | 101 | 189 | 187 | 187 | 207 | 221 | 239 | 255
12 0 3 12 15 48 51 60 63 | 102 | 195 | 204 | 207 | 240 | 243 | 252 | 255
13 255 | 239 | 221 | 207 | 187 | 187 | 189 | 101 | 247 | 231 | 221 | 207 | 243 | 243 | 253 | 255
14 0 19 46 63 116 | 119 | 126 | 127 | 200 | 219 | 238 | 255 | 252 | 255 | 254 | 255
15 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255

Fig. 2: Table of compositions CA(2, n)OCA(2, m)

Example 14 The rule numbers of the 3-neighborhood cellular automataegated by composing 2-
neighborhood cellular automata{®, 1, 2, 3, 8,12, 15,16,17, 18, 19, 24, 34, 36, 46,48, 51, 55, 60, 63, 64,
66, 68, 72,85,90,102,116,119,126,127,128,129, 136, 139, 153,165, 170, 183, 187,189, 191,192, 195,
200, 204,207, 209, 219,221,231, 236, 237, 238, 239, 240, 243, 247, 252, 253, 254,255}. There are 62
kinds of 3-neighborhood cellular automata. Fig 2 is the &bl compositions fof' A(2,n) (n = 0, .., 15).

Lemma 15 LetC = (G, V, V') be a cellular automaton antly C G. For anyc € 2%,
Fo(c)nVop=Fe(en (Vo -V))NVo

Proof. We haveFc(c) N Vy = {vg € V0|v0‘1c NV eV’ ={v € VoleNuV € vV'} = {uwg €
Vol(enNVo-V)NuV ewvgV'} = Fe(en (Vo - V)N V. O

The composition of cellular automata corresponds to findlalae automaton which global transition
function is the composition of global transition functiasfeoriginal cellular automata.

Theorem 16 (Fujio (2008))
Fe, o Fe, = Foy00,

Proof. SinceFg,(c)NVy = {v e V1 |v™len Vz € VJ}, we have

e € Fo,(Fe,(e)) & Fo,(c)nVy eV,
& Feo,(enVy-Ve)NnVy € VY (by Proposition. 2)
e {neVijvHenVi-)NV eVjleV]
& cnNW-VheVjow
~ ec FCIQCZ (C)

]

Theorem 17 LetC; = (G,V,V{), C2 = (G,V, V) andCs = (G, Vs, V4) be cellular automata on a
groupG. Then,
(C1U(CL)0Cs = (C10C3) U (Ca0Cs)

260 T. Ito, M. Fujio, S. Inokuchi, Y. Mizoguchi
Proof. First, we note

(Ol UOQ)OCg = (G,V‘/},,(VYU‘/Q/)OVZ{) ,and
(C10C3) U (C20C5) (G, V- V3, (Vo 0V]) U (V5OVY)).

Next, we have

Viuvhovy = {(Xxe2V | {veV]v ' XN eW}eV/ Uiy}
= (X2 [{veV|v XNV e Vi) eV}
WX eV [{veV]v XNV e Vi) e Vy}
= (VOV5) U (V;0V5)
O
We note thatC; &(Ce U Cs) = (C10C:) U (C1OC5) does not always holds for cellular autométa

Cy andCs. For exampleC' A(2,6)O(CA(2,2) U CA(2,4)) = CA(2,6)CCA(2,6) = CA(3,90), and
(CA(2,6)0CA(2,2) U(CA(2,6)0CA(2,4)) = CA(3,46) U CA(3,116) = CA(3,126).

Proposition 18 LetCA(1,n)*1, C A(k2, na) andC A(ks, n3) be cellular automata o, whered < z <
k1, andn = 0, 1. Then,

CA(L n)ﬁlo(C’A(kg, ng) U CA(k27 ng)) = (CA(]., TL)I;I <>CA(]€27TL2)) U (CA(]., n)il OCA(kQ, ng))

Proof. Let Vi = {0,--- k1 — 1}, V] ={X €2V |z € X}), V] = {X €2 |z ¢ X}), CA(ka,n2) =
(Z,V5,V3), andC A(kz, n3) = (Z, Va2, VJ). First, we note

CA(1,00" = (Z,W,V)),
CA(L, Dk = (zZ,v,V)),
CA(1,0)510(C Ak, n2) U CA(ka,n3)) = (Z,V1-Va, V{O(Vy UVY)),and
(CA(L,)k OCA(kg,ma)) U (CA(L, n)M OCA(ka,n3)) = (Z, V1 - Va, (V] OVY) U (V] OVY)).

Since

Vio(VuVg) = {Xe2"|[{veV[v XNV e (VUV} eV}
{(Xe2" V21271 X Ny € (V5 UVY)}, and
(Xe2"V2 v eV]v XNV eVy} eV}
WX e2" V2 [{o eV [v XNy e Vi) €V}
= {(Xe2"V2 "X NV, eV}

U{X €22 271X N1, € V3,

(V[OVy) U (V/OVs)

we havel/ o (VY U VY) = (V/OoVy) u (V{OVY), and

CA(1,1)" O(CA(kg, no) U CA(kg,n3)) = (CA(L, 1) OCA(ka, n2)) U (CA(1,1) OCA(kz, n3)).

Composition, Union and Division of Cellular Automata on Gps 261

Similarly, we can prove

CA(1,0)k1 O (CA(ky, n2) U CA(ky,n3)) = (CA(1,0)51 OC A(kg, m2)) U (CA(L,0)k1 OC A(ka, n3)).

O

Example 19 We noteC'A(3,3) = (Z, {0,1,2}, {¢, {0}}) andCA(3,102) = (Z, {0, 1,2}, {{0}, {1},
{0,2},{1,2}}). The compositio’ A(3, 3) & C'A(3,102) = ({0,1,2,3,4}, {{1},{0,1},{1,4},{0, 1,4},
{3},{0,3},{3,4},{0,3,4}}). Since{{1},{0,1},{1,4},{0, 1,4}, {3},{0, 3},{3,4},{0,3,4}}) = U{{{0}u
s, sU{4}, {0} UsU{4}} |s € {{1},{3}}}, we haveC'A(3, 3) O CA(3,102) = C'A(3,18)3. (cf. Fig 3,

Fig 4, Fig 5)

[l

. -.'.'|'I'|.|.|.|.|.

Fig. 3: An example of configurations @¥'A(3, 3)

A A

Fig. 4: An example of configurations @' A(3, 102)

Fig. 5: An example of configurations @f'A(3,18) = C'A(3,3)CCA(3,102)

Example 20 A 2-neighborhood cellular automaton is consideredaseighborhood cellular automaton
and 3-neighborhood cellular automaton is also considered>aseighborhood cellular automaton. The
followings is an observation of the embeddings and comipasit

CA(2,1) =
CA(2,1) =

CA(2,1)0CA(2,1)

CA(3,17)0CA(3,17)

Vo=

(z,{0,1},{¢})

(2,{0,1,2}, {4, {2}})

CA(3,17)

(z,{0,1,2}, {{0,1},{0, 2}, {1,2}, {1}})
CA(3,236)

(Z,{0,1,2,3,4,5},V")
CA(5,3974950124) = C A(3,236)]

Utds,sU{3},sU {4},5U {3,4}}|s € CA(3,236)}

262 T. Ito, M. Fujio, S. Inokuchi, Y. Mizoguchi

3 Generalization

A subsetV’ of G is considered as a characteristic functién G — 2 where2 = {0,1}. ThatisV is a
function which values are
0 |4
wmz{ (92 V)

1 (geV).

Sometimed/ is represented as an injectiop : V' — G whereiy (g) = g.
Extending our 2-states cellular automata on groups to nséatgs cellular automata on groups, we
replace the set = {0, 1} to a finite setS.

Definition 21 Let G be a group,S a finite set. A generalized cellular automaton @nis a four-tuple
C = (G, S, iy, V") of the groupG, an injectioni, : V — G, and a function/’ : SV — S whereS"V
is the set of all functions frorfr to S. A configurationc : G — S is a function. The global transition
functionF¢ : S¢ — S is defined by (c)(g) = V/(co g oiv).

Proposition 22 Let G be a group, ands = 2 = {0, 1}. The global functiorF : 2¢ — 2¢ is the same
as defined in Definition 1. That B (c) = {g € G|V'(cogoiy) =1} = U g-lyi(gt-enV).
geG

Proof. Forg € G, we have

g€ Ug-lv/(g71~cﬂV) e (g t-enV)={e}
geG

s gltenveV
& g Hrle@)=1}nV eV
s {9 'zlc(x)=1}nV eV
& {v|c(gv) =1}NV e V' (cf. (z = gv))
& {vlc(gv)=1,veV}eV’
& {v|cogoiy(v)=1} eV’
& V'(cogoiy)=1
& g€ Fel(e).

O

Example 23 LetG =Z, S = Z,,,,andV = {—r,—r + 1,---,0,--- ,+r}. For a polynomialf(X) =
—+r
> aX', (4 € Zy,), we define the function/ ., : ZY, — Zu bYV'(z_p, i1, -+, 30, -+, T4r)

1=—T

—+r
=Y aimi, (Tp T_py1, -, T, -+, Tyr) € Zm"). A configuratione € ZZ is represented as a
1=—T

formal power serie) ~ ¢; X' wherec; = c(i) (cf. Sato (1994); Manzini (1998)). Sinee> j o iy (i) =

Composition, Union and Division of Cellular Automata on Gps 263

C(J + Z) = Cj+iy andco joiy = (Cj*h Cj—rtly " 5 Cjy 7Cj+7“)’ we have
Q_eXHF(X) = (Q_aX)f(X)
+r

(Z i X')(Z ar X")

iV=—r

—+r
O axH(Y asx)

V=—r

+7

= Z(Z Cia,i/Xi_i/)

V=—r

+r
= Z((Z a_pciri)X) (cf.j=i—1i)

ir=

> V(i Cjrirs Gy 5 i) X7)
D> (V'(cojoiy)X7).
= > (Fole)(j)X7).

-Tr

The transition of the cellular automatofi = (Z,Z,,,iv, Vf’(X)) is corresponding to the product of
polynomials (the formal power series).

Acknowledgements

The authors thank Professor Yasuo Kawahara for his valsaigigestions and discussions. This work has
been partially supported by Kyushu University Global COBdPam “Education-and-Research Hub for

Mathematics-for-Industry” and Regional Innovation CardProgram (Global Type 2nd Stage) “Fukuoka
Cluster for Advanced System LSI Technology Development”.

References

E. Berlekamp, J. Conway, and R. Guyinning Ways for Your Mathematical Plays, 2cademic Press,
1982.

M. Fujio. XOR? = 90 - graded algebra structure of the boolean algebra of loaabistion rules -. In
RIMSkokyiaroku, volume 1599, pages 97-102, 2008.

T. Ito. Abstract collision systems agpsets.J. of Math for Industry2(A):57-73, 2010.

T. Ito, S. Inokuchi, and Y. Mizoguchi. An abstract collisisgstem. InAutomata-2008 Theory and
Applications of Cellular Automatgages 339—-355. Luniver Press, 2008.

G. Manzini. Invertible linear cellular automata o\&y,. J. Comput. Syst. Scb6:60-67, 1998.

264 T. Ito, M. Fujio, S. Inokuchi, Y. Mizoguchi

W. Pries, A. Thanailakis, and H. Card. Group properties diitzg automata and VLSI applications.
IEEE Trans. on ComptersC-35(12):1013-1024, 1986.

E. Rémila. An introduction to automata on graphs Cellular Automatapages 345-352. Kluwer Aca-
demic Publishers, 1998.

Z. Roka.Automates cellularies sur les graphes de CalelgD thesis, Université Lyon | et Ecole Normale
Supérieure de Lyon, 1994.

T. Sato. Group structured linear cellular automata &gr J. Comput. Syst. S¢i49:18-23, 1994,
J. von NeumannTheory of self-reproducing automatniv. of lllinois Press, 1983.

T. Watanabe and S. Noguchi. On the uniform decompositiorutdraata and spatial network$EICE
Trans. Inf. and Syst11(2):1-9, 1982.

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 265-276

Characterization of Single Hybridization in
“Non-Interesting” class of Cellular Automata
For SMACA Synthesis

Shiladitya Munshi' and Sukanta Das?* and Biplab K. Sikdar?®

! Department of Computer Science and IT

Meghnad Saha Institute of Technology, Kolkata, West Bengal, India 700150

2Department of Information Technology

Bengal Engineering and Science University, Shibpur, Howrah, West Bengal, India 711103
3Department of Computer Science and Technology

Bengal Engineering and Science University, Shibpur, Howrah, West Bengal, India 711103

This work investigates single hybridization in “Non-Interesting” class of Cellular Automata. Detailed analysis has
been reported to model different criteria of single hybridization in this class of C'A. The results establish that the
“Non-Interesting” class of C'A rules are the potential candidates in synthesizing Multiple Attractor Cellular Automata
(M AC A) with single length cycle attractor.

Keywords: Multiple Attractor Cellularr Automata (MACA), Self Loop Multiple Attractor Cellularr Automata (SMACA),
Single Attractor Cellular Automata (SACA)

1 Introduction

Cellular Automata (C'A) is a decentralized dynamical computing paradigm that evolves in discrete time
and space. C'A is represented as a spatially extended system, consisting of large numbers of simple iden-
tical components with local connectivity. The simple combinational logics employed at the local sites of
C A give rise to a complex evolution of global states. The potential of C'A to perform complex compu-
tations and its robustness has attracted a large section of researchers from diverse fields. Among many
interesting and surprising global state transition patterns of C'A evolution, researchers paid an immense
interest towards a special class of C' A referred to as the “Multiple Attractor Cellular Automata” (M AC A).
The community of CA researchers has already acknowledged [4, 5, 8, 9, 10] the importance of M AC A
structures in the field of pattern classification, design of associative memory, query processing, etc.

Tshiladitya.munshi @yahoo.com
fsukanta@it.becs.ac.in
Sbiplab@cs.becs.ac.in

266 Shiladitya Munshi and Sukanta Das and Biplab K. Sikdar

A § RS
2 o
IS 9

® ®
@ g

(a) Phase space diagram for a CA (b) Phase space diagram for a CA
with Rule Vector <40, 77, 40, 77> with Rule Vector <40, 77, 77, 40>

Fig. 1: Sample M AC'A (not all attractor being point state) and SM AC A (all attractors being point state)

The M AC A with single length (i.e point state) cycle called Self Loop M AC A (SM AC A) has gained
special attention in the recent years. The simple global phase space structure of SM AC A promises to
be a better candidate for pattern classification, pattern recognition and other related applications due to
reduced complexities in class identification.

The importance of SM AC A as pattern classifier [4], associative memory [5, 4] and other application
areas [8, 9], as well as the absence of simple synthesis scheme for such a C'A have motivated us to
concentrate on the characterization of SM AC A.

The characterization acts as the first step towards synthesis. It is done from the perspective of hy-
bridization in “non interesting” class of elementary Cellular Automata rule space. The results of such
characterization can be utilized to frame an efficient synthesis scheme for SM AC' A

Section II of this paper critically discusses the history and general notion about “Non Interesting” class
of elementary Cellular Automata rule space followed by Section III that introduces the basic notations
and terminologies related to SM AC'A. Finally, Section IV characterizes the effect of single hybridization
on “Non Interesting” class of C'A leading to the synthesis scheme for SM AC A.

Characterization of Single Hybridization in “Non-Interesting” class of CA For SMACA Synthesis 267

Tab. 1: Five Classes Elementary Cellular Automata Rules

Class RuleNumber
Null 0, 8, 32,40, 128, 136, 160, 168
Fixed Point 2,4,10, 12, 13, 24, 34, 36, 42, 44, 46, 56

57,58,72,76,77,78, 104, 130, 132, 138, 140
152,162, 164, 170, 172, 184, 200, 204, 232
Periodic 1,3,5,6,7,9,11, 14, 15, 19, 23, 25, 27, 28
29, 33, 35, 37, 38, 41, 43, 50, 51, 74, 108, 131
133, 134, 142, 156, 178
Locally Chaotic 26,73, 154
Chaotic 18, 22, 30, 45, 54, 60, 90, 105, 106, 129, 137, 146, 150, 151

2 “Non Interesting” Elementary C' A Rule Space

In his most influential paper [1], Wolfram reported the existence of four classes of rules for 2 state 3
neighborhood Cellular Automata (C' A). This classification reported a class called Class I or Homogeneous
Class where CA evolution led to a homogeneous state. Class I cellular automata evolve after a finite
number of time steps to a unique homogeneous state.

This classification, enabled [2, 3], characterization of C'A rule dynamics from the typical initial config-
urations. However, this classification was neither according to the dynamics from all initial configurations,
nor it is the mathematical characterization. It could be thought of simple phenotype classification.

General notion about the class I rules admits the fact that the global state evolution dies out after a
short span of time, thereby calling it “Non Interesting” from the computational complexity as well as uni-
versality perspective. But, critical and exhaustive computational experiments have proved that the “Non
Interesting” CA rules can show some interesting properties if its phase transition length is considerably
high and if the CA is initialized with a proper global configuration. Hence the “Non Interesting” is purely
a qualitative measure and it depends of initial configurationlq of the CA.

Li et al have shown [3] that the 3 neighborhood CA rule space (containing 256 rules) can be folded
down to Elementary rule space (containing 88 rules). Each rule in this Elementary space forms a cluster
of 1, 2 or 4 rules, all of which share similar properties. In the present case, instead of taking the entire 3
neighborhood rule space,the Elementary rule space is considered for simplicity. For example, rule 40 is
an elementary rule and it represents the rule cluster (40, 96, 235, and 249). Hence any discussion related
with rule 40 equally implies to the entire cluster of (40, 96, 235, and 249). The work of Li, Packard and
Langton [2, 3] has extended the Wolfram classification and pointed out five different classes. Among
these, Class A (N wull rules) and Class B (Flized Point rules) are of great importance for the present work.
Class A (Nwull rules) and Class B (F'ized Point rules) can be summarized as follow:

e Class A (Null rules): CA evolution leads homogeneous fixed-point configurations.
e Class B (FlizedPoint rules): CA evolution leads to inhomogeneous fixed-point configurations.

Table 1 shows Li-Packard classification of CA rules with reference to the Elementary rule space.
Wolfram Type 1 Non Interesting class gets directly mapped with Null and FixedPoint classes of Li
Packard classification. Both Null and FixedPoint class rules lead the C'A evolution towards a fixed

268 Shiladitya Munshi and Sukanta Das and Biplab K. Sikdar

attractor but the nature of attractors are different in both the cases. In Null rules, the attractors are
homogeneous that is point states or self loops, whereas in FizedPoint, the attractors may be composed
of multi length cycles of states. Hence, for SM AC' A , Null rules are the natural choice.

The pattern classification or pattern recognition solutions demand the patterns to be distributed over dif-
ferent dissipative phase space that could be identified by corresponding attractors. Here, the issues of uni-
versality or computational complexities generally do not play significant role. So the Nwull rules, though
do not show considerable computational complexities, can be thought for ideal candidate for SM AC A
synthesis targeting different applications like pattern classification/recognition, associative memory im-
plementations etc.

In the current paper, unless stated otherwise, the “Non Interesting” (INI) CA rules will always refer to
the Null class of Li Packard classification. The NI or Null class CA rules can be characterized by the
fact that within a phase space, all the states eventually move towards a single point state attractor or self
loop. Hence, a Null class C'A can contain a cycle of length 1 at the max. Hence the dynamics of Null
class C'A rules supports the basic criteria of SM ACA. But at the same time, it lacks the presence of
multiple dissipative phase space or basins as it contains only one basin. The presence of only one basin
in the phase space confirms the C'A to be referred to as Single Attractor Cellular Automata (SACA).
The present work analyses the conditions for which a single hybridization in Null class uniform C' A
transforms SAC A dynamics to SM AC' A dynamics.

3 (CA Preliminaries

A Cellular Automaton (C'A) can be viewed as an autonomous finite state machine (FSM) consisting of
a number of cells [6]. In a 3-neighborhood dependency, the next state qf t+1) of a cell is assumed to be
dependent only on 1tself and on its two neighbours (left and right), and is denoted as

(t+1) =f (q(t) ,q(t) (t)) where q(t) represents the state of the ¥ cell at t*"* instant of time. f is the
next state function and referred to as the rule of the automata. The decimal equivalent of the next state
function, as introduced by Wolfram [7], is the rule number of the C'A cell. For example

Rule 90: qz 1) = q@ lo ngg ! where @ function denotes modulo-2 addition. Sincef is a function of 3

variables, there are 22° i.e., 256 possible next state functions (rules) for a CA cell.

The C'A is said to be uniform if the same rule have been introduced to each of the cells of a C'A,
otherwise it is termed as hybrid. In this paper we characterize the effect when hybridization occurs at 7**
cell of a C'A which is governed by the uniform Nwull class rules. The following definitions are introduced
to follow the reported characterization of null boundary CA.

Definition 3.1 Rule Vector (RV):The ordered sequence of Rules < Ry,R1---R;---R,_1 >, ofann
cell C A is referred to as its rule vector (RV) where i*" cell of C A is configured with rule R;. If Ry = Ry
= R; = R, _1, it is uniform RV other wise it is hybrid.

Definition 3.2 Hybridization: It is the process of introducing a non-homogeneous rule R; at the it"

cell (i,e ith index of RV) of a uniform CA with RV < R,R,R---R > . Single hybridization means
introduction of one non homogeneous rule at it cell of the C A.

Definition 3.3 Local Next State Function (f): The rule employed on a C' A cell represents the local map
that is, the local next state function f. Thus f; refers to the local next state function corresponding to the
rule R; employed on it" cell.

Characterization of Single Hybridization in “Non-Interesting” class of CA For SMACA Synthesis 269

Definition 3.4 Present and next state of a C'A cell: The present and next state of i'"" cell is denoted as
the a; and b; respectively. Hence b; = f;(a;—1,a;,a;11).

Definition 3.5 Global next state function (F'): The global next state function F is derived from the local
next state function as F = (fof1 - fi -+ fa—1) with the 3 variable Boolean function f;(a;_1, a;, a;y1).

Definition 3.6 Global present and next state (A and B) : The global present and next states are re-
spectively denoted by A and B. Thus A = (ag,a1-+-a;+an—1), B =F(A) = (bg,by+--b;+bp_1).
That is B is the successor state of A, and A is the predecessor state of B.

Definition 3.7 Self Loop Attractor (SLA) : A state Aisa SLA if F(A) = B = A. That is, there exists
a cycle of length 1 with the state A.

Definition 3.8 Rule Min Term (RMT): The 8 Minterms of the 3 variable boolean function f; corre-
sponding to the rule R; employed on it" C A cell is referred to as RMT's. The three variables are a;_1, a;,
a1, the current states of (i — 1)1, ith, (i 4 1) cells respectively, The minterm m = < a;_1a;a;11 > is
the RMT. The symbol T' represents all the RMTs, whereby T =T'(0), T(1), T'(2), T(3), T'(4), T'(5), T(6),
T(7) = T(m). In general a single RMT for i*" cell is also denoted as T* ¢ T where T" = < a;_1a;a;1+1 >.

Definition 3.9 Compatible RM T Pair: A pair of RMTs T? and T*+*' inan RMT string < ---T*~'T"
T o> (where T" € T, T" = < a;_1a;ai41 >, and T = < d;a;{1a:49 >) are compatible if (i) a;
= d; and (ii) a; 41 = a;’1.

Example: Let us consider two RMT's T(2) and T(4) where T(2) = < a;—1a;a;41 > =< 010 > and
T4) = < d;a;11a;52 > =< 100 >. Here a; = d; =1 and a;4+1 = a;51 = 0. Hence the RMT pair T(2) and
T(4) is compatible.

Let us consider another case with RMT pair T(3) and T(5) where T(3) = < a;_1a;a;41 > =< 011 >
and T(5) = < d;a;41a:52 > =< 101 >. Here a; = a; = 1 but a;11 # a;}1. Hence the RMT pair T(3)
and T(5) is not compatible.

Definition 3.10 Valid RMT String: A RMT string < T° - - T*=YTT1 ... T"=1 > representing the
state of a C A is a valid RMT string if each pair T* and T*** (i = 0 to n — 2) is a compatible RMT pair.

4 Characterization of Single Hybridization in “Non Interesting” C' A

A “Non interesting” CA rule always produces only one cycle of length one, that is only one self loop. The
valid RMT string that corresponds to this self loop is referred to as “Attractor RMT Sequence”. For exam-
ple, let us consider rule 40 (Null rule, Table1). It has only one valid RMT string < 7°(0)7°(0)7°(0)7°(0) >
which generates the attractor, hence, “Attractor RMT Sequence” for rule 40 is < T(0)T'(0)T(0)T(0) >
or simply < 0000 >. The condition for a valid RMT string to be referred to as “Attractor RMT Sequence”
is given as follows

Property 1: For an n length uniform CA with Null rule R, the valid RMT String S =< T° ... T~ 177
T1...T"=1 > is said to be “Attractor RMT Sequence” if and only if, for all i*" cell (i =0 to n-1), the
condition a; = b; is true (where T'ie T, T = < a;—1G;a;41 >, and b; is the next state of ith cell, hence
b; €0,1).

The RMT's that constitute “Attractor RMT Sequence” for rule R, form a set ATT' R_SEQ . Following
algorithm identifies the “Attractor RMT sequence”, given a Nul! rule for n length CA.

270 Shiladitya Munshi and Sukanta Das and Biplab K. Sikdar

Algorithm 1: Identify-ARS

Input: A Null rule R for an n length CA and an index j set to 0

Output: An n length “Attractor RMT sequence” < 70 ... TJ=tpiTitt...n=1 >
Step 0: for R, pick up the RMT's which holds Property 1

Step 1: for each picked up RMT T in Step 0, do Step 2

Step 2: while j is less than n do the following

Step 3: append T to the “Attractor RMT Sequence” < T ... 7771 >

Step 4: compute two compatible RMT's T+t and T9+! from T7

Step 5: for each of RMT's T7+! and TJ'/+1, computed at Step 4, if it holds Property 1, do Step 2 with
j < j+1, else do Step 6

Step 6: start another execution as per Step 1

Step 7: output “Attractor RMT sequence” < T .. TI=t7iTi+1 ... =1 > and Stop.

Step 2 to Step 5 of Identify_-ARS algorithm executes n times and this execution is done for all of the
RMTs satisfying Property 1. For a specific Null rule R, the number of RMT's satisfying Property 1 is
constant (say k) and hence the entire algorothm runs with a time complexity of k.n

In a state space, a cycle of length k can be thought of as a point state or self loop attractor at k'
temporal extension. In case of Null class CA rules, the RMT's with relation a; = b; are so arranged and
distributed that there exists no k" temporal extension at which, for an n cell Cellular Automata, for all
it" cell (i =0 to n-1), the condition a; = b; is true. Hence Null class rules are devoid of any attractor of
length k (k =2 to n-1).

This property, though not the outcome of this study, guides the hybridization in “Non interesting” CA
rules. The possibility of formation of multi-length cycle due to the introduction of single hybridizing rule
gets nullified in the presence of NULL class CA rules.

4.1 Characterization

To proceed with the characterization, let us define the following key concepts

Definition 4.1 Non Point RMT Set: Non Point RMT Set for rule R N _PT R is defined as the set of RMTs
of rule R for which the condition a; = b; is not true.

Definition 4.2 RMT Transition Tree: For an n cell CA of rule R, it is a non-linear Binary Tree with
n levels (0 to n-1), in which a node containing one RMT is connected with another node containing
compatible RMT. As one RMT always generates a compatible RMT pair as per Definition 3.9, a parent
node will always contain exactly two child nodes excepting at level n-1. At level n-1, no odd RMTs will
be present due to null boundary condition. The RMT transition tree is always drawn with reference to a
specific RMT at jth cell of CA (j = 0 to n-1). Hence the sub tree, all the complete path of which passes
through specific RMT at level j corresponds to the reference RMT. The nodes of the tree also hold the
status of a; = b; relation.

Let us consider Rule 8(00001000). The next state of all the RMTs excepting T(3) is O where as next
state of T(3) is 1. Hence T(2), T(6) and T(7) do not hold a; = b; relation. Hence N_PT8 is T(2), T(6),
T(7) or simply 2,6,7.

Characterization of Single Hybridization in “Non-Interesting” class of CA For SMACA Synthesis 271

’s
ag
& B -1
P L ® ®
© @ .

(a) RMT Transition Tree (b) Phase space diagram (c) Phase space diagram

for 5 cell CA with rule 8 of RV <8, 24, 8, 8 > of RV <8 9 8 8>
and with reference to T(2) R
at 2nd level

*

‘o

@)
®

=)

ety
Gkﬁ)‘ﬁg ®)

Fig. 2: Illustration of Example 1 and 2

Figure 2(a) represents a RMT transition tree (for 5 cell CA with rule 8) with reference to RMT T(3) at
37 cell or at j = 2 where j = 0 to 4. The reference node marked with bold line and * denotes the node that
does not follow a; = b; relation.

The following theorems lead to characterization of the hybridization in “Non interesting” CA rules.

Theorem 4.1 For a pair of hybridizing rule H and uniform rule R, if the relation N_PTr C N_PTy is
true, then the hybridization will never lead to SMACA formation.

Proof: The singletone existence of Self Loop Attractor for rule R is due to violation of the relation a; =
b; for RMT T where T'e N_PTr. As N_PTr C N_PTy holds good, the same violation of the relation
a; = b; exists in the hybridized CA. Hence the singletone existence of Self Loop Attractor never changes
and the hybridization preserves SACA nature not leading to SMACA. Hence proved. a

Example : Let us consider, R = 8 (00001000) and H = 24 (00011000). Hence N_PT1x = T(2), T(6),
T(7) or simply N_PTg =2,6,7 and N_PTy =T(2),T(4),T(6),T(7) or simply 2,4,6,7. Hence N_PTr C
N _PTy is true. This hybridization will never lead to SMACA as the same can be reviewed and confirmed
from Figure 2(b).

Theorem 4.2 For a pair of hybridizing rule H (at it" cell) and uniform rule R, the hybridization will
never lead to SM AC A formation, if the following conditions are true:

a) N_.PTy = N_PTr U Sy where Sy N ATTR_SEQR # Phi; and

b) At least one element of S must be present at it" position of “Attractor RMT Sequence”.

Proof: The condition N_PTy = N_PTgr U Sy dictates that there is no possibility of formation of auxil-
iary “Attractor RMT Sequence” in the hybridized C'A. It is due to the fact that RMTs non conforming to

272 Shiladitya Munshi and Sukanta Das and Biplab K. Sikdar

the relation a; = b; in R have not been changed in H. In addition to this, the existing “Attractor RMT Se-
quence” corresponding to R gets disturbed due to the fact that RMT(s) say T, from ATTR_SEQr does
not hold the relation a; = b; any more in H as Sy N ATTR_.SEQRr # ® and Sy C N_PTyg. So at the
hybridizing cell site, “Attractor RMT Sequence” will fail to hold a; = b;i relation resulting no formation
of Self Loop Attractor . So as (i) “Attractor RMT Sequence” of uniform C'A with R exists no more and
(i1) No possibility of Self Loop formation evolves up due to introduction of rule H, no self loop can be
generated for the hybridized C' A and hence SM AC A generation is impossible. Proved. O

Example : Let us consider, R =8 (00001000) and H =9 (00001001). For this pair of rules, ATTR_SEQRg
=T(0) =0, N_PTRr = T(2), T(6), T(7) = 2,6,7 and N_PTy = T(0), T(2), T(6), T(7) =0, 2,6,7. Mathe-
matically, N_PTy = N_PTr U Sy where Sg = 0. So there exists an RMT T = T(0) = 0 for which T
€ Sg and T e ATTR_SEQp is true. Hence this hybridization will never lead to SM AC A. This can be
rechecked with the phase space diagram of Figure 2(c).

Above discussion analyses the conditions which refuse a hybridizing rule H to be introduced into a
uniform C'A with rule R in order to possible SM AC A generation. Hence the rule non conforming to
these conditions stated in theorem 4.1 and theorem 4.2 has a potential to form SM AC A structure when
introduced to a uniform C'A with “Non Interesting CA” rule R. One of such rules can be referred to as
“Potential Rule” Hp. A “Potential Rule” Hp can be characterized by the property N_PTr ¢ N_PTy,.

Theorem 4.3 An n cell uniform C A with rule R, when hybridized with potential rule Hp at it" level or

cell, leads to SM AC A with k+1 number of Self Loop Attractors if and only if there exists k number of
complete path (each node satisfying a; = b; relation) from 0" level to (n — 1)*" level of RMT Transition
Tree of the hybridized RV with reference to RMT (say T) at level i; where T C (N_PTgr — N_PTy,).

Proof: A Potential Rule Hp confirms that there lies at least T (Y =1, 2 ---) such RMT's that do
satisfy the relation a; = b; but that used not to satisfy the same in uniform C'A rule R. So the “RMT
Transition Tree” constructed with reference to those Y no of RMT's of R at i*"* level, could not produce
any auxiliary “Attractor RMT Sequence”. This is due to the fact that in those case, no complete path
could be identified from 0*" level to (n— 1)t" level with the relation a; = b; satisfied at each level. But
in Hp, these T no of RMT's maintain the relation a; = b;. Hence for a fresh “RMT Transition Tree”,
with reference to Y number of RMT's of Hp, at i*" cell/level. If there are k number of complete paths,
then each of these paths, (satisfying a; = b; all along) will always yield k no of Self Loops or Point States.
The complete paths identified, itself confirms the identification of Self Loop or Point State attractor as
< boby b+ bn_1)y > =< apai---a; - agp—_1) > enabling synthesis of a SM ACA with k + 1 no
of basins grown around k +1 no of Self Loops or Point States. The extra one attractor is accounted for the
original Self Loop Attractor of Uniform C'A with R. Hence Proved. |

Example : Let us consider R = 8(00001000) and H = 90(01011010). Here N_PTx = T(2), T(6), T(7)
=2,6,7and N_PTy =T(1), T2), T4),T(7)=1,2,4,7. As N_.PTr ¢ N_PTy, rule 90 can be treated as
Hp . Hence N_PTgr - N_PTy, yields 6. Let us further consider that a 5 cell uniform C'A with rule 8 is
hybridized with rule 90 at i = 2 or in 3"¢ cell. Now Figure 3(a) shows the RMT Transition Graph of this
5 cell hybridized CA, with reference to RMT T(6) or simply 6 at level i = 2. The Figure 3(a) shows that
only one complete path with condition a; = b; satisfied all along can be identified as <T(1) T(3) T(6) T(4)
T(0)> = <13640> (shown in bold arrows). This auxiliary Attractor RMT Sequence generates the Self
Loop or Point State as < agajasasay > = <01100> =12. Hence 5 cell hybridized C A < 8, 8,90, 8,8 >
will lead to two basin SM AC'A with two point state attractors (one being 6 and the other being original

Characterization of Single Hybridization in “Non-Interesting” class of CA For SMACA Synthesis 273

© ©

(@) RMT Transition Tree (b) Phase Transition Diagram for <8, 8, 90, 8, 8>
of hybridized CA

<8, 8,90, 8,8 W.R.T

RMT T(6) at 2nd level

Fig. 3: Illustration of Example 3

attractor 0) . The phase transition diagram of C'A with RV < 8, 8,90, 8,8 > (as depicted in Figure 3(b))
confirms the result.

Theorem 4.4 An n cell uniform C' A with rule R, when hybridized with “Potential Rule” Hp at it level
or cell, leads to destruction of original Self Loop or Point State attractor corresponding to R if N_PTy,,
N ATTR_SEQRr # 0 and there lies at least one element in N_PTy, that is present at i'" position of
“Attractor RMT Sequence”.

Proof: The relation N_PTy, N ATTR_SEQgr # 0 implies that the hybridizing rule Hp has some
RMT(s) say T which does not satisfy the relation a; = b;, and at the same time those RMT'(s) T also
exists in #*" position within “Attractor RMT Sequence” corresponding to R. Hence the “Attractor RMT
Sequence” will not exist any more as the primary condition of being Self Loop State or Point State (a; =
b;) gets hampered at i*" position. So the original Self Loop or Point State exists no more as a direct result
of destruction of original “Attractor RMT Sequence”. |

Example : Let us consider a 4 cell uniform C'A with rule 40 (00101000) that has to be hybridized
with rule 77 (01001101) at level i =2. Hence R=40and H=77. N_P1Tg =2,5,6,7 and N_PTy =0,7
are computed and as N_PTgr ¢ N_PTYy is true, H can be treated as Hp. Here ATTR_.SEQg = 0 and
NpTy, N ATTR_SEQgr # 0 =0, so the original Self Loop State or Point State 0 will not be preserved
in Hybridized CA. Now N_PTg - N_PTy, yields 2, 5, 6. Figure 4(a), (b) and (c) show the RM T Tran-
sition Tree with reference to RMT's 2, 5 and 6 respectively at i = 2. Figure 4(b) reveals that no auxiliary
Attractor RMT Sequence generates due to RMT 5, whereas due to RMT 2 and RMT 6, two auxiliary
Attractor RMT Sequence are generate, namely, < 7(0)T(1)T(2)T(4) > and < T(1)T(3)T(6)T(4) >

274 Shiladitya Munshi and Sukanta Das and Biplab K. Sikdar

® @ g@ gbg@
O © @ (o ® @
0) (5 0
© 2 2

(@) RMT Transition Tree (b) RMT Transition Tree (¢) RMT Transition Tree
WRTTQ) W.RTT() W.RTT(6)

Fig. 4: RMT Transition Tree of Hybridized C A <40, 40, 77, 40>, With Reference To RMT T(2), T(5) and T(6) at

oNe B W
a0 yo b @
() e@ 0

(o)

Fig. 5: Phase Transition Diagram for C' A with RV <40, 40, 77, 40>

respectively. These two auxiliary Attractor RMT Sequence yields state 2 (0010) and 6 (0110) as two
attractors. Hence as the original attractor has been destructed and as two new attractors have been gener-
ated, so as a result, the newly formed SM AC A structure of C' A < 40,40, 77,40 > will have two basins
grown around two Self Loop or Point State 2 and 6. This can be verified from Figure 5 which depicts the
phase transition diagram of < 40,40, 77,40 >.

5 Conclusion

The present work on characterization of single hybridization in “non-interesting” uniform C'A, sets a
platform for simple architecture of two class pattern classifier. The insights developed can be utilized
further in order to have simple and robust algorithm for SM AC A synthesis. Characterization of basin
volume or height or even cross basin transition of states may produce useful contribution in that regard.

Characterization of Single Hybridization in “Non-Interesting” class of CA For SMACA Synthesis 275

References
[1] S. Wolfram, 1984. Universality and complexity in cellular automata,Physica D, -10, pp1-35.

[2] W.Li, N. Packard, and C. Langton, September 1990. Transition phenomena in cellular automata rule
space, Physica D, 45(1-3), 77 - 94.

[3] W. Li and Norman Packard , 1990. The Structure of the Elementary Cellular Automata Rule Space,
Complex Systems, Vol-4, pp 281-297.

[4] Pradipta Maji, Chandrama Shaw, Niloy Ganguly, Biplab K. Sikdar, and P. Pal Chaudhuri , December
2003 .Theory and Application of Cellular Automata for Pattern Classification, Fundamenta Informat-
icae, 58(3-4), pp. 321-354.

[5] Niloy Ganguly, Pradipta Maji, Biplab K. Sikdar, and P. Pal Chaudhuri , November 2002. Generalized
Multiple Attractor Cellular Automata (GMACA) Model for Associative Memory,International Journal
of Pattern Recognition and Artificial Intelligence, 16(7), pp. 781-795.

[6] Neumann, J. V , 1966. The Theory of Self-Reproducing Automata, A. W. Burks, Ed. University of
Illinois Press,Urbana and London.

[7] Wolfram, S, 1986. Theory and Application of Cellular Automata, World Scientific, 1986.

[8] Sikdar, B. K., Ganguly, N., Majumder, P., Chaudhuri, P. P , January 2001. Design of Multiple At-
tractor GF(2P) Cellular Automata for Diagnosis of VLSI Circuits, Proceedings of 14th International
Conference on VLSI Design, India, January 2001, pp 454 - 459.

[9] Pal, K, December 1998. Theory and Application of Multiple Attractor Cellular Automata for Fault
Diagnosis,Proceedings of Asian Test Symposium.

[10] Sikdar, B. K., Ganguly, N., Karmakar, A., Chowdhury, S. S., Pal Chaudhuri, P, November 2001.
Multiple Attractor Cellular Automata for Hierarchical Diagnosis of VLSI Circuits, SProceedings of
10th Asian Test Symposium.

276 Shiladitya Munshi and Sukanta Das and Biplab K. Sikdar

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 277-286

A Generalization of Automorphism
Classification of Cellular Automata

Hidenosuke Nishio

Kyoto University
Iwakura Miyake-cho 204-1, Sakyo-ku, 606-0022, Kyoto, Japan
email: yra05762 @nifty.com

In this paper we make a generalization (called g-automorphism) of the automorphism of cellular automata (CA for
short) introduced by H. Nishio in 2009. At defining g-automorphism, we consider both permutations of the position
and the value of the arguments of the local function with relevant permutation of the neighborhood. We prove that
the g-automorphisms constitutes a group under a rule of the semi-direct product. The group acts on the local function
and naturally induces a classification of CA. Every CA in a class has the same global property up to permutation.
For explaining the idea we preferably use rule 110 which has been proved computation universal and calculate all
g-automorphisms of f110. As a byproduct we assert that there are 48 universal functions up to permutation. Finally
we show the g-automorphism classification of 256 local functions of ECA into 11 classes.

Keywords: cellular automaton, automorphism, classification, permutation, neighborhood, semi-direct product

1 Introduction

In the history of the cellular automaton (CA for short), most studies first assume some standard neigh-
borhood (von Neumann, Moore) and then investigate the global behaviors and mathematical properties or
look for a local function that would solve a given problem, say, the self-reproduction, the Game of Life
and so on. One could, however, ask a question: What happens if the neighborhood is changed from the
standard.

Around 1997 H. Nishio showed that infinitely many CA are made by changing the neighborhood with a
fixed local function (4) and Th.Worsh and H.Nishio proposed a computation universal CA which achieves
universality by changing the neighborhood (11).

Another direction of the research which will attack this question is to make clear the conditions for CA
to be the same or equivalent when the neighborhood is changed. Suppose that CA is defined by a 4 tuple
(Z4,Q, f,v), where Z< is the d-dimensional Euclidean cellular space, @ is the set of cell states, f is the
local function and v is the neighborhood, which is a mapping from {1, ...,n} to Z%. The i-th neighbor
v(i), 1 < i < nis connected to the i-th argument of f. When the space Z% and the state set Q are
understood, the global behavior of CA is determined by its local structure (f,v). Two local structures are

278 Hidenosuke Nishio

called equivalent if and only if they induce the same global functions. As for equivalence we particularly
proved a basic theorem: Two CA are equivalent if and only if their local structures are permutation of
each other (7). See Fig. 1.

v — [z
-1 0 1 0 -1 1
¢ o(-1) c(0) (1) c(0) (=1) c(1)
E3Y Ty
T2 o T2 T3
™

f - i

F(c) <) ¢(0)

(fov) = (f"v7)

Fig. 1: Permutation equivalence of 1-dimensional 3-neighbor CA

Based on this theory of the permutation equivalence of local structures, we defined the automorphism
for local structures and investigated the automorphism classification of the local functions (5; 6) . First
we consider the equivalence and then we defined the automorphism as the equivalence plus a permu-
tation ¢ of the states (value of arguments). To explain the point, take for example a computation uni-
versal ECA (f110,(—1,0,1)), where fi110 = zi29x3 + X223 + 2 + x3 in the polynomial expres-
sion, see Section 2.3. Then by a permutation of the arguments mo = (12) (transpose x; with x3), we
obtain f{7y = 12023 + 2123 + 21 + 23 = f122. The function f192 is probably not universal on
(—1,0,1), (0, —1,1) and others. But, by inversely permuting the local structure (f122,(0,—1,1)) with
7y H(=), we have (£, (0, —1,1)"2) = (f110,(—1,0,1)), that is (f122, (0, —1, 1)) is equivalent with
(f110, (—1,0,1)). In this sense, rule 122 is called universal up to permutation.

Next we defined the automorphism: (f’,v’) is called automorphic with (f,v) if and only if there
is a pair of permutations v and ¢ such that (f’,v') = (o~ 1f™p,v™). For example, if we permute
(f110, (=1,0,1)) with 72 and ¢ = (1,2) (transposition of states 0 and 1) !, we have (fi61, (0, —1,1)).
Therefore f161 is also universal up to permutation. In what follows we often omit the suffix up to per-
mutation.

Now we generalize the automorphism of CA in such a way that every argument of f is permuted
independently. The local function is expressed by a polynomial in n variables f(x,) = f(z1,...,%n)
over finite field GF(q) and the set of such polynomials is denoted P, 4, 1 < n,2 < g. We are going
to define the g-automorphism for P,, ,. For two CA A and A’, A’ = (f',v/) is called g-automorphic
with A = (f,v) denoted A =, A’, if and only if there is a 3-tuple of permutations (7, 1, ¢(n)) such that
(f,v) = (f", v fp(n)), where p(n) = (p1,...,0n) and @;, 1 < i < n permutes the value of the i-th

I p=1fouis called conjugation, see Subsection 2.3

A Generalization of Automorphism Classification of Cellular Automata 279

argument, see Fig.2.

(fiv) =g (0 f7e(3),07)

Fig. 2: g-automorphism of 1-dimensional 3-neighbor CA

The set of automorphisms G, ; = {(7,%,p(n))|m € Sp,b € Sy, ¢(n) € Si'} is proved a group
under the group operation of semi-direct product. The g-automorphism group acts on P,, , and induces a
classification of CA such that every CA in a class has the same global property up to permutation. For
explaining the idea we preferably use rule 110 a computation universal ECA. To be specific we show that
there are 48 functions which are universal up to permutation. This is compared with 6 ECA which are
automorphic with f11¢ (5; 6).

Finally we show the g-automorphism classification of ELFs in the form of a table, where every g-
automorphism class (GN class for short) is expressed by a union of several NW classes obtained by H.
Nishio (5). It is seen that 256 ELF are classified into 11 GN classes, which is compared with 46 NW
classes.

This work has been inspired by the past mathematical works about the logical circuits made by C. Shan-
non (9),D. Slepian (10) and M. Harrison (2) during 1950s the dawn of the computer science. Specifically
they formulated and generally solved the problem of counting the number of the equivalent or symmetry
classes of Boolean functions by use of the Pdlya’s counting theory. However, their motivation for such an
investigation was fairly different from ours. They aimed at elucidating the physical/structural similarity
of logical circuits from the point of view of the technological design . They argued that the cost of the
circuit is invariant when permuting and/or complementing one or more variables. In our terminology the
Boolean functions belonging to the same class are g-automorphic. Mathematically speaking, their theory
is exclusively concerned with the Boolean functions (P, 2) and even afterward, as far as I know, has not
been generalized to arbitrary functions (P,).

280 Hidenosuke Nishio
2 Preliminaries

The definitions and previous results are briefly restated, of which details will be found in (7; 5; 6).

2.1 CA and local structures

A cellular automaton is defined by a 4-tuple (Z¢, Q, f,v), where Z¢ is a d-dimensional Euclidean space,
@ is a finite set of cell states, f : Q™ — @ is a local function and v is a neighborhood.

e [neighborhood] A neighborhood is a mapping v : N,, — Z¢, where N,, = {1,...,n} andn € N.
This can equivalently be seen as a list v with n components (v1, . .., v,), where v; = v(i),1 <i <
n, is called the i-th neighbor. The i-th argument of f is connected to the i-th neighbor.

e [local structure] A pair (f,v) is called a local structure of CA. We call n the arity of the local
structure. When the space Z? and the state set Q are understood, CA is often identified with its
local structure.

e [global function] A local structure uniquely induces a global function F : Q%' — QZ', which is
defined by

F(e)(x) = fle(+ 1), oo ez + vn)),)]
for any global configuration c € QZd , where c() is the state of cell z € Z% in c.

Remark 1 In the previous paper (7) the definition of local structures was more general, but in this paper
we assume, without loss of generality, a restricted but most usual case of reduced local structures, see
the following definition and Lemma 1.

2.2 Previous results on the equivalence of local structures

Here we extract from the previous papers some basic results on the equivalence of local structures, which
entail the present work on the generalized automorphism.

Definition 1 [reduced local structure] A local structure is called reduced, if and only if
e v is injective, i.e. v; # v; for i # j in the list of neighborhood v and
e f depends on all arguments.

Lemma 1 For each local structure (f,v) there is an equivalent local structure (f',v") which is reduced.

Definition 2 [equivalence] Two local structures (f,v) and (f',v') are called equivalent, if and only if
they induce the same global function. In that case we write (f,v) =~ (f',v/).

Definition 3 [permutation of local structure] For © € S,, we define the permutation of the local function
and neighborhood by

fﬂ($17...,1’n) :f(xﬂ(1)7"'7w7f(n)) (2)

and
V" = (vf, ..., v}), where u”(i) =y, 1 <i<n. 3)

s Vn phs

Then we have the basic properties of the permutation of local structures.

A Generalization of Automorphism Classification of Cellular Automata 281

Lemma 2 (f,v) and (f™,v™) are equivalent for any permutation .

Theorem 1 [permutation-equivalence of local structures]
If (f,v) and (f',v") are two reduced local structures which are equivalent, then there is a permutation 7
such that (f™,v™) = (f',v).

2.3 Some technical notes

(1) The local function is expressed by a polynomial in n variables f(x,) = f(x1, ..., Z,,) over finite field
GF(q) and the set of such polynomials will be denoted P,, 4, n > 1,q > 2. P, , is a polynomial ring
over GF(q) mod (x — x1)--- (x4 — x,,). Obviously |P, ,| = ¢ . For small n and ¢, f is written as
follows.

o If fePs3,,

k

W
f(x1, 20, 23) = ug + urx1 + usxs + - - - + uxyTiay + -

-1 _g—1_gq-2 -1 _g—1_g-1
9™ ™ +uq3_1:cq azg xd s

where u; € GF(q), 0 <i < e—-1. @

+ Ugs 2T

e The local function of an ECA is called the elementary local function denoted ELF, which is gener-
ally expressed by a polynomial f(x1,xs,x3) over GF(2) as shown below.

f(x1, 2, x3) = uog + w11 + upws + usxs
+ UsT1T2 + UsT1T3 + UsT2T3 + UrT1T2T3,
where u; € GF(2) ={0,1},0<:<7. (5)

Note that for f € P32, the polynomial expression is equivalently transformed to the Boolean
expression by a + b + ab (polynomial) = a V b (Boolean), ab (polynomial) = a A b (Boolean)
and a+1 (polynomial) = @ (Boolean). Conjugation f’ = ;' fo1 = f(x1+1,22+1,23+1)+1

e In the sequel, every ELF is numbered by a so called Wolfram number such as f119 = x1z223 +
Tox3 + x2 + x3. The Java program catest106d made by C.Lode (3) contains a useful tool for
conversion between the Boolean, the polynomial and the Wolfram number.

(2) Permutations of 3 objects are usually expressed by a symmetric group S5 = {m;,0 < i < 5} as is
shown below.

1 2 3 1 2 3 1 2 3
71-0_1_(1 2 3)7771_(23)_<1 3 2>,7T2—(12)—(2 1 3)7

7732(123)=G ; ‘;’) W4=(132)=<§ ? 2) ”5:(13):(; ; :1)))

Note that S5 is not commutative: mom = (12)(23) = (123) = 73 but myme = (23)(12) = (132) = my.
The neighborhood (—1,0,1) of ECA is called the elementary neighborhood (ENB for short). Then
ENB™ = (-1,1,0), ENB™ = (0,—1,1) and so on.

282 Hidenosuke Nishio

3 (n,q)-permutation of local functions

We define two kinds of permutations called n-permutation and gq-permutation of the local function and
then unify them as (n,q)-permutation of f.

1. Definition 4 [n-permutation of f] The permutation of f defined in Definition 3 is essentially re-
lated to a permutation of the neighborhood and called hereafter the n-permutation of f.

fﬂ(gjlv ey xn) = f(ITr(l)7 cey xﬂ'(n))
Example 1 The n-permutations of fi19 = x1x23 + Tox3 + T2 + T3 are

T ™
110 = fi1o = 21T2%3 + 223 + T2 + T3.

s .
110 = fl10 = T1%2T3 + T123 + o1 + 23 = f122.

T T _
flio = it = 12223 + 122 + 21 + T2 = fi24.

2. Definition 5 [g-permutation of f] For an argument x of f which takes a value from @Q, define a
permutation ¢ € Sy as a bijection x¥ : Q — Q. Then consider a list of permutations ¢(n) =
(¢1, s pn) where p; € Syy 1 <i <mnorg(n) € Sy =S, x - xS, (direct product of n copies
of Sy) . Now we define the g-permutation of f by

fon)(xn) = f@f", . 2fm). (6)

Example 2 For the binary case) = {0, 1} the permutations p(n) is expressed by a binary word
o(ay « - - ap) which operates on x,, such that xf’ =ux;ifa; = 0and x;“ =x;+1ifa; = 1 (Boolean
negation). For example f1100(100) = (21 +1)xox3+ 2223+ 20+23 = 12223+ T2+ T35 = faszo,
f1109(110) = f185 and so on. In general for a prime number of states Q = {0,1,...,p — 1} =

GF(p), the permutation of Q is expressed by an addition modulo p such that x + a,a € Q.

3. Definition 6 [(n, q)-permutation of f] Combining n-permutation and q-permutation with an ad-
ditional permutation 1 : Q — Q of the function value, we finally define a unified permutation of f
called (n,q)-permutation of f which is expressed by a 3-tuple of permutations (7,1, p(n)).

(7, 6, () f(3) = S Tp(n) (%) = D F (@F1), s 7)) @
Example 3

(m2,(1,2),9(100)) frio = fuio(23,29,28) +1
(2 + Dz + 123 + 01 + 23 + 1
= mTox3 + 21+ w3+ 1

= fsr

All (n, q)-permutations of f110 are given in Example 5.

A Generalization of Automorphism Classification of Cellular Automata 283

4 Generalized automorphism of CA

In this section, using the (n,q)-permutation of f, we define a generalized automorphism called g-
automorphism of CA and prove that the set of the g-automorphisms constitutes a group under a rule
of the semi-direct product.

Definition 7 For two CA A = (f,v) and A’ = (f',v'), A is called g-automorphic with A’ denoted
A=, A, ifand only if there is an (n, q)-permutation (7,9, p(n)) such that the following equation holds.

(') = (W fTp(n),v™). ®)
Remarks 1 If for any ¢ € Sy, ;s = ¢, 1 < i < n, then by taking 1) = 01, g-automorphism becomes
the original automorphism (5; 6).

We show here that the set of the 3-tuples of permutations

Gn,q = {(7(7’(/}790(”)) ‘ IS Snaw € S(I?@(n) € S(;L}
is a group. The order of Gy, , is nlg" ™.
Theorem 2 Let g = (7,9, ¢(n)) € Gy qand g = (7',9', ¢’ (n)) € Gy . Then G,, 4 is a group under

the rule of semi-direct product;

g'g= (7', ¢ (n)(m, 9, 0(n) = (n'm, 4", ¢ (n)"p(n)),)

o(n) = (ga;(l)gol, ey <,0;(n)g0n) is the componentwise group operation of the direct product

s

where ¢'(n)
Sy

Proof: The proof is done in the same way as the proof given by M. Harrison for Boolean functions, see
page 822 of (2). He utilizes Theorem 6.5.1, page 88, Section 6.5 of the text book by M. Hall (1), where
the semi-direct product K x, H of K by H is defined by the rule

[h1, k1] - [ha, ka] = [hahe, kM2 Ey), (10)

where hi,hy € H, ki, ko € K and the automorphism ¢? of K is defined by forany h € H, k =
kM forall k € K. The product rule (10) is shown well defined: (1) associative, (2) the identity is [1, 1]
and (3) a left inverse [h, k] ~* of [h, k] is [h, (k=)].

At applying this standard rule of the semi-direct product to the 3-tuples in Equation (9), first consider
the semi-direct product S, X, S¢" and then combine ¢ € S, as a direct product. a

The following example will help understanding the semi-direct product of G, 4.
Example 4 Suppose that two group elements g1 = (71, 10, ©(100)) and g2 = (72, 10, ©(001)) in G3 o
act’ on fi19 € P32 in this order where 1o = 1. That is
g10 filo = xi@2x3+ T2 + T3 = fa30

g20(g10 firo) = g20 fazo = x1T23 + x122 + 1 + 23 + 1 = fago.

2 Note that this symbol ¢ is independent from our permutation ¢.
3 The symbol of group action o is usually omitted like group operation.

284 Hidenosuke Nishio

On the other hand, by applying the rule of the semi-direct product (9), we see

T2, %0, (001)) (71, Yo, (100))
a1, Yo, ¢(001)™ (100))
m271, Yo, (010)p(100))

73, Yo, p(110))

= g3

9291

(
(
(
(

But

93 0 fi10 = T1%223 + 172 + 21 + 3 + 1 = fagg.

Lemma 3 Any g-automorphic CA are equivalent (have the same global function) up to permutation.
Proof: It is obvious from Equation (8). Permute the local function f with the inverses of ¢(n) and ¢. O

Example 5 [g-automorphism class of fi110] As a typical example of g-automorphism classification, we
consider f119 again. Table 1 below lists up the (n, q)-permutations of f119 only for the case of 1y = 1.
The permutation Yn f™ ¢ where Y1 = (12) is obtained by adding 1 to the polynomial of each entry.

For example for o f™p(010) = fi67 = 12273 + x123 + Taxs + 1 + 1, we have

wlf‘[rQ(p(OlO) = T1ToT3 + T1x3 + T2x3 + T1 = fss.

Tab. 1: g-automorphism class of f110

| Yoo\t [mo| m[m| w3 mi|]
Do fp(000) [110 | 110 | 122 | 122 | 124 | 124
Vo fo(100) || 230 [230 | 218 | 218 | 188 | 188
Vo fo(010) || 155 | 157 | 167 | 181 | 199 | 211
Vo fo(001) || 157 | 155 | 181 | 167 | 211 | 199
Do fp(110) || 185 | 217 | 173 | 229 | 203 | 227
Do fp(101) |[217 [185 | 229 | 173 | 203 | 203
Vo fe(011) [103 [103 | 91 | 91| 103 | 61
Gofp(111) [118 [118 [94| 94| 62| 62

For f # f' € P, itis seen that o)1 f # f and ¢1f # 11 f’. Since Table 1 contains 24 different
functions among the 3123 = 48 entries, it is seen that the number of the functions that are g-automorphic
with f119 is 24 x 2 = 48. Then by Lemma 3, we see

Lemma 4 There are 48 local functions which are computation universal up to permutation.

This is compared with 6 functions which are automorphic with f11¢ (5; 6).

A Generalization of Automorphism Classification of Cellular Automata 285

5 Generalized automorphism classification of CA

g-automorphism 2, is an equivalence relation in P, 4, and naturally induces a generalized classification
of CA called g-automorphism classification. Every local function in a class has the same global property
up to permutation by Lemma 3.

5.1 g-automorphism classification of ELF

The classification of 256 ELFs into 11 g-automorphism classes (denoted GN class) is shown in Table 2,
where every g-automophism classes a union of NW classes. The NW classification table will be found in
H. Nishio (2009) (5). 6 functions in GN6** are reversible and 32 functions in GN9*, GN10* and GN11*
are surjective but not injective. The rests are not surjective nor injective. GN8 consists of 48 universal
functions.

Tab. 2: g-automorphism classification of 2-state 3-neighbor CA

| GN class [size [NW classes

GN1 2| NW1

GN2 44 | NW2UNW6UNWI0U NW22U NW38U NW43

GN3 22| NW3UNWTUNWIIUNW29U NW 34

GN4 24 | NW4UNW9U NW37

GN5 24 | NWHUNWS8UNW20U NW35

GNG x 6 | NW12 %« U NW44 « x(reversible)

GNT 54 | NWIBUNWI4UNWISUNWIS8UNW21 U NW23U NW26
UNW33UNW36UNW39U NW45U NW46

GN8 48 | NW16UNWI1TUNW24U NW28U NW32U NW41 (universal)

GN9x 24 | NW19x UNW25 « UNW31 « UNW42x

GN10x 6 | NW2T7x

GN11x 2 | NW30 « UNW40x

total | 256 | 46 NW classes

5.2 Counting problem

From the group theory point of view, g-automorphism classification is considered as a group action of
Gp,q on P, 4 and, for instance, the number of g-automorphism classes will be computed by use of the
Pélya’s counting theory (8) as D. Slepian and M. Harrison did. Computing the cycle index of the permuta-
tion group G/, 4 which acts on P,, ; seems a new problem. It will certainly reflect the symmetric structure
of the polynomials over finite field. We have, however, not obtained it yet.

6 Concluding remarks and acknowledgments

We have generalized the automorphism (classification) of CA by considering two kinds of permutations
of the local structures; n-permutation of the neighborhood and g-permutation of the cell states. For ex-
plaining the idea, we inserted several examples using rule f71¢ and gave the table of g-automorphisms

286 Hidenosuke Nishio

of f110. As a byproduct we see that 48 local rules are universal up to permutation. We also gave the
g-automorphism classification of 256 ELF into 11 g-automorphism classes. The counting problem of the
number of the g-automorphism classes has been left for future research.

The author thanks Thomas Worsch from the University of Karlsruhe for establishing Theorem 1 and
his student Clemens Lode for his Java program catest106d. He also thanks Mitsuhiko Fujio from the
Kyushu University of Technology and Fumihiro Ushitaki from the Kyoto Sangyo University for having
interest in this work from the point of view of the action of permutation groups.

References
[1] Hall, M.: The Theory of Groups, The Macmillan Company, 1959.

[2] Harrison, M. A.: The Number of Transitivity sets of Boolean Functions, J. Soc. Indust. Appl. Math.,
11, 1963, 806-828.

[3] Lode, C.: http://www.clawsoftware.com/projects/catest/.

[4] Nishio, H.: Changing the Neighborhood of Cellular Automata, Proceedings of MCU2007, eds. J.
Durand-Lose and M. Margenstern, LNCS 4664, 2007.

[5] Nishio, H.: AUTOMORPHISM CLASSIFICATION OF CELLULAR AUTOMATA, Proceedings of
Workshop on Non-Classical Models for Automata and Applications(NCMA), books @ocg.at, 2009.

[6] Nishio, H.: Automorphism Classification of Cellular Automata, 2010, Submitted to Fundamenta
Informaticae, Special Issue on Non-Classical Models for Automata and Applications(NCMA).

[7] Nishio, H., Worsch, T.: Changing the neighborhood of cellular automata : local structure, equiva-
lence and isomorphism., J. Cellular Automata, 5(3), 2010, 227-240.

[8] Pdlya, G., Read, R. C.: Combinatorial Enumeration of Groups, Graphs and Chemical Compounds,
Springer-Verlag, 1987.

[9] Shannon, C. E.: The Synthesis of Two-Terminal Switching Circuits, Bell Systems Tech. J., 28, 1949,
59-98.

[10] Slepian, D.: On the number of symmetry types of Boolean functions of n variables, Canadian J.
Math., 5, 1953, 185-193.

[11] Worsch, T., Nishio, H.: Achieving universality of CA by changing the neighborhood, J. Cellular
Automata, 4(3), 2009, 237-246.

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 287-298

Dynamical Properties of Rule 56 Elementary
Cellular Automaton of Wolfram Class ||

Fumio Ohi

Nagoya Institute of Technology, Gokiso-cho, Showa-kupiag66-8555, Japan, E-mail: ohi.fumio@nitech.ac.jp

Rule 56 elementary cellular automaton belongs to Wolfraae<ll and shows us simple right shift space-time patterns
for randomly given initial configurations by computer simtibn. But precisely examining the dynamics of rule 56,
we have unexpected patterns. In this paper we examine ttedgal properties of the rule in detail and shows that
the rule has three chaos dynamical sub-systems, two of vehnlsubshifts of finite type and generate right or left
shift patterns, but space-time patterns generated by otteeare neither right nor left shift patterns. All of theseeth
dynamical systems are Devaney chaos.

Keywords: rule 56, elementary cellular automata, Devaney chaos

1 Introduction

Wolfram'’s classification of cellular automata based on aemsive computer simulation is well known
and the space-time patterns generated by members of theltlae simple and it is said that there
are different possible final states, but they consist of gageset of simple configurations that either
remain the same forever or repeat every few time steps. Séeawid6]. Rule 56 elementary cellular
automaton(ECA) is a member of the class Il, and it is obsebyedomputer simulation that the rule
generates right sift patterns for randomly given initiahfigurations.

In this paper we examine the dynamical properties of ruleietail and show that the global transition
function of the rule has three chaos dynamical sub-systemesof which are subshifts of finite type and
generate right or left shift patterns, but space-time pastgenerated by other one are neither right nor
left shift patterns. In the process of the examination, ghewn that there is a configuration of which
time development varies every time step and does not seti@.dThese three dynamical sub-systems
are Devaney chaos.

An ECA is defined to be a tuplg0, 1}, g), whereg is a mapping fron{0, 1} to {0, 1} and is called a
local transition function. An ECA is determined byand is simply called an ECA There exis® = 256
ECA’s and each of them has the rule number defined by, . g(a, b, c)2a22+”2+c. We denote the local
transition function having rule numberasg,..

An ECA g defines a mapping from A = {0, 1}* to A, which is called the global transition function
of the ECA, as

x=(-,r 1,20,71, --) €A (g(x))i = g(xi 1,25, 2i11), 1€

288 Fumio Ohi

We usually use the bold face of the letter denoting the gltfaaisition function for the corresponding
local transition function. An element of is called a configuration.

The left and right shift transformations are writtensgs: A — A andog : A — A, respectively.
Defining ametriel on A asd(z,y) = > o~ 'I;ﬁﬁ' forz, y € A, we have a topological dynamical
system(A, g), which defines an orbit of an arbitrarily given initial configtionz € A asg’(z) =
z, g'*i(z) = g(g’(x)), t > 0. A topological dynamical systerfS, g) is a sub-system ofA, g) if
S C Aandg(S) C S. The metric orS is the restriction of the metrié. A topological dynamical system
is called Devaney chaos when it has a dense orbit and theaflaiperiodic configurations is dense in
S. See G.Cattaneo, et al. [1].

The local transition function of rule 56 is given along witiat of rule 40 of Wolfram class | in the
following table. In F. Ohi [3] it is shown thatSy(1),1(1,2), 940) iS @ right-shift dynamical system and
limy .o g*(x) = 0 for z € A\Sy(1),1(1,2)- (The definitions of terminologies are given in Section 1.1.)
From the table we may think that these two rules are closetendytnamical structure of rule 56 is almost
same as rule 40.

In this paper we show théfo(1),1(1,2); 9s56) = (So1),1(1,2)> 940) = (So1),1(1,2)> o) and(Si(1), gs6) =
(S1(1), or) are subshifts of finite type(SFT's). These two SFT's are Deyahaos and topologically mix-
ing, since the transition matrix of each SFT is irreducibild aperiodic. Symbolic dynamical approach to
rule 56 is given in the section 2.1.

| (a,b,c) [(1,1,1)](1,1,0)[(1,0,1) [(1,0,0) [(0,1,1)] (0,1,0) [(0,0,1)] (0,0,0) |
gao(a, b, c) 0 0 1 0 1 0 0 0
gs6(a, b, c) 0 0 1 1 1 0 0 0

Furthermore Rule 56 has another chaotic dynamical sulersyst, g5), where) is a set of configu-
rations of special type defined in section 1.1 and a subsgt@h)\ (80(1)71(1,2) u 81(1)) . Sincegsg is
neither right nor left shift o)), we have some difficulties for examination of the dynamicalperties
from the symbolic point of view as SFT’s or sofic systems. Owamgination is straightforward.

The space-time pattern of a configuration)oshows us a kind of confliction between left and right
groups of which front line moves like a wave and neither retadhe same configuration forever nor
repeats some specific configurations. This movement haseatfound out by computer simulation with
randomly given initial configurations and is not be given bier40.

The correspondendg?’) of rule 56, which is only one different point frof)°) of rule 40, makes the
dynamical properties of rule 56 richer than rule 40. Thigespondence emerges intrinsic interactions
between) and01, betweer) and011 and betweerd1 and011, which make the wave-like motions for
configurations ofy. We explain the interactions in Section2.2. In Section 3,dey chaos property of
(Y, gs56) is proved by practically constructing transitive and peigaconfigurations and in the process of
the construction the interactions are consistently used.

1.1 Notations

For our straightforward examination, we need the followiogations.
(1) Forey; € {0,1}™, B, € {0,1}™i, n; > 1, m; > 1, i € Z, we define

—1 —1 —1 —1
(ahl@z)j_:oioc :(Qe 7Oén_17ﬁ1 y 7ﬁm_17

0 0 0 0 1 1 1 1
Qyy e 7ang’ﬁl7"' aﬁm()?al?"' 7an17ﬁl7"' 7Bm17”')a

Dynamical Properties of Rule 56 Elementary Cellular Auttoneof Wolfram Class I 289

Whereai = (CM% e 7a£u)7 IBZ = (ﬁiv e 76%,)7 1 € Z.
For a pair(a, 3), a € {0,1}", B € {0,1}™

(a75)k = (an@7"’ 7a7/6)7 ke NU{O}v
-
k palrs

which means empty, wheh= 0.
(2) 0 = (0,---,0), 1, = (1,---,1), k e NU{0}.
N—— ——

k k
(3) We intensively use the following terminology.

So(mu, mp)il(n e ng) = 1005, Lk)52 oo | 45 = my OF---0rmy, kj =nyg OF---0rng},
Sl(n1,<»-.,nq) = {(Oij,]-k‘j);?i—oo ‘ ij eN, kj =nyor-- -Ornq} .

(4 A={0,1}* and X = Si01,2)\ (So(1),1(1,2) USi(1)). The subsey C X is defined to be the
set of configurations of the following type,

(01,04, - -+ (01)£,04,011(01),, 011(01), - - - 011(01)y, =+

wheren; > 0, I; > 1, k; > 1. Itis easy to see that

0 0
SO(I),1(1,2)081(1) :{(7051707170517071707"’)’(”' 7011707170313071707’”)}

2 Basic Properties of Rule 56
2.1 Dynamics of g5; on Sy1),1(1,2) and Si(1) - Symbolic dynamical approach -

We follow B.P.Kitchens [2] for the terminologies of symbméynamics.

Theorem 2.1. g55(A) C Si(0,1,2)s 956 (S1(1.2)) € S11.2), 956({0}, {1}) = {0}
Proof: Noticing

1,1,1 1,1,0 0,1,1 0,1,0 1,0,1
0o)’ 0o)’ 1 ’ 0o)’ 1
in the table of the local transition function of rule 56, wevbdhe one step transition

| < three or mord’s — |
o 11 -~ 1 1 1 0
5110 - 00 0 =

For x, to bel, the above transition should be

| « three or mord’s — |
1 o011 - 11 1 0
2 1. 1.0 -~ 0 0 0 =«

290 Fumio Ohi

and in this case:; is necessarily) from the local transition function of rule 56. Then we haveotw
possibilities

| «— three or mord’s — \ \ «— three or mord’s — |
011 - 11 1 0 - - %« 011 -+ 11 1 0
o100 -+~ 00 0 % --- -« 00110 --- 0 0 0 =«

which means that &-block of three or more length is reduced to the one of one orérgth in one time
step, wherex = 0 or 1 according tqys6(100) = 0 or g56(101) = 1, respectively.

For al-block of three or more length to emerge in time-developmenneed(a, b, ¢, d, ¢) such that
Gs6(a,b,c,d,e) =111, which is equivalent tgsg (a, b, ¢) = 1, gs6(b, ¢, d) =1, gse(c,d,e) = 1, but we
cannot construct sudfa, b, ¢, d, ¢) from the table of the local transition function of rule 56.

From Theorem 2.1g;4(x) € S1(1,2) for everyz € A, then the dynamical syste(®; 1 2), gs6) IS
essentially(A, gsg).

Itis easily shown from the local transition function of r@l@ that(Sy(1),1(1,2), 956) = (So(1),1(1,2), oL)-
So(1),1(1,2) is determined by a set of word® = {(010), (011), (101), (110)}, i.e.,

So1),1(1,2) = {x € A| Vi € Z, (zi, Tiy1, Tig2) € W}
Letting a transition matrixd be

(010) (011) (101) (110)

(010) / 0 0 1 0

(SN 0 0 1
~ o | 1 1 0 0o |

(110) \ 0 0 1 0

the left-subshift of finite typ€X. 4, o1,) determined by the transition matrix is conjugateé$g1),1(1,2), 9s6)-
Noticing that the transition matrix is irreducible and aperiodic, we have the following theorem

Theorem. 2.2. (80(1),1(1,2)7956) = (80(1)’1(1,2)7 O’L> and(81(1)7g56) = (81(1>, O’R) hold, and both
of them are Devaney chaos and topologically mixing.

The proposition aboutS; (1), g5¢) iS also easy by noticing thaf, ;) is determined a set of words
VY = {(00), (01), (10)} and the corresponding transition matrix is given by

(00) (01) (10)
o)/ 1 1 0
onl o o 1
o\ 1 1 o0

which is also irreducible and aperiodic.

The dynamical syster), gs¢), which is examined in the sequel of this paper, is neithentrigr
left subshift of(A, gs6), and then not a sofic system even when the attracgs andSy1),1(1,2) are
included. We practically construct periodic and transittenfigurations o’ to prove the chaotic property
of the dynamical system.

)

Dynamical Properties of Rule 56 Elementary Cellular Auttoneof Wolfram Class I 291

2.2 Basic dynamical properties of configurations of X’

In the sequel we writ81 to denote a block1 not a part of the block11. NB-0 (non-belongin@) denotes
a0 which does not a member 61 and011.

Figures 1 and 2 show us key dynamical properties of rule 5&ckBand white circle in the figures mean
1 and O state, respectively.

From Fig. 1, we see tha,(011),, changes td,,_;01(011),,_, and then td,,_;(011),,_1. This
two-step transition tells us that NBehange$11 to 01 and is erased, and NBerase91. Fig. 2 shows
us that(01),,(011),,, changes t401),,_1(011),,, in one time step, which shows us tfdtis erased by the
right 011. These three interactions between RBnd011, NB-0 and01, 01 and011 are crucial for the
time development of configurations dt

By these interactions, we have an example of time developshewn in Fig.3.

0y, (011),,

" J[e)eXeXe)e e XX X X 00 @0 zy
@00 00 e YeX X Yo O e 0|0 e|o
@000 O0 eI eX X Yo OeelceCe

On—l (Oll)m—l

Fig. 1: Interactions between NB-and011, and between NBrand01. zy = 10 or 01 or 00.

(01),, (011),

ocoCeCceoe o) llo) X JoX X XC) X X Ok
Ocede ceeeceeo O eeloe]

(01)n—2 (011)m

Fig. 2: Interaction betweefil and011. zy = 10 or 01 or 00.

From Fig.3 we know that a blodkl 1 basically moves leftward and change®1g when coming upon
a NB-0, and this NB®6 is erased. A block1 is erased by a left-hand NBand this NB# is not erased.

Utilizing the interactive properties, we can easily constra periodic configuration Q. We examine
the time-development of the following configuration.

the left group — — the right group
| the second blocK the first block the first block | the second block |
a= - (0151, 06 (01)ge-t, Ok (011(01),,,)5 =011 (011(01),,,)F= 011

292 Fumio Ohi

000 OOoO0lceelOe] [Ce|lJceej0® [Celjcee|Ce [Oe]CeeO

Tio o), O o1
O

@) Oo0O0lce|oe] [Ce|lCeelOe] [CelCcee|lCe [OCejCeeCe

Or—1 (01)n41 (01)m, (01);

1 m+1 steps . » .

n + 1 sites | n+ 1 sites

00 OO0Cjceelce] [0elcee]Cce] [Celceel0e

l 1 Step Okfl (Ol)m (Ol)l

[O Oo0Cjcelce] [0celoceejce]l [Ce|lceel0e

Or—2 (01) 111 (01),

| m+1 steps

m + 1 sites m + 1 sites

O coojceeoe] [CelceelCe

Ox—2 (01);

Fig. 3: Typical dynamical properties of the blockd1, 01 and NB#, and their interactions. A bloc11 moves
leftward byn + 1 sites, when there exist+ 1 NB-0's on the left hand, and a NB-moves rightward byn + 1 sites,
when there exisin + 1 01's on the right hand. And a blockl1 moves leftward byn + 1 sites, when there exist
m + 1 01's on the left hand.

Referring to Fig.4, we can observ@; of the first block of the left group erases the first block of the
right group and the front line moves to the rightElf;ll n; + k sites ian’;l1 n; + 2k time steps. Then

the seconchll(Ol)m)f;l1 011 moves to the left bEf;ll n; + k sites, erasing the bloqlﬂl)zkfl S
i=1 K

and we have the configurati@anhaving the perio@ Zf;f n; + 3k.
Setting the values of the parametétsn;(i > 1) of the configuratiora appropriately, we have the
following theorem about the periodic properties of rule 56.

Theorem.2.3. g5, has a periodp configuration inSy(1,2)\ (So(1),1(1,2) U S1(1)) , where
p=23,6,8,910,11,12,13, -

Proof: Forany eveninteger> 8,p =2m =3-2+2-(m—3), m > 4 holds. Setting: = 2, n; =
m — 3, we have a configuratiom with periodp. For any odd integes > 9,p=3-3+ (p—9),p —9is
an even number and can be writterRag, ¢ > 0. Thenp is easily expressed as= 2(n; + ng) + 3k by

Dynamical Properties of Rule 56 Elementary Cellular Auttoneof Wolfram Class I 293

setting the parameters = ¢, n, = 0 andk = 3.

the left group the right group

the second block the first block the first block the second block

(0151, O | (O1) st O (011(01),,,)5 =011 | (011(01),,)F= 011

i=

The front line moves rightward bEf;l n; + k sites inzjlf;1 n; + 2k steps.

(0151 44Ok | (O n, 4y | (011(01),,)i2 011

1= i=

The front line moves leftward by n; + k sites in>>" " n, + k steps.

(01)5%-1 4O (011(01),,,)5 =011

i=

‘the second block| the second block

the left group the right group

Fig. 4: General form of periodic configuration and its time develepin

The following examples are periodic configurations haviegqd 2, 5 and 7, respectively.

---01010101 - - -,
---010110101101011 - - -,
---010101101010110101011 - - -,

which are members @0(1)71(1‘2) and not Ofsl(l,g)\ (80(1)’1(1’2) U 81(1)) .
It has been shown that the dynamical sysfeing ;) has every periodic configuration except for period
4. It remains to be an open problem to make sure whether thests @ period-4 configuration.

3 Dynamicson X
The one-stage time development of a configuratio of
<+ (01)1, 04, - -+ (01)4,04,011(01),,, 011(01), - - - 011(01)y, -+

wheren; > 0, I; > 1, k; > 1, is shown in Fig.5 is basic for the examination of the chaptaperty of
the rule 56 on).

294 Fumio Ohi

the front line between the left and the right groups
!

(01)x, 044 011(01),,

the block011 erases the rightmost NBof 0,
01(01),,, | - and changes t01

(Ol)kloll—l

0;,—1, the block of NB9, erase®1(01),,, and

ni + 1 sites the front line moves rightward by; + 1 sites

(01)k1011,1 011(01)77,2

(01)k, 05, 2] 01(01),,,

ng + 1 sites

(01), 01, 2| 011(01),,,

ni+l4+ng+1+4-4n, 1 +1+1=3"""n, 41, sites

(01)g, | (01)y,, | O11(01)

Ny +1

Zl? 1 i + 11 — ky sites k1 + ny, sites

1=

(01)£, 04, 011(01)”11+1

Fig. 5: One-stage time development of a configuration ¥f The block (01),0;, is erased by
011(01)n, -+-011(01), , and the front line moves rightward bEélzl n; + 11 — k1 sites. When this quantity
is negative, the front line consequently arrives at a lel sif the original position at time.

The moving distance of the front line afterstages is

Ii++in n

A, = Z (ni+1)72ki,

i=1 i=1

and thus when the co-ordinate number of the right site of tbetfline is initially ng, the co-ordinate
number of the celliso+A4,, after then—th stage . Itis easily imagined that the trajectoryof+A,, } >0
may form a wave like form, depending on values of the pararagtel;, n;,7 > 1. We have the following

Dynamical Properties of Rule 56 Elementary Cellular Auttoneof Wolfram Class I 295

Theorem.

Theorem.3.1. (), gs) is Devaney chaos.

Proof: The set of periodic configurations is denséin

For a configuratiorz €), we assume the pattern as the following. We take a finite safiguration
around the origin of the configuration as shown in Fig.6, maging the co-ordinate numb@site.

the front line

!
T = the part constructed b1)..0. | the part constructed Hy11(01).

(01)5, 0, -+ (01)5, 05, | 011(01),,,--- 011(01),,

P

Fig. 6: A finite sub-configuration located around the origin of thefagurationz.

The numbers of NBYs and011's in the sub-configuration are)?_, I; andg, respectively.

(i) When>""_ 1; > ¢, then we add~?_, I; — ¢ 011's to the right side of the sub-configuration.

(i) When"?_, I; < ¢,thenwe add — >-7_, I; NB-0's to the left side of the sub-configuration.

The proof is logically same in either case, then we assumeitfiput loss of generality. We treat the
following finite configuration.

(Ol)kp()lp ~~~~~~ (Ol)kloll 011(01)n1~~~ 011(01)nq 011---011 (****)
q011's Zle l; —q011's
le l; NB-0's 57:1 [; 011's

Fig. 7: A finite configuration With(Oll)Z;Ll 1,—q @dded to the right side of the finite configuration given in.€ig

For the case of this finite configuration, the moving distaaiter thep-th stage is

bitetlp P P
=1 =1 =1 i=1 =1

sincen; =0forg+1<i<ly+---+1,.
We addm 01's to the left side of * xx) or —m 01's to the right side of x % xx) according tan > 0 or
m < 0, respectively. Here we consider the former case, then we t@/following finite configurations.

296 Fumio Ohi

(01)p | (01)g,0p, ------ (01)g, 0z, | 011(01)y, - -+ 011(01),, (Oll)zgvﬂli,q

17 1

Fig. 8: A finite configuration given by addin@1),, to the left-hand side of the finite configuratiGn s:x).

We may construct a configuration dfwith placing the above finite configurations | and Il as
a=---II,II,--- ,II,1,--- I,I,---

a is periodic, since the middIlél and simultaneously disappear in the time development ahd the
trajectory ofa returns toa. Noticing the parametegsandq used for constructing is taken arbitrarily
from «, it is shown that there exists a periodic configuration in daiteal neighborhood of.

Construction of a transitive configuration is easy aftergheof of the dense property of periodic con-
figurations, and then is omitted here.

4 Concluding remarks

In this paper we have examined the dynamical propertiéslog.,) and showed that

(i) (So(1),1(1,2)>956) and(Si(1), gse) are left and right subshifts of finite type, respectivelyd &oth
of them are topologically mixing and Devaney chaos,

(i) Interactions between NB-and01, between NBG and011, and betweeid1 and011 provide De-
vaney chaos property 4%, g-¢) which is neither left nor right shift.

(iii) (A, gsg) has every periodic configurations except period 4.

(iv) The dynamics of A, g;) is richer than that of A, g) because of only one difference in the local
transition function correspondirigor 0 to 100, respectively.

Full examination of the dynamical properties of rule 568y 2)\ (Y U So(1),1(1,2) U S1(1)) remains
to be an open problem, but we conjectlii@; ... d (ggﬁ(m), So(1),1(1,2) U 81(1)) = 0 for almost all
elementz of the set, that to say, the trajectoryofs attracted t&5y(1),1(1,2) U Si(1)-

The dynamical properties observed in this paper have nat bbserved by computer simulation for
randomly given initial configurations. We could imaginetttigere remains a lot of interesting properties
of even ECA which are hardly recognized by computer simaoihati

References

[1] G.Cattaneo, E.Formentiand L.Margara, Topological D&éins of Deterministic Chaos, In Cellular
Automata, eds. M Delorme and J. Mazoyer, Kluwer AcademidiBluers(1999), 213-259.

[2] B.P.Kitchens, Symbolic Dynamics: One-sided, Two-sidend Countable State Markov Shifts,
Springer(1991).

Dynamical Properties of Rule 56 Elementary Cellular Auttoneof Wolfram Class I 297

[3] F. Ohi, Chaotic Properties of the Elementary Cellulartédraaton Rule 40 in Wolfram’s Class |,
Complex Systems, 17 (2007), 295-308.

[4] S. Wolfram, Statistical mechanics of cellular automd#aview of Modern PhysicS5 (1983) 601—
644.

[5] S. Wolfram, Universality and complexity in cellular amata, Physica0D (1984) 1-35.
[6] S. Wolfram, A New Kind of Science, Wolfram Media, Inc. (2®).

298 Fumio Ohi

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 299-308

Gliders and Ether in Rule 54

Markus Redeker

International Centre of Unconventional Computing, University of the West of England, Bristol, United Kingdom.
Email: markus2.redeker@live.uwe.ac.uk

This is a study of the one-dimensional elementary cellular automaton rule 54 in the new formalism of “flexible time”.
We derive algebraic expressions for groups of several cells and their evolution in time. With them we can describe
the behaviour of simple periodic patterns like the ether and gliders in an efficient way. We use that to look into their
behaviour in detail and find general formulas that characterise them.

Keywords: Rule 54, one-dimensional cellular automata, gliders, ether, flexible time

1 Introduction

This is a case study of one specific cellular automaton, Rule 54, with the methods developed in [3]. They
were developed to allow the study of cellular automata with the methods of theoretical mathematics and
without the need for computer simulations. While the previous paper concentrates on the development of
the theory, here the ideas are presented in a less formal way and used to work with larger structures.
Section 2 of this paper introduces the formalism in a less formal way than in [3] and shows how the
transition function of the cellular automaton can be expressed in it. The resulting formulas still describe
only the behaviour of a small number of cells at a time. Therefore in Section 3 rules for larger groups

W
Hr
-
-
Ay
Ay
e
Ay
HHEHF
HHF

T T T T

41
H
H
H
H
H
H
H
1]
H

wln_olle

Figure 1: Periodic patterns under Rule 54. The diagram shows three types of gliders on an ether background. Time
goes upward. (Since Rule 54 is symmetric, w and w are viewed as variants of the same particle.)

of cells are found. We use them in Section 4 to study the behaviour of four simple periodic structures
that occur under Rule 54: the ether and three types of gliders (Figure 1). We find formulas for them and
general expressions for gliders and ethers and look into their behaviour.

300 Markus Redeker
2 Local Interactions
2.1 Rule 54

“Rule 54” is the common name — following the naming convention of Stephen Wolfram [4] — of a one-
dimensional cellular automaton with two states and a three-cell neighbourhood.

At every time it consists of an infinite line of cells. The state of each cell is an element of the set
% = {0, 1}, and the behaviour of the automaton is given by its local transitions function

p:33 — 3. (D)

It is applied to every three-cell subsequence of the infinite cell line, and the resulting value is the state of
the cell in the middle at the next time step. Rule 54 has

| 1 forse{001,100,010,101},

wls) = { 0 otherwise. @

Sequences of elements of ¥ — like 001 — stand here and later for elements of X* = (J, - Y. Note that ¢
is symmetric under the interchange of left and right. -

2.2 Situations

The formalism of Flexible Time [3] is motivated by the idea that it is easier to find patterns in the evolution
of cellular automata if one considers structures that involve cells at different times.

These structures are here calles situations. They are a generalisation of the sequences of cell states (like
001) considered before. These sequences give the states of neighbouring cells at a certain unspecified
time. Thus the sequence 001 describes the states of three cells, possibly at the positions x = 0, 1, 2, and
tells us that the cells at z = 0 and z = 1 are in state O and the cell at x = 2 is in state 1. The position
information is implicit in the ordering of the symbols: When a symbol in the sequence stands for the state
of a certain cell, its right neighbour in the sequence gives the state of its right neighbour cell, and so on.

Situations are then cell sequences that extend over space and time. To write them down we need
additional symbols for a change of time. The symbols we actually use stand for a displacement in time
and also in space, because they harmonise then better with the way a cellular automaton evolves.

Under Rule 54, situations are written as sequences of the symbols 0, 1, © and &. The intended inter-
pretation can most easily be described in terms of instructions to write symbols on a grid. The fields of the
grid are labelled by pairs (¢,) € Z?; x is the position of a cell and ¢ a time in its evolution. The writing
rules are then

At the beginning the writing position is at (0, 0).

e If the next symbol is 0 or 1, write it down and move the writing positions one step forward; if it was
(t,z)itis now (¢, + 1).

If the next symbol is ©, move the writing position from (¢,z) to (¢t — 1,z — 1).

If the next symbol is &, move the writing position from (¢, z) to (¢ + 1,2 — 1).

Gliders and Ether in Rule 54 301

e No overwriting: One cannot write different symbols at the same field. (This concerns expressions
like 01®S1: After writing 0166 one is again at position (0, 1) and tries to write a 1 in a field that
contains already a 0. So 011 is not a valid situation, but 010 is.)

The result, in mathematical terms, is a function from a subset of Z?2 to ¥ together with an element of 72
(the final writing position). The function, which is called 7 for a situation s, describes the states of some
cells at some times, while the element of Z2, written & (s), will be important when parts of situations are
substituted for others. The whole situation is then the pair s = (75, d(s)). We will also need an empty
situation, which is written \.

e— = ©00: ED} w_ =¢e_1: EEID EH»
>
> >
ey = 00@: <13 wy = ley: <D et = 1Pey: <1F
[] 1]

go = €e4e40e_e_: <H_ —Hb go = e+e4+0e_e_: <H_ —H>

Figure 2: Useful situations in Rule 54.

In Figure 2 you can see diagrams for some situations that will become useful later. Cells in the states
0 and 1 appear as [J and M, while the initial and final writing position are marked by small triangles: «
stands left of the start position, » at the end position. The diagram for g. becomes less surprising if one
notices that e_e, = 00600 has the diagram <CT7>: a first case of overwriting.

I have also treated there the situations as normal algebraic expressions, like elements of a semigroup.
Product and exponentiation are defined in the usual way: &2 is the result of writing ¢ twice, and so on.
However, due to the restrictions on overwriting, not all products of situations exist.

2.3 Reactions

The evolution of cellular automata is described by reactions, expressions of the form a — b with two
situations a and b. The situation b represents a “partially later” state of the cellular automaton than a, with
the states of some cells at a later time than a.

To make this notion more precise, let us consider functions of the form 7 : ' — 3. They are called
cellular processes in [3]. If a cellular process fulfills the condition

If (t,z—1),(t,z),(t,z+1)€E then (t+1l,z)€eFE

and w(t+1,2) = p(n(t,z — V)w(t,) (t,z + 1)), ®)

then it describes a part of the evolution of a cellular automaton under the rule .

302 Markus Redeker

6000 — 0800 000 — 000
6001 — 1601 100 — 1061
6010 — 1160 010 — 011
6011 — 001 1109 — 1300
610 — 180 01¢ — 01
cll — 0ol 11 — 1940

00 = 0000 ©00d — A
01 = 0101 09190 — 0
10 = 10210 1e1el — 1
11 =11e11

Table 1: Generator reactions for Rule 54

With this notion we can define “—” as a binary relation on the set of situations: a — b is true if
d(a) = (b) and for all cellular processes 7 that fulfill (3) we have: If 7 D 7, then ™ D 7.

One can see that if zay and xby are situations and there is a reaction a — b, then zay — xby is a
reaction too. This is called the application of a — b on xay. We can use that and describe the behaviour
of a cellular automaton by a small set of generator reactions between a small number of cells. All the
others follow from them by application on larger situations and by chaining the reactions. Table 1 shows
a set of generator reactions for Rule 54. It is derived from (2) but contains some shortcuts.

To derive Table 1 we start with the rule that

olafy) = o becomes Safy — cSby and afy® — afdo,)

because then o is placed correctly one time step later than 3. The first two lines of Table 1 are found this
way. Other reactions, like 610 — 150, are the result of a unification: There would be both 5100 —
1600 and 6101 — 1601, but the state of the rightmost cell has no influence on the result and is therefore
left out at both sides of the reaction. These new, shorter reactions can now be applied on the results of
some others: ©010 — 1610, a reaction that one gets from (4), is then extended by 1610 — 11&0 to
6010 — 1160. With these methods the top block of Table 1 is derived.

The purpose of the equations and reactions at the bottom of Table 1 is to create and destroy © and
@ symbols. The destruction reactions at the right remove also cell states that cannot be used in another
reaction.®)

Together the reactions of Table 1 define a reaction system ®. It consists of a set of situations and the
reactions between them. We use a common convention and write s € ® if s is an element of the set of
reactions of ®.

3 A Reaction System with Triangles
3.1 Triangles

Now we need rules for larger structures. If their behaviour is understood, we can find reaction that simulate
them in one step. At the present stage these structures will be periodic sequences of cells, and we start
with the simplest of then, the sequences in which all cells are in the same state.

@ Tn [3], which uses a slightly other definition of situations, the equations would have to be written as reactions. The destruction

Gliders and Ether in Rule 54 303

|]
— N W
(a) Triangle (b) Reaction 17 — 1d(0%®)30(c0%)?01

Figure 3: Triangles and triangle reactions

There are only two of them, and we evolve them first for only one time step.

0F — 0*°¢0" 220> k>0)

1* — 1@0*e1 k>0 (6)

We can see that 0 is a persistent pattern that reappears in the next time step, while 1% is instantaneous

and exists only for one time step. Our guiding principle for a new, faster reaction system will be that
evolution should never stop when a persistent pattern is reached.

So both reactions should be continued. The result for (5) — and therefore also for (6) — depends on the

parity of k and is best expressed as
02 — (0%@)*0" (20?)* k>1,0€{0,1}, 7
127 S 1e(0%e)k0 (0ol k>1,0€{0,1}. 8)

They are both examples of triangle reactions, that are reactions of the general form
a_z¥b, — a+yicylib_ k>0, ©)]

which trace the boundaries of a space-time triangle.® Figure 3 shows an example.
Since the “boundary terms” of the triangles will occur often, we will use abbreviations for them,

e =007 e, = 0%, e_ = o0%al, ey = 100%® . (10)

The definitions for e_ and e, have been chosen with the benefit of hindsight — instead of choosing
abbreviations for ©1 and 16 — because these terms will be important later. With them (7) and (8) become
0%+ s ghptek k>1,0€{0,1}, (11)
1P ey eittoeh el k> 1,0€{0,1}. (12)

3.2 Destruction of Boundary Terms

We must now extend these reactions to a full reaction system. Since (11) and (12) create the boundary
terms €_, €4, e_ and e, the new reactions should destroy them. To keep the number of new reactions
small, we require that the triangle reactions are always used efficiently and never applied to only a part
of a cell sequence. (A reaction like 02> — £,_0 will be forbidden then.) We may express that by the

reactions, which are chosen somewhat ad hoc, are also different from the result of the result of the rules given there.
() We can bring reaction (12) in that form by setting a— = 12%*, . = 12, a4 = \, y+ = 020y = ©0% and ¢ = 0.

304 Markus Redeker

States: 0,1,e_,e4,e_,e4.
Situations: No subsequences €_0, Oe1, e_1, ley.
Triangles: 02k+e — gk ek k>1,.€{0,1}
12k+e e+si_10bsli_le_, k>1,.€{0,1}
Boundary terms: ¢_(10)¥1e, — 12k+3 k>0
e_(10)key — 12F+1g, k>0
e_(01)Fe, — g 12k+1 k>0

e_(01)*0ey — e 1%+, k>0
E_E4 —E4E-
e_ey —E4E_

Table 2: Rule 54 in triangle form

requirement that the situations may never contain the terms €_0, Ocy, e_1 or ley: they would be the
result of such an incomplete application.

It will be enough for a working system to consider reactions that start from terms of the form b_sb,,
withb_ € {e_,e_}, by € {e4,e4}, s € ¥*, to which no other reactions are applicable. The last require-
ment means that s must consist of cells in states 0 and 1 in alternating order: Two cells in the same state
are already the starting point of a triangle reaction. It turns out that there are only six types of reactions
that satisfy this requirement and that of the forbidden subconfigurations in the previous paragraph.

Here they are, together with reactions that start from them:

e (10)k1e, — 12++3 >0, (13)
e (10)rey — 1%FF1e, k>0, (14)
e_(01)Fe, — e 12kF1 >0, (15)

e_(01)*0ey — e 1?*e, k>0, (16)

E_Ey —ELE_, (17)
e_ey —E4E_. (18)

The first four reactions have been chosen minimally such that the cell states of s in b_sb, are replaced
with states that are exactly one time step later, such as in (5) and (6). The last two reactions cover the
situations with s = A that are not special cases of the previous four reactions. The resulting reactions
system is listed in Table 2.

4 Ether and Gliders
4.1 The Ether

Now we will use the new reaction system to look at some phenomena that occur under Rule 54. The first
of them is the ether, a robust background pattern. It consists at alternating time steps of either the cell
sequence 013 or 107 infinitely repeated. (To verify the reactions in this section Table 3 may be helpful.)

Gliders and Ether in Rule 54 305

e_ey — ley E_eq — Wy
e_ey —e_l e_ey — w_
e_ley — eqle_ w_e; — eqle_

e_wy — eqxle_
e_Oe;r — e+ 0e_

e_10ey — 13 w_0ey — 13
e_10e; — 13 e_Owy — 13
e_10le; — 1° w_wy — 15

Table 3: Simple Reactions that are useful in Section 4. Most of them are special cases of Table 2 or derived from
them.

,__
b

ey
e_0e;0 — eyr0e_0

Figure 4: How the ether reaction fits into the development if the ether. The cells that belong to the reaction are
marked.

In the reaction system a formula for the ether can be derived from the 013 generation: We have

013 — Oe0e_ (19)
and (see Figure 4)
Oe_0ey — Oe40e_, (20)
therefore
(013)* — (0e;)*(0e)k k>0, 1)

a very simple triangle reaction. This is in contrast to the other possible starting point, 103, where one gets

(10*)* — 16 (0ey)k (0e)re 1 k>1, (22)

a more complicated triangle reaction, in which also the components of the other ether phase, e_ and e,
reappear. The reaction system selects thus one of the phases of the ether as more natural than the other,
which is a helpful simplification.

If one now looks back at (17) and compares it with (20), one sees that they follow a common pattern.
Both are background reactions of the form

bob, — byb_. (23)

This reaction can easily be iterated to b*® bﬁ — bﬁ b* , which describes the evolution of a large piece of a
periodic background pattern.
Their involvement in the ether is the reason why e_ and e got their names in (10).

306 Markus Redeker
4.2 Gliders

There are three kinds of long-lived structures that are described in [1] in some detail. There they are called
particles, now usually gliders. There is one moving particle w, which appears as w and w, depending on
the direction in which it moves, and the “odd” and “even gutter” gy and g., which are immobile.
The w particle “may be generated by three 0’s followed by three 1’s or the converse” [1, p. 870]. We
try this now and get
0°1% — £, 0e_e; 0e_ — .01y Oe_. (24)

In it we can recognise Oe_ as a part of the ether and £,.0 as a part of the ether in the wrong phase (as in
(20) and (22)), so the rest must be the w particle. Therefore we define

w_ =¢e_1, wy = leg. (25)
These definitions must be verified: We must show that w actually moves through the ether. But we have
w_0e40 =e_10e,0 — 13,0 — e 0e_e,0 — e, 0e_10 = e; 0w_0, (26)

which shows how w_ is destroyed and reappears at the right of its previous position (Figure 5). w_ is
therefore stable and corresponds to the right-moving glider w of [1].

R

w_0e;0 — e; 0w_0

Figure 5: A W glider moving on an ether background. The w_ part is emphasised.

The two immobile gliders, g. and g,, are in fact small triangles, as can be seen from the pictures in [1].
It turns out that the right definitions for them are

go = e4e40e_e_, Je = 6.;,_53_62_6_. 27
The verification that they actually behave like gliders is straightforward (Figure 6),

e_0g,0e4+0 =e_0Oeyey0c_e_0es0

—e;0e_e;0e_e;0e_0

—e;0w_Ow;0e_0

—e,01°0e_0

—e;0eyre;0e_e_0e_0=e;0g,0e_0, (28)
e_0g.0e;0 = e,Oe+6362,e,06+0

—e40 6_63_82_64,_0 e_0

—e;0w_ere_wi0e_0

—¢e,01%¢e€_0

—e40 €+51527670 e_0=1e40g.0e_0, (29)

Gliders and Ether in Rule 54 307

but the appearance of the w gliders in the process is a bit surprising. It suggests the interpretation that
the gliders g, and g. decay into two w gliders, which then collide and create its next incarnation. With
flexible time the gliders suddenly have an internal structure.

et - ety o I O

e_0¢,0e4+0 — ey Ow_Owy0e_0 — e 0g,0e_0.

gt - et - I O

e_0g.0e40 — e;Ow_e_e;w;0e_0 — e;0g.0e_0.
Figure 6: Evolution of the g, and g. gliders, together with the intermediate states where the w gliders appear.

The three glider reactions (26), (28) and (29) have again a common structure, which can be described
by the glider condition
bk gbl — bl gb" . (30)
Here b_ and b, form a background pattern as in (23) and g is the glider. The number (£ — k)/(¢+ k) is a
measure for the speed of the glider.
We have now already touched the creation of other gliders by the w gliders. Of the two syntheses found
in the behaviour of the g particles, the first one,

w_0wy — go, (31)

is more important because here the w gliders are at the right distance to have been part of the ether before.
Such a glider synthesis has been already noticed in [1], but here it occurs as a corollary of a previous
analysis.

References

[1] N. Boccara, J. Nasser, M. Roger. Particlelike structures and their interactions in spatiotemporal pat-
terns generated by one-dimensional deterministic cellular-automaton rules. Physical Review A 44

(1991), 866-875.

[2] Genaro Judrez Martinez, Andrew Adamatzky, Harold V. Mclntosh. Phenomenology of glider colli-
sions in cellular automaton rule 54 and associated logical gates. Chaos, Fractals and Solitons 28,
100-111 (2006).

308 Markus Redeker

[3] Markus Redeker, Flexible Time and the Evolution of One-Dimensional Cellular Automata. Journal of
Cellular Automata (to appear), http://arxiv.org/abs/0812.4242.

[4] Stephen Wolfram, Universality and Complexity in Cellular Automata. Physica 10D (1984), 1-35.

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 309-318

Dynamics of 1-d cellular automa with
distance-dependent delays

Thimo Rohlf-?2 and dirgen Jost

! Epigenomics Project, ISSB, Genopole Campus 1, GenaveriirRije Henri Desbrueres, F-91034 Evry cedex,
France
2Max-Planck-Insititute for Mathematics in the Scienceselstr. 22, D-04103 Leipzig, Germany

Delays in signal transmission are found in many complexesgstin nature, e.g. as a consequence of spatial distance
between the elements the system consists of. In standduthcelutomata (CAs), however, usually an instantaneous
transmission of information in the update-neighborhoodeifs is assumed, and distance information is disregarded.
The objective of this study is to overcome this limitationdbgeneralization of the CA update scheme. We investigate
the effect of spatio-temporal delay depending linearlytmndistance between cells in synchronously updated, one-
dimensional CAs. We find that delays induce distinctive sitaons between different classes of dynamical behavior,
and on average tend to increase the space-time entropy ofa@&rps. A more detailed investigation also taking
into account mutual information shows that transitionshia bpposite direction are also present in considerable
proportions, indicating a rich space of rule-dependentdyinal transitions induced by delays.

Keywords: 1-d cellular automata, delays, entropy, mutual infornmatio

1 Introduction

Complex spatio-temporal patterns are often found in natggein many cases their emergence can be
explained by surprisingly simple dynamical systems of llgdateracting elements. Systems of this kind
are found, e.g., in physical chemistry (e.g. reactionudifin systems), in biology (e.g. in morphogenesis
of multicellular organisms) and even in sociology and eecopdlraditionally, many of these systems are
modeled by sets of coupled partial differential equationsich allow a detailed investigation of possi-
ble dynamical behaviors. However, these approaches aftevie a large number of free parameters,
and reach the limits of computational tractability quickly particular, if systems involve complex de-
pendencies (networks) between dynamical elements. Fortire, in many cases dynamical transitions
can be well approximated by discrete state spaces, whicletsoes drastically reduces the complexity
of the problem; examples are found in physics, e.g. the Isindel of magnetism, in biology, e.g. the
relatively small set of distinct cell types and the well defirtransitions between them (differentiation),
and in economy, e.g. the complex dynamics of stock exchaggresrated from basically binary "buy”
or "sell” decisions. Very often, the geometric space in whstich discrete interactions take place has
a strong impact on dynamics; this is explicitly taken inte@mt inCellular Automata Besides highly

310 Thimo Rohlf and irgen Jost

regular, grid-based topologies, that have been extensix@lored, recently also CA topologies with par-
tially randomized structure ("small world” CAs) have conmea the focus of research (Marr and Hutt,
2005).

Originally introduced byvon Neumanms a theoretical framework for self-replication (von Nemma
1966), it was realized that CAs could serve as models for ntwohder classes of phenomena. It was
shown, for example, that Conway's famous "game of life” (Bkamp et al., 1982)) as well as simple
one-dimensional cellular automata (Lindgren and Norda®90) are capable of universal computation
in the sense of a Turing machine. Based on methods develostdtistical mechanics, detailed studies
on the simplest class of CA, elementary 1D CA with= 2 states and 3-cell neighborhood, were carried
out in the 1980’s. Wolfram (Wolfram, 1983, 1984) developegualitative classification scheme of the
22° = 256 elementary CA rules that distinguished four different 'qexity classes’ of their dynamics
(class I: fixed-point attractors, class Il: space-time qdid attractors (limit cycles), class Ill: aperiodic
space-time chaos, class IV: 'complex’ dynamics, i.e. tiagelocalized aperiodic structures on regular
background). A number of methods was developed to obtainre mmantitative characterization of CA
dynamics, e.g. mean field models (Schulman and Seiden, 118¢8) structure theory (Gutowitz et al.,
1987), and quantification of pre-images (Soto, 2008). Rihgehe investigation of different classes of CA
update schemes has come into the focus of research, shdaiirgample, that stochastic, asynchronous
updates can induce distinctive phase transitions in stdr@As that can be well described with methods
from Statistical Physics (Fates, 2009).

While on one hand the drastic simplification provided by CAdw®is can have obvious benefits, on the
other hand their very idealized dynamics also limits thairge of applicability. In real spatially extended
systems, for example, a delayed coupling of dynamical efesneaturally emerges from their spatial
distance. It has been shown that delays can substantiédly tak phase space of dynamical systems
(Atay et al., 2004; Atay and Karabacak, 2006). In this paper,generalize the class of standard one-
dimensional CAs by introduction of delays in signal transsion that depend linearly on the distance
between cells, defining a new class of dynamical systemsatbatall delay cellular automata (DCAS).
A comparison with CAs where delays are not present indigaggsdistinctive dynamical transitions are
induced by delays, and on average tend to increase the Spseentropy of CA patterns. A more
detailed investigation also taking into account mutuabinfation shows that transitions in the opposite
direction are also present in considerable proportiomgating a rich space of rule-dependent dynamical
transitions induced by delays.

2 Model and Definitions

2.1 One dimensional CA without delay

Let us first start with cellular automata without delay. ddes a one-dimensional cellular automaton
(CA) with parallel update.N cells are arranged on a one-dimensional lattice, and edkts dabeled
uniquely with anindex € {0, 1, ..., N—1}. Each cell can takk possible states; € ¥ := {0,1, .., k—1}.
CA dynamics is defined by a map

f:{0,1,. k—1}"—{0,1,...k— 1} (1)

that determines the statg(¢) of cell i as a function of its own staig; (¢t — 1) and the states of its — 1
closest neighbors at timte- 1; n (odd) is also called theeighborhood sizef the CA andr := (n—1)/2

Dynamics of 1-d cellular automa with distance-dependelatyde 311

-1 t
! . ol
1

f

-3

2 e o

f

o, -1

Fig. 1: Schematic comparison of the conventional CA update scheppe(panel) and of the DCA update scheme
(lower panel), for the example of a CA with neighborhood size 5. Whereas in CA without delays, for each cell
its own state and the states of its four closest neighboimatit— 1 are mapped to a new state at timén DCA the
cells own state at time— 1, its nearest neighbors’ states at time 2, and its next-nearest neighbors states at time
t — 3 are considered.

theradiusof the CA. The mayg then reads as

0'2(1’) == f[O'i_T(t - 1), ...,O'i(t - 1), ...,Ui+7-(t - 1)] (2)

fis also called the rule table of the CA, thecells are updated in parallel by application of this ruldeab
to each single cell. Notice that we restrict ourselvesytmmetric neighborhoogdwhich for many pattern
formation problems as observed in nature is the naturatehoi

Boundary conditions for the sités= 0 andi = N — 1 have to be specified explicitly. In this paper, we
always apply periodic boundary conditions.

2.2 One dimensional CAs with spatio-temporal delay

We now introducespatio-temporal delaymto CA dynamics (a schematic description is also shown in
Fig. 1.) For this purpose, we assume that the time neededfitalsransmission increases linearly with
the distance between cells. Hence, CA dynamics now is defip@dmap

g:{0,1, . k—1}"—{0,1,....k— 1} ®3)

which, for the simplest case of delay directly proportidioahe distance of the respective neighbor cells,
is given by

oi(t) = gloir(t—1r—=1),0i 11t —71),.cyoi(t = 1), ...
...,U7j+r,1(t—T),O’iJrT(t—T‘—].)]. (4)

312 Thimo Rohlf and irgen Jost

Notice that the rule tables defined pydo not differ from those defined bf, the dynamics, however,
is essentially different due to the delays introduced ihtorhap. Henceforth, we will call this new class
of dynamical systemdelay cellular automata (DCA)

Further, we mention that, due to the delays that introdudma tlependence on the previous- 1
system states, in DCA initialization there does not exist tiotion of a uniquely defined initial state,
rather, one has to define ardered initial set{ ;,,;} of r + 1 system states:

{Zami} =t =-7r),...,5(t=0)) (5)

Starting from this initial set, DCA dynamics then is iteifer ¢ > 0. In our simulations, we mostly set
all » + 1 states to the same (randomly generated) initial state; Wenvsetting{%,,,; } to » + 1 different
states basically leads to the same results.

cA DCA

Fig. 2: Space-time diagrams of cellular automata dynamics forrf@adomly sampled CA rules with = 2 andn =

7; time is running from top to bottom. In each panel, on thediefe CA dynamics without delays is shown, whereas on
the right side the dynamics for the same rule with delaysasvsh The following transitions are frequently observed:
fixed point— complex, aperiodic dynamics (a), local domains of osadle — (almost) globally synchronized
oscillations (b), traveling waves> complex aperiodic patterns (c), complex patternghaotic pattern (d).

3 Comparing the dynamics of DCAs to CAs without delays

Distance-dependent delays, as defined in section 2.2dunteoadditional levels of time dependence into
CA dynamics, which can also be considered as an implicit nmgrobsizer + 1 (in addition, a local
average over the last+ 1 states is taken that depends both on time and space). In GAswidelays,

Dynamics of 1-d cellular automa with distance-dependelatyde 313

1

0.9

0.8

0.7

0.6

= 05

1

0.9

0.8

0.7

0.6

= 05
0.4 0.4
03/) 03
02 | . 02 H \
numerical data . 4 numerical data . i}
0.1 |r analytical result = 0.1 | analytical result]

0 ! ! ! ! ol ! ! ! !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

P P
(a) Block entropy of CAs (b) Block entropy of DCAs

Fig. 3: Left panel: The block entropy/, as a function of the density of 1'g, in CAs without delays, numerical
data (red) sampled ovén’ randomly generated CAs with= 2, n» = 7 andN = 150, compared td{*PP¢". Right
panel: Hy(p) in DCAs, numerical data (red) sampled ove&r’ randomly generated CA with = 2, n = 7 and
N = 150, compared taH ;PP°".

in the extreme case each cell 'forgets’ its local predegeststes after one dynamical update, in DCA
complete loss of memory takes at least 1 time steps. It has been shown tleadplicit inclusion of
memory into CA dynamics can lead to drastic changes of dycarhehavior (Rohlf and Tsallis, 2007),
hence, we also expect that spatio-temporal delays sul@blachange CA dynamics.

Let us now compare the dynamics of DCA with its conventiomalrterpart, i.e. the corresponding
CA rules without delays. Figure 2 shows space-time diagraihtellular automata randomly sampled
from the rule space of CAs with = 5 andk = 2. At first visual inspection, the diagrams suggest a
general trend that delays tend to increase the complexgpade-time patterns for rules that lead to very
simple asymptotic dynamics without delays. For examplégydecan induce a transition from a fixed-
point pattern to complex triangular patterns (Fig. 2 a))jngsrove the synchronization among cells (Fig.
2 b)). On the other hand, "complex” patterns suggesting tortgeto class IV in Wolfram’s classification
scheme tend to become much more randomized when delaysemenpfFig. 2 d)). The quantitative
and conclusive classification of "complex behavior” in CAsai persistent problem in CA literature, for
which a number of approaches have been suggested (Gutdvaitz £987; Li et al., 1990; Sakai et al.,
2004). Here, we cannot go into the details of this matter até restrict ourselves to a rather coarse-
grained classification of DCA in comparison to CAs withoutags by application of methods derived
from Statistical Mechanics.

3.1 Analysis of block entropies

Any analysis of the complexity of CA dynamics is limited byetttombinatorial explosion” of the num-
ber of different possible rule tables even for quite modexatiues ofn andk. For ak-state CA with
neighborhood size, i.e. k™ different neighborhood configurations, there exigt:= k*" different rules
tables, leading e.g. t85 = 33" ~ 8.71-10'! for a 3-state CA with neighborhood sire= 5. Therefore,
one needs to identify quantities that can describe the itapbfeatures of CAs and that can distinguish
different types of qualitative behavior of CAs. For instanthe basic information capacity of a CA can

314 Thimo Rohlf and irgen Jost

be characterized using ti8hannon entropy Hvhich for a discrete processof £ states is given by

k—1

H(A) == p(i) logp(i). (6)

=0

Here,p; € [0,1] is the (asymptotic) probability for a cellof a given CA to have the statg = i. This
measure, however, disregards all spatial informationce&Sour new class of dynamical systems operates
based orspatio-temporal delaysve have to include at least a coarse-grained descriptiepade into
our statistical analysis.For this purpose, we considespaialblock entropyof a cellular automatofd®
Jost (2005):

&
Hy(T) = Jim_lim —— ;pu(a) log py (c) @)
Here,p, («) are the relative frequencies with which block®f length B of values at consecutive sites
appear at time-. In practice, neither of the two limits can be really takend @ne has to find some
compromise. A natural choice for the considered block sige eould beB = n, i.e. the size of the
update neighborhood of each cell, which at the same tim@gyitle "rule entropy” (i.e. the relative
frequencies of usage of the different entries in a giventaliée). An upper bound off;(T") as a function
of the average stationary densjtyof 1's in the pattern can be calculated analytically by a miggid
theory (Schulman and Seiden, 1978):

H;.Lppc’r(p) _ P lnpi (1 _ p) ln(l 7p)

In2 ®)

Figure 3 shows numerically measured values for ensemblesdbmly generated CA rules with= 2
andn = 7, compared to the result of Eqn. 8. We find that, for most rulesis increased when delays are
present, i.e. the block entropy is moved towards the uppenth@ompatible with the stationary density
p of 1's in the pattern, indicating increased mixing in phgs&ce. This observation confirms the general
impression obtained from Fig. 2.2 with the typical delagticed transitions fixed point/periodic pattern
— 'complex’ pattern and 'complex patters> randomized (chaotic) pattern.

3.2 Further classification of dynamical transitions by changes in mutual infor-
mation

The information about dynamical transitions in CA dynaniictuced by delays, quantified by consider-
ation of (block-)entropies in the previous section, is tadiin a number of regards. Entropy is a rather
coarse measure for information content of dynamics, sinnetivery sensitive to correlations; further-
more, we so far considered ensembles of DCAs and CAs withmardics seperately, hence loosing the
information of delay-induced effects for a particular ufgdaule. Consequently, we are now interested in
a direct comparison of DCA and CA dynamics for given updates,uapplying a measure that is more
sensitive to spatial and temporal correlations in dynapmamelymutual information Thespatial mutual
information/, between two CA cellsl and B is defined as

Dynamics of 1-d cellular automa with distance-dependelatyde 315

1 T T T T
n <
< 0.8
8
— 06
=
S o4r
>
€
0.2
temporal Ml ——
0] | spatial Ml —%—
0 0.2 0.4 0.6 0.8

mutual inf. CA

Fig. 4: Average mutual information for dynamical updates with geJecompared to the same set of rules without
delays. Statistics was averaged over 80000 ruleswvith5, k = 2 and N = 150, for 1000 updates after a transient
of 1000 updates, starting from 250 random initial stategfah rule. Bin size for averaging was 0.05.

whereH (A, B) is the joint entropy

k—1k-1

H(A,B) = = " pli,j),logp(i,), (10)

i=0 j=0

with p(i, 7) as the joint probability for co-occurrence of standj in cells A and B, respectivelyH (A)
andH (B) are the single-cell Shannon entropies, as defined in EqnéileBly, the temporal (future-past)
mutual information/; for a cell A is defined as

Ii(A(), A(t — 7)) = H(A(t), A(t — 7)) — H(A(t)) — H(A(t — 7)), (11)

wherer is the number of update steps one looks back in the past.

Figure 4 exhibits the average statistical dependence leettie mutual information of 80000 randomly
generated CA rules with = 5 andk = 2, for updates without delays: {axis) and with delaysf(—axis).
Obviously, the average trend is that delays tend to redutelations (and hence mutual information)
quite considerably, as becomes evident from the fact tteattinve, except for very small values of the
temporal mutual information, is always below the lihec4 = Ic.4. However, as became already appar-
ent in section 3, this average picture may be deceptive arydhida the richness of possible dynamical
transitions.

A more detailed account of delay-induced changes in dyrerbiehavior is provided in Fig. 5 (a),
which correlates the delay-induced change in block ent{@gich can be positive or negative) to the
change in temporal mutual information; since a decreasgg@se) in entropy indicates more ordered
(more chaotic) dynamics, while an increase in Ml is indicatbf more "complex” dynamics (i.e. in-
creased correlations), the four quadrants of this diagrambe interpreted with respect to the nature of

316 Thimo Rohlf and irgen Jost

1 08
0.8f ERE S . 8
§ 0.6 E 0.7
0.4F L
o 06
£ o2fF Q0 0
Q a 5F
o oo 3
—VU. [~ 0.4k
S 04t 5
© o6l g 03r
-0.8) S 02F
_1 | | | | | | 1. | Q
-1 -0.8-06-04-02|0 02 04 06 08 1 T o1l
(=
change in block entropy 0

() (b)

Fig. 5: Left panel: Change in temporal mutual information under D@pate relative to CA update without delays,
as a function of the change in block entropy. 80000 randomtypded rules withh = 5, k = 2 and N = 150 are
shown, mutual informationr(= 10) and entropy where averaged over 1000 updates after agraingil000 updates,
starting from 250 random initial states for each rule. The fyjuadrants, as indicated, allow a coarse classification of
dynamical transitions: 1: chaotie: complex or ordered, 2: ordered complex, 3: complex or chaotie> ordered,

4: ordered or complex- chaotic. Right panel: frequency distribution of dynamigahsitions, numbers referring to
the four quadrants of the left panel.

dynamical transitions: 1: chaotie complex or ordered, 2: ordered complex, 3: complex or chaotie
ordered, 4: ordered or complex chaotic. Figure 5 (b) shows a statistics of the distributibrules into

the four quadrants. Evidently, as we already concludedy#mesition from ordered or complex to chaotic
dynamics is most frequent, however, the opposite tramsitéwe also present in considerable proportions,
indicating a rich space of rule-dependent dynamical tteomsi induced by delays.

4 Discussion

Distance-dependent delays in signal transmission natwaalerge in most spatially extended dynamical
systems, however, were neglected in cellular automata lmesen when neighborhood sizes substan-
tially larger thar3 cells were considered. We introduced distance-depenidgdsysinto one-dimensional
cellular automata, and thereby defined the new claselaly cellular automata (DCAYur results indi-
cate that this type of delays considerably changes the digsarhcellular automata as a consequence of
theimplicit local memonyit creates. Very often, this leads to transitions to a déffetrclass of asymptotic
dynamical behavior, when we compare a given CA rule undeatiten without or with delays, for exam-
ple fixed point— complex aperiodic pattern, periodic patternrandomized (chaotic) pattern. A general
trend is that, for most CA rules, delays increase the spave-¢ntropy of the system, as quantified by
measurements of block-entropies of observed space-titterps. However, a more detailed investigation
also taking into account mutual information in space anetismowed that transitions in the opposite di-
rection are also present in considerable proportionscéiitig a rich space of rule-dependent dynamical
transitions induced by delays.

Our results indicate that, if cellular automata are consides serious models of spatially extended

Dynamics of 1-d cellular automa with distance-dependelatyde 317

dynamical systems, effects that naturally result fromigpaktension here delays - cannot be neglected,
since they considerably change the dynamics. Similar shSens were made for other classes of dy-
namical systems, for example, coupled logistic maps (Atagl.e 2004; Atay and Karabacak, 2006).
Interestingly, the capacity of cellular automata to caray complex computations is not reduced, but
ratherimprovedwhen delays are present, similar e.g. to the improved symiration that was found in
other classes of delayed dynamical systems (Atay et al4)2@Qiture research on DCAs will one the one
hand focus on a more detailed understanding of their dyrelmioperties, but also on applications of
this new class of dynamical systems to problems arisingstiiliuted computation, and complex systems
in nature and society.

References

F. M. Atay and O. Karabacak. Stability of coupled map netwaskth delays.Siam Journal On Applied
Dynamical System$(3):508-527, 2006.

F. M. Atay, J. Jost, and A. Wende. Delays, connection topglagd synchronization of coupled chaotic
maps.Physical Review Letter92(14), 2004.

E. Berlekamp, J. Conway, and R. Guhat is Life? chapter 25. Winning Ways for Your Mathematical
Plays, Vol. 2: Games in Particular, 1982.

N. Fates. Asynchronism induces second order phase i@rssin elementary cellular automatiournal
of Cellular Automata4:21-38, 2009.

H. A. Gutowitz, J. D. Victor, and B. W. Knight. Local structitheory for cellular automat&hysica D
18:48, 1987.

J. Jost.Dynamical Systems: Examples of Complex Behaviduiversitext. Springer, 2005.

W. Li, N. H. Packard, and C. G. Langton. Transition phenonier@llular automata rule spacBhysica
D, 45:77-94, 1990.

K. Lindgren and M. Nordahl. Universal computation in simphee-dimensional cellular automataom-
plex Systems:299-318, 1990.

C. Marr and M.-T. Hutt. Topology regulates pattern forroatcapacity of binay cellular automata on
graphs.Physica A354:641-662, 2005.

T. Rohlf and C. Tsallis. Long-range memory elementary 1tut@ automata: Dynamics and nonexten-
sivity. Physica A 379:465-470, 2007.

S. Sakai, M. Kanno, and Y. Saito. Quiescent string domingrezameter f and classification of one-
dimensional cellular automat®hys. Rev. E69:066117, 2004. doi: 10.1103/PhysRevE.69.066117.

L. S. Schulman and P. E. Seiden. Statistical mechanics ohardical system based on conway’s game
of life. J. Stat. Phys.19:293-314, 1978.

J. M. G. Soto. Computation of explicit preimages in one-disienal cellular automata applying the De
Bruijn diagram.Journal of Cellular Automata3:219-230, 2008.

318 Thimo Rohlf and irgen Jost

J. von NeumannTheory of Self-Reproducing Automataniversity of lllinois Press, 1966.
S. Wolfram. Statistical mechanics of cellular autom&ay. Mod. Phys55:601, 1983.

S. Wolfram. Universality and complexity in cellular automaPhysica D 10:1, 1984.

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 319-328

How do gliders move?

Emmanuel Sapinand Olivier Sapin

! Université de Rouen

This paper deals with gliders in cellular automata. A stidged on gliders discovered by an evolutionary algortihm,
identifies twelve different ways in which gliders move. THea is to focus on a glider and on the new cells generated
towards the direction of the glider. The classification aflgts is based on the neighbourhood of these cells at one
generation before they appear.

Keywords: Gliders, Cellular Automata, Classification, Neighbourti®oCells

1 Introduction

The theories of complexity are the understanding of howpedelent agents are interacting in a system
to influence each other and the whole system (1). A complebesysan be described as a system eom
posed of interconnected parts in which the whole exhibitsenpooperties that the sum of the parts (2).
Surprising computational tasks could result from inteoat of independent agents in complex systems
as emergence of computation is a hot topic in the sciencemptaxity (3). A promising environment to
study emergent computation is cellular automata (4) whiehttze simplest mathematical representation
of complex systems (5) and an important modelling paradigthé natural sciences and an extremely
useful approach in the study of complex systems (6). Thewaiferm frameworks in which the simple
agents are cells evolving through time on the basis of a foeaition, called the transition rules (7).

Emerging computation in cellular automata has differenti® Some have studied specific computa-
tion like density and synchronization tasks (8; 9) and pattecognition (10). While others have consid-
eredTuring-universal automatél1; 12; 13) i.e. automata encompassing the whole computtpower
of the class of Turing machines (14). Some have wondered.tbstign of the frequency of universal cel-
lular automata as Wolfram (15). Some demonstrations ofassality are based on mobile self-localized
patterns of non-resting states (13), caltgdiers and these patterns are considered to be between order
and chaos (16). The search for gliders is very competitivié @as notably explored by Adamatzlet
al. with a phenomenological search (17), Wuensche who used-parameter and entropy (18) and
Eppstein (19). Lohret al. (20) and Sapiret al. (21; 22; 23) have searched for gliders using evolutionary
algorithms.

In this paper, a study, based on the first two thousand disedgliders of the latter search, identifies
twelve different ways in which gliders move. The paper isaged as follows: the classification of gliders
is described in Section 2 then the last section summarizepréssented results and discusses directions
for future research.

320 Emmanuel Sapin and Olivier Sapin

Fig. 1: The seven possible neighbourhoods of the @el})) at generatiom. — 1.

2 Classification of Gliders

Sapinet al. have searched for isotropic gliders using an evolutionlygrahm (21; 22). This algorithm
found a lot of gliders accepted by different automata of aep# isotropic 2D Zstate automata using
Moore neighbourhood. The study is based on the first two trdigliders that were discovered on a run
of this algorithm. These gliders are only orthogonal or dizg) as no oblique gliders were found.

Concerning orthogonal gliders, the idea is to locate a glidea rectangle located at negative x-
coordinate. Orthogonal isotropic gliders move toward the tardinal points depending on their position
therefore the shape of the glider is chosen in order to makeve towards the East. At some point, some
cells of the glider will be at every positive x-coordinateheTfirst cell at each positive x-coordinate is
taken into account. The idea is to try to determine what thghfurhood of this cell was at the previous
generation.

Concerning diagonal gliders, the idea is to locate a gliderriectangle located at negative x-coordinate
and at positive y-coordinate. Diagonal isotropic glidemsventoward the four bisectrices depending on
their position. Then the shape of the glider is chosen inrda@make it move towards the South-East. At
some point, some cells of the glider will be on every diagdina with the equatiot” = X — ¢ with ¢
being a constant determining where the diagonal line ceasseis. The first cell on the diagonal line is
taken into account. The idea is to try to determine what thghiurhood of this cell was at the previous
generation. The first subsection studies how do orthogditrg move. How do diagonal gliders move
is studied in a second subsection.

2.1 Orthogonal Gliders

Let g be an orthogonal glider located to move towards the Eastsl ahds, be the size of the smallest
rectangle containing the glidgrat the generation 0. The glider is set up in a rectangle sahlaipper
right-hand corner i$—1, —1) and the lower left-hand corner(s-s,, —s,). Itis possible to prove that for
all ¢ > 0 there exist generations at which one or more cells of statél have c as an y-coordinate. Let
n. be the first generation when it happens énd)) the coordinates of a cell in state 1 such that no cell in
state 1, withc as a x-coordinate and with an y-coordinate higher thaxists. At generation. — 1, as
there is no cell in state 1 withor ¢ + 1 as x-coordinate, the neighbourhood of the pdint) can only

be one of the seven neighbourhoods numbered figure 1. Lethssdew all these neighbourhoods:

e If there exists: such that the neighbourhood of the delly) at generatiom,. — 1 is the neighbour-
hoods 1 or 3, the neighbourhoods 1 and 3 are isotropic andhaitethe neighbourhoods 3 leads to
the birth of a cell at every generation towards the NorthtBad a cell with the neighbourhoods 1
leads to the birth of a cell at every generation towards thelSgast, this behaviors is not possible
for any isotropic glider.

How do gliders move? 321

R T P R T T

Fig. 2: Gliders of typex and period 1 at generations 0 and 1 separated by a comma.

L..}% |.. | - e

L]
| e L] L]
|] EEEE [1] EEEE

Fig. 3: Gliders of typex and period 2 at generations 0 and 1 separated by a comma.

o If for all ¢ the neighbourhood of the c€lt, y) at generatiom. — 1 is the neighbourhood 2, such
gliders are called gliders of type The periods of all the discovered gliders of typare 1, 2 and
3 and the velocity is 1. Figures 2, 3, 4 and 5 show the sevewksed gliders of this type. These
figures and all others that show discovered gliders areexlesith the picture environment of latex
and the code of these figures were generated automaticadyrtithanks to an analysis of the size,
the period and the type of movement of every glider.

e If for all ¢ the neighbourhood of the cdlt,) at generatiom. — 1 is the neighbourhood 6, two
possibilities exist:

— the cell(c, y) is in state 1 with only the other cet, y — 1) in state 1 in the column, such
gliders are called gliders of typ& and 761 gliders of this type were found. The velocity of
all the discovered gliders of typ# is 1 as shown in figures 6, 7, 8 and 9 for a sample of them
with periods 1, 2, 3 and 4.

— the cell(c, y) of the columnc is in state 1 with a line of cells in state 1 frofm y) to (¢,y — 1)
with [> 1, therefore the neighbourhood 7 allows also the appeardredi®at column:. The
146 discovered gliders of this type are called gliders oétyp The velocity of the discovered
gliders of types; is 1. Some of the discovered typk gliders of periods 1, 2, 3 and 4 are
shown in figures 10, 11, 12 and 13.

e If the neighbourhood of the cefl, y) at generatiom. — 1 is the neighbourhood 4 then the cells
(¢c—1,y+1)and(c — 1,y + 2) are in state 1, therefore there is a line of cells in state th fitwe
cell (¢ — 1,y + 1) to the cell(c — 1,y + 1) with [> 1. At generatiom. — 1 the cell(c,y + 1)
has then the neighbourhood 6, the neighbourhoods 4 and $adreqic, therefore at generatiop
the cell(c,y + 1) will be in state 1 bufc, y) are the coordinates of a cell in state 1 such that no
cell in state 1, with: as a xcoordinate and with an y-coordinate higher theaxists. Therefore the
neighbourhood of the ce(t,) at generatiom. — 1 cannot be the neighbourhood 4.

o If for all ¢ the neighbourhood of the c€lt, y) at generatiom,. — 1 is the neighbourhood 5, such

k:.+ I:gg.+ k'::.+ I .

Fig. 4: A glider of typea and period 3 at generations 0,1,2 and 3.

322 Emmanuel Sapin and Olivier Sapin

[1]

L 1] EEE H EEE L 1]
EEE EEEE H EEN H EEEN EEN
N N ‘ N um NI -

Fig. 5: The discovered glider of type and period 4 at generations 0, 1, 2 and 3.

Fig. 6: Gliders of type3, and period 1 at generations 0 and 1 separated by a comma.

Fig. 7: Gliders of typeg, and period 2 at generations 0, 1 and 2 separated by a comma.

[]
[] |_d B | [] |_ord
H []
|] |]

Fig. 8: A glider of type 3, and period 3 at generations 0, 1, 2 and 3.

wr | ee Jar e | er

Fig. 9: A glider of type 3o and period 4 at generations 0, 1, 2, 3 and 4.

I I J I . | moe
- B B | B - B u u
[1] [1] u u | I | " N u u
| | | y H u | H N y | | y H N | H N
Fig. 10: Gliders of types; and period 1 generations 0 and 1 separated by a comma.

H B I H B I B I - I H B I B

u H EHE u u u u
H u H N H N y H N | H N

Fig. 11: Gliders of types: and period 2 at generations 0, 1 and 2 separated by a comma.

| | [I | |

" a B - -
| I | u u " N

| H N | |

| | | | H u ! u

Fig. 12: A glider of type3; and period 3 at generations 0, 1, 2 and 3.

| I | [1] u [1] | I |

[] | m m | = m l [] | []

Fig. 13: A glider of type 31 and period 4 at generations 0, 1, 2, 3 and 4.

How do gliders move? 323

Fig. 14: Gliders of typeyo and period 2 at generations 0, 1 and 2 separated by a comma.

L e e b e

Fig. 15: Gliders of typey, and period 3 at generations 0, 1, 2 and 3 separated by a comma.

gliders are called gliders of typg. Among the two thousand discovered gliders, 278 gliders of
type 20 were discovered. No gliders of typgwere found of period 1. Figures 14, 15 and 16 show
the discovered gliders of typg with periods 2,3 and 4.

e If for all ¢ the neighbourhood of the celt, y) at generatiom. — 1 is the neighbourhood 7 and
at generatiom the state of cellgc,y + 1) and(c,y — 1) is O then such gliders are called gliders
of type~;. Among the two first thousand, there are 321 discoveredglidktypey; and figures
17, 18 and 19 show a sample of them discovered of periods 2] 8.an

e Iffor all ¢ the neighbourhood of the célt, y) at generatiom. — 1 is sometimes the neighbourhood
5, sometimes the neighbourhood 7 depending,@uch gliders are called gliders of type Only
three gliders of type, among the two thousand were discovered and they have a pgrlodDne
of these gliders is shown in figure 20.

There is no proof in this paper that gliders for which forathe neighbourhood of the celt, y) at
generatiom,. — 1 cannot be among another set of neighbourhoods dependingetause such gliders
were not found among the first two thousand gliders that wisedered, the conjecture that every glider
is in only one of the six types, 5o, 51, Y0, 71 andy, is made.

2.2 Diagonal Gliders

Let g be a diagonal glider located to move towards the Sdidht. Lets, ands, be the size of the
smallest rectangle containing the glideat the generation 0. The glider is set up in a rectangle so that
the upper right-hand corner {s-1, —1) and the lower left-hand corner {s-s,, —s,). For all ¢ there
exists generations at which one or more cells of coordingtesy — c) is in state 1. Let. be the first
generation when it happens afd « — ¢) the coordinates of one of these cells such that no cell ie §tat

of coordinates such thaf = X — ¢ and with an x-coordinate higher tharexists. The neighbourhood

of the cell(x,x — ¢) at generatiom,. — 1 can only be one of the seven neighbourhoods numbered in
figure 21. Let us consider all these neighbourhoods:

.

o If there existsc such that the neighbourhood of the céll 2z — ¢) at generatiom,. — 1 is the
neighbourhood 1g cannot be a glider as shown in the section Orthogonal Gliders

e el

Fig. 16: A glider of type~, and period 4 at generations 0, 1, 2, 3 and 4.

II$

324 Emmanuel Sapin and Olivier Sapin

L]

- [] |} g HE R []] EEE—
L] - L] [] = [] m - L1
L] [] L] | = L] | =g EER m EEER
|] |] y |] |] y

L li b L

Fig. 18: Gliders of typey: and period 3 at generations 0, 1, 2 and 3 separated by a comma.

R T TR

Fig. 19: A glider of type~: and period 4 at generations 0, 1, 2, 3 and 4.

-
L]]
[]

-1

Fig. 20: A glider of type~- and period 4 at generations 0, 1, 2, 3 and 4.

Fig. 21: The seven possible neighbourhoods of the celk: — ¢) at generatiom. — 1.

How do gliders move? 325

Fig. 22: Gliders of typewo and period 2 at generations 0, 1 and 2.

] [|]
' " :
N IKJ EEE . N

Fig. 23: Gliders of typewo and period 3 at generations 0, 1, 2 and 3.

e Itis conjectured that if there existsuch that the neighbourhood of the dell = — ¢) at generation
n. — 1 are the neighbourhoods 2 or 3 theis an orthogonal glider so these neighbourhoods are
not possible for the cellz, z — ¢) of a diagonal glider.

e Iffor all ¢ the neighbourhood of the célt, y) at generatiom. — 1 is sometimes the neighbourhood
4, sometimes the neighbourhood 5 depending,@uch gliders are called gliders of typg. Only
three gliders of typey, shown in figures 22 and 23, among the two thousand were disedv

e Ifforall ¢ the neighbourhood of the célt, y) at generatiom. — 1 is sometimes the neighbourhoods
4 or 5, sometimes the neighbourhood 6 or the neighbourhoap@raling ore, such gliders are
called gliders of typev;. Only one glider of typev;, shown in figure 24, among the two thousand
was discovered and it has a period of 2.

e Ifforall ¢ the neighbourhood of the cé€lt, y) at generatiom. — 1 is sometimes the neighbourhoods
4 or 5, sometimes the neighbourhood 7 depending, @uch gliders are called gliders of type.
Only three gliders of types, among the two thousand were discovered and they has a pér2od o
Two of them are shown in figure 25.

e If for all ¢ the neighbourhood of the cdlk, x — ¢) at generatiom. — 1 is the neighbourhood 6,
such gliders are called gliders of typg. 59 gliders of type), were found among the two thousand
gliders with periods of 3 and 4, as shown figures 26 and 27.

e If for all ¢ the neighbourhood of the cdlk, 2z — ¢) at generatiom,. — 1 is the neighbourhood 7,
such gliders are called gliders of tyge. Some of these gliders with periods 3 and 4 are shown in
figures 28 and 29.

e Ifforall ¢ the neighbourhood of the célt, = — ¢) at generatiom. — 1 is sometimes the neighbour
hood 6, sometimes the neighbourhood 7 depending such gliders, called gliders of type, are
shown figures 30 and 31.

L]
...\|

u ..\\I ! HEE
=~

Fig. 24: The discovered glider of type; and period 2 at generations 0, 1 and 2.

326 Emmanuel Sapin and Olivier Sapin

[[
[[[| [[
[[[mE m L] |
EEE (13 [LLTN EEE " m
N [IR EEE) < | = m] mmEm
J =]

= L 1] [1] u
..lj .=II ..\j |
EE EHE HE B u | L L] .\J
[1] HEE B HEE EN
u |
Fig. 26: Gliders of typeio and period 3 at generations 0, 1, 2 and 3.
== u u u |
" .\I .ll\l " .\| ll\l] e)
Fig. 27: Gliders of typey and period 4 at generations 0, 1, 2, 3 and 4 separated by a comma
L L] H N | | L 1| | u
" an) | maEm a"s jmma"y] mm .
- \1 [~ mm_ N, N [[| THRN| | | lJ
Fig. 28: Gliders of typey, and period 3 at generations 0, 1, 2 and 3 separated by a comma.
|
u
Ill\\l
= | u u \ [1] " N
.=.\;| II: N I._I II:\ :I) .I.\J II=\ I:lN
|] RN y ~J | = y
Fig. 30: Gliders of typey, and period 3 at generations 0, 1, 2 and 3 separated by a comma.
| " N |
EEE u | u
u l\ H EHE =Il\\ .= =I=
‘ am Ill\l ‘II. ~ - | mamy

Fig. 31: A Glider of typey and period 4 at generations 0, 1, 2, 3 and 4 separated by a comma

How do gliders move? 327

The conjecture made for the neighbourhoods 2 or 3 impliegyediagonal glider is in one of the six
typesu)o: W1, Wa, 1/’01 1/)1 and’(/)g.

3 Synthesis and perspectives

This paper deals with the emergence of computation in congylstems with local interactions. A study
about how gliders move is performed based on discoveredmglidwelve types of movement have been
identified depending on how new cells are generated in theesefirdirection of the gliders. The first two
thousands gliders discovered by the evolutionary algarith(21; 22; 24; 25; 26) have been automaticaly
classified in one of the twelve types and some gliders of eguhare shown in figures that were created
with the picture environment of latex and the code of theseréig were generated automaticaly in part
thanks to an analysis of the size, the period and the type gément of every glider..

The knowledge of the type of a glider can help to search foidegbun emitting this glider and then
to demonstrate the universality of automata that accepNldreover this research is a first step to lead
to a better understanding of a link between the transititesrand gliders in cellular automata therefore
a link between the emergence of computation in complex Bysteith simple components that is a new
contribution to this theory of complex system. Future woduld be to demonstrate the conjectures
performed in this paper notably that only these twelve typest or to find other types if any would exist.
It also could be relevent to demonstrate properties of gderand velocities of some types. The study
of type to movement could also be extended to gliders of aatawith more than two states, gliders of
hexagonal automata and gliders of automata with more thamimensions.

References

[1] M.M. Waldrop. Complexity: The Emerging Science at the Edge of Chaos. (ew Simon and
Schuster Simon and Schuster, New York, NY, 1992.

[2] Aristotle. MetaphysicsBook 8.6.1045a:8.0., (unknown).
[3] S. Wolfram. A New Kind of SciencéNolfram Media, Inc., lllinois, USA, 2002.

[4] J. Von Neumann.Theory of Self-Reproducing Automatdniversity of lllinois Press, Urbana, I,
1966.

[5] A. llachinski. Cellular Automata World Scientific, 1992.

[6] G. Terrazas, P. Siepmann, G. Kendall, and N. Krasnogam. efolutionary methodology for the
automated design of cellular automaton-based complexmsgst Journal of Cellular Automata
2:77-102, 2007.

[7] S. Wolfram. Universality and complexity in cellular amata.Physica O 10:1-35, 1984.

[8] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisgithe edge of chaos : Evolving cellular
automate to perform computatior@omplex systemg:89-130, 1993.

[9] M. Sipper. Evolution of parallel cellular machinds. Stauffer, editor, Annual Reviews of Computa-
tional PhysicsV. World Scientific:243-285, 1997.

328 Emmanuel Sapin and Olivier Sapin

[10] D. Wolz and P.B. de Oliveira. Very effective evolutiogaechniques for searching cellular automata
rule spacesJournal of Cellular Automatavol 3, Issue 4:pp. 289-312, 2008.

[11] K. Morita, Y. Tojima, |. Katsunobo, and T. Ogiro. Univaal computing in reversible and number
conserving two-dimensional cellular spacds. A. Adamatzky (ed.), Collision-Based Computing,
Springer Verlag.pages 161-199, 2002.

[12] A. Adamatzky. Universal dymical computation in mufimensional excitable latticemternational
Journal of Theoretical Physi¢c87:3069—-3108, 1998.

[13] P. Rendell. Turing universality in the game of lifén Adamatzky, Andrew (ed.), Collision-Based
Computing, Springepages pp. 513-539, 2002.

[14] N. Ollinger. Universalities in cellular automata a ¢st) survey. In B. Durand, editor, Symposium
on Cellular Automata Journees Automates Cellulaires (D8} 'pages pp. 102-118, 2008.

[15] S. Wolfram. Twenty problems in the theory of cellulat@mata. Physica Scriptapages 170-183,
1985.

[16] A. Wuensche. Classifying cellular automata autonadlyc Finding gliders, filtering, and relating
space-time patterns, attractor basins, and the z paran@tenplexity Vol 4, Issue 3:pp. 47-66,
1999.

[17] G. J. Martinez, A. Adamatzky, and H. V. McIntosh. Phermlogy of glider collisions in cellular
automaton rule 54 and associated logical gates chaastals and Solitons28:100-111, 2006.

[18] A. Wuensche. Discrete dynamics lab (ddlakyyw.ddlab.org , 2005.
[19] D. Eppstein.http://www.ics.uci.edu/ ~eppstein/ca/

[20] J.D. Lohn and J.A. Reggia. Automatic discovery of selblicating structures in cellular automata.
IEEE Transactions on Evolutionary Computatjdn165-178, 1997.

[21] E. Sapin, O. Bailleux, and J.J. Chabrier. Research @llalar automaton simulating logic gates by
evolutionary algorithmsEuroGPO03. Lecture Notes in Computer Scier10:414—-423, 2003.

[22] E. Sapin, O. Bailleux, J.J. Chabrier, and P. Collet. Dasiration of the universality of a new cellular
automatonlJUC, 2(3), 2006.

[23] E. Sapin, A. Adamatzky, and L. Bull. Searching for glidgins in cellular automata: Exploring
evolutionary and other techniqudsAQ07. Lecture Notes in Computer Scie@26:255-265, 2007.

[24] E. Sapin, A. Adamatzky, and L. Bull. Genetic approadioesearch for computing patterns in cellular
automatalEEE COMPUTATIONAL INTELLIGENCE MAGAZINE(3):20-28, 2009.

[25] E. Sapin. Gliders and glider guns discovery in celldatomata.In A. Adamatzky (ed.),Game of
Life Cellular Automata, Springer Verlagin press).

[26] E. Sapin, A. Adamatzky, P. Collet, and L. Bull. Stochastutomated search methods in cellular
automata: The discovery of tens of thousands glider gNasural Computing(in press).

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 329-338

Stable Mixtures in Probabilistic Induction of
CA Rules!

Burton Voorhees!

Y Center for Science
Athabasca University

1 University Drive
Athabasca, AB

CANADA TT9S 3A3
burt@athabascau.ca

An induction algorithm provides unbiased best guess estimates of cellular automata rules generating time series of
binary strings. If the strings were generated by a CA rule, the algorithm returns a rule in a symmetry class containing
that rule. If the time series is random an unexpected outcome occurs: either the algorithm makes a type 1 error and
still predicts a generating CA rule, or stable mixed choice cases appear in which the induction algorithm settles on a
small set of rules as potential series generators. We present numerical results of these mixed choice outcomes, and an
analytic explanation of how they are possible.

Keywords: caellular automata, stable mixtures

1 Introduction

In earlier papers [1, 2] a probabilistic induction algorithm was introduced, providing unbiased best guess
estimates for the cellular automata rule generating a time series {yu(¢)} of m-digit binary strings. The
algorithm employs two probability distributions over the modeling set of elementary cellular automata
rules, an a priori distribution and a choice distribution. The a priori distribution begins with conditions:

1 N-1
P,0) =1, Y Plit)=1 (1)
1=0

where the modeling set contains N rules and P(i,t) is the a priori probability for choice of rule R;. At
iteration ¢ a single member of R is chosen, depending on p(t) and the choice distribution {P*(4,¢)|0 <
i < N — 1}. Given this choice, the a priori distribution is updated by reinforcement. If element R from
R was chosen at iteration ¢ then

P(i,t) i#s

P(i,t+1) = {TT1+P(i,t) o sy)

T Supported by NSERC Discovery Grant OGP 0024871 and grants from the Athabasca University Research Committee.

330 Burton Voorhees

The choice distribution is adapted to the predecessor profile of all rules in the modeling set R. This is
necessary to eliminate bias, it would not do, for example, to allow prediction of a rule at any given iteration
if that rule could not possibly have generated the strings given. If n;(u(t)) is the number of m + 2 digit
predecessor strings of the string p(¢) for rule R; then the choice at iteration ¢ will be unbiased if the

distribution used is]
P (i = M(EO)PGD)
ijo n;(u(t)) P4, t)

Once a choice is made, however, it is the a priori distribution {P(4,¢)} that is updated in accord with
equation 2.

It might seem easier to test rules in the modeling class R to see if any of them satisfy the condition
R;i(p(t)) = u(t + 1) for all ¢, but this method fails when {u(t)} is the output of an apparatus that
provides finite, discrete time measurements of a continuous dynamical system. Two considerations arise
in this setting:

3)

1. Spatial continuity implies that each p(¢) consists of the first m digits of a half infinite binary string
giving the value of the continuous dynamical variable.

2. Temporal continuity means that the system will have passed through a continuum of states between
the measured values (t) and p(t + 1).

For binary strings of length m, the predecessor profile V'(7) of a rule R; is a vector in 2™-dimensional
Euclidian space defined by V(i) = n; (o - - . ftm—1) Where g . . . fy,—1 is the binary form of the index
w. Since all rules have the same total number of predecessors,

PRAGEP s “4)
"

and all profiles lie in a 2™ — 1 dimensional simplex. The minimal length of the predecessor profile
vector occurs for surjective rules, for which this vector terminates at the barycenter of the simplex. Since
all strings have 4 predecessors for surjective rules, location in this simplex is determined by v, (i) =
V(i) — 4.

w

2 Empirical Results

If the series {p(t)} was generated by a CA rule then, with high probability, the induction algorithm re-
turned a rule in a symmetry equivalence class containing the generating rule. What is of interest, however,
is the response of the induction algorithm when the series {x(t)} is random. Two distinct outcomes are
observed. The first and most frequent is that the algorithm still converges on a predicted series generator,
committing an error of type 1. This is something that all induction is subject to so long as it is necessary
to make a choice from a modeling class and there are no provisions that allow a response of “random.”
Indeed, it is well known in cognitive science that the brain itself is vulnerable to such errors and there are
good evolutionary reasons that this is so. It is far safer to imagine a danger that is not present than it is to
overlook a danger that is.

The second outcome is that a mixed choice, or “faceoff” appears, in which the algorithm settles into
an apparently stable mixture of a small set of rules (2 — 5). What appears paradoxical is the stability of

Stable Mixtures in Probabilistic Induction of CA Rules 331

these cases. If a rule is chosen at a given iteration, its a priori probability is reinforced. Thus, the initial
expectation was that all faceoffs would be transients, eventually converging to a winning rule. This does
not occur: faceoff cases appear within a few thousand iterations, and persist to the maximum number of
iterations allowed (70,000 — 100,100). What occurs is that for certain combinations of rules, the fact that
a rule is chosen at a given iteration leads to a decrease in its choice probability at the next iteration, even
though the a priori probability is increased.

Analysis of faceoff data shows a correlation between rule table structure and faceoff frequency, both in
terms of the A and z parameters and in terms of rule decomposition into linear and non-linear parts. There
is a correlation between the frequency that a rule appears in a faceoff and its predecessor profile, both for
individual rules, and for rules showing up in faceoffs together. Figure 1 shows faceoff frequencies with
m = 8 for the 256 elementary CA rules, ordered by increasing faceoff frequency, together with distance
[|v]| from the origin in the predecessor simplex. With the exception of the surjective rules, for which
[lv]] = 0 and the faceoff frequency is close to 0, this figure indicates an inverse relation between ||v]|
and faceoff frequency. The exception for surjective rules occurs because a surjective rule will win against
any non-surjective rule—the few faceoffs that occur involving surjective rules only involve such rules. It
also appears that faceoffs involving rules from the same symmetry class are rare, and that faceoffs tend to
involve rules separated by an intermediate distance in the predecessor profile simplex.

Profile Deviation llvll and Face-off prob wz, Rule; n = 8
8,84 T T T

llvll /28815,731815 +
face-off prob /2.696115 =

8,839 b

8,829 - b

+H+

8,815 - b
+ +H

- +

HHH Hig

FHEF L bt

8,085 - HpoHil "+H'+'FWN|-_'fH
s

+ +H

a 50 188 158 208 250 308
rule {(reordered}

Fig. 1: Profile Deviation ||v|| and Faceoff Frequency for 256 Elementary Rules on Strings of Length 8 (Note: Rules
Ordered by Increasing Faceoft Frequency)

There is some evidence of a power law relation between faceoff frequencies and the value of ||v]||. Plots

332 Burton Voorhees

of log||v]| versus the log of faceoff frequency f for 3 < m < 8 for all r values show a value for the
slope of the linear regression of —.323674 & .009980, leading to a relation f ~ K ||v||~3-989%53 Taking
the standard deviation of the slope into account, this suggests an inverse cube relation. This breaks down,
however, when data for varying r is examined. As shown in Table 1, this data indicates a dependence on
both m and r. For r = 1.01 the linear relation remains for all m, but now the slope varies as indicated in
Table 1. For » = 1.05 a reasonable linear relation only appears for m greater than five, while for r = 1.1
it only shows up at m = 8 and not at all for » = 1.2 or greater.

m 3 4 5 6 7 8
r=1.01 | -.362621 | -.2163944 | -.189907 | -.183785 | -.174483 | -.153609
r=1.05 Linear relation unclear -.293239 | -.321353 | -.331769

r=1.1 No discernable linear relation -.339981
r=1.2 No discernable linear relation

Tab. 1: Slope of Linear Regression for log||v|| vs. log(f) form = 3,....8

Another perspective is provided by Figure 2, which shows faceoff frequencies for the top 700 pairs of
rules occurring in faceoffs for » = 1.01 with m = 8, combined with the distance between rules found in
these pairs. Also indicated in this figure are the values of this distance for rules related by the symmetry
operations of neighborhood reversal (71) and predecessor reversal (13), and the expected distance of rule
pairs chosen at random. Plots of similar figures for values of m from 3 to 7 shows the distance between
rules in faceoffs gradually increasing toward the random expectation line indicating that there is an effect
due to string length. The faceoff distances do not obviously fall below what would be expected on a
random distribution until m = 5. Another effect that shows up when all faceoffs are considered rather
than only the most frequent 700 is that the distance distribution remains relatively flat until about the
2500-th pair and then suddenly increases. This is indicated in Figure 3. No explanation has been found as
yet for the apparent quantization of distances that appears with the sharp jump.

The apparent stability of mixed choice responses was tested by forcing the occurrence of faceoffs. This
was done by choosing two rules and artificially setting their initial probabilities between .49 and .50. The
induction algorithm was then continued for 100, 100 iterations following the emergence of a faceoff. Data
on a priori probabilities was taken at every 100 iterations of the induction algorithm yielding 1001 data
points for each rule in the faceoff. Mean a priori probabilities were computed together with their standard
deviations. Table 2 shows the results for four 2-rule and four 3-rule faceoffs.

3 Faceoff Stability

Stability of faceoffs arises through details of the induction algorithm, which involves both the a priori
probabilities of equations 1 and 2, and contributions from the predecessor profiles of all rules in the
modeling class in the choice probabilities of equation 3. This produces cases in which choice of the
random string (¢ + 1) results in the probability that a rule is chosen at iteration ¢ + 1 being less than its
probability of being chosen at iteration ¢, even though it was chosen at ¢ so that it’s a priori probability is
increased for iteration ¢ 4+ 1. The obvious case is if the string (¢t 4 1) is a Garden-of-Eden string for the
rule chosen at t. The next theorem describes the more general case.

Stable Mixtures in Probabilistic Induction of CA Rules 333

Distance between the top 708 face—off rule-rule pairsi n =8 r = 1,081
1868

T T
observed distance +

expected distance {T1} *

168 -
140 + + .
+ * + + b, T
128 r T vt * o 41-{' ++# ++¢ -:' +t¢+ﬂ' e ++: ; 'ﬂ—iJr]
R AR S s A AL e A T
g il 4 ol Weg P AT Py T L e H
R S ATy RS EC A S
= +y T +h k. h + L+ +
et e Bl Hed + + A+ L+
& gl L g e F ﬁ-H—{% ﬁ-% +{F‘§-H ++1HH+ o +y g afr tr
bl i + H# o+ o+ + ++ + + *i* + 7
= + ¥ N
e +
60 *
+ + +
a8 - oA
20 1
a
8 108 200 380 408 580 680 700

rule-rule pair

Fig. 2: Distances Between Top 700 Rule Pairs in Faceoffs (r = 1.01, m = 8) (Red shows distances between faceoff
pairs, Blue line shows expected distance for 71 related rules, violet for 73 related rules, green for randomly related
rules)

Rules in Faceoff | Onset Mean Frequency Standard Deviations
at Iteration

(152,229) 5400 (.51257, .48742) (.05174, .05174)

(57,218) 64,500 (.45920, .54079) (.05411, .05411)

(161,122) 6800 (.50676, .49323) (.05341, .05340)

(145,173) 2900 (.44342, .55658) (.05061, .05061)
(12,58,124) 3200 | (.13435,.38054, .48510) | (.02990, .05313, .05059)
(88,126,159) 2900 | (.67616,.11973, .20410) | (.04051,.03671, .04189)
(96,182,244) 11,700 | (.25799, .58103, .16097) | (.03893,.04796, .04325)
(28,31,39) 2300 | (.36764,.29421, .33815) | (.04364,.05123, .05591)

Tab. 2: Mean a Priori Probabilities and Standard Deviations for Some Forced Faceoffs

Theorem 1 If a rule R; is chosen at iteration t, the condition for P*(i,t + 1) — P*(i,t) < O is

P,

f)

ni(u(t +1))n;(u(t))

r—1+ P(i,t)

ni (p(t))n; (u(t + 1))

334

Distance between the top 32896 face-off rule-rule pairs; n = 8 r = 1,81

Burton Voorhees

1668 T —
observed distance +
exdpected distance (randon)
expected distance {T1} +#
1488 edpected distance (T3} O 4
1268 - b
+ H
+ + + t#zf
#WHHMW et R b
g 1088 - + + f*++ +++ + PR
5 £t + +
B i+ i
= +
o
S
=
L
]
c
[

a haaa 186868

15688 20868 256088
rule-rule pair

38688

Fig. 3: Distance between 32, 896 rule pairs occurring in faceoffs.

35688

Table 3 shows the percent of pairs of eight digit strings satisfying the condition of equation 5 with
r = 1.01, for the four two rule faceoffs of Table 2 and for two comparison cases of rule pairs (18,90)
and (24, 126), which have never appeared together in faceoffs. The satisfaction percentage indicates the
percent of all pairs of eight digit strings (u(t), u(t + 1)) with n;(u(t)) # 0 that satisfy equation 5. The
larger it is, the more likely equation 5 is to be satisfied, meaning that rule R; is less likely to be chosen on
the iteration following the one at which it was chosen. The n;(1(t)) # 0 condition is imposed since by
assumption rule R; was chosen at iteration ¢ and this could not have occurred if n;(1(¢)) = 0. Note that
if n;(u(t + 1)) = 0 equation 5 can never be satisfied.

Rule Pair

Satisfaction Percentage

(152,229)

(53414, .57045)

(57,218)

(.54645, .46960)

(161,122)

(53375, .53375)

(145,173)

(.54820, .56682)

(18,90)

(.68640, .38878)

(24,126)

(.44453, .21447)

Tab. 3: Satisfaction Percentages For Selected Rule Pairs in 2-Rule Faceoffs and Comparison Pairs

Stable Mixtures in Probabilistic Induction of CA Rules 335

The first comparison case involves rules 18 and 90 (a surjective rule). In this case, examination of the
satisfaction percentages shows a strong bias for continued choice of rule 90. In the second case, neither
satisfaction percentage is above .5, indicating that the two rule situation is unstable.

In three of the four faceoff cases shown, both rules have satisfaction percentages greater than .5, which
can be taken as indication of stability. The remaining case involves rules 57 and 218. This case is also
unusual in that the onset of the two rule faceoff only occurs at iteration 64, 500 and it appears to emerge
from the collapse of a three rule faceoff. Since a cutoff on probability was used to determine which rules
to include in faceoffs, this case may represent a situation in which a three rule faceoff has one rule with a
very low probability, or possibly a two rule case in which additional stability is provided by an infrequent
invasion of other rules.

While Theorem 1 involves a specific pair of strings u(¢) and p(t + 1), it is also possible to obtain a
stability condition that is independent of the random string generated at any given iteration. Let A(i|¢, ¢ +
1) = (P*(i,t + 1)), — (P*(4,t)), where (-), indicates the average computed over all m-digit strings. If
E[A(i|t, t +1)] is the expected value of A(é|¢, ¢+ 1), the choice probability of rule R; will be expected to
increase or decrease with continued iteration of the induction algorithm as E[A(i|t, t + 1)] is respectively
greater than or less than 0. The condition for rule R; to be in a stable faceoff is that E[A(i|t,t + 1)] = 0.

Theorem 2 Let E[A(i|t,t + 1)] be the expectation value of A(i|t, ¢+ 1). The condition for E[A(i|t,t +

1)]=0is
. ni(p) — ns(p) ni(W') —ns(W) | _
P(i,t) ;P(s,t) [Z}; oD] ; Do7) 0 (6)
where)
v(pt) =Y ns(W)P(s,t), D) = —o(u', (') +7 = 1] (7

If a faceoff is to be metastable, the condition E[A(i|¢,¢ + 1)] = 0 must hold for each rule involved in the
faceoff. If only two rules are involved, say I?; and R; then, from equation 9, it is necessary that

_ N) =)
di(t) = 2}; o =" ®)

Note that this equation is identically satisfied for surjective rules. Table 4 gives the values of d;;(¢) for
the 2-rule faceoffs of Table 3, averaged over the100, 100 iterations of the induction algorithm, as sampled
every 100 iterations, as well as for the comparison cases of rules (18,90) and (24, 126). While all of
the faceoff cases are well within their standard deviation of 0, the comparison values are large (since
the comparison rules are never involved in faceoffs, the value was computed on the assumption that the
probability for both rules was .5. Hence there is no standard deviation for these cases).

Rules (152,229) | (57,218) | (161,122) | (145,173) (18,90) (24,126)
(dij(£))e -.53572 2.16914 2.99782 -.25306 | -228.60807 | -111.82395
Standard Deviation | 25.24048 | 20.77144 | 23.98559 | 28.22384

Tab. 4: d;;(t) Averaged Over t Together With Standard Deviation

336 Burton Voorhees

Examination of equation 6 shows how the presence of an additional rule in a faceoff can help to stabilize
it. For a three rule faceoff involving rules R;, R;, and Ry, the expectation values to consider are:

E[A(i|t,t +1)] = P(i, 1)

P(j.)®i5(t) Y i) =W | ey, (1) 3 ”(“)—”k(“)]

- v, t) " v(p,t)
E[A(j|t. t+1)] = P(j,t) | P(i,t)D5(t) > (1) = i) + Pk,)Pk (t) Y 2300 =)
’ ’ »TY # v(,t) T m o(p,t)
B : ng(p) —n;(p) , ng(p) — ni(p)
E[AK[L ¢+ 1)] = P(k,t) | PG, 6)® (1) Xﬂ: TR ACULC) XH: kv(ut)]
)

Note that E[A(i|t, t+1)]+ E[A(j|t, t+1)]+ E[A(k|t, t+1)] = 0, reflecting conservation of probability,
and that when P(k,t) = 0 this reduces to the case of equation 8. Now consider a case for which

Z ni(p) —n;(p) Z n;(p) — g (1)

>0, >0,
vt - v(p, 1) ,

Z nk(l;)(/: :)i(u) <0 (10)

No pair of rules satisfies equation 7 so no two-rule faceoff involving these rules can be stable. Never-
theless, each of the expectation values in equation 9 can be zero if the bracketed terms in equation 9 are
all zero. In matrix form this is expressed as:

@ (£ (1)
1 Twoae 0 (i,t)
<1>.,((t))m(t) : 7W]]j((l??) - v
"B (D (D) 0 L ’

It is easy to show that the eigenvalues of this matrix are just the cube roots of unity, illustrating the cyclic
rock-paper-scissors nature of the three rules involved.

4 Discussion

The apparent stability of mixed choice induction suggests a more general possibility. In inductive net-
works with established modeling classes of patterned responses, stable higher-level response patterns may
emerge as stochastic mixed choice blends. This provides a mechanism of behavioral emergence as well
as offering a potential selective advantage in cases in which response to ambiguous input is required. This
also provides a mechanism for the emergence of mixed response strategies that succeed even though each
individual strategy in the blend fails if utilized alone—a situation arising in paradoxical games [3, 4, 5].

Stable Mixtures in Probabilistic Induction of CA Rules 337

5 Acknowledgements

This work was carried out with the assistance of NSERC Undergraduate Summer Research Assistants
Todd Keeler (2004, 2005) and Rhyan Arthur (2003, 2005) and supported by NSERC Discovery Grant
OGP 0024871.

References

[1] Voorhees, B., Arthur, R., and Keeler, T. Probabilistic induction of cellular automata rules: 1. A
reinforcement scheme. International Journal of Unconventional Computing 2(2) (2006) 91 — 127.

[2] Voorhees, B., Arthur, R., and Keeler, T. Probabilistic induction of cellular automata rules: II. Probing
CA rule space. International Journal of Unconventional Computing 2(3) (2006) 195 — 229.

[3] Martin, H., and von Baeyer, H.C. Simple games to illustrate Parrondos paradox. American Journal
of Physics 72 (2004) 710 — 714.

[4] Harmer, G.P, and Abbott, D. Losing strategies can win by Parrondos paradox. Nature 402 (1999)
864.

[5] Behrends, E. On Astumians paradox. Fluctuation and Noise Letters 5(1) (2005) L109 — L125.

338 Burton Voorhees

Automata 2010 — 16™ Intl. Workshop on CA and DCS — short papers 339-350

A Note on (Intrinsically?) Universal
Asynchronous Cellular Automata

Thomas Worsch!

L Faculty of Informatics
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

We consider asynchronous one-dimensional cellular automata (CA). It is shown that there is one with von Neumann
neighborhood of radius 1 which can simulate each asynchronous one-dimensional cellular automaton. Analogously
all a-asynchronous CA (where each cell independently enters a new state with probability «) can be simulated by
one a-asynchronous CA (with the same probability for state updates) with von Neumann neighborhood of radius 1.

We also point out a few open problems for asynchronous CA.

Keywords: cellular automata, intrinsic universality, asynchronous updating

1 Introduction

Asynchronous cellular automata (ACA) are cellular automata where in each global step only the cells in an
arbitrary (non-empty) subset of all cells make a state transition while the others retain their current states.
Recently so-called a-asynchronous CA have gained a lot of interest. Here v €]0; 1] is the probability with
which each cell independently of the others makes a state transition during a global step.

This paper is organized as follows: In Section 2 we review the basic definitions and the known con-
structions for asynchronous CA as far as they are relevant in the present context. The core of the paper is
Section 3 where the overall construction is sketched and the main technical tool explained which give rise
to the following result:

Theorem 1 There is a purely asynchronous deterministic CA which is able to simulate all purely asyn-
chronous deterministic CA.

The precise definition of “simulation” needed in the theorem can be seen from the constructions below.
We consider this to be a reasonable approach, but admittedly the situation is more complicated then in the
synchronous deterministic case. In addition until a satisfying definition is agreed upon we use the adverb
“intrinsically” informally: For a set of automata M a member M € M is intrinsically universal for M,
if it can simulate each M’ € M.

It should be pointed out, that an extension of the precise notion of intrinsic universality for S-DCA, as
proposed e. g. by Ollinger (2008), to CA which are not S-DCA is still missing. This is the reason why

340 Thomas Worsch

the word “intrinsically” has been put in parenthesis and furnished with a question mark in the title of this
paper.

The main technical problem is that on one hand despite asynchronous updating the universal simulator
has to work reasonably (this is easy) while on the other hand one has to exploit the asynchronicity of the
simulator to generate the different possibilities for global steps of the simulated asynchronous CA.

A closer inspection of the construction reveals that the same ideas can be one applied in several other
situations. These possibilities are discussed in Section 4. We conclude with a summary and a short outlook
in Section 5.

2 Basics
2.1 General notation

In this paper we are interested in one-dimensional cellular automata. If the set of states of one cell is
denoted as Q, the set of all configurations is Q4. (We write B4 for the set of all functions from A to
B.) A neighborhood is a finite set N = {v1,..., v} of integers. A local configuration is a mapping
¢: N — Q; thus QY is the set of all local configurations. The local configuration c; y observed by cell
1 € Z in the global configuration c is defined as ¢,y : N — Q : n+— c(i + n).

The behavior of a single cell of a nondeterministic CA (NCA) is described by the local transition
function f : QN — 29. (We write 2 for the powerset of M.) An NCA is a deterministic CA (DCA)
iff for all ¢ € Q™ holds: |f(¢)| = 1. For a probabilistic CA (PCA) the local transition function is of the
form p : QN — [0;1]9, where p(¢)(q) is the probability that a cell enters state g if it observes £ in its
neighborhood. For PCA it is required that for all £ € Q" the sum > 4eq P(0)(q) = 1. To each PCA there
is a corresponding NCA with local transition function f : Q¥ — 2% : £+ {q | p(£)(q) > 0}. Whenever
we speak about PCA and use some notation for NCA, we mean the corresponding NCA as just defined.

We call each tuple (¢1,...,qk,q") withq' € f(q1,...,qxr) arule of the CA.

The triple (Q, f, N) is called the local structure of a CA.

2.2 Updating schemes

In general a local structure (Q, f, N) together with a prescription how cells are updated induce a global
transition relation F© C Q% x Q% describing the possible global steps. If (c,c’) € F we will also write
¢ ¢ (possibly with an index for further clarification). In a global step each cell has two possibilities:
to be active and make a state transition (according to a rule) or to be passive and not to change its state.
Restrictions made by different updating schemes lead to different possible behaviors of CA.

A (finite or infinite) sequence (co, ¢, Co,...) of configurations is a computation, iff for all pairs
(¢i, ¢i+1) within the sequence it is true that ¢; F ¢;41.

Synchronous updating. Synchronous updating means that in a global step all cells are active. Hence
for an NCA ¢ ° ¢ holds iff Vi € Z : /(i) € f(citn). Of course, for deterministic CA the global step
relation F' is in fact a function. We will use the prefix S- to indicate synchronous updating (S-NCA etc.).

Now, we’ll have a look at different types of asynchronous updating.

Purely asynchronous updating. The first version of asynchronous updating has been considered for
many years now (see e.g. Nakamura, 1974). In order to distinguish it from the other forms mentioned

A Note on (Intrinsically?) Universal Asynchronous Cellular Automata 341

below we call this version purely asynchronous updating. In this case in each global step there are no
restrictions on whether a cell may be active or passive. Thus for an NCA ¢ F* ¢’ holds iff Vi € Z :
(i) € fleirn) V (i) = c¢(i). (We remark that formally it is allowed that no cell is active in a global
step. But nothing in this paper gets wrong, if one requires that in each global step the set of active cells is
non-empty.)

Obviously, even for deterministic CA purely asynchronous updating can lead to many different possible
computations starting with the same configuration. See Section 2.3 below for further remarks on this.

We will use the prefix A- to indicate asynchronous updating (A-NCA etc.) and use the term asyn-
chronous CA (ACA) for A-DCA (with a deterministic local function!).

a-asynchronous updating. Inrecent years so-called a-asynchronous CA have attracted some attention.
Here, o €]0; 1] is a positive probability. Similar to PCA one considers the behavior (active or passive)
of each cell during a global step as a random variable, and « is the (uniform) probability of a cell to be
active. We will write 8 = 1 — « for the probability that a cell remains passive.

We will use the prefix A(a)- to indicate a-asynchronous updating (e. g. A(0.5)-NCA etc.).

Fully asynchronous updating. In the fully asynchronous updating scheme it is required that in each
global step only exactly one cell is active. We write ¢ /% ¢’ iff there is a cell i € Z such that ¢/ (i) €
f(eien) and Vi # 4 : /() = c(j). Even for relatively simple DCA (e. g. the elementary DCA or two-
dimensional minority) the analysis of their behavior under fully asynchronous updating is surprisingly
“nonsimple” Fates and Gerin (2008); Regnault, Schabanel, and Thierry (2009); Lee, Adachi, Peper, and
Morita (2004).

2.3 Relations between different types

We will now review some known relations between different types of CA. This quickly leads to the notion
of simulation. In the following we will speak about guest CA and guest cells and about host CA and host
cells. The host is the simulating CA and the guest is the simulated CA.

2.3.1 The obvious

It should be clear that ACA, i.e. A-DCA, are a special case of S-NCA in the following sense: Assume
that A is an ACA with local structure (Q, fa, N4). Define an NCA B with local structure (Q, f5, Np)
as follows: the set of states is the same and the neighborhood is Nz = N4 U {0} (may be the same, too).
For each local configuration ¢ : Ng — @ one requires fp(¢) = {£(0)} U fa(¢|n,). (Here we use the
notation f| for the restriction of function f to the subset M of its domain.)

Then F¢ is the same as 5. This is so, because given ¢ -4 ¢/, a cell ¢ in configuration ¢’ of A has the
possibilities ¢(¢) and f4(c;4+n,) (by definition of asynchronicity); and given ¢ 4 ¢’ in configuration ¢’ a
cell i in B has the possibilities ¢(7) and f4(c;+n,) (by definition of f) as well.

So in a very strong sense each A-DCA A can be simulated by a S-NCA B: the induced global step
relations are exactly the same. In general the reverse simulation, in the same sense, of S-NCA by A-DCA
is impossible since a cell of an S-NCA may enter one of three or more different states while a cell of an
A-DCA has at most two choices.

Analogously one can consider A(«)-DCA as a special case of PCA, but not vice versa.

2.3.2 Q@Golze’s construction.
Golze (1978) has shown how for each S-NCA B one can construct an A-DCA A simulating B. Besides

342 Thomas Worsch

the obstacle of different numbers of choices just mentioned, there is another problem. Whenever one uses
some kind of asynchronous updating, there are infinite computations in which only a constant number of
cells is ever active. Such computations are not useful at all. Roughly speaking, the solution proposed by
Golze (1978) is to consider equivalence classes of space-time diagrams where for example computations
as just mentioned are equivalent to the trivial computation where nothing at all has happened.

The simulations described in Section 3 are reasonable in the sense that the overall approach is along the
lines already proposed by several authors.

It should be noted that in Golze’s construction the size of the neighborhood of the host depends on the
maximum number of nondeterministic choices in one local situation and cannot be bounded by a constant.
As we will point later in some more detail, the construction in Section 3 can be used to achieve the same
while only using von Neumann neighborhood of radius 1 in all cases.

2.3.3 Nakamura’s construction.

Nakamura (1974) has described how an S-DCA D can be simulated (again in a specific sense) by an
A-DCA A. The problem to overcome is that uncontrolled active state changes of one cell may lead to
totally “irrelevant” configurations if neighboring cells do not become active at all. We briefly sketch the
idea (citing from a paper by Worsch and Nishio (2009)).

As the set of states for A one uses Q4 = Qp x Qp x{0,1,2}. Let ¢! denote the configuration reached
by D after ¢ steps from some initial configuration c. If in a given configuration c4 of A cell j of A has
already simulated ¢ transitions of cell j of S then c4(j) = (c!(4), ¢! ~1(j), t mod 3). Therefore we denote
by current(q), old(q), and time(q) the first, second, and third component of a state ¢ € () 4 respectively.
time(q) is also called the time stamp of the cell.

In order to maintain this invariant, given ¢i,...,qx the local function fa(qi,...,qx) is defined as
follows, assuming without loss of generality that v; = O:

o If for all i: time(q;) = time(qy) or time(q;) = time(q1) + 1 (mod 3), then
falar, -, qx) = (fp(dh, ..., qp), current(qr), time(¢q1) + 1 (mod 3)), where
, _ Jeurrent(q;) if time(q;) = time(q1)
) old(q;) if time(q;) = time(gq1) +1 (mod 3)

e otherwise fa(q1,-.-,qx) = 1.

If a cell is updated according to the first alternative, we will say, that it makes progress.

As in Golze’s construction also in this case for each guest CA to be simulated another host CA to
simulate is used. What we will describe in the following two sections is one host being able to simulate
all guests from an infinite set of CA.

3 Universal simulation of purely asynchronous DCA

In this section we will describe the construction of a purely asynchronous DCA able to simulate each
purely asynchronous DCA. The cases of a-asynchronous and fully asynchronous updating will be dis-
cussed in Section 4.

Since we are interested in one host being able to simulate different guests for different initial configura-
tions it is necessary to provide the host with an encoding of the local structure of the guest and an encoding

A Note on (Intrinsically?) Universal Asynchronous Cellular Automata 343

of the initial guest configuration. These are described in Sections 3.1 and 3.2. The general structure of the
simulation is outlined in Section 3.3. This will be done in such a way that it can not only be used in the
purely asynchronous setting, but for a-asynchronous updating as well.

The description will make use of so-called asynchronous coins. These are black boxes consisting of
two adjacent cells. A toss of the coin can be requested by a signal from outside and the result will be a 0
or a 1 (once the cells have been active a constant number of times). In Section 3.3.4 it will be explained
how one can choose the local transition function for the two cells of an asynchronous coin in a purely
asynchronous host. This is the only detail which has to be modified slightly for a-asynchronous CA in
Section 4.

3.1 Encodings of local structures

For convenience we will use the alphabet {0, 1, [, 1} for representing all the pieces of a guest CA on the
host. Without loss of generality Q = {0,...,n — 1}. The encoding of a single guest state is codg(q) =
[bin(q)] where bin(q) € {0,1}7 is the binary representation of ¢, all of them having the same length
[log, [QI].

As the encoding of a single local rule (g1, . . ., gk, ¢’) of aCA we use [codg(q1) - - - codg(qx) codg(q')].
The whole local transition function is encoded as cod(f) = [{concatenation of encodings of all local rules)] .

The members of the neighborhood can for example be encoded as cody (v;) = [1[bin(—v;)11] if
v; € N is negative and as cody (v;) = [0[bin(v;)]] if v; € N is non-negative. That allows to find out
easily whether a neighbor is to the left or to the right and how far. The complete neighborhood is encoded
as the word cod(N) = [codn(v1) - - codn (vg)]1.

Finally the whole local structure of a guest CA is encoded as [bin(|Q|) cod(N) cod(f)].

3.2 Encodings of CA configurations

Given a guest CA G an encoding codg of its states there are different possibilities to encode a G-
configuration c. In order to avoid technical complications we will use the following.

A guest configuration ¢ € Q7 is encoded by mapping each cell i to a block b; € {0,1, [,1}T which
consists of three segments:

(block) = [(encoding segment) (state segment) {coin segment)]

The (encoding segment) will simply store the encoding of the guest CA. The (state segment) will store
the encoding of the current state of one guest cell (and some additional data as explained later). The
(coin segment) comprises two cells realizing an asynchronous coin.

The symbols of each block are stored in adjacent host cells and the blocks corresponding to consecutive
guest cells are stored consecutively in the host.

3.3 Simulation

For the description of the simulation assume that the host is started in an initial configuration which is
the encoding of a guest configuration as just described. The operation of the host will be explained using
notions like “mark”, “signal” and “moving counter”. It is helpful to imagine that the local set of states of
the host is subdivided into several registers. The complete array of cells then consists of several tracks;
one contains the encoding of the guest configuration, while others are used for specific signals, counters,
etc.

The construction/explanation of the host is successively refined in three steps:

344 Thomas Worsch
e In Section 3.3.1 we review a standard construction for synchronous deterministic CA.
e In Section 3.3.2 the simple modification is added to get a simulator with asynchronous updating.

e In Section 3.3.3 we finally add the possibility to simulate guest which use asynchronous updating.

3.3.1 Synchronous Simulation of S-DCA

Parts of the following algorithm are very similar to the simulation described by Worsch and Nishio (2009).
The global steps of the guest are simulated one after the other. For each them the host proceeds as
follows:

1. Collect (the encodings of) the current states of the neighbors of the guest cell to be simulated.

For this signals have to be sent to neighboring blocks. The signals have to know how many blocks
they have to travel (and they have to travel as many blocks back to their origin). One can use a
standard signal of constant speed (smaller than 1 for the algorithms described below to work) and
attach to it a pair of binary numbers (d, D), which initially are both the number of blocks the signal
has to travel. The distance of the blocks is given by the encoded offsets of the guest neighborhood.

When a signal arrives at the right block of a neighboring guest cell the encoding of its current states
is copied and sent back to the origin.

2. Use these information to select the corresponding rules of the guest transition function.

Upon arrival of a guest state in the block that had requested it, the corresponding rules of the
transition table are marked as possibly relevant. If a state g; could be obtained from neighbor j,
state g; in the local rule [q1,...,qx, ¢'] is marked.

The fact that all signals have returned a valid state can be recognized by the fact that in one local
rule all q1, . . ., q; are marked. This is checked each time a state is marked.

3. Update the state segment of the block. The new state of the guest cell is read off the local rule

[q1,---,qx,q] in which all of q1, .. ., g have been marked and it is stored in the state segment.

Also, all the marks attached to any rule in the encoding segment are removed.

3.3.2 Asynchronous Simulation of S-DCA

It is easy to realize the simulation of S-DCA on an asynchronous DCA. One just has to apply Nakamura’s
transformation to the CA described in the previous Section 3.3.1.

One should note, though, that one now has a different type of simulation. In the asynchronous host
CA one can now have computations which are completely useless. As an extreme example consider the
infinite computation where in each step only host cell 0 is active. On the other hand the computation
during which in each step all host cells active is identical to the computation of the synchronous CA
described in the previous subsection.

Assume that m steps of the synchronous host are necessary in order to simulate one step of the guest
CA. Then those computations of the asynchronous host where each host cell makes progress (in the sense
of Section 2.3.3) exactly m times correspond very closely to the m-step computations of the synchronous
host.

A Note on (Intrinsically?) Universal Asynchronous Cellular Automata 345

The more general approach by Golze (1978) is to look at (equivalence classes of) space-time diagrams.
If one is interested in the new states of only a finite number of guest cells, one can be even less restrictive.
Questions of this type will be the topic of another paper.

3.3.3 Asynchronous Simulation of A-DCA

As a third step we now want to generalize the construction above in such a way that it is possible to
simulate asynchronous guest DCA.

The goal now is to convert the asynchronous host DCA just described into a A-DCA H with the
following property: For each initial configuration ¢/ which is the encoding of a configuration ¢ of an
asynchronous guest DCA G, and for each computation of GG starting with c there is a computation of H
starting with ¢’ which simulates the above.

The problem is that one has to exploit the nondeterminism inherent to the asynchronicity of H to
systematically choose whether a guest cell should be passive (and its state left unchanged) or active (and
simulated as described above).

We will now make use of the black boxes called asynchronous coin (which will be explained in detail
in the next subsection. The behavior visible from outside is the following:

o Initially the two coin cells are in a waiting state w.
e A signal can be sent to the coin to the right, requesting a bit 0 or 1.

e Both coin cells become “alerted” and after a certain number of steps when they have been active
sufficiently often, the will have entered 00 or 11.

e The cell to the left then has to change the request signal to a corresponding result signal which does
not yet start to travel back.

e When the left coin cell (is active and) observes that the result bit has been copied it returns to the
waiting state.

e Once the cell with the result signal observes this, said signal starts traveling back.

Assuming for the moment that this indeed can be implemented, it is used as follows for the simulation of
asynchronous guests. Once all prerequisites ¢, ...qx of a local rule [q1,...,qx,q'] have been marked,
instead of assuming that the simulated cell is active and automatically updating the state segment, a request
signal is sent to the coin. Only if a 1 is returned, the step of the guest cell is simulated. On the other hand
a 0 is interpreted as indication that the simulated cell is passive. In this case the state segment is not
changed; the marks at the local rules are removed nevertheless in preparation for the next possible step.

3.3.4 The “asynchronous coin”

It remains to explain how the asynchronous coin works. First we consider the somewhat easier case of
purely asynchronous updating. An asynchronous coin consists of two adjacent cells. Instead of a detailed
description of the local transition function Figure 1 captures the essence of the possible transitions of the
pair. We use possible states w, a and b, and 0 and 1.

Initially both coin cells are is state w, waiting for a request to produce a bit. For the figure we assume
that the request comes from the left and that the result also will be consumed (carried away) to the left.

346 Thomas Worsch

An edge indicates a possible transition from one pair of states to the next. The label of the edge shows
which cells have to be active in order to realize this transition. 'L’ means that only the left cell is active,
"R’ that only the right cell is active and "LR” that both cells are active. The trivial loops have been omitted.

The gray ww pair at the top of Figure 1 is the start, where the coin is waiting for a request to produce a 0
or 1. When the (same) gray ww pair at the bottom has been reached, one tossing cycle has been finished.
Edges which are straight lines indicates transitions which happen without exceptions. Starting from the
top ww pair one can reach 00 as well as 11. This is the result of the coin toss.

The dashed edges indicate that cells leave a state only under certain circumstances. The transition from
ww to aw only happens when the left coin cell sees a request arriving from the left. And once the cells
have entered states 00 or 11 they start to return to ww only when the left coin cell observes that its left
neighbor has copied the produced bit.

Fig. 1: The purely asynchronous coin.

There is one additional problem which has to be taken care of. In Section 3.3.2 the asynchronous host
has been constructed from a synchronous one by applying Nakamura’s technique.

But since the host is asynchronous it can happen that the asynchronous coins for neighboring guest
cells produce their results after significantly different numbers of (host) steps. As a consequence it could
happen that a guest state is requested (by a neighboring block) before it is computed. One possibility to
avoid this is as follows: The mod 3 counter of the host cells is extended by an additional possible time
stamp which is denoted by —1. It is interpreted as being “older” than each of the values 0, 1 and 2, so that

A Note on (Intrinsically?) Universal Asynchronous Cellular Automata 347

no activity can pass a cell with time stamp —1.

It suffices to slightly modify the behavior of the left coin cell. When it changes from state w to state a,
it makes a backup of its time stamp and sets it to —1. The right coin cells copies this behavior. After both
have returned to state w they reset their time stamp to the value backed up before.

4 Generalizations
4.1 Universality for a-asynchronous CA

One might have wondered why we did not choose a more symmetric approach in the previous section.
Indeed one could exchange the roles of *bb’ and ’ab’ at the top of Figure 1 without destroying the con-
struction. But for the construction shown in Figure 2 for a-asynchronous CA this “asymmetry” is vital.

Our goal now is to describe an «-asynchronous host which is able to simulate all a-asynchronous
guests; we want the same probability for guests and host. Remember that a cell is active with probability
« and passive with probability 5 =1 — «.

Figure 2 results from Figure 1 by replacing the label 'L’, 'R’, ’LR’, etc. with the corresponding prob-
abilities. An edge labeled 'L’ (or 'R’) represented the case that exactly one of the two cells is active.
In a-asynchronous CA this happens with probability a3. An edge label-led LR’ represented the case
that both cells are active. In a-asynchronous CA this happens with probability . An edge label-led
’L,LR’ (or ’LR,R’) represented the case that either exactly one of the two cells is active or both. In
a-asynchronous CA this happens with probability a3 + a? = a(8 + a) = a.

It is now easy to deduce the probabilities for the events that the pair of cells enters states 00 and 11
respectively. 00 will happen with probability a3/(a3 + a?) = 3, while 11 will happen with probability
a?/(af +a?) = a.

4.2 Universality for fully asynchronous CA

The construction of a fully asynchronous host which is able to simulate any fully asynchronous guest is
beyond the scope of this paper. The problem is that the host has to ensure that for the simulation of one
step of the guest exactly one guest cell is active. Currently the only possibility we are aware of is to use
encodings which contain only one asynchronous coin. Thus one needs an encoding for configurations
which is does not commute with the shift. Such an approach has been used in the literature (see e. g.
Durand-Lose, 2000). But it is so different from the encodings used above, that we will not discuss this
topic in this paper.

4.3 Asynchronous DCA which are universal for all asynchronous NCA

The host constructed in Section 3.3.3 can be generalized such that it can even simulate any asynchronous
non-deterministic CA. We briefly sketch some modifications which are sufficient.

As the encoding of NCA one can choose the obvious generalization of the one described in Section 3.1:
Foreach ¢’ € f(q1,...,qx) one adds [codg(q1) - - - codg(qr) codg(q’')] to encoding of the local transi-
tion function.

During the simulation of one global the situation may arise that at least two local rules are marked after
the guest states from the guest neighbors have been retrieved. In such a situation

o first, the leftmost applicable local rule get a special mark.

348 Thomas Worsch

Fig. 2: The a-asynchronous coin. Missing probabilities belonging to self loops not shown for clarity.

e Then the asynchronous coin is used to produce a sequence of bits up to the first 1. The arbitrary
number of 0 generated before is used move the special mark from one applicable rule to the next
one in a cyclic manner.

When the 1 appears, the local rule which has the special mark at that time is used for the transition.

5 Summary and Outlook

We have shown that there is one purely asynchronous DCA which can simulate all purely asynchronous
DCA, and similarly for a-asynchronous DCA. A by-product was an asynchronous but “otherwise” deter-
ministic CA that can simulate all asynchronous nondeterministic CA. This improves an earlier construc-
tion by Golze.

We have restricted ourselves to one-dimensional CA, but only in order keep the descriptions and no-
tations a little bit simpler. The generalizations of the above results to higher dimensions are straight
forward.

A similar result for fully asynchronous CA can be obtained but it seems to require a less stringent
definition of simulation.

In our opinion one major interesting open problem is: Can a definition and concepts of intrinsic uni-
versality as proposed by Ollinger (2008); Delorme et al. (2010) be generalized to CA which are not
synchronous and deterministic? It may be that the idea of U-V -simulation proposed by Golze (1978) is

A Note on (Intrinsically?) Universal Asynchronous Cellular Automata 349

useful in this context.

References

M. Delorme, J. Mazoyer, N. Ollinger, and G. Theyssier. Bulking II: Classifications of cellular automata.
CoRR, abs/1001.5471, 2010.

J. O. Durand-Lose. Reversible space-time simulation of cellular automata. Theoretical Computer Science,
246(1-2):117-129, 2000.

N. Fates and L. Gerin. Examples of fast and slow convergence of 2d asynchronous cellular systems. In
H. Umeo and et al., editors, Proceedings ACRI 2008, pages 184—191, 2008.

U. Golze. (A-)synchronous (non-)deterministic cell spaces simulating each other. Journal of Computer
and System Sciences, 17(2):176-193, 1978.

J. Lee, S. Adachi, F. Peper, and K. Morita. Asynchronous game of life. Physica D, 194(3-4):369-384,
2004.

K. Nakamura. Asynchronous cellular automata and their computational ability. Systems, Conputers,
Control, 5(5):58-66, 1974.

N. Ollinger. Universalities in cellular automata; a (short) survey. In B. Durand, editor, Proceedings JAC
2008, pages 102-118, 2008.

D. Regnault, N. Schabanel, and E. Thierry. Progresses in the analysis of stochastic 2d cellular automata:
A study of asynchronous 2d minority. Theor. Comput. Sci., 410(47-49):4844-4855, 2009.

T. Worsch and H. Nishio. Achieving universality of CA by changing the neighborhood. Journal of
Cellular Automata, 4(3):237-246, 2009.

350 Thomas Worsch

Automata 2010 — ¥&Intl. Workshop on CA and DCS — short papers 351-356

Undecidabllity of the Openness problem of
multidimensional cellular automata

Charalampos Zinoviadis

University of Turku, Department of Mathematics, Turku 20 inland

We prove that given a multidimensional cellular automatornis undecidable whether the transition function de
fined by it is open with respect to the standard topology. Thanother difference between the properties of one-
dimensional cellular automata and their multidimensiaoainterparts. The proof is based on a modification of Kari's
original proof of the undecidability of the reversibilitygblem for multidimensional cellular automata.

Keywords: Cellular automata, dimension sensitive properties, opssirplane-filling property.

1 Preliminaries

We will use the abbreviatiot-D , 2-D , d-D for one-dimensional, two-dimensional adalimensional,

respectively.

Let S be a finite set o$tatescalled thealphabet A d-D configurationover S is a functione: Z¢ — S
that assigns a state to every position ofdhe grid Z¢. The set of all thel-D configurationsSZd is called
thed-D full shift.

We can endow the spa&zd with a topology so that the resulting topological space impact. The
simplest way to describe this topology is by use ofdkknders

Cyl(D,p) = {c € §%": (i) = p(7), for everyii € D})

whereD is a finite subset of¢ andp: D — S assigns states only to the cellsiof
It can be easily seen that the cylinders satisfy the axiomBdng a base of a topology.
Cellular automatgCA from now on) are defined formally as quadruples- (d, S, N, g), where

e d > 1isthedimensiorof A4,
e Sis an alphabet called ttetate set

o N = (ny,n3,...,n5,), wheren; € Z¢ andn; # n; for ¢ # j is theneighborhood vectorand

TThis work has been supported by the Alexander S. OnassiscFBehefit Foundation and by the Academy of Finland grant
131558.

352 Charalampos Zinoviadis
e g: 5™ — Sis thelocal function

Here,d defines the dimension of the configurations on whictill work. For example, ifd = 1 then
the space on which acts isS”%. The elements of the neighborhood vector specify the (ed)aelative
locations of the neighbors of a cell: the neighbors of @elte the cellsi+ N = (7 +n1, i +na,...,7+
M)

In every time step, the local rulgis used to change a configuratioto another one’ in the following
way:

(@) = g(c(@+ N)) = g(c(@i +111), c(7t +13), ..., c(7T+n7)) 2

The transformation — ¢’ defines a global function
G: 8% §2° ®3)

thetransition functionof the CA. This is our main object of study. In fact, when wetabout a CA, we
will often refer only to its transition function.

A CAis calledreversibleif it is bijective and its inverse function is also a CA. Théléaving proposition
is a classical result concerning reversible CA:

Proposition 1 A CA is reversible if and only if it is injective.

Wang tilesare unit squares with colored edges. A finiteBetf tiles is called dile set A tiling with
tiles from the tile sefl" is a functionc: Z> — T. Intuitively, a tiling is a way to fill the plane with unit
squares fromT", where abutting squares are put stdeside. Notice that we are not allowed to rotate the
tiles. A tiling c is valid at point(x,y) € Z? if the edges of the tile(x,y) have the same color as the
abutting edges of its neighboring tiles, i.e. if the uppeyedfc(x,y) has the same color as the lower
edge ofc(x, y + 1), the right edge of(z, y) has the same color as the left edge@f+ 1, y) etc. Atiling
cis calledvalid if it is valid at all points(z,y) € Z2. We also use the expression taadmitsthe valid
tiling c.

The following proposition states a fundamental fact aboanhgtiles:

Proposition 2 (Compactness principle)If a tile set can tile validly arbitrarily large squares, thét can
tile validly the whole plane.

Finally, let us introduce the decision problem from whichwi# do our reduction in Section 4:
e Domino problem
e Input: An arbitrary Wang tile sef".
e Question DoesT admit a valid tiling?

The following proposition is the single most famous resbhat Wang tiles:

Proposition 3 (1; 2) The Domino problem is undecidable.

Undecidability of the Openness problem of multidimendioalular automata 353
2 The plane-filling property

Directed tilesare normal Wang tiles to which fallower vectorf € Z? is associated. Alirected tile
setis a set of directed tiles, i.e. a pdif, F), whereT is a Wang tile set and: S — Z? is a function
that assigns a follower vector to every tile. From now on, vk nefer to a directed tile set using only
its "base” tile setl’. Letc € TZ be a tiling, which is not necessarily a valid tiling, and f2£ Z2 be
a position of the plane. The notion of validnesscaof positiony'is the same as in the undirected case,
which means that we do not care about follower vectors whenomsider whethet is valid in g’ or not.
Thefollower of p'in ¢ is the positiony’+ F'(c(p)). In other words, the follower is the cell to which the
follower vector of the tile in positio’is pointing to. Notice that in different tilings the same pias
might have different followers. However, we will usuallykabout the follower of a position, assuming
that the tiling to which we are referring is fixed. Also, obsethat the notions of follower position and
validness are independent. Otherwise stated, in a t.iiil&‘ngle every position has a follower, not only
those positions whereis valid. In the tile set we are going to use, the follower cgmvposition is one of
the four adjacent positions, thatiga) € {(£1,0), (0,£1)}, foreverya € T.

A sequencey, ps, . . . , Pk, Where everys; € Z2, is called apathon ¢ if 7;.; is the follower ofp;, for
everyi = 1,2,...,k—1. The notion of gawo-way infinite patfs defined analogously in the obvious way.

A directed tile sefl” is set to have thplane-filling propertyif it satisfies the following conditions:

1. T admits a valid tiling of the plane.
2. For every tilinge € TZ, only two different types of infinite paths can appear:

(a) There exists a position on the path where the tiling is/abtl, or

(b) the path covers arbitrarily large squares.

Therefore, if the tiling conditions are not violated on amgjion of the path, then for every> 1, there
exist ann x n square each tile of which is visited by the path and, hencpatiemust be infinite. Notice,
also, that this condition does not claim anything about @ity of the whole configuration. As long
as the configuration is valid on the path, arbitrarily largaares are visited. This does not prevent tiling
errors from occuring outside the path.

The above definitions would have absolutely no meaning iffaothe following proposition, whose
proof will not be given.

Proposition 4 (3) There exists a fixed directed tile détwith the plane-filling property.
We will also need the following lemma:

Lemma 1 (4) LetK be the tile set of Proposition 4. There exists a valid tilingf K where all positions
of the plane belong to the same path, i.e. they form a two-mfayite, non-intersecting, plane-filling path.

3 Open CA

Let G: A" — AZ" be a CA. Then@ is calledopenif G(W) is open for every opei/ C S that s if
G is an open function with respect to the standard topology.

354 Charalampos Zinoviadis

Let F be al-D CA with state setS, neighborhood 0,1} and local rulef. We say thatF is left-
permutiveif for everyb, ¢ € S, there exists a unique € S such thatf (a, b) = ¢. This also means that if
ay # az andf(ay,b1) = f(az,bz), thenb; # bo.

Two configurations:;, c; € S% are calledeft-asymptotidf there existsmg € Z such thate; (m) =
ca(m), for everym < mg. Right asymptoticonfigurations are analogously defined.1/® CA F'is
calledright-closingif F(c1) # F(c2), for every pair of left-asymptotic, non-equal configurae, , cs.
The definition ofleft-closing1-D CA can be given in a similar way. It is easy to see that apeftmutive
CAis also left-closing.

For thel-D case, there exists the following characterization offrofA.:

Proposition 5 (5) A1-D CAis open if and only if it is both right- and left-closing.
Corollary 1 There exists d-D CA F that is left-permutive but not open.

Proof: Let F: S — S” be thel-D CA with the neighborhood0, 1} and the following local rule:

Y10 1 2
T

0 o 1 1
1 10 2
2 2 2 0

F is left-permutive as every column of its transition matsxai permutation of the state set. However,
asF(«0.1¥) = F(¥0.2¥) = “01.0¥, F'is not right-closing. According to Proposition b, is not open.
O

4 Undecidability of the openness problem

In this final section, we will prove that the following de@siproblem is undecidable:
e Openness problem ofi-D CA, d > 2.
e Input: An arbitraryd-D CA G.
e Question Is G open?

The respective problem fdrD CA is known to be decidable, see (6). In fact, using metrsichslat
to the ones introduced in (8), a simple polynomial time &than can be given for testing right- and left-
closingness. According to Proposition 5, this gives a pofgial time algorithm for testing openness of
1-D CA.

Itis easy to see that it is enough to prove the resultifer 2.

Proposition 6 The Openness problem 2D CA is undecidable.

Undecidability of the Openness problem of multidimendioalular automata 355

Proof: We are going to reduce the Domino problem to the Opennes gmobif 2-D CA. Given an
arbitrary tile sefl", we algorithmically construct the followingrD CA G: The state seti§ = K x T x
{0,1,2}, whereK is the fixed tile set from Proposition 4. Therefore, the CA &king on configurations
consisting of three different layers. In the first layer,rehexist tiles from the fixed tile sek’; in the
second layer there exist tiles from the arbitrary tile Betand on the third one there are the lettéys
and2. Let us call these layerK-layer, D-layer and letter-layer repsectively. The neighborhocetius
is {(0,0),(0,1),(1,0),(0,-1),(—1,0)}, so that every cell looks at the state of itself and thosef it
immediate neighbors in order to determine its state in th te step. The local rule only updates the
letter components of a positignaccording to the following rule:

o If either theT-layer or theK -layer contains a tiling error af, then the letter is not changed, but

o if the tiling is valid in both theK- andT-layers inp, then the letter of positiop is changed to
f(a,b), wheref is the local rule of thel-D CA defined in Corollary 1¢ is the current letter in
positionp andb is the letter of the follower of.

Let us now prove that this CA is not open if and onlyfifadmits a valid tiling. This reduces the Domino
problem to the Openness problem2eb CA and, hence, completes the proof.

Suppose thal” admits a valid tilingt. Arguing by contradiction, assume th@tis open. Letk be the
valid K -tiling from Lemma 1 and consider the sBt=k x ¢t x {0, 1, 2}22. Since ink there exists only
one path and botk and¢ are valid everywhere, the restriction 6fon B is in some sense the same as
the 1-D CA F. Indeed, the unique path indefines a homeomorphismZ? — Z that preserves open
sets and in additiot(k, ¢, c) = (k,t, F(¢(c))). Hence, identifyingV C Z? with (W) C Z, we have
thatG=1(B) = B andG(k,t, W) = (k,t, F(W)), for everyW C {0,1,2}%". According to Theorem
1,page 116in (7), itV C {0, 1, Z}Z2 is open, therG(k,t, W) = (k,t, F'(W)) is also open in the relative
topology. In addition, since it is a basic topological fawtall projections are opet,(W) is also open.
But this means thak' is an open CA, which is a contradiction. Therefakels not open.

Suppose, then, that is not open. Since reversible CA are always op@ris not reversible either.
Using Proposition 1, we can conclude tifaiis not injective. This means that there exist two different
configurationc; ande, such thatG(c;) = G(ez). The tile components are not changed®ynd thus
they must be identical iny andec;, so there exists a positigi where they have different letters. Using
the left-permutativity off and the fact that after the application @Gfthese letters become identical, we

Non-open CA

Reversible CA

Open CA

Fig. 1: Reversible CAs are recursively inseparable from non-op&s. C

356 Charalampos Zinoviadis

can see that the configurations are valid in both layers amtétters in the followep; of p; must also be
different. Repeating this reasoning, we obtain an infinét#hp7 , p, p3, . . . such that the tiling conditions
are satisfied in both th&- andT- components at all positions of the path. Sidcéas the plane-filling
property, this infinite path covers arbitrarily large sqggarTherefore]" can tile validly arbitrarily large
squares, which means that it admits a valid tiling of the wtplane, according to Proposition2. O

By looking a little closer to the CAZ of the previous proof, we can see that it is reversible if ani¢f o
if it is open. Hence, we have actually proven something sfeothan the claim of Proposition 6, namely
that the class of reversib®D CA is recursively inseparable from the class of hon-opegso

References

[1] Berger, Robert, The undecidability of the domino probjeMemoirs of the AMS, Vol. 66, 1966,
pp. 1-72.

[2] Robinson, Raphael M., Undecidability and nonperiagidor tilings of the plane, Inventiones
Mathematicae, Vol.12, 1971, pp. 177-209.

[3] Kari, Jarkko, Reversibility and Surjectivity Problem&Cellular Automata, Journal Computer Sys-
tems Science, Vol. 48, 1994, pp. 149-182.

[4] Meyerovitch, Tom, Finite entropy for multidimensionegllular automata, Ergodic Theory and
Dynamical Systems, Vol. 28, 2008, pp. 1243-1260.

[5] Kurka, Petr, Topological and symbolic dynamics, Sceibtathematique de France, 2003, Cours
Specialises 11.

[6] Wilson, Stephen J., Decision procedures for opennessl@al injectivity, Complex Systems,
Vol.5, 1991, pp. 497-508.

[7] Kuratowski, Kazimierz, Topology- Volume 1, Academica3s, 1966.

[8] Sutner, Klaus, De Bruijn graphs and linear cellular awmiéaba, Complex Systems, Vol. 5, 1991, pp.
19-30.

QRO
@Pganisal'ion'

NAT
DE RECHERCHE
EN INFORMATIQUE l N RIA

EN
cherche NANCY - GRAND EST

Local Sponsors:

ville de

X Lorraine Nancy,

Nancy-Université Nancy-Université Nancy-Université

\Uni vvvvv ité Nancy 2 \Un/vgrsitvé) \ /NPL -

Henri Poincaré

international oponsors:

SEfTp

