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Preface

This volume contains all the contributed papers presented at AUTOMATA 2010, the 16th inter-
national workshop on cellular automata and discrete complex systems. The workshop was held
on June 14-16, 2010, at the LORIA laboratory in Nancy, France. AUTOMATA is an annual
workshop on the fundamental aspects of cellular automata and related discrete dynamical sys-
tems. The spirit of the workshop is to foster collaborations and exchanges between researchers
on these areas. The workshop series was started in 1995 by members of the Working Group 1.5
of IFIP, the International Federation for Information Processing.

The volume has two parts: Part I contains 9 full papers that were selected by a program
committee from 21 submissions. These papers will also appear as proceedings volume AL of
Discrete Mathematics and Theoretical Computer Science (DMTCS). The program committee
consisted of 25 international experts on cellular automata and related models, and the selection
was based on 2-4 peer reviews on each paper. Part II contains 18 short papers of work-in-
progress and/or exploratory papers. Both paper categories combined, the workshop received 37
submissions.

Papers in this volume represent a rich sample of current research topics on cellular automata
and related models. The papers include theoretical studies of the classical cellular automata
model, but also many investigations into various variants and generalizations of the basic concept.
The versatile nature and the flexibility of the model is evident from the presented papers, making
it a rich source of new research problems for scientists representing a variety of disciplines.

In addition to the papers of this volume, the program of AUTOMATA 2010 contained four
one-hour plenary lectures given by distinguished invited speakers:

• Enrico Formenti (University of Nice-Sophia Antipolis, France)

• Jean Mairesse (University of Paris 7, France)

• Ferdinand Peper (Himeji Institute of Technology, Japan)

• Guillaume Theyssier (University of Savoie, France)

The organisers are indebted to the invited speakers, who kindly accepted to pay part of their
travel as a support to the conference.

The organizers gratefully acknowledge the support by the following institutions:

• European Society for Mathematical and Theoretical Biology (ESMTB)

• Rgion Lorraine and Mairie de Nancy

• Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)

• Communauté urbaine Grand Nancy

• Nancy Université Henri Poincaré

• Nancy Université 2

• Nancy Université Institut national polytechnique de Lorraine

As the editors of these proceedings, we thank all contributors to the scientific program of the
workshop. We are especially indebted to the invited speakers and the authors of the contributed
papers. We would also like to thank the members of the Program Committee and the external
reviewers of the papers.

May 28th, 2010
Nazim Fatès, Jarkko Kari, Thomas Worsch
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Automata 2010 — 16th Intl. Workshop on CA and DCS DMTCS proc.AL , 2010, 1–20

Faster Methods for Identifying Nontrivial
Energy Conservation Functions for Cellular
Automata

Leemon Baird1, Barry Fagin1

1Academy Center for Cyberspace Research, Department of Computer Science, US Air Force Academy, Colorado
Springs, Colorado USA 80840

The biggest obstacle to the efficient discovery of conservedenergy functions for cellular auotmata is the elimination
of the trivial functions from the solution space. Once this is accomplished, the identification of nontrivial conserved
functions can be accomplished computationally through appropriate linear algebra.

As a means to this end, we introduce a general theory of trivial conserved functions. We consider the existence of
nontrivial additive conserved energy functions (”nontrivials”) for cellular automata in any number of dimensions, with
any size of neighborhood, and with any number of cell states.We give the first known basis set for all trivial conserved
functions in the general case, and use this to derive a numberof optimizations for reducing time and memory for the
discovery of nontrivials.

We report that the Game of Life has no nontrivials with energywindows of size 13 or smaller. Other 2D automata,
however, do have nontrivials. We give the complete list of those functions for binary outer-totalistic automata with
energy windows of size 9 or smaller, and discuss patterns we have observed.

Keywords: nontrivial conserved energy function, trivial conserved energy function, 1D cellular autamata, 2D cellular
automata, Game of Life

1 Preliminaries: basic definitions
We consider cellular automata withk states inn dimensions. Theneighborhoodof a cellular automaton
is the region of surrounding cells used to determine the nextstate of a given cell. Thewindowof an
energy function for a cellular automaton is the region of adjacent cells that contribute to the function.
Both neighborhoods and windows aren-dimensional tensors, with the size of each dimension specified as
a positive integer. Given the size of such a tensor, it is useful to define the following 3 sets of tensors.

Definition 1.1 Cellular automata are composed of cells, each of which is in one ofk states (or colors)
at any given time. The setC is the set of such colors, and the setC∗ is that set augmented with another
color named *. (* denotes a special state with certain properties that simplify our proofs. It is explained
in more detail in the pages that follow.)

C = {0, 1, 2, . . . , k − 1} (1.1)

1365–8050c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



2 Leemon Baird, Barry Fagin

C∗ = C ∪ {∗} (1.2)

It is sometimes useful to choose one color to be treated specially. In all such cases, the color 0 will be
chosen.

Definition 1.2 Ann-dimensional cellular automaton rule is a functionR that gives the color of a given
cell on the next time step as a function of a neighborhood of cells centered on that cell on the current
time step. The neighborhood is ann-dimensional tensor of sizew1 × · · · × wn, where eachwi is an odd,
positive integer.

R : Cw1×···×wn → C (1.3)

Definition 1.3 An n-dimensional cellular automaton is ann-dimensional tensor whose elements are in
C, and which is updated on each time step according to a cellular automaton ruleR, applied to every cell
in parallel. The rule is a function applied to each cell and its neighbors, where neighbors wrap toroidally
(i.e. the top edge is considered adjacent to the bottom, the left edge is adjacent to the right, and so on for
each dimension).

Definition 1.4 The successor function advances a region within a cellular automaton one time step by
applying a ruleR to a regionM of sizes1 × · · · × sn

T : (Cw1×···×wn → C)× Cs1×···×sn → C(s1−w1+1)×···×(sn−wn+1)

which is defined as:

T (R,M) = M ′ whereM ′
i1,...,in = R(M(i1...i1+w1−1),...,(in...in+wn−1)) (1.4)

Note thatT (R,M) is defined for anM that is only a portion of the cells, and so it does not wrap around
toroidally. Instead, it returns a tensor that is smaller thanM in each dimension. Also note that the ellipses
on the right side of the equation are used in two different ways. Each element of the result comes from
applying theR function to only a portion of theM tensor, which includes those elements ofM whose first
coordinate is in the range[i1, i1 +w1 − 1], and whose second coordinate is in the range[i2, i2 +w2 − 1],
and so on up to thenth coordinate being in the range[in, in + wn − 1].

Definition 1.5 A linear additive energy function ( or energy function) is a functionf : Cs1×···×sn → R

that assigns a real number to a window of sizes1 × · · · × sn within a cellular automaton.

Definition 1.6 The total energyetot : Cu1×···×un → R of a given stateU of an entire cellular automaton
universe withu1 × · · · × un cells, with respect to a given energy functionf , is

etot(U) =
∑

W

f(UW ) (1.5)

whereU is the universe state for a cellular automaton,W is the position of the energy window within that
universe, andUW is that window within the universe, which wraps toroidally at the edges of the universe.
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Definition 1.7 A conserved linear additive energy function (or a conservedfunction) for a given cellular
automaton rule is an energy function that for a universe of any size, and for any given state of that
universe, will assign the same total energy to that universefor both that state and its successor.

Definition 1.8 A trivial conserved linear additive energy function (or a trivial) is an energy function that
for a universe of any size, will assign the same total energy to that universe regardless of its state. A
nontrivial conserved linear additive energy function (or anontrivial) for a given cellular automaton rule
is a conserved energy function that is not trivial.

Definition 1.9 Givenn positive integerss1, . . . , sn defining the size of ann-dimensional tensor, the
set B(s1, . . . , sn) is the set of all tensors overC of that size. This set is partitioned into two sets,
Z(s1, . . . , sn), the zero-sided tensors, which have at least one side that contains the origin element and is
filled entirely with zero elements, and̄Z(s1, . . . , sn), the non-zero-sided tensors, which do not have such
a side. The origin element is the element of the tensor at location (1, 1, . . . , 1).

B(s1, . . . , sn) = Cs1×···×sn (1.6)

Z(s1, . . . , sn) = {T ∈ B(s1, . . . , sn) | ∃i∀j∀sj Ts1,...,si−1,1,si+1,...,sn
= 0} (1.7)

Z̄(s1, . . . , sn) = B(s1, . . . , sn) \ Z(s1, . . . , sn) (1.8)

So in 1 dimension, the zero-sided vectors are those whose with a 0 as the first element. In 2 dimensions,
the zero-sided matrices are those with a top row of all zeros,or a leftmost column of all zeros, or both.

It is useful to define a matching functionH that can be used in the construction of various functions
over these tensors. The function returns 1 iff two tensors have elements that match, where the * symbol is
treated as matching any color.

Definition 1.10 Givenn-dimensional tensors overC∗, the function
H : Cs1×···×sn∗ × Cs1×···×sn∗ → {0, 1} is defined as

H(A,B) =






1 if ∀i∀si As1,...,sn
= Bs1,...,sn

∨As1,...,sn
= ∗

∨Bs1,...,sn
= ∗

0 otherwise

(1.9)

Given ann-dimensional tensor, it is useful to unwrap it into a 1D string of characters. This will be
done inrow major order. For matrices, this means the elements will be read from leftto right across the
top row, then left to right across the second row, and so on down to the bottom row. Tensors of other
dimensionalities are unwrapped similarly, with the last dimension changing most quickly, and the first
dimension changing most slowly. It is useful to have a functionVnum(T ) that unwraps the elements of
tensorT , then converts the resulting string to an integer by treating it as a number in basec, with the first
element being the most significant digit, and the last being the least significant.
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Definition 1.11 An n-dimensional tensorA with elements inC can be converted to an integer by the
functionVnum : Cs1×···×sn → N, which treats the elements of the tensor as digits basek, where the
elements are taken in row major order, treating the first as the least significant digit, and the last as the
most significant.

Vnum(A) =

s1∑

i1=1

s2∑

i2=1

· · ·
sn∑

in=1

Ai1,i2,...,in

n∏

j=1

k(ij−1)
∏n

m=j+1 sm (1.10)

For this definition, the rightmost product is understood to be 1 for all cases where the lower bound exceeds
the upper.

Definition 1.12 An n-dimensional tensor with elements inC can be converted to a binary vector by the
functionVt : Cs1×···×sn → {0, 1}(ks1s2...sn ), which is defined as

Vt(M) = v wherevi =

{
1 if i = Vnum(M) + 1

0 otherwise
(1.11)

The vectorVt(M) has one element for each possible color pattern for a tensor of the same size asM .
That vector will be all zeros, except for a 1 in the position corresponding to the patternM .

Definition 1.13 A functionf : Cs1×···×sn → R can be converted to a real vector withks1s2...sn elements
by the functionV : (Cs1×···×sn → R)→ Rk

s1s2...sn
, which is defined as

V (f) =
∑

M∈B(s1,...,sn)

f(M) · Vt(M) (1.12)

This vector is a convenient way to represent an energy function. It completely specifies the energy function,
by listing the output of the function for every possible input. We will define various classes of energy
functions by simultaneous linear equations, treating the elements of this vector as the variables.

Note that the energy function window is independent of the CAneighborhood. Energy functions can be
defined over regions different from the scope of the transition rule of the CA. Our work with 1D CAs in
[1], for example, has identified conserved energy functionswith windows of size1× 5, 1 × 6 and larger,
for CAs that have neighborhoods of size1× 3.

Definition 1.14 Given tensorM of sizem1 × · · · × mn, which is a region within ann-dimensional
universe, and given an energy window size ofs = (s1, . . . , sn), a vector representing the total energy of
all energy windows that fit withinM can be found with the function

e : N
n × Cm1×···×mn → N

ks1s2...sn

which is defined as

e(s,M) =

m1−s1+1∑

i1=1

m2−s2+1∑

i2=1

· · ·
mn−sn+1∑

in=1

Vt(Mi1...i1+s1−1,...,in...in+sn−1) (1.13)

The e(s,M) function slides the energy window to all possible positionsthat fit entirely within the
matrix M , and finds the energy at each position. It then sums all the energies coming from identical
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patterns, and constructs a vector with the total energy derived from each possible pattern. The sum of
the elements of this vector would simply be the total energy of M . But it is useful to maintain the vector
of separate values when generating sets of linear equationsthat define the trivials, the nontrivials, or the
conserved functions.

Definition 1.15 For a positive integern, the functionN : Nn → N is defined as

N(s1, . . . , sn) =
2n−1∑

b=1

k
∏

i si−bi(−1)1+
∑

i bi (1.14)

wherebi is theith bit of integerb written in binary, with bit 1 being least significant and bitn being most.

In 1 and 2 dimensions this reduces to:

N(c) = kc−1 (1.15)

N(r, c) = k(r−1)c + kr(c−1) − k(r−1)(c−1) (1.16)

It will be proved below that this gives the cardinality of many of the sets that will be considered here.
It equals the number of zero-sided tensors of a given size, the number of trivials, and the number of unit
complements. And when subtracted from a simple power of 2, ityields the number of non-zero-sided
tensors, the number of equations defining the conserved functions, and the number of equations defining
the nontrivials. These terms are defined and the counts proved below.

Definition 1.16 In n dimensions, the seven transforms that operate on tensors ofsizes1 × · · · × sn

PC :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.17)

P∗ : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.18)

Prot : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.19)

PLD : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.20)

PRD : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.21)

PL :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.22)

PR :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.23)



6 Leemon Baird, Barry Fagin

are defined to be:

PC(M) = M ′ whereM ′
i1,...,in =

{
0 if ∀j ij = ⌈sj/2⌉
Mi1,...,in otherwise

(1.24)

P∗(d,M) = M ′ whereM ′
i1,...,in =

{
∗ if id = 1

Mi1,...,in otherwise
(1.25)

Prot(d,M) = M ′ whereM ′
i1,...,in = Mi1,...,id−1, 1+(id modsd) ,id+1,...,in (1.26)

PLD(d,M) =

{
P∗(d,M) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in ∈ {0, ∗}
M otherwise

(1.27)

PRD(d,M) =

{
Prot(P∗(d,M)) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in ∈ {0, ∗}
M otherwise

(1.28)

PL(M) = PLD(1, PLD(2, . . . PLD(n,M) . . . )) (1.29)

PR(M) = PRD(1, PRD(2, . . . PRD(n,M) . . . )) (1.30)

The functionProt(d,M) rotates the elements of tensorM along dimensiond, so that one side that
included the origin moves to the opposite side. The functionPC sets the central element to zero. The
function PL transforms a zero-sided tensor by replacing the 0 elements on each all-zero side with *
elements. AndPR does the same, then rotates it so each modified side moves to the opposite side. The
functionsP∗, PLD, andPRD are only used here to define the other functions, and won’t be used again.

The following gives three examples ofPL andPR applied to zero-sided matrices of size3× 5. In each
example,M is a zero-sided matrix, where the all-zero side is on the left, top, and both, respectively:

M =
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0

PL(M) =
* 1 1 1 1
* 0 1 0 1
* 0 1 0 0

PR(M) =
1 1 1 1 *
0 1 0 1 *
0 1 0 0 *

(1.31)

M =
0 0 0 0 0
1 0 1 1 1
0 0 0 0 1

PL(M) =
* * * * *
1 0 1 1 1
0 0 0 0 1

PR(M) =
1 0 1 1 1
0 0 0 0 1
* * * * *

(1.32)

M =
0 0 0 0 0
0 1 0 0 0
0 1 0 1 0

PL(M) =
* * * * *
* 1 0 0 0
* 1 0 1 0

PR(M) =
1 0 0 0 *
1 0 1 0 *
* * * * *

(1.33)

Definition 1.17 The functionPZ : Cs1×···×sn → C(2s1−1)×···×(2sn−1) takes a smalln-dimensional ten-
sor and pads it with zero elements on many of its sides to create a largen-dimensional tensor. In each
dimension, if the small tensor was of sizesi in that dimension, then the large tensor will be of size2si− 1
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in that dimension. The zero elements are added in such a way that the last nonzero element in the original
tensor becomes the center element in the new tensor.

For example,

PZ




1 0 1 1 0
0 1 0 0 0
0 0 0 0 0


 =

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(1.34)

In this 2D example, the small matrixM is of size3×5, andPZ(M) is of size(2·3−1)×(2·5−1) = 5×9.
Note that thisM happens to have 4 nonzero elements, arranged in a sort of V shape. If the elements of
M are read in row major order (i.e. left to right across the top row, then left to right on the second row,
etc.), then the last nonzero element to be read is the bottom of the V. ThePZ function pads with zeros in
such a way as to yield a large matrix of the correct size, with that last nonzero element in the exact center
of the large matrix.

Definition 1.18 For a given tensor sizes1 × · · · × sn, the setT is defined to be the following set of
functions

T (s1, . . . , sn) = {fM |M ∈ Z(s1 × · · · × sn)} (1.35)

where

fM (x) =

{
1 if M = 0

H(x, PL(M))−H(x, PR(M)) otherwise
(1.36)

2 Theoretical results
Proofs of the theorems below are provided in a separate appendix available from the authors.

Theorem 2.1 The cardinality of the setZ(s1, . . . , sn) isN(s1, . . . , sn).

Theorem 2.2 The cardinality of the set̄Z(s1, . . . , sn) is ks1s2...sn −N(s1, . . . , sn).

Theorem 2.3 The set of coefficient vectors for one minimal set of linear equations that define the trivial
conserved functions with energy windows of sizes = (s1, . . . , sn) is {e(s, PZ(A)) − e(s, PC(PZ(A))) |
A ∈ Z̄(s1, . . . , sn)}.
Theorem 2.4 The set of coefficient vectors for one set of linear equationsthat defines the conserved func-
tions with energy windows of sizes = (s1, . . . , sn) for cellular automaton ruleR with neighborhood of
sizew = (w1, . . . , wn) is

{e(s, PZ(A))−e(s, PC(PZ(A))− e(s, T (R,PZ(A))) + e(s, T (R,PC(PZ(A))))

| A ∈ Z̄(s1 + w1 − 1, . . . , sn + wn − 1)}
Theorem 2.5 The setT (s1, . . . , sn) is a basis set for the space of all trivial additive conservedfunctions
with energy windows of sizes1 × · · · × sn.
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Theorem 2.6 A complement of the coefficient vectors for the equations defining the trivials for energy
windows of sizes1×, . . . ,×sn is {Vt(M) |M ∈ Z}.

Note that by the definition of complements, this implies thatwhen searching for conserved functions,
without loss of generality we can constrain the energy functions to assign an energy of 0 to any window
that is a zero-sided tensor. This corresponds to deleting certain columns in the matrix that defines the
conserved functions. After that deletion, there will be solutions to those equations if and only if nontrivials
exist. If such solutions do exist, then those solutions are guaranteed to be nontrivial conserved functions,
and the union of those solutions with the trivials will span the space of conserved functions. This allows
faster searches for nontrivials.

Figure 1 summarizes all the theorems of this paper, giving four examples of theM matrix for each
concept. Figure 2 applies the ideas of this paper to the results of [1] and [3], expressing the basis functions
as a linear sum of the matching H-functions of Definition 1.10.
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Energy window matrix
Size:r × c
Count:krc

10010
00000
00100

01010
10101
01010

11111
11111
11111

00000
00000
00000

Zero-sided matrix
Size:r × c
Count:
N(r, c) =k

(r−1)c
+ k

r(c−1)

−k(r−1)(c−1)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Unit complement function
Size:r × c
f(x) = H(x,M)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Trivial conserved function
Size:r × c
f(x) = H(x,M) −H(x,M ′)

M =
*1111
*0101
*0100

M ′ =
1111*
0101*
0100*

M =
** ***
10111
00001

M ′ =
10111
00001
*****

M =
*** **
*1000
*1010

M ′ =
1000*
1010*
*****

f(x) = 1

Non-zero-sided matrix
Size:r × c
Count:krc −N(r, c)

01000
10000
10001

10000
11000
00000

10111
00000
00000

10000
00000
00000

Equations defining the
trivial conserved functions
Size:(2r − 1) × (2c− 1)
0 = e(M) − e(M ′′)

010000000
100000000
100010000
000000000
000000000

000000000
000100000
000110000
000000000
000000000

000000000
000000000
101110000
000000000
000000000

000000000
000000000
000010000
000000000
000000000

Non-zero-sided matrix
Size:(r + 2) × (c + 2)
Count:
k(r+2)(c+2) −N(r + 2, c + 2)

0 0 0 0 1 0 1
0 0 0 0 0 1 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0

1 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Equations defining
the conserved functions
Size:(2r + 3) × (2c + 3)
0 =e(M) − e(M ′)

−e(s(M)) + e(s(M ′))

0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1: Summary of the main theoretical results of this paper, with four examples of each concept. The proofs are for
arbitrary dimensions, neighborhood sizes, and number of colors, but the figure shows only 2D examples, for a CA
with a3× 3 neighborhood, andk = 2 colors. In each case,M ′ is M with the central bit set to 0. For the equations,
the large matrix is formed by padding the small matrix with zeros such that the last 1 bit ends up in the center of the
large matrix (where “last” is the last 1 found when traversing the elements in row major order). In each of the four
sections, the listed concepts all have the same count. For example, the number of zero-sided matrices of a given size
equals the number of unit complement functions, which equals the number of trivials.
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CA Basis

170
184
204

f(x) =H(x, 1 )

12
14
15
34
35
42
43
51
140
142

f(x) =H(x, 1 0 )

200f(x) =H(x, 1 1 )

2
3
172

f(x) =H(x, 1 0 0 )

4 f(x) =H(x, 0 1 0 )

10 f(x) =H(x, 1 * 0 )

56
76

f(x) = H(x, * 1 0 )
+H(x, 1 1 0 )

138f(x) = H(x, 1 0 0 )
+H(x, 1 1 * )

1 f(x) =H(x, 1 0 0 0 )

11
27

f(x) = H(x, 1 0 0 * )
+H(x, 1 0 1 1 )

29 f(x) = H(x, * 1 0 0 )
+H(x, 1 1 0 0 )
+H(x, 1 0 1 * )

38
46

f(x) = H(x, 1 0 0 * )
+H(x, 1 1 0 1 )

72 f(x) =H(x, 0 1 1 0 )

5 f1(x) = H(x, 0 1 0 * 1 )
+2H(x, 1 0 * 0 * )
− H(x, 1 0 1 0 * )
+ H(x, 1 0 0 1 0 )

f2(x) = H(x, 1 * 0 * 0 )

19 f(x) = H(x, 1 0 1 0 0 )
+H(x, 1 1 0 0 * )

CABasis

24f(x) = H(x, 1 0 0 0 * )
+H(x, 1 0 0 1 0 )
+H(x, 1 1 0 1 * )
+H(x, 1 1 1 0 0 )

36f(x) = H(x, 0 0 1 0 0 )
+H(x, 1 1 0 1 1 )

108f(x) = H(x, * 0 1 0 0 )
+ H(x, 1 0 1 0 0 )
+ H(x, 1 0 1 1 1 )
+2H(x, 1 1 0 0 * )
+ H(x, 1 1 1 0 1 )

132f(x) =H(x, 0 1 0 1 0 )

23f(x) = H(x, 0 0 1 1 0 0 )
+H(x, 1 1 0 0 1 1 )

50
178

f(x) = H(x, 0 1 1 0 0 1 )
+H(x, 1 0 0 1 1 0 )

77f1(x) =H(x, 0 1 1 0 0 1 )

f2(x) =H(x, 1 0 0 1 1 0 )

232f1(x) = H(x, 0 1 1 0 0 0 )
−H(x, 1 0 1 1 0 0 )
+H(x, 1 1 0 0 1 0 )
−H(x, 1 1 1 0 0 1 )

f2(x) = H(x, 1 1 0 0 1 1 )

44f(x) = H(x, 1 0 0 0 * * * * )
+H(x, 1 0 1 0 0 1 * * )
+H(x, 1 0 1 0 1 1 0 1 )
+H(x, 1 0 1 1 1 0 1 * )
+H(x, 1 1 0 0 1 * * * )
+H(x, 1 1 1 1 0 1 * * )

73f(x) =H(x, 0 1 1 0 0 1 1 0 )

7 f(x) = H(x, 0 0 0 1 1 0 0 0 * )
+H(x, 0 0 0 1 1 0 0 1 0 )
+H(x, * 0 1 1 0 0 0 1 1 )
+H(x, * 1 1 0 0 1 0 1 1 )
+H(x, 1 1 1 0 0 0 1 1 * )

CABasis

33f(x) = H(x, 0 0 0 1 0 0 0 1 0 0 * * )
− H(x, 0 0 0 1 0 0 0 1 0 0 1 * )
+2H(x, 0 0 0 1 0 0 0 1 1 * * * )
− H(x, 0 0 0 1 0 0 0 1 1 1 * * )
− H(x, 0 0 0 1 0 0 0 1 1 0 0 * )
− H(x, 0 0 0 1 0 0 0 1 1 0 1 0 )
+ H(x, 0 0 0 1 0 1 1 0 0 0 1 1 )
+ H(x, 0 0 0 1 0 1 1 1 0 1 1 1 )
+ H(x, 0 0 0 1 1 0 1 0 0 1 * * )
+2H(x, * 0 0 1 1 0 1 1 0 0 0 0 )
− H(x, 1 0 0 1 1 0 1 1 0 0 0 0 )
+ H(x, 0 0 0 1 1 0 1 1 0 0 1 * )
+ H(x, 0 0 0 1 1 0 1 1 1 0 0 * )
+ H(x, 0 0 0 1 1 0 1 1 1 0 1 0 )
+ H(x, 0 0 0 1 1 0 1 1 1 1 * * )
+ H(x, 0 0 1 0 0 0 1 1 0 1 0 0 )
+ H(x, 0 * 1 0 1 1 0 0 0 1 0 0 )
+ H(x, 0 * 1 0 1 1 1 0 1 0 0 1 )
+ H(x, 0 * 1 0 1 1 1 0 1 1 0 0 )
+3H(x, 0 0 1 1 0 1 1 0 0 0 1 * )
− H(x, 0 0 1 1 0 1 1 0 0 0 1 0 )
+ H(x, 0 0 1 1 0 1 1 1 0 1 0 0 )
+3H(x, 0 0 1 1 0 1 1 1 0 1 1 * )
− H(x, 0 0 1 1 0 1 1 1 0 1 1 0 )
+ H(x, 1 0 0 1 0 0 0 1 0 0 0 * )
+ H(x, 1 0 0 1 0 0 0 1 1 0 1 1 )
+2H(x, 1 0 0 1 0 1 1 0 0 0 * * )
− H(x, 1 0 0 1 0 1 1 0 0 0 0 * )
− H(x, 1 0 0 1 0 1 1 0 0 0 1 0 )
+ H(x, 1 0 0 1 0 1 1 1 0 1 0 0 )
+2H(x, 1 0 0 1 0 1 1 1 0 1 1 * )
− H(x, 1 0 0 1 0 1 1 1 0 1 1 0 )
− H(x, 1 0 0 1 1 0 1 1 0 0 0 1 )
− H(x, 1 0 0 1 1 0 1 1 1 0 1 1 )
+ H(x, 1 0 1 1 0 1 1 0 0 0 1 1 )
+ H(x, 1 0 1 1 0 1 1 1 0 1 1 1 )
+ H(x, 1 1 0 0 0 1 0 0 0 * * * )
+ H(x, 1 1 0 0 0 1 1 0 1 0 0 * )
+ H(x, 1 1 0 0 0 1 1 0 1 1 * * )
+2H(x, 1 1 1 0 1 1 0 0 0 * * * )
− H(x, 1 1 1 0 1 1 0 0 0 0 * * )
− H(x, 1 1 1 0 1 1 0 0 0 1 0 1 )
+2H(x, 1 1 1 0 1 1 1 0 1 0 0 * )
− H(x, 1 1 1 0 1 1 1 0 1 0 0 0 )
+2H(x, 1 1 1 0 1 1 1 0 1 1 * * )
− H(x, 1 1 1 0 1 1 1 0 1 1 0 1 )

164f(x) = H(x, 0 0 1 0 0 1 0 0 1 0 0 * * )
+H(x, 0 1 1 0 1 1 0 1 1 0 1 1 0 )

94f(x) = H(x, 0 1 1 1 0 0 1 0 1 1 1 1 0 1 )
+H(x, 1 0 1 0 0 1 0 1 1 1 1 0 1 * )
+H(x, 1 0 1 1 1 1 0 1 0 0 1 0 1 * )
+H(x, 1 0 1 1 1 1 0 1 0 0 1 1 1 0 )

104f1(x) = H(x, 0 0 1 0 1 0 1 1 0 1 0 1 0 0 )
+H(x, 0 0 1 0 1 1 1 1 0 1 0 0 * * )
+H(x, 0 0 1 1 0 0 1 1 0 0 0 * * * )
+H(x, 0 0 1 1 0 0 1 1 0 0 1 0 * * )
+H(x, 0 0 1 1 0 0 1 1 0 0 1 1 0 1 )
+H(x, 0 0 1 1 0 0 1 1 0 0 1 1 1 * )

f2(x) = H(x, 0 0 1 1 0 0 1 1 0 0 1 1 0 0 )

Fig. 2: 1D Basis functions. For each CA, this lists the lowest-ordernontrivial conserved functions. The
given functions, combined with the trivials, constitute a basis set for the space of all conserved func-
tions for that CA. The table contains all 88 of the non-isomorphic primitive CAs, except those that
are known to have no nontrivials (0,8,32,40,128,136,160,168,60,30,90,154), and those that have no known
nontrivials and have been proved to have none at least up to and including size 16 energy windows
(106,150,6,9,13,18,22,25,26,28,37,41,45,54,57,58,62,74,78,105,110, 122,126,130,134,146,152,156,162).
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3 Computational results
The challenge in identifying cellular automata with a nontrivial additive energy conservation function
(hereafter referred to as a ”nontrivial”) is the enumeration of the trivial functions and their elimination
from the solution space. The actual calculation of the nontrivials can then be reduced to the calculation
of the null space of the system of corresponding state space equations. Thus the theorems and definitions
of the previous section may be used as the basis for computational identification of cellular automata with
nontrivials of various orders. Computationally, this proceeds as follows:

1) Choose a CA and energy window size(s1, s2).
2) For all possible matrices M given by Theorem 2.4, generatethe corresponding state space equations.
3) To remove the trivials from the solution space, delete thecolumns associated with the zero-sided

tensors as determined by Theorem 2.6. This has the additional benefit of significantly reducing the size of
the energy vectors and, therefore, the state space matrix asa whole.

4) Determine the rank of the resulting matrix. If it is full rank, the system of equations has no solution,
and therefore no nontrivial exists for the given CA and window size. If the matrix is rank-deficient, a
nontrivial exists. It is completely characterized by the basis vectors that are the columns of the matrix’s
null space.

In [1], we gave a complete taxonomy of binary nontrivials for1D cellular automata up for energy
windows up to size 16. Using the definitions and theorems previously presented, we now extended these
results to binary 2D automata, for energy windows up to size 9.

There are a total ofkk
9

k-colored 2D cellular automata (ignoring isomorphic entries). This number
is so large that any investigation other than a random sampling is effectively impossible. Accordingly,
drawing substantive conclusions about unrestricted 2D cellular automata seems to the authors extraordi-
narily difficult. To reduce the scope of the problem and make amore complete investigation possible, we
consider onlyouter totalisticCAs: Those for which the next state of the cell is a function only of the total
number of colors of a given type in the region surrounding thecell and the cell itself. For binary CAs,
this means that only the total number of 1’s in a cell’s neighborhood (including its own value) must to be
calculated to determine the cell’s next state. Conway’s Game of Life is a cellular automaton of this type.

Restricting the search space to outer totalistic automata significantly reduces the size of the problem.
For a 2D CA, the neighborhood is of size 9, and therefore the total number of occupied cells in a cell’s
neighborhood ranges from 0 through 8. For binary automata, one of four outcomes are possible: (S)ame,
(B)irth, (D)eath, and (F)lip (Flip changes 0 to 1 and vice versa). Thus any outer totalistic CA can be
represented as a character string of the form S,B,D,F. Usingthis notation, if we count the neighbors from
0 to 8 from left to right, Conway’s Game of Life would be written as ”DDSBDDDDD”. We refer to this
description at the CA’srule vector. Note that the use of symbols S and F permits the incorporation of the
central state into the transition rule.

It is known that renumbering the colors of a CA in reverse order and changing the outcomes corre-
spondingly produces an CA identical to the original, up to isomorphism. Using the proposed notation,
this corresponds to reversing the order of the letters, swapping S with F, and swapping B with D. The rule
vector of every CA can be manipulated in this way to produce a unique and distinct isomorph, so the total
number of unique totalistic binary CAs is49/2 = 217. This is considerably smaller than the non-totalistic
case.

The definitions and theorems in this paper give the dimensions of the matrices to be analyzed as a
function of the energy window (independent of the CA being analyzed). We show the matrix sizes for
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some 2D examples in Table 1.

Energy window Energy window
height(s1) width (s2) ⌈log2 rows⌉ ⌈log2 cols⌉

1 2 16 1

1 3 19 2

1 4 23 3

2 2 20 4

1 5 26 4

1 6 29 5

2 3 25 6

1 7 32 6

1 8 35 7

2 4 29 8

1 9 39 8

3 3 30 9

Tab. 1: State matrix sizes for various energy windows

Column three shows the ceiling of the log base 2 of the maximumnumber of energy vectors needed
to determine the existence of a nontrivial. Column four shows the number of entries in each vector. This
is given by the total number of possible energy function values (2s1s2 ) minus the number of zero-sided
tensors given by Definition 1.15.

Because these matrices have far more rows than columns, we expect almost all of them to be full rank,
and therefore few nontrivial conservation functions should exist over the range of cellular automata. Since
full rank can be determined very quickly while rank-deficiency cannot be known until all the possible state
space vectors given by Theorem 2.3 have been examined for linear independence, it would be inefficient
to build the full state space matrix for each CA and then calculate its rank. Instead, we sift the sands of
cellular automata through a three-stage computational sieve.

The first stage uses a ”quick and dirty” algorithm to discard automata with no nontrivials. This elim-
inates over 99% of the candidates. The second stage takes automata that have passed the first stage and
performs a little more work to try and drive the set of state space matrices to full rank. This eliminates
about another 90% of the candidates it analyzes. The third stage operates only on automata that have
passed the first two stages, performing exact arithmetic using all the optimizations of Theorem 2.3 to de-
termine whether or not a given CA has a nontrivial conservation function. If it does, its basis is calculated
and reported. Each stage is implemented in MATLAB.

In stage I, we compute the energy vector of Definition 1.14 forone tensor at a time, attempting to add
it to an existing energy vector set via Gaussian eliminationto ensure that the rows in the state space ma-
trix at any time are always linearly independent. Before such addition, however, we delete the columns
corresponding to the zero-sided tensors for the indicated energy window. The total number of deleted
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columns is given by Definition 1.15. None of the optimizations discussed in the proof of Theorem 2.3 are
performed at this stage. Instead, universe states are generated randomly, the energy vectors of their cor-
responding tensors are calculated, and Gaussian elimination is performed on each vector relative to those
energy vectors already admitted into the state space matrix. When the number of linearly independent
energy vectors is equal to the number of columns (the number of possible energy function values minus
the number of zero-sided tensors), full rank has been achieved, and the CA/energy window pair under test
is known not to correspond to a nontrivial conservation function.

Since states are generated randomly in this stage, as opposed to exhaustive enumeration of the appro-
priate tensors as given by Theorem 2.3, the number of states Nto try before giving up on the possibility of
reaching full rank is a user-definable parameter. Empirically, we have found that setting N at 32x the max-
imum rank of the matrix gives a good tradeoff between quick computation on the one hand and admitting
too many false positives on the other.

During this stage, all arithmetic is performed modulo a small prime, to eliminate the possibility of
roundoff error or overflow. If full rank is reached, the matrix would be full rank in exact arithmetic as
well, so the answer is correct. If full rank is not reached within the indicated time window, the matrix may
or may not be rank-deficient, so the CA is marked as a candidatefor stage II computation.

In stage II, candidate CA/window pairs that pass through thefirst stage are subject to repeated random
state generation with a larger value of N for multiple attempts. No other optimizations are performed
at this time. If no full rank matrix is produced (i.e. no linearly independent energy vector set of the
cardinality given by Definition 1.14 is found), the pair is marked for analysis by stage III.

Stage III computation employs on-the-fly Gaussian elimination for one-at-a-time energy vector gener-
ation, similar to the first two stages, but using double precision arithmetic and enumerating the state space
exactly as described in the proof of Theorem 2.3. To keep the computations from overflowing, vectors
are reduced modulo the GCD of all their nonzero entries during this process, which means this stage is
the most computationally intensive. If Gaussian elimination on the entire set of energy vectors does not
produce a linearly independent set of Definition 1.14 cardinality, then constructed state space matrix has a
null space. That null space is calculated, and reported as the basis for all nontrivial conservation functions
for that particular CA/window combination.

To guard against the possibility of numerical error, the largest value observed during stage III calcula-
tion is tracked and reported, to ensure that any possibilityof overflow or loss of precision will be detected.
For all calculations reported here, this maximum value has always been well below that which could in-
duce error in double precision arithmetic. So we are confident our results are correct. Nonetheless, as an
added safety check, we have implemented code which accepts as input a CA, an energy window, and a
stage III basis set reported as characterizing a nontrivial. It tests each vector in the basis set over large
numbers of randomly selected states by evaluating the energy function through brute force dot product
calculation. In all cases, the resulting functions reported by stage III were conserved.

Table 2 shows the results of our computations for all outer totalistic binary 2D cellular automata up
to isomorphism, for all energy windows up to order 9. It extends [1] to give a complete taxonomy of
conservation functions for all automata of this type. Figures 3 and 4 are similar to Figure 2, extended to
two dimensions. Figure 5 summarizes our current knowledge of 1D conservation functions.
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CA# Rule rule vec (num neighbors) min basis comments
NCF size

0 1 2 3 4 5 6 7 8
0 S0123456789 S S S S S S S S S 1x1 n/a identity, conserves all
2 S12345678 D S S S S S S S S 1x2 1 conserves [11] pairs
8 S02345678 S D S S S S S S S 2x2 5 conserves 2x2 patterns

with≥ 3 1’s
10 S2345678 D D S S S S S S S 2x2 5 identical to 8
21 B012/S012345678B B B S S S S S S 3x3 1
32 S01345678 S S D S S S S S S 2x2 1 conserves 2x2 pattern with

all 1’s
34 S1345678 D S D S S S S S S 2x2 1 identical to 32
40 S0345678 S D D S S S S S S 2x2 1 identical to 32
42 S345678 D D D S S S S S S 2x2 1 identical to 32

16386 B7/S12345678D S S S S S S B S 2x2 4
16387 B07/S12345678F S S S S S S B S 3x3 11
21845 B01234567/S8B B B B B B B B S 3x3 1 conserves ring of 1’s

around a 0
65532 B1234567/S8 S F F F F F F F S 2x3 1
65533 B01234567/S08B F F F F F F F S 2x3 1 identical to 65532
65534 B1234567/S8 D F F F F F F F S 2x3 1 identical to 65532
65535 B01234567/S8 F F F F F F F F S 2x3 1 identical to 65532
65537 B08/S012345678B S S S S S S S B 2x3 7
65538 B8/S12345678D S S S S S S S B 2x2 8
65539 B08/S12345678F S S S S S S S B 2x3 7 identical to 65537
65541 B018/S012345678B B S S S S S S B 3x3 1 conserves [001 011 010]
65545 B08/S234567 B D S S S S S S B 2x3 1 conserves the difference

between [101 111] and
[111 101]

65546 B8/S234567 D D S S S S S S B 2x2 4 conserves 2x2 patterns
with≥ 3 1’s

65547 B08/S2345678 F D S S S S S S B 2x3 1 identical to 65545
65549 B018/S02345678B F S S S S S S B 3x3 1 identical to 65541
81921 B078/S012345678B S S S S S S B B 2x3 1
81923 B078/S12345678F S S S S S S B B 2x3 1 identical to 81921

131069 B012345678/S08B F F F F F F F B 2x3 1 identical to 65532
131070 B12345678/S8D F F F F F F F B 2x3 1 identical to 65532
131071 B012345678/S8F F F F F F F F B 2x3 1 identical to 65532
131073 B0/S01234567B S S S S S S S D 2x3 2
131075 B0/S1234567 F S S S S S S S D 2x3 2 identical to 131073
131077 B01/S01234567B B S S S S S S D 3x3 1 identical to 65541
131081 B0/S0234567B D S S S S S S D 3x3 9
131083 B0/S234567 F D S S S S S S D 3x3 9 identical to 131081
131085 B01/S234567B F S S S S S S D 3x3 1 identical to 65541
147459 B07/S1234567F S S S S S S B D 3x3 9
163483 B0/S123456 F S S S S S S D D 3x3 1 conserves [011 100 101]
180227 B07/S123456 F S S S S S S F D 3x3 1 identical to 163843
196605 B01234567/S0B F F F F F F F D 2x2 4
196607 B01234567 F F F F F F F F D 2x2 4 Identical to 196605
196611 B08/S1234567F S S S S S S S F 2x3 2 Identical to 131073
196619 B08/S234567 F D S S S S S S F 3x3 9 Identical to 131081
262143 B012345678 F F F F F F F F F 1x2 1 Conserves [10] pairs

Tab. 2: Conservation functions of order≤ 9 for 2D CA’s



Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 15

The first three columns of Table 2 are all different ways of identifying the same automaton. The first
column is the decimal integer represented by a CA’s rule vector, obtained by treating the symbols S,B,D,F
as the integers 0,1,2,3 respectively, and viewing the rule vector as a number in base 4 with the most
significant digit on the right. The second column shows the CArule using the notation in [8]. Column
three is the CA’s rule vector.

Columns four through six describe the nontrivial conservation function found. Column four shows the
dimensions of the energy window at which the first nontrivialwas discovered. Column five shows the
number of basis vectors in the null space of the CA’s state matrix for an energy window of the indicated
size. Column six contains, where appropriate, comments describing the conservation function. A blank
entry in this column means that either no simple descriptionexists or that describing the pattern would be
too complex to fit within the indicated space.

Symmetry arguments will show that analogous conservation functions for anym× n window can also
be found for one that isn×m. Thus the only energy windows examined were those that were at least as
wide as they were tall.
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CA Basis

174762f(x) =H(x, 1 )

87381 f(x) =H(x, 1 0 )

174760f(x) =H(x, 1 1 )

174720
174722
174728
174730

f(x) =H(x, 1 1
1 1

)

21845
21847

f1(x) = H(x, 0 1
1 *

)

−H(x, 1 1
0 *

)

f2(x) = H(x, 0 1
1 *

)

−H(x, 1 0
1 *

)

f3(x) = H(x, 0 1
1 1

)

−H(x, 1 *
1 0

)

−H(x, 1 1
0 0

)

f4(x) = H(x, 0 1
1 0

)

+H(x, 1 0
0 1

)

191144f1(x) = H(x, 0 0
0 1

)

− H(x, 0 1
0 0

)

f2(x) = H(x, 0 0
0 1

)

− H(x, 0 0
1 0

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f4(x) = H(x, 0 1
1 *

)

+ H(x, * 1
1 1

)

− H(x, 1 0
0 1

)

+2H(x, 1 0
1 0

)

+2H(x, 1 1
0 0

)

CA Basis

240288f1(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f2(x) = H(x, 0 1
1 1

)

− H(x, 1 1
0 1

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 0
1 1

)

f4(x) = H(x, * 1
1 1

)

+3H(x, 0 1
1 1

)

240296f1(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f2(x) = H(x, 0 1
1 1

)

− H(x, 1 1
0 1

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 0
1 1

)

f4(x) = H(x, 1 1
0 0

)

f5(x) = H(x, 1 0
1 0

)

f6(x) = H(x, 1 0
0 1

)

f7(x) = H(x, * 1
1 1

)

+3H(x, 0 1
1 1

)

f8(x) = H(x, 0 1
1 0

)

CA Basis

174752
174754

f1(x) =H(x, 1 1
1 1

)

f2(x) =H(x, 1 1
1 0

)

f3(x) =H(x, 1 1
0 1

)

f4(x) =H(x, 1 0
1 1

)

f5(x) =H(x, 0 1
1 1

)

218453
218452
218455
152917
152916
152919
152918

f(x) = H(x, 0 1 0
1 0 1

)

+H(x, 1 0 1
0 1 0

)

256681
256683
191145

f(x) = H(x, 0 0 *
1 0 1

)

+H(x, 1 0 0
1 0 1

)

−H(x, 1 0 1
0 0 *

)

−H(x, 1 0 1
1 0 0

)

240289
240291

f(x) = H(x, 1 0 1
1 1 1

)

−H(x, 1 1 1
1 0 1

)

109225
43689
43691

f1(x) =H(x, 1 0 1
0 1 0

)

f2(x) =H(x, 0 1 0
1 0 1

)

240297
240299

f1(x) = H(x, 1 0 1
1 1 1

)

−H(x, 1 1 1
1 0 1

)

f2(x) = H(x, 1 1 0
1 0 1

)

f3(x) = H(x, 1 0 1
1 1 0

)

f4(x) = H(x, 1 0 1
0 1 1

)

f5(x) = H(x, 1 0 1
0 1 0

)

f6(x) = H(x, 0 1 1
1 0 1

)

f7(x) = H(x, 0 1 0
1 0 1

)

Fig. 3: 2D Basis functions. For each CA, this lists the lowest-ordernontrivial conserved functions. The given
functions, combined with the trivials, constitute a basis set for the space of all conserved functions for that CA. The
table contains all of the non-isomorphic, 2-color,3 × 3 neighborhood, outer totalistic CAs that have nontrivials of
size2× 3 or smaller (the3× 3 nontrivials are shown in Figure 4).
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CA Basis

109223
109231
43687
43695
240295
240303

f(x) =H(x, 0 1 0
1 0 1
0 1 0

)

196607f(x) =H(x, 1 1 1
1 0 1
1 1 1

)

125609
125611
60075

f1(x) =H(x, 1 0 1
0 1 0
1 0 1

)

f2(x) =H(x, 1 0 1
0 1 0
1 0 0

)

f3(x) =H(x, 1 0 1
0 1 0
0 0 1

)

f4(x) =H(x, 1 0 1
0 1 0
0 0 0

)

f5(x) =H(x, 1 0 0
0 1 0
1 0 1

)

f6(x) =H(x, 1 0 0
0 1 0
1 0 0

)

f7(x) =H(x, 0 0 1
0 1 0
1 0 1

)

f8(x) =H(x, 0 0 1
0 1 0
0 0 1

)

f9(x) =H(x, 0 0 0
0 1 0
1 0 1

)

60073 f1(x) =H(x, * 0 *
0 1 0
1 0 1

)

f2(x) =H(x, * 0 1
0 1 0
* 0 1

)

f3(x) =H(x, 1 0 1
0 1 0
1 0 1

)

f4(x) =H(x, 1 0 1
0 1 0
1 0 0

)

f5(x) =H(x, 1 0 1
0 1 0
0 0 1

)

f6(x) =H(x, 1 0 1
0 1 0
0 0 0

)

f7(x) =H(x, 1 0 0
0 1 0
1 0 1

)

f8(x) =H(x, 1 0 0
0 1 0
1 0 0

)

f9(x) =H(x, 0 0 1
0 1 0
1 0 1

)

CA Basis

174783f(x) = H(x, 0 0 0
0 0 1
0 0 1

)+H(x, 0 0 0
0 0 1
0 1 0

)+ H(x, 0 0 0
* 0 1
1 1 1

)− H(x, 0 0 0
1 0 0
0 1 1

)

− H(x, 0 0 *
1 0 0
1 0 *

)−H(x, 0 0 0
1 0 0
1 1 0

)+ H(x, * 0 0
1 0 1
1 0 0

)− H(x, 0 0 1
0 0 0
1 0 1

)

− H(x, 0 0 1
0 0 *
1 1 0

)+H(x, 0 0 1
* 0 *
1 1 1

)− H(x, 0 0 1
0 0 1
0 * 0

) − 2H(x, 0 0 1
0 0 1
1 0 0

)

− H(x, 0 0 1
1 0 0
0 0 1

)−H(x, 0 0 1
1 0 *
* 1 0

)− H(x, 0 * 1
1 0 0
1 0 0

) − 2H(x, 0 0 1
1 0 1
0 0 0

)

+2H(x, 0 1 *
0 0 0
0 1 0

)−H(x, 0 1 1
0 0 0
0 * 0

)− H(x, 0 1 0
0 0 0
1 0 1

)− H(x, * 1 0
0 0 1
1 0 0

)

− H(x, * 1 *
* 0 1
1 1 0

)−H(x, 0 1 0
* 1 0
* 1 0

)− H(x, 0 1 0
0 1 1
* 1 *

)− H(x, 0 1 *
1 0 *
0 0 *

)

− H(x, 0 1 0
1 0 0
0 0 1

)−H(x, 0 1 *
1 0 0
0 1 1

)− H(x, 0 1 *
1 * 0
1 0 *

)− H(x, 0 1 0
1 0 0
1 0 *

)

− H(x, 0 1 *
1 0 0
1 0 0

)−H(x, 0 1 1
1 * 0
* 0 0

)− H(x, 0 1 0
1 0 1
0 0 0

)− H(x, 0 1 *
1 0 1
0 1 *

)

− H(x, * 1 *
1 0 1
1 0 1

)−H(x, 0 1 *
1 1 0
0 0 *

)− H(x, 0 1 1
0 * 0
1 0 0

)− H(x, 0 1 1
0 0 0
1 0 0

)

− H(x, 0 1 1
0 1 0
0 0 0

)−H(x, * 1 1
0 1 1
* 1 0

)− H(x, 0 1 1
1 0 0
0 0 0

)+ H(x, 0 1 1
1 0 1
1 0 0

)

+ H(x, 0 1 1
1 1 1
* 1 1

)−H(x, 1 0 0
0 0 0
0 1 1

) − 2H(x, 1 * *
0 0 *
1 0 *

)− H(x, 1 0 0
0 0 0
1 0 1

)

− H(x, 1 0 0
0 0 0
1 1 *

)−H(x, 1 0 *
* 0 *
1 1 0

)− H(x, 1 0 1
* 0 *
* 1 0

)− H(x, 1 0 *
0 0 1
1 0 0

)

− H(x, 1 0 1
0 0 1
* 0 0

)−H(x, 1 0 1
* 0 1
0 0 0

)+ H(x, 1 0 0
1 0 0
0 0 0

)− H(x, 1 * *
1 0 0
1 0 0

)

− H(x, 1 0 *
1 0 1
0 0 0

)−H(x, 1 0 1
0 0 0
0 0 1

)− H(x, 1 0 1
0 0 0
1 0 *

) − 2H(x, 1 0 1
1 0 0
* * *

)

− H(x, 1 0 1
1 0 0
* 0 *

)+H(x, 1 1 0
0 0 0
0 0 0

)− H(x, 1 1 *
0 0 0
0 1 1

)− H(x, 1 1 1
0 0 *
1 * *

)

− H(x, 1 1 0
0 0 0
1 0 *

)+H(x, 1 1 0
* 0 1
0 0 1

)− H(x, 1 1 *
0 0 1
0 1 *

)− H(x, 1 1 *
0 1 *
0 0 *

)

− H(x, 1 1 1
0 1 *
* 0 *

)+H(x, 1 1 0
0 1 0
* 1 1

)+ H(x, 1 1 0
1 0 0
0 1 0

) − 2H(x, 1 1 *
1 0 0
1 0 *

)

− H(x, 1 1 1
* * 0
* 0 0

)−H(x, 1 1 1
* 0 0
* 0 0

)− H(x, 1 1 1
1 0 1
1 0 1

)+ H(x, 1 1 0
1 1 0
0 1 1

)

− H(x, 1 1 0
1 1 0
1 1 0

)+H(x, 1 1 0
1 1 1
0 * *

)+ H(x, 1 1 0
1 1 1
1 0 *

)− H(x, 1 1 1
0 0 *
0 1 *

)

− H(x, 1 1 1
1 0 0
0 1 1

)−H(x, 1 1 1
1 0 *
1 1 *

)− H(x, 1 1 1
1 0 1
0 1 *

)− H(x, 1 1 1
1 1 0
0 0 *

)

− H(x, 1 1 1
1 1 0
1 * *

)+H(x, 1 1 1
1 1 1
0 1 1

)− H(x, 1 1 1
1 1 1
1 1 0

)

Fig. 4: 2D Basis functions (continued). These are the3× 3 nontrivials, continued from figure 3.
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Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

∞ 0(255) 0 0 0 0 0 0 0 0 0
∞ 8(64,239,253) Xyz 0 0 0 0 1 0 0 0
∞ 30(86,135,149) X+YZ 0 0 0 1 1 1 1 0
∞ 32(251) xYz 0 0 1 0 0 0 0 0
∞ 40(96,235,249) xz+yz 0 0 1 0 1 0 0 0
∞ 60(102,153,195) x+y 0 0 1 1 1 1 0 0
∞ 90(165) x+z 0 1 0 1 1 0 1 0
∞ 106(120,169,225) xy+z 0 1 1 0 1 0 1 0
∞ 128(254) xyz 1 0 0 0 0 0 0 0
∞ 136(192,238,252) yz 1 0 0 0 1 0 0 0
∞ 150 x+y+z 1 0 0 1 0 1 1 0
∞ 154(166,180,210) xY+z 1 0 0 1 1 0 1 0
∞ 160(250) xz 1 0 1 0 0 0 0 0
∞ 168(224,234,248) XYz+z 1 0 1 0 1 0 0 0
>16 6(20,159,215) Xy+Xz 0 0 0 0 0 1 1 0
>16 9(65,111,125) Xy+XZ 0 0 0 0 1 0 0 1
>16 13(69,79,93) X+XYz 0 0 0 0 1 1 0 1
>16 18(183) xY+Yz 0 0 0 1 0 0 1 0
>16 22(151) X+Xyz+YZ 0 0 0 1 0 1 1 0
>16 25(61,67,103) Xyz+YZ 0 0 0 1 1 0 0 1
>16 26(82,167,181) xYZ+Xz 0 0 0 1 1 0 1 0
>16 28(70,157,199) Xy+xYZ 0 0 0 1 1 1 0 0
>16 37(91) xYz+XZ 0 0 1 0 0 1 0 1
>16 41(97,107,121) X+XyZ+Yz0 0 1 0 1 0 0 1
>16 45(75,89,101) X+Yz 0 0 1 0 1 1 0 1
>16 54(147) XZ+Y 0 0 1 1 0 1 1 0
>16 57(99) Xz+Y 0 0 1 1 1 0 0 1
>16 58(114,163,177) xY+Xz 0 0 1 1 1 0 1 0
>16 62(118,131,145) x+XYz+y 0 0 1 1 1 1 1 0
>16 74(88,173,229) xyZ+Xz 0 1 0 0 1 0 1 0
>16 78(92,141,197) Xz+yZ 0 1 0 0 1 1 1 0
>16 105 x+y+Z 0 1 1 0 1 0 0 1
>16 110(124,137,193) Xyz+y+z 0 1 1 0 1 1 1 0
>16 122(161) x+xYz+z 0 1 1 1 1 0 1 0
>16 126(129) xY+Xz+yZ 0 1 1 1 1 1 1 0
>16 130(144,190,246) xz+Yz 1 0 0 0 0 0 1 0
>16 134(148,158,214) X+XYZ+yz1 0 0 0 0 1 1 0
>16 146(182) x+xyZ+Yz 1 0 0 1 0 0 1 0
>16 152(188,194,230) xYZ+yz 1 0 0 1 1 0 0 0
>16 156(198) xZ+y 1 0 0 1 1 1 0 0
>16 162(176,186,242) Xyz+z 1 0 1 0 0 0 1 0
1 170(240) z 1 0 1 0 1 0 1 0
1 184(226) xY+yz 1 0 1 1 1 0 0 0
1 204 y 1 1 0 0 1 1 0 0

Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

2 12(68,207,221) Xy 0 0 0 0 1 1 0 0
2 14(84,143,213) X+XYZ 0 0 0 0 1 1 1 0
2 15(85) X 0 0 0 0 1 1 1 1
2 34(48,187,243) Yz 0 0 1 0 0 0 1 0
2 35(49,59,115) xYZ+Y 0 0 1 0 0 0 1 1
2 42(112,171,241) xyz+z 0 0 1 0 1 0 1 0
2 43(113) xY+Xz+YZ 0 0 1 0 1 0 1 1
2 51 Y 0 0 1 1 0 0 1 1
2 140(196,206,220) xyZ+y 1 0 0 0 1 1 0 0
2 142(212) xy+Xz+yZ 1 0 0 0 1 1 1 0
2 200(236) XyZ+y 1 1 0 0 1 0 0 0
3 2(16,191,247) XYz 0 0 0 0 0 0 1 0
3 3(17,63,119) XY 0 0 0 0 0 0 1 1
3 4(223) XyZ 0 0 0 0 0 1 0 0
3 10(80,175,245) Xz 0 0 0 0 1 0 1 0
3 56(98,185,227) xY+Xyz 0 0 1 1 1 0 0 0
3 76(205) xyz+y 0 1 0 0 1 1 0 0
3 138(174,208,244) xYz+z 1 0 0 0 1 0 1 0
3 172(202,216,228) Xy+xz 1 0 1 0 1 1 0 0
4 1(127) XYZ 0 0 0 0 0 0 0 1
4 11(47,81,117) X+XyZ 0 0 0 0 1 0 1 1
4 27(39,53,83) Xz+YZ 0 0 0 1 1 0 1 1
4 29(71) Xy+YZ 0 0 0 1 1 1 0 1
4 38(52,155,211) XyZ+Yz 0 0 1 0 0 1 1 0
4 46(116,139,209) Xy+Yz 0 0 1 0 1 1 1 0
4 72(237) xy+yz 0 1 0 0 1 0 0 0
5 5(95) XZ 0 0 0 0 0 1 0 1
5 19(55) xYz+Y 0 0 0 1 0 0 1 1
5 24(66,189,231) xYZ+Xyz 0 0 0 1 1 0 0 0
5 36(219) xYz+XyZ 0 0 1 0 0 1 0 0
5 108(201) xz+y 0 1 1 0 1 1 0 0
5 132(222) xy+yZ 1 0 0 0 0 1 0 0
6 23 xY+XZ+Yz 0 0 0 1 0 1 1 1
6 50(179) XYZ+Y 0 0 1 1 0 0 1 0
6 77 xy+XZ+yz 0 1 0 0 1 1 0 1
6 178 xy+xZ+Yz 1 0 1 1 0 0 1 0
6 232 xy+xz+yz 1 1 1 0 1 0 0 0
8 44(100,203,217) Xy+xYz 0 0 1 0 1 1 0 0
8 73(109) X+XYz+yZ 0 1 0 0 1 0 0 1
9 7(21,31,87) X+Xyz 0 0 0 0 0 1 1 1
12 33(123) xY+YZ 0 0 1 0 0 0 0 1
13 164(218) XyZ+xz 1 0 1 0 0 1 0 0
14 94(133) x+XyZ+z 0 1 0 1 1 1 1 0
14 104(233) x+xYZ+yz 0 1 1 0 1 0 0 0

Fig. 5: Summary of results for the primitive CAs (1D, 2-color, neighborhood of 3 cells). In each half of the table,
the first column gives the energy window size for the smallestnontrivial. A value of∞ indicates that it is known
no nontrivial can exist. A value of> 16 indicates that no nontrivial exists with energy window of size 16 or below.
The next column has the CA name, and the names of the isomorphic CAs. The next is the formula for the successor
function, where cells have state 0 or 1, three consecutive cells are called x, y, z (with capitalized inverses, so X=1-x
etc.), and the formula modulo 2 gives the new state for y. Finally, the successor function is shown graphically, giving
the new state as a function of the state in that cell and its immediate neighbors (shown at the top of the column).



Faster Methods for Identifying Nontrivial Energy Conservation Functions for Cellular Automata 19

4 Analysis
Some patterns are clearly visible in Table 2, Figure 3, Figure 4 and Figure 5. For all CA’s for which non-
trivial conservation functions exist, there is a great dealof homogeneity in the middle range of neighbor
counts. For example, any given CA in the table has the same transition rules for neighbor counts 3-6,
and most have identical transition rules for neighbor counts 2-7. We conjecture this is combinatorically
driven. That is, for the middle range of neighbor counts, there are so many different ways to distribute
a fixed number of neighbors among eight cells that a low-orderconservation function cannot incorporate
them all. By contrast, there is only one way to arrange zero oreight neighbors around a cell, eight ways
to arrange one or seven, and so forth. Near the minimum and maximum of the neighbor count range,
the number of possible configurations is sufficiently small that a low-order conservation function is more
likely to emerge.

We also note that all CA’s with rule vectors of the form xFFFFFFFx, xSSSSSSSB, and xDSSSSSSB
have nontrivial conservation functions. All CA’s of the form xSSSSSSSx have a nontrivial as well, unless
exactly one of the x’s is ’S’.

Finally, our results show that all known nontrivials correspond to energy windows for which the width
and the height differ by no more than one. Whether this holds true for all nontrivials remains an open
question.

5 The Game of Life
Because of the special significance of Conway’s Game of Life (CA #174666, rule B3/S23, rule vector
DDSBDDDDD), we have examined it for nontrivial energy conservation functions up to order 13. None
have been found.

6 Conclusions and Future Work
Table 2 and Figures 3 through 5 represent a complete taxonomyof all known nontrivial conservation
functions for 1- and 2-dimensional binary cellular automata up to isomorphism. We have discussed some
of the patterns we have observed.

[1] introduced the notion of core nontrivials, recognizingthat cellular automata could exhibit different
nontrivials of higher orders that are not simple extensionsof lower ones. We have yet to apply this
idea to the automata shown here. Thus the functions we reportare only the first core nontrivials found.
The existence of multiple cores for 2D binary cellular automata remains an open question. Detecting
such cores requires only well-understood modifications to our existing code, and is on our list of future
enhancements.

Number-conserving1D cellular automata [2] are automata with transition rulesthat conserve the sum of
the number of states in a neighborhood. A number-conservingfunction is one kind of energy conservation
function defined in Definition 1.8, where the function is simply the sum of all terms in the window. Our
work therefore includes number-conservation as a special case. The theory described here applies to all
cellular automata with finite states and arbitrary dimensionality. The results for 2D automata are all new.

Continuing improvements in computing power and further refinements of our codes should enable us to
identify nontrivials at increasingly higher orders. The existence of nontrivialss form×n energy windows
with |m− n| > 1 remains an open question. Higher dimensional CAs, non-totalistic CAs, and k-colored
CAs could also be explored.
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As yet, an elegant, unifying description of cellular automata relating their decision rules and a given
energy window to a nontrivial conservation function remains elusive. While the general problem is un-
decidable, we have mapped out the space for lower orders and binary outer totalistic CAs well enough to
suggest some ideas for a more elegant classification scheme than the present ad hoc one we are currently
forced to adopt. Such a scheme may in fact exist, or it may remain forever elusive, an fundamentally com-
plex property inherent in the nature of computational automata. We hope further work may yet resolve
this question.

7 Errata and Acknowledgments
Readers unfamiliar with automata conservation functions may wish to review [1]. In the course of prepar-
ing this paper, we noticed errors in the first three tables of our previous results. For the sake of complete-
ness, we present the necessary corrections to [1] here:

TABLE 1: Replace 98 with 94, replace 40 with 46
TABLE 2: Replace 136 with 200
TABLE 3: Replace 136 with 200, replace 248 with 232

The authors are grateful for the support of the Air Force Academy Center for Cyberspace Research,
and to the reviewers for their helpful comments.
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60/102 Null Boundary Cellular Automata

based expander graphs
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Expander graphs are useful in the design and analysis of communication networks. Mukhopadhyay et al. intro-

duced a method to generate a family of expander graphs based on nongroup two predecessor single attractor Cellular

Automata(CA). In this paper we propose a method to generate a family of expander graphs based on 60/102 Null

Boundary CA(NBCA) which is a group CA. The spectral gap generated by our method is maximal. Moreover, the

spectral gap is larger than that of Mukhopadhyay et al.

Keywords: Expander graphs, 60/102 NBCA, Spectral gaps, Bipartite graphs, Eigenvalue.

1 Introduction

Expander graphs were first defined by Bassalygo and Pinsker and their existence first proved by Pinsker

in the early 1970s (10). Also expander graphs have utility in computational settings such as in the theory

of error correcting codes and the theory of pseudorandomness as well as a tool for proving results in

number theory and computational complexity (6; 8; 11). Expander graphs are useful in the design and

analysis of communication networks. Mukhopadhyay et al. introduced a method to generate a family

of expander graphs based on nongroup two predecessor single attractor Cellular Automata(CA). In this

paper we propose a method to generate a family of expander graphs based on 60/102 Null Boundary

CA(NBCA) which is a group CA. The merit of our method is that it use regular, modular and cascadable

structure of 60/102 NBCA (1; 3; 4) to generate regular graphs of good expansion property with less

storage. The spectral gap generated by our method is maximal. Moreover, the spectral gap is larger than

that of Mukhopadhyay et al. (9).

†This work was supported by the Pukyong University Research Fund in 2009(PK-2009-26) .

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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2 Preliminaries

CA consist of a number of interconnected cells arranged spatially in a regular manner, where the state

transition of each cell depends on the states of its neighbors. The CA structure investigated by Wolfram

(12) can be viewed as a discrete lattice of sites (cells), where each cell can assume the value either 0

or 1. The next-state of a cell is assumed to depend on itself and on its two neighbors (3-neighborhood

dependency). If the next-state function of a cell is expressed in the form of a truth table, then the decimal

equivalent of the output is conventionally called the rule number for the cell.

Neighborhood state 111 110 101 100 011 010 001 000

Next state 0 0 1 1 1 1 0 0 rule 60

Next state 0 1 1 0 0 1 1 0 rule 102

The top row gives all eight possible states of the three neighboring cells (the left neighbor of the ith
cell, the ith cell itself, and its right neighbor) at the time of instant t. The second and third rows give the

corresponding states of the ith cell at the time of instant t+ 1 for two illustrative CA rules.

Informally, expander graph is a graph G = (V,E) in which every subset S of vertices expands quickly,

in the sense that it is connected to many vertices in the set S of complementary vertices.

Definition 2.1. (8) Suppose G = (V,E) has n vertices. For a subset S of V define the edge boundary

of S, ∂S, to be the set of edges connecting S to its complement S. That is, ∂S consists of all those edges

(v, w) such that v ∈ S and w /∈ S. The expansion parameter for G is defined by

h(G) ≡ min
S:|S|≤n/2

|∂S|
|S|

where |X| denotes the size of a set X .

Example 2.2. Suppose G is the complete graph with n vertices, i.e., the graph in which every vertex is

connected to every other vertex. Then for any vertex in S, each vertex in S is connected to all the vertices

in S, and thus |∂S| = |S| × |S| = |S|(n− |S|). It follows that the expansion parameter for G is given by

h(G) ≡ min
S:|S|≤n/2

(n− |S|) = ⌈n
2
⌉

It is a marvellous fact that properties of the eigenvalue spectrum of the adjacency matrix A(G) can be

used to understand properties of the graph G. This occurs so frequently that we refer to the spectrum

of A(G) as the spectrum of the graph G. It is useful because the eigenvalue spectrum can be computed

quickly, and certain properties, such as the largest and smallest eigenvalue, the determinant and trace, can

be computed extremely quickly (8).

Let G = (V,E) be an undirected graph and A(G) be the adjacency matrix of the graph G. And let

λi(A(G))(1 ≤ i ≤ n) be eigenvalues of A(G). Then A(G) is a real symmetric matrix and thus diagonal-

ized. Without loss of generality we can assume that λ1(A(G)) ≥ λ2(A(G)) ≥ · · · ≥ λn(A(G)).
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Lemma 2.3. (1) Let C be a CA where state transition matrix T and C
′ be the complemented CA derived

from C where state transition operator T . And let T
p

denote p times application of the complemented CA

operator T . Then

T
p
f(x) = [I ⊕ T ⊕ T 2 ⊕ · · · ⊕ T p−1]F (x)⊕ T pf(x)

where T is the characteristic matrix of the corresponding noncomplemented rule vector and F (x) is an

n-dimensional vector (n=number of cells) responsible for inversion after XNORing. F (x) has ’1’ entries

(i.e., nonzero entries) for CA cell positions where XNOR function is employed and f(x) is the current

state assignment of the cells.

3 Properties of the eigenvalue spectrum

In this section, we give properties of the eigenvalue spectrum of the adjacency matrix A(G) of an undi-

rected graph G.

The following three theorems are well-known.

Theorem 3.1. Let G be an undirected d-regular graph whose adjacency matrix is A(G). Then

λ1(A(G)) = d.

Theorem 3.2. Let G be an undirected d-regular graph. Then G is connected if and only if λ1(A(G)) >
λ2(A(G)).

Theorem 3.3. Let G be an undirected d-regular graph. Then G is bipartite if and only if λi(A(G)) =
−λn+1−i(A(G)), i = 1, 2, · · · , n.

Now we define the gap for the d-regular graph G to be the difference ∆(G) ≡ d− λ2(A(G)).

Theorem 3.4. (2) Let G be a d-regular graph with spectrum λ1(A(G)) ≥ λ2(A(G)) ≥ · · · ≥
λn(A(G)). Then

∆(G)

2
≤ h(G) ≤

√
2d∆(G)

Example 3.5. Let G be an undirected graph with the adjacency matrix A(G) as the following:

T =





















































0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0 0 2 0
0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 0 2 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 0 2 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 2 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0
0 0 2 0 0 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0




















































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Then λ1(A(G)) = 4, λ2(A(G)) = λ3(A(G)) = 2
√

2, λ4(A(G)) = λ5(A(G)) = 2, λ6(A(G)) =
· · · = λ11(A(G)) = 0, λ12(A(G)) = λ13(A(G)) = −2, λ14(A(G)) = λ15(A(G)) = −2

√
2, λ16(A(G)) =

−4. Moreover, ∆(G) = 4− 2
√

2. Thus 2−
√

2 ≤ h(G) ≤ 4
√

2−
√

2.
Since λ1(A(G)) > λ2(A(G)) and λi(A(G)) = −λ17−i(A(G))(i = 1, 2, · · · , 16), G is connected and

bipartite.

4 60/102 NBCA based expander graphs

In this section we show a construction of a family of random d-regular graphs using 60/102 NBCA. Let

C be the n-cell 60/102 NBCA whose state transition matrix T is as the following:

T =

























1 0 0 0 · · · 0 0 0
0 1 1 0 · · · 0 0 0
0 0 1 1 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · 1 1 0
0 0 0 0 · · · 0 1 1
0 0 0 0 · · · 0 0 1

























Hereafter we write T by T =< 60, 102, 102, · · · , 102 >.

Clearly the characteristic (resp. minimal) polynomial c(x) (resp. m(x)) of T is c(x) = (x+ 1)n (resp.

m(x) = (x + 1)n−1). Since m(x) = (x + 1)n−1, we can obtain the following result. The proof of

Theorem 4.1 is very similar to the proof of Theorem 3.4 in (3).

Theorem 4.1. Let C be the n-cell 60/102 NBCA with state transition matrix T =< 60, 102, 102, · · · , 102 >.

Let C
′ be the complemented CA derived from C with complement vector (a1, · · · , an−1, 1)t(ai ∈ {0, 1}, i =

1, 2, · · · , n − 1 where xt is the transpose of the given vector x) and state transition operator T . If

ord(T ) = 2a, then the following hold:

(a) all the lengths of cycles in C
′ are the same.

(b) ord(T ) =

{
2a, if 2a−1 < n− 1 < 2a,
2a+1, if n− 1 = 2a+1.

Remark A By Theorem 4.1, the state transition diagram of C
′ does not have any attractor.

Example 4.2. Let C be the 4-cell 60/102 NBCA whose state transition matrix is T =< 60, 102, 102, 102 >.

Then the structure and the state transition diagram of C are as the following.

Let F1 = (0, 0, 0, 1)t. Then by Lemma 2.3 T0 = 1, T1 = 2, T2 = 7, T3 = 4, T4 = 5, · · · ,

T14 = 11 and T15 = 8. Thus we obtain the state transition diagram G1 of the state transition operator T
of the complemented CA C

′
1 with complement vector F1 = (0, 0, 0, 1)t of C. Also we see that ord(T ) =

ord(T ) = 4 and all lengths of cycles in C are all the same by Theorem 4.1. Diagrma

Fig. 2 shows the state transition diagram G1 and G2 of the complemented CA with F1 = (0, 0, 0, 1)t

and F2 = (1, 1, 1, 1)t respectively whose two adjacency 8 × 8 matrices A(G1) and A(G2) respectively

using Example 4.2 are as the following.
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Fig. 1: The structure and the state transition diagram of C

A(G1) =





















































0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0





















































A(G2) =





















































0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0





















































Let G be the graph obtained by the union of the graphs G1 and G2. Then A(G) is as the following:

A(G) =





















































0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0





















































The characteristic polynomial of A(G) is x6(x − 4)(x + 4)(x − 2)4(x + 2)4. Hence the eigenvalues

of A(G) are λ1 = 4, λ2 = · · · = λ5 = 2, λ6 = · · · = λ11 = 0, λ12 = · · · = λ15 = −2, λ16 = −4.

Therefore by Theorem 3.2 and Theorem 3.3 G is connected and bipartite. Fig. 3 shows the graph G with

the adjacency matrix A(G).

Theorem 4.3. Let C be the 60/102 NBCA whose state transition matrix is T . Let C
′
1 (resp. C

′
2)

be the complemented CA derived from C with the complement vector F1 = (0, ∗, · · · , ∗, 1)t (resp.

F2 = (1, ∗, · · · , ∗, 1)t). Also let T 1X = TX ⊕ F1 and T 2X = TX ⊕ F2. Let G1 (resp. G2) be

the graph obtained from C
′
1 (resp. C

′
2). And let G be the union of two graphs G1 and G2 whose adja-

cency matrix is A(G1) and A(G2) respectively. Then G is a bipartite 4-regular graph.
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Fig. 2: The state transition diagram G1 (resp. G2) of the complemented CA with F1 = (0, 0, 0, 1)t (resp.

F2 = (1, 1, 1, 1)t)

Table 1 shows the eigenvalue spectrum of A(G) which is the union of G1 and G2. In Table 1 let

F1 = (0, 1, 1, 1)t and F2 = (1, 1, 0, 1)t. Then the eigenvalue spectrum of A(G) is λ1 = 4, λ2 = · · · =
λ5 = 2, λ6 = · · · = λ11 = 0, λ12 = · · · = λ15 = −2, λ16 = −4. Therefore in this case the graph G is a

bipartite 4-regular graph.

Table 2 shows the result of an experimentation performed with the 60/102 NBCA based regular graph.

It measures the value of the two largest eigenvalues for random 60/102 NBCA based graphs for degree

4, 8, 12 and 16. Our results show that the spectral gap and hence the expansion increases proportionately

with the number of union operations (t). Table 3 shows that the spectral gap by the our method is larger

than the spectral gap by Mukhopadhyay’s method (9).

Theorem 4.4. Let C be the n-cell 60/102 NBCA. Also let x = (x1, x2, · · · , xn)t be a state of the

state transition diagram of the state transition matrix T of C. Then the immediate predecessor y =
(y1, y2, · · · , yn)t of x satisfies the following:

y1 = x1, yn = xn, yk = xk ⊕ yk+1 (k = 2, · · · , n− 1)

Remark B It is easy to see that the inverse matrix T−1 of T is of the following form.

T
−1

=

























1 0 0 · · · 0 0 0
0 1 1 · · · 1 1 1
0 0 1 · · · 1 1 1

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 1 1 1
0 0 0 · · · 0 1 1
0 0 0 · · · 0 0 1

























So the required time to get the immediate predecessors is O(n). For the given n-cell 60/102 NBCA,

the construction of d-regular graphs which have the maximum spectral gaps depend on the relationship

between F1 and F2. For example, in Table 1 let F1 = (0, 0, 0, 1)t and F2 = (1, 1, 1, 1)t. Then the spectral
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Fig. 3: The graph G

gap is 2 which is the maximum value in the 4-regular graph.

Now let

F11 = {(0, a2, a3, · · · , an−2, 0, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}
F12 = {(0, a2, a3, · · · , an−2, 1, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}
F21 = {(1, a2, a3, · · · , an−2, 1, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}
F22 = {(1, a2, a3, · · · , an−2, 0, 1)|ai ∈ {0, 1}, i = 2, · · · , n− 2}

and let U = (F11 × F21) ∪ (F12 × F22).

Choose the complement vectors F1, F2 such that (F1, F2) ∈ U . Let G1 (resp. G2) be the graph with

F1 (resp. F2). Then we can construct an expander graph where spectral gap is maximal.
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Table 1. The eigenvalue spectrum of A(G)
The eight vectors on the first row(resp. column) are the complement vectors F1(resp. F2)

0000 0010 0100 0110 0001 0011 0101 0111

1000 -4(2) -4(1) -4(2) -4(1)

1100 0(10) -2(4) 0(10) -2(4) -4(1) -4(1) -4(1) -4(1)

4(4) 0(4) 4(4) 0(4) -2.8284(2) -2.8284(2) -2.8284(2) -2.8284(2)

2(4) 2(4) -2(2) -2(2) -2(2) -2(2)

4(3) 4(3) 0(6) 0(6) 0(6) 0(6)

1010 -4(1) -4(2) -4(1) -4(2) 2(2) 2(2) 2(2) 2(2)

1110 -2(4) 0(10) -2(4) 0(10) 2.8284(2) 2.8284(2) 2.8284(2) 2.8284(2)

0(4) 4(4) 0(4) 4(4) 4(1) 4(1) 4(1) 4(1)

2(4) 2(4)

4(3) 4(3)

1001 -4(2) -4(1) -4(2) -4(1)

1101 0(12) -2(4) 0(12) -2(4)

-2.8284(2) -2.8284(2) -2.8284(2) -2.8284(2) 4(2) 0(6) 4(2) 0(6)

-2(2) -2(2) -2(2) -2(2) 2(4) 2(4)

0(6) 0(6) 0(6) 0(6) 4(1) 4(1)

1011 2(2) 2(2) 2(2) 2(2) -4(1) -4(2) -4(1) -4(2)

1111 2.8284(2) 2.8284(2) 2.8284(2) 2.8284(2) -2(4) 0(12) -2(4) 0(12)

4(2) 4(2) 4(2) 4(2) 0(6) 4(2) 0(6) 4(2)

2(4) 2(4)

4(1) 4(1)

Table 2. Spectrum of the 4-cell 60/102 NBCA based regular graph

No. of Complement Degree First Second Spectral g/t

Union (t) vector Eigenvalue Eigenvalue Gap (g)

1 1,15 4 4 2 2 2

3 1,3,9,15 8 8 4 4 1.33

5 1,3,5,9,11,15 12 12 2 10 2

7 1,3,5,7,9,11,13,15 16 16 0 16 2.2857

Table 3. Comparison of Mukhopadhyay’s spectral gaps with our spectral gaps

No. of Union (t) g/t(Mukhopadhyay’s method) g/t(Our method)

1 0.76 2

3 1.03 1.33

5 1.14 2

7 1.54 2.2857
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The following algorithm shows computing the four neighbors of a vertex in G which is the union of G1

and G2.

Algorithm. Computing neighbors of a vertex in G

Input: Complement vectors (F1, F2) ∈ K and a state x ∈ G.

Output: The four neighbors (S1, S2, P1, P2) of x.

Step 1: Find the next state S1 (resp. S2) of x using the operator T 1 (resp. T 2).

S1 = T 1x = Tx⊕ F1

S2 = T 2x = Tx⊕ F2

/* Find the immediate predecessor P1 (resp. P2) by using Theorem 4.4 in Step 2 and Step 3 */

Step 2: Compute W := x⊕ F1 and V := x⊕ F2.

Step 3: For W = (w1, w2, · · · , wn) and V = (v1, v2, · · · , vn), find P1 := (p11, p12, · · · , p1n) and

P2 := (p21, p22, · · · , p2n)

p11 = w1, p1n = wn, p1k = wk ⊕ p1k+1

p21 = v1, p2n = vn, p2k = vk ⊕ p2k+1

where k = 2, · · · , n− 1.

In general the description of an expander d-regular graph grows exponentially with the number of ver-

tices as the increase of the size of 60/102 NBCA. However as we require to store only two complement

vectors F1 and F2, this problem is solved by the above algorithm.

5 Conclusion

In this paper, we proposed a method to generate expander graphs with good expansion properties based

on group 60/102 NBCA. The expansion properties by our method is better than the expansion properties

proposed by Mukhopadhyay et al.
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Probabilistic initial value problem for cellular

automaton rule 172
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We present a method of solving of the probabilistic initial value problem for cellular automata (CA) using CA rule

172 as an example. For a disordered initial condition on an infinite lattice, we derive exact expressions for the

density of ones at arbitrary time step. In order to do this, we analyze topological structure of preimage trees of

finite strings of length 3. Level sets of these trees can be enumerated directly using classical combinatorial methods,

yielding expressions for the number of n-step preimages of all strings of length 3, and, subsequently, probabilities of

occurrence of these strings in a configuration obtained from the initial one after n iterations of rule 172. The density

of ones can be expressed in terms of Fibonacci numbers, while expressions for probabilities of other strings involve

Lucas numbers. Applicability of this method to other CA rules is briefly discussed.

Keywords: cellular automata, initial value problem, preimage trees

1 Introduction

While working on a certain problem in complexity engineering, that is, trying to construct a cellular au-

tomaton rule performing some useful computational task, the author encountered the following question.

Let f : {0, 1}3 → {0, 1} be defined as

f(x1, x2, x3) =

{
x2 if x1 = 0,

x3 if x1 = 1.
(1)

This function may be called selective copier, since it returns (copies) one of its inputs x2 or x3 depending

on the state of the first input variable x1. Suppose now that s be a bi-infinite sequence of binary symbols,

i.e., s = . . . s−2s−1s0s1s2 . . ., i ∈ Z. We will transform this string using the selective copier, that is,

for each i, we keep si if it is preceded by 0, or replace it by si+1 otherwise, so that each si is simulta-

neously replaced by f(si−1, si, si+1). Consider now the question: Assuming that the initial sequence is

randomly generated, what is the proportion of 1’s in the sequence after n iterations of the aforementioned

procedure?
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form of a Discovery Grant.
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Function defined by eq. (1) is a local function of cellular automaton rule 172, using Wolfram number-

ing, and the aforementioned question is an example of a broader class of problems, which could be called

probabilistic initial value problems for cellular automata: given initial distribution of infinite configura-

tions, what is the probability of occurrence of a given finite string in a configuration obtained from the

initial one by n iterations of the cellular automaton rule? In what follows, we will demonstrate how one

can approach probabilistic initial value problem using cellular automaton rule 172 as an example.

2 Basic definitions

Let G = {0, 1, ...N−1} be called a symbol set, and let S(G) be the set of all bisequences over G, where by

a bisequence we mean a function on Z to G. Set S(G) will be called the configuration space. Throughout

the remainder of this text we shall assume that G = {0, 1}, and the configuration space S(G) = {0, 1}Z
will be simply denoted by S.

A block of length n is an ordered set b0b1 . . . bn−1, where n ∈ N, bi ∈ G. Let n ∈ N and let Bn denote

the set of all blocks of length n over G and B be the set of all finite blocks over G.

For r ∈ N, a mapping f : {0, 1}2r+1 7→ {0, 1} will be called a cellular automaton rule of radius r.

Alternatively, the function f can be considered as a mapping of B2r+1 into B0 = G = {0, 1}.
Corresponding to f (also called a local mapping) we define a global mapping F : S → S such that

(F (s))i = f(si−r, . . . , si, . . . , si+r) for any s ∈ S.

A block evolution operator corresponding to f is a mapping f : B 7→ B defined as follows. Let r ∈ N
be the radius of f , and let a = a0a1 . . . an−1 ∈ Bn where n ≥ 2r + 1 > 0. Then

f(a) = {f(ai, ai+1, . . . , ai+2r)}n−2r−1
i=0 . (2)

Note that if b ∈ B2r+1 then f(b) = f(b).
We will consider the case of G = {0, 1} and r = 1 rules, i.e., elementary cellular automata. In this

case, when b ∈ B3, then f(b) = f(b). The set B3 = {000, 001, 010, 011, 100, 101, 101, 110, 111} will be

called the set of basic blocks.

The number of n-step preimages of the block b under the rule f is defined as the number of elements

of the set f−n(b). Given an elementary rule f , we will be especially interested in the number of n-step

preimages of basic blocks under the rule f .

3 Probabilistic initial value problem

The appropriate mathematical description of an initial distribution of configurations is a probability mea-

sure µ on S. Such a measure can be formally constructed as follows. If b is a block of length k, i.e.,

b = b0b1 . . . bk−1, then for i ∈ Z we define a cylinder set. The cylinder set is a set of all possible config-

urations with fixed values at a finite number of sites. Intuitively, measure of the cylinder set given by the

block b = b0 . . . bk−1, denoted by µ[Ci(b)], is simply a probability of occurrence of the block b in a place

starting at i. If the measure µ is shift-invariant, than µ(Ci(b)) is independent of i, and we will therefore

drop the index i and simply write µ(C(b)).
The Kolmogorov consistency theorem states that every probability measure µ satisfying the consistency

condition

µ[Ci(b1 . . . bk)] = µ[Ci(b1 . . . bk, 0)] + µ[Ci(b1 . . . bk, 1)] (3)
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extends to a shift invariant measure on S (Dynkin, 1969) .For p ∈ [0, 1], the Bernoulli measure defined

as µp[C(b)] = pj(1 − p)k−j , where j is a number of ones in b and k − j is a number of zeros in b, is

an example of such a shift-invariant (or spatially homogeneous) measure. It describes a set of random

configurations with the probability p that a given site is in state 1.

Since a cellular automaton rule with global function F maps a configuration in S to another configura-

tion in S, we can define the action of F on measures on S. For all measurable subsets E of S we define

(Fµ)(E) = µ(F−1(E)), where F−1(E) is an inverse image of E under F .

If the initial configuration was specified by µp, what can be said about Fnµp (i.e., what is the probability

measure after n iterations of F )? In particular, given a block b, what is the probability of the occurrence

of this block in a configuration obtained from a random configuration after n iterations of a given rule?

The general question of finding the iterrates of the Bernoulli measure under a given CA has been

extensively studied in recent years by many authors, including, among others, Lind (1984); Ferrari et al.

(2000); Maass and Martı́nez (2003); Host et al. (2003); Pivato and Yassawi (2002, 2004); Maass et al.

(2006) and Maass et al. (2006). In this paper, we will approach the problem from somewhat different

angle, using very elementary methods and without resorting to advanced apparatus of ergodic theory and

symbolic dynamics. We will consider iterates of the Bernoulli measure by analyzing patterns in preimage

sets.

For a given block b, the set of n-step preimages is f−n(b). Then, by the definition of the action of F on

the initial measure, we have

(Fnµp)(C(b)) = µp
(
F−n(C(b))

)
, (4)

and consequently

(Fnµp)(C(b)) =
∑

a∈f−n(b)

µp(a). (5)

Let us define the probability of occurrence of block b in a configuration obtained from the initial one by n
iterations of the CA rule as

Pn(b) = (Fnµp)(C(b)). (6)

Using this notation, eq. (5) becomes

Pn(b) =
∑

a∈f−n(b)

P0(a). (7)

If the initial measure is µ1/2, then all blocks of a given length are equally probable, and P0(a) = 1
2|a| ,

where |a| is the length of the block a. For elementary CA rule, the length of n-step preimage of b is

2n+ |b|, therefore

Pn(b) = 2−|b|−2n card f−n(b). (8)

This equation tells us that if the initial measure is symmetric (µ1/2), then all we need to know in order to

compute Pn(b) is the cardinality of f−n(b). One way to think about this is to draw a preimage tree for b.
We start form b as a root of the tree, and determine all its preimages. Then each of these preimages is

connected with b by an edge. They constitute level 1 of the preimage tree. Then, for each block of level 1,

we again compute its preimages and we link them with that block, thus obtaining level 2. Repeating this

operation ad infinitum, we obtain a tree such as the one shown in Figure 1. In that figure, five levels of the

preimage tree for rule 172 rooted at 101 are shown, with only first level labelled.
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Fig. 1: Preimage tree for rule 172 rooted at 101.

Note that card f−n(b) corresponds to the number of vertices in the n-th level of the preimage tree.

One thus only needs to know cardinalities of level sets in order to use eq. (8), while the exact topology

of connections between vertices of the preimage tree is unimportant. The key problem, therefore, is to

enumerate level sets. In order to answer the question posed in the introduction, we need to compute Pn(1)
for rule 172, which, in turn, requires that we enumerate level sets of a preimage tree rooted at 1. It turns

out that for rule 172 the preimage tree rooted at 1 is rather complicated, and that it is more convenient to

consider preimage trees rooted at other blocks. In the next section, we will show how to express Pn(1) by

some other block probabilities. From now on, f will exclusively denote the block evolution operator for

rule 172.

4 Block probabilities

Since f−1(1) = {010, 011, 101, 111}, we have Pn+1(1) = Pn(010) + Pn(011) + Pn(101) + Pn(111).
Due to consistency conditions (eq. 3), Pn(010) + Pn(011) = Pn(01), and we obtain

Pn+1(1) = Pn(01) + Pn(101) + Pn(111). (9)
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This can be transformed even further by noticing that Pn(01) = Pn(001) + Pn(101), therefore

Pn(1) = Pn−1(001) + 2Pn−1(101) + Pn−1(111). (10)

By using eq. (8) and defining cn = Pn(1) we obtain

cn =
card f−n+1(001) + 2 card f−n+1(101) + card f−n+1(111)

22n+1
. (11)

This means that in order to compute cn, we need to know cardinalities of n-step preimages of 001, 101,

and 111.

5 Structure of preimage sets

The structure of level sets of preimage trees rooted at 001, 101, and 111 will be described in the following

three propositions.

Proposition 5.1 Block b belongs to f−n(001) if and only if it has the structure

b = ⋆ ⋆ . . . ⋆︸ ︷︷ ︸
n

001 ⋆ ⋆ . . . ⋆︸ ︷︷ ︸
n

, (12)

where ⋆ represents arbitrary symbol from the set {0, 1}.
Let us first observe that f−1(001) = {00010, 00011, 10010, 10011}, which means that f−1(001) can be

represented as ⋆⋆001⋆⋆. Similarly, therefore, f−2(001) has the structure ⋆⋆⋆001⋆⋆⋆, and by induction,

for any n, the structure of f−n(001) must be ⋆ ⋆ . . . ⋆︸ ︷︷ ︸
n

001 ⋆ ⋆ . . . ⋆︸ ︷︷ ︸
n

. 2

Proposition 5.2 Block b belongs to f−n(101) if and only if it has the structure

b = ⋆ ⋆ . . . ⋆︸ ︷︷ ︸
n−1

a1a2 . . . an1101, (13)

where ai ∈ {0, 1} for i = 1, . . . , n and the string a1a2 . . . an does not contain any pair of adjacent zeros,

that is. aiai+1 6= 00 for all i = 1, . . . , n− 1.

Two observations will be crucial for the proof. First of all, f−1(101) = {01101, 11101}, thus f−1(101)
has the structure ⋆1101. Furthermore, we have f−1(1101) = {011101, 101101, 111101}, meaning that if

1101 appears in a configuration, and is not preceded by 00, then after application of the rule 172, 1101
will still appear, but shifted one position to the left. All this means that if b is to be an n-step preimage of

101, it must end with 1101. After each application of rule 172 to b, the block 1101 will remain at the end

as long as it is not preceded by two zeros.

Now, let us note that f−1(00) = {0000, 0001, 1000, 1001, 1100}, which means that preimage of 00 is

either 1100 or ⋆00⋆. Therefore, we can say that if 00 is not present in the string a1a2 . . . an, it will not

appear in its consecutive images under f . Thus, block 1101 will, after each iteration of f , remain at the

end, and will never be preceded by two zeros. Eventually, after n iterations, it will produce 101, as shown
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in the example below.

1 0 1 0 0 1 1 1 0 1 1 0 1

1 1 0 0 1 1 0 1 1 0 1

0 0 0 1 0 1 1 0 1

0 0 1 1 1 0 1

0 1 1 0 1

1 0 1

What is left to show is that not having 00 in a1a2 . . . an is necessary. This is a consequence of the fact

that f(⋆00⋆) = 00, which means that if 00 appears in a string, then it stays in the same position after

the rule 172 is applied. Indeed, if we had a pair of adjacent zeros in a1a2 . . . an, it would stay in the

same position when f is applied, and sooner or later block 1101, which is moving to the left, would come

to the position immediately following this pair, and would be destroyed in the next iteration, thus never

producing 101. Such a process is illustrated below, where after three iterations the block 1101 is destroyed

due to “collision” with 00. 2

1 0 1 0 0 0 1 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1

0 0 0 0 1 1 1 0 1

0 0 0 1 1 0 1

0 0 1 0 1
0 1 1

Proposition 5.3 Block b belongs to f−n(111) if and only if it has the structure

b = ⋆ ⋆ . . . ⋆︸ ︷︷ ︸
n−2

a1a2 . . . an+5, (14)

where ai ∈ {0, 1} for i = 1, . . . , n and the string a1a2 . . . an satisfies the following three conditions:

(i) aiai+1 6= 00 for all i = 2 . . . n+ 4;

(ii) an+3an+4an+5 6= 110 and an+2an+3an+4 6= 110;

(iii) if a1a2 6= 00, then an+1an+2an+3 6= 110.

We will present only the main idea of the proof here, omitting some tedious details. It will be helpful to

inspect spatiotemporal pattern generated by rule 172 first, as shown in Figure 2. Careful inspection of this

pattern reveals three facts, each of them easily provable in a rigorous way:

(F1) A cluster of two or more zeros keeps its right boundary in the same place for ever.

(F2) A cluster of two or more zeros extends its left boundary to the left one unit per time step as long as

the left boundary is preceded by two or more ones. If the left boundary it is preceded by 01, it stays

in the same place.

(F3) Isolated zero moves to the left one step at a time as long as it has at least two ones on the left. If an

isolated zero is preceded by 10, it disappears in the next time step.
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i

t

Fig. 2: Example of a spatiotemporal pattern produced by rule 172.

Let us first prove that (i)-(iii) are necessary. Condition (i) is needed because if we had 00 in the string

a2 . . . an+5, its left boundary would grow to the left and after n iterations it would reach sites in which

we expect to find the resulting string 111.

Moreover, string a1a2 . . . an+5 cannot have 011 at the end position, one site before the end, or two sites

before the end. If it had, 0 preceded by two 1’s would move to the left and, after n iterations, it would

reach sites where we want to find 111. The only exception to this is the case when a0a1 = 00. In this

case, even if 011 is in the second position from the end, it will disappear in step n− 1. This demonstrates

that (ii) and (iii) are necessary.

In order to prove sufficiency of (i)-(iii), let us suppose that the string b satisfies all these conditions

yet fn(b) 6= 111. This would imply that at least one of the symbols of fn(b) is equal to zero. However,

according to what we stated in F1–F3, zero can appear in a later configuration only as a result of growth

of an initial cluster of two of more zeros, or by moving to the left if it is preceded by two ones. This,

however, is impossible due to conditions (i)-(iii). 2.

6 Enumeration of preimage strings

Once we know the structure of preimage sets, we can enumerate them. For this, the following lemma will

be useful.

Lemma 6.1 The number of binary strings a1a2 . . . an such that 00 does not appear as two consecutive

terms aiai+1 is equal to Fn+2, where Fn is the n-th Fibonacci number.

This result will be derived using classical transfer-matrix method. Let g(n) be the number of binary

strings a1a2 . . . an such that 00 does not appear as two consecutive terms aiai+1. We can think of such

string as a walk of length n on a graph with vertices v1 = 0 and v2 = 1 which has adjacency matrix A
given by A11 = 0, A12 = A21 = A22 = 1. One can prove that the generating function for g,

G(λ) =
∞∑

n=0

g(n+ 1)λn, (15)
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can be expressed by G(λ) = G11(λ) +G12(λ) +G21(λ) +G22(λ), where

Gij =
(−1)i+j det(I − λA : j, i)

det(I − λA)
, (16)

and where (M : j, i) denotes the matrix obtained by removing the j − th row and i − th column of M .

Proof of this statement can be found, for example, in Stanley (1986). Applying this to the problem at hand

we obtain

G(λ) =
−(2 + λ)

−1 + λ+ λ2
. (17)

By decomposing the above generating function into simple fractions we get

G(λ) =
3
10

√
5− 1

2

λ+ ψ
+
− 1

2 − 3
10

√
5

λ+ 1− ψ , (18)

where ψ = 1
2 + 1

2

√
5 is the golden ratio. Now, by using the fact that

1

λ+ ψ
= −

∞∑

n=0

(−1

ψ

)n+1

λn, (19)

and by using a similar expression for 1
λ+1−ψ , we obtain

G(λ) =

∞∑

n=0

Fn+3λ
n, (20)

where Fn is the n-th Fibonacci number, Fn =
ψn − (1− ψ)n√

5
. This implies that g(n) = Fn+2. 2

Proposition 6.1 The cardinalities of preimage sets of 001, 100, 101 and 111 are given by

card f−n(001) = 4n, (21)

card f−n(101) = 2n−1Fn+2, (22)

card f−n(111) = 2nFn+3. (23)

Proof of the first of these formulae is a straightforward consequence of Proposition 5.1. We have 2n
arbitrary binary symbols in the string b, thus the number of such strings must be 22n = 4n.

The second formula can be immediately obtained using Lemma 6.1 and Proposition 5.1. Since the

first n − 1 symbols of f−n(101) are arbitrary, and the remaining symbols form a sequence of n symbols

without 00, we obtain

card f−n(101) = 2n−1Fn+2. (24)

In order to prove the third formula, we will use Proposition 5.3. We need to compute the number

of binary strings a1a2 . . . an+5 satisfying conditions (i)-(iii) of Proposition 5.3. Le us first introduce a

symbol α1α2 . . . αk to denote the string of length k in which no pair 00 appears. Then we define:

• A is the set of all strings having the form α1α2 . . . αn+5,
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• A1 is the set of all strings having the form α1α2 . . . αn+2110,

• A2 is the set of all strings having the form α1α2 . . . αn+11101,

• A3 is the set of all strings having the form α1α2 . . . αn11010,

• A4 is the set of all strings having the form α1α2 . . . αn11011,

• B is the set of all strings having the form 001α1α2 . . . αn+2,

• B1 is the set of all strings having the form 001α1α2 . . . αn−1110,

• B2 is the set of all strings having the form 001α1α2 . . . αn−21101.

The set Ω of binary strings a1a2 . . . an+5 satisfying conditions (i)-(iii) of Proposition 5.3 can be now

written as

Ω = A \ (A1 ∪A2 ∪A3 ∪A4) ∪B \ (B1 ∪B2). (25)

Since A1 . . . A4 are mutually disjoint, and B1 and B2 are disjoint too, the number elements in the set Ω is

card Ω = cardA− cardA1 − cardA2− cardA3 − cardA4 (26)

+ cardB − cardB1 − cardB2,

which, using Lemma 6.1, yields

card Ω = Fn+7 − (Fn+4 + Fn+3 + Fn+2 + Fn+2) + Fn+4 − (Fn+1 + Fn). (27)

Using basic properies of Fibonacci numbers, the above simplifies to card Ω = 4Fn+3. Now, since in the

Proposition 5.3 the string a1 . . . an+5 is preceded by n− 2 arbitrary symbols, we obtain

card f−n(111) = 2n−2 · 4Fn+3 = 2nFn+3, (28)

what was to be shown.

7 Density of ones

Using results of the previous section, eq. (11) can now be rewritten as

cn =
4n−1 + 2n−1Fn+1 + 2n−1Fn+2

22n+1
, (29)

which simplifies to

cn =
1

8
+
Fn+3

2n+2
, (30)

or, more explicitly, to

cn =
1

8
+

(1 +
√

5)n+3 − (1−
√

5)n+3

22n+5
√

5
. (31)

Obviously, limn→∞ cn = 1
8 , in agreement with the numerical value reported in Wolfram (1994). We can

see that cn converges toward c∞ exponentially fast, with some damped oscillations superimposed over
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Fig. 3: Plot of the ratio
cn+1 − c∞
cn − c∞

as a function of time step n. Numerical results were obtained by iterating rule

172 on a a configuration of length 108 with periodic boundary conditions.

the exponential decay. This is illustrated in Figure 3, where, in order to emphasize the aforementioned

oscillations, instead of cn we plotted the ratio

dn =
cn+1 − c∞
cn − c∞

(32)

as a function of n. One can show that dn converges to the half of ratio divina (golden ratio), ψ/2 ≈
0.809016 . . ., as illustrated in Figure 3. We can see from this figure that the convergence is very fast and

that the agreement between numerical simulations and the theoretical formula is nearly perfect.

8 Further results

Results obtained in the previous two sections suffice to compute block probabilities for all blocks of

length up to 3. Proposition 6.1 together with eq. (8) yields formulas for Pn(001), Pn(101), and Pn(111).
Consistency conditions give Pn(01) = Pn(001) + Pn(101). Furthermore Pn(10) = Pn(01) due to the

fact that Pn(10)+Pn(00) = Pn(01)+Pn(00) = Pn(0). Applying consistency conditions again we have

Pn(1) = Pn(10)+Pn(11), hence Pn(11) = Pn(1)−Pn(10), and, similarly, Pn(00) = Pn(0)−Pn(10).
This gives us probabilities of all blocks of length 2. Probabilities of blocks of length 3 can be obtained in



Probabilistic initial value problem for cellular automaton rule 172 41

a similar fashion:

Pn(000) = Pn(00)− Pn(100),

Pn(110) = Pn(11)− Pn(111),

Pn(011) = Pn(11)− Pn(111),

Pn(010) = Pn(01)− Pn(011).

The only missing probability, Pn(100) is the same as Pn(001) because Pn(100)+Pn(000) = Pn(001)+
Pn(000) = Pn(00). The following formulas summarize these results.

Pn(000) = 5/8− 2−n−2Fn+3 − 2−n−4Fn+2,

Pn(001) = 1/8,

Pn(010) = 1/8− 2−n−3Fn+1,

Pn(011) = 2−n−4Ln+2,

Pn(100) = 1/8,

Pn(101) = 2−n−4Fn+2,

Pn(110) = 2−n−4Ln+2,

Pn(111) = 2−n−3Fn+3,

where Ln = 2Fn+1 − Fn is the n-th Lucas number. We can also rewrite these formulas in terms of

cardinalities of preimage sets using eq. (8), as stated below.

Theorem 8.1 Let f be the block evolution operator for CA rule 172. Then for any positive integer n we

have

card f−n(000) = 5 · 4n − 2n+1Fn+3 − 2n−1Fn+2,

card f−n(001) = 4n,

card f−n(010) = 4n − 2nFn+1,

card f−n(011) = 2n−1Ln+2,

card f−n(100) = 4n,

card f−n(101) = 2n−1Fn+2,

card f−n(110) = 2n−1Ln+2,

card f−n(111) = 2nFn+3,

where Fn is the n-th Fibonacci number, Fn =
ψn − (1− ψ)n√

5
, ψ = 1

2 + 1
2

√
5, and Ln is the n-th Lucas

number, Ln = ψn + (1− ψ)n.

9 Concluding remarks

The method for computing block probabilities in cellular automata described in this paper is certainly

not applicable to arbitrary CA rule. It will work only if the structure of level sets of preimage trees is
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sufficiently regular so that the level sets can be enumerated by some known combinatorial technique.

Altough “chaotic” rules like rule 18, or complex rules such as rule 110 certainly do not belong to this

category, in surprisingly many cases significant regularities can be detected in preimage trees. Usually, this

applies to “simple” rules, those which in Wolfram classification belong to class I, class II, and sometimes

class III. Rule 172 reported here is one of the most interesting among such rules, primarily because the

density of ones does not converge exponentially to some fixed value as in many other cases, but exhibits

subtle damped oscillations on top of the exponential decay. Furthermore, the appearance of Fibonacci and

Lucas numbers in formulas for block probabilities is rather surprising.

One should add at this point that the convergence toward the steady state can be slower than exponential

even in fairly “simple” cellular automata. Using similar method as in this paper, it has been found in Fukś

and Haroutunian (2009) that in rule 14 the density of ones converges toward its limit value approximately

as a power law. The exact formula for the density of ones in rule 14 involves Catalan numbers, and the

structure of level sets is quite different than the one reported here. Rule 142 exhibits somewhat similar

behavior too, as reported in Fukś (2006).

As a final remark, let us add that the results presented here assume initial measure µ1/2. This can

be generalized to arbitrary µp. In order to do this, one needs, instead of straightforward counting of

preimages, to perform direct computation of their probabilities using methods based on Markov chain

theory. Work on this problem is ongoing and will be reported elsewhere.
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H. Fukś and J. Haroutunian. Catalan numbers and power laws in cellular automaton rule 14. Journal of

cellular automata, 4:99–110, 2009.

B. Host, A. Maass, and S. Martı́nez. Uniform Bernoulli measure in dynamics of permutative cellular

automata with algebraic local rules. Discrete Contin. Dyn. Syst., 9(6):1423–1446, 2003.

D. A. Lind. Applications of ergodic theory and sofic systems to cellular automata. Phys. D, 10(1-2):

36–44, 1984. Cellular automata (Los Alamos, N.M., 1983).

A. Maass and S. Martı́nez. Evolution of probability measures by cellular automata on algebraic topologi-

cal markov chains. Biol. Res., 36(1):113–118, 2003.

A. Maass, S. Martı́nez, M. Pivato, and R. Yassawi. Asymptotic randomization of subgroup shifts by linear

cellular automata. Ergodic Theory and Dynamical Systems, 26(04):1203–1224, 2006.

A. Maass, S. Martı́nez, and M. Sobottka. Limit measures for affine cellular automata on topological

markov subgroups. Nonlinearity, 19:2137–2147, Sept. 2006.

M. Pivato and R. Yassawi. Limit measures for affine cellular automata. Ergodic Theory Dynam. Systems,

22(4):1269–1287, 2002.



Probabilistic initial value problem for cellular automaton rule 172 43

M. Pivato and R. Yassawi. Limit measures for affine cellular automata. II. Ergodic Theory Dynam.

Systems, 24(6):1961–1980, 2004.

R. P. Stanley. Enumerative combinatorics. Wadsworth and Brooks/Cole, Monterey, 1986.

S. Wolfram. Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading, Mass.,

1994.



44 Henryk Fukś
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Our work is set in the framework of complex dynamical systems and, more precisely, that of Boolean automata

networks modeling regulation networks. We study how the choice of an update schedule impacts on the dynamics of

such a network. To do this, we explain how studying the dynamics of any network updated with an arbitrary block-

sequential update schedule can be reduced to the study of the dynamics of a different network updated in parallel. We

give special attention to networks whose underlying structure is a circuit, that is, Boolean automata circuits. These

particular and simple networks are known to serve as the “engines” of the dynamics of arbitrary regulation networks

containing them as sub-networks in that they are responsible for their variety of dynamical behaviours. We give both

the number of attractors of period p, ∀p ∈ N and the total number of attractors in the dynamics of Boolean automata

circuits updated with any block-sequential update schedule. We also detail the variety of dynamical behaviours that

such networks may exhibit according to the update schedule.

Keywords: Boolean automata network, cycles/circuits, attractors, discrete dynamical system, update/iteration sched-

ule

1 Introduction

From the point of view of theoretical biology as well as that of theoretical computer science, it seems to

be of great interest to address the question of the number of different asymptotic dynamical behaviours of a

regulation network. Close to the 16th Hilbert problem concerning the number of limit cycles of dynamical

systems [10], this question has already been considered in a certain number of works [3, 2, 13]. In the

same lines and with a similar will to understand the dynamical properties of (regulation) networks, we

decided to focus on the dynamics of Boolean automata networks.

Two aspects of these networks caught our attention. The first one is that, as Thomas [15] already

noticed, the “driving force” of their dynamics lies in their underlying circuits. Indeed, a network whose

underlying interaction graph is an acyclic digraph can only eventually end up in a configuration that will

never change over time (aka. fixed point). A network with retroactive loops, on the contrary, exhibits
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more diverse dynamical behaviour patterns. This is why, before attempting to explain theoretically the

dynamics of Boolean automata networks whose interaction graphs are arbitrary, we decided to pay special

attention to the simple instance of Boolean automata networks that are Boolean automata circuits(i).

The other essential aspect of Boolean networks, or more generaly, of regulation networks, that we

concentrated on is their update schedule, that is, the order according to which the different interactions

that define the system occur. Robert [14] highlighted the importance of update schedules on the dynamics

of a system. In [7], the focus was put on the parallel update schedule that updates all automata of a

network synchronously at each time step of a discretised time scale. Now, although biological knowledge

about the precise schedules of gene regulations lack, one may argue reasonably that genes involved in a

same cellular physiological function are highly unlikely to perform there regulations in perfect synchrony

although biologists seem to agree that a certain amount of synchrony is not, on the whole, implausible.

In this paper, we consider a looser version of the parallel update schedule, namely, the general block-

sequential schedule that updates every automaton of a network exactly once at every step according to a

predefined order but which does not impose that all automata be updated at once. In other words, block-

sequential schedules define blocks of automata to be updated sequentially while within the blocks, the

automata are updated synchronously.

Section 2 introduces some definitions relative to general Boolean automata networks as well as some

preliminary results. Section 3 focuses on Boolean automata circuits and on their dynamics under arbitrary

block-sequential update schedules(ii).

2 Networks and their dynamics

We define a Boolean automata network of size n as a couple N = (G,F) where G = (V,A) is a

digraph of order |V | = n called the interaction graph of the network. The nodes of G are assimilated

to the automata of N . Vectors of {0, 1}n are seen as configurations of N . Their ith components are the

states of nodes i ∈ V . F = {fi : {0, 1}n → {0, 1} | i ∈ V } is the set of local transition functions

of the network. For each node i ∈ V , and each configuration x ∈ {0, 1}n, fi(x) depends only on the

components xj such that (j, i) ∈ A. For the sake of simplicity, we consider abusingly, in some cases, that

fi is a function of arity deg−(i) = |{j ∈ V | (j, i) ∈ A}| instead of n.

To define the dynamics of N , an update schedule s of the states of nodes needs to be specified. In this

paper, we consider only block-sequential update schedules, that is, functions s : V → {0, . . . , n−1} such

that for any node i ∈ V, s(i) gives the date of update of node i (t + s(i)
smax

, smax = max{s(i) | i ∈ V })
between any two time steps t and t+1. Thus, within a time step t, the states of all nodes are updated exactly

once. Without loss of generality, we suppose that update schedules s impose no “waiting period” within a

time step: min{s(i) | i ∈ V } = 0 and ∀0 ≤ d < n−1, ∃i ∈ V, s(i) = d+1 ⇒ ∃j ∈ V, s(j) = d. The

parallel update schedule denoted here by π is the update schedule such that ∀i ∈ V, π(i) = 0. It updates

all nodes at once. A sequential update schedule is a block-sequential update schedule s that updates only

one node at a time: ∀i 6= j, s(i) 6= s(j). The number of different update schedules of a set of n elements

is known to be exponential in n [6].

Example 2.1 Let V = {0, . . . , 5}. The function r : V → {0, . . . , 5} such that r(2) = 0, r(3) = r(4) = 1
and r(0) = r(1) = r(5) = 2 is a block sequential update schedule. The function s : V → {0, . . . , 5}
(i) and which also happen to be a simple instance of threshold Boolean automata networks [11].
(ii) Results presented in this paper and their proofs are detailed in [12].
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such that s(5) = 0, s(3) = 1, s(1) = 2, s(0) = 3, s(2) = 4 and s(4) = 5 is a sequential update

schedule. A more practical way of denoting r, s and the parallel update schedule is the following:

r ≡ (2)(3, 4)(0, 1, 5) s ≡ (5)(3)(1)(0)(2)(4) π ≡ (0, 1, 2, 3, 4, 5).

G = Gπ Gs Gr

0

5

4

2

3

1

0

5

4

2

3

1

0

5

4

2

3

1

i xi(t + 1)

∈ V π s = (5)(3)(1)(0)(2)(4) r = (2)(3, 4)(0, 1, 5)

0 f0(x3(t))
f0(x3(t + 1))

= f0 ◦ f3(x2(t))
f0(x3(t + 1))

= f0 ◦ f3 ◦ f2(x5(t))

1 f1(x2(t), x5(t))
f1(x2(t), x5(t + 1))

= f1(x2(t), f5(x0(t)))
f1(x2(t + 1), x5(t))

= f1(f2(x5(t)), x5(t))

2 f2(x5(t))
f2(x5(t + 1))

= f2 ◦ f5(x0(t))
f2(x5(t))

3 f3(x2(t)) f3(x2(t))
f3(x2(t + 1))

= f3 ◦ f2(x5(t))

4 f4(x5(t))
f4(x5(t + 1))

= f4 ◦ f5(x0(t))
f4(x5(t))

5 f5(x0(t)) f5(x0(t)) f5(x0(t))

Fig. 1: Above: interaction graphs associated to the three different update schedules considered in example 2.1. Below:

a table giving the dependencies between states of nodes according to the update schedule of the network.

A network N = (G,F), updated according to a block-sequential update schedule s is denoted by N(s).
Its dynamics is defined by the following global transition function:

Fs :

{
{0, 1}n → {0, 1}n
x 7→ (fs0 (x), . . . , fsn−1(x))

(1)

where ∀i ∈ V, fsi is the local transition function of node i relative to s and is defined by:

fsi (x) = fi(x
(s,i)), ∀j ∈ V, x(s,i)

j =

{
xj if s(j) ≥ s(i)
fs

j (x) if s(j) < s(i).
(2)
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In particular, if s = π then ∀i ∈ V, fsi = fi and the global transition function simplifies to: F (π)(x) =
(f0(x), . . . , fn−1(x)). When there is no ambiguity as to what network is being considered, for any initial

configuration x ∈ {0, 1}n, we write x = xs(0) and xs(t) = F ts(x) (where Fs is composed t times) and

when there is no ambiguity either on s, we write x = x(0) and x(t) = F ts(x). With this notation, (1) and

(2) mean that ∀i, j ∈ V such that (j, i) ∈ A, xi(t+ 1) depends on xj(t) if s(j) ≥ s(i), and on xj(t+ 1)
if s(j) < s(i).

For a network N updated with a particular update schedule s, we define a new interaction graph Gs =
(V,As), the interaction graph relative to s (see figure 1) such thatAs = {(j, i) | xsi (t+1) depends on xsj(t)}.
By an easy induction, this set of arcs can be shown to be equal to:

As = {(j, i) | there exists in G a directed path {v0 = j, v1 . . . , vl = i}
from j to i such that s(j) ≥ s(v1) and ∀ 1 ≤ k < l, s(vk) < s(vk+1)}. (3)

An important point is that when s = π, Gπ = G. Further, defineNs = (Gs,Fs) to be the network whose

interaction graph is Gs and whose set of local transition functions is Fs = {fsi | i ∈ V }. Then, as one

may check, the dynamics of Ns(π) is identical to that of N(s): the global transition functions of both

networks are equal to Fs. As a result, provided a characterisation of the graphs Gs, we may bring our

study of networks updated with arbitrary block-sequential update schedules back to the study of networks

updated in parallel.

The dynamics of a network N updated with an update schedule s is described by its iteration graph

I(N(s)) (and also, from the previous paragraph by the iteration graph I(Ns(π))) whose nodes are the

configurations of N and whose arcs are the transitions (x(t), x(t+ 1)) from one configuration to another.

Since the set of configurations of any finite sized network is finite, all trajectories necessarily end up loop-

ing, i.e., ∀ x(0) ∈ {0, 1}n, ∃t, p, x(t + p) = x(t). Attractors of N(s) are orbits of such configurations

x(t) for which there exists a p ∈ N such that x(t) = x(t+ p). The smallest such p is called the period of

the attractor. Attractors of period one are called fixed points.

3 Boolean automata circuits

As mentioned in the introduction, we pay special attention here to a particular instance of Boolean

automata networks called Boolean automata circuits [7]. A circuit of size n is a digraph denoted by

Cn = (V,A). Its set of nodes V = {0, . . . , n− 1} is identified with Z/nZ so that, considering two nodes

i and j, i+ j designates the node i+ j mod n. The set of arcs of Cn is A = {(i, i+ 1) | i ∈ Z/nZ}. A

Boolean automata circuit is a Boolean automata network whose interaction graph is a circuit. Since any

node i in this graph has a unique incoming neighbour, i− 1, its local transition function fi is either equal

to the identity function id : a ∈ {0, 1} 7→ a or to the negation function neg : a ∈ {0, 1} 7→ ¬a = 1− a.

In the first case, the arc (i − 1, i) is said to be positive and in the second case it is said to be negative.

When there is an even number of negative arcs in the circuit, then the the sign of the (Boolean automata)

circuit is said to be positive. Otherwise it is said to be negative.

Let C = (Cn,F) be a Boolean automata circuit of size n whose set of local transition functions is

F = {fi | i ∈ Z/nZ}). Let s be an arbitrary block-sequential update schedule of C. For any node i ∈ V ,

let us note:

i∗ = max{k < i | s(k) ≥ s(k + 1)}.
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where the maximum is taken cyclically so that the number of arcs on a path from i∗ to i is is minimal.

From (3), it holds that As = {(i∗, i) | i ∈ V } and it can be shown that ∀i ∈ Z/nZ, fsi = F [i, i∗ + 1]
where:

∀i, j ∈ V, F [j, i] =

{
fj ◦ fj−1 ◦ . . . ◦ fi if i ≤ j
fj ◦ fj−1 ◦ . . . ◦ f0 ◦ fn−1 ◦ . . . ◦ fi if j < i

Following the remarks made in the previous section, the dynamics of C(s) is identical to that of Cs(π) =
(Csn,Fs) where Fs = {F [i, i∗ + 1] | i ∈ Z/nZ}. Let us describe the digraph C

s
n. To do this, we first

define the inversions of C relative to s:

inv(s) = A \As = {(i, i+ 1) | s(i) < s(i+ 1)}.

For nodes of an inversion (i, i + 1), xsi+1(t + 1) depends on xsi (t + 1) instead of xsi (t) as is the case

when s(i + 1) ≤ s(i) and when, in particular, s = π. Obviously, the number of inversions is strictly

smaller than n. The only block-sequential update schedule that has no inversions is the parallel update

schedule π. From the characterisation of As given in equation 3, we derive that the nodes i∗ (i.e., the

nodes i ∈ Z/nZ, ∃j ∈ Z/nZ, i = j∗) form a circuit in C
s
n of size n − |inv(s)|. The |inv(s)| other

nodes that do not belong to this circuit depend on one and only one node in it (as in Figure 2). And since

the composition of all functions fi is necessarily equal to the composition of all functions F [i, i∗ +1], the

sign of this circuit is equal to the sign of the original circuit Cn. From this description of the network Cs,
we may now derive the following result:

1

0

5

3

2

4

b.

1

0

2

3

5 4

a.

Fig. 2: a. The underlying interaction graph C6 of a network C = (C6,F). b. The interaction graph of Cs where

s ≡ (2)(3, 4)(0, 1, 5) and inv(s) = {(2, 3), (4, 5)}. The underlying circuit of size 4 in this second interaction graph

has as set of nodes {0, 1, 3, 5} = {i ∈ Z/6Z | ∃j ∈ Z/6Z, i = j∗}.

Proposition 3.1 Let C = (Cn,F) be a Boolean automata circuit of size n and let s and r be two block-

sequential update schedules of C. Then:

(i) The dynamics induced by s, that of C(s), and the dynamics induced by r, that of C(r), are identical

if and only if inv(s) = inv(r).

(ii) If inv(s) 6= inv(r), then the dynamics induced by s and by r have no attractor of period p > 1 in

common.

(iii) If |inv(s)| = k, then for any p ∈ N, C(s) has as many attractors of period p than any Boolean

automata circuit of size n− k, of same sign as C and updated with the parallel update schedule.
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Proof: (i) follows directly from theorem 1 of [5] and (iii) is derived from the description of the structure

of C
s
n made in the previous paragraph. To prove (ii), suppose that (i, i + 1) ∈ inv(r) \ inv(s) and that

there exists x = xs(t) = xr(t) ∈ {0, 1}n such that xs(t+ 1) = xr(t+ 1). Then:

xsi+1(t+ 2) = fi+1(x
s
i (t+ 2)) = F [i+ 1, i∗ + 1](xsi∗(t+ 1))

and

xri+1(t+ 2) = fi+1(x
r
i (t+ 1)) = fi+1(x

s
i (t+ 1)) = F [i+ 1, i∗ + 1](xsi∗(t))

where i∗ = max{k < i | s(k) ≥ s(k+1)} (as above). By the injectivity of F [i+1, i∗ +1], this implies

that if xs(t + 2) = xr(t + 2) then xi∗(t + 1) = xi∗(t). Now, if x belongs to an attractor that is induced

identically by both s and r, then ∀t ∈ N, xs(t) = xr(t). As result, in this case, ∀t ∈ N, xsi∗(t + 1) =
xri∗(t) = xsi∗(t) (i.e., the state of node i∗ is fixed in the attractor). As one can check this leads to states of

all nodes being fixed in the attractor which therfore is a fixed point. 2

In relation with point (ii) of Proposition 3.1 above, recall that if the dynamics of a network has fixed

points for a certain update schedule, then it has the same fixed points for every other update schedule.

The important consequence of point (iii) of Proposition 3.1 is that from the results in [7] concerning

the number of attractors of Boolean automata circuits updated in parallel, we may derive the number of

attractors of each period and in total of any Boolean automata circuit updated with any block-sequential

update schedule:

Corollary 3.1 Let C = (Cn,F) be a Boolean automata circuit of size n and s a block-sequential update

schedule of C such that |inv(s)| = k:

• If C is positive, then the total number of attractors in the dynamics of C(s) is given by T
+
p below.

For any integer p, the number of attractors of period p is either 0 if p does not divide n− k or it is

A
+
p :

T
+
p =

1

n− k ·
∑

p|n−k
ψ(
n− k
p

) · 2p, A
+
p =

1

p
·
∑

d|p
µ(
p

d
) · 2d.

• If C is negative, then the total number of attractors in the dynamics of C(s) is given by T−p below.

For any integer p, the number of attractors of period p is either 0 if n − k cannot be written

n− k = q × p
2 where q ∈ N is odd, or it is A−p :

T
−
p =

1

2n
·
∑

odd p|n
ψ(
n

p
) · 2p, A

−
p =

1

p
·
∑

odd d| p
2

µ(d) · 2 p
2d .

Above, µ is the Möbius (see [9, 1]) function and ψ the Euler totient function.

Following Proposition 3.1, we define the equivalence relation between update schedules that relates r
and s if and only if inv(s) = inv(r). [s] denotes the equivalence class of s for this relation. Proposi-

tion 3.2 below sums up some results concerning this relation:

Proposition 3.2 Let C = (Cn,F) be a Boolean automata circuit of size n.

(i) The total number of distinct dynamics induced by the different update schedules ofC is
∑n−1
k=0

(
n
k

)
=

2n − 1.
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i

Fig. 3: Interaction graph relative to one of the n equivalence classes of update schedules that have n− 1 inversions.

Each one of these classes is characterised by the unique node i ∈ Z/nZ that is such that (i, i + 1) is not an inversion

and contains exactly one update schedule which is sequential, namely, the update schedule si ≡ (i+1)(i+2) . . . (i−
1)(i) such that inv(si) = {(j, j + 1), j 6= i}. Because there is a loop over node i in this graph, the dynamics of

C(si) contains only fixed points if Cn is positive and only attractors of period 2 if Cn is negative.

(ii) In every class [s], s 6= π, there exists a sequential update schedule. Given the set of inversions of

the class, a sequential update schedule can be constructed effectively in O(n) steps.

(iii) Given a set of p > 1 configurations of C, A = {x(0), . . . , x(p− 1)}, we can determine in O(p · n)
steps whether there exists a block-sequential update schedule s such thatC(s) hasA as an attractor

of period p. If such an update schedule exists, with Algorithm 5 below, in O(p · n) steps, we can

compute its set of inversions as well as a sequential update schedule inducing the same dynamics.

Algorithm 1: Finding a sequential update schedule that induces a particular attractor of a given

Boolean automata circuit if it exists

Input: C = (Cn,F) and A = {x(0), . . . , x(p− 1)}.
begin

1 In O(p · n) steps, compute the set Aπ = {y(t) = Fπ(x(t− 1)) | 0 ≤ t < p};
2 In O(p · n), compute the set inv = {(i− 1, i) | ∃t ≤ p, xi(t) 6= yi(t)} ;

3 In O(n) steps, compute a sequential update schedule s using the

set inv;

4 In O(p · n) steps, compute the set As = {F ts(x(0)) = xs(t) | 0 ≤ t < p} and

check that As = A. If not, then no update schedule induces A as

an attractor;

5 Otherwise, output s.

Proof: Point (i) of Proposition 3.2 above is a direct consequence of points (i) and (ii) of Proposition 3.1

and of the fact that the number of distinct equivalence classes of update schedules with k inversions is
(
n
k

)

(i.e., the number of different sets of k inversions).
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To prove Point (ii), let us show that for every set of k < n inversions, there exists a sequential update

schedule s that satisfies exactly these k inversions. Thus, let inv be a set of |inv| = k inversions and let

G = (V,A) be the acyclic digraph whose set of nodes is that of Cn (i.e., V = {0, . . . , n− 1}) and whose

set of arcs is A = {(i, i + 1) /∈ inv} ∪ {(i + 1, i) | (i, i + 1) ∈ inv} (in other words, G is obtained

by inverting all arcs of Cn that belong to inv). Then, any sequential update schedule s whose set of

inversions is inv satisfies the following:

∀(i, j) ∈ A, s(i) > s(i)

so that such a sequential update schedule s can be obtained in linear time using a topological ordering

algorithm on digraph G.

Finally, to prove Point (iii) and Algorithm 5, suppose that s is an existing block-sequential update

schedule that induces A as an attractor, i.e., ∀t < p, xs(t + 1) = fsi (x(t)) = x(t + 1). Let us show

that its set of inversions inv(s) is necessarily equal to inv. Suppose that (i − 1, i) /∈ inv(s). Then,

∀t < p, xi(t+ 1) = xsi (t+ 1) = fsi (x(t)) = fi(xi−1(t)) = yi(t+ 1) and consequently, (i− 1, i) /∈ inv.

Now, ∀i ∈ Z/nZ, again, let i∗ = max{j < i, (i∗, i∗ + 1) /∈ inv(s)}. It is easy to prove that the state

of any node j such that ∃i, j = i∗ necessarily changes in all attractors induced by s and in particular in

A. Suppose that (i − 1, i) ∈ inv(s). Let T < p be such that xi∗(T ) 6= xi∗(T + 1). Then, the following

holds:

xi(T + 2) = xsi (T + 2) = F [i, i∗ + 1](xi∗(T + 1)) and

yi(T + 2) = fi(xi−1(T + 1)) = fi(x
s
i−1(T + 1)) = fi ◦ F [i− 1, i∗ + 1](xi∗(T ))

so that xi(T + 2) 6= yi(T + 2) and consequently (i− 1, i) ∈ inv. 2

4 Conclusion

Following the work presented in this paper, we believe that most combinatoric problems concerning

the dynamics Boolean automata circuits updated with block-sequential update schedules have now been

dealt with. We know the exact value of both the total number of attractors and the number of attractors of

period p, ∀p ∈ N, in the dynamics of positive and negative Boolean automata circuits of any size updated

with the synchronous, sequential and the block-sequential update schedules. We also know how many

different dynamics can be induced by the set of block-sequential update schedules of a Boolean automata

circuit.

One important question, however, remains unanswered: “What are the sizes of the equivalence classes

of block-sequential update schedules that yield the same dynamics?”. For the very particular cases of [π]
and of the classes of update schedules with n − 1 inversions (where n is the size of the circuit) we know

that the size of the classes is 1. We also obtained a very intricate formula for the size of classes of update

schedules having consecutive inversions only. It implies that the sizes of such classes is exponential as

may certainly be that of many other classes. One motive (amongst others) for studying this question

follows from A. Elena’s work. In his PhD thesis [8], Elena computed statistics of the number of attractors

of threshold Boolean automata networks as well as of their periods averaging over all networks (of sizes

between 3 and 6) and all update schedules. For both, he found particularly small values. Now, as we

have already mentioned, it is known that underlying circuits play an important role in the dynamics of
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a network with an arbitrary structure. Knowing the answer to this question would help us to understand

better the averages found by Elena.

Therefore, beyond this question, we believe that there are two obvious extensions needed of our com-

binatoric analysis of the dynamics of circuits: one towards more general networks, that is, networks with

arbitrary underlying interaction graphs. In line, with [4], this would need to relate the dynamics of arbi-

trary networks with that of there embedded circuits. The second extension needed is in the direction of

other update schedules. Although understanding the dynamics of networks under block-sequential update

schedules is a first notable step, these update schedules remain rather unadapted to the modelisation of

biological networks. One may indeed argue that it is rather unrealistic that a network updates infallibly

every one of its nodes exactly once and according to the exact same order at every time step. It seems

more likely, that, on the contrary, some nodes may be updated more often than others and that the updating

of nodes may depend on some parameters in a way that cannot be translated by giving an order of update

as do block-sequential update schedules.
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à la modélisation des réseaux de régulation génétique. PhD thesis, Université Joseph Fourier -
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abelian groups
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It is a well-known fact that the spacetime diagrams of some cellular automata have a fractal structure: for
instance Pascal’s triangle modulo 2 generates a Sierpinski triangle. Explaining the fractal structure of the
spacetime diagrams of cellular automata is a much explored topic, but virtually all of the results revolve
around a special class of automata, whose main features include irreversibility, an alphabet with a ring
structure and a rule respecting this structure, and a property known as being (weakly) p-Fermat. The class
of automata that we study in this article fulfills none of these properties. Their cell structure is weaker and
they are far from being p-Fermat, even weakly. However, they do produce fractal spacetime diagrams, and
we will explain why and how.

These automata emerge naturally from the field of quantum cellular automata, as they include the classical

equivalent of the Clifford quantum cellular automata, which have been studied by the quantum commu-

nity for several reasons. They are a basic building block of a universal model of quantum computation, and

they can be used to generate highly entangled states, which are a primary resource for measurement-based

models of quantum computing.

Keywords: fractal, abelian group, linear cellular automaton, substitution system

Introduction

The fractal structure of cellular automata (CA) has been a topic of interest for several decades.
In many works on linear CA, the authors present ways to calculate the fractal dimension or to
predict the state of an arbitrary cell at an arbitrary time step, with much lower complexity than
by running the CA step by step; however, their notions of linearity are quite different. Often
only CA that use states in Zp

(i) are studied; other approaches are more general, but still make
certain assumptions on the time evolution or the underlying structure of the CA. In this work
we try to loosen these restrictions as far as possible. We consider one-dimensional linear CA
whose alphabet is an abelian group. We show how they can be described by n× n matrices with
polynomial entries and use this description to derive a recursion relation for the iterations of the
CA. This recursion relation enables us to formulate the evolution of the spacetime diagram as a

(i) We use the simple notation Zd for the cyclic group of order d, instead of Z/dZ, as we are concerned with finite groups
only.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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(a) Time evolution of Θ with scalars in Z2. (b) Time evolution of Θ with scalars extended to Z4.

Figure 1: (a) is a projection of (b) induced by Z
2
4 ։ Z

2
2.

matrix substitution system, which in turn gives us the means to calculate the fractal dimension
of the spacetime diagram.

Our interest in the fractal structure of CA on abelian groups stems from our study of Clifford
quantum cellular automata (CQCA) [SVW08]. We first noticed the self similar structure while
studying their long time behaviour [GUWZ10, Güt10]. A CQCA maps Pauli matrices to tensor
products of Pauli matrices times a phase. If we neglect the phase, we can identify the Pauli matri-

ces X, Y, Z with the elements of Z
2
2 via the mapping X 7→ (1

0), Y 7→ (1
1), Z 7→ (0

1), 1 7→ (0
0). Using

this mapping we can simulate CQCA with linear CA on the alphabet Z
2
2. The CA corresponding

to CQCA have to fulfill rather strong conditions: they have to be reversible and preserve a sym-
plectic form which encodes the commutation relations of the Pauli matrices [SVW08]. While our
analysis is now much more general, our main example Θ, whose spacetime diagram is shown
in figure 1a, is the classical part of a CQCA.

Our paper is organized as follows: in section 1 we give our definition of a linear cellular
automaton, introduce the formalism we will be working with, and state the main result: every
linear cellular automaton has a fractal structure. We also introduce the example Θ which will
be the focal point of this article. In section 2, we give an intuitive idea as to why the spacetime
diagram of Θ exhibits a fractal structure. We then proceed, in section 3, to expose an algorithm
taking as input the local transition rule and outputting a description of the spacetime diagram.
This allows us to compute salient features of these fractals, such as their fractal dimension and
their average colour.

1 Definitions

1.1 Generalities on summable automata

1.1.1 Monoids

We want to discuss “summable automata”, for which it makes sense to talk about the influence
of a single cell on every other cell, and where the global transition function can be reconstructed
by “summing” all these influences. So, if Σ denotes the alphabet, instead of the usual local tran-
sition function ΣI → Σ, a summable automaton is naturally defined by a function Σ→ ΣI . What
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is then the minimal structure on Σ that would make such a definition work? These influences
have to be “summed”, so we need an operation on Σ. Since the strip is infinite, an infinitary
operation would do, but that wouldn’t give us much to work with. Instead, it seems reasonable
to consider a binary operation +. In the same spirit, when we think of the superposition of
influences coming from each cell, no notion of order between the cells is involved; even if in the
one-dimensional case a natural order can be put on the cells, it would be less than clear what to
do in higher dimensions. We require therefore that + be associative and commutative. The last
requirement comes from the fact that, given only the global transition function, we want to be
able to isolate the influence of one cell; that is why we demand that + have an identity element,
which makes now (Σ, +) an abelian monoid. Of course, in order for all of this to be relevant, the
transition function has to be a morphism.

Let I be some finite subset of Z and f a morphism from Σ to ΣI . From f one can define the
global transition function as an endomorphism F of ΣZ by

F :




ΣZ → ΣZ

r = (rn)n∈Z
7→

(

∑
i∈I

f (rn−i)i

)

n∈Z


 . (1)

Let σ be the right shift on ΣZ, i.e. σ(r)n = rn−1. We have F ◦ σ = σ ◦ F, which means F is
translation invariant. Also, F(r)n depends only on the values rn−i for i ∈ I; since I is finite, F is
a one-dimensional cellular automaton on the alphabet Σ, with neighbourhood included in −I.
Conversely, if F is an endomorphism of ΣZ defining a cellular automaton over the alphabet Σ,
then one can choose a neighbourhood I, and define, for i ∈ I,

f (s)i = F(s̄)i, (2)

where s̄ is the word of ΣZ defined by s̄n =

{
s if n = 0
e otherwise

, e denoting the neutral element of

Σ.

1.1.2 Groups

We will now consider the case when Σ is a (finite abelian) group. For p prime, let Σp be the
subgroup of Σ of elements of order a power of p; then Σ is isomorphic to ∏

p
Σp, and every

endomorphism of ΣZ factorises into a product of endomorphisms of the ΣZ
p ’s. It is therefore

enough to study the case of the (abelian) p-groups: let us assume Σ is a p-group.
It is a well-known fact (see for instance section I-8 of [Lan93]) that Σ is isomorphic to Z

pk1
×

Zpk2 × · · · × Z
pkd

with kd ≥ kd−1 ≥ . . . ≥ k1 = k. Consider an endomorphism α of Σ and

let ej denote (0, . . . , 0, 1, 0, . . . , 0), where the 1 lies in position j. When i ≥ j, there is a natural

embedding si,j of Z
pki

into Z
p

kj
, namely the multiplication by pkj−ki ∈ N. Since ej has order

pkj , α(ej)i ∈ Z
pki

has to be in the image of sj,i when i ≤ j. We can therefore associate to α the

endomorphism of Z
d
pk given by the matrix A(α) ∈Md(Zpk ) defined by A(α)i,j = pkj−ki α

(
ej

)
i
.
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For instance, if G is Z32 × Z4 × Z2, and α is defined by α(1, 0, 0) = (3, 2, 1), α(0, 1, 0) =
(24, 0, 1) and α(0, 0, 1) = (16, 2, 0), then the corresponding matrix of M3 (Z32) would be

A(α) =




3 3 1
16 0 1
16 2 0


 .

Let us give a summary of the construction we have just exposed.

Proposition 1 For every finite abelian p-group G and endomorphism α of G, there are positive integers k
and d, an embedding s of G into Z

d
pk , and an endomorphism A(α) of Z

d
pk such that the following diagram

commutes:

G
α−−−−→ G

ys

ys

Z
d
pk

A(α)−−−−→ Z
d
pk

(3)

This implies that to study the behaviour of CA on abelian groups, it is enough to study the
case where these groups are of the form Z

d
pk .

1.1.3 R-modules

We will actually consider the more general case where R is a finite commutative ring, and Σ is a
free R-module of dimension d, i.e. isomorphic to Rd. The first reason for doing so is that it does
not complicate the mathematics. It will also appear more efficient to understand, for instance,
F24 as a 1-dimensional vector space over itself than as a 4-dimensional vector space over F2: the
former simply bears more information, and therefore implies more restrictions on the form of a
CA, so that more can be deduced.

For any ring B, B
[
u, u−1

]
denotes the ring of Laurent polynomials over B; it is the ring of

linear combinations of integer powers (negative as well as nonnegative) of the unknown u.
Applying this to B = HomR (Σ), we can associate to the function f the Laurent polynomial
τ( f ) ∈ HomR (Σ)

[
u, u−1

]
defined by

τ( f ) = ∑
n∈Z

f (·)nun. (4)

τ is an isomorphism of R-algebras between the linear cellular automata on the alphabet Σ

with internal composition rules (+, ◦) and HomR (Σ)
[
u, u−1

]
, which can be identified with

Md

(
R
[
u, u−1

])
because Σ ≃ Rd; we are going to think and work in this former algebra, so from

now on a linear cellular automaton T = τ( f ) will be for us an element of Md

(
R
[
u, u−1

])
.

1.2 Related work

Many papers have been published about the fractal structure of cellular automata spacetime
diagrams. We give here a short review and point out the differences to our approach. When we
mention d and k we are referring to Md

(
Zk[u, u−1]

)
.
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(a) Time evolution of Θ starting from ξ = (1
0).

3p

2p

p

(b) Time evolution of a general nearest neighbour p-Fermat
CA.

Figure 2: This figure shows that Θ cannot be a p-Fermat CA. In a p-Fermat CA at least the white
areas are filled by the neutral element e; Θ has a different pattern.

[Wil87] In this work, Willson considers the case d = 1, k = 2. In order to determine the fractal
dimension of the spacetime diagram, he analyses how blocks of length n in the configura-
tion of time step t are mapped to such blocks in steps 2t and 2t + 1, a technique we also
use in section 3.

[Tak90, Tak92] Takahashi generalises Willson’s work to the case d = 1, with no restriction on
the value of k.

[HPS93, HPS01] Haeseler et al. study the fractal time evolution of CA with special scaling prop-
erties, the weakest of them being “weakly p-Fermat”, where p is some integer, which in-
cludes the case d = 1, k = p. Let us briefly introduce the p-Fermat property and show
why the CA studied by us do not have to be p-Fermat. Let πp be the scaling map

πp(ξ)x =

{
ξy if x = py
e otherwise

. (5)

A CA T is weakly p-Fermat if for all s ∈ Σ, n ∈ N and x ∈ Z, Tnp(s̄)x = e⇔ πpTn(s̄)x = e.

Let us now consider

Θ =

(
0 1
1 u−1 + 1 + u

)
∈M2(Z2[u, u−1]). (6)

We will use this example throughout the paper. It generates the time evolution depicted
in Figure 2a. A general nearest-neighbour p-Fermat CA produces a time evolution that
reproduces itself after p steps in at most three copies located at positions {−p; 0; p}. After
2p steps we have five copies at most. This creates areas filled with the neutral element e
shared by all p-Fermat CA for a fixed p. In figures 2a and 2b we can easily see that Θ does
not exhibit these areas. Thus it is not p-Fermat. Furthermore p-Fermat CA that are not
periodic are irreversible, while we also allow reversible CA, Θ being again one example.
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[AHPS96, AHP+97] Allouche et al. study recurrences in the spacetime diagram of linear cellu-
lar automata, from the angle of k-automatic sequences, which we will not define in this
paper. However they require Σ to be an abelian ring and the CA to be a ring homomor-
phism, which is again essentially the case d = 1.

[Moo97, Moo98] Moore studies CA with an alphabet A on a staggered spacetime, where every
cell c is only influenced by two cells a and b of the last time step. The update rule is
c = a • b. He requires (A, •) to be a quasigroup and studies different special cases. First
let us note that these CA are irreversible, while ours don’t have to be. Thus, although it
is possible to bring our CA in the form of a staggered CA, the results of Moore do not
apply. In his setting, our CA would be of the form c = a • b = f (a) + g(b) for some
homomorphisms f and g. For (A, •) to be a quasigroup means

∀a, b ∈ A ∃!x, y ∈ A a • x = b ∧ y • x = b. (7)

In our case, the required equalities translate respectively as g(x) = b− f (a) and f (y) =
b− g(a). The right-hand sides are each arbitrary elements of A, thus f and g have to be
isomorphisms, as indeed required in [Moo97].

The angle of study of Moore is also different: he does not exactly study fractal properties
of the CA, but rather the complexity of the prediction — “What will be the state of this cell
after t steps?”. Describing the spacetime diagram with a matrix substitution system is an
alternative way of proving that prediction is an easy task — for instance it makes it NC.

[Mac04] Macfarlane uses Willson’s approach and generalises parts of it to matrix-valued CA,
his examples including Θ. However, the transition matrix is obtained heuristically — “by
scrutiny of figure 9” — from the spacetime diagram, instead of being algorithmically de-
rived from the transition rule (as in the present work). The conclusion (section 6) suggests
that the analysis of Θ is easily generalisable to matrices of various sizes over various rings,
so in a sense the present article is but an elaboration of the concluding remark of [Mac04],
although we have to say we do not find this generalisation to be that obvious.

The heart of the proof is in section 3. In a nutshell, whereas most of the techniques used in our
article can be traced back to older articles, the new one that allows us to extend the analysis to a
larger class of automata is the introduction of α in equation (20). The idea in doing so is to get
rid of the complicated noncommutative ring structure and go back to a simple linear recurrence,
as state in Proposition 4. Since a linear recurrence is precisely where the analysis started from,
it could seem at first sight that nothing is gained in the process, but the new recurrence actually
does not define a cellular automaton. Instead of defining line n + 1 from line n, it cuts right
through to line mn, thus establishing a scaling property.

1.3 Different CA

While we use Θ, which has very special properties (being reversible, over a field of characteristic
two, and described by a 2× 2 matrix) as our example throughout the paper, the analysis applies
of course to all other linear CA. In this section we give a short overview over the variety of
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(a) Time evolution of Θu. (b) Time evolution of TF4
.

Figure 3: Spacetime diagrams of non-clifford CAs.

spacetime diagrams these CA generate. Let us start by small changes to Θ. For our first example
we keep m = k = 2, but change the determinant to u. We only change one entry of the matrix:

Θu =

(
0 u
1 u−1 + 1 + u

)
. (8)

The spacetime diagram is displayed in figure 3a and shows how much difference a small change
in the update rule can make for the spacetime diagram.

Let us now modify Θ in a more subtle fashion:

Θk=4 =

(
0 1
1 u−1 + 1 + u

)
. (9)

The hidden difference with Θ is the underlying ring, which has now been extended from Z2

to Z4. Θk=4 contains in some sense more information than Θ, since Θ is induced from Θk=4 by
the projection Z4 ։ Z2. Consequently, the spacetime diagram of Θ is nothing but a projection
of that of Θk=4, as illustrated in figure 1b.

The last CA we want to present lies in M2

(
F4[u, u−1]

)
, where F4 is the finite field of order 4,

here identified with F2[ω]/(ω2 + ω + 1). The corresponding matrix is

TF4
=

(
0 ω

u−1 (ω + 1)u−1 + ω + u

)
. (10)

If one wants to avoid calculations in F4, this CA can be translated to a CA in M4

(
Z2[u, u−1]

)
,

namely

T̃F4
=




0 0 0 1
0 0 1 1

u−1 0 u−1 + u u−1 + 1
0 u−1 u−1 + 1 1 + u


.

Its spacetime diagram, shown in figure 3b, contains patches of checkerboard pattern. Some-
how, they trivialise most of the usual properties of the figure: for instance they make its fractal
dimension 2, even if the fractal structure can hardly be considered trivial. In order to access



62 Johannes Gütschow, Vincent Nesme, and Reinhard F. Werner

more interesting properties, it is possible to blank this pattern out, considering it as just “another
shade of white”. This can be trivially done on the matrix substitution system, by removing the
states from which the blank state is inaccessible.

1.4 Coloured spacetime diagrams

The mainstream setting when studying the fractal structure of spacetime diagrams is monochro-
matic; we introduce colours in the picture.

Instead of considering simple compact subsets of the plane, we will have a finite set of colours

C and compact subsets of
(
R

2
)C

. Let b 6∈ C be the additional “blank” colour and c : Σ →
C ∪ {b} a colouring of Σ such that c(0) = b. To determine a coloured spacetime diagram, we
need furthermore to be given an automaton T ∈Md

(
R
[
u, u−1

])
, an initial state ξ ∈ Rd, and an

integer n. The corresponding coloured spacetime diagram is then the rescaled diagram obtained
by iteratively applying T n times on ξ.

Formally, for n, i, j ∈ N, let Sn,i,j be the full square centred in 1
n (i, j) and whose edges, parallel

to the axes, are of length 1
n . To each positive integer n and colour c ∈ C is associated a compact

subset of the plane Pn(c) which is the union of the Sn,i,j’s such that 0 ≤ j ≤ n and c

(
T j (ξ)i

)
= c.

The coloured spacetime diagram of order n is then the function Pn : c 7→Pn(c). A sequence of
coloured patterns (Pn)n∈N

of spacetime diagrams is said to converge to some coloured pattern
P∞ if for every c ∈ C , (Pn(c))n∈N

converges to P∞(c) for the Hausdorff distance.

We can now state our main result.

Theorem 1 Let G be a finite abelian p-group. For every cellular automaton over G that is also a group
homomorphism, there exists a positive integer m such that for every fixed initial state the coloured space-
time diagrams of order pmn converge when n goes to infinity.

In general, to know about the fractal structure of a cellular automaton over some finite group
G, write G as a product of p-groups and study each p-component of the spacetime diagram in-
dependently; according to Theorem 1, each component generates a fractal pattern. Then, since
the logarithms of the prime numbers are rationally independent, it is possible to find a sequence
of resized spacetime diagrams that converges towards a superposition of these different com-
ponents with arbitrary independent rescaling coefficients, but there is no direct generalisation
of the theorem. For instance, even in the simple case of Pascal’s triangle modulo 6, there is no
real number α > 0 such that the diagrams of order ⌊αn⌋ converge; however those of order tn

will converge as soon as the fractional parts of log3(tn) and log2(tn) both converge, and then
their limits determine the limit pattern. The situation is described very briefly in the section 5 of
[Tak92].

1.4.1 Matrix substitution systems

We will show how to find a suitable description of the limit pattern in the rest of this article. We
now explain exactly what it means to generate a coloured picture by rules of substitution, and
how to take the limit of all these pictures. This is a generalisation of the usual monochromatic
description that can be found for instance in [MGAP85, Wil87, HPS93], and which corresponds
in our setting to the case where all the colours are mapped to “black”.
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Let V be a finite alphabet; because we want colours, compared with the usual definition of
a matrix substitution system, we don’t have to include a special ”empty” letter. A matrix sub-

stitution system is then a function D : V → VJ1;rK2
; for some integer r. Together with a set

of colours C and a colouring c : V → C , it defines coloured patterns, much in the same way
cellular automata do. With the previous notations, at each step n, the pattern Pn is the union of
squares Srn ,i,j of different colours, for different i’s and j’s; each one of them is indexed by some
letter in V.

Then at step n + 1, each coloured square of colour c indexed by v ∈ V present in the nth step
pattern is replaced by r2 smaller squares that pave it; these smaller squares are given by D(v)
and indexed accordingly. To such a matrix substitution system we can associate a multigraph
Γ = (V, E) where the set of vertices is V and we put as many edges from v to w as there are w’s
in D(v).

A plain matrix substitution system is one of the usual kind: no colouring, and V contains a
special letter ε such that D (ε) is a matrix full of ε’s and c(ε) = b. In the multigraph associated to
a plain matrix substitution system, ε is excluded from the set of vertices.

We want to generalise the usually property of convergence of the patterns defined by plain
matrix substitution systems. This will be done by the conjunction of the two following proposi-
tions. Let us first remind some notions on graphs: the period of a graph is the greatest common
divisor of the lengths of all the cycles in Γ; a graph is aperiodic if it has period 1.

Proposition 2 If every strongly connected component of Γ is aperiodic, then (Pn)n∈N
converges.

Proof: To each colour c ∈ C we associate the plain matrix substitution system D c, obtained
from D simply by turning some letters into ε. For v ∈ V, let Xc(v) be the set of
integers n such that there exists a path of length n in Γ connecting v to a letter of the
colour c. Since the strongly connected component containing v is aperiodic, Xc(v) is
either finite or cofinite. Those letters v ∈ V such that Xc(v) is finite are sent to ε, and
this defines D c. If Xc(v) is finite and v′ can be reached from v, then Xc(v′) is also
finite; therefore, D c is indeed a substitution system. Let M be such that for every
v ∈ V, either Xc(v) or its complement is strictly bounded by M.

Let us now compare two sequences of figures. The first one is (Pn(c)), the subpat-
tern of colour c defined by D . The second one is (Pc

n), the one obtained from D c; we
know that it converges to some compact D c

∞. By construction, Pn+M(c) is included
in Pc

n, and for every black square of Pc
n, there is a black subsquare in Pn+M(c).

The Hausdorff distance between Pn+M(c) and Pc
n therefore converges to 0, so that

(Pn(c)) converges to D c
∞. �

For a graph Γ, let Γk = (V, Ek) be defined by

(v0, vk) ∈ Ek ⇐⇒ (∃v1, . . . , vk−1 ∈ V ∀i ∈ {0, . . . , k− 1} (vi, vi+1) ∈ E) . (11)

Proposition 3 For every (multi)graph Γ, there exists k such that every strongly connected component of
Γk is aperiodic.
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Proof: Each strongly connected component ∆ of Γ has a period p(∆), so that ∆p(∆) is aperi-
odic. Let k0 be the least common divisor of the p(∆)’s; then each strongly connected
component of Γ induces an aperiodic graph in Γk0 , but it is possible that, in the pro-
cess, it broke down into several connected components, so that Γk0 might not have
the required property. The procedure then has to be repeated from Γk0 to obtain Γk0k1 ,
and so on. Since the strongly connected components of Γk0···ki+1 are included in those
of Γk0···ki , this process reaches a fixed point, which is a graph with the required prop-
erty. �

Ergo, a coloured matrix substitution system defines a convergent coloured pattern when con-
sidering the steps that are a multiple of some well-chosen integer m. So, in order to prove
Theorem 1, all we need to do is find such a substitution system. This will be done in a special
case in the next section, and in the general case in section 3.

2 A special recursion scheme for Θ

The aim of this section is to give the most direct and natural explanation of the fractal structure
generated by Θ that we are aware of. Modulo some caveat, it applies effortlessly to all invertible
elements T of M2

(
R[u, u−1]

)
, where R is a finite abelian ring of characteristic 2. This section

is not vital to the proof of the general case presented in 3, and can therefore be skipped by the
impatient reader.

We will deduce informally the basic structure of the spacetime diagrams from a simple re-
cursion relation for the 2n-th powers of T. The characteristic polynomial of T, PT(X), is equal
to X2 + (tr T) + det T. According to Cayley-Hamilton theorem, PT(T) = 0, so T2 + (tr T) T +
(det T) I = 0. Multiplying this equation by T−1, we get T = (det T) T−1 + (tr T) I. Let us denote

T̃ = (det T) T−1, det T = uε, which we will name the dual of T; since we are in characteristic 2,
by repeatedly taking the square of this equality, we obtain

∀n ∈ N T2n
= T̃2n

+ (tr T)2n
I. (12)

Taking the trace of this equation, we get tr T2n
= tr T̃2n

; in particular, tr T = tr T̃ so Equa-

tion (12) is also valid when swapping T and T̃. Let IT be a finite set, and the λi’s elements of R
such that tr T = ∑i∈IT

λiu
i. Then we have

∀n ∈ N (tr T)2n
= ∑

i∈IT

(λi)
2n

u2ni. (13)

We do not yet specify the initial state; as a matter of fact, it will prove to be largely irrelevant.
The only thing we ask for now is that it is nontrivial (and finite).

Consider for instance Θ; we have det Θ = 1 = uε=0 and λi = χ{−1;0;1}(i). We start with the
spacetime diagram corresponding to 2n steps; it is rescaled to a triangle with vertex coordinates
{(0, 0), (−1, 1), (1, 1)}. Taking equations (12) and (13), we can see that the state at the 2n-th
time step can be decomposed into a sum of several copies of the initial state (the positions are
governed by the coefficients of the trace) and a configuration that can be derived by applying

T̃2n
to the initial state. In the next 2n steps, this configuration will contract itself to the initial
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state, which is shifted according to ε as T̃ is the inverse of T composed with the shift uε
I. The

copies of the original initial state evolve according to T. This is illustrated in Figure 4. The figure

A1

A3A2 A4 A

+

Figure 4: The whole figure is the sum of |I|+ 2 parts

suggests to divide the spacetime diagram into four parts A, B, C, and D as shown in Figure 5a
which overlap only on a single cell strip at the borders.

A

A

C D
B

(a) The first substitution rule.

D

B

A

+ B

A +

B
C

(b) The second substitution rule.

Figure 5: The first and the second substitution rules.

A2, A3, ad A4 are copies of A1, and

A

is marked by an upside down A because it is the reverse

evolution of the initial state under the CA Θ̃ — so actually it should logically be named ˜A

or

Ã

,
but since it always appears upside-down while A always appears straight on its feet, there is no
risk of confusion.

Let us assume that the sequence of rescaled spacetime diagrams up to step 2n actually con-
verges. Then that means A1 should be, in the limit, a copy of the whole picture A, downsized
by a factor 2, so we rename it A. This gives us the first substitution rule, represented in Fig-
ure 5a. The other three parts are still unknown, and we will name these patterns B, C and D.
Equation 12 tells us what the other substitution rules are.

Since Equation 12 remains true after swapping T and T̃,

A

admits likewise a partition intoA

,

B

,

C

and

D

. Summing all the parts shown in Figure 4, we get the top rightmost pattern
of Figure 7. Superimposing our first substitution rule (Figure 5a) with our second step of the
decomposition, we get the new substitution rules represented by Figures 5b, 6a and 6b.

All the other substitution rules are deducible from these ones. First they are linear: for in-
stance the substitutions for C + D is the sum of the substitutions for C and D, as shown in
Figure 6c. We don’t know a priori what the sum of two patterns is, but we know that summing
a pattern with itself should give 0, for we are working in characteristic 2. In this case A + A and
B + B cancel out. In figure 7, one can see how the characteristic white spaces emerge from the
above substitution rule.



66 Johannes Gütschow, Vincent Nesme, and Reinhard F. Werner

C

A

C
B

C + D

(a) The third substitution rule.

A

B
D

D

C + D

(b) The fourth substitution rule.

D C

C + D

(c) The fith substitution rule.

B

A

A +

B

(d) The sixth substitution rule.

Figure 6: The third and the fourth substitution rules.

The problem with this scheme is that what is happening goes beyond simple juxtaposition of
patterns. There can be cancellation at the border between patterns. And, sure, we know C + C
is blank, but how do we know C + D, for instance, is not? Well, generally we don’t. If the initial
state is itself blank, then the whole figure would be, and all tiles being blank is certainly a fixed
point for all the substitution rules.

In this case, however, everything turns out well. It should first be noticed that in every part
of the picture not tagged as “blank”, an A pattern can be found by refining a few more steps.
Formally, let G = (V, E) be the graph whose vertices are the different possible tiles (i.e., in this
case, A, B, C, D,

A
,

B
,

C
,

D
, and the sums modulo 2 of tiles having compatible shapes, including

the blank tile 0), and edges represent the transition rule in the following way: each vertex has
four edges coming out of it, each one pointing to one of its subtiles. In our case, the graph
has the property that the set of vertices accessible from A, minus 0, form a strongly connected
component.

We may then distinguish two cases: either A has a point in its interior, or it has points only on
its border triangle. In the first case, the unique non-empty compact defined by the substitution
rule is actually the figure we’re looking for. Indeed, it follows from the property of connexity
— cf. Proposition 2 — that every non-zero tile actually appearing in the decomposition of the
figure has a non-empty interior. Thus, no matter what happens at the boundary between tiles,
the figure constructed this way will always converge to the same compact.

3 Recursion and matrix substitution system

We will now present a general method to calculate the fractal dimensions and average colour
of the spacetime diagrams of linear CA in Md(Zpl [u, u−1]). We will again demonstrate the

method using our example Θ, whereas the derivation is carried out for the general case. Thus
the algorithm works as well on all the CA obeying our definition, e.g. the CA presented in
section 1.3, as it works on Θ. Of course with larger neighbourhoods and groups of higher order
the substitution system becomes larger and larger, so that one might want to use a computer to
derive the substitution system.
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C C + D
B

D
B

A +

B
D

C
B

D

A

A C

A

+ B
C + D

A

A

B
C D

C DA A

B B
C D

CA D
B B B

A

B

A A A

B
DCDC

C DA A C D

D
B

CD
B

CD
B

C

A +

B

A +

B

A

+ B

A

+ B

A

+ B

A +

B

C + D C + D

C

+

D

C + D

C

+

D

C + D

A

C
B

D

A

Figure 7: Three decomposition steps for the spacetime diagram of Θ. One can clearly see the
characteristic white spaces emerging.

Our approach is the following: from the minimal polynomial Π of the CA T (or any other

polynomial fulfilling Π(T) = 0) we derive a recursion relation for the T
y
x ’s, the coefficients

in ux of Ty. We then forget about every other piece of information we might have on T, to
concentrate only on this recursion: this shows that the fractal structure, except for contingent
blank spaces, can be essentially derived just from the minimal polynomial of T. We further

develop our recursion scheme for T until we can express every T
y
x in terms of the T

j
i of the first

m time steps with coefficients αj(x − i, y). With a simple grouping of cells we deduce a matrix

substitution system that enables us to generate the spacetime diagram of step t = kn+1 directly
from step t = kn. Using this substitution system we can calculate the fractal dimension, the
average colouring, and given an initial state also the whole space time diagram.

Now let Π(X) ∈ R[u, u−1][X] be a monic polynomial such that Π(T) = 0:

Π(X) = Xm −
m−1

∑
j=0

λΠ,jX
j. (14)

According to the Cayley-Hamilton theorem, which we can apply in our case because T is an
endomorphism of a finite-dimensional free module over an abelian ring (see Theorem 3.1. of
[Lan93]), the characteristic polynomial of T fulfills this condition, therefore we can always find
such a polynomial. Let I be the finite set of exponents i’s such that the coefficient in ui of Π,
seen as an element of R[X][u, u−1], is nonzero, so that we can write λΠ,j = ∑

i∈I
λΠ,i,ju

i. I is not

to be confused with the neighbourhood of the CA, I, which won’t play any role from now on.
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For any x, y, n ∈ N, (x + y)p ≡ xp + yp[p], and if x ≡ y[pn] then xp ≡ yp[pn+1]. Therefore,

for any x, y ∈ R and n ∈ N, (x + y)pn+l−1
= (xpn

+ ypn
)pl−1

. Since the powers of T commute
pairwise, we get

Tpn+2(l−1)m =

(
m−1

∑
j=0

λ
pn+l−1

Π,j Tpn+l−1 j

)pl−1

=




m−1

∑
j=0

(

∑
i∈I

λ
pn

Π,i,ju
pni

)pl−1

Tpn+l−1 j




pl−1

. (15)

For each i, j, the sequence λ
pn

Π,i,j is ultimately periodic. There exists therefore integers N and

M such that for all i, j, λ
pM+N

Π,i,j = λ
pM

Π,i,j. Let k = pN ; substituting n by M + Nn in (15), we get

Tkn pM+2(l−1)m =




m−1

∑
j=0

(

∑
i∈I

λ
pM

Π,i,ju
kn pM i

)pl−1

Tkn pM+l−1 j




pl−1

. (16)

Hence, if we note m′ = pM+2(l−1)m and expand this equation, we find that there is some finite
subset I ′ of Z and some elements µi,j of R, for i ∈ I ′ and j ∈ J0; m′ − 1K, such that for all n ∈ N,

Tknm′ =
m′−1

∑
j=0

∑
i∈I ′

µi,ju
kniTkn j. (17)

We have now used everything we needed to know from the multiplicative structure on the
ring of matrices. As announced at the end of section 1.2, we will now get rid of it and con-
centrate only on the linear recurrence relation that we have just derived. Remember that T j ∈
Md

(
R
[
u, u−1

])
, and we are interested in the coefficient of T j in ui, denoted T

j
i , so that T j =

∑
i∈I

T
j
i ui. We thus get the following relation: T

knm′+y
x = ∑i∈I ′ ∑

m′−1
j=0 µi,jT

y+kn j
x−kni , which we rewrite

in this form:

T
y
x = ∑

(i,j)∈I ′×J0;m′−1K

µi,jT
gi,j(y)

x+ fi,j(y)
(18)

where fi,j(y) = −kni and gi,j(y) = y − kn(m′ − j), which of course works with any n, but

we will choose n =
⌊
logk

y
m′
⌋
. In order to emphasise that the rest of the proof will use only a

minimal structure, we state in the next proposition what will actually be proven, and change the
notation from T, which was an element of Md

(
R[u, u−1]

)
, to Ξ, an element of a more arbitrary

R-module. It is straightforward to check that T fulfils the hypotheses of the proposition.

Proposition 4 Let M be a finite R-module, k a positive integer, Λ a finite set of indices, and for i ∈ Λ,
µi ∈ R, fi : Jm; +∞J→ Z and gi : Jm; +∞J→ N such that for all y ∈ Jm; +∞J and t ∈ J0; k− 1K,

• gi(y) < y;
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• fi(ky + t) = k fi(y) and gi(ky + t) = kgi(y) + t.

For x ∈ Z×N, let Ξ
y
x ∈ M be such that when y ≥ m,

Ξ
y
x = ∑

i∈Λ

µiΞ
gi(y)
x+ fi(y)

. (19)

Then there exists a finite set E and a function e : Z×N → E such that

• Ξ
y
x is a function of e(x, y);

• for s, t ∈ J0; k− 1K, e (kx + s, ky + t) is a function of s, t, and e(x, y).

The introduction of a new function e in this proposition comes from the need of a scaling
property, expressing that the state at point (kx + s, ky + t) can be deduced from the state at point
(x, y). Such a property does not follow immediately from Equation (19), but it is possible to
expand the state space from M to E, and to put more information into than e than into Ξ, so as to
fulfill the scaling property. An immediate consequence of this proposition is that the spacetime

diagrams of Ξ
y
x of order kn can be described by coloured matrix substitution systems, so that

Theorem 1 will follow from Proposition 3. Let us now prove Proposition 4.

If y ≥ m, we can apply Equation (19) with a unique n to give an expression of Ξ
y
x in terms of a

linear combination of Ξ
y′

x′ ’s with y′ < y. Starting from any point (x, y) ∈ Z×N and performing
these operations recursively we get to the expression

Ξ
y
x = ∑

i∈Z

m−1

∑
j=0

αi,j(x, y)Ξ
j
i (20)

which we take as a definition of αi,j(x, y). Since the relation (19) is invariant under translations
of the parameter x, we have αi,j(x, y) = α0,j(x − i, y). Noting αj := α0,j, we get the following
equation:

Ξ
y
x = ∑

i∈Z

m−1

∑
j=0

αj(x− i, y)Ξ
j
i . (21)

Let us now show that α· (kx + s, ky + t), for s, t ∈ J0; k− 1K, is a function of s, t, and the
α· (x′, y)’s, where x′ ranges over some neighbourhood of x. By substituting x with kx + s and y
with ky + t in Equation (19), we get

Ξ
ky+t
kx+s = ∑

i∈Λ

µiΞ
kgi(y)+t

k(x+ fi(y))+s
. (22)

Because the indices and exponents of Ξ on the left and right side of this equation have under-
gone the same transformation (x, y) 7→ (kx + s, ky + t), we arrive recursively at this point

Ξ
ky+t
kx+s = ∑

i∈Z

m−1

∑
j=0

αj(x− i, y)Ξ
kj+t
ki+s (23)
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which we want to compare to the following equation, directly deduced from (21):

Ξ
ky+t
kx+s = ∑

i∈Z

m−1

∑
j=0

αj(kx + s− i, ky + t)Ξ
j
i (24)

Of course, there can be terms in (23) with kj + t ≥ m, so that the decomposition is not over:
it then needs to be performed to its end. What we could have wished for would have been
for α·(kx + s, ky + t) to depend only on α· (x, y). This is not quite true; instead the final de-

composition of (23) relates the coefficients αj(kx + s− i, ky + t) of the Ξ
j
i in (24) to sums of the

αj(x − i, y)’s. Therefore α·(kx + s, ky + t) depends on the α· (x + i, y)’s for i ranging over some
set D . However, this not much of a problem, as a simple grouping will take care of it — a tech-
nique commonly attributed to [Wil87]. Let us show that D is finite. Since j ∈ J0; m− 1K and
t ∈ J0; k− 1K, the kj + t appearing as an exponent of Ξ in (23) is in J0; km− 1K. We therefore have

to use at most (k− 1) m recursive calls to (19) in order to get down to coefficients Ξ
y
x with y < m,

each one of them decreasing the exponent by at least 1. Each one of them also increases the
index by fi(y); since both Λ and J0; km− 1K are finite, the set of possible fi(y)’s is also bounded
by some M, and the total variation in the index, i.e. D , is then bounded by (k− 1) mM; let us
say D ⊆ Jdmin; dmaxK.

Let us now introduce βΠ,·(x, y) = (α·(x− i, y))i∈D ′ , where D ′ = Jδmin; δmaxK, δmax being

such that δmax ≥ dmax +
⌈

δmax
k

⌉
and δmin such that δmin ≤ dmin − 1 +

⌈
δmin+1

k

⌉
. This time,

for s, t ∈ {0; . . . ; k− 1}, βΠ,· (kx + s, ky + t) does really depend only on βΠ,· (x, y). Indeed,
βΠ,· (kx + s, ky + t) = (α·(kx + s− i, ky + t))i∈D ′ , and each α· (kx + s− i, ky + t) depends only

on
(

α·
(

x +
⌊

s−i
k

⌋
− j, y

))
j∈D

; the choice of D ′ has been made so that j −
⌊

s−i
k

⌋
∈ D ′. This

concludes the proof of Proposition 4, since we can choose E = MJ0;m−1K×D ′ , with e(x, y)(j, i) =
αj(x− i, y).

3.1 Example: Θ

In the case of Θ, Equation (23) becomes

Ξ
2y+t
2x+s = ∑

i

αΘ,0(x− i, y)Ξt
2i+s + αΘ,1(x− i, y)Ξ2+t

2i+s. (25)

The first term is now elementary, but the second one has to be decomposed once more, i.e.

Ξ2+t
2i+s = Ξt

2i+s + Ξ1+t
2i+s−1 + Ξ1+t

2i+s + Ξ1+t
2i+s+1, (26)

which is the end of it if t = 0, but not if t = 1, where we get

Ξ3
2i+s = Ξ0

2i+s−1 + Ξ0
2i+s + Ξ0

2i+s+1 + Ξ1
2i+s−2 + Ξ1

2i+s+2. (27)

The substitution rule of αΘ,· can then be written in the following way, where for convenience

αΘ,· is represented as
αΘ,1

αΘ,0
:
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αΘ,·(x, y) → αΘ,·(2x, 2y + 1) αΘ,·(2x + 1, 2y + 1)
αΘ,·(2x, 2y) αΘ,·(2x + 1, 2y)

=

αΘ,0 (x, y) + αΘ,1 (x− 1, y) + αΘ,1 (x + 1, y)
αΘ,1(x, y)

0
αΘ,1(x, y) + αΘ,1(x + 1, y)

αΘ,1(x, y)
αΘ,0 (x, y) + αΘ,1 (x, y)

αΘ,1(x, y) + αΘ,1(x + 1, y)
0

If we follow exactly what has been said in the general case, we ought to consider the grouping
{−2; · · · ; 3}. However, this general bound is obviously too rough in the case of Θ, where we
will just have to take {−1; 2}. We will represent the grouping in the form

αΘ,1(x− 1, y) αΘ,1(x, y) αΘ,1(x + 1, y) αΘ,1(x + 2, y)
αΘ,0(x− 1, y) αΘ,0(x, y) αΘ,0(x + 1, y) αΘ,0(x + 2, y)

.

The alphabet has thus size 256, and the substitution system is described by

a b c d
e f g h

→
0 a + c + f 0 b + d + g

a + b b b + c c
a + c + f 0 b + d + g 0

b b + c c c + d
a + b b b + c c

0 b + f 0 c + g
b b + c c c + d

b + f 0 c + g 0

Let us denote by A the matrix having a 1 in position a and 0 elsewhere, B the matrix having
a 1 only in position b, and so on. For these matrices, we will denote the sum of matrices by a
simple juxtaposition: AB will mean A + B, as the matrix multiplication has no meaning in this
context.

Since T0
x = δx0T0

0 , the starting position, with which we describe the whole line number 0,

is · · · 0 H G F E 0 · · · . Since we have, for instance, the rule F → B A
F E

, the

graph derived from this substitution system is aperiodic; that means that, in whatever way
A, B, C, . . . are represented, either as coloured dots or as white dots, the pattern converges, and
the fractal structure is described by this matrix substitution system (see Section 1.4).

To calculate the fractal dimension of our spacetime diagram we use the transition matrix of the
matrix substitution system, which contains the information about the images of all states. The
line corresponding to F would contain a 1 in the rows of A, B, E, and F and zeros elsewhere. As
every cell gives rise to four new cells the sum of all entries in each column of the matrix is 4. We
thus deal with a sparse 256× 256 matrix. The base 2 logarithm of the second largest eigenvalue
of this matrix is the fractal dimension of the spacetime diagram (cf. for instance [Wil87]). Here

this gives a fractal dimension of log2
3+
√

17
2 ≃ 1.8325, as also found in [Mac04].

Let us note that up to this point our analysis for Θ is word for word valid for all CA in
M2(Z2[u, u−1]) of determinant 1 and trace u−1 + 1 + u. The additional information is only used
for the actual colouring of the picture. In general all CA with the same minimal polynomial have
the same substitution system, and in dimension 2 the minimal polynomial is entirely determined
by the trace and the determinant. The fractal we get if we use the substitution system starting
from · · · 0 H G F E 0 · · · is shown in Figure 8.
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Figure 8: The general fractal time evolution of a linear CA with k = m = 2, determinant 1 and
trace u−1 + 1 + u. Only the areas where the whole group of αs is 0 is marked white. Thus the
image appears to have less white than the coloured picture. In the limit of infinite recursion this
effect vanishes, thus the fractal that is generated is actually the same.

In the case of Θ the connection between the substitution system and the coloured picture

is very simple; let us take ξ = (1
0) as the initial state. Then the state of cell x after y itera-

tions is Θ
y
xξ = ∑

i

(
αΘ,0(x− i, y)Θ0

i + αΘ,1(x− i, y)Θ1
i

)
ξ = αΘ,0(x, y)1ξ + ∑

i
αΘ,1(x − i, y)Θ1

i ξ.

Since Θ1
0 =

(
0 1
1 1

)
, Θ1

1 = Θ1
−1 =

(
0 0
0 1

)
and Θ1

i = 0 when i 6∈ {−1; 0; 1}, we have

T
y
x ξ =

(
αΘ,0(x, y)
αΘ,1(x, y)

)
. This gives us a colour assignment for each state of the matrix substitu-

tion system, which corresponds to simply dropping all states that include neither B nor F.

We can now determine the average hue of the spacetime diagram making use of the eigenvec-
tor corresponding to the second largest eigenvalue of the transition matrix [Wil87]. Let us say

(1
0), (0

1) and (1
1) are respectively coded by the colours c10, c01 and c11; let cq be the white colour.

We determine which symbols of the alphabet belong to each of the colours by looking only at

the part (
αΘ,0(x,y)
αΘ,1(x,y)

). Then we just add up all the weights of symbols with the same color in the

eigenvector. We get the following unnormalised coefficients: c10: 2(4 +
√

17), c01: 2(4 +
√

17),

and c11: 5 +
√

17.

In figure 1a, this colour code was used: c10 = , c01 = and c11 = . We must therefore

have the following average hue: .

Conclusion

We have shown that every cellular automaton inducing a morphism of abelian groups produces
a selfsimilar spacetime diagram. We exhibited an algorithm taking as input the local transi-
tion rule and outputting a description of these patterns. We only studied the one-dimensional
case in this article, but the analysis can be carried over to higher dimensions with not much
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more ado. Instead of Md

(
R[u, u−1]

)
, a n-dimensional linear cellular automaton would then

be an element of Md(R[u1, u−1
1 , u2, u−1

2 , . . . un, u−1
n ]), matrix substitution systems would become

(n + 1)-dimensional array substitution systems, the system of indices in section 3 would be
further complicated, and the spacetime diagrams would be harder to display. However, the
generalisation does not present any theoretical difficulty.

We list here some open questions and possible future developments.

• Possibly, the m in Theorem 1 can always be taken to be 1. This is known to be true in the
cyclic case, i.e. when d = 1, cf [Tak92].

• The algorithm presented in this article, producing a description of the spacetime diagram
in the form of a matrix substition system, has a high complexity, due to the large size of
its output. Is this a necessary evil, or can more efficient descriptions be found? Could
for instance the more elegant triangle-based substitution scheme presented in section 2 be
naturally generalised?

• To what extent can the algebraic structure be weakened? Instead of the alphabet being an
abelian group, could we consider an abelian monoid? Is it possible to get rid of commuta-
tivity and/or associativity?
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We investigate the descriptional complexity of basic operations on real-time one-way cellular automata with an un-
bounded as well well as a fixed number of cells. The size of the automata is measured by their number of states. Most
of the bounds shown are tight in the order of magnitude, that is, the sizes resulting from the effective constructions
given are optimal with respect to worst case complexity. Conversely, these bounds also show the maximal savings
of size that can be achieved when a given minimal real-time OCA is decomposed into smaller ones with respect to
a given operation. From this point of view the natural problem of whether a decomposition can algorithmically be
solved is studied. It turns out that all decomposition problems considered are algorithmically unsolvable. Therefore,
a very restricted cellular model is studied in the second part of the paper, namely, real-time one-way cellular automata
with a fixed number of cells. These devices are known to capture the regular languages and, thus, all the problems
being undecidable for general one-way cellular automata become decidable. It is shown that these decision problems
areNLOGSPACE-complete and thus share the attractive computational complexity of deterministic finite automata.
Furthermore, the state complexity of basic operations for these devices is studied and upper and lower bounds are
given.

Keywords: cellular automata, state complexity, descriptional complexity, formal languages, decidability

1 Introduction
Cellular automata are a well-motivated and well-investigated model for massively parallel computations
which have widely been investigated from a computational capacity point of view (see, for example, the
surveys [9, 10]). Basically, one-way cellular automata arelinear arrays of identical copies of deterministic
finite automata, sometimes called cells, that work synchronously at discrete time steps. Each cell is
connected to its immediate neighbors to the right. The inputis initially written into the cells.

Though real-time one-way cellular automata are one of the weakest classes of cellular automata, the
class of languages accepted by them contains rather complicated non-context-free and non-semilinear
languages and almost all important decidability questionsturned out to be undecidable [16] and not even
semidecidable [12].

1365–8050 © 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Opposed to the computational capacity and complexity the descriptional complexity concerns the size
of a system. One typical question is, for example, how succinctly a real-time one-way cellular automaton
can represent a language in comparison with other models. In[4, 6] more general introductions to and
surveys of descriptional complexity are given. The descriptional complexity of real-time one-way cellular
automata and the related model of real-time iterative arrays has been studied in [12, 14].

An important branch of descriptional complexity is the study of the complexity of operations. Here, one
considers language operations such as union, intersection, or reversal, under which the language classes
of the devices in question are closed. Of interest are optimal constructions with regard to the size of
description. Thus, the goal is to find upper bounds that give the sufficient size necessary to represent the
result of applying an operation, and lower bounds that give the sizes necessary in the worst case. Since,
in general, the minimization or even reduction of the size for a given one-way cellular automaton is algo-
rithmically unsolvable, there is no general method to provethe minimality of a given device. Moreover,
the precise upper bounds on the size may depend on undecidable properties. So, tight bounds in the order
of magnitude are to some extent best possible.

There are many ways to measure the size of a system. For deterministic finite automata the number
of states is a reasonable and popular measure. Since basically the representation of a cellular automaton
consists of the representation of their cells, the number ofstates is a reasonable size measure for cellu-
lar automata, too. For deterministic and nondeterministicfinite automata the state complexity of many
operations has been investigated. Recent surveys of results with regard to deterministic finite automata
are [19, 20], where also operations on unary regular languages are discussed. In [1] an automata indepen-
dent approach based on derivatives of languages is presented, that turned out to be a very useful technique
for proving upper bounds for deterministic finite automata operations (cf. [2, 3]). A systematic study of
language operations in connection with nondeterministic finite automata is [5]. The operation problem
for two-way deterministic finite automata has been investigated recently in [8].

In this paper, we study the state complexity of real-time one-way cellular automata and we consider
the Boolean operations union, intersection, and complementation as well as the operation of reversal. We
obtain upper and lower bounds which are tight in order of magnitude. Interestingly, the state complexity
of the Boolean operations is very similar to that of deterministic finite automata. This is not longer true
for the operation of reversal. Here, deterministic finite automata have an exponential blow-up whereas the
blow-up for real-time one-way cellular automata is at most quadratic. In contrast to the composition of two
languages by using an operation, the somehow “inverse” problem of decomposing a given language into
two languages with the help of an operation is studied. Clearly, the goal is to find a shorter representation
of the given language by decomposition. It turns out that such decomposition problems are algorithmically
unsolvable with regard to the Boolean operations and reversal.

These undecidability results together with the undecidability of almost all commonly investigated ques-
tions motivates the study of a restricted model, the real-time one-way cellular automata with a fixed num-
ber of cells, which have been introduced in [13]. The computational power of the restricted model is
equivalent to the regular languages and, thus, all the problems undecidable for general one-way cellular
automata become decidable. It is shown that these decision problems areNLOGSPACE-complete and
thus share the attractive computational complexity of deterministic finite automata. Furthermore, the state
complexity of basic operations for these devices is studiedand upper and lower bounds are given.
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2 Definitions
We denote the positive integers and zero{0, 1, 2, ...} by N. The empty word is denoted byλ, the reversal
of a wordw bywR, and for the length ofw we write |w|. For the number of occurrences of a subwordx
in w we use the notation|w|x. We use⊆ for inclusions and⊂ for strict inclusions. In order to avoid
technical overloading in writing, two languagesL andL′ are considered to be equal, if they differ at
most by the empty word, that is,L \ {λ} = L′ \ {λ}. Throughout the article two devices are said to be
equivalentif and only if they accept the same language.

A one-way cellular automaton is a linear array of identical deterministic finite state machines, some-
times called cells. Except for the rightmost cell each one isconnected to its nearest neighbor to the right.
We identify the cells by positive integers. The state transition depends on the current state of a cell it-
self and the current state of its neighbor, where the rightmost cell receives information associated with a
boundary symbol on its free input line. The state changes take place simultaneously at discrete time steps.
The input mode for cellular automata is called parallel. Onecan suppose that all cells fetch their input
symbol during a pre-initial step.

Definition 1 A one-way cellular automaton(OCA) is a system〈S, F,A,#, δ〉, whereS is the finite,
nonempty set ofcell states, F ⊆ S is the set ofaccepting states, A ⊆ S is the nonempty set ofinput
symbols, # /∈ S is the permanentboundary symbol, andδ : S × (S ∪ {#}) → S is the local transition
function.

A configurationof a one-way cellular automaton〈S, F,A, #, δ〉 at timet ≥ 0 is a description of its
global state, which is formally a mappingct : {1, 2, . . . , n} → S, for n ≥ 1. The operation starts at
time 0 in a so-calledinitial configuration, which is defined by the given inputw = a1a2 · · ·an ∈ A+. We
setc0(i) = ai, for 1 ≤ i ≤ n. Successor configurations are computed according to the global transition
function∆. Let ct, t ≥ 0, be a configuration withn ≥ 2, then its successorct+1 is defined as follows:

ct+1 = ∆(ct) ⇐⇒
{
ct+1(i) = δ(ct(i), ct(i+ 1)), i ∈ {1, 2, . . . , n− 1}
ct+1(n) = δ(ct(n), #)

Forn = 1, the next state of the sole cell isδ(ct(1), #). Thus,∆ is induced byδ.

· · ·a1 a2 a3 an #

Fig. 1: A one-way cellular automaton.

An inputw is accepted by an OCAM if at some time step during the course of its computation the
leftmost cell enters an accepting state. Thelanguage accepted byM is denoted byL(M). Let t : N→ N,
t(n) ≥ n, be a mapping. If allw ∈ L(M) are accepted with at mostt(|w|) time steps, thenM is said to
be of time complexityt.

Observe that time complexities do not have to meet any further conditions. This general treatment is
made possible by the way of acceptance. An inputw is accepted if the leftmost cell enters an accepting
state at some timei ≤ t(|w|). Subsequent states of the leftmost cell are not relevant. However, in
the sequel we are particularly interested in fast OCAs operating in real-time, that is, obeying the time
complexityt(n) = n.
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So, any OCA is defined by the state setS, the set of input symbolsA, the set of accepting statesF ,
and the transition function. That means, forn states we have at most2n · 2n · nn(n+1) different OCAs,
where, in addition, some of them are isomorphic. Since thereare infinitely many languages acceptable by
real-time OCAs, trivially, the number of states has to be unbounded.

3 State Complexity of Basic Operations
We consider the state complexities of the Boolean operations and reversal under which the class of lan-
guages accepted by real-time one-way cellular automata is closed [16]. First, we provide exemplarily
an infinite language family over a binary alphabet that requires growing size when accepted by real-time
OCAs. These languages and variants thereof are of tangible advantage for our purposes. As mentioned
before, the problem is to prove a lower bound for the number ofstates necessary, since no general tools
are available. Our lower bound misses the upper bound by one state only.

For all integersk ≥ 2 let
Lk = { 0iaj·k

i | i, j ≥ 1 }.

Lemma 2 Let k ≥ 2 be an integer. Thenk + 4 states are sufficient for a real-time OCA to acceptLk.

Proof: The languageLk is accepted by the real-time OCAM = 〈S, F,A, #, δ〉, whereA = {a, 0},
S = {a, 0, 1, . . . , k − 1,<,+, - }, F = {+}, and

δ(a, #) = - δ(p, a) = p+ 1, 0 ≤ p ≤ k − 2

δ(a, - ) = - δ(k − 1, a) = <

δ(<, - ) = + δ(<, a) = 1

δ(<,+) = + δ(p,<) = p+ 1, 0 ≤ p ≤ k − 2

δ(k − 1,<) = <

δ(<, q) = 0, 0 ≤ q ≤ k − 1

Here and in the sequel we assume tacitly that the state isnot changed wheneverδ is not defined.
Basically, the idea of the construction is to set up ak-ary counter in the leftmosti cells, where states

0, 1, . . . , k−1 represent the digits and< a carry-over to be processed by the left neighbor cell. The states+
and- are used to implement a signal, which is initially started inthe rightmost cell. It moves to the left,
passes through thea-cells with a non-accepting state, and checks whether all cells of the counter passed
through have been indicating a carry-over in the step before. Only in this case the accepting state is used.

2

By almost the same reasoning the same upper bound for the complementLk of Lk is shown.

Corollary 3 Let k ≥ 2 be an integer. Thenk + 4 states are sufficient for a real-time OCA to acceptLk.

Proof: We adapt the proof of Lemma 2 by definingF = {a,+} and modifyingδ such thatδ(p,+) = +,
for all p ∈ S, δ(a, 0) = +, δ(0, #) = +, δ(a, #) = - , δ(a, - ) = - , δ(<, - ) = - , andδ(p, - ) = +, for
0 ≤ p ≤ k − 1. 2

Now we turn to the lower bounds.
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Lemma 4 Let k ≥ 2 be an integer. Then at leastk + 3 states are necessary for a real-time OCA to
acceptLk.

Proof: LetM be a real-time OCA with state setS acceptingLk. We consider accepting computations
on inputs of the form0iaj·k

i

and, first, treat subcomputations as follows. The left part of sequences of
adjacenta-cells runs through cycles according toδ(a, a) = a1, δ(a1, a1) = a2, δ(a2, a2) = a3, . . .
Denote the cycle length byca. Clearly,ca is at most|S|. Therefore, forj large enough, the leftmosti
cells initially carrying a0 eventually also will run through cycles whose length is denoted byc0. Finally,
we have a possible signal from right to left initiated byδ(a, #). Let δ(a, #) = s1, δ(a1, s1) = s2,
δ(a2, s2) = s3, . . . Again, the signal eventually becomes cyclic with cyclelength, say,cs. Clearly,cs is
at most|S|2.

Now we turn to states. Assumec0 is at mostki − 1. Since0iak
i

is accepted, the input0iak
i

ac0·ca·cs

must be accepted, too. But fori large enough,(ki − 1) · ca · cs = ki · ca · cs − ca · cs is not a multiple
of ki. Therefore, at leastk statesz1, z2, . . . , zk are necessary to set up the cycle lengthc0.

Furthermore, at least one states1 is necessary to realize the signal from right to left, wheres1 has to be
different froma1 and both are non-accepting states. Otherwise, there would be no signal and the whole
computation could not accept in time. Clearly, neithers1, s2, s3, . . . nor the statesa, a1, a2, a3, . . . and
z1, z2, . . . , zk can be accepting. So, in addition, one accepting state+ is necessary.

If a1 ∈ {z1, z2, . . . , zk}, at some time during the cycle the leftmostk cells are synchronously in statea1

while further cells to their right are in statea1 as well. So, some input belonging toLk would be rejected.
Similarly, if s1 ∈ {z1, z2, . . . , zk}, then at some time thei-th cell from the left is in states1 and, thus,
simulates the arrival of the signal, while the signal has notyet arrived. So, an input not belonging toLk
would be accepted.

Altogether, we have at least thek + 3 states{z1, z2, . . . , zk, a1, s1,+}. 2

As before, by almost the same reasoning the same lower bound for the complementLk of Lk can be
shown.

Corollary 5 Let k ≥ 2 be an integer. Then at leastk + 3 states are necessary for a real-time OCA to
acceptLk.

3.1 Intersection and Union
Basically, the upper bounds for intersection and union are obtained by constructions based on the well-
known two-track technique. That is, on two different tracksacceptors for both languages are simulated
independent of each other. However, in general, an input is accepted when the leftmost cell enters an
accepting state at some arbitrary time step. So, in general,the leftmost cell will enter accepting as well as
non-accepting states during a computation. While this causes no problem for union, where a cell accepts
when at least one of its registers is accepting, for the intersection, where a cell accepts when both of its
registers are accepting, we have to provide further states.These are used to indicate that a register already
has passed through an accepting state.

Theorem 6 Let m,n ≥ 1 be integers,M1 be anm-state real-time OCA withr1 non-accepting states,
andM2 be ann-state real-time OCA withr2 non-accepting states. Thenm ·n+ r1 ·n+m ·r2 + r1 ·r2 ∈
O(m · n) states are sufficient for a real-time OCA to acceptL(M1) ∩ L(M2).



80 Martin Kutrib and Jonas Lefèvre and Andreas Malcher

Proof: We apply the two-track technique where each register remembers whether it has passed through
an accepting state. First we modifyMi = 〈Si, Fi, A, #, δi〉, for i ∈ {1, 2} to M̂i = 〈Ŝi, F̂i, A, #, δ̂i〉,
whereŜi = Si ∪Ri with Ri = { s′ | s ∈ Si \ Fi }, F̂i = Fi ∪Ri, and

δ̂i(s, t) =






δi(s, t) if s ∈ Si \ Fi
δi(s, t)

′ if s ∈ Fi andδi(s, t) ∈ Si \ Fi
δi(s, t) if s ∈ Fi andδi(s, t) ∈ Fi

,

δ̂i(s
′, t) =

{
δi(s, t)

′ if s′ ∈ Ri andδi(s, t) ∈ Si \ Fi
δi(s, t) if s′ ∈ Ri andδi(s, t) ∈ Fi

.

Clearly,Mi andM̂i are equivalent. Now,M = 〈S, F,A, #, δ〉 acceptsL(M1) ∩ L(M2), where
S = Ŝ1 × Ŝ2, F = F̂1 × F̂2, andδ((s1, s2), (t1, t2)) = (δ̂1(s1, t1), δ̂2(s2, t2)). 2

For the union the construction is slightly simpler. In this case it is not necessary to remember whether
a register has passed through an accepting state. Therefore, the next upper bound follows immediately.

Theorem 7 Letm,n ≥ 1 be integers,M1 be anm-state real-time OCA andM2 be ann-state real-time
OCA. Thenm · n ∈ O(m · n) states are sufficient for a real-time OCA to acceptL(M1) ∪ L(M2).

Now we can utilize the languagesLk for showing lower bounds which are tight in the order of magni-
tude.

Theorem 8 Let m,n ≥ 6 be integers such thatm − 4 andn − 4 are relatively prime. Then at least
(m− 4)(n− 4) + 3 ∈ Ω(m · n) states are necessary in the worst case for a real-time OCA to accept the
intersection of anm-state real-time OCA and ann-state real-time OCA language.

Proof: Let k = m− 4 andℓ = n− 4 be relatively prime. The witness languages for the assertion areLk
accepted by anm-state real-time OCA andLℓ accepted by ann-state real-time OCA. The intersection
Lk ∩ Lℓ is Lk·ℓ = { 0iaj·k

i·ℓi | i, j ≥ 1 }. By Lemma 4, any real-time OCA acceptingLk·ℓ has at least
k · ℓ+ 3 = (m− 4)(n− 4) + 3 ∈ Ω(m · n) states. 2

Theorem 9 Let m,n ≥ 6 be integers such thatm − 4 andn − 4 are relatively prime. Then at least
(m− 4)(n− 4) + 3 ∈ Ω(m · n) states are necessary in the worst case for a real-time OCA to accept the
union of anm-state real-time OCA and ann-state real-time OCA language.

Proof: Let k = m − 4 andℓ = n − 4 be relatively prime. Now the witness languages for the assertion
areLk accepted by anm-state real-time OCA andLℓ accepted by ann-state real-time OCA. Their union
isLk·ℓ, for which at leastk · ℓ+ 3 ∈ Ω(m · n) states are necessary by Corollary 5. 2
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3.2 Complementation

The precise upper bounds on the state complexity of some operations depend on the states that can appear
on the diagonal of the space time diagram, that is, the statesci(n − i + 1), 1 ≤ i ≤ n. Given an OCA
we consider the set of statesD that can appear on the diagonal in some possible computation, and denote
their number byd. For convenience, we simply writestates that can appear on the diagonal.

For deterministic devices the closure under complementation is often shown by interchanging accepting
and non-accepting states. The reason why this does not work in general for OCAs is once more that the
leftmost cell may enter accepting as well as non-accepting states during a computation.

Theorem 10 Let n ≥ 1 be an integer andM be ann-state real-time OCA withr non-accepting states,d
states that can appear on the diagonal and also at other positions, from whichg are non-accepting. Then
n+ r + d+ g ∈ O(n) states are sufficient for a real-time OCA to acceptL(M).

Proof: We sketch the construction of a real-time OCAM′ acceptingL(M). Basically,M′ simulatesM,
but since the cells ofMmay enter accepting as well as non-accepting states during acomputation, none of
the states ofM can be accepting inM′. Instead, copies of ther non-accepting states are used in order to
remember whether a cell has passed through an accepting state before. In order to accept the complement
of L(M) all of these new states are also non-accepting. Finally, it suffices to send a signal from right to
left along the diagonal that causes every cell passed through that has not entered an accepting state before
to accept. To this end, the states that appear on the diagonalhave to be identified as signal. This is trivial
for the states ofM which appear only at the diagonal. For thosed states that can appear on the diagonal
and also at other positions (ofM), copies are used for this purpose. Furthermore, on the diagonal ofM′

there may appearg new non-accepting states indicating that the cell has entered an accepting state before.
For these now new copies have to be used to accept. 2

Theorem 11 Let n ≥ 5 be an integer. Then at least2n− 3 ∈ Ω(n) states are necessary in the worst case
for a real-time OCA to accept the complement of ann-state real-time OCA language.

Proof: Fork ≥ 2 the assertion is witnessed by the language

Lc,k = { 0iaj | i ≥ 1, j ≥ ki }.

First, we construct a(k + 3)-state real-time OCAM = 〈S, F,A, #, δ〉, which accepts it:A = {a, 0},
S = {0, 1, . . . , k − 1, a,<, - }, F = {<}, and

δ(p, a) = p+ 1, 0 ≤ p ≤ k − 2 δ(k − 1,<) = <

δ(k − 1, a) = < δ(<, q) = 0, 0 ≤ q ≤ k − 1

δ(<, a) = 1 δ(a, #) = -

δ(p,<) = p+ 1, 0 ≤ p ≤ k − 2 δ(a, - ) = -

So, the real-time OCAM hasn = k+ 3 states,r = k+ 2 non-accepting states,d = k+ 1 states that can
appear on the diagonal and at other positions, from whichg = k are non-accepting.
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In order to show the lower bound on the number of states necessary to accept the complement ofLc,k,
we argue as follows. At leastk states are necessary to set up a cycle of lengthki in the i leftmost cells
(cf. proof of Lemma 4). Clearly, these states are all non-accepting. Going into further details, at time
stepk cell i has to switch to a different set of at leastk states. This is caused by the fact that the cycle of
all the leftmost cells has to continue and, in addition, celli can only change to an accepting state until time
stepk. In general, cell1 ≤ j ≤ i has to switch to the different set ofk states at time stepki−j+1 + i− j.
Again, these new states are all non-accepting.

Furthermore, one additional state different froma is necessary to send a signal from right to left such
that some cell initially carrying a0 can change to an accepting state at all. Finally, an accepting state itself
is necessary. In total, at least2k + 3 = 2n− 3 ∈ Ω(n) states are necessary. 2

3.3 Reversal

Now we turn to the non-Boolean operation reversal.

Theorem 12 Let n ≥ 1 be an integer andM be ann-state real-time OCA with set of input symbolsA
and setD of states that can appear on the diagonal. Thenn · |D|+ |A| + 3 ∈ O(n2) states are sufficient
for a real-time OCA to acceptL(M)R.

Proof: LetM = 〈S, F,A, #, δ〉 be real-time OCA with setD of states that can appear on the diagonal.
In order to obtain a real-time OCAM′ for the languageL(M)R, basically, the arguments of the local
transition function are interchanged. In addition, we haveto pay special attention to the boundary state.
Moreover,M′ cannot simulate the last step ofM (see Figure 2). So, the construction has to be extended
slightly. Each cell has an extra register that is used to simulate transitions ofM under the assumption
that the cell is the leftmost one. The transitions of the realleftmost cell now correspond to the missing
transitions of the previous simulation. However, the computation of the leftmost cell ofM is simulated on
the diagonal ofM′ together with the additional register. So, if an accepting state appears on the diagonal,
it has to be sent to the left. On the other hand, if an acceptingstate appears in the additional register, it
has to cause the cell to accept but must not be sent to the left.So, we conclude the construction ofM′ by
providing a signal from right to left which collects the results, where state+ is the accepting state to be
sent to the left,⊕ is the accepting state not to be sent to the left, and- is the non-accepting state of the
signal. Formally,M′ = 〈S′, F ′, A, #, δ′〉 is constructed as follows.
S′ = (D × S) ∪A ∪ {+,⊕, - }, F ′ = {+,⊕},
for all s1, s2 ∈ A,

δ′(s1, s2) = (δ(s1, #), δ(s2, s1)) andδ′(s1, #) =

{
+ if s1 ∈ F
- if s1 /∈ F

,

for all d1, d2 ∈ D, s1, s2 ∈ S,
δ′((d1, s1), (d2, s2)) = (δ(s1, d1), δ(s2, s1)),
δ′((d1, s1),+) = +,

δ′((d1, s1), - ) = δ′((d1, s1),⊕) =





+ if s1 ∈ F
⊕ if s1 /∈ F andδ(s1, d1) ∈ F
- otherwise

. 2
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t

n

40 30 20 10 #

41

31 21 11

e1 #

32

22 12

e2 #

23

13

e3 #

e4 #

OCAM′

10 20 30 40 #10 20 30 40 #

11 21 31 41 #

12 22 32 #

13 23 #

14 #

OCAM

Fig. 2: Construction showing the simulation of a real-time OCAM by a real-time OCAM′ on reversed input. The
statese1, e2, e3 are from{+,⊕, - }. Statee4 depends on13 and14 = δ(13, 23).

Theorem 13 Let k ≥ 2 andn be an integer of the form12k+7. Then at leastΩ(n2) states are necessary
in the worst case for a real-time OCA to accept the reversal ofann-state real-time OCA language.

Proof: Fork ≥ 2, the witness language for the assertion is

LR,k = {w0 | w ∈ {a, b}∗, |w| ≥ k2, |w|a ≡ 0 mod k, |w|b ≡ 0 mod k },
which is accepted by a(12k + 7)-state real-time OCA.

The formal construction is given below. We start with the idea of the construction. All cells initially
carrying ana or b, behave as follows. In a first register they shift their inputsuccessively to the left. In
a second register, they remember their original input. In a third register they count modulok the number
of input symbols shifted through that correspond to their own input symbol, that is, ana-cell counts all
incoming symbolsa and its owna, ab-cell counts all incoming symbolsb and its ownb. This behavior is
realized by the first group of transition rules below.

In addition, initially ak-ary counter with two digits is set up at the right end. The first digit is initialized
by the transitionsδ(a, 0) or δ(b, 0) while the second digit is initialized by the transitionδ(0, #). The
counter moves to the left. In addition to counting, both digits have two further registers. One register of
the first digit indicates by+ or - whether the lasta-cell passed through has counted a number ofa-symbols
that is congruent0 modulok. The other register does the same forb-cells. This behavior is realized by
the second group of transition rules below.

In order to distinguish between the first and the second digitof the moving counter, the second digit
is primed. On every step to the left, the cell carrying the second digit simply takes the contents of the
indicator registers of the first digit into their own indicator registers, and counts until a carry-over appears.
Subsequently, the digit changes to an indicator+ in its counting register which says that the counter has
passed through at leastk2 cells. So, the cell carrying the second digit is in an accepting state if and only
if the indicator+ is in all of its registers. The behavior of the second digit isrealized by the third group of
transition rules below.

More precisely, the languageLR,k is accepted by the real-time OCAM = 〈S, F,A, #, δ〉, where
S = {a, b, 0}∪{a, b}×{a, b}×{0, 1, . . . , k−1}∪{+, - }×{+, - }×{0, 1, . . . , k−1, 0′, 1′, . . . , (k−1)′,+},
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A = {a, b, 0},F = {(+,+,+)}, and, forx, y, s, t ∈ {a, b}, p, q ∈ {0, 1, . . . , k − 1},

δ(a, a) = (a, a, 2 mod k) δ((x, s, p), (y, t, q)) = (y, s, (p+ 1) mod k), if s = y

δ(a, b) = (b, a, 1) δ((x, s, p), (y, t, q)) = (y, s, p), if s 6= y

δ(b, b) = (b, b, 2 mod k)

δ(b, a) = (a, b, 1)

and forx, s ∈ {a, b}, u, v ∈ {+, - }, p, q ∈ {0, 1, . . . , k − 1},

δ(a, 0) = (- ,+, 1)

δ(b, 0) = (+, - , 1)

δ((x, s, p), (u, v, q)) =






(+, v, (q + 1) mod k) if s = a andp = 0

(- , v, (q + 1) mod k) if s = a andp 6= 0

(u,+, (q + 1) mod k) if s = b andp = 0

(u, - , (q + 1) mod k) if s = b andp 6= 0

and foru, v, w, z ∈ {+, - },

δ(0, #) = (+,+, 0′)

δ((u, v, p), (w, z, q′)) = (u, v, q′), 1 ≤ p ≤ k − 1, 0 ≤ q ≤ k − 1

δ((u, v, 0), (w, z, q′)) = (u, v, (q + 1)′), 0 ≤ q ≤ k − 2

δ((u, v, 0), (w, z, (k − 1)′)) = (u, v,+)

δ((u, v, p), (w, z,+)) = (u, v,+), 0 ≤ p ≤ k − 1

Without further proof we state that any real-time OCA accepting the reversalLRR,k needs at least
Ω(k2) = Ω(n2) states. 2

Since the upper bounds on the state complexity of complementation and reversal depend on the states
that can appear on the diagonal of the space time diagram, it is natural to ask whether the constructions
are effective. That is, to ask whether it is decidable which states appear on the diagonal. More general, the
decidability of reachability problems such as whether there is an input and a time step at which a given
configuration is reached by a given real-time OCA, or at whichtime a certain cell enters a given state, are
of particular interest. We will show that the first question is decidable whereas the latter is undecidable.

Lemma 14 LetM = 〈S, F,A,#, δ〉 be a real-time OCA,n ≥ 1 be an integer, andc : {1, 2, . . . , n} → S
be a configuration. Then it is decidable whether there is an inputw ∈ An such thatM reachesc on
inputw.

Proof: We consider a brute-force algorithm which generates successively all inputs of lengthn, simu-
lates the computation ofM on these inputs until it becomes cyclically at latest at timestep|S|n, and
finally checks whether the given configurationc occurred. As soon as such an input has been identified,
the algorithm stops and returnsyes. Otherwise, the algorithm stops after having negatively checked all
possibilities and returnsno. 2
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Lemma 15 LetM = 〈S, F,A,#, δ〉 be a real-time OCA,s be a state fromS, andi ≥ 1 be a cell. Then
it is undecidable whether there is an inputw ∈ A∗ such that on inputw cell i enters states at some time
t ≥ 0.

Proof: Assume that the question is decidable. Then we can check for every accepting states ∈ F whether
there is an input such that leftmost celli = 1 enterss at some timet ≥ 0. If this is not true for alls ∈ F ,
thenL(M) is empty andL(M) is not empty otherwise. But in [12, 16] it has been shown that it is
undecidable whether or not a given real-time OCA accepts theempty language, a contradiction. 2

In particular, the last lemma reveals that it is not decidable which states appear on the diagonal. So,
the constructions relying on these states are not effective. However, the effectiveness can be obtained by
using the whole state set instead. On the other hand, we have to pay with unnecessary additional states
for the effectiveness. Thus, to some extent tight bounds in the order of magnitude are best possible.

4 Unsolvability of Decompositions
So far, we have derived tight bounds in the order of magnitudefor the number of states we have to
pay when applying operations on real-time OCAs. Conversely, these bounds also show the maximal
number of states that can be saved when a given minimal real-time OCA is decomposed into smaller
ones. For example, given a minimaln-state real-time OCA that is equivalently to be representedby the
union of two smaller real-time OCAs, we know that the productof the sizes of the smaller devices is
at leastn. Therefore, at least2

√
n states are necessary for the decomposition into two smallerdevices.

From this descriptional complexity point of view, natural problems concern the question of whether such
decompositions can algorithmically be solved. Given ak-ary operation under which the family of real-
time OCA languages is closed, does there exist an algorithm that decomposes any given real-time OCA
intok smaller ones if such a decomposition exists? We refer to suchproblems asoperation decomposition
problems. It turns out that such algorithms cannot exist for the operations in question. The proofs are
reductions of undecidability problems for real-time OCAs.In [12, 16] it has been shown that it is neither
decidable whether a given real-time OCA accepts no input (emptiness) nor whether it accepts all inputs
(universality).

Theorem 16 ([12, 16])The emptiness and universality problems for real-time OCAsare undecidable.

Theorem 17 The union decomposition problem for real-time OCAs is algorithmically unsolvable.

Proof: In contrast to the assertion, we assume there is an algorithmthat solves the union decomposition.
We obtain a contradiction by showing that in this case the emptiness for real-time OCAs is decidable.
Clearly, any OCA has at least as many states as input symbols.Moreover, there is an OCA accepting the
empty language which has exactly as many states, where none of them is accepting.

In order to decide whether a given real-time OCA accepts no input, we proceed as follows. First we
inspect the set of accepting states. If it is empty, the answer is yes. If it contains at least one input symbol,
the answer isno. Otherwise we apply the union decomposition algorithm. If as a result the algorithm
reports that there is no decomposition, the answer isno. If the algorithm results in two smaller OCAs, we
recursively apply the decision process to these devices. Now the answer isyesif and only if both smaller
OCAs accept the empty language.
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Why does this procedure give the correct answer? This is evident for the cases where the set of accepting
states is empty or contains at least one input symbol. If otherwise the union decomposition algorithm is
applied, we know that there is at least one accepting non-input state. So, if the OCA accepts the empty
language, there is always a possible decomposition into twosmaller OCAs having only input states which
are all non-accepting. 2

The same result for the intersection decomposition problemfollows dual to the proof of the union
decomposition problem. Now, a reduction of the undecidability of universality is used. Note that there is
an OCA accepting all inputs which has exactly as many states as input symbols all of which are accepting.

Theorem 18 The intersection decomposition problem for real-time OCAsis algorithmically unsolvable.

The next results concern the unary language operations complementation and reversal.

Theorem 19 The complementation decomposition problem for real-time OCAs is algorithmically un-
solvable.

Proof: Assume in contrast to the assertion that there is an algorithm that solves the complementation
decomposition. Given a real-time OCAM, we apply the algorithm successively until it reports that there
is no further decomposition, whereby the number of applications is counted. Then we inspect the result
and determine whether it has as many states as input symbols and, if so, whether these are all accepting
or all non-accepting. So, we can decide for the result whether it accepts the empty language or all inputs
or another language. The result is equivalent toM if the number of applications is even. Therefore,
in this case we know whetherM accepts the empty language or all inputs or another language. If, on
the other hand, the number of applications is odd, we know whether the complement ofM accepts the
empty language or all inputs or another language. So, we can decide emptiness and universality ofM, a
contradiction. 2

Theorem 20 The reversal decomposition problem for real-time OCAs is algorithmically unsolvable.

Proof: As in the proof of Theorem 19, given a real-time OCAM we apply the algorithm successively
until it reports that there is no further decomposition. Then we inspect the result and decide whether it
accepts the empty language or all inputs or another language. Since the reversal of the empty language is
the empty language and the same for the language of all words,we can decide emptiness and universality
ofM, a contradiction. 2

5 Real-time OCAs With a Fixed Number of Cells
Since for real-time OCAs almost all classical decidabilityquestions are undecidable [16] and not even
semidecidable [12], real-time OCAs are on the one hand a powerful parallel model, but on the other hand
very unwieldy from a practical perspective. It would be interesting to know which resources of real-time
OCAs have to be restricted in order to obtain decidable questions. In [11] real-time OCAs with sparse
communication have been investigated, but still a very small amount of information communicated in
one time step suffices to yield undecidability of the above questions. Other resources to be bounded are
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classically time and space. Obviously, real time is the minimum time needed for useful computations.
Concerning space constraints, logarithmic or sublogarithmic space bounds have been investigated for
Turing machines [17] and real-time iterative arrays, whichdiffer from real-time OCAs by a sequential
processing of the input. It has been shown for the latter model [15], that logarithmic space still leads
to undecidability whereas sublogarithmic space reduces the computational capacity of the model to the
regular languages. For real-time OCAs it is not clear yet howlogarithmic or, in general, sublinear space
bounds should by defined properly. One problem to overcome isthat the restricted model should be not
more powerful than the unrestricted model. Consider an intuitively defined real-time OCA on unary input
which possesses a logarithmic number of cells depending on the length of the input. Then it would be
possible to accept the non-regular language{ a2n | n ≥ 1 } by implementing a binary counter in the
provided cells. Since the latter language cannot be accepted by any real-time OCA, we obtain a stronger
model.

Thus, it might be useful to consider in a first step real-time OCAs with a fixed number of cells. This
model has been introduced and investigated in [13] with regard to descriptional complexity aspects. Since
the computational capacity of the model is equivalent to theregular languages, all above-mentioned decid-
ability questions become decidable and it is particularly interesting to compare this parallel model for the
regular languages with the classical model of deterministic finite automata (DFAs) from a descriptional
complexity point of view. Here, we will complement the results shown in [13] by investigating the state
complexity of the Boolean operations and reversal. Furthermore, the computational complexity of the
decidable problems turns out not to be more complicated thanthat for deterministic finite automata.

A k cells one-way cellular automaton works similar to the unrestricted model, but the input is processed
as follows. At the beginning allk cells are in the quiescent state. The rightmost cell is the cell receiving
the input. At every time step one input symbol is processed. All other cells behave as usual. The input is
accepted, if at some time step the leftmost cell enters an accepting state. Since the minimal time to read
the input and to send all information from the rightmost cellto the leftmost cell is the length of the input
plusk, we provide a special end-of-input symbol▽ to the rightmost cell after reading the input.

Definition 21 A k cells one-way cellular automaton(kC-OCA) is a tupleM = 〈S, F,A, s0,▽, k, δr, δ〉
whereS is the finite, nonempty set ofcell states, F ⊆ S is the set ofaccepting states, A is the nonempty
set of input symbols, s0 ∈ S is the quiescent state, ▽ 6∈ S ∪ A is the end-of-input symbol, k is the
number of cells, andδr : S × (A ∪ {▽}) → S is the local transition function for the rightmost cell,
satisfyingδr(s0,▽) = s0, andδ : S×S → S is the local transition function for the other cells, satisfying
δ(s0, s0) = s0.

A configuration of akC-OCA at some time stept ≥ 0 is a pair(ct, wt), wherewt ∈ A∗ denotes the
remaining input andct is a description of thek cell states, formally a mappingct : {1, 2, . . . , k} → S.
For an inputw = a1a2 · · · an ∈ A∗ the initial configuration at time0 is defined byc0(i) = s0, 1 ≤ i ≤ k
andw0 = w. Successor configurations are computed according to the global transition function∆. Let
(ct, wt), t ≥ 0, be a configuration, then its successor configuration is defined as follows:

(ct+1, wt+1) = ∆(ct, wt) ⇐⇒
{
ct+1(i) = δ(ct(i), ct(i+ 1)), i ∈ {1, 2, . . . , k − 1}
ct+1(k) = δr(ct(k), a)

wherea = ▽ andwt+1 = λ, if wt = λ, anda = a1 andwt+1 = a2a3 · · · an, if wt = a1a2 · · · an.
Thus,∆ is induced byδr andδ.
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s0 s0 s0 s0 s0

a1a2a3 · · · an▽▽▽ · · ·

Fig. 3: Initial configuration of a 5 cells one-way cellular automaton (5C-OCA).

An input stringw is accepted by akC-OCA if at some time step during its computation the leftmost
cell enters an accepting state. Real-time forkC-OCAs is defined as|w| + k time steps.

Now, we investigate the state complexities of the Boolean operations and reversal forkC-OCAs and we
start with two lemmas which will be useful to show lower bounds.

For all integersk ≥ 2 andℓ ≥ 2 let

Lℓ,k = { ai | i ≡ 0 mod ℓk }.

Lemma 22 Let k ≥ 2 andℓ ≥ 2 be integers. Thenℓ + 2 states are sufficient for a real-timekC-OCA to
acceptLℓ,k.

Proof: To accept the languageLℓ,k one has to set up anℓ-ary counter in thek cells and to check, when
the whole input has been read, whether the leftmost cell has generated a carry-over in the last but one time
step. Thus, we needℓ+1 states to realize theℓ-ary counter and one additional accepting state for the final
check. Altogether,ℓ+ 2 states are sufficient to acceptLℓ,k. 2

Lemma 23 Let k ≥ 2 andℓ ≥ 2 be integers. Then at leastℓ states are necessary for a real-timekC-OCA
to acceptLℓ,k.

Proof: LetM be akC-OCA acceptingLℓ,k with s states. We first show thatM has to distinguish at
leastℓk configurations. By way of contradiction, we assume that there are two different inputsan and
am with 0 ≤ n < m ≤ ℓk − 1 leading to the same configurationc. Fromc we obtain on further input
aℓ

k−n a configurationc′. Sincean+ℓk−n = aℓ
k ∈ Lℓ,k, we have thatc′(1) is an accepting state. Then,

am+ℓk−n belongs toLℓ,k as well. On the other hand, we can derive0 < m− n < ℓk which implies that

am+ℓk−n 6∈ Lℓ,k. This is a contradiction.
Hence,M must be able to represent at leastℓk different configurations and we obtain thatsk ≥ ℓk.

Thus,s ≥ ℓ. 2

5.1 Intersection and Union

The constructions for real-timekC-OCAs accepting the intersection or union of languages accepted by
two given real-timekC-OCAs are very similar to the constructions for real-time OCAs given in Theo-
rem 6 and Theorem 7. The constructions are again based on the two-track technique. Additionally, for
intersection one has to keep track whether some register hasalready passed through an accepting state.
Altogether, both constructions lead to the same bounds and we omit the details here.
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Theorem 24 Let k ≥ 2 andm, n ≥ 1 be integers,M1 be anm-state real-timekC-OCA with r1 non-
accepting states, andM2 be ann-state real-timekC-OCA withr2 non-accepting states. Thenm ·n+ r1 ·
n+m · r2 + r1 · r2 ∈ O(m ·n) states are sufficient for a real-timekC-OCA to acceptL(M1)∩L(M2).

Theorem 25 Let k ≥ 2 andm,n ≥ 1 be integers,M1 be anm-state real-timekC-OCA andM2 be
ann-state real-timekC-OCA. Thenm · n ∈ O(m · n) states are sufficient for a real-timekC-OCA to
acceptL(M1) ∪ L(M2).

Next, we will obtain that both upper bounds are tight in orderof magnitude by showing the following
lower bounds.

Theorem 26 Let k ≥ 2 be an integer and letm,n ≥ 4 be integers such thatm andn are relatively prime.
Then at least(m− 2)(n − 2) ∈ Ω(m · n) states are necessary in the worst case for a real-timekC-OCA
to accept the intersection of anm-state real-timekC-OCA and ann-state real-timekC-OCA language.

Proof: Let m,n ≥ 4 be two integers which are relatively prime. We consider the languagesLm,k and
Ln,k and obtain thatLm,k∩Ln,k = Lmn,k. Due to Lemma 22Lm,k andLn,k can be accepted withm+2
andn+ 2 states, respectively. Owing to Lemma 23 we know that every real-timekC-OCA accepting the
intersectionLmn,k needs at leastmn states. 2

Theorem 27 Let k ≥ 2 andm,n ≥ 4 be integers such thatm andn are relatively prime. Then at least
(m − 2)(n− 2) ∈ Ω(m · n) states are necessary in the worst case for a real-timekC-OCA to accept the
union of anm-state real-timekC-OCA and ann-state real-timekC-OCA language.

Proof: Letm,n ≥ 4 be two integers which are relatively prime. We consider the union of the languages
Lm,k andLn,k. Due to Lemma 22Lm,k andLn,k can be accepted withm+2 andn+2 states, respectively.

LetM be akC-OCA acceptingLn,k ∪ Lm,k with s states. It remains for us to show thats ≥ mn.
To this end, we prove thatM has to distinguish at least(mn)k configurations. Then, we obtain that
sk ≥ (mn)k which implies thats ≥ mn.

By way of contradiction, we assume that there are two different inputsap andaq with 0 ≤ p < q ≤
(mn)k − 1 leading to the same configurationc. Let p′ = p mod nk, q′ = q mod nk, p′′ = p mod mk,
andq′′ = q mod mk. At first, we can show thatp′ 6= q′ or p′′ 6= q′′. Otherwise, we would have that
p′ = q′ andp′′ = q′′. Then,p = t · nk + p′ andq = t′ · nk + p′ which implies thatq − p is a multiple of
nk. Analogously, we obtain thatq − p is a multiple ofmk. Thus,q − p is a multiple of(mn)k. This is a
contradiction, since0 < q − p < (mn)k.

From now on we assume without loss of generality thatp′ 6= q′ andp′ < q′. Otherwise, we consider
p′′ 6= q′′ or interchange the roles ofp′ andq′ or p′′ andq′′, respectively. Let0 < l ≤ nk be the unique
integer such thatp′+l = nk. Then,p+l ≡ 0 mod nk. Furthermore, we have thatnk < q′+l < 2nk which
implies thatq+ l 6≡ 0 mod nk. Finally, we considerq+ l and distinguish two cases. Ifq+ l 6≡ 0 mod mk,
then we know thatap+l ∈ Ln,k andaq+l 6∈ Ln,k ∪Lm,k. From configurationc we obtain on further input
al a configurationc′. Sinceap+l ∈ Ln,k, we have thatc′(1) is an accepting state. Then,aq+l belongs to
Ln,k ∪ Lm,k as well which is a contradiction.

If q + l ≡ 0 mod mk, then we know thatq′′ + l = t′′mk. Now, we considerq′′ + l + nk and obtain
that q′′ + l + nk = t′′mk + nk is not a multiple ofmk. Then,q + l + nk 6≡ 0 mod mk. Moreover,
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q′ + l+ nk is not a multiple ofnk, sinceq′ + l is not. Thus,q+ l+ nk 6≡ 0 mod nk. Finally,p′ + l+ nk

is a multiple ofnk, sincep′ + l is. So,p + l + nk ≡ 0 mod nk and we know thatap+l+n
k ∈ Ln,k and

aq+l+n
k 6∈ Ln,k ∪Lm,k. From configurationc we obtain on further inputal+n

k

a configurationc′′. Since

ap+l+n
k ∈ Ln,k, we have thatc′′(1) is an accepting state. Then,aq+l+n

k

belongs toLn,k ∪Lm,k as well
which is a contradiction and concludes the proof. 2

5.2 Complementation
The construction of a real-timekC-OCA accepting the complement of the language accepted by agiven
real-timekC-OCA is slightly different to the construction for real-time OCAs given in the proof of Theo-
rem 10. However, the blow-up concerning the number of statesis similar and we can show that the upper
bound is tight in order of magnitude as well.

Theorem 28 Let k ≥ 2 andn ≥ 1 be integers andM be ann-state real-timekC-OCA with r non-
accepting states. Then2(n+ r) ∈ O(n) states are sufficient for a real-timekC-OCA to acceptL(M).

Proof: Let S andF denote the set of states and accepting states ofM, respectively. At first, we have to
modifyM such thatM only accepts when the whole input has been processed. To thisend, the rightmost
cell emits a signal when it reads the end-of-input symbol forthe first time. This signal moves to the left
and remembers the state of the cell passed through, respectively. Finally, the signal will arrive at the
leftmost cell exactly when the whole input has been processed and all information has been sent to the
leftmost cell. At this time step we want to make the final decision whether to accept or to reject the input.
So, the leftmost cell has to remember whether it has entered an accepting state at some time before. This
can realized the same way as before by introducing a copy of the non-accepting statesS′ of the state
setS \ F ofM and modifying the local transition function suitably. Then, the modified automaton̂M
accepts, if and only if the leftmost cell is in some state ofS′∪F when the signal arrives. In order to accept
the complement ofL(M) = L(M̂), it suffices to let the automaton accept, if and only if the leftmost cell
is in some state ofS \ F when the signal arrives.

Disregarding the realization of the signal, the number of states needed isn+ r. The implementation of
the signal may at most double this number and we obtain2(n+ r) states as an upper bound. 2

Theorem 29 Let k ≥ 2 andn ≥ 3 be integers. Then at leastn − 1 ∈ Ω(n) states are necessary in the
worst case for a real-timekC-OCA to accept the complement of ann-state real-timekC-OCA language.

Proof: We consider the witness languages

L′
n,k = { ai | i ≥ nk }.

First, we construct an(n+1)-state real-timekC-OCA acceptingL′
n,k. To this end, one has to set up ann-

ary counter and to define the state denoting a carry-over as the only accepting state (see also Example 2.1
in [13]).

On the other hand, everykC-OCA accepting

L′
n,k = { ai | i < nk }

needs at leastn states, since at leastnk configurations have to be distinguished. 2
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5.3 Reversal
The construction of a real-timekC-OCA accepting the reversal of the language accepted by a given
real-timekC-OCA is completely different to the construction for real-time OCAs given in the proof of
Theorem 12 where a quadratic upper bound is shown. Here, we will obtain an exponential upper bound
which is almost tight in order of magnitude.

Theorem 30 Let k ≥ 2 andn ≥ 1 be integers andM be ann-state real-timekC-OCA. Then at most
2n

k−nk−1+1 + 1 ∈ O(2n
k

) states are sufficient for a real-timekC-OCA to acceptL(M)R.

Proof: We present the intuitive construction. At first, we convertM to an equivalent DFAN having at
mostnk − nk−1 + 1 states according to the construction given in [13]. Then,N is converted to a DFA
NR accepting the reversal ofL(N ). By using the standard construction,NR has at most2n

k−nk−1+1

states. Finally,NR is converted to an equivalentkC-OCAMR. Due to the construction given in [13] we
need one additional state which gives the upper bound claimed. 2

The above construction arises the question whether it is in fact the best possible. In particular, the
construction does not make use of the parallelism ofkC-OCAs. The next lemma provides a lower bound
which roughly says that the construction cannot be improvedor parallelized essentially with regard to
kC-OCAs. This shows that reversal is a very expensive operation forkC-OCAs whereas only a quadratic
blow-up occurs for real-time OCAs.

Theorem 31 Let k ≥ 2 andn ≥ 3 be integers such thatn ≥ k. Then at leastΩ(2(n−1)k−1

) states are
necessary in the worst case for a real-timekC-OCA to accept the reversal of ann-state real-timekC-OCA
language.

Proof: We consider the witness languages

L′′
n,k = { ank{a, b}i | i ≥ 0 }.

To accept the languageL′′
n,k, we can use the same construction as in the proof of Theorem 29. Thus,L′′

n,k

can be accepted withn+ 1 states.
Now, letM be akC-OCA accepting

L′′R
n,k = { {a, b}iank | i ≥ 0 }

with s states. We first show thatM has to distinguish at least2n
k

configurations. By way of contradiction,
we assume that there are two different inputsu, v ∈ {a, b}nk

leading to the same configurationc. Sinceu
andv are different, we obtain without loss of generality thatu = xaat andv = ybat with 0 ≤ t ≤ nk−1.
From configurationc we obtain on further inputan

k−t−1 a configurationc′. Sinceuan
k−t−1 ∈ L′′R

n,k, we

have thatc′(1) is an accepting state. Then,van
k−t−1 belongs toL′′R

n,k as well. This is a contradiction,

sincevan
k−t−1 6∈ L′′R

n,k.

SinceMmust be able to represent at least2n
k

different configurations, we obtain thatsk ≥ 2n
k

. Thus,

s ≥ 2
nk

k ≥ 2
nk

n = 2n
k−1

sincen ≥ k. 2
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We may summarize the state complexity of the operations studied as follows. The state complexity of
intersection and union forkC-OCAs of sizem andn, respectively, is inΘ(mn). The state complexity of
complementation for akC-OCA of sizen is in Θ(n). The upper bound of the state complexity of reversal
for akC-OCA of sizen is inO(2n

k

) and the lower bound is inΩ(2(n−1)k−1

).

5.4 Computational Complexity

Finally, we discuss the computational complexity of typical decidability questions. For real-time OCAs
these questions are known to be undecidable. Here, we show that the questions are decidable forkC-OCAs
with k ≥ 2 and, moreover, areNLOGSPACE-complete. Thus, the questions forkC-OCAs have the same
computational complexity as for deterministic finite automata.

Theorem 32 Let k ≥ 2 be an integer. Then forkC-OCAs the problems of testing emptiness, universality,
inclusion, and equivalence areNLOGSPACE-complete.

Proof: First, we show that the problem of non-emptiness belongs toNLOGSPACE. SinceNLOGSPACE
is closed under complementation, emptiness belongs toNLOGSPACE as well. We describe a two-way
nondeterministic Turing machineM which receives an encoding of somekC-OCAA on its read-only
input tape and produces on its write-only output tape an answer yesor no while the space used on its
working tape is bounded byO(log |cod(A)|). Then, the work space is bounded byO(log n) as well
wheren denotes the maximum of the number of states inA and the size of the input alphabet ofA, since
both parameters are part of the encoding ofA on the input tape ofM. It is shown in [13] thatA can be
converted to an equivalent DFAA′ having at mostnk−nk−1 +1 states. It has been shown in [7] by using
the pumping lemma for regular languages thatL(A′) is not empty if and only ifL(A′) contains a word
of length at mostnk. Thus, the idea for the Turing machineM is to guess a word of length at mostnk

and to check whether it is accepted byA. We implement onM’s working tape a binary counterC which
counts up tonk. With the usual construction this needs at mostO(log nk) = O(k log n) = O(log n) tape
cells. Additionally, we have to keep track of the current states of thek cells ofA. Clearly, the state of
each cell can be represented byO(log n) tape cells. Altogether, a configuration ofA can be represented
byO(log n) tape cells. Now,M guesses one input symbola,M increases the counterC, and updates all
cells ofA according to the transition function ofA encoded on the input tape. This behavior is iterated
until either the simulated leftmost cell ofA enters an accepting state ofA or the counterC has been
counted up tonk. In both casesM halts and outputsyesin the first case and outputsno in the latter.
Altogether,M decides the non-emptiness ofA and uses at most a logarithmic number of tape cells with
regard to the length of the input.

For the problem of non-universality of a givenkC-OCAA we test the non-emptiness of akC-OCA
A′ accepting the complement ofL(A). The only difference to the above construction is that we have to
simulate a computation inA′ instead ofA. To this end, we consider the construction for the complement
given in Theorem 28. Having programmed this modification of the transition functions of akC-OCA in
the finite control of the Turing machineM suitably, we can simulate a transition ofA′ when reading
and translating a transition ofA from the input tape. Additionally, we have to observe that the number
of states ofA′ increases only by a linear factor of 4. Thus, it suffices for the counterC to count up
to (4n)k. Altogether, we obtain that non-universality is inNLOGSPACE. Due to the closure under
complementation, universality is inNLOGSPACE as well.



The Size of One-Way Cellular Automata 93

The constructions for testing inclusion and equivalence are similar. For twokC-OCAsA1 andA2

we have thatL(A1) ⊆ L(A2) if and only if L(A1) ∩ L(A2) is empty. Due to the construction given in
Theorem 24, we can reduce the question of inclusion to the question of testing the emptiness of akC-OCA
whose size is linearly bounded with regard to the size ofA1 andA2. By similar observations as for non-
universality, we obtain that the problem of inclusion is inNLOGSPACE. Finally, twokC-OCAsA1 and
A2 are equivalent if and only if bothL(A1) ∩ L(A2) andL(A1) ∩ L(A2) are empty. Thus, equivalence
is in NLOGSPACE as well.

The hardness results follow directly from the hardness results for DFAs (see, e.g., the summary in [18]),
since any DFA can be effectively converted to an equivalentkC-OCA [13] which simulates the given
DFA in the rightmost cell and sends an additional accepting state to the leftmost cell when the end-of-
input symbol is read and the input is accepted by the DFA. Obviously, this construction can be done in
deterministic logarithmic space. 2

References
[1] Brzozowski, J.: Quotient complexity of regular languages. In: Descriptional Complexity of Formal

Systems (DCFS 2009), Otto-von-Guericke-Universität Magdeburg (2009) 25–42
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In this paper, we significantly improve a previous result by the same author showing the existence of a weakly
universal cellular automaton with five states living in the hyperbolic3D-space. Here, we get such a cellular automaton
with three states only.

Keywords: universality, cellular automata, hyperbolic geometry,3D space, tilings

1 Introduction
In this paper, we follow the track of previous papers by the same author, with various collaborators or
alone, see [2, 7, 13, 14, 10, 9], which make use of the same basic model, therailway model, see [16, 5, 9].
In order to be within the space constraint for the paper, we just refer to the above mentioned paper both
for what is the railway model and for what is hyperbolic geometrY. For the latter one, we just mention
something new in Section 2. A more developped version of the paper can be found onarXiv, see [11].

In the previous papers, the number of states of a weakly universal cellular automaton was reduced from
24 states to 9 ones in the pentagrid and fixed at 6 for the heptagrid. In [10], I succeded to reduce this
number to 4 in the heptagrid.

The reduction for 6 states to 4 states, using the same model, was obtained by replacing the imple-
mentation of the tracks of the railway model. In all previouspapers, the track is implemented as a
one-dimensional structure where each cell of the track has two other neighbours on the track exactly,
considering that the cell also belongs to its neighbourhood. The locomotive follows the track by succes-
sively replacing two contiguous cells of the track: the cells occupied by the front and by the rear of the
locomotive. The locomotive has its own colours and the trackhas another one which is also different from
the blank, the colour of the quiescent state. In the mentioned paper, this traditional implementation is re-
placed by a new one. There, the track is no materialized but suggested only. It is delimited bymilestones
which may not define a continuous structure.

1365–8050c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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At this point, my attention was drawn by a referee of a submission to a journal explaining the 4-state
result that it is easy to implement rule 110 in the heptagrid,using three states only. This is true, but this
trick produces an automaton which is not really a planar automaton and does not improve our knowledge
neither on rule 110 nor on cellular automata in the hyperbolic plane. This implementation with three states
can also be easily adapted to the dodecagrid of the hyperbolic 3D space and suffers the same defect of
bringing in no new idea.

In this paper, we follow the same idea of milestones as in [10]. Here too, the milestones are imple-
mented in two versions. However, thanks to the third dimension, the same pattern can be used to change
directions, either inside a plane of the hyperbolic3D space or to switch from one plane to another one.
This configuration is used to avoid crossings, replacing them by bridges, as this was already performed
in [7]. Sections 3 and 4 thoroughly describe the implementation of the model in the hyperbolic3D space.
Section 5 explains how to check the rotation invariance of the rules. For the correctness of the rules them-
selves, we refer the reader to [11] where they are fully listed. In Section 5, we also give a short account on
the computer program which we used to perform the simulationand to check the correctness of the rules.

This will conclude our proof of the following result:

Theorem 1 (Margenstern)− There is a cellular automaton in the dodecagrid of the hyperbolic 3D space
which is weakly universal and which has3 states. Moreover, the cellular automaton is rotation invariant
and its motion actually makes use of the three dimensions.

By the latter expression, we mean that the automaton cannot be reduced to a lower dimension by a
simple projection. We refer the reader to [9, 7] for a discussion on the notion of weak universality.
The reader is also referred to [11] for figures and tables, notincluded here in order to comply to page
constraints.

2 Navigation in the dodecagrid
Here, we use the ideas of [8, 9] to define navigation tools for the dodecagrid. Using Schlegel diagrams,
see [7, 8, 9], we can also define a splitting of the hyperbolic3D space into 8 corners around a point which
is a common vertex. Next, we split the corner as indicated in Figure 1.
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Figure 1 Splitting a corner of the dodecagrid. On the left-hand side,the splitting of a corner. On the middle, the
splitting of a half-octant. On the right-hand side, the splitting of a tunnel. Note that the faces are numbered according
to the convention introduced in[7, 9].

The idea of the representation is, as in the pentagrid, to fix rules which allow to get a bijection of a tree
with the tiling restricted to the corner. If we allow the reflection of any dodecahedron of the tiling in its
faces, we shall get many doubled replications as explained in [8].
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We refer the reader to [8]. However, the splitting suggestedby Figure 1 is a bit different from that
indicated in [8]. The difference is that the splitting of Figure 1 is more symmetric and it involves three
basic regions instead of four ones in the splitting of [8].

In the paper, we shall not directly use the tree. Taking into account that most of the circuitry will occur
in a planeΠ0, we shall use projections ontoΠ0. Now, we can choseΠ0 to be plane of a face of a fixed
dodecahedron. In this way, the restriction of the dodecagrid toΠ0 is a copy of the pentagrid. And so, for
the projections we have in mind, we can use the pentagrid.

In Π0, each tile of the pentagrid is a face of exactly one tile of thedodecagrid overΠ0. We draw a
Schlegel diagram of the corresponding dodecahedron withinits face which lies onΠ0. We shall call this
apseudo-projection ontoΠ0. Imagine that we have four tilesO, Y ,G andB defined by their respective
colour, orange, yellow, green and blue. Imagine that another tileW , a white one, seesY through its face 1,
the same face being numbered 5 inY , the face 1 ofY being that which is shared withG. Then, we can
see two other tiles onW , a red one and an orange one, on faces 10 and 6 respectively.
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Figure 2 Two different ways for representing a pseudo-projection onthe pentagrid. On the left-hand side: the tiles
have their colour. On the right-hand side: the colour of a tile is reflected by its neighbours only.

On the left-hand side of Figure 2, the tiles keep their colour.
We can see that this raises a problem with the tiles which are put on the faces 6 and 10 of the tileW , in

caseW would be blue, for instance. For: what colour should be that of face 6? Will it be the colour ofW
or the colour of the other dodecahedron which shares it withW? Another problem is given, for instance
by the faces 1 ofY andG, assuming that the face 1 ofG is that which seesY . In fact, as can easily be
seen by the fact that these faces are both perpendicular toΠ0 and that they share a common edge lying
in Π0, these faces coincide. The fact that they have different colour might be misleading.

This can be avoided by fixing a convention. In order to keep as much information as possible in the
pseudo-projection, we shall consider that a face of a tile does not show the colour of the tile but the colour
of its neighbour sharing the same face. The right-hand side of Figure 2 shows the same configuration as
the one of the left-hand side, but under the new convention. Also, to make the figure more readable, we
do not draw the pseudo-projection of a tile who would be whitewith only white neighbours among those
of its neighbours which do not touchΠ0. Now we can see that we can use the fact that two different faces
coincide in the3D space by indicating the colour of the other tile.
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Later on, we shall adopt this second solution to represent our cellular automaton. Indeed, the cells of
the cellular automaton are the dodecahedra of the dodecagrid and the colour of a tile is given by the state
of the cellular automaton at the considered dodecahedron.

Before turning to the next section, we have an important remark.
We have already indicated that, in the pseudo-projection, faces which share an edge but which belong

to different dodecahedra do coincide in the hyperbolic3D space. The consequences are important with
respect to the neighbours of a tileτ where, by neighbour, we mean a polyhedron which shares a face
with τ . On the left-hand side part of Figure 2, we can see four small faces coloured withr, o, g andb on
two white dodecahedra which we callW1 andW2, withW1 being a neighbour of the central cell andW2

a neighbour of the green neighbour of the central cell. We canview these coloured faces as dodecahedra
obtained from the dodecahedron to which the face belongs by reflection in the very face. Call these
dodecahedra by the colour of their defining faces. Considering the planes of the faces and their relations
with Π0, it is not difficult to see that the dodecahedrar andg are neighbours as well as the dodecahedrao
andb. However, despite the fact that the corresponding faces share an edge, the dodecahedrar ando are
not neighbours. However, asr, o andW1 share a common edge, there is a fourth dodecahedronδ1 sharing
this edge which is not represented in the figure. Now,δ1 plays an important role for bothr ando as it
is a neighbour for both of them. The same remark holds for the dodecahedrag andb for which there is
a dodecahedronδ2, a neighbour of both dodecahedra, sharing a common edge alsowith W2. Moreover,
it can be seen thatδ1 andδ2 are also neighbours: their common face is in the plane of the common face
of W1 andW2, which also contains the common face ofr andg as well as the common face ofo andb.

Both couplesr with g ando with b can also be seen on the right-hand side part of Figure 2. Thereare
also two other coloured small faces: a purple one on the central tile, call it p as well as the dodecahedron
which it defines. There is also a pink one on the green dodecahedron which is a neighbour of the central
one. Call the pink dodecahedronπ. It is not difficult to see that the following pairs of dodecahedra are
neighbours in the dodecagrid:b andπ, π andp as well asp ando. Moreover, the four dodecahedrao, b,
π andp share a common edge which belongs to the same line as the one which supports the edge shared
byW1,W2, the central tile andG.

At last, remark that the plane of a face of a dodecahedronD defines two half-spaces: the half-space
which does not containD contains one neighbour ofD exactly. The half-space which containsD con-
tains all the other neighbours ofD also. This can be seen as a consequence of the convexity of the
dodecahedron.

Now, we can turn to the implementation of the railway model inthe dodecagrid.

3 Implementation of the tracks
The implementation of the model is much more difficult in the hyperbolic3D-space than in the hyperbolic
plane. Speaking about implementations in the hyperbolic plane, I often use the metaphor of a pilot flying
with instruments only. This can be reinforced in the case of the hyperbolic3D-space by saying that
this time we are in the situation of an astronaut who can do no other thing than fly with instruments
only: sometimes, the astronaut may look at the earth. It is a fantastic image, however of no help for
the navigation in cosmos. For the dodecagrid, we hope that the method explained in Section 2 shows
that the situation is after all a bit better than in cosmos. The figures which we can obtain from the
projections defined in Section 2 may help the reader to have a satisfactory view of the situation. We
have to never forget that the views we can obtain are dramatically simplified images of what actually
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happens. However, always bearing in mind that the images arealways a local view, a good training based
on rigorous principles may transform them into an efficient tool.

Remember that in most its parts, the track followed by the locomotive runs on a fixed plane of the
hyperbolic3D space. We shall see that we can assume that this plane isΠ0. Only occasionally, it
switches to other planes, perpendicular toΠ0. In particular, this is the case for the implementation of
crossings: as in [7], we take advantage of the third dimension in order to replace them by bridges. Also
for the sensors which decorate the switches, we shall take benefit of the third dimension to differentiate
the configurations of the various switches.

In this section, we deal with the tracks only, postponing theimplementation of the switches to Section 4.

3.1 The pieces

Below, Figure 3 illustrates a copy of the most common elementof the tracks, which we call thestraight
element. It consists of a single dodecahedron, the track itself, marked by four blue dodecahedra, the
milestones, which are neighbours of this dodecahedron.

Note the numbering of the faces on the figure: it follows the convention mentioned in Section 2. In
Figure 3, pictures(a) and(b), face 0 is not visible but it is visible in the other pictures.Similarly, face 5
and face 2 respectively, are not visible in pictures(c) with (d) and(e) with (f) respectively. Due to the
role of the elements in the circuit, we shall say that face 1 isthe entry of the element and that faces 3
and 4 are itsexits in the case of pictures(a) and(b). In the case of pictures(c) with (d) and(e) with (f)
respectively, the entries are face 4 with face 10 and face 3 with face 8 respectively. We shall sayexit 3,
exit 4, exit 8 or exit 10 if we need to make it more accurate. It is important to notice that exits and entries
can be exchanged: we can have exit 1 and entry 3 but not exit 3 and entry 4. Such a change of direction
is necessary, but it will be realized by another element. As the role of entry and exits can be exchanged,
we shall use the wordexit in general descriptions with the possible meaning of both anentry or an exit
through the possibly indicated face.
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Figure 3 An ordinary element of the track. Figure(a) is a view from above. Figure(b) is a view from the back of
face1. The locomotive enters the element via face1 and exits via face3 or face4. It also may enter via face3 or
face4 and then it exits through face1.

In Figures (c) and (d), the element is a bit turned around face1 and the exits are now face(4) and (10). In
Figures(e) and (f), the element is turned around face(1) too, but in the opposite direction, and the exits are now
faces3 and8.

The motion in the opposite direction is always possible.

Remember the convention we introduced in Section 2. In most figures of the paper, if not otherwise
mentioned, the colour of a cell can be deduced from the colours of the face of its neighbours. As an
example, in the pictures of Figure 3, the milestones are blueand they are neighbours of the element.

As the name suggests, the milestones are usually fixed elements: they are not changed by the passage
of the locomotive. This means that the milestones always remain blue, while the track is white as most
cells of the space itself: the white state plays the role of the quiescent state: if a cell is white as well as all
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its neighbours, then it remains white.
In Figure 3, the pictures represent various positions of thesame elements which can be obtained from

each other by a rotation a face of the dodecahedron or by a product of such rotations. We refer the reader
to Subsection 5.1 where this problem is examined. In the figure, pictures(a) and(b) show a situation
whereΠ0 is the plane of face 0. In the pictures(c) and(d), it is that of face 5. In the pictures(e) and(f),
it is that of face 2. The milestones can be viewed as the materialization of a catenary over the track itself,
assumed to be put on the plane of the element.

Figure 4 illustrates another element of the track which we call a corner. This element allows the
locomotive to perform a turn at a right angle. This possibility is very important and absolutely needed, as
we shall see later.
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Figure 4 The corner element of the track. Figure(a) is a view from above. Figure(b) is a view from the back of
face1. The locomotive enters the element via face1 and exits via face2. It also may enter via face2 and then it exits
through face1.

As we can see from Figure 4, the corner has more milestones around it then a straight element: 7
milestones instead of 4 ones. However, the face of a corner onΠ0 is white, while for a straight element
the face onΠ0 is usually blue.

3.2 Vertical and horizontal segments

When finitely many straight elements are put one after each other, with the entry of one of them shared by
the exit of the previous one, we say that these elements are set into avertical segment, vertical for short,
provided that the plane of these elements is the same and thatthere is a line of this plane which supports
one side of each element which we call theguideline. Figure 5 illustrates the basic example of a vertical.
The guideline supports a side of the faces 0 of the elements and the common plane is that of the faces 5.

In the representation of Figure 5, the dodecahedra are projected on the plane of face 5.
In the left-hand side picture of the figure, number the elements of the figure from 1 to 7. We can see

that the elementi is in contact with the elementi+1 with i ∈ {1..6}. Consider elements 3 and 4, the latter
one occupying the central pentagon of the picture. The exit 4of element 4 and the entry 1 of element 3
appear as different faces of dodecahedra: each one is projected inside the face 5 of the dodecahedron.
Now, by definition, the entry 1 of element 3 and the exit 4 of theelement 4 coincide. Indeed: elements 3
and 4 have their faces 5 on a common plane. They also have theirsides 0 on the guideline. The entry 1
of element 3 and the exit 4 of element 4 are perpendicular to the guideline and they share a common side:
they are the same face.

As we stressed in Section 2, this situation is important and we shall not repeat this point systematically.
It is a property of the hyperbolic3D space which we have to bear in mind while looking at the figures.

Note that in the figure, the entry 1 of an element is connected with the exit 4 of the previous one. Of
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course, the segment can be run in the opposite direction: then an exit 4 becomes an entry 4 and an entry 1
becomes an exit 1.

In the righ-hand side picture of Figure 5, we represent another kind of track which we shall callhor-
izontal segments. Such tracks consists of finitely many elements which can be written as a word of the
form (SeC)k, whereSe denotes a straight element andC denotes a corner. The entry of the corner abuts
an exit of the straight element. It is not always the same exit. In fact, there is an alternation of the exits
which makes a Fibonacci word: if we associate toSeC the number of the exit of the straight element
which abuts the entry of the corner, then this defines a homomorphism of(SeC)k on a factor of lengthk
of the infinite Fibonacci word. Indeed, all corners are put ona black node of the Fibonacci tree. Straight
elements are put on either white or black nodes. This can be made more accurate as follows. The straight
elements of the segment are in contact of cells of the leveln of the tree while the straight elements them-
selves are in the leveln+1. The corners of the segment are all in the leveln+2. Now, when the straight
element is put on a white node, the exits are through faces 1 and 4. When it is put on a black node, the
exits are through faces 1 and 10. This explains the connection of a horizontal segment with the infinite
Fibonacci word, also see [6].

Figure 5 Pseudo-projection on the plane of the track of its elements:left-hand side, case of a vertical segment;
right-hans side, case of a horizontal one.

In the right-hand side picture of Figure 5, all the cells, theleftmost one excepted, constitute an illustra-
tion of a horizontal segment. Note that the leftmost elementdoes not belong to the horizontal segment but
it realizes the connection with a vertical segment.

3.3 Bridges

As already mentioned in this section, crossings of the planar railway circuit are replaced by bridges. We
can arrange the crossing in such a way that two vertical segmentsV0 andV1 cross each other. Assume
thatV0 will remain in the planeΠ0 of its faces 5 whileV1 will make a detour in the planeΠ1, perpendicular
to Π0, which contains the guideline of its projection ontoΠ0. In Π1 the track will follow a horizontal
segment which will take the cells of two circles of cells inΠ1: at a distance 2 or 3 from the cellc0 of V0

which has a contact with bothΠ0 andΠ1. Figure 6 represent such a bridge using two pseudo-projections:
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one onto the planeΠ0, on the left-hand side of the figure, and the other onto the planeΠ1 on its right-hand
side. We shall say that the projection ontoΠ0 is the view from above and that the projection ontoΠ1 is
the frontal view, both ways of views referring to the bridge itself.

Let us have a closer look at the figures.
In the view from above, we can see two vertical segments: one goes from the right-up part of the figure

to the left-bottom one. It can be easily recognized as a copy of the vertical segment illustrated by Figure 5.
Here, it contains two tiles coloured with light brown. We shall call this track the top-down track. The
other track goes from the left-upper part of the figure and goes to the right-bottom one. We shall call it
the left-right track. We can see the guideline of the top-down track. It is the intersection of the planesΠ0

andΠ1.
Still in the view from above, we can see golden yellow marks onthe light brown tiles and two green

marks on the central tile. The golden marks indicate that thetop-down track goes on these tiles. The
green marks indicate the two piles of the bridge, the light brwon tile being their basement. Number the
cells of the projection of the top-down track in the view fromabove from 1 to 7, 1 being the number of
the topmost cell. Cell 4 is the central cell and it belongs to the left-right track: the top-down track follows
a horizontal segment onΠ1 which can be seen in the frontal view, see the right-hand sidepart of Figure 6.
The departure/arrival of the horizontal segment is defined by cells 6 and 2 which can be seen on both
views. In the frontal view, the trace ofΠ0 can easily be seen: it is the border between the coloured tiles
and the others which remain blank, on the bottom part of the figure. There are seven coloured cells along
this line in the frontal view: they are exactly the cells number from 1 to 7 in the view from above. In the
frontal view, cell 6 is on the left-hand side.

Figure 6 Pseudo-projections of two tracks crossing through a bridge. On the left-hand side: pseudo-projection
ontoΠ0; on the right-hand side: pseudo-projection ontoΠ1. The exit faces are marked by a golden yellow colour
on the right-hand side figure. The piles of the bridge are marked with green on the central cell, their basement are
marked with light brown. In the frontal view, the colour of the cell are exceptionally given to its faces which are not
in contact with a cell of a track. This is to underline the elements of the bridge on which the track relies.

Cells 6 and 2 are an application of what we have mentioned in Subsection 3.1, about the different ways
to rotate a straight element in order to access to another plane. Cell 6 is alike the picture(c) of Figure 3.
Its faces 0 and 5 are in contact with the guideline. Now, exit 3may be used to go into the plane of face 0
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which is perpendicular to the plane of face 5. This will be thestarting point of our bridge. Note that
face 0 of cell 6 is onΠ1. From this tile, the bridge follows a horizontal segment until it arrives at cell 2
which is in contact with bothΠ0 andΠ1. Notice that cell 2 is alike the picture(e) of Figure 3, and that
its face 4 is the face where the track of the bridges again joins the top-down track. Note that in cell 2,
face 0 is onΠ1 as this is the case for cell 6. Looking at the cells of the horizontal segment in the frontal
view, we can notice that the straight elements have a milestone which is belowΠ1: this means that there
are milestones on both half-spaces defined byΠ1. Now, for the corners, all the milestones are in a same
half-space defined byΠ1. For the straight elements, their exits are most often the faces 1 and 4. However,
from time to time, the exits are the faces 1 and 10. In Subsection 3.2 we have seen the reason of these
variants. As can be seen on the frontal view, all corners are put on a black node of the Fibonacci tree and
straight elements can be either on a black node or on a white one. From Subsection 3.2, we know that
when a straight element is on a white tile, the exits are the faces 1 and 4. When it is on a black tile, it is
the faces 1 and 10.

3.4 The motion of the locomotive on the tracks

Presently, we describe the motion of the locomotive on its tracks. We refer the reader to [11] for figures
for all the possible motions on the tracks and through a switch.

This motion is very different from the simulation of [7]. There, the tracks were materialized by a spe-
cific colour and the locomotive simply occupied two contiguous cells of the track. Here, if we consider the
track as constituted of the blank cells surrounded by milestones as in [9, 14, 13, 10], then the motion of the
locomotive is very similar. In particular, it is exactly thesame as the planar simulation described in [10].
Accordingly, restricting our attention to the cells of the track, we have the following one-dimensional
rules for the motion of the locomotive:

B W W→ B W W B→ B
R B W→ R W B R→ R
W R B→ W B R W→ W
W W R→ W R W W→ W

As can easily be deduced from the rules, the locomotive consists of two contiguous cells: one is blue,
the front, the other is red, the rear.

With the just mentioned principles in mind, we can easily device the rules for the motion of the loco-
motive. See [11] for the systematic writing of the corresponding rules and for illustrative figures.

From the rules we can devise, it is worth noticing that the elements can be freely assembled, provided
that they observe the principle which we have fixed: exits of an element are 1 and 2 for corners, they are
1 and 3, 1 and 4, 1 and 8 or 1 and 10 for a straight element. Other combinations are ruled out by the rules.

4 Implementation of the switches
In order to describe the switches, we shall focus on the memory switch which has the most complex
mechanism among the switches. In fact, this mechanism consists of two connected partsA andB. In the
study of the other switches, we shall see that fixed switches use mechanismA alone and that the flip-flop
switches use mechanismB alone.

All switches will share the following common features. Theyare assumed to be on the same planeΠ0.
However, certain parts of the above mechanisms are on both half-spaces defined byΠ0. This is why we
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shall present two figures for each switch: one is a pseudo-projection from above ontoΠ0, the other is a
pseudo-projection onto the same plane, but from below. We have to remember that in such a case, the
left-hand side and the right-hand side are exchanged as wellas clockwise and counter-clockwise motions.

Next, for two of them, the switches have both a left- and a right-hand side version. In the left-, right-
hand side version respectively, the active passage sends the locomotive to the left-, right-hand side track
respectively. However, for the fixed switch, a left-hand side version is enough. A right-hand side fixed
switch is obtained from a left-hand side one as follows: after the switch, the left-hand side track crosses the
right-hand side one in order to exchange the directions. Thanks to the bridge which we have implemented,
this is easily performed.

The switches will be presented according to a similar scheme.
First, we describe what we call theidle configuration: it is the situation of the switch when it is not

visited by the locomotive. All switches are the meeting point of three tracks. The meeting tile is a straight
element and, in the figures, which will represent idle configurations only, it is placed at the central tile.
The track which arrives to the entry 1 of this element represents the arrival for an active crossing of the
switch. Exit 3 gives access to the track which goes to the leftand exit 4 gives access to the track going
to the right. In the computer program used to check the simulation, the cells of the tracks are numbered
from 1 to 11 and from 12 to 16. In the figures, we can see cells 2 to10 and 12 to 15 only. Cells 1 to 5
constitute the arriving track. They follow a vertical segment which arrives to the leading tile of a quarter
constructed around the central cell. We shall number this sector by 1, as the exit to which the track leads.
Cell 2 is the farthest visible cell from the central cell, cell 5 is the leading tile of sector 1. The central cell
is cell 6. Cells 7 to 10 constitute the track which leaves the switch through exit 3. They are displayed in
a vertical segment included in a sector lead by cell 7 and which is called sector 3, after exit 3. Cells 12
to 15 constitute the vertical segment which leaves the switch through exit 4. These cells belong to sector 4
headed by cell 12, see Figure 7 for instance.

A closer look shows that the tracks are not exactly along a vertical: the cell which is in contact with
an exit of the central cell, is a straight element whose face 0is on Π0. The next cell, cell 4, 8 and 13
respectively is a corner, again with its face 0 onΠ0. The remaining two cells constitute a vertical segment
in the way we have defined them with a milestone belowΠ0 with respect to the other milestone which we
consider as upon this plane.

With these conventions, we can start the study of each switch. We shall see the memory switches, the
fixed switch and the flip-flop switches in this order.

4.1 Memory switches
As mentioned in the beginning of this section, the memory switches are the most complex construction in
our implementation.

In the paper, we represent the left-hand side memory switch only, see Figure 7. The reader can see the
figure corresponding to the right-hand side memory switch in[11].

In the figure, there is a big disc and a smaller one. The big discis a pseudo-projection ontoΠ0 from
above, while the smaller one is a pseudo-projection onto thesame plane from below. In both discs, we
apply the convention about the colour of the cells.

In the memory switch, there are twosensors, two markers and twocontrollers. The sensors are
cells 17 and 18 which are neighbours of the cells 7 and 12 respectively through their faces 0. Cells 7
and 12 are called thescanned cells, inspected by their sensors. Theupper controller is cell 20 which is
the second common neighbour of cells 7 and 12 aboveΠ0: the first common neighbour is the central cell.
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We consider that cell 20 has its face 0 onΠ0. The lower controller is cell 19 which is the neighbour of
cell 20 through its face 0: cell 19 is thus belowΠ0 and we also consider that its face 0 is onΠ0. The
two markers are cells 21 and 22: they are neighbours of cell 20through its faces 8 and 10 respectively.
Now, the sensor of cell 7 is blue and that of cell 12 is red. Similarly, cell 21 is red and cell 22 is blue.
The colours of the sensors and of the markers allow to identify the left-hand side memory switch. In a
right-hand side memory switch, the colours of the sensors and the markers are exchanged: cells 21 and 18
are blue, cells 22 and 17 are red.

2122

Figure 7 The idle configuration of a left-hand side memory switch, represented by the two pseudo-projections, one
from above: the big disc; the other from below: the small disc.

The working of the memory switch is the following.
A blue sensor is indifferent to the direction of the locomotive: it may cross the cell it scans in both

ways. A red sensor does not behave the same. First, it prevents the locomotive to enter the cell it scans
in an active passage. In a passive passage, it detects the passage of the locomotive, it allows it to pass
through the cell it scans, but it reacts to the passage by changing its colour: as the blue sensor does not
see the red one, the red sensor cannot change its colour to blue. It changes it to white. This is detected
by the lower controller, usually blue, which becomes red. When the lower controller is red, both sensors
change their colour: the blue one to red the now white one to blue. And the lower controller goes back
to blue. Now, the upper controller, usually blue, also detects the passive passage through the non-selected
track: its markers allow it to differentiate cell 7 from cell12. And so, when the front of the locomotive
leaves cell 7 or cell 12 when this cell is on the non-selected track, the upper controller becomes white
and then red. It becomes white to prevent the locomotive frombeing duplicated on the selected track:
the locomotive must go through entry 1. Then it becomes red, at the same times as the lower controller
becomes red. When the upper controller is red, both markers exchange their colour and at the next time,
the upper controller returns to blue.

We have no room in this paper for figures about the motion of thelocomotive. We refer the reader
to [11] for such figures. In that document, the reader may alsofind tables of the execution of the computer
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program which simulated the various motions. For the memoryswitch, we give one such table here: the
table which corresponds to the motion of the locomotive whenit passively crosses the switch from the
non-selected track, see Table 1.

In a heading line, the trace indicates the visited cells by their number as well as their immediate neigh-
bours, also numbered, when they may be changed during the visit. Below this leading line, for each time,
the state of a cell is given in the column corresponding to itsnumber. Looking at the numbers, we can
see that the simulation program considered two more cells onthe track arriving to the switch than what
is shown by the figure. In this table, we can see that the sensors and the markers play an active role and,
at the end of the role, they are exchanged. Accordingly, the locomotive entered a left-hand side memory
switch and it leaves a right-hand side memory switch.

Note that Table 1 shows exactly when each sensor and controller is triggered. The front of the loco-
motive is in cell 12 at time 2. This makes cell 20 and 18 becoming white. As already noticed, the red
sensor cannot change to blue as the blue sensor, which cannotsee neither cell 12 nor cell 18, did not yet
realized that a change must occur. At time 3, the front of the locomotive is now in cell 6, the central cell,
and cells 20 and 18 are now white. This is the signal for both controllers to flash the red signal which
will trigger the exchange of colours in the sensors and in themarkers. The signal is sent at time 4 and the
exchange of colours happens at time 5: starting from that time, the memory switch is now a right-hand
side one.

Table 1 Run of the simulation programme. A corresponding figure can be found in[11]. The passive crossing
through the non-selected track correspond to cells12 up to16, in the reverse order and then to cells1 up to6 in the
reverse order too.

passive crossing of a memory switch, left-hand side,

through the NON selected track :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

time 0 : W W W W W W W W W W W W W B R W B R B B R B

time 1 : W W W W W W W W W W W W B R W W B R B B R B

time 2 : W W W W W W W W W W W B R W W W B R B B R B

time 3 : W W W W W B W W W W W R W W W W B W B W R B

time 4 : W W W W B R W W W W W W W W W W B W R R R B

time 5 : W W W B R W W W W W W W W W W W R B B B B R

time 6 : W W B R W W W W W W W W W W W W R B B B B R

time 7 : W B R W W W W W W W W W W W W W R B B B B R

In [11], it can be checked that the right-hand side memory switch reacts in a similar way to its passive
crossing by the locomotive through the non-selected track.In particular, when the locomotive leaves the
switch, it is now a left-hand side one.

4.2 Fixed switches
Figure 8 illustrates the idle configuration of a fixed switch.As announced at the beginning of Section 4
we can see on the figures that the idle configuration of a fixed switch is, in some sense the half of the
configuration of a left-hand side memory switch. The point isthat there is no lower controller and that the
sensors and markers are now fixed milestones. Two of them, cell 18 and 21, are always red and the others,
cell 17 and 22 are always blue. Now, the fixed switch keeps the upper controller. As already noticed, the
red milestone prevents the locomotive to go through the non-selected track in an active passage. However,
as also noticed in the study of memory switches, the change ofcolour in the sensor of cell 12 is not enough
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to prevent the locomotive to go from the central cell both to cell 5, as required, and to cell 7 which should
be avoided. Cell 7 cannot itself prevent such a passage because it sees cell 6 but it does not see at the same
time cell 12. Now, we have seen in Subsection 4.1 that the upper controller is able to perform this tasks:
as soon as it sees that the front of the locomotive is in cell 12, it becomes white. As cell 7 sees this new
colour at the same time when the front of the locomotive is in cell 6, it allows it to reject the access of the
locomotive to the selected track.

Figure 8 The idle configuration of a fixed switch. The big disc is a view from above, the small one a view from
below.

It is not difficult to check that Figure 8 implements this changes. It was just enough to neutralize the
lower controller by changing its colour from blue to blank. Moreover, the cell itself has no other non-
blank neighbour than the sensors. Similarly, as the sensorsand markers are fixed milestones, this means
that their neighbours are all blank, except the cell of the switch with which they are in contact: cell 7 or 12
for the sensors, cell 20 for the markers. Consequently, the configuration of the fixed switch is a bit simpler
than that of the left-hand side memory switch. It also requires less non-blank cells.

Table 2 Run of the simulation programme corresponding to the passive crossing through the non selected track. The
corresponding cells are cell12 up to16, in the reverse order and then cells1 up to6 in the reverse order too.

passive crossing of a fixed switch, NON selected track :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

time 0 : W W W W W W W W W W W W W B R W B R W B R B

time 1 : W W W W W W W W W W W W B R W W B R W B R B

time 2 : W W W W W W W W W W W B R W W W B R W B R B

time 3 : W W W W W B W W W W W R W W W W B R W W R B

time 4 : W W W W B R W W W W W W W W W W B R W R R B

time 5 : W W W B R W W W W W W W W W W W B R W B R B

time 6 : W W B R W W W W W W W W W W W W B R W B R B

time 7 : W B R W W W W W W W W W W W W W B R W B R B

We refer the reader to [11] for figures illustrating the threepossible crossings of the switch by the
locomotive. There, each figure is accompanied by a table which shows a trace of the execution of the
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simulating program corresponding to that crossing. Here, we reproduce Table 2 only which gives the
trace of a passive crossing through the non-selected track.

Table 2 also allows us to check that a half-control, namely that of cell 20 was enough to guarantee
the correct working of the switch. It also shows that it was enough to block the changing of sensors by
transforming them into milestones. This is an interesting point which shows us another advantage which
we can take from the third dimension.

Indeed, in previous simulations in the hyperbolic plane on the heptagrid, with six or four states, we had
a curious phenomenon during the active passage of the locomotive and also during a passive crossing for
the fixed switch too. In these simulations, the passage of thelocomotive created a duplicate of its front
towards the wrong direction. However, as this new front was not followed by a red rear, it was possible to
erase it, simply by appending a few rules.

4.3 Flip-flop switches

Figure 9 show the idle configuration of the left-hand side flip-flop switches. The corresponding figure
for right-hand side switches can be seen in [11]. As announced at the beginning of Section 4 we can
see on the figures that the idle configuration of a flip-flop switch switch is, in some sense the half of the
configuration of a memory switch of the same laterality. The point is that there is no upper controller
and, consequently, no markers. However, the sensors and thelower controller are still present. The lower
controller is exactly the same as in the memory switches and it works in the same way. Contrarily to the
fixed switch, the sensors are not milestones. They are true sensors like in the memory switch.

Figure 9 The idle configuration of the left-hand side flip-flop switch.The big disc is a view from above, the small
one, a view from below.

However, they are a bit different from the sensors of the memory switch as they work in a different
way. The difference can be noticed in the small discs of Figures 7 and Figures 9. In Figures 7, the sensors
are marked by a group of three red milestones, on pairwise contiguous faces, one of them being the face
which is opposite to that in contact with the scanned cell. InFigures 9, the sensors are marked by a ring
of five milestones whose contact faces with the sensor are around the face which is opposite to the face
in contact with the scanned cell. Also, the face opposite to that which is shared with the scanned cell is
blue as it is in contact with a blue milestone. Similar figuresfor the right-hand side memory or flip-flop
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switches can be found in [11].

Table 3 Run of the simulation programme. A corresponding figure can be found in[11]. The active passage visits
the cells of the selected track: cells1 up to11 in this order.

active crossing of a left-hand side flip-flop switch :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

time 0 : W R B W W W W W W W W W W W W W B R B W W W

time 1 : W W R B W W W W W W W W W W W W B R B W W W

time 2 : W W W R B W W W W W W W W W W W B R B W W W

time 3 : W W W W R B W W W W W W W W W W B R B W W W

time 4 : W W W W W R B W W W W W W W W W B R B W W W

time 5 : W W W W W W R B W W W W W W W W W R B W W W

time 6 : W W W W W W W R B W W W W W W W W R R W W W

time 7 : W W W W W W W W R B W W W W W W R B B W W W

This difference is explained by the fact that the working of the sensors is very different from that of the
memory switch, quite the opposite: in the memory switch, theblue sensor is passive and the red sensor
blocks the access to the non-selected track in the active passage and turns to white when the front of the
locomotive appears in the scanned cell in a passive crossing. In the flip-flop switch, the red sensor only
blocks the access to the non-selected track and the blue sensor is active: when the front of the locomotive
leaves the scanned cell, it becomes white, triggering the flash of the lower controller at the next time
which, to its turn, makes the sensors exchange their colour.

This can be checked in Table 3 and similar tables of [11]. The front of the locomotive is in the scanned
cell at time 4, so that the blue sensor is white at time 5. As in the case of the memory switch, as cell 17
and 18 do not see each other, the blue sensor cannot turn to redimmediately. It becomes white which
triggers the flash of the controller at time 6 and the exchangeof colours between the sensors at time 7
only.

5 About the rules and the computer program
We have no room for the rules which are displayed in [11]. However, we have a preliminary work on
rotation invariance which is by itself interesting.

In order to write the rules of the cellular automaton, we shall use the numbering of the faces of a
dodecahedron which was mentioned in Section 2 and which was used in Sections 3 and 4. However, there
was no fixed rule to connect the numbering of a cell to that of a neighbouring one except for the cells
of the track, as we did in Subsection 3.2. This is not a big problem as, in fact, the rules which we shall
devise have an important property: they arerotation invariant , which means that they are not changed
by a motion which leaves the dodecahedron globally invariant and which preserves orientation.

In the plane, the characterization of rotation invariance in the rules is easy to formulate: it is necessary
and sufficient that the rules are not changed by a circular permutation on the neighbours. In the case of
the pentagrid, this means that once we fixed a rule, we automatically append to the table of rules the other
four permuted images of the rule. Here, the characterization is far less trivial. In [7], we could avoid this
problem by imposing a stronger condition on the rules, namely to bestrongly lexicographicallydifferent
from each other. This means that to each rule, we associate a word of the formAk11 ..A

n
n whereA1, ...,An
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are the states andk1 are non-negative numbers satisfyingk1 + ... + kn = v+1, wherev is the number of
neighbours of the cell, the cell being not counted. This was possible with 5 states and I could not keep
this condition for 3 states. This is why we first study how to check rotation invariance for our cellular
automaton in the hyperbolic3D space.

5.1 Rotation invariance

The question is the following: how does a motion which leavesthe dodecahedron globally invariant affect
the numbering of its faces, an initial numbering being fixed as in Section 2?
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Figure 10 The map of the positive motions leaving the dodecahedron globally invariant.

Table 4 The faces around a given face.

1 2 3 4 5

0 1 5 4 3 2
1 0 2 7 6 5
2 0 3 8 7 1
3 0 4 9 8 2
4 0 5 10 9 3
5 0 1 6 10 4
6 1 7 11 10 5
7 1 2 8 11 6
8 2 3 9 11 7
9 3 4 10 11 8
10 4 5 6 11 9
11 6 7 8 9 10
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In fact, it is enough to consider motions which preserves theorientation, we shall saypositivemotions.
As such a motion leaves the dodecahedron globally invariant, it transforms a face into another one. Ac-
cordingly, fix face 0. Then its image, sayf0, can be any face, face 0 included. Next, fix a second face
which shares an edge with face 0, for instance face 1. Then itsimage, sayf1, is a face which shares
an edge withf0. It can be any face sharing a face withf0. Indeed, letf2 be another face sharing an
edge withf1. Then, composing the considered positive motion with a rotation aroundf0 transforming
f1 into f2, we get a positive motion which transforms(0, 1) into (f0, f2). This proves that we get all
positive motions leaving the dodecahedron globally invariant, by first fixing the imagef0 of face 0 and
then by taking any facef1 sharing an edge withf0. Note that oncef0 andf1 are fixed, the images of
the other faces are fixed, thanks to the preservation of the orientation. Accordingly, there are 60 of these
positive motions and the argument of the proof shows that they are all products of rotations leaving the
dodecahedron globally invariant.

Figure 10 gives an illustrative classification of all these rotations. The upper left picture represents the
image of a Schlegel diagram of a dodecahedron with the notation introduced in Section 2. Each image
represents a positive motion characterized by the couple ofnumbers under the image: it has the formf0 f1,
wheref0 is the image of face 0 andf1 is the image of face 1. The figure represents two sub-tables, each
one containing 30 images. Each row represents the possible images off1, f0 being fixed. The image of
face 0 is the plane of projection of the dodecahedron. The image of face 1 takes the place of face 1 in
Figure 1. As an example,f0 = 0 for the first row of the left-hand side sub-table, and in the first row,
the first image givesf1 = 1, so that it represents the identity. The other images of the row represent the
rotations around face 0.

The construction of Figure 10 was performed by an algorithm using Table 4. For each face of the
dodecahedron, the table gives the faces which surround it inthe Schlegel diagram, taking the clockwise
order when looking at the face from outside the dodecahedron, this order coinciding with increasing
indices in each row. This coincides with the usual clockwiseorder for all faces as in Figure 1, except for
face 0 for which the order is counter-clockwise when lookingabove the plane of the projected image. The
principle of the drawings consists in placingf0 onto face 0 andf1 onto face 1. The new numbers of the
faces are computed by the algorithm as follows. Being given the new numbersf0 andf1 of two contiguous
facesϕ0 andϕ1 in the Schlegel diagram, the algorithm computes the position ofϕ1 as a neighbour ofϕ0

in the table. This allows to placef1 on the right face. Then, the algorithm computes the new numbers of
the faces which are aroundϕ1 in the table: it is enough to take the position ofϕ0 as a neighbour ofϕ1 and
then to turn around the neighbours off1, looking at the new numbers in the rowf1 of the table, starting
from the position off0. This gives the new numbers of the faces which surround face 1. It is easy to
see that we have all faces of the dodecahedron by turning around face 1, then around face 5, then around
face 7 and at last around face 8. As in these steps, each round of faces starts from a face whose new
number is already computed, the algorithm is able to computethe new numbers for the current round of
faces, using Table 4 to find the new numbers. Let us call this algorithm therotation algorithm .

Thanks to the rotation algorithm, it is easy to compute therotated forms of a rule of the cellular
automaton.

Let ηη0...η11η′ be a rule of the automaton. In this format,η is the current state of the cell andη(i) is
the state of the neighbour through facei, also called neighbouri, andη′ is the new state of the automaton.
Remember that the current state of a cell is its sate at timet and that its new state is its state at timet+1.
Call ηη0...η11 the context of the rule. Letµ be a positive motion leaving the dodecahedron globally
invariant. Therotated form of the rule defined byµ is ηηµ(0)...ηµ(11)η

′ and, similarly,ηηµ(0)...ηµ(11) is
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the rotated form by µ of the context of the initial rule. We say that the cellular automaton isrotation
invariant if and only two rules having contexts which are rotated formsof each other always produce the
same new state.

Now, thanks to our study, we have a syntactic criterion to check this property. We fix an order of the
states. Then, for each rule, we compute itsminimal form . This form is obtained as follows. We compute
all rotated forms of the rule and, looking at the obtained contexts as words, we take their minimum in the
lexicographic order. The minimal form of a rule is obtained by appending its new state to this minimum.
Now it is easy to see that:

Lemma 1 A cellular automaton on the dodecagrid is rotation invariant if and only if for any pair of rules,
if their minimal forms have the same context, they have the same new state too.

Now, checking this property can easily be performed thanks to the rotation algorithm.
We refer to [11] for the detailed study of the rules. The rulesgiven there have the property that the

minimal forms of their contexts are pairwise distinct.

5.2 About the computer program
As indicated in the introduction, I wrote a computer programin order to check the correctness of the rules.
The program was written inADA95 and it implements the algorithms mentioned in the paper.

Before giving a short account on the program itself, I would like to stress that using a simulation
program for this purpose is mandatory. The computations areso complex for a man, at least for me,
that the help of the computer allows me to check that the rulesare correct. What is meant by this latter
expression? We mean two things: a syntactical one and a semantic one. The syntactical correctness is
that there is no pair of rules with the same minimal context giving rise to different new states. This is
the minimal condition when working with deterministic cellular automata, which is of course the case
here. In this work, we reinforced the condition by checking that two rules with the same minimal context
always give rise to the same new state: this guarantees that the automaton is not only correct, but that it is
also rotation invariant.

Now, the semantic correctness means that the rules do what weexpect from them to do. This is far more
complex to check and this cannot be completely ascertained by proof. Again, the computer program is
useful in this regard. We can implement the simulation in theprogram and then run it. If everything goes
smoothly through, we can believe that the implementation iscorrect. There is no guarantee of that. There
is no automatic checking that the implementation is a correct hyperbolic implementation. There is also
no proof that the program itself is correct. However, the setting is rather involved and while adjusting the
program, many errors in my first table of rules were found by the program. As an example, the program
also indicated me the need to cover face 11 of cells 7 and 12 with a blue milestone: otherwise, the set of
rules would not be rotationally invariant.

About the program implementation itself.
First, I implemented the algorithms to compute the minimal form of a rule and, taking advantage of this

implementation, the programme computed the PostScript program for Figure 10. All traces given in the
tables of Section 4 were computed during the execution of theprogram by the program itself.

Each test of a crossing of the switch by the locomotive was performed within the same implementation
frame: the cells of the tracks were gathered in a table of tables. The big table has 22 entries corresponding
to the numbering of the cells explained in Section 4. For eachindex of the big table, a table of 14 entries
gives various information on the cell in its current state, and its neighbours. The neighbours correspond
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to faces and are numbered from 0 up to 11 as in the paper. For each face, it is indicated whether the
neighbour through the face has a permanent state or a variable one. As an example, a milestone seen
from a face of a cell of the track is permanently blue. When theneighbour has a variable state, the table
indicates the index of this neighbour in the big table. In fact, the big table is first a list of the variable cells
and, at this occasion, it collects a useful information about each cell. The program also computes a bigger
trace where at each time, the big table is dispatched in full detail. Table 5 gives two short pieces of this
trace, taken during an active passage of the locomotive, at time 1. We can see the information which was
just indicated,v meaning ’variable’ andf meaning ’fixed’. The other indications are self-explaining.

Table 5 Two pieces of the big trace of the program, corresponding to the simulation of an active passage of the
locomotive through a left-hand side memory switch, at initial time.6 -1 0 1 2 3 4 5 6 7 8 9 10 11W W W B W W B B B W W W Wv f v f v v f f f f f f f5 7 127 W B W B W W B B B W W W Bv v v f f v v f f f f f f17 6 8 208 W W W B W W B B B W W W Wv f v f f v f f f f f f f7 99 W W W B W W B B B W W W Wv f v f f v f f f f f f f8 1010 W W W B W W B B B W W W Wv f v f f v f f f f f f f9 1111 -1 0 1 2 3 4 5 6 7 8 9 10 11W W W B W W B B B W W W Wv f v f f f f f f f f f f1012 W R W B W W B B B W W W Bv v v v f v f f f f f f f18 6 20 1313 W W W B W W B B B W W W Wv f v f f v f f f f f f f12 14

17 B W W B W W W W W W R R Rf v f v f f f f f f f f f7 1918 R W W W W W B W W R R W Rf v f f f f v f f f f f f12 1919 B B W R B R R R R W W W Rf v f f v v f f f f f f f20 17 1820 B B W R W W R R R R W B Rf v f f v v f f f v f v f19 12 7 21 2221 -1 0 1 2 3 4 5 6 7 8 9 10 11R B W W W W W W W W R R Rv v f f f f f f f f f f f2022 B B W W W W W W W W R R Rv v f f f f f f f f f f f20
As the program performed a successful execution of all possible crossings and also along various ver-

tical and horizontal segments with some mix of them, we can conclude that the proof of theorem 1 is
complete.
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We discuss a very close relation between minimal recurrent configurations of Chip Firing Games and Directed Acyclic
Graphs and demonstrate the usefulness of this relation by giving a lower bound for the number of minimal recurrent
configurations of the Abelian Sandpile Model as well as a lower bound for the number of firings which are caused by
the addition of two recurrent configurations on particular graphs.

Keywords: Chip Firing Games, Sandpile Model, Minimal Recurrent Configurations, DAGs, Addition of Recurrent
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1 Introduction
The Abelian Sandpile Model was introduced by Bak, Tang and Wiesenfeld in 1987 [1] as a model to
explain 1

f noise. We assign each point of an × n grid a number of grains of sand, then taking points
which contain at least four grains of sand and let one grain topple to each of the four adjacent points; if a
point on the edge of the grid is chosen, grains fall out of the system.

This dynamic is closely related to Chip Firing Games, and Chung and Ellis proposed a variation of
Chip Firing Games in 2002 [3] such that the Abelian Sandpile Model can be seen as a special case of this
model.

Dhar found many nice properties of so-called recurrent configurations of the Abelian Sandpile Model
which are together with a natural operation⊕ an Abelian group, see [5]. These findings can be generalized
for Chung and Ellis’ Chip Firing Game, as shown in [3].

Recurrent configurations of the Abelian Sandpile Model or Chip Firing Games are characterized by
containing enough grains of sand/chips; in this paper we will look at configurations which contain as
few chips as possible for a recurrent configuration, and are able to prove a close relation to directed
acyclic graphs (DAGs). This relation somewhat resembles the bijection between the set of recurrent
configurations of the Sandpile Model and the set of spanning trees with roots at the border of the grid
which was shown in [8] and generalized for Chip Firing Games in [3].

These recurrent configurations which we will call minimal play a significant part when considering
minimization problems on the set of recurrent configurations, most naturally when minimizing the nuber
of firings that occur when relaxing the sum of two recurrent configurations as in [9].

1365–8050c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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First, we will introduce the basic concepts for Chip Firing Games, before examining the relation be-
tween minimal recurrent configurations and a subset of the DAGs on the graph underlying the Chip Firing
Game. We can use this to prove a lower bound for the number of minimal recurrent configurations of the
Abelian Sandpile Model.

Then we will define a dynamic on DAGs which corresponds to the dynamic of the Chip Firing Game.
Using this correspondence we will be able to give the infimum of the number of firings that occur when
we start the Chip Firing Game on a cylindrical grid with the sum of two recurrent configurations.

2 Preliminaries
2.1 Basic Definitions
An undirected graphU = (V ∪ S, E) is called aCFG-graphiff V andS are disjoint, each vertexs ∈ S
is adjacent to exactly one vertexv ∈ V and there exists a path from each vertexv ∈ V to a vertexs ∈ S.

A Chip Firing Game (CFG) on a CFG-graph defines a transition rule for configurationsc : V → N0

where we interpretc(v) as the number of chips the vertexv contains:
If a vertexv ∈ V contains at leastdeg(v) chips, wheredeg(v) is the degree ofv in the GraphU , the

vertexv is calledcritical and can fire,i.e. give one chip to each adjacent vertex and losedeg(v) chips.
Chips which are given to vertices inS simply vanish from the game. Figure 1 gives an example; black

vertices stand for vertices inS.

1 2

6 3

0

2 2

2 4

1

Fig. 1: The vertex in the upper left corner fires, and we get the configuration on the right.

If we start with a configurationc and get configurationc′ after vertexv ∈ V has fired, we write
c′ = φv(c). We can write

φv(c) = c− deg(v)ev +
∑

v′|{v,v′}∈E
ev′ ,

ev being the configuration given through∀u ∈ V : ev(u) = δv(u).
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A configuration which contains a vertex which is able to fire iscalledcritical; a configuration which is
not critical is calledstable, and the set of stable configurations is denotedCU .

2.2 Relaxations of Configurations

It has been shown (for example in [3]) that we reach a stable configuration after a finite number of firings,
no matter which critical configuration we start from. We callthe process of these firings therelaxation of
c.

Fork ∈ N0 listing the vertices which fired during the firstk steps of the relaxation ofc is called afiring
sequenceof c of lengthk.

It is also shown in [3] and [5] that the stable configuration reached does not depend on the sequence of
firings - there exists a unique stable configurationcrel we reach when starting with configurationc, and
even the number of times a given vertexv fires during the relaxation is unique. The vectorfc assigning
each vertex the number of times it fires during the relaxationof c is called thefiring vectorof c.

Throughout this paper, when comparing different firing vectors or different configurations, we will use
the relation≤ defined throughc ≤ d ⇐⇒ ∀v ∈ V : c(v) ≤ d(v).

2.3 The Operation ⊕ and Recurrent Configurations

Definition 1 We define the operation⊕ onCU through

∀c, d ∈ CU : c⊕ d = (c+ d)rel. (1)

(The operation+ is the usual pointwise addition of functions.)

It is shown in [3] that⊕ is commutative and associative, and also that there exists asubset of stable
configurationsRU such that(RU ,⊕) is an Abelian group. These configurations are calledrecurrent
configurations.

The structure of the Abelian group(RU ,⊕), called theSandpile Groupof the graphU , has been the
object of research forU being a complete graph or ann-wheel in [4] orU being a tree in [7]. Furthermore
the geometrical structure of the neutral element of said group has been discussed in [2].

Definition 2 We defineb ∈ CU as the configuration which assigns to each vertexv the number of vertices
in S which are adjacent tov. The configurationb is called theburning configuration ofU .

A generalization of Dhar’s Burning Algorithm from [8] givesus the following equivalence:
∀c ∈ CU : c ∈ RU ⇐⇒ there exists a firing sequence forc + b which contains each vertex exactly

once.
(Note that for allc ∈ CU the firing sequence ofc+ b contains each vertex at most once.)
For the rest of this paper, we will say that a sequenceF of vertices is a firing sequence for a recurrent

configurationc if F is a firing sequence forc+ b of length|V |.
We are now able to proceed to the actual subject matter of thispaper, the set of minimal recurrent

configurations.
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3 Minimal Recurrent Configurations and Firing Graphs
Definition 3 A recurrent configurationc ∈ RU is called minimal recurrentif for all verticesv ∈ V
satisfyingc(v) > 0 the configurationc− ev is not recurrent.

The set of all minimal recurrent configurations onU shall be denotedRUmin.
In other wordsRUmin is the set of minimal elements inRU with regard to the partial order≤ as defined

above.

These minimal recurrent configurations occur naturally when one tries to lower the number of firings
that happen during the relaxation of the sum of two recurrentconfigurations: The functionf : NV0 →
mathbbNV

0 , c 7→ fc is monotonously increasing with regards to≤; this means thatfc+d ≤ fc′+d′ if
c ≤ c′ andd ≤ d′ is true, and we get minimal results for some minimal recurrent configurationsc, d.

To get a better understanding of minimal recurrent configurations, we usefiring graphs, a concept also
used by Gajardo and Goles in [6]:

Definition 4 Let c ∈ RU be a recurrent configuration andF = (v0, . . . , v|V |−1) a firing sequence forc.
We define thefiring graphGF = (V ∪ S,E′) by choosing

E′ = {(vi, vj) | {vi, vj} ∈ E ∧ i < j} ∪ {(s, u) | s ∈ S ∧ {s, u} ∈ E} (2)

We also say thatGF is a firing graph forc.

Example: The configuration given in Figure 2 has the firing sequencesF = (0, 1, 2, 3, 4) andF ′ =
(1, 0, 2, 3, 4). The resulting firing graphsGF andGF ′ are shown in Figure 3.

A B

D E

C

3 3

1 0

2

Fig. 2: A CFG-GraphU and a recurrent configuration onU ; the black vertices are the vertices inS.

Note thatF is always a topological ordering ofGF restricted toV , which implies thatGF is always a
directed acyclic graph. Note also that for each edge{u, v} ∈ E either(u, v) or (v, u) is an edge inG; we
will call such acyclic graphsDAGs onU andS-DAGs onU if S is the set of sources ofG.

The set of allS-DAGs onU shall be denotedDUS .
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Fig. 3: The firing graphs for the firing sequences(A,B,C,D,E) (left) and(B,A,C,D,E) (right).

Definition 5 As we will be discussing indegrees and outdegrees of vertices in different graphs, we define
for a directed graphG = (V ∪ S, E′) the functions

indegG :V ∪ S → N0, v 7→ |{u ∈ V ∪ S | (u, v) ∈ E′}| (3)

outdegG :V ∪ S → N0, v 7→ |{u ∈ V ∪ S | (v, u) ∈ E′}|. (4)

Note that for allv ∈ V and all DAGsG onU the equationindegG(v) + outdegG(v) = deg(v) is true.

Lemma 1 Let c ∈ RU be a recurrent configuration andG be anS-DAG onU .
ThenG is a firing graph ofc iff for all verticesv ∈ V the statementoutdegG(v) ≤ c(v) is true.

Proof: If G is a firing graph ofc there exists a firing sequenceF of c such thatG = GF is true.
It follows that the number of chips fallen to a vertexv before it fires is the number of neighbors firing

before it in the firing sequenceF plus the numbers of neighborsv has inS. These are exactly the vertices
from which an edge goes tov in G.

As v has enough chips to fire after the chips of the neighbors mentioned above have fired, it follows
c(v) + indegG(v) ≥ deg(v), which leads toc(v) ≥ outdegG(v), which proves one direction.

For the other direction, assume that∀v ∈ V : c(v) ≥ outdegG(v) is true. LetF = (v0, . . . , v|V |−1) be
a topological ordering ofG restricted toV .

We show thatF is a firing sequence forc+ b:
We define for0 ≤ i ≤ |V | the configurationci : V → Z as

c0 = c+ b, ∀i ∈ {0, . . . , |V | − 1} : ci+1 = φvi
(ci) (5)

In other words,ci is the configuration we get after the firsti vertices of the sequence have fired.
To show thatF is indeed a firing sequence, we have to prove that for alli the inequationci(vi) ≥

deg(vi) is true.
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The number of chipsvi contains inci is the sum of the number of chipsvi contained inc, the number
of neighborsvi has inS and the number of neighbors which fired beforevi in F ; in other words

ci(vi) = c(vi) + indegG(vi) ≥ outdegG(vi) + indegG(vi) = deg(vi) (6)

This completes the proof.
2

Note that we didn’t use the fact thatc has to be a recurrent configuration for the second part of the
proof; indeed, we have shown we can find a firing sequence forc+ b comprising all vertices ofV exactly
once if∀v ∈ V : c(v) ≥ outdegG(v) is true.

This means that all configurationsc ∈ C satisfying∀v ∈ V : c(v) ≥ outdegG(v) are recurrent, a fact
we state in the following lemma:

Lemma 2 LetG be anS-DAG onU andc ∈ CU a configuration satisfying∀v ∈ V : c(v) ≥ outdegG(v).
Thenc is a recurrent configuration andG is a firing graph ofc.

As the sources ofG are exactly the vertices inS this means that for allv ∈ V the inequation
outdegG(v) ≤ deg(v)− 1 holds. Therefore such a configurationc always exists inC.

We also can use the firing graphs to prove a lower bound for the number of chips a recurrent configura-
tion contains:

Corollary 1 We defineEV ⊆ E as the set of all edges inU incident to two vertices inV .
Then the following inequation holds:

∀c ∈ RU :
∑

v∈V
c(v) ≥ |EV | (7)

Proof: Let c ∈ RU be a recurrent configuration andG = (V ∪ S, E′) be a firing graph ofc. Using
Lemma 2, we get

∀c ∈ RU :
∑

v∈V
c(v) ≥

∑

v∈V
outdegG(v) (8)

Thereforec contains at least as many chips as there are edges inG starting from a vertexv ∈ V . As
each edge{u, v} ∈ EV satisfies(u, v) ∈ E′ ∨ (v, u) ∈ E′ and no edge inG goes from a vertexv ∈ V to
a vertexs ∈ S, we get

∑
v∈V outdegG(v) = |EV | which proves the claim.

2

We know that in a recurrent configurationcwith firing graphG each vertex contains at leastoutdegG(v)
chips. Looking at configurations where each vertexv contains exactlyoutdegG(v) chips leads us to the
following theorem:

Theorem 1 A configurationc ∈ CU is minimal recurrent iff there is anS-DAGG such that∀v ∈ V :
c(v) = outdegG(v) is true.
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Proof: If an S-DAGG exists such that∀v ∈ V : c(v) = outdegG(v) is true, Lemma 2 tells us thatc is a
recurrent configuration andG is a firing graph ofc.

Looking at the proof of Corollary 1 we also get
∑
v∈V c(v) =

∑
v∈V outdegG(v) = |EV |, which is

the smallest number of chips a recurrent configuration onU can contain.
For all verticesv ∈ V the configurationc − ev contains fewer than|EV | chips, so none of these

configurations can be recurrent.
Thereforec is a minimal recurrent configuration.
Now, let c be a minimal recurrent configuration andG a firing graph ofc. We know that∀v ∈ V :

c(v) ≥ outdegG(v) is true.
We definec′ ∈ RU as the configuration satisfying∀v ∈ V : c′(v) = outdegG(v).
We getc ≥ c′; asc is a minimal recurrent configuration,c′ must be the same configuration asc, which

completes the proof.
2

As we found that theS-DAG G claimed to exist for minimal recurrent configurationC in Theorem 1
is a firing graph ofc, we get the following corollary:

Corollary 2 If c is a minimal recurrent configuration andG is a firing graph ofc, ∀v ∈ V : c(v) =
outdegG(v) is true.

We have shown that there exists a relation betweenS-DAGs onU and minimal recurrent configurations
onU . We now show that we can even find a bijection between the set ofminimal recurrent configurations
onU and the set ofS-DAGs onU .

To do so, we have to show that no minimal recurrent configuration has more than one firing graph,
which is shown in the following theorem:

Theorem 2 A minimal recurrent configuration has only one firing graph.

Proof: Suppose the minimal recurrent configurationc has two different firing graphsG1 = (V ∪ S, E1)
andG2 = (V ∪ S,E2).

Then we get∀v ∈ V : outdegG1
(v) = c(v) = outdegG2

(v) according to Corollary 2.
Consider the setC = {(u, v) ∈ E1 | (v, u) ∈ E2} of edges which are inG1 but not inG2 and the set

VC = {v ∈ V | ∃u ∈ V : (u, v) ∈ C ∨ (v, u) ∈ C} of vertices incident to edges inC.
Then the graphGC = (VC , C) is a subgraph ofG1 and as such a DAG, which means it that it contains

a sinku with outdegree zero and a vertexv such that(v, u) ∈ C.
As u is a sink inGC , each vertexu′ satisfying(u, u′) ∈ E1 also satisfies(u, u′) ∈ E2, as the edge

(u, u′) would otherwise be contained inC.
We also know that(u, v) ∈ E2, as(v, u) ∈ C. Therefore the outdegree ofu in G2 is at least one higher

than the outdegree ofu in G1, which is a contradiction.
Thereforec can have no two different firing graphs.

2

Theorem 2 shows that we can easily assign anS-DAG G to each minimal recurrent configurationc by
choosingG as the unique firing graph ofc. We now show that this function is a bijection, which we will
afterwards use to prove a lower bound on the number of minimalrecurrent configurations if the underlying
graphU is a grid.
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Definition 6 We defineτ : RUmin → DUS as the function which is defined through

∀c ∈ RUmin : τ(c) is the firing graph ofc.

We also define the functionρ : DUS →RUmin through

∀G ∈ DUS : ∀v ∈ V : (ρ(G))(v) = outdegG(v)

Corollary 3 The functionsτ andρ are inverse functions and therefore bijections.

Proof:
Let c ∈ RUmin be a minimal recurrent configuration. We know∀v ∈ V : c(v) = outdeg(τ(c))(v) =

(ρ(τ(c)))(v) according to Corollary 2, which means thatρ ◦ τ is the identity onRUmin.
LetG ∈ DUS be anS-DAG ofU . The configurationρ(G) is a minimal recurrent configuration according

to Lemma 1. AsG is a firing graph ofρ(G) according to Lemma 1 andρ(G) has only one firing graph
according to Theorem 2, it follows thatτ(ρ(G)) = G, and thereforeτ ◦ ρ is the identity onDUS .

Thereforeρ = τ−1, which means thatτ andρ are bijections.
2

We will use this bijection to prove a lower bound for the number of minimal recurrent configurations
of the Abelian Sandpile Model:

Lemma 3 Letn,m ∈ N+ be two positive numbers andU = (V ∪ S,E) ann×m grid with the vertices
of S connected to the vertices of the borders of the grid, such that each vertex in the corner of the grid is
adjacent to two vertices inS and all other vertices on the borders are adjacent to exactlyone vertex inS.

Then|RUmin| ≥ n · 2n(m−1) +m · 2m(n−1) − n ·m.
This means that the number of minimal recurrent configurations grows exponentially with both the

height of the grid as well as the width of the grid.

Proof: As there are exactly as many minimal recurrent configurations onU as there areS-DAGs onU ,
we will count a subset ofS-DAGs onU to get our lower bound. We will refer to verticesv ∈ V via their
coordinates in the grid, starting with(0, 0) ∈ V to (n− 1,m− 1) ∈ V .

Fork ∈ {0, . . . , n− 1} we call a directed graphG = (V ∪ S,E′) k-dividedif

∀(i, j) ∈ V :i < k ∧ i+ 1 < n⇒ ((i, j), (i+ 1, j)) ∈ E′, (9)

i ≥ k ∧ i+ 1 < n⇒ ((i+ 1, j), (i, j)) ∈ E′ (10)

and∀s ∈ S : outdegG(s) = 1.
See Figure 4 for an example.
It is easy to see that ak-divided directed graph is always a DAG whose sources areS, i.e eachk-divided

graphG is inDUn,m

S :
If G contained a cycle and we started going round the circle with the edge((i, j), (i+ 1, j)) we would

eventually need to get back from a vertex with first componenti + 1 to a vertex with first componenti,
i.e.G would also need to contain an edge((i+ 1, k), (i, k)) which contradicts our definition.
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Fig. 4: A 1-divided3×4 grid. No matter how the directions of the vertical edges between verticesv ∈ V are chosen,
the resulting graph is a DAG with sources inS.

This means that for each edge{(i, j), (i, j+1)} ∈ E we can choose whether to include((i, j), (i, j+1))
or ((i, j + 1), (i, j)) in E′, which gives us2nm−1 possibilities to choose ak-divided graph for a givenk.

As we haven different possibilities fork, this makesn2n(m−1) differentS-DAGs onUn,m.
Defining analogouslyl-split directed graphs forl ∈ {0, . . . ,m − 1} gives usm2m(n−1) differentS-

DAGs.
The only graphs counted twice are graphs which arek-divided as well asl-split for some numbersk

andl; these arenm different graphs, and we getn2n(m−1)+m2m(n−1)−nm differentS-DAGs onUn,m.
2

Apart from counting minimal recurrent configurations, we can use the relation between DAGs onU
and minimal recurrent configurations to find recurrent configurations such that the relaxation of the sum
of these configurations takes as few firings as possible.

To do so, we first take a look at DAGs with a set of sources different fromS and define a DAG Game
on these graphs which corresponds directly with the processof vertices firing in the Chips Firing Game
on the same underlying graph..

4 The DAG Game
The DAG Game is played with directed acyclic graphs on a CFG-graphU = (V ∪S,E). The simple rule
is as follows:

We start with a DAGG1 = (V ∪ S,E1) onU . In the next step, we take a sourcev of G1 which does
not lie inS (if such a source exists) and turn it into a sink by switching the directions of all edges incident
to v.

In other words the resulting graphG2 = (V ∪ S,E2) is defined by

∀u, u′ ∈ V : (u, u′) ∈ E2 ⇐⇒ ((u, u′) ∈ E1 ∧ u 6= v 6= u′) ∨ ((u′, u) ∈ E1 ∧ u′ = v) (11)

See Figure 5 for an example.
If G2 contained a cycleC this cycle could not contain the sinkv; since no edges which are not incident

to v have been changedC would also be a cycle inG1 which contradictsG1 being a DAG. ThereforeG2

is a DAG, too.
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v v

Fig. 5: The central vertexv gets turned into a sink as a step in the DAG Game. The outdegreeof all adjacent vertices
increases by one.

Let us look at the configurationscG1 andcG2 , again defined by

∀v ∈ V : cGi
= outdegGi

(v). (12)

The only vertices for whichcG2(v) 6= cG1(v) is true arev and the vertices adjacent tov.
In fact, cG1(v) = deg(v) andcG2(v) = 0, while for each neighborv′ of v the equationcG2(v

′) =
cG1 + 1 is true.

This means that we getcG2 by firing the vertexv in cG1 .
We use the fact that we can consider the relaxation of a configuration corresponding to a DAGG

with sources outsideS as repeating steps of the DAG Game starting withG to show that configurations
corresponding to two families of DAGs onU relax to minimal recurrent configurations.

Definition 7 A DAGG onU whose set of sinks includesS is called aSup-S-DAG, denotedG ∈ DUS+.
A DAGG onU whose set of sinks includes no vertex inS is called aNot-S-DAG, denotedG ∈ DUS−.

We now show that configurations corresponding to Sup-S-DAGs or Not-S-DAGs always relax to min-
imal recurrent configurations.

Lemma 4 LetG be a Sup-S-DAG onU .
ThencG relaxes to a minimal recurrent configuration.

Proof: Consider a sequence(cG = c0, c1, . . . , ck = (cG)rel) such that for0 ≤ i ≤ k − 1 we get
ci+1 = φvi

(ci) for some vertexvi ∈ V .
We show by induction that for eachi ∈ {0, . . . k} there exists a Sup-S-DAGGi onU such thatci = cGi

is true, which is obviously the case fori = 0.
If there exists a Sup-S-DAGGi such thatci = cGi

and there exists a vertexvi with φvi
(ci) = ci+1 this

means thatoutdegGi
(vi) ≥ deg(vi).

SinceoutdegGi
≤ deg(vi) this meansoutdegGi

(vi) = deg(vi) andvi is a source ofGi. Turningvi
into a sink as described above then gives usGi+1 such thatcGi+1 = ci+1. All vertices inS still are
sources inGi+1.

The last DAGGk has no sources outsideS ascGk
is stable. This meansGk is anS-DAG andck =

(cG)rel ∈ RUmin.
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2

Lemma 5 LetG = (V ∪ S, E′) be a Not-S-DAG onU .
ThencG relaxes to a minimal recurrent configuration.

Proof: First, we show that each vertexv ∈ V fires at least once during the relaxation ofcG:
We define the functionp : V → N0 such that for allv ∈ V p(v) is the length of the longest path from

a sourcev′ of G to v, formally:

v 7→ max{k ∈ N0 | ∃v′ ∈ V : v′ is a source inG and there exists a path fromv′ to v in G of lengthk}.

Instead of looking at the CFG dynamics for the configuration,we consider the corresponding DAG
Game dynamics forG.

Assume that there exists a vertexv ∈ V which does not turn into a sink during the relaxation ofcG and
let v be a vertex with this property for whichp(v) is minimal.

Since for allv′ ∈ V satisfying(v′, v) ∈ E′ the valuep(v′) is less thanp(v) (asp(v) = max{p(v′) |
(v′, v) ∈ E′}+ 1) this means all these verticesv′ get turned into sinks during the DAG Game.

This implies that each edge(v′, v) gets turned into the edge(v, v′).
No vertexu′ with (v, u′) ∈ E′ can become a source as the edge(v, u′) never gets turned to(u′, v)

whenv cannot turn into a sink.
This means that after all verticesv′ with (v′, v) have been turned into sinks, there is an edge fromv to

each adjacent vertexu.
This meansv is a source and can fire in the corresponding configuration, contradicting our assumption.
After each vertexv ∈ V with an adjacent vertexs ∈ S has been turned into a sink, all verticess ∈ S

have become sources, and we get a Sup-S-DAG G′ whose corresponding configurationcG′ relaxes to a
minimal recurrent configuration as shown in Lemma 4.

2

The nice thing about these lemmas is the fact that one gets a Sup-S-DAG if one switches the direction of
each edge in a Not-S-DAG and vice versa, while the result of the relaxation always is a minimal recurrent
configuration.

These property is quite helpful when considering the minimization of the number of firings during the
addition of two recurrent configurations, as will be shown inthe following section.

5 Minimizing and Maximizing Firing Vectors
In this section we will look at how often a vertexv ∈ V can fire during the relaxation of a configuration
cG with G being a DAG onU .

We will use the result to consider the question of how many firings there will be at least when relaxing
the sum of two recurrent configurations, a problem discussedby the author in [9] where we were able only
to give a heuristic algorithm producing recurrent configurations whose sum causes “few” firings during
the relaxation.

We can use Lemma 5 to prove a nice and, as we will see later, veryhelpful property of the configurations
d′U , dU ∈ RU defined as follows:
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Definition 8 For a CFG-graphU = (V ∪ S, E) we define the configurationd′U : V → N0, v 7→ deg(v)
and the configurationdU ∈ RU throughdU = (d′U )rel.

As we will now deal with firing vectors, the following lemma will prove useful:

Lemma 6 Let c, d : V → N0 be configurations, not necessarily stable.
Thenfc+d = fc+drel

+ fd.

Proof: Any firing sequenceF for d is also a firing sequence forc+ d, as can be easily verified.
After F we have gotten fromc + d to c+ drel, so we get a firing sequence forc+ d by concatenating

F and a firing sequenceF ′ for c+ drel, which means thatfc+d = fc+drel
+ drel is true.

2

The configurationdU has a nice property concerning minimal recurrent configurations, as it is very
easy to find two minimal recurrent configurationsc andd whose relaxed sum isdU ; also, we can find a
close relation between the firing vector ofc+ d and the firing vector of the configurationd′U − c, and that
in fact the firing vector ofc+ d gets minimal when the firing vector ofd′U − c gets maximal.

Lemma 7 LetG = (V ∪ S,E′) ∈ DUS be anS-DAG. Then there exists a Not-S-DAGG′ ∈ DUS− such
thatcG + cG′ = d′U .

Proof: We getG′ = (V ∪ S,E′′) by replacing each edge(u, v) ∈ E′ through the edge(v, u), formally
E′′ = {(u, v) | (v, u) ∈ E′}.

For all v ∈ V each vertexu adjacent tov either satisfies(v, u) ∈ E′ or (v, u) ∈ E′′, meaning that
outdegG(v) + outdegG′(v) = deg(v).

Since all verticess ∈ S are sources inG, they are sinks inG′, which completes the proof.
2

Theorem 3 Let c ∈ RUmin be a minimal recurrent configuration andc′ ∈ RUmin be the recurrent config-
uration satisfyingc⊕ c′ = dU .

Then the following is true:

(i) c′ = (d′U − c)rel
(ii) c′ is a minimal recurrent configuration.

(iii) fc+c′ = fd′
U
− fd′

U
−c

Proof:

(i) Let G be the firing graph forc; thenG ∈ DUS .

We turn the direction of each edge ofG to get the graphG′ as in Lemma 7, and getcG + cG′ =
d′U ⇒ cG′ = d′U − cG = d′U − c.
SinceG′ ∈ DUS− we get(d′U − c)rel ∈ RUmin from Lemma 5.

ThereforedU = (c+ (d′U − c))rel = (c+ (d′U − c)rel) = c⊕ (d′U − c)rel.
As c′ is unique, we getc′ = (d′U − c)rel.
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(ii) This was shown in the proof to item (i).

(iii) This follows directly from item (i) and Lemma 6.

2

We can use Theorem 3 to find minimal recurrent configurations whose sum causes as few as possible
firings and relaxes todU : All we have to do is maximize the number of firings during the relaxation of
d′U − c, which we will do presently.

To minimize the number of firings during the relaxation of thesum of two recurrent configurations one
must analyze the pairs of recurrent configurations whose relaxed sum is the configurationmU defined by
∀v ∈ V : mU (v) = deg(v) − 1. This means that we can find the minimal number of firings during the
relaxation of the addition of two recurrent configurations if dU = mU is true for the graphU . We will
give a natural example.

Lemma 8 For each vertexv ∈ V and each vertexs ∈ S let p(v, s) be the length of the shortest path from
v to s andπ(v) = min{p(v, s) | s ∈ S} be the length of the shortest path fromv to a vertex inS.

LetG be a DAG onU andcG be the corresponding configuration.
Then each vertexv fires at mostπ(v) times during the relaxation ofcG.

Proof: Assume there is a vertexv ∈ V which fires more thanπ(v) times during the relaxaton ofcG; let v
be a vertex with this property such thatπ(v) is minimal.

Let v′ ∈ V ∪ S be a vertex adjacent tov with π(v′) = π(v) − 1; such a vertex exists on the shortest
path fromv to a vertex inS.

We consider the DAG Game corresponding to the relaxation ofcG and discuss the edge betweenv and
v′.

As π(v′) < π(v) it follows thatv′ fires at mostπ(v′) = π(v) − 1 times; this means that we have at
mostπ(v) − 1 changes from the edge(v′, v) to (v, v′) during the DAG Game.

We also know thatv fires at leastπ(v) + 1 times; this means that the edge(v, v′) changes at least
π(v) + 1 times to(v′, v) during the DAG Game.

This means that(v, v′) changes at least two times more often to(v′, v) than vice versa. This is impos-
sible, which proves the claim.

2

Lemma 9 For eachv ∈ V π(v) ∈ N0 shall be defined as in Lemma 8.
We define a sequence(v0, . . . , v|V ∪S|−1) of all vertices inV ∪S such that∀i, j ∈ {0, . . . , |V ∪S|−1} :

i < j ⇒ π(vi) > π(vj).
The DAGG = (V ∪S,E′) defined by(vi, vj) ∈ E′ ⇐⇒ {vi, vj} ∈ E ∧ i < j satisfies the following:
Each vertexv ∈ V fires exactlyπ(v) times during the relaxation ofcG.

Proof: Assume the claim is false. Letk be the smallest number such that there exists a vertexv ∈ V
satisfyingπ(v) > k andv fires exactlyk times during the relaxation ofcG.

Let i be the smallest number such thatπ(vi) > k andvi fires exactlyk times during the relaxation of
cG.

If (vi, vj) ∈ E′ we know thatπ(vj) ≥ k andvj fires at leastk times during the relaxation ofcG since
k is minimal.
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We also know all verticesvj with j < i fire at leastk+ 1 times sinceπ(vj) ≥ π(vi) > k in these cases
andi is minimal.

After all verticesvj with (vj , vi) ∈ E′ have firedk+1 times and all verticesvj with (vi, vj) ∈ E′ have
firedk times andvi has firedk times,vi has lostk · deg(vi) chips and gained(k + 1) · indegG(vi) + k ·
outdegG(vi) = k · deg(vi) + indegG(vi) chips.

Thereforevi contains at this momentcG(vi)+ indegG(vi) = deg(vi) chips and can fire ak+1st time,
which contradicts the definitions fork andvi.

This proves the claim.
2

Note that we can get a Not-S-DAG G as described in Lemma 9 by turning the directions of all edges
of the firing graphG′ given by the firing sequence(v|V |−1, v|V |−2, . . . , v0) which starts with vertices
adjacent to vertices inS.

We now use these DAGs to minimize the number of firings during the relaxation of two recurrent
configurations.

Theorem 4 LetmU ∈ RU be the configuration defined by∀v ∈ V : mU (v) = deg(v)− 1.
Let c, c′ ∈ RU be two recurrent configurations. The DAGsG andG′ are defined as above.

(i) Let c′′ ∈ RUmin be a minimal recurrent configuration satisfyingc′′ ≤ c′.
Thenfc′′+c′ ≤ fc+c′.

(ii) We definee = mU − (c⊕ c′). Thenc⊕ (c′ ⊕ e) = m andfc+(c′⊕e) ≤ fc+c′ .

(iii) If dU = mU thenf(cG)rel+cG′ ≤ fc+c′ is true.

Proof:

(i) This follows directly from the fact that each firing sequence forc′′ + c′ is a firing sequence forc+ c′

which possibly can be continued.

(ii) fc+(c′⊕e) + fc′+e = fc+c′+e = fc+c′ + f(c⊕c′)+e = fc+c′ according to Lemma 6. (f(c+c′)+e = 0
since (c⊕ c′) + e = m is stable.)

This proves the claim.

(iii) Items (i) and (ii) show that there exist minimal recurrent configurationsc1, c2 ∈ RUmin such that
c1 ⊕ c2 = dU andfc1+c2 ≤ fc+c′ is true.

We knowfc1+c2 = fd′
U
− fd′

U
−c1 from Lemma 3.

We also know there exists a DAGG′′ such thatd′U − c1 = cG′′ is true and that each vertexv ∈ V
fires at mostπ(v) times during the relaxation ofcG′′ .

ThereforefcG′′ ≤ fcG
andf(cG)rel+cG′ = fd′

U
− fc′

G
≤ fd′

U
− fcG′′ = fc1+c2 follows.

2

While there is no algorithm known which produces recurrent configurations such that the sum of these
configurations produces a minimal number of firings during the relaxation for the usual Abelian Sandpile
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Model, the relation between minimal recurrent configurations andS-DAGs has given us an easy way to
find such configurations when the graph has a special property.

A nice example for a graphU satisfyingdU = mU is a cylindrical grid of even height with the vertices
of S being above the uppermost and below the lowermost columns ofthe grid.

If the grid induced byV is an×m cylindrical grid andm is even, we can compute that the relaxation
of two recurrent configurations leads to at leastnm(m

2

12 − 1
3 ) firings.

6 Results
We have shown that there exists a close relation between DAGsonU and minimal recurrent configurations
(minimal with respect to the pointwise≤) of the CFG played onU , which we used to get a lower bound
for the number of minimal recurrent configurations of the sandpile model. Of course, this lower bound
could still be improved.

We also found out that graphs corresponding to DAGsG such that either all vertices inS or no vertices
in S are sources ofG relax to minimal recurrent configurations, which made it easy to show that for each
minimal recurrent configurationc the recurrent configurationc′ such thatc⊕c′ = dU is minimal recurrent
itself.

We could also give a formula for the firing vectorfc+c′ and find the DAGG such that forc = cG
the firing vectorfc+c′ becomes minimal. This result was used to give the minimal number of firings that
occur when the sum of two recurrent configurations on a cylindrical grid gets relaxed.

These results show that the correspondence between minimalrecurrent configurations and DAGs is
quite helpful for analyzing recurrent configurations of Chip Firing Games. Future work could try to use
this correspondence to find pairs of minimal recurrent configurations whose sum leads to as few firings as
possible for underlying graphs not satisfying the condition given in Theorem 4.

Also looking at configurationscG whereG is a directed but not acyclic graph might give new insights
into the structure of recurrent configurations and configurations “nearly” being recurrent.
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We study how hard is to determine some fundamental properties of dynamics of certain types of network automata.
We address the computational complexity of determining howmany different possible dynamic evolutions can arise
from some structurally very simple, deterministic and sparsely connected network automata. In this as well as our
prior, related work, we try to push the limits on the underlying simplicity of two structural aspects of such network
automata: (i) the uniform sparseness of their topologies, and (ii) severely restricted local behaviors of the individual
agents (that is, the local update rules of the network nodes).

In this endeavor, we prove that counting the Fixed Point (FP)configurations and the predecessor and ancestor con-
figurations in two classes of network automata, called Sequential and Synchronous Dynamical Systems (SDSs and
SyDSs, respectively), are computationally intractable problems. Moreover, this intractability is shown to hold when
each node in such a network is required to update according to(i) a monotone Boolean function, (ii) a symmetric
Boolean function, or even (iii) a simple threshold functionthat is both monotone and symmetric. Furthermore, the
hardness of the exact enumeration of FPs and other types of configurations of interest remains to hold even in some
severely restricted cases with respect to both the network topology and the diversity (or lack thereof) of individual
node’s local update rules. Namely, we show that the countingproblems of interest remain hard even when the nodes
of an SDS or SyDS use at most two different update rules from a given restricted class, and, additionally, when the
network topologies are constrained so that each node has only c = O(1) neighbors for small values of constantc.

Our results also have considerable implications for other discrete dynamical system models studied in applied math-
ematics, physics, biology and computer science, such as Hopfield networks and spin glasses. In particular, one
corollary of our results is that determining the memory capacity of sparse discrete Hopfield networks (viewed as
associative memories) remains computationally intractable even when the interconnection and dependence structure
among the nodes of a Hopfield network is severely restricted.

Keywords: network and graph automata, cellular automata, Hopfield networks, discrete dynamical systems, compu-
tational complexity, enumeration problems,#P-completeness

1 Introduction
We study certain classes ofnetwork automatathat can be used as an abstraction of the large-scale multi-
agent systems made of simple reactive agents, of ad hoc communication networks, and, more generally,
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of dynamical systems whose complex dynamics stems from coupling of and interaction among their rela-
tively simple individual components. These network or graph automata can also be viewed as a theoretical
model for the computer simulation of a broad variety of computational, physical, biological and socio-
technical distributed infrastructures. We are interestedin the computational complexity of determining
several fundamentalconfiguration space propertiesof such network automata. The complexity of an-
swering questions about, for instance, the existence [9], the number [67, 69] or the reachability [8] of
fixed points(that is, the stable configurations) of an appropriate classof network automata can be argued
to provide important insights into thecollective dynamicsof multi-agent systems found in distributed ar-
tificial intelligence [69], as well as other complex physical, biological, and socio-technical networks that
are abstracted via those formal network automata.

In this paper, as well as in related prior work (see, e.g., [6,7, 10, 11, 9, 66, 61, 62, 69]), the general
approach has been to investigate mathematical and computational configuration space properties of such
network automata, as a formal way of addressing the fundamental question: what are the possibleglobal
behaviorsof the entire system, given the simple local behaviors of itscomponents, and the interaction
pattern among those components?

Our own focus in the context of dynamic behaviors of complex network and graph automata has been on
determininghow many possible dynamics, and in particular how many of certain types of configurations,
can such discrete dynamical systems have – andhow hardare the computational problems of determining
the exact or approximate number of those various types of configurations [60, 61, 62, 63, 64, 69, 67].
We have been particularly interested in addressing the problem of counting how manyfixed point(FP)
configurations such network automata have, and how hard is the computational problem of counting those
FP configurations. In this paper, we show computational intractability of determining the exact number
of the fixed point configurations of sparseSequential and Synchronous Dynamical Systems, as well as
discrete Hopfield networks, whose node update rules are rather severely restricted. Moreover, we show
that intractability of the exact enumeration of fixed pointsholds even when the maximum node degree in
the underlying graph is bounded by a small constant. We also show similar intractability results for the
problems of exact enumeration of all predecessors and all ancestors of a given SDS, SyDS or Hopfield
network configuration. It follows from those results that, for the networked dynamical systems that can
be abstracted via a class of formal network automata, a complex and generally unpredictable global dy-
namics can be obtained even via uniformly sparse couplings of simple, monotonic local interactions. The
implication for Hopfield networks is that determining theirmemory capacity (when viewed as a model
of associative memory) is computationally intractable, even when the structure of the underlying weight
matrices of discrete, binary-valued Hopfield network is of avery particular and restricted kind.

2 Preliminaries
In this section, we define the discrete dynamical system models studied in this paper, as well as their
configuration space properties.Sequential Dynamical Systems(SDSs) are proposed in [10, 11, 12] as an
abstract model for computer simulations. These models havebeen successfully applied in the development
of large-scale socio-technical simulations such as theTRANSIMSproject at the Los Alamos National
Laboratory [13]. A more detailed discussion of the motivation behind these models, as well as their
application to large-scale simulations, can be found in [9,61, 62] and references therein.

Definition 2.1 A Sequential Dynamical System(SDS)S is a triple (G, F,Π) whose components are as
follows:
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1. G(V, E) is a connected undirected graph without multi-edges or self-loops.G = GS is referred
to as theunderlying graphof S. We often usen to denote|V | andm to denote|E|.

2. The state of a nodevi, denoted bysi, takes on a value from some finite domain,D. In this paper,
we focus onD = {0, 1}. We usedi to denote the degree of the nodevi. Further, we denote
byN(i) the neighbors of nodevi in G, plus nodevi itself. Each nodevi has an associatednode
update rulefi : Ddi+1 → D, for 1 ≤ i ≤ n. We also refer tofi as thelocal transition function.
The inputs tofi are si and the current states of the neighbors ofvi. We useF = FS to denote
theglobal mapof S, obtained by appropriately composing together all the local update rulesfi,
i = 1, ..., n.

3. Finally,Π is a permutation of the vertex setV = {v1, v2, . . . , vn}, specifying the order in which the
nodes update their states using their local transition functions. Alternatively,Π can be envisioned
as a total ordering on the set of nodes V. In particular, we canview the global map as a sequential
composition of the local actions of eachfi on the respective node statesi, where the node states
are updated according to the orderΠ.

The nodes are processed in thesequentialorder specified by the permutationΠ. The processing associated
with a node consists of computing the new value of its state according to the node’s update function, and
changing its state to the new value. In the sequel, we shall often slightly abuse the notation, and not
explicitly distinguish between an SDS’s node itself,vi, and its state,si. The intended meaning will be
clear from the context.

Definition 2.2 A Synchronous Dynamical System (SyDS)S′ = (G,F ) is an SDSwithout the node
permutation. In an SyDS, at each discrete time step, all the nodes perfectly synchronously in parallel
update their state values.

Thus, SyDSs are similar to the finite classical parallelcellular automata(CA) [22, 23, 25, 28, 76, 77],
except that in an SyDS the nodes may be interconnected in an arbitrary fashion, whereas in a classical
cellular automaton the nodes are interconnected in a regular fashion (such as, e.g., a line, a rectangular
grid, or a hypercube). Another difference is that, while in the classical CA all nodes update according to
the same rule, in an SyDS different nodes, in general, may usedifferent update rules [9, 61].

Given the importance of the number of stable configurations of a Hopfield network viewed as anasso-
ciative memory[29, 24], we next define discrete Hopfield networks. We will briefly summarize what has
been known about the problem of counting their stable configurations in the subsequent sections.

Definition 2.3 A discrete Hopfield network(DHN) [29] is made ofn binary-valued nodes; the set of node
states is, by convention,{−1,+1}. Associated to each pair of nodes(vi, vj) is (in general, real-valued)
weight, wij ∈ R. Theweight matrixof a DHN is defined asW = [wij ]

n
i,j=1. Each node also has a fixed

threshold, hi ∈ R. A nodevi updates its statexi from time stept to stept + 1 according to alinear
threshold functionof the form

xt+1
i ← sgn(

n∑

j=1

wij · xtj − hi) (1)

where, in order to ensure thatxi ∈ {−1,+1}, we definesgn(0) = +1.
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In the sequel, we will often not bother to explicitly distinguish between an S(y)DS’s or DHN’s node,
vi, and this node’s state, denotedsi for S(y)DSs andxi for Hopfield networks; the meaning will be clear
from the context.

In the standard DHN model, the nodes update synchronously inparallel, similarly to the classical
cellular automata and the SyDSs as defined above. However,asynchronous Hopfield networks, where
the nodes update sequentially, one at a time, have also been studied [20, 29]. In these sequential DHNs,
however, it is not required that the nodes update according to afixed permutationlike in our SDS model.
We emphasize that these differences are inconsequential insofar as the fixed points are concerned.

In most of the Hopfield networks literature, the weight matrix W is assumedsymmetric, i.e., for all
pairs of indices{i, j}, wij = wji holds. A DHN is calledsimpleif wii = 0 along the main diagonal of
W for all i = 1, ..., n [20].

Much of the early work on sequential and synchronous dynamical systems has primarily focused on
the SDSs and SyDSs with symmetric Boolean functions as the node update rules (e.g., [6, 7, 10, 11, 67]).
By symmetricis meant that the future state of a node does not depend on the order in which the input
values of this node’s neighbors are specified. Instead, the future state ofvi depends only on the states of
nodesvj in N(i), i.e., on how many ofvi’s neighbors are currently in the statesj = 1. In particular,
symmetric Boolean SyDSs correspond to totalistic (Boolean) cellular automata as defined by S. Wolfram
[74, 75, 76]. The computational complexity of counting various configurations in SDSs and SyDSs with
symmetric Boolean update rules is addressed in [61, 67].

We consider in this paper the SDSs, SyDSs and Hopfield networks with the local update rules that
are restricted tomonotoneBoolean / binary-valued functions. Our preliminary hardness results about the
counting problems in monotone Boolean SDSs and SyDSs can be found in [60, 62]. The SDSs with
the local transition rules that are both monotone and symmetric are, in essence,sequential threshold
cellular automata[65, 66, 68] that are defined over arbitrary finite graphs, as opposed to the usual regular
Cayley graphsof the classical cellular automata [22]. We will consider the monotone update rules that
are not necessarily symmetric; however, these monotone Boolean functions will be required to be of a
linear threshold kind, so that our subsequent results wouldimply analogous results for discrete Hopfield
networks [29, 30], whose update rules are, by default, always required to be linear (but not necessarily
monotone) threshold functions.

We next define the notion ofmonotoneBoolean functions. This definition of monotonicity readily
extends to other partially ordered domains such as{−1,+1} that has been commonly used in Hopfield
networks literature.

Definition 2.4 Given two Boolean vectors,X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn), define a
binary relation “�” as follows: X � Y if xi ≤ yi for all i, 1 ≤ i ≤ n. Ann-input Boolean functionf
is monotoneif X � Y implies thatf(X) ≤ f(Y ).

Notice that the notion of monotonicity given in Definition 2.4 allows us to compare only Boolean
vectors of the same length.

Definition 2.5 A configuration of a Boolean SDSS = (G,F,Π) or an SyDSS ′ = (G,F ) is a vector
(b1, b2, . . . , bn) ∈ {0, 1}n. A configurationC can also be thought of as a functionC : V → {0, 1}n.

The global mapcomputed by an S(y)DSS, denotedF = FS , specifies for each configurationC
the next configuration reached byS after carrying out the updates of all the node states, whether in
parallel or in the order given byΠ. Thus, the mapFS : {0, 1}n → {0, 1}n total function on the set of
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global configurations. This function therefore defines the dynamics ofS. We say thatS moves from a
configurationC to a configurationFS (C) in a single transition step. Alternatively, we say that S(y)DS
S moves from a configurationC at timet to a configurationFS(C) at timet + 1. Assuming that
each node update functionfi is computable in time polynomial in the size of the description of S, each
transition step will also take polynomial time in the size ofthe S(y)DS’s description.

Definition 2.6 Theconfiguration space(also calledphase space) PS of an SDS or SyDSS is a directed
graph whose nodes are configurations and whose directed edges capturetransitionsfrom a configuration
to its successor configuration. More formally, there is a vertex inPS for each global configuration ofS.
There is a directed edge from a vertex representing configuration C′ to that representing configurationC
if FS(C′) = C.

Note that, since an SDS or SyDS is deterministic, each vertexin its phase space has the out-degree of
1. Since the domainD of state values is assumed finite, and the number of nodes in the S(y)DS is finite,
the number of configurations in the phase space is also finite.If the size of the domain (that is, the number
of possible states of each node) is|D|, then the number of global configurations inPS is |D|n.

We next define some prominent types of configurations that areof particular interest insofar as capturing
the important qualitative (and quantitative) properties of a discrete dynamical system’s global behavior
(that is, its dynamics).

Definition 2.7 Given two configurationsC′ and C of an SDS or SyDSS, configuration C′ is a
PREDECESSORof C if FS (C′) = C, that is, if S moves fromC′ to C in one global transition step.
Similarly, C′ is an ANCESTOR of C if there is a positive integert ≥ 1 such thatFS

t(C′) = C, that is,
if S evolves fromC′ to C in one or more transitions.

In particular, a predecessor of a given configuration is a special case of an ancestor.

Definition 2.8 A configuration C of an S(y)DSS is a GARDEN OF EDEN (GE) configuration if C
does not have a predecessor.

Definition 2.9 A configurationC of an S(y)DSS is a FIXED POINT (FP) configuration ifFS (C) = C,
that is, if the transition out ofC is back to C itself.

Note that a fixed point is a configuration that is its own predecessor. Also note, that the fixed point
configurations are also often referred to asstable configurations(esp. in the Hopfield networks literature);
we will use the two terms interchangeably throughout the paper.

2.1 The Basics of Computational Complexity of Counting

We next define the computational complexity classes pertaining to the counting problems that we shall
work with in the sequel. We also define the notion of(weakly) parsimonious reductionsthat are used to
reduce one counting problem to another.

Definition 2.10 A counting problemΨ belongs to the class#P if there exists a polynomial time bounded
nondeterministic Turing machine (NTM)such that, for each instanceI of Ψ, the number of nondeter-
ministic computational paths this NTM takes that lead to acceptance of this problem instance equals the
number of solutions ofI(Ψ).
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For an alternative but equivalent definition of the class#P in terms ofpolynomially balanced relations,
we refer the reader to [51].

The hardest problems in the class#P are the#P-complete problems.

Definition 2.11 A counting problemΨ is #P-complete if and only if (i) it belongs to the class#P, and (ii)
it is hard for that class, i.e.,every other problem in#P is efficiently reducible toΨ.

Thus, if we could solve any particular#P-complete problem in (deterministic) polynomial time, then
all the problems in class#P would be solvable in (deterministic) polynomial time, and the entire class#P
would collapse toP.(i)

As one would expect, the counting versions of the standard decision NP-complete problems, such as
SATISFIABILITY or HAMILTON CIRCUIT , are#P-complete [51]. What is curious, however, is that the
counting versions of some tractable decision problems, such as BIPARTITE MATCHING or MONOTONE

2CNF SATISFIABILITY , are also#P-complete [71, 72].

Definition 2.12 Given two problemsΠ and Π
′

, a PARSIMONIOUS REDUCTION from Π to Π
′

is a
polynomial-time transformationg that preserves the number of solutions; that is, if an instance I of Π
has nI solutions, then the corresponding instanceg(I) of Π

′

also hasng(I) = nI solutions.

In practice, one often resorts to reductions that are “almost parsimonious”, in a sense that, while they
do not exactly preserve the number of solutions,nI in the previous definition can be efficiently recovered
from ng(I) .

Definition 2.13 Given two problemsΠ and Π
′

, a WEAKLY PARSIMONIOUS REDUCTION from Π to
Π

′

is a polynomial-time transformationg such that, if an instanceI of Π has nI solutions, and
the corresponding instanceg(I) of Π

′

has ng(I) solutions, thennI can be computed fromng(I) in
polynomial time.

We observe that anyparsimoniousreduction is also, trivially,weakly parsimonious.
All of our results on the computational complexity of counting various kinds of configurations in SDSs,

SyDSs and discrete Hopfield networks will be obtained by reducing counting problems about certain types
of Boolean formulae that areknown to be#P-complete to the problems about S(y)DSs or Hopfield nets
of a desired, appropriately restricted kind. That such reductions suffice follows from the well-known
property of every problem that ishard for a given complexity class; for the record, we state that property
in the context of the class#P in the Lemma below.

Lemma 2.1 [51] Given two decision problemsΠ andΠ
′

, if the corresponding counting problem#Π
is known to be#P-hard, and if there exists a (weakly) parsimonious reduction fromΠ to Π

′

, then the
counting problem#Π

′

is #P-hard, as well.

3 Related Work
Various models ofcellular andnetwork automatahave been studied in a variety of contexts, from uncon-
ventional models for parallel and distributed computing (e.g., [22, 47, 68]), to complex dynamical systems
[24, 25, 38], to theoretical biology [43, 44]. Beside the classical (parallel) cellular automata [22, 28] and

(i) Strictly speaking, since#P is a class offunction problems(as opposed to the classes ofdecision problemssuch asP, NP and
PSPACE), if an#P-complete problem turns out to be solvable in deterministicpolynomial time, that would imply thatP#P = P.
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their sequential or asynchronous variants [34, 66, 68], perhaps the most studied class of models of network
or graph automata are theHopfield networks[29, 30].

Computational aspects of the classical Cellular Automata have been studied in many contexts. Prior
to the 1980s, most of the theoretical work dealt with infiniteCA and the fundamental (un)decidability
results about the global CA properties. Some examples of such properties of infinite CA are surjectivity,
injectivity, and invertibility of a cellular automaton’sglobal map; see, e.g., [2, 49, 52]. Systematic study
of other computational aspects of CA, from topological to formal language theoretic to computational
complexity theoretic, was prompted in the 1980s by the seminal work of S. Wolfram [74, 75, 76]. Among
other issues, Wolfram addressed the fundamental characteristics of CA in terms of their computational
expressiveness and universality. He also offered the first broadly accepted classification of all CA into
four qualitatively distinct classes in terms of the structural complexity of the possible computations or,
equivalently, dynamical evolutions. The state of the art pertaining to a broad variety of computational
properties of CA in both theoretical and experimental domains by the end of the ”golden decade” of
cellular automata research (the 1980’s) can be found in [28].

Since most interesting global properties of sufficiently general infinite CA have been shown to be
formally undecidable, the computational complexity proper (that is, as contrasted with the computability
theory) has been mainly concerned with the computational aspects offinite CA, or those pertaining to
finite subconfigurationsof infinite CA. Most work within that framework has focused onthe fundamental
decision problemsabout the possible CA computations. We include below a very short survey of some of
the more important results in that context.

The firstNP-complete problems for CA are shown by Green in [26]; these problems are of a general
REACHABILITY flavor, i.e., they address the properties of theFORWARD DYNAMICS of CA. Kari studies
the reverse dynamics, more specifically, the reversibilityand surjectivity problems about CA [39]. Sutner
also addresses theBACKWARD DYNAMICS problems, such as the problem of an arbitrary configuration’s
PREDECESSOR EXISTENCE, and their computational complexity in [57]. In the same paper, Sutner es-
tablishes the efficient solvability of the predecessor existence problem for an arbitrary CA with afixed
neighborhood radius.In [14], Durand solves the injectivity problem for arbitrary 2-D CA but restricted
to thefinite subconfigurationsonly; that paper contains one of the first results oncoNP-completeness of a
natural and important problem about CA. Furthermore, Durand addresses theREVERSIBILITY PROBLEM

in the same, two-dimensional CA setting in [15]. Some good surveys on various directions of computa-
tional complexity-theoretic research on cellular automata can be found in [40, 47].

The SDS and SyDS models introduced in Section 2 are closely related to thegraph automata(GA)
models studied in [46, 50] and theone-way cellular automatastudied in [54]. In fact, the general finite-
domain SyDSs exactly correspond to the graph automata of Nichitiu and Remila in [50]. Barrett, Mortveit
and Reidys [10, 11, 48] and Laubenbacher and Pareigis [45] investigate the mathematical properties of
sequential dynamical systems. Barrettet al. study the computational complexity of several problems
about the configuration space structure of SDSs and SyDSs. Those problems include the REACHABILITY ,
PREDECESSOR EXISTENCEand PERMUTATION EXISTENCE problems [7, 8]. Problems related to the
existence of theGARDEN OF EDEN and theFIXED POINT configurations are studied in [9]. In particular,
NP-completeness for the problem ofFIXED POINT EXISTENCE (FPE) in various restricted classes of
Boolean S(y)DSs is proven in [9]. However, the FPE problem becomes easy when all the nodes of a
Boolean S(y)DS are required to update according tomonotone functions.

The subarea of computational complexity that addresses counting or enumeration of various combi-
natorial structures dates back to the seminal work of L. Valiant in the late 1970s [71, 72]. Counting
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problems naturally arise in many contexts, from approximate reasoning and Bayesian belief networks in
AI (e.g., [55]), to network reliability and fault-tolerance [70], to theoretical biology [3], tophase transi-
tions in statistical physics, which is a large body of work in itself (some representative references include
[4, 35, 36, 38]).

It has been observed, however, that the progress in understanding the complexity of counting problems
has been much slower than the progress related to our understanding of decision and search problems
[27, 70]. Since the reductions used in proving counting problems hard have to preserve the number of
solutions, rather than just whether a solution exists or not, they are in general more difficult to devise
than the reductions used to establish, say,NP-completeness of the corresponding decision problems. For
example, most standard reductions used to establish computational hardness of certain decision or search
problems on graphs tend to “blow up” the underlying graph, thereby destroying the local structures that
impact the number of those problems’ solutions [27].

One area where this understanding of the complexity of counting has been particularly poor, is whether
the general counting problems that are provably hard remainhard when various restrictions are placed
on the problem instances [70]. Some of the relatively recentresults in that context, such as those on
the hardness of counting inplanar graphs[32], and especially insparse graphs[27, 70], have directly
inspired our recent work (see [60, 61, 62, 67]), as well as theinvestigations summarized in this paper.

Counting problems naturally arise in the context of discrete dynamical systems, as well. Indeed, being
able to efficiently solve certain counting problems is essential for the full understanding of the underlying
dynamical system’s qualitative behavior. The most obviouscounting problem is to determine (or estimate)
the number ofattractorsof the dynamical system [3]. As noted earlier, we refer to these attractors and
other, not necessarily attractingstable configurationsas to thefixed points(FPs); we do not address the
issue of distinguishing among different types of those stable configurations (e.g., attractive vs. repulsive,
etc.) in this paper.

For example, in the context of Hopfield networks, the interpretation of the FP count is that it tells us how
many distinctpatternsa given Hopfield network canmemorize[3, 29, 30]. Computational complexity of
counting FPs and other structures of interest in discrete Hopfield networks is addressed in [18, 19, 20]. We
shall discuss in the next section how our results in this paper strengthen those in [18, 19] for thesymmetric
discrete Hopfield nets with integer weight matrices andlinear thresholdupdate rules.

4 Complexity of Counting Various Configurations of Monotone
SDSs, SyDSs and Discrete Hopfield Networks

Our general approach to establishing the computational intractability of the counting problems of inter-
est about SDSs, SyDSs and Discrete Hopfield Nets (DHNs) will be as follows. We first identify certain
restricted variants of Boolean Satisfiability problem, whose counting versions (that is, determining how
many satisfying truth assignment an arbitrary Boolean formula in a particular, restricted form has) are
known to be intractable, that is,#P-complete. We then construct an S(y)DS or DHN and show that ex-
actly enumerating a particular kind of such network automaton’s configurations (e.g., its fixed points) is
at least as hard as exactly enumerating the satisfying assignments of the Boolean formula. For showing
intractability of counting problems, we use weakly parsimonious reductions that approximately preserve
the number of solutions; for details on complexity of counting in general, and (weakly) parsimonious re-
ductions from one counting problem to another in particular, we refer the reader to any standard reference
on computational complexity, such as the book by C. Papadimitriou [51].



Complexity of Counting the Fixed Points 139

MonotoneBoolean functions, formulae and circuits [73] have been extensively studied in many areas of
computer science, from machine learning to connectionist models in AI to VLSI circuit design. Cellular
and other types of network automata with the local update rules restricted to monotone Boolean functions
have also been of a considerable interest (e.g., [9, 66]). The problem of counting FPs ofmonotoneBoolean
SDSs and SyDSs is originally addressed in [60, 62]. It is shown there that, in general, counting FPs of
such S(y)DSs either exactly or approximately is computationally intractable. This intractability holds
even for the graphs that are simultaneously bipartite, planar, and very sparseon average[60, 62, 64]. In
particular:

Lemma 4.1 [62] Counting exactly the fixed points of a monotone Boolean SDS orSyDS defined over a
star graph, and such that the update rule of the central node of the star is given as aMON 2CNF formula
of sizeO(n), wheren is the number of nodes in the star graph, is#P-complete.

Moreover, by the results of D. Roth [55], subsequently strengthened by S. Vadhan [70], the problem of
approximatelycounting FPs in the setting as in Lemma 4.1 above isNP-hard [62].

To summarize, enumerating the fixed points ofmonotoneBoolean SDSs and SyDSs defined on bi-
partite, planar and sparse on average underlying graphsexactly is #P-complete, and for anyǫ > 0,
approximatingthe number of FPs in such monotone S(y)DSs to within2n

1−ǫ

is NP-hard. Our next goal
is to show that the hardness of the exact enumeration of FPs for monotone S(y)DSs holds even when the
underlying graphs are required to beuniformly sparse.We will also argue that, as a consequence of our
construction in the proof of Theorem 4.2 below, the problem of enumerating stable configurations of other
types of discrete dynamical systems, such as the discrete Hopfield networks, is also in general computa-
tionally intractable. Moreover, that intractability holds for those discrete dynamical systems even when
they are defined on very sparse underlying graphs or networks.

Given the importance of the number of stable configurations of a Hopfield network viewed as anasso-
ciative memory(e.g., [24]), we next summarize what has been known about theproblem of counting their
stable configurations.

In [18], Floreen and Orponen establish the following two interesting results:(ii)

Theorem 4.1 (i) The problem of determining the number of fixed point configurations of a simple discrete
Hopfield network, with a symmetric weight matrixW = [wij ] such that all the weightswij are integers
andwii = 0 along the main diagonal, is#P-complete; and

(ii) the problem of determining the number of predecessor configurations of a given configuration of a
simple discrete Hopfield network, with a symmetric weight matrix W = [wij ] such that all the weights
wij are from the set{−1, 0,+1} andwii = 0 along the main diagonal, is#P-complete.

For proving (i), Floreen and Orponen devise a Hopfield network that is quite dense, i.e., with many
non-zero weightswij . This would correspond to an SDS or SyDS where there are, informally speaking,
several nodes each of which having many neighbors. In contrast, our result in Lemma 4.1 allows only for
a single node that has a large neighborhood; see [60, 62] for more details.

Prior to moving to our main results, for the sake of completeness, we state the following

Lemma 4.2 Counting FPs of an arbitrary SDS or SyDS all of whose nodes useBoolean-valued linear
threshold rules is#P-complete.

(ii) We slightly rephrase the statement of these results from thelinear algebra language originally used in [18] into the discrete
language we are using throughout this paper, in order to makethe comparison and contrast with our own results clear.
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4.1 Counting Configurations of Uniformly Sparse SDSs and SyDSs
with Monotone Update Rules

The first major result of this paper pertains to the computational complexity of counting the fixed point
configurations of monotone Boolean SDSs and SyDSs that are defined overuniformly sparseunderlying
graphs.

One of the original motivations behind our interest in that problem was to improve upon the complexity
of counting results in [18, 19]. We shall show below that the result (i) from [18] discussed above can be
considerably strengthened along several dimensions. Thatis, the hardness of counting FPs will be proven
to still hold even when the following restrictions on the problem instances aresimultaneouslyimposed:

– the underlying graphs will be required to beuniformly sparse,with no node degree exceeding 3;
– all linear threshold update rules will be restricted tomonotonefunctions by disallowing negative

weights;
– only two (positive) integer values for the weights will be allowed; and
– each S(y)DS node will choose one from only two allowed monotone linear threshold update rules.
We remark that, since each node of an SDS or SyDS in the Theoremthat follows is required to have

only O(1) neighbors, the issue ofencodingof the local update rules, that is discussed in detail in [62],
is essentially irrelevant in the present context. In particular, even a truth table with one row for each
combination of the values of a given node’s neighbors is permissible [61, 62].

In the sequel, BOOL-MON-S(Y)DS will stand for amonotone BooleanSDS or SyDS.

Theorem 4.2 Counting the fixed points ofBOOL-MON-S(Y)DSs exactly is #P-complete, even when
all of the following restrictions on the structure of such anS(y)DSsimultaneouslyhold:

• the monotone update rules arelinear threshold functions;

• the S(y)DS is with memory, and such that, along the main diagonal, wii = 1 for all indices i,
1 ≤ i ≤ n;

• at most two different positive integer weights are used by each local update rule;

• each node has at most three neighbors in the underlying graphof this S(y)DS;

• only two different monotone linear threshold rules are usedby the S(y)DS’s nodes.

Proof: We first describe the construction of a BOOL-MON-SYDS from an instance of aBoolean mono-
tone 2CNF(MON-2CNF) formula [21] such that no variable appears in more than three different clauses.
We then outline why is this reduction from the problem of counting satisfying assignments of such a
formula to the problem of counting FPs in the resulting SyDSweakly parsimonious[21].

Let’s assume that a MON-2CNF Boolean formula is given, such that there aren variables,m clauses,
each variable appears in at least one clause, and no variableappears in more than three clauses. In
particular, these requirements together imply thatm = O(n), but we shall keepm andn as two distinct
parameters for clarity.

The corresponding SyDSS is constructed as follows. To each variable in the formula corresponds a
variable node, and to each clause, a clause node. In addition, acloned clause nodeis introduced for each
of the originalm clause nodes. Thus, the underlying graph ofS has exactlyn + 2m nodes. A variable
node is adjacent to a clause node if and only if, in the Booleanformula, the corresponding variable appears
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in the corresponding clause. Each clause node is adjacent toits clone. Finally, the cloned clause nodes
form a ring among themselves.

Therefore, the underlying graph of this SyDS looks as in Figure 4.1.
In the sequel, we shall slightly abuse the notation and usexi both to denote a variable in the Boolean

formula, and the correspondingvariable nodein the S(y)DS or discrete Hopfield network we are con-
structing. Similarly, in this proof as well as throughout the rest of the paper,Cj will denote both clauses
in the Boolean formulae and clause nodes in the S(y)DSs or Hopfield networks that are being constructed
from those formulae. Again, the intended meaning will be clear from the context.

C’C’C’

. . .

C1 . . .

x x x x x4 n21 3

   . . .

1

C Cm2 C
3

C4

2 3 4 mC’ C’

Fig. 1: Figure 4.1: The underlying graph of a bounded-degree monotone linear threshold Boolean S(y)DS in the
construction of Theorem 4.2. The original clause nodes are markedCj , the cloned clause nodes are primed, as in
C′

j , and the variable nodes are denoted byxi.

With these conventions in mind, we now define the update rulesfor the clause nodes, cloned clause
nodes, and variable nodes of the constructed SyDS. The cloned clause nodesC′

j and the variable nodes
xi will update according to the BooleanAND rule. The original clause nodes,Cj , will update according
to the following monotone linear threshold update rule:

Cj ←
{

1, if 2C′
j + Cj + xj1 + xj2 ≥ 4

0, otherwise
(2)

wherexj1 , xj2 is a shorthand for the two variable nodes that are adjacent tothe clause nodeCj .
The given construction can be slightly rephrased, in order to emphasize that the resulting SyDS also

satisfies thesymmetry requirementas it is usually defined in the Hopfield networks literature, namely, so
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that the underlying matrix of weights is a symmetric matrix.To that end, the BooleanAND rule used by
the cloned clause nodes can be written in an equivalent, but more “linear-threshold-like”, form:

C′
j ←

{
1, if 2Cj + C′

j + C′
j−1 + C′

j+1 ≥ 5

0, otherwise
(3)

Notice that the function defined in equation (3) evaluates to1 if and only if all of its inputs are 1, and thus,
indeed, the given formula is nothing but a linear-threshold-like way of writing the ordinary BooleanAND
on four inputs. If this latter convention on how we write the update rules at the cloned clause nodes and
the variable nodes is adopted, then the resultingS can be also viewed as a discrete Hopfield network with
parallel node updates. We will turn to the related complexity of counting results in the context of Hopfield
networks in the next subsection.

We now show that the reduction from the counting problem #MON-2CNF-SAT to the counting prob-
lem #FP for the constructed SyDS is, indeed, weakly parsimonious. To that end, we summarize the case
analysis. If, at any time stept, one of the cloned clause nodesC′

j evaluates to 0, that will ensure that,
within no more thanm2 steps, all the cloned clause nodes will become 0, and stay in state 0 thereafter.
This will also cause all the original clause nodes’ statesCk, and, consequently, also all the variable
nodes’ statesxi, to become 0, as well. Thus, if at any point a single cloned clause node’s state becomes
0, the entire SyDS will eventually collapse to the “sink” fixed point0n+2m. Clearly, this sink FP does not
correspond to a satisfying assignment to the original Boolean formula.

Now, the only way that no cloned clause node ever evaluates to0 is that the following two conditions
simultaneously hold:

– eachC′
k andCk is initially in the state 1, for1 ≤ k ≤ m; and

– the initial statesxi of the variable nodes are such that they correspond to a satisfying truth assignment
to the variables in the original Boolean formula.

If these conditions hold, then each such global configuration (xn, Cm, C′m) = (xnsat, 1
m, 1m) is a

fixed point of S, wherexnsat ∈ {0, 1}n is a short-hand for ann-tuple of Boolean values that corresponds
to a satisfying truth assignment(x1, ..., xn) to the underlying monotone 2CNF formula. Moreover, the
satisfying truth assignments of the original Boolean formula are in a one-to-one correspondence with
these non-sink FPs ofS.

Since no variable in the MON-2CNF formula from which we are constructing the SyDS appears in
more than three clauses, each variable nodexi in the SyDS has at most three neighbors. Since we use
2CNF, each clause nodeCj has two variable node neighbors, plus one cloned clause neighbor,C′

j , for
the total of three neighbors. Finally, each cloned clause nodeC′

j clearly has exactly three neighbors.
In particular, by the result of C. Greenhill in [27], we can make the underlying graph of SyDSS be
3-regular, and the#P-completeness of the counting problem #FP will still hold.

We also observe thatonly twodifferent monotone linear threshold functions are used in the construction
above; furthermore, when the update rules are written in theform as in expressions (2) and (3), it is im-
mediate that at most two different integer weights are used in each of those two linear threshold functions.
Hence, the claim of the Theorem follows insofar as monotone linear threshold SyDSs are concerned.

Finally, by the invariance of FPs with respect to the node update ordering [48], it follows that exactly
enumerating FPs of monotone linear threshold SDSs defined onuniformly sparse graphs is#P-complete,
as well.
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In the construction above, the SyDS dynamics fromeverystarting global configurations that is not
of the form(xnsat, 1

m, 1m) will eventually converge to the sink state0n+2m. In particular, thebasin of
attraction of C = 0n+2m includes all configurations of the form(xnunsat, 1

m, 1m), wherexnunsat is a
shorthand for an orderedn-tuple of Boolean values that corresponds to anunsatisfying(i.e., falsifying)
truth assignment to the corresponding variablesx1, ..., xn in the original MON-2CNF formula. The
rest of the configurations in the sink’s basin of attraction are such that(Cm, C′m) 6= (1m, 1m), where
xn ∈ {0, 1}n is arbitrary.

Hence, in order to determineexactlythe size of the basin of attraction for the sink stateC = 0n+2m,
that is, the number of that configuration’s ancestors, we must be able to exactly determine the number
of falsifying truth assignments to the original MON-2CNF Boolean formula. It is easy to see that one
can find an orderingΠ under which the same claim holds for the corresponding BOOL-MON-SDS. As a
consequence, we have

Corollary 4.1 The problem of counting exactly all theancestorsof an arbitrary configuration of aBOOL-
MON-S(Y)DS, denoted#ANC, is #P-hard. Moreover, this intractability result holds even when all re-
strictions fromTheorem 4.2are simultaneously imposed on the S(y)DS’s structure.

4.2 Counting Configurations of Discrete Hopfield Networks
We now turn to the corresponding hardness of counting results for discrete Hopfield networks with appro-
priately restricted weight matrices. We start with the problem of fixed point enumeration in the context of
Hopfield nets where each of the nodes has exactly one bit of memory – namely, its own (binary-valued)
current state.

Theorem 4.3 Determining the exact number of stable configurations of a parallel or asynchronous dis-
crete Hopfield network is#P-complete even when all of the following restrictions on theweight matrix
W = [wij ] simultaneously hold:

• the matrix is symmetric:wij = wji for all pairs of indices i, j ∈ {1, ..., |V |} (where|V | denotes
the number of nodes in the underlying graph of this DHN);

• wii = 1 along the main diagonal for alli ∈ {1, ..., |V |};

• wij ∈ {0, 1, 2} for all pairs of indicesi, j ∈ {1, ..., |V |};

• each row and each column ofW hasat most three(alternatively,exactly three) nonzero entries off
the main diagonal.

Proof sketch: In case of the DHNs whose nodes update synchronously in parallel, the claim holds by
virtue of Theorem 4.2, since an SyDS that is constructed as inthe proof of that theorem can also be
viewed as a parallel discrete Hopfield network whose weight matrix satisfies all the above listed con-
ditions.(iii) Insofar as the asynchronous DHNs whose nodes update in arbitrary sequential orders are
concerned, while indeed those sequences of node updates need not be repetitions of a fixed permutation
as in the corresponding SDSs, this difference can be easily shown to be immaterial insofar as the fixed
point configurations are concerned. Therefore, Theorem 4.3about discrete Hopfield networks is nothing

(iii) For simplicity of the argument, in this proof sketch we are ignoring the syntactic difference that the state space of a node in a
Hopfield network is{−1, +1}, not{0, 1}.
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but rephrasing Theorem 4.2, with parallel DHNs in place of SyDSs with monotone linear threshold update
rules, and asynchronous/sequential DHNs replacing SDSs with the same kind of update rules.

Next, we consider the problems of enumerating predecessorsas well as all ancestors of a given Hopfield
network configuration. We shall establish the computational complexity of those two related counting
problems in the context ofsimpleDHNs, whose weight matrices satisfywii = 0 for ∀i ∈ {1, ..., |V |}.

Before we proceed with a formal reduction from the problem #MON-2CNF-SAT to the problem
#PRED of enumerating all predecessor configurations of a given DHNconfiguration, we establish the
following additional conventions. First, the reduction will be from the MON-2CNF Boolean formulae
with each variable appearing in at least one, and in at most (alternatively, exactly) four clauses. Second,
we will abandon the usual convention in the Hopfield networksliterature that the underlying graph is fully
connected (i.e., a clique), and instead consider those pairs of vertices{vi, vj} such thatwij = wji = 0 not
to be connected by an edge at all. We will require that the underlying DHN weight matrixW is symmetric
in the usual, Hopfield network sense; as a consequence, the underlying graph of such a discrete Hopfield
network will be undirected, which is also in accordance withour convention about S(y)DSs. Third, in
the construction used in proving Theorem 4.2, we will eliminate the cloned clause nodesC′

j and, instead,
connect the ordinary clause nodes into a ring.

We recall that, in a DHN, the set of possible states of a node istraditionally {−1,+1} (instead of
{0, 1}); while not essential, we will adopt this practice through the rest of the paper when it comes to the
discrete Hopfield networks. With that in mind, we define the update rule of a clause nodeCj to be

Cj ←
{

+1, if 2Cj−1 + 2Cj+1 + xj1 + xj2 > 3

−1, otherwise
(4)

For each variablexi in the MON-2CNF formula from which we are constructing our DHN, letai denote
the number of clauses in whichxi appears; thus, under the stated assumptions, for everyi ∈ {1, ..., |V |},
we haveai ∈ {1, 2, 3, 4}. We now define the variable node update rules as

xi ←
{

+1, if
∑

{j:xi∈Cj} Cj > ai − 1

−1, otherwise
(5)

Thus a variable nodexi updates to+1 if and only if all of the clause nodesCj(i) corresponding to
those clauses in the formula in which variablexi appears are currently in the state+1.

Finally, we observe that the resulting weight matrixW , while symmetric and with all entrieswij ∈
{0, 1, 2}, also haswii = 0 along the main diagonal; therefore, the constructed Hopfield network is
simple(i.e.,memoryless) [18, 20].

We are now ready to establish the third main result of this paper:

Theorem 4.4 The problem#PRED of determining the exact number of predecessors of a given configu-
ration of asimplediscrete Hopfield network is#P-complete. Moreover, this claim holds even when all of
the following restrictions on the Hopfield net’s weight matrix W = [wij ] are simultaneously imposed:

• the matrix is symmetric:wij = wji for all pairs of indicesi, j ∈ {1, ..., |V |};

• wii = 0 along the main diagonal for alli ∈ {1, ..., |V |};
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• wij ∈ {0, 1, 2} for all pairs of indicesi, j ∈ {1, ..., |V |};

• each row and each column hasat most / exactly fournonzero entries.

Proof sketch: The claim of the Theorem will follow from the fact that the satisfying truth assignments
to the Boolean variablesx1, ..., xn in the original MON-2CNF Boolean formula are in a one-to-one cor-
respondence with the set of all predecessors of the configuration (+1)n+m in the Hopfield net constructed
from that formula. In the Hopfield network context, we will identify the Boolean value FALSE of a
variable in the MON-2CNF formula with the corresponding DHN variable node’s state−1, whereas the
Boolean value TRUE of a variable in the formula will be mapped to the state+1 of the corresponding
DHN variable node.

The case analysis is similar to that in the proof of Theorem 4.2. In particular, every configuration
with at least one clause nodeCj in the state(−1) will eventually converge to the sink fixed point
(xn, Cm) = ((−1)n, (−1)m). Among the configurations of the form(xn, Cm) = (xn, (+1)m), those
and only those such that then-tuplexn corresponds to a satisfying truth assignment to the original M ON-
2CNF Boolean formula will evolve to the other fixed point configuration,(1n, 1m) = (+1)n+m. More-
over, this convergence to(+1)n+m is easily seen to take a single parallel transition. That is,the predeces-
sors of(+1)n+m are precisely the configurations of the form(xnsat, (+1)m).

It immediately follows from the discussion in the proof sketch above thatall ancestors of the config-
uration C = (+1)n+m are also this configuration’s predecessors; that is, the convergence from every
configuration in the basin of attraction ofC takes exactly one (global) parallel step.

Corollary 4.2 The problem#ANC of determining the exact number of all ancestors of an arbitrary config-
uration of a simple discrete Hopfield network is, in the worstcase,#P-hard. Moreover, this intractability
holds even when all the restrictions fromTheorem 4.4on the Hopfield network instances are simultane-
ously imposed.

We remark that the #ANC problem for S(y)DSs and DHNs is indeed#P-complete whenever thebasin
of attractionof a fixed point – or, for that matter, of an arbitrary configuration that has ancestors – of
the dynamical system in question isshallow. This shallowness, in particular, ensures that the problemof
enumerating ancestors of all generations is in the class#P. However, for arbitrary basins of attraction that
need not necessarily be shallow, the question arises, whether it can always be verified in polynomial time
if one configuration is an ancestor of another configuration.In fact, the results in [8] imply that, given two
arbitrary configurationsC and C′ of a monotone Boolean SDS or SyDS, determining whetherC′ is an
ancestor ofC (alternatively, whetherC is reachablefrom C′) is, in general,PSPACE-complete.

The implication of the results in [8] for the complexity of counting ancestors of an arbitrary configu-
ration of a monotone Boolean S(y)DS or a discrete Hopfield network with a nonnegative and symmetric
weight matrix is that the problem #ANC need not be in the class#P. In particular, it is an open prob-
lem whether #ANC ∈ #P under thesparsenessrestrictions as in our three main results earlier in this
paper. Therefore, all we can offer at this stage is a more conservative characterization of the complex-
ity of #ANC in comparison to the complexity of #FP and #PRED – hence the#P-hardness, rather than
#P-completeness, statements about the problem #ANC in Corollaries 4.1 and 4.2.
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5 Summary
We have shown in [61, 62, 60, 64] that the problem of enumerating the fixed point configurations of two
related classes of Boolean network automata, called Sequential and Synchronous Dynamical Systems is,
in general, computationally intractable. We continue the general line of inquiry from our prior work in
the present paper, as well. We now focus on those SDSs and SyDSs each of whose nodes is required
to update its state according to a monotone Boolean function, and whose underlying network topologies
are uniformly sparse, so that, in particular, each node has only O(1) neighbors. Our main result in this
paper is that exactly counting the fixed points of monotone, uniformly sparse Boolean SDSs and SyDSs
such that no node has more than three neighbors is#P-complete. This result immediately implies similar
intractability results for the sparse discrete Hopfield networks. Viewing Hopfield networks as a model
of associative memory, our results imply that determining exactly how many different patterns can be
stored in such an associative memory is, in general, computationally intractable. This computational
intractability remains to hold even when noinhibitive connections(i.e., no edges with negative weights)
are allowed, and, simultaneously,no row or column of the weight matrix has more than four nonzero
entries. Moreover, our hardness result still holds even forthose DHNs with integer weight matrices all of
whose entries are from the set0, 1, 2.

Similarly, determining the exact size of the basin of attraction of a given stable configuration of a dis-
crete Hopfield network with a symmetric weight matrix is equally intractable; moreover, this intractability
result holds even when the Hopfield network is required to be simple, with a uniformly sparse weight ma-
trix, and the same restrictions on the allowed values of weightswij as in our corresponding result about
the enumeration of the stable (or, in the SDS terminology, fixed point) configurations.

Insofar as the future work is concerned, it needs to be pointed out that our results in this paper, as
well as similar in spirit results in our prior work [60, 61, 62, 63, 67, 64, 69] all pertain to the worst-case
complexity of counting the stable configurations and other structures of discrete dynamical systems. Of a
considerable interest to statistical physics, connectionist AI and large-scale multi-agent systems research
communities, however, is the problem of determining average complexity of the relevant decision, search
and counting problems about the underlying system’s dynamics.

Another important problem is that of the hardness of approximate counting of the fixed points and other
types of configurations of interest; we have partially solved that problem for certain classes of underlying
network topologies and node update rules [60, 62, 67, 64], but not for the particular restricted classes of
topologies and update rules for which we have established the hardness of exact counting in this paper
and the extended technical report [63]. Hence, the approximate counting in the settings discussed in the
present paper, as far as we know, is still open.

To summarize our contribution in the present paper, the results in Theorems 4.2 - 4.4, and in particular
the constructions in their corresponding proofs (see also [63] for details), clearly indicate that there are
various restricted classes of uniformly sparse Boolean network automata and Hopfield networks for which
exactly enumerating the stable configurations (FPs), as well as the predecessor and the arbitrary ancestor
configurations, are all computationally intractable in theworst case. These hardness results have some
interesting implications and interpretations – for example, in the context of pattern storage capacity of
sparsely connected Hopfield networks viewed as associativememories. However, what is the average
complexity of these important counting problems (and in particular, under what specific assumptions are
those average or expected case problems tractable), are wide-open problems. We hope to address the
average case complexity of those and other similar countingproblems about discrete dynamical networks
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in our future work.
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This paper proposes a computationally universal 2-dimensional square lattice asynchronous cellular automaton, in
which cells have merely two states. The transition functionof a cell is a nonlinear function of the states of the living
neighboring cells. This function depends on the positions of cells in the neighborhood with respect to the center cell.
The neighborhood consists of cells at orthogonal or diagonal distances 1, 2, or 3 from the center cell. The proposed
cellular automaton isinner-independent— a property according to which a cell’s state does not dependon its previous
state, but merely on the states of cells in its neighborhood.The asynchronous update mode used in this paper allows an
update of a cell state to take place — but only so with a certainprobability — whenever the cell’s neighborhood states
matches an element of the transition function’s domain. Universality of the model is proved through the construction
of three circuit primitives on the cell space, which are universal for the class of Delay-Insensitive circuits.

Keywords: asynchronous cellular automaton, inner-independent, totalistic rule

1 Introduction
Cellular Automata (CA) [18, 7, 22, 9] are dynamic systems in which the space is organized in discrete
units called cells that assume one of a finite set of states. These cells are updated in discrete time steps
according to a transition function, which determines the subsequent state of each cell from the state of the
cells inside a certain neighborhood of the cell.

Asynchronous Cellular Automata (ACA) [10] are CA in which each cell is updated at random times.
Though ACA are mostly applied to simulations of natural phenomena, there have been efforts to use
them for computation, as the lack of a central clock has excellent potential for implementation by nan-
otechnology. The most recent among these models—and the most efficient in terms of hardware and time
resources—use so-calledDelay-Insensitive (DI)circuits that are embedded on the cell space to implement
computation. DI circuits are asynchronous circuits that are robust to delays of signals [8, 20, 12, 2, 3, 16].

The number of cell states required for achieving computational universality is an important measure
for the complexity of a CA model, and it is especially relevant for implementations by nanotechnology.
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Researchers aim to minimize this number as much as possible,with various degrees of success: the ACA
model with a traditional von Neumann neighborhood requiresfour cell states [14], whereas the model
with Moore neighborhood in [2] and the hexagonal model in [3]both require six states. The model in
[17] has cells with three states, whereby the neighborhood is von Neumann, but it requires a special type
of transition function in which more than one cell needs to beupdated at a time in each transition. The
more recent model in [6] has cells with only two states, whereby the neighborhood is Moore, but the
neighborhood radius is 2, i.e., it is defined as the 24 cells lying at orthogonal or diagonal distances 1 or 2
(Moore distance 1 or 2) from a cell.

In [5] an inner-independent totalistic rule is used in a synchronously timed 2-state CA, which also has
a neighborhood defined as the 24 cells lying at orthogonal or diagonal distances 1 or 2 (Moore distance 1
or 2) from a cell. This model’s transition function is totalistic and simple: if the number of state-1 cells
in this neighborhood is four, the next state of a cell is 1, otherwise 0. The property of inner-independence
may especially be useful for physical realizations: in [5] its relation with classical spin-glass systems is
discussed.

In this paper we propose a square lattice CA with inner-independent totalistic rule, that has a larger
neighborhood than the model in [5, 6], with cells at distances 1, 2, or 3 (Moore distance 1, 2, or 3). Unlike
in the model in [6], however, the proposed model uses transition rules that are totalistic, making it a first in
the context of asynchronous CA. Computational universality of the model is proved through formulating
three primitive modules for DI circuits, and mapping them onthe cell space. These modules—the so-
calledP-Merge, Fork, and theR-Counter—form a universal set for the class of DI circuits, meaning that
any arbitrary DI circuit can be constructed from them. The transition function of the proposed CA model
can be described in terms of 332 sub-totalistic rules in which each number is the sum of the state-1 cells in
each domain depending on the distance between the cell and the center cell. In order to reduce the number
of the rules, we adopt a full totalistic rule that is obtainedas the linear combination of the sum of the state-
1 cells in each domain. The coefficients of them are determined by a genetic algorithm. Consequently,
the number of the rules is 330.

This paper is organized as follows. Section 2 describes the three primitive modules for DI circuits in
more detail. The basic CA model is described in Section 3, followed by a description of the Genetic
Algorithm in Section 4. Section 5 the implementation of signal exchange on the cell space, as well as of
the three DI modules. This paper finishes with conclusions and a short discussion.

2 On Delay Insensitive Circuits
A DI circuit is an asynchronous circuit in which signals may be subject to arbitrary delays, without these
being an obstacle to the circuit’s correct operation [11]. Composed of interconnection lines and modules,
a DI circuit uses signals—encoded as the change of a line’s state—to transfer information from the output
side of a module to the input side of another module. The speedof signals is not fixed.

A set of primitive modules from which any DI circuit can be constructed is proposed in Patra [19]. This
set, consisting of the so-calledMerge, Fork andTria, is universal, but it suffers from the problem that the
Tria requires a large number (six) of input and output lines,which is hard to implement on a CA using
cells with only four neighbors each. One way around this problem is to relax some of the conditions on DI
circuits, like in [21, 15], where lines are allowed to carry more than one signal at a time. The advantage
of suchbuffering linesis more design freedom, and this translates into simpler structures of circuits and
simpler primitive modules. This paper will employ this concept, allowing the use of primitive modules
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with at most four input or output lines (Fig. 1):
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I1

2I

(a)
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2
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I

O

O1

2I

2

1
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Fig. 1: Primitive modules for the DI circuits. (a) P-Merge, (b) Fork, and (c) R-Counter.

1. P-Merge (Parallel Merge): A signal on input lineI1 (I2) in Fig.1(a) is assimilated and output to
O. Simultaneous signals onI1 andI2 are assimilated as well, and will be output as two subsequent
signals toO.

2. Fork : A signal on input lineI in Fig.1(b) is assimilated and duplicated on both output linesO1 and
O2.

3. R-Counter (Resettable Mod-2 Counter): Two subsequent signals onI1 in Fig.1(c) are assimilated
and they give rise to one output signal toO1. This is calledMod-2 Counterfunctionality, because
of the double signal required atI1 to reinstate the initial “zero” state of the module. Alternatively,
when there is one signal on each ofI1 andI2, the module outputs a signal toO2 after assimilating
its inputs; this accounts for theResetoperation. A signal on only the input lineI1 keeps pending
until a signal on eitherI1 or I2 is received. A signal on only the input lineI2 keeps pending until a
signal onI1 is received.

In the next section these modules will be implemented on the cell space, such that DI circuits can be
constructed.

3 Rules for the model and their Construction
The ACA model consists of a 2-dimensional square array of cells, each of which can be in either of the
states, 0 (dead) and 1 (alive). The neighborhoodNi,j of a cellCi,j consists of the 48 cells at orthogonal
or diagonal distances 1, 2 or 3 fromCi,j (Moore-neighborhood).

Our previous work [6] was done on a non-totalistic 2-state ACA in which the cell neighborhood consists
of 24 cells at distances 1 or 2 from the center cell (Fig. 2(a)). We have shown the computational univer-
sality of the model with inner-independent symmetric rulesthat are rotation-symmetric and reflection-
symmetric, meaning that their equivalents rotated by multiples of 90 degrees are also transition rules, and
so are their reflections.

In this paper, we use rules that are totalistic, i.e., that depend only on the number of living cells in the
neighborhood, but not on the center cell’s state. Such rulesare calledinner-independent totalistic. We
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derive the rules in our new model from the rules in the previous model, and on the way allow for some
ad-hoc rules to limit the number of rules that are generated.To this end, we first construct a so-called
semi-totalistic transition rules: these are rules in whichthe neighborhood is divided into nine types of
cells according to the scheme in Fig. 2(b). The domain of the rule table of the semi-totalistic model

(a) (b)

Fig. 2: (a) Moore distance 1 and 2 neighborhood of the cell(i, j) in the non-totalistic model in [6]. The numbers
denote the indices of the cells in the transition rules, likein the left part of Table 1. (b) Moore distance 1, 2, and 3
neighborhood of the cell(i, j) in the semi-totalistic model in this paper. The numbers 1 to 9denote the class to which
each cell in the neighborhood belongs, like in the right partof Table 1.

consists of nine integers corresponding to the classes of the cells in a neighborhood. These nine integers
indicate the number of cells of that class that are alive. Theco-domain of the rule table consists of one
integer that encodes the next state of the cell (0 or 1).

A non-totalistic rule is transformed into a semi-totalistic rule in roughly the following way:

• For every configuration on which a non-totalistic rule is applied, the encoding of the Left-Hand-
Side of the rule as in Fig. 2(a) is written as an encoding as in Fig. 2(b). The Right-Hand-Side of the
rule (0 or 1) remains the same.

• In most cases, this will give a semi-totalistic rule with a unique Left-Hand-Side (see Table 1).

• In case a conflict arises (Fig. 3), i.e., if the same Left-Hand-Side corresponds to rules with two dif-
ferent Right-Hand-Sides (0 and 1), then the configuration onwhich the rules are applied is slightly
adjusted such as to change the Left-Hand-Sides of the rules and make them unique in the rule set.

After the semi-totalistic rules have been obtained, we transform them into totalistic rules. This requires
that for all the possible combinations of nine integers in the rule set, we map each combination into one
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Tab. 1: Transformation of non-totalistic rule of a signal into semi-totalistic rule with Moore neighborhood 1, 2, and
3. Cp,q denotes the cells states in the Moore neighborhood.nk denotes the number of living cells ink (k = 1, ..., 9)
domain.C′ denotes the next state.

No. neighbor stateCp,q C′ nk (k = 1...9) C′

1 0100000001110000000000001 101200200 1
2 1011010100000000001000000 321000000 0
3 0000010000000011010000000 101200100 0
4 0000010000000001010000000 100200100 0
5 0101100000000100000000001 210100000 1
6 0101100000000110000000001 211100000 1

Fig. 3: An example of conflicting rules. The marked cell in the left figure must become 0, and the rule is 312402311:0.
The marked cell in the right figure must become 1, and the rule is 312402311:1.

unique integer, without conflicts occurring. The transition function is expressed in totalistic form in the
following way. A weighted sumX of the number of cells in each class is determined by the equation

X =

9∑

k=1

Wknk (1)

whereWk is the weight for neighborhood cells in classk andnk is the number of such cells in classk
as given by the semi-totalistic transition rule in the rule table. Once we have determined the value of
X , we associate it with an output valueF (X) that encodes the next state of a cell. The main issue in
this transformation is of course to determine suitable weightsWk such that no conflicts in rules arise.
One suitable set of values of the weights are given in table 5 in the Appendix. These values have been
determined by a Genetic Algorithm, which we describe in the next section.

Updates of the cells take place asynchronously, in the way outlined in [2, 6]. According to this scheme,
one cell is randomly selected from the cell space at each update step as a candidate to undergo a transition,
with a probability lying between 0 and 1. If the summation of the neighbors of the selected cell match the
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X-value of a transition rule, the corresponding transition is carried out.

4 Genetic Algorithm
The weights in the totalistic transition function are determined by using the so-calledparameter-free
genetic algorithm (PfGA)[23, 24, 1]. The algorithm merely uses random values or probabilities for
setting almost all genetic parameters. A ‘population’ in the PfGA is defined as a sub-group composed of
individuals, and a population size is the number of the individuals in the population. The procedure of the
PfGA is as follows,

• Step 1: The first individual is generated from a whole search space randomly and is inserted into
the population.

• Step 2: The second individual is generated from a whole search space randomly and is inserted into
the population.

• Step 3: Two parentsP1 andP2 are brought out from the population, and two childrenC1 andC2

are generated by multiple-point crossover operation from the parents. The number of the crossover
points is determined randomly.

• Step 4: Mutation is applied to one of the children at the probability of 1/2, in which a randomly
chosen portion of the chromosome is inverted (i.e., bit-flipped).

• Step 5: By applying this selection rule, one to three selected individuals are pushed back to the
population. If the population size becomes one, return backto Step 2. Otherwise, return back to
Step 3.

There are four different cases in the selection rule depending on the fitness of the parents and the children
as follows,

• Case 1: If both of the fitness values of the children are betterthan those of the parents, both of the
children and the better parent are selected.

• Case 2: If both of the fitness values of the children are worse than those of the parents, the only
better parent is selected as shown in case 2 of the table.

• Case 3: If the fitness of the better parent is better than that of the better child, the better parent and
the better child are selected as shown in case 3 of the table.

• Case 4: If the fitness of the better child is better than that ofthe better parent, the only better child
is selected as shown in case 4 of the table. In this case, the other individual is generated randomly
and is pushed back to the population.

The population size increases in case 1, and decreases in case 2. For the most function to solve, the
occurrence rate of the case 1 is less than that of the case 2. Therefore, the population size does not diverge
infinitely (always less than∼4). The advantages of the PfGA are compact and fast convergence due to the
small population size.
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The genotypes of the nine weights are encoded by nine 16-bit binary strings that are concatenated to
form a string of9× 16 = 144 bits. Mutations are applied to this 144-bit string by using so-calledinverse
mutations. Suppose a string is described as[g(1), g(2), ..., g(i−1), g(i), g(i+1), ..., g(j−1), g(j), g(j+
1), ..., g(143), g(144)], whereg(k) = 0 or 1, and suppose the Genetic Algorithm generates the random
valuesr1 = i andr2 = j with j > i, then these bits and all bits between them are reversed, sog(k)
becomes1 − g(k) for k = i, ..., j. Consequently, the mutated gene then becomes[g(1), g(2), ..., g(i −
1), 1− g(i), 1− g(i+ 1), ..., 1− g(j − 1), 1− g(j), g(j + 1), ..., g(143), g(144)].

The fitness function is expressed as the number of transitionrules, and the algorithm aims to minimize
this number. To this end, for each rule the weighted sumX in (1) is computed. This sum is the base to
divide rules into two classes:

1. Normal rules: these are rules that have the same sumX and the same function valueF (X),

2. Forbidden rules: rules with the same sumX , but a different function valueF (X).

Forbidden rules are penalized by adding the value1000 to the fitness function.
We conducted 100 trials, each consisting of 10000 generations, resulting in a number of rules of 330.

The weights corresponding with these rules are:

W1 = 15012,W2 = 11538,W3 = 13551,

W4 = 8808,W5 = 1804,W6 = −4716,

W7 = −4634,W8 = 18054,W9 = 1612

However, these weights are not unique: other values that give proper evaluations of the totalistic transition
function are also possible.

5 Implementing DI-Circuits on the Totalistic CA
Implementation of SignalsThe propagation of signals over the cell space is governed bythe transition
table (Table.1). Here we use the rule-based notation, rather than the totalistic transition function notation.
The configuration at the left in Fig. 4 will transform throughthese rules via intermediate configurations
into the configuration at the right in the figure, which is the same configuration as the left one, but then
shifted one cell to the right.

The transition rules are designed such that they can only be applied in a strictly defined sequential order,
even if the update mode is asynchronous. This ensures the reliability of signal propagation or any other
operations involved in computation [4]. The design of rulesalso takes into account the case in which two
subsequent signals appear on the same signal line (not shownhere). In this case the two signals will not
interfere with each other and keep a distance of at least three cells between them.

Implementation of Modules The three modules introduced in section 2 are represented onthe cell
space by the configurations in Fig. 5.

The configuration of the P-Merge in Fig.5(a) processes one ortwo input signals as shown in Fig. 6. The
rule table is not shown here, but the final rule function is given by Appendix.

The configuration of the Fork in Fig.5(b) processes one inputsignal as shown in Fig. 7. The rule table
is not shown here, but the final rule function is given by Appendix.

The configuration of the R-Counter in Fig.5(c) processes oneor two signals as shown in Fig.8. The
rule table is not shown here, but the final rule function is given by Appendix. Fig.8(a) illustrates the case
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Fig. 4: The basic configuration of a signal (left figure) is transformed under the direction of transition rules 1 to 6
through the steps to the same configuration (right figure) shifted one cell to the right.

(a) (b) (c)

Fig. 5: Configurations of the primitive modules. (a) P-Merge, (b) Fork, and (c) R-Counter.
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Fig. 6: (a) Processing of one single signal by the P-Merge. (b) Processing of two signals by the P-Merge.

Fig. 7: Processing of a signal by the Fork, giving two output signals.
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Fig. 8: Processing of signals by the R-Counter. (a) A signal input from the left line becomes a pending signal stuck
inside the R-Counter. (b) Mod-2 Counter functionality: a second signal from the left input line results in a signal
output to the line at the right. (c) Reset functionality: input from a reset signal to an R-Counter containing a pending
signal results in (d) a signal output to the line at the top. When there are two input signals in addition to a pending
signal already input from the left, the R-Counter has the choice between two possible operations. The operation
illustrated here is the Mod-2 counting operation.
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in which a single signal is input to the left line of the R-Counter. This signal will remain stuck in the
R-Counter—we say that the signal is pending—while no further processing takes place until one more
signal is received.

When one more signal is received from the same input line (Fig. 8(b)) an output signal is produced (at
the right), whereby the R-Counter reverts to its initial configuration (Mod-2 Counter functionality).

When a Reset signal is input to the R-Counter in which a signalis pending (Fig. 8(c)), an output signal
is produced from the line at the top, whereby the R-Counter reverts to its initial configuration (Reset
functionality).

When there are signals at both input lines, while a signal input from the left is already pending, then the
R-Counter has the choice to produce either of the outputs, i.e., the output at the right line or the output at
the top line. One signal remains pending in both cases, but the line at which it remains pending depends on
the choice made by the R-Counter. Fig. 8(d) shows the case in which the R-Counter chooses to conduct the
Mod-2 counting operation, leaving the reset signal pending. The choice as to what operation is conducted
by the R-Counter is arbitrary. We refer to the ability to makesuch a choice asarbitration.

In addition to the condition that the set of primitive modules is universal, it is necessary to ensure that
the primitive modules can be laid out on the cell space such asto form circuits. For this it is necessary
to form curves on the cell space to turn a signal left and right. Fortunately, this is an easy task, because
it can be implemented by the P-Merge. One more structure thatis required to form circuits is a signal
crossing. Assuming that signals lack an inherent ability tocross each other, we resort to the design of a
circuit specialized for this task. This circuit, shown in Fig. 9, consists of merely one R-Counter, two Forks
and two P-Merges. This way of using the arbitration functionality of the R-Counter is much simpler than
previously reported in literature [21], making the resulting circuit for signal crossings relatively small.

O

O

2

1I 1

I 2

(a) (b)

Fig. 9: (a) Circuit to cross signals without the need to intersect wires. A signal onI1 will be directed toO1, whereas
a signal onI2 will be directed toO2. Simultaneous signals onI1 and I2 will be processed correctly, due to the
arbitration functionality of the R-Counter. (b) Implementation of the crossing circuit on the ACA. The circuit is
mapped on the cell space, while its topology is preserved.
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The configurations of the modules thus allow us to simulate turns to the right and left of signals, as well
as crossings of signals. Unlike the synchronous CA model in [5], difficult issues concerning the signal
phase and the periodicity of signals on the cell space do not occur in the proposed ACA model: there
is an almost unlimited freedom in laying out modules on the cell space, which is only restricted by the
underlying DI circuit topology. In other words, it is quite straightforward to construct any arbitrary DI
circuit on the cell space.

Next example the S-module (1-bit memory) as shown in Fig. 10 and Fig. 11.

T

S1

S0

S’1

S’0

T1

T0

Fig. 10: Circuit of an S-module (1-bit memory).
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Fig. 11: Implementation of an S-module on the ACA.
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6 Conclusions and Discussion
This paper proposes a 2-dimensional 2-state ACA with inner-independent totalistic rule, meaning that
a cell’s update does not depend on its own state but only on a linear combination of the states of the
neighboring cells. The model is proved computational universal by showing how a universal set of three
primitive modules can be embedded on the cell space. Since the primitive modules have at most four input
or output lines each, this embedding fits well into the squarelattice topology of the cell space.

The number of required transition rules in both rule table and rule function is 330, which is relatively
high, when compared to other ACA models. Physical realizations of ACA models tend to require less
rules, which is a strong motivation to reduce the number of rules in the model. This study, however, should
be interpreted as the first proposal in which totalistic inner-independent transition rules are combined with
an asynchronous mode of updating. The transition rules and cell configurations resemble those in [6].
This is a direct consequence of the totalistic rules being derived in a mostly systematic way from the
non-totalistic rule. Without the ad-hoc elements includedin our method, we would end up with a rule
set that is many time bigger. Reducing this rule set, while being fully able to automate the method is a
follow-up step that we consider. In general for such an automated approach to work, the neighborhood
size employed by the resulting rule set will be larger than that of the original rule set, because of the
need to avoid conflicting rules. Because of this, the number of rules will tend to increase in the rule
transformation process.
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Appendix: Tables of Transition Rules

Tab. 2: Semi-totalistic rules (part 1).

No. nk C′ No nk C′ No nk C′ No nk C′

Signal
1 101200200 1 2 221110000 1 3 222110000 1 4 341000000 0
5 102210100 0 6 101210100 0

P-Merge
7 101200220 1 8 101200420 1 9 101210200 0 10 101210201 0
11 101211211 0 12 101220220 1 13 101311220 0 14 101311221 0
15 101311222 0 16 101420110 1 17 101420111 1 18 101420410 1
19 102210200 0 20 102210201 0 21 102211211 0 22 102311121 0
23 102311221 0 24 112420210 0 25 112420211 0 26 112420231 0
27 113420210 0 28 121310210 0 29 121610310 1 30 122211111 0
31 122310220 1 32 122310230 1 33 141642000 1 34 203421420 0
35 203421520 0 36 212522230 1 37 221111111 1 38 221211121 1
39 222111101 1 40 222111111 1 41 222211121 1 42 222211122 1
43 222221021 1 44 223221120 1 45 223622420 1 46 223622520 1
47 231210110 1 48 232210110 1 49 232210111 1 50 232210131 1
51 232620320 0 52 242641200 0 53 313522430 1 54 321313421 0
55 321313431 0 56 321323532 0 57 322313421 0 58 322320220 0
59 322420120 0 60 322710420 1 61 323310410 1 62 331112311 1
63 331112321 1 64 331122422 1 65 331202211 1 66 332220111 1
67 332320221 1 68 332511420 1 69 333320200 1 70 333421120 1
71 333421220 1 72 333421300 1 73 334421220 0 74 334421320 0
75 341000020 0 76 341000220 0 77 341021220 0 78 341220210 0
79 341221210 0 80 341410010 0 81 341411210 0 82 341420000 0
83 341420001 0 84 343201220 0 85 343201230 0 86 424410410 1
87 433521130 0

Fork
88 101211221 0 89 101220221 1 90 101420231 1 91 101420400 1
92 102211221 0 93 111320222 0 94 112320222 0 95 112321310 0
96 113320221 0 97 121600200 1 98 122421331 1 99 222221020 1
100 222621130 1 101 223221020 1 102 223621130 1 103 223623440 0
104 231221121 1 105 232211220 1 106 312323331 0 107 312413321 0
108 322601420 1 109 323201400 1 110 331212311 1 111 332212432 1
112 332220100 1 113 333220100 1 114 341020220 0 115 341220200 0
116 341400222 0 117 341420110 0 118 342421220 0 119 343310220 0
120 343522230 0 121 344522230 0
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Tab. 3: Semi-totalistic rules (part 2).

No. nk C′ No nk C′ No nk C′ No nk C′

R-Counter
122 001220221 0 123 001221242 0 124 022622400 0 125 022622401 0
126 022622410 0 127 022622510 0 128 041741484 0 129 041741584 0
130 042603620 1 131 042603630 1 132 101200222 1 133 101200422 1
134 101210211 0 135 101210221 0 136 101211110 0 137 101211311 0
138 101220442 1 139 101221242 1 140 101320221 0 141 101321221 0
142 101321231 0 143 101420442 1 144 101421440 1 145 101421441 1
146 101620641 1 147 101621640 1 148 102210211 0 149 102211110 0
150 102211311 0 151 102320221 0 152 102320231 0 153 102321231 0
154 111321321 0 155 111321332 0 156 111411321 0 157 111421331 0
158 112321321 0 159 113422210 0 160 113422310 0 161 120311221 0
162 120311222 0 163 121311221 0 164 121421640 1 165 122431321 0
166 122431322 0 167 122431331 0 168 122431332 0 169 122602620 0
170 122602630 0 171 123422130 0 172 123423200 1 173 123423201 1
174 123423310 1 175 123431321 0 176 123622410 1 177 123622510 1
178 132432331 1 179 133432331 1 180 133432332 1 181 140841484 0
182 140842484 0 183 141641284 1 184 141642284 1 185 201200422 0
186 202423200 0 187 202423201 0 188 202640642 0 189 202640742 0
190 212311110 0 191 212311210 0 192 212512220 0 193 212512241 0
194 213511210 0 195 220311221 0 196 220311222 0 197 221110111 1
198 221111221 1 199 221220121 1 200 222110111 1 201 222110121 1
202 222111221 1 203 222220121 1 204 222231131 1 205 222313421 1
206 222422220 1 207 222423220 1 208 223231131 1 209 223323230 1
210 223333130 0 211 223412220 1 212 223412230 1 213 223422120 0
214 223502321 1 215 223623210 1 216 224423400 1 217 224423401 1
218 224432120 0 219 224433120 0 220 231321221 1 221 231421231 1
222 232213321 1 223 232213331 1 224 232213431 1 225 232223432 1
226 232223532 1 227 232321221 1 228 232321322 1 229 232331231 1
230 232412421 0 231 232421221 1 232 233213321 1 233 233223432 1
234 233331221 1 235 233332231 1 236 241841284 1 237 243502521 0
238 243603420 0 239 243603430 0 240 243603521 0 241 304641642 0
242 304641742 0 243 321402411 1 244 321421231 1 245 322402411 1
246 322402421 1 247 322412422 1 248 322421231 1 249 322741562 0
250 323403420 1 251 323403430 1 252 323422210 0 253 323422220 0
254 323422221 0 255 323422241 0 256 323441242 1 257 323441342 1
258 323503521 1 259 323522241 1 260 323542452 0 261 323622400 1
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Tab. 4: Semi-totalistic rules (part 3).

No. nk C′ No nk C′ No nk C′ No nk C′

R-Counter
262 323622401 1 263 323623200 1 264 323623201 1 265 323641642 1
266 323641742 1 267 323702721 1 268 323702731 0 269 324422220 0
270 330221331 1 271 332411210 1 272 332412411 0 273 332413331 1
274 332422210 1 275 332422522 0 276 332431221 1 277 333313321 1
278 333341352 1 279 333411210 1 280 333411211 1 281 333411220 1
282 333411231 1 283 333412411 0 284 333421110 1 285 333422310 1
286 333423310 0 287 333431221 1 288 333431222 1 289 333441352 1
290 333442652 1 291 334421110 1 292 334421111 1 293 334421131 1
294 341000222 0 295 341001000 0 296 341001022 0 297 341020242 0
298 341021242 0 299 341100220 0 300 341201022 0 301 341220242 0
302 341220441 0 303 341221440 0 304 341321441 0 305 341421440 0
306 342021042 0 307 342220042 0 308 342313321 0 309 342313331 0
310 342323432 0 311 342602420 0 312 342602430 0 313 343313321 0
314 343422200 0 315 343422201 0 316 343602620 1 317 343602630 1
318 344403420 0 319 344403430 0 320 344422200 0 321 344422201 0
322 413422220 0 323 414432220 0 324 423641442 0 325 430221331 0
326 433532210 1 327 433532220 1 328 433612421 0 329 433642352 0
330 434410410 1 331 434521220 1 332 444613331 0
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Tab. 5: Totalistic transition rules.

X F (X)

38715 40327 43349 49031 52266 53665 53878 56687 56900 58381
62582 63227 67216 70238 71719 71932 72550 74162 76435 78666
78915 80278 80527 81987 82139 82331 83120 85270 87047 88653
89235 90052 91664 92086 94078 94926 96231 96239 96720 98712
100023 100197 100385 100598 100763 100962 101278 102786 102890 103603
104739 105064 105397 105596 106676 108901 113748 113936 114829 114927
116097 116695 116910 117739 118652 122373 124936 125687 126548 128478
130033 130382 130471 131579 131763 131916 132129 132981 134749 134803 0
134964 135187 135486 138487 138528 138998 139355 140387 140847 141432
142990 143579 144602 145191 145845 146959 149037 149147 149358 151981
152086 152322 153042 153593 154635 156188 156971 156999 157677 159829
160192 160969 164826 165013 165274 165528 165532 165987 166625 167144
168487 169636 169739 169803 169990 170035 170079 170402 171581 173024
173101 174242 174519 174927 178564 179254 179278 181255 183842 184048
184325 185347 186909 189635 189741 190184 191155 192135 192543 192622
194818 197332 197590 199719 202102 202224 202733 214951 214954 225547
227775 228502 236029 242780 247748 251569 256203 261756 265539 266472
36911 48867 63751 66921 66975 73019 76243 76627 77263 78239
80823 82435 83076 87579 90814 92295 94165 95219 95777 100145
100999 101130 103129 105846 106691 107585 108593 108953 110443 111029
111243 111783 113460 113466 113909 114441 114550 115072 116367 116981
117979 118199 120258 120649 120830 120961 122144 123342 123900 124307
124580 124715 125283 125347 126192 127783 127992 129604 130175 131043
131734 131957 132818 133032 133284 134250 134381 134430 134512 136450
136511 136893 137253 137666 138030 138312 138865 138884 140198 140525 1
141067 141186 141735 141805 142486 143008 143417 143614 144847 144946
145508 146369 147421 147858 148197 149654 149812 151217 151774 152179
153207 153715 153863 154316 154531 155590 158201 158349 158819 160863
160918 161409 162293 162300 163021 163205 163363 164975 165236 165366
165452 165475 166251 166271 167847 171069 171132 171512 173882 174201
175844 176246 179463 181267 181398 181470 183010 183561 184121 184683
185420 185901 186295 195021 199129 201615 202175 207115 208035 211541
211749 212669 218638 219009 219118 228819 237627 266959 271675 304303
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In this paper we continue the study of the asymptotic dynamics of fuzzy cellular automata (FCA) concentrating on a

class of FCA rules called self-averaging rules. We begin with the elementary case. We know that all self-averaging

rules converge to 1

2
starting from configurations with values in (0, 1); we now start the study of how fuzziness

propagate in a binary CA by showing that indeed the presence of a single fuzzy value is sufficient to force some

rules of this class to converge to 1

2
. We also study the way in which self-averaging rules converge, and we show that

their fluctuations around 1

2
obey, in a specific sense, a Boolean rule. We then turn our attention to the more general

case of larger neighbourhoods and higher dimensions. We show the same tendency to 1

2
and describe propagation of

fuzziness in a class of rules. We also describe their asymptotic behaviour using a generalisation of the elementary

results.

Keywords: fuzzy cellular automata, asymptotic behaviour, convergence, continuous cellular automata.

1 Introduction

Discrete dynamical systems known as cellular automata (CA) were first introduced by Von Neumann

as models of self-organizing/reproducing behaviours (21). Since then, they have come to be used in

fields as divergent as ecology and theoretical computer science(e.g., see (5; 14; 22)). CA are discrete

in space, time and state. Kaneko introduced a modification, continuous cellular automata (or coupled

map lattices), which were discrete in space and time, but continuous in state. They were conceived of

as simple models exhibiting spatio-temporal chaos, and now have applications in many different areas

including fluid dynamics, biology, chemistry, etc. (e.g., (12; 13)).

Introduced in (6; 7) to study the impact that state-discretization has on the behaviour of these sys-

tems, fuzzy cellular automata (FCA) are a particular type of continuous cellular automata where the local

transition rule is the “fuzzification” of the local rule of a corresponding Boolean cellular automaton in

disjunctive normal form(i). They have since gained currency as a modeling tool in pattern recognition

(e.g., see (15; 16; 17)), and to mimick nature (e.g. (8; 20)), and have been used to investigate the effect

(i) These are not to be confused with a variant of cellular automata, also called fuzzy cellular automata, where the fuzziness refers

to the local rule (e.g., see (1))
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of perturbation (e.g. noisy source, computational error, mutation, etc.) on the evolution of Boolean CA

(11). The asymptotic dynamics of elementary FCA (i.e., with dimension and radius one) has been ob-

served through simulations in (9) where an empirical classification has been proposed. The asymptotic

behaviour of some FCA rules has only recently been analytically studied (e.g., see (4; 10; 18; 19)); in

particular it has been shown in (18; 19) that none has a chaotic dynamics, thus supporting the empirical

evidence of (9). Finally, methods for controlling the dynamics of fuzzy rule 90 have been investigated in

(23).

In order to study the behaviour of FCA and its relationship to the behaviour of the corresponding

Boolean rules, particular classes of elementary Fuzzy CA with common properties have been identified

(for example, weighted average rules, self-averaging rules, generalized majority rules) (4; 3). Of particu-

lar interest are the results concerning self-averaging rules whose analytical form, in the elementary case,

is as follows: f(x, y, z) = f ′(y, z)x+ (1− f ′(y, z))(1− x) (analogously for variables y and z) for some

function f ′. We know that self-averaging rules with initial values in (0, 1) converge to 1
2 . Moreover, it

has been shown in (3) that when the variable averaged is y they correspond to Boolean additive rules,

and they are the only rules displaying a peculiar self-oscillating behaviour around the fixed point (earlier

observed in rule 90 (10)): their dynamics around their convergence point of 1
2 obey the rule table of the

corresponding Boolean rule.

In this paper we continue the study of this class of rules in infinite CA with any dimension and neigh-

borhood.

We first focus on elementary self-averaging rules and we study their asymptotic behaviour when the

initial configuration contains some Boolean and some fuzzy values. We know that when the initial config-

uration is fully Boolean they all display complex dynamics; when it is fully fuzzy (i.e., values are in the

open interval (0, 1)) they all converge to 1
2 . We start the study of how fuzziness propagate in a binary CA

by showing that indeed the presence of a single fuzzy value is sufficient to force some rules of this class

to converge to 1
2 . We also conclude the study on the way in which self-averaging rules converge showing

that each behaves in the proximity of 1
2 following a simple CA rule and observing that such behaviour can

also be observed in the corresponding Boolean rule, hidden in apparent complexity.

We then generalize some of the results on convergence and oscillation for larger neighbourhoods and

higher dimensions. We show that fully fuzzy configurations will converge to 1
2 and give sufficient condi-

tions for a single fuzzy value causing an entire system to converge to 1
2 . Although it is difficult to provide

an exhaustive description of the asymptotic fluctuations for this infinite class of rules, we do provide

generalizations of the results obtained for the elementary rules and a framework for understanding what

happens in the arbitrary case.

2 Definitions

A d-dimensional infinite Boolean cellular automata can be described by a quadruple C〈Zd, {0, 1}, N, g〉
where: Z

d represents the set of cells; {0, 1} is the set of possible Boolean states of the cells; N is the

neighbourhood of a cell and can be defined in different ways but usually contains the cell itself plus the

neighbouring cells up to a certain radius; and g : {0, 1}|N | → {0, 1} is the local function, also called the

rule of the automaton. Given an initial configuration, C0, that is, a mapping C0 : Z
d → {0, 1}, cell states

are synchronously updated at each time step by the local function applied to their neighbourhoods. A

configuration is the resulting map Ct : Z
d → {0, 1} at any time t. A finite d-dimensional Boolean cellular

automaton has a finite number of non-zero states in an infinite quiescent background. So Ct(z) = 0 for
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all but finitely many z ∈ Z
d. Circular cellular automata can be thought of as infinite CA with a periodic

repeating pattern, or as a finite circular d-dimensional grid.

The local rule g of a Boolean CA is typically given in tabular form by listing the 22q+1 binary tuples

corresponding to the 22q+1 possible local configurations a cell can detect in its direct neighbourhood, and

mapping each tuple to a Boolean value ri (0 ≤ i ≤ 22q+1 − 1): (00 · · · 00, 00 · · · 01, . . . . . ., 11 · · · 10,
11 · · · 11)→ (r0, · · · , r22q+1). The binary representation (r0, · · · , r22q+1) is often converted into the dec-

imal representation
∑
i ri, and this value is typically used as the “name” of the rule (or rule number). Let

us denote by di the tuple mapping to ri, and by T1 the set of tuples mapping to one. The local rule can

also be canonically expressed in disjunctive normal form (DNF) as follows:

g(v−q, · · · , vq) =
∨

i<22q+1

ri
∧

j=−q:q
v
di,(j+q)

j

where dij is the j-th digit, from left to right of di (counting from zero) and v0
j (resp. v1

j ) stands for ¬vj
(resp. vj) i.e.

∧
j=−q:q v

di,(j+q)

j will be equal to one precisely when v−q · · · vq viewed as a single binary

number is equal to di. Cellular automata with dimension and radius one are called elementary.

A fuzzy cellular automaton (FCA) is a particular continuous cellular automaton where the local rule is

obtained by DNF-fuzzification of the local rule of a classical Boolean CA. The fuzzification consists of a

fuzzy extension of the Boolean operators AND, OR, and NOT in the DNF expression of the Boolean rule.

Depending on which fuzzy operators are used, different types of fuzzy cellular automata can be defined.

Among the various possible choices, we use the following: (a ∨ b) is replaced by max{1, (a + b)}(ii),

(a ∧ b) by (ab), and (¬a) by (1 − a). Whenever we talk about fuzzification, we are referring to the

DNF-fuzzification defined above. The resulting local rule f : [0, 1]2q+1 → [0, 1] becomes a real function

that generalizes the canonical representation of the corresponding Boolean CA:

f(v−q, · · · , vq) =
∑

i<22q+1

ri
∏

j=−q:q
l(vj , di,j+q) (1)

where l(a, 0) = 1− a and l(a, 1) = a.

Consider, for example, elementary CA 18 whose local transition rule in tabular form is given by:

(000, 001, 010, 011, 100, 101, 110, 111)→ (0, 1, 0, 0, 1, 0, 0, 0). The local transition rule can also be writ-

ten in DNF form as: g(v−1, v0, v1) = (¬v−1 ∧ ¬v0 ∧ v1) ∨ (v−1 ∧ ¬v0 ∧ ¬v1), and the corresponding

fuzzification is: f(v−1, v0, v1) = (1− v−1)(1− v0)v1 + v−1(1− v0)(1− v1).
Throughout this paper, we will denote local rules of Boolean CA by g and their fuzzifications for the

corresponding FCA by f . For any
−→
i ∈ Z

d, we will further denoteCt(
−→
i ) by xt−→

i
, whereCt : Z

d → [0, 1]

in the fuzzy case. When there is no confusion, as in the 1-dimensional case, the vector notation will be

omitted.

A rule is said to converge to an homogeneous configuration (. . . p, p, p, . . .) if, starting from an initial

configuration (. . . , x0
i−1, x

0
i , x

0
i+1 . . .) with x0

i ∈ (0, 1) for all i, we have that ∀ǫ > 0 ∃T such that ∀t > T

and ∀i: |xt
i − xt+1

i | < ǫ. In this case, we will say that rule f converges to p.

In this paper, we are interested in the behaviour of self-averaging rules, a particular class of fuzzy CA.

Self-averaging rules can be written as the weighted average of one of their variables with its negation as

(ii) note that, in the case of FCA, max{1, (a + b)} = (a + b)
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follows (where xi is the variable being averaged):

f(x0, · · · , xn−1)f
′(x0, · · · , xi−1, xi+1, · · · , xn−1)xi+

(1− f ′(x0, · · · , xi−1, xi+1, · · · , xn−1))(1− xi).
Note that the function f could be the local function for a large 1-dimensional neighbourhood or for a

neighbourhood of larger dimension. In the particular case of elementary FCA, we have: f(x, y, z) =
f ′(y, z)x + (1 − f ′(y, z))(1 − x) (analogously for variables y and z). For example, elementary rule

30 can be written as: [(1 − y)(1 − z)]x + [(1 − y)z + y(1 − z) + yz](1 − x) and it is easy to see

that, in this case, f ′(y, z) = (1 − y)(1 − z). A two-dimensional example would be the following rule:

f(xi,j , xi,j+1, xi+1,j , xi,j−1, xi−1,j) = f40(xi,j+1, xi+1,j , xi−1,j)xi,j +f216(xi,j+1, xi+1,j , xi−1,j)(1−
xi,j) where f40 and f216 are the complementary elementary functions. Note that in this example xi,j−1

is a dummy variable since its value does not affect the result of the function. Table 1 contains all the

elementary self-averaging rules where x̄ indicates the value (1− x).

Rule Equation

f60(x, y, z) ≡ f102, f153, f195 (x̄)y + (x)ȳ
f90(x, y, z) ≡ f164 (x̄)z + (x)z̄

f105(x, y, z) (x̄y + xȳ)z + (x̄ȳ + xy)z̄
f150(x, y, z) (x̄z̄ + xz)y + (x̄z + xz̄)ȳ

f30(x, y, z) ≡ f86, f135, f149 (ȳz̄)x+ (ȳz + yz̄ + yz)x̄
f45(x, y, z) ≡ f75, f89, f101 (ȳz)x+ (ȳz̄ + yz̄ + yz)x̄
f106(x, y, z) ≡ f120, f169, f225 (x̄ȳ + x̄y + xȳ)z + (xy)z̄
f154(x,y,z) ≡ f166, f180, f210 (x̄y + x̄ȳ + xy)z + (xȳ)z̄

f108(x, y, z)≡ f201 (x̄z̄ + x̄z + xz̄)y + (xz)ȳ
f156(x,y,z) ≡ f198 (x̄z̄ + x̄z + xz)y + (xz̄)ȳ
f54(x, y, z) ≡ f147 (x̄z̄)y + (x̄z + xz̄ + xz)ȳ
f57(x, y, z) ≡ f99 (x̄z)y + (x̄z̄ + xz̄ + xz)ȳ

Table 1: Self-averaging elementary fuzzy CA rules.

3 Elementary Self-Averaging Rules

3.1 Convergence

In (2), we showed that from an initial configuration on (0, 1) all self-averaging rules will converge to
1
2 . We are now interested in their asymptotic behaviour when the initial values are in the closed interval

[0, 1]. In (18), Mingarelli proved the convergence to 1
2 for some of the rules considered here for finite

configurations in quiescent backgrounds (i.e., entirely consisting of cells in state 0s). In other words, we

would like to see to what extent the presence of continuous values influences the dynamics of these rules.

In fact, for some self-averaging rules we will see convergence to 1
2 even with a single initial fuzzy value.

Similar results hold for rules 60 and 90. We first state two simple lemmas.

Lemma 1 Given x ∈ (0, 1) then αx+ (1− α)(1− x) ∈ (0, 1) for all α ∈ [0, 1].
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PROOF Without loss of generality, assume x ≤ 1− x then x ≤ αx+ (1− α)(1− x) ≤ 1− x:

αx+ (1− α)(1− x) ≤ α(1− x) + (1− α)(1− x) = (1− x) < 1,

and

αx+ (1− α)(1− x) ≥ αx+ (1− α)x = x > 0.

Lemma 2 Given α ∈ (0, 1) and x ∈ [0, 1] then |(αx+ (1− α)(1− x))− 1
2 | < |x− 1

2 |.
PROOF Without loss of generality, assume x < 1 − x and let x = 1

2 − ǫ for some ǫ ∈ [0, 1
2 ]. Then

1− x = 1
2 + ǫ. So |x− 1

2 | = ǫ and we need to show that |(αx+ (1− α)(1− x))− 1
2 | < ǫ.

|(αx+ (1− α)(1− x))− 1

2
| = |α(

1

2
− ǫ) + (1− α)(

1

2
+ ǫ))− 1

2
|

= |1
2

+ ǫ− 2αǫ− 1

2
|

= |ǫ− 2αǫ|
= |1− 2α|ǫ
< ǫ

The following convergence theorem holds for self-averaging rules which are permutive in every vari-

able.

Theorem 1 A single non-binary value in the initial configuration is sufficient to force convergence to 1
2

for rules f105 and f150.

PROOF We assume that we have one non-binary value in our initial configuration at x0
0. First note that,

for rules 105 and 150, we can write these equations as self-averaging rules of any of their three variables.

So the equations for x0
−1, x0

0, and x0
1 can all be written in the αx + (1 − α)(1 − x) where α ∈ {0, 1}

and x ∈ (0, 1). Then by Lemma 1 all three of these values must be fuzzy. Thus for any given cell i,
xti ∈ (0, 1) for all t ≥ |i| and the convergence follows from (2).

We now turn to rule 90. In this case a single fuzzy value does not force the entire CA to converge to 1
2 ,

but it makes half of the cells converge. We can show that for total convergence we need two strategically

placed fuzzy values.

Theorem 2 Given rule 90 and an initial configuration (· · · , x0
−1, x

0
0, x

0
1, · · ·) with one i such that value

x0
i is in (0, 1), every other value converges to 1

2 along a diagonal.

PROOF First note that if xti is in (0, 1) then xt+1
i−1 and xt+1

i+1 are in (0, 1). This follows from Lemma 1

and the following equations: xt+1
i−1 = x̄ti−2x

t
i + xti−2x̄

t
i, and xt+1

i+1 = x̄tix
t
i+2 + xtix̄

t
i+2. Furthermore,

the sequence xti, x
t+1
i+1, xt+2

i+2,. . . converges to 1
2 by Lemma 2, noting that we can assume that the value

of |1 − 2α| in the proof will be less than |1 − 2xti|. Now assume, renumbering if necessary, that our

initial fuzzy value was x0
0. Then for any i, x

|i|
i is in (0, 1) from the equations above, hence forms part of

a convergent sequence as described.



178 Heather Betel and Paola Flocchini and Ahmed Karmouch

Theorem 3 Given an initial configuration X = (· · · , x0
−1, x

0
0, x

0
1, · · ·) with at least one even number i

and one odd number j such that the values x0
i and x0

j (that is, 2 values that are an odd number of spaces

apart) are in (0, 1), rule 90 converges to 1
2 .

PROOF Assume that the even value is 0. Then as in the proof above, at time t = 1, x1
−1 and x1

1 will both

be in (0, 1). At t = 2, x2
−2, x2

0 and x2
2 will all have fuzzy values. Continuing on in this way, we see that

for any i xti will have a fuzzy value for all t ≥ i such that the party of t and i are the same. Similarly, if we

also have a fuzzy value with odd index, for all i there exists a T such that xti has a fuzzy value whenever

t > T and i and t have opposite parity. Hence all values must converge to 1
2 .

Note that in a circular CA of odd length, a single fuzzy value would be sufficient for rule 90 to converge

to 1
2 because every cell can be seen as being an even distance from every other cell; with a circular CA of

even length the results of Theorem 3 would apply.

For rule 60, the results are a little different. With only a finite number of non-binary values, we can

only show that rule 60 converges to 1
2 to the right of all such values.

Theorem 4 Given fuzzy rule f60 and at least one non-binary value in the initial configuration at x0
i , then

for all j > i xtj will converge to 1
2 as t→∞.

PROOF By Lemma 1, xti will remain in (0, 1) for all t. Now since xti is the weighting factor in the

calculation of xt+1
i+1, for all t > 0 xti+1 will be a fuzzy value. In fact, for any j > i, for any t ≥ j − i,

xtj will be a fuzzy value and by Lemma 2, they will all be converging to 1
2 since the value of |1 − 2α| is

decreasing at each iteration.

Corollary 1 Given fuzzy rule f60 and an initial configuration such that for all i there exists a j < i such

that x0
j is non-binary, then this configuration will converge to 1

2 everywhere. In particular, given a single

non-binary value in a circular CA, all values will converge to 1
2 .

Again note that in a circular CA, since there is no notion of left and right, a single value is enough to

force convergence everywhere.

3.2 Behaviour around the Fixed Point

We are now interested in the way in which each of these rules converges to 1
2 . In this section, we show

that if we are close enough to the point of convergence, we can determine if the output, f(x, y, z) will be

greater than or less than 1
2 based on the individual values of x, y, and z and their relationship to 1

2 . In the

range for which this relationship is fixed, we can write the results as a truth table with greater than and

less than symbols. If we then interpret the less than symbols as 0s and the greater than symbols as 1s, we

can deduce the equivalent binary behaviour of these rules as they approach 1
2 .

In (2), we began the discussion of the behaviour of the self-averaging rules as they approached the point

of convergence. We now conclude it by describing how they fluctuate according to an elementary CA rule.

These rules can be divided into two categories: those where the variable averaged is y can be shown to be

all the elementary additive rules, and in (3) it has been shown that such rules are self-oscillating, that is,

the truth table of their behaviour in proximity to their fixed point can be constructed from the truth table

for the rule itself simply by replacing 0s with ”<” and 1s with ”>”. The remaining rules behave as an

entirely new rule in the proximity of 1
2 , a shift, an inversion or a combination of both. We sketch the proof

for two of these rules, f108 and f156; the corresponding behaviour for the others is reported in Table 3.

To begin, observe that if x and y are in (1−
√

2
2 ,

√
2

2 ), then xy, x̄y, xȳ, x̄ȳ are less than 1
2 .
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Lemma 3 αβ + ᾱβ̄ is greater than 1
2 if and only if both β and α are greater than 1

2 or both are smaller.

x y z f108|156 x y z g204
< < < < 0 0 0 0

< < > < 0 0 1 0

< > < > 0 1 0 1

< > > > 0 1 1 1

> < < < 1 0 0 0

> < > < 1 0 1 0

> > < > 1 1 0 1

> > > > 1 1 1 1

Table 2: Rules 108 and 156: fluctuations around 1

2

Theorem 5 Rule f108 converges to 1
2 , its fluctuations around 1

2 obeying Boolean rule g204.

PROOF We recall rule 108 in the form of a self-averaging rule:

(x̄z̄ + x̄z + xz̄)y + (xz)ȳ.

If we let α = x̄z̄ + x̄z + xz̄ and β = y, then from Lemma 3 f(x, y, z) is greater than 1
2 if y > 1

2 and

x̄z̄ + x̄z + xz̄ > 1
2 or y < 1

2 and x̄z̄ + x̄z + xz̄ < 1
2 . But x̄z̄ + x̄z + xz̄ > 1

2 if and only if xz < 1
2 .

From the observation above, for x, z ∈ (1−
√

2
2 ,

√
2

2 ), xz is always less than 1
2 so x̄z̄+ x̄z+ xz̄ is always

greater than 1
2 . Hence, under these conditions on x, z, f108(x, y, z) >

1
2 if and only if y > 1

2 . In other

words, rule 108 fluctuates around 1
2 obeying Boolean rule 204, g(x, y, z) = y.

Analogously we obtain:

Theorem 6 Rule f156 converges to 1
2 , its fluctuations around 1

2 obeying Boolean rule g204.

Rule behaviour around 1
2

f60 g60
f90 g90
f105 g105
f150 g150

Rule behaviour around 1
2

f30 g15(x, y, z) = x̄
f45 g15(x, y, z) = x̄
f106 g170(x, y, z) = z
f154 g170(x, y, z) = z
f108 g204(x, y, z) = y
f156 g204(x, y, z) = y
f54 g51(x, y, z) = ȳ
f57 g51(x, y, z) = ȳ

Table 3: CA-like behaviour around the fixed point of self-averaging elementary fuzzy CA rules (the rules equivalent under conju-

gation, reflection, or both are not indicated).
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3.3 Observations

Let us now reconsider the Boolean rules in light of the asymptotic behaviour of their fuzzy equivalents. We

have seen that the auto-fluctuating rules continue to exhibit the same behaviour as their binary equivalents

even as they converge. But what about the other rules? Can their convergent behaviour be seen in anyway

in their corresponding Boolean rules? In fact, testing has shown that the same convergent behaviour as

we have described here does occur. Line by line comparisons of Boolean rules 30, 45, 106, 154, 108, 156,

54, and 57 with the Boolean equivalent of the asymptotic functions of their fuzzy rules (that is, rules x̄, x̄,

z, z, y, y, ȳ, and ȳ, respectively) show that they agree with these rules over 84% of the time, starting from

random initial configurations.

Consider rules 106 and 154 illustrated in Figure 1. There is clearly, in both of them, a strong component

of the rule z to which f106 and f154 converge. Rule 57 in Figure 2 appears to converge to z as well.

However, this rule will sometimes have strong z components and sometimes strong x components. In

fact, what it appears to be converging towards is a grid pattern (. . . 10101010 . . .) with “errors”. The

behaviour of such a pattern under rules x ȳ and z is identical. Anomalies in the grid of the form 010010
are mapped to 101001 which appears to obeying f(x, y, z) = x but can equally be seen as an error or

exception to the rule f(x, y, z) = ȳ, while anomalies of the form 101101 map to 011010 which can again

be either z or ȳ with errors. Although rules 30 and 45 appear to be almost completely random, from the

testing described above we observe that they obey x̄ (i.e., xti = x̄t) more than the 84.80 and 84.92 percent

of the time, respectively, which is considerable. Rules 108 and 156, by contrast, can easily be seen to

converge quickly to y with some errors.

4 General Self-Averaging Rules

In this section, we extend the results of the previous section to larger neighbourhoods and higher dimen-

sions. In particular, we will give conditions under which generalized self-averaging rules will converge

to 1
2 everywhere and will give some indication of how a single fuzzy value will affect the system asymp-

totically. We will then describe the asymptotic oscillation of certain easily described subsets of the more

general case.

4.1 Convergence

In this section, we extend the proofs of convergence to self-averaging rules of any neighbourhood size or

dimension.

Theorem 7 Given initial configurations in (0, 1), all self-averaging rules converge to 1
2 .

PROOF Considering any of the self-averaging rules, we can see that for the weights to be precisely equal

to 0 or 1, we must have values equal to 0 and 1 in the calculation. With initial configuration in (0, 1), this

will never happen by Lemma 1. Thus by Lemma 2, all values must approach 1
2 . Since the weight factor

α is a sum of products of values which are approaching 1
2 , |1− 2α| is bounded away from zero and one,

hence all values must converge to 1
2 .

How a fuzzy value will propagate depends on how many of its neighbours it affects. One way for

a single fuzzy value to infect an entire system is if it is used non-trivially in the calculations of all the

values in its von Neumann neighbourhood of range 1. This would imply that all of the values in its von

Neumann neighbourhood are in the neighbourhood N of the cellular automaton and that they are not

dummy variables.
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(a) 30 (b) 45

(c) 106 (d) 154

Figure 1: Boolean evolution of self-averaging rules: 30, 45,106,154.

Theorem 8 Assume a self-averaging rule has a single non-binary value in its initial configuration. Fur-

ther assume that the neighbourhood of a cell includes the von Neumann neighbourhood and that the

function is non-trivially permutive in the von Neumann neighbourhood. Then the entire configuration will

converge to 1
2 .

PROOF Assume, without loss of generality, that x−→
0

is in (0, 1). Then at time t = 1, every cell in the von

Neuman neighbourhood of range 1 of x−→
0

will be in (0, 1) by Lemma 1 since the local rule is permutive

in x−→
0

. Inductively, at time t, the von Neumann neighbourhood of range t will be fuzzy. Given any x−→
i

,

it is in the von Neumann neighbourhood of range T of x−→
0

for some T . So at time T +1 its von Neumann

neighbourhood of range 1 will consist entirely of fuzzy value. Hence by Lemma 2, xt−→
i

is converging to

1
2 for t > T + 1.
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(a) 54 (b) 57

(c) 108 (d) 156

Figure 2: Boolean evolution of self-averaging rules: 54, 57, 108, 156.

We would expect one-sided convergence if only 1
2 of the range 1 neighbourhood was used non-trivially

and a multi-dimensional rule 60 effect, that is, a fixed pattern of every other cell converging to 1
2 , if

the local rule used the cell itself and the cells in its range 2 neighbourhood that are not in the range

1 neighbourhood. We obtain rule 90 from the cells in range 1 except for the centre cell. In multiple

dimensions, this causes every other cell to converge to 1
2 along “diagonals”, or, thought of another way, at

every other time step.

4.2 Behaviour around the Fixed Point

As far as possible, we now generalize the results observed for the elementary self averaging rules.

First, recall that additive rules can be defined as the XORs of several variables or their negations. We can

extend this definition to fuzzy rules by identifying additive rules with their fuzzifications. With additive

rules, exactly half the entries in the truth table are equal to 1 and for all variables xi, there are exactly as

many terms in xi for which the function f is equal to one as there are terms in x̄i for which f is equal to

one.

Theorem 9 All additive rules are self-averaging rules exhibiting self-oscillations.
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PROOF That additive rules are self-averaging follows from the definitions. Re-numbering if necessary, we

can write any additive rule f(x0, · · · , xn−1) as

f(x0, · · · , xn−1) = α(x0, · · · , xn−2)⊕ xn−1

= (1− α(x0, · · · , xn−2))xn−1

+α(x0, · · · , xn−2)(1− xn−1)

which is clearly a self-averaging rule.

We prove the self-oscillations by induction on the number of variables. From (3), we know that this is

true for functions in 3 or fewer variables. We assume that the hypothesis is true for n variables, and show

that it must be true for n+1 variables. Consider the additive function f in n+1 variables. Re-numbering

if necessary, we can write f as

f(x0, · · · , xn) = α(x0, · · · , xn−1)xn + α(x0, · · · , xn−1)x̄n.

Now in order for f to be additive, αmust also be additive. We know that f will be greater than 1
2 when both

xn and α are greater than 1
2 , or when both are lesser. But by induction, α exhibits self-oscillations hence

will be greater than 1
2 precisely when its Boolean function would evaluate to 1. Under these conditions,

when xn is equal to 1, g(x0, · · · , xn) = 1. The proof follows in the same way for α < 1
2 .

At the other extreme, we have rules where the value being self-averaged appears only once either

directly or negated. These rules can easily be shown to converge towards that variable or its negation,

whichever appears more often.

Theorem 10 Given a Boolean self-averaging rule g(y0, · · · , yn−1) =
αg(y0, · · · , yi−1, yi+1, · · · , yn−1)yi+ αg(y0, · · · , yi−1, yi+1, · · · , yn−1)ȳi
with weight function αg such that there is only one element y ∈ {0, 1}n−1 such that αg(y) = 0, then the

fuzzification f of g converges to a shift.

PROOF Let γ = (1
2 )

1
n−1 and consider the interval (1− γ, γ). If all variables xi are on this interval then so

are x̄i. Furthermore, the product of up to n− 1 such variables is less than [( 1
2 )

1
n−1 ]n−1 = 1

2 . Thus, when

the entire configuration is on this interval, f is greater than 1
2 precisely when xi is. Hence it fluctuates as

the shift g(y0, · · · , yn−1) = yi.

Note that as the neighbourhood size grows, the interval on which the function behaves as a shift also

grows.

For functions in between these two extremes, the extent to which they behave as a shift will depend on

how unbalanced the weighting factors are.

5 Conclusions

In this paper we have concentrated on a class of fuzzy rules called self-averaging rules, whose asymptotic

behaviour has previously been studied when all initial values were fully fuzzy (i.e., they all belonged to

the open interval (0, 1)). In this paper we have started to look at their behaviour when the initial values

are in [0, 1]. The presence of the extremes of the interval generally has a strong impact on the asymptotic

behavior of a CA and a complete study of this impact will be the subject of future investigation. We have
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then described the asymptotic fluctuations of this class of rules (with fully fuzzy initial configurations)

around their fixed point.

In the second part of the paper, we have partially extended the results of (2) to CA in any dimension

and any neighbourhood, showing that, in this case also, fully fuzzy configurations converge to 1
2 and

giving sufficient conditions for a single fuzzy value to cause the entire CA to converge to 1
2 . We have also

partially generalized the results on the asymptotic fluctuations for this class of rules for higher dimensions

and larger neighbourhoods. Further work is necessary to better understand how to fully generalize the

fluctuating properties of these rules.
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The paper presents a new proof of the inequality between entropy and Lyapunov exponents given by Shereshevsky

(1992) in the ergodic case.

1 Introduction

In [4] Shereshevsky associated to every dynamical system generated by a cellular automaton (CA-system)

two remarkable real functions, called Lyapunov exponents, describing the dynamics of the system. One

can consider these functions as analogues of Lyapunov exponents for smooth dynamical systems.

The main result of [4] contains an interesting inequality giving the connection between entropy and the

Lyapunov exponents of a CA-system. One can look at this result as an analogue of the well knows Ruelle

inequality in the theory of smooth dynamical systems.

The goal of our paper is to give a complete proof of the above inequality in the ergodic case. The

motivation of our work are some gaps in the original proof in [4]. The main tools applied by us are some

ideas of Tisseur ([5]) and the Ornstein-Weiss theorem being a generalization of the Breiman-McMillan-

Shannon theorem.

2 Definitions and auxiliary results

Let X = SZ, S = {0, 1, . . . , p − 1}, p ≥ 2 and let B be the σ-algebra generated by cylindric sets. We

equip X with the distance d defined as follows (cf. [4])

d(x, y) =





0 if x = y,
2 if x0 6= y0,
exp(−N(x, y)) if x 6= y, x0 = y0

†Partially supported by Polish MNiSzW grant N N201 384834
‡Partially supported by Polish MNiSzW grant N N201 384834
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where N(x, y) = sup{n ≥ 0; xi = yi, |i| ≤ n}, x, y ∈ X.
We denote by σ the shift transformation of X and by f the automaton transformation of X generated

by an automaton local rule F , i.e.

(σx)i = xi+1, (fx)i = F (xi−r, . . . , xi+r), i ∈ Z,

F : S2r+1 −→ S, r ∈ N.

For any p, q ∈ Z, p ≤ q and x ∈ X we denote by F̃ (xp−r, . . . , xq+r) the concatenation

F̃ (xp−r, . . . , xq+r) = F (xp−r, . . . , xp+r)F (xp+1−r, . . . , xp+1+r) . . . F (xq−r, . . . , xq+r).

It is obvious that

f(x)(p, q) = f(x)pf(x)p+1 . . . f(x)q = F̃ (xp−r, . . . , xq+r).

By an interval in Z we mean a set which consists of all integers which belong to an interval in R.

Let I ⊂ Z be an interval and let x = (xi), y = (yi) ∈ X . We shall write x = y(I) if xi = yi, i ∈ I .

Let x ∈ X and s, p, q ∈ Z be such that p ≤ q. Following Shereshevsky ([4]) we put

W+
s (x) = {y ∈ X; y = x(s,+∞)},

W−
s (x) = {y ∈ X; y = x(−∞,−s)}.
Cqp(x) = {y ∈ X; y = x(p, q)}.

For a given n ≥ 1 one defines

Λ̃±
n (x) = inf

{
s ≥ 0; fn(W±

0 (x)) ⊂W±
s (fnx)

}

and

l̃±n (x) = inf
{
s ≥ 0;∀0≤i≤n f i(W±

0 (x)) ⊂W±
s

(
f ix
)}

It is clear that

l̃±n (x) = max
(
Λ̃±

1 (x), . . . , Λ̃±
n (x)

)
.

We put

Λ±
n (x) = sup

j∈Z

Λ̃±
n (σjx), l±n = sup

j∈Z

l̃±n (σjx).

It easy to see that

l±n (x) = max
(
Λ±

1 (x), . . . ,Λ±
n (x)

)
.

It is shown in [4] that the limits

λ±(x) = lim
n→∞

1

n
Λ±
n (x)

exist a.e. and they are f and σ-invariant and integrable.

The limit λ+ (resp. λ−) is called the right (left) Lyapunov exponent of f .

It is easy to show that

0 ≤ λ±(x) ≤ r
and

λ±(x) = lim
n→∞

l±n (x)

n
.
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Lemma 1 For any natural numbers n, p, i such that n ≥ 0, 0 ≤ i ≤ n, p ≥ 2r and x ∈ X we have

f i
(
C
p+l−n (x)

−p−l+n (x)
(x)
)
⊂ Cp−p

(
f ix
)
.

Proof: We shall use in the sequel the abbreviation l±n = l±n (x).

Let y ∈ Cp+l
−
n (x)

−p−l+n (x)
(x). We have to show that

∀0≤i≤n f i(y) = f i(x)(−p, p). (1)

It is clear that the sets

W+

−p−l+n
(x) ∩W−

−p−l−n
(y), W+

−p−l+n
(y) ∩W−

−p−l−n
(x)

consist of single elements. Let us denote them by z and w, respectively. Thus we have

z = x
(
−p− l+n ,+∞

)
, z = y

(
−∞, p+ l−n

)
(2)

and

w = x
(
−∞, p+ l−n

)
, w = y

(
−p− l+n ,+∞

)
. (3)

From (2) and (3) it follows that

f i(z) = f i(x)(−p,+∞) (4)

and

f i(w) = f i(x)(−∞, p) (5)

for every 0 ≤ i ≤ n.

Indeed, applying the formula (cf. [2])

σaW±
c

(
σbx
)

= W±
c∓a

(
σa+bx

)
, a, b, c ∈ Z, x ∈ X.

We get

f i
(
W+

−p−l+n (x)
(x)
)

= σp+l
+
n (x)f i

(
W+

0

(
σ−p−l+n (x)x

))

⊂ σp+l+n (x)W+

l̃+n

(
σ−p−l

+
n (x)x

)
(
σ−p−l+n (x)f ix

)

⊂ σp+l+n (x)W+

l+n (x)

(
σ−p−l+n (x)f ix

)

= W+
−p
(
f ix
)
, 0 ≤ i ≤ n.

This means that (4) is satisfied. Similarly we show the inclusion

f i
(
W−

−p−l−n (x)
(x)
)
⊂W−

−p
(
f ix
)
, 1 ≤ i ≤ n.

what gives (5).
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Now we start to show (1) by induction w.r. to i ∈ {0, . . . , n}.
The property (1) is obviously true for i = 0 because l±n ≥ 0.

Let us now suppose that for some 0 ≤ i ≤ n− 1 it holds

∀0≤k≤ifk(y) = fk(x)(−p, p). (6)

We shall show that

f i+1(y) = f i+1(x)(−p, p). (7)

First we shall prove that (6) implies

∀0≤k≤i fk(z) = fk(y)(−p− r(i+ 1− k), r), (8)

fk(w) = fk(y)(−r, p+ r(i+ 1− k)).

Let us prove the first equality. The proof of the second one is analogous.

We argue by induction w.r. to k ∈ {0, . . . , i}. The validity of (8) for k = 0 follows at once from the

inequalities p ≥ r, l−n , l
+
n ≥ 0.

Suppose now that

∀0≤k≤i−1 f
k(z) = fk(y)(−p− r(i+ 1− k), r). (9)

We shall show that

fk+1(z) = fk+1(y)(−p− r(i− k), r). (10)

We have

fk+1(z)(−p− r(i− k), r) = F̃
(
fk(z)(−p− r(i+ 1− k), 2r)

)
= (11)

= F̃
(
fk(z)(−p− r(i+ 1− k), r)

)
F̃
(
fk(z)(−r + 1, 2r)

)
.

The assumption (9) tells that

fk(z) = fk(y)(−p− r(i+ 1− k), r).

We claim that

F̃
(
fk(z)(−r, 2r)

)
= F̃

(
fk(y)(−r + 1, 2r)

)
.

Indeed, the equality (4) gives

f i(z) = f i(x)(−p,+∞)

for any 0 ≤ i ≤ n. Hence in particular

fk(z) = fk(x)(−p,+∞)

and so, since p ≥ r, we get

fk(z) = fk(x)(−r + 1, 2r). (12)

We have k ≤ i− 1, i. e. k + 1 ≤ i and therefore applying (6) we have

fk+1(y) = fk+1(x)(−p, p).
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Hence by (12) and p ≥ r we get

F̃
(
fk(z)(−r + 1, 2r)

)
= F̃

(
fk(x)(−r + 1, 2r)

)
=

= fk+1(x)(1, r) = fk+1(y)(1, r) = (13)

= F̃
(
fk(y)(−r + 1, 2r)

)
.

Therefore returning to (11) we have

fk+1(z)(−p− r(i− k), r) =

= F̃
(
fk(y)(−p− r(i+ 1− k), r)

)
F̃
(
fk(y)(−r + 1, 2r)

)
=

= fk+1(y)(−p− r(i− k), 0)fk+1(y)(1, r) =

= fk+1(y)(−p− r(i− k), r)

which gives (10) and so (8).

Substituting k = i in (8) we get

f i(z) = f i(y)(−p− r, r), (14)

f i(w) = f i(y)(−r, p+ r).

Now we shall finish the proof showing (7), i.e. the equality

f i+1(y) = f i+1(x)(−p, p).

We have

f i+1(y)(−p, p) = F̃
(
f i(y)(−p− r, p+ r)

)
=

= F̃
(
f i(y)(−p− r, r)

)
F̃
(
f i(y)(−r + 1, p+ r)

)
=

(14) = F̃
(
f i(z)(−p− r, r)

)
F̃
(
f i(w)(−r + 1, p+ r)

)
=

= f i+1(z)(−p, 0)f i+1(w)(1, p) =
(4),(5) = f i+1(x)(−p, 0)f i+1(x)(0, p) = f i+1(x)(−p, p)

which gives the desired result. �

Theorem 1 For any Borel probability measure invariant w.r. to σ and f and ergodic with respect to f or

σ it holds

hµ(f) ≤
(
λ+ + λ−

)
hµ(σ).

Proof: Let G be the set of all x ∈ X for which the limits

lim
n→∞

l±n (x)

n
= λ±(x) (15)

exist and the functions λ+, λ− are constant. It follows from our above considerations that µ(G) = 1.



192 Maurice Courbage and Brunon Kamiński and Jerzy Szymański

Let p ∈ N, p ≥ 2r and δ > 0 be arbitrary. By (15) there exists N = Nδ such that

l±n (x)

n
≤ λ± + δ (16)

for n > N .

Now Lemma implies

f i
(
C
p+l−n (x)

−p−l+n (x)
(x)
)
⊂ Cp−p

(
f ix
)
, (17)

for any 0 ≤ i ≤ n.

We put

λ±n (δ) =
[(
λ± + δ

)
n
]
+ 1, εp = e−p.

Let

Bn(f, x, εp) =
{
y ∈ X; d

(
fky, fkx

)
< εp, 0 ≤ k ≤ n

}
.

Our aim is to show the inclusion

Bn(f, x, εp) ⊃ Cp+λ
−
n (δ)

−p−λ+
n (δ)

(x), x ∈ G. (18)

It follows from (16) that l±n (x) ≤ λ±n (δ), n > N .

Let y ∈ Cp+λ
−
n (δ)

−p−λ+
n (δ)

(x). Hence by (17) we get

fk(y) ∈ fk
(
C
p+λ−

n (δ)

−p−λ+
n (δ)

(x)
)
⊂

⊂ fk
(
C
p+l−n (x)

−p−l+n (x)
(x)
)
⊂

⊂ Cp−p
(
fkx

)
, 0 ≤ k ≤ n, n > N.

This means that (
fky

)
m

=
(
fkx

)
m
, −p ≤ m ≤ p

and so

N
(
fky, fkx

)
≥ p,

i.e.

d
(
fky, fkx

)
≤ e−p, 0 ≤ k ≤ n.

In other words y ∈ Bn(f, x, εp) which proves (18).

Let now

An = An(δ, p) =
{
m ∈ Z; −p− λ+

n (δ) ≤ m ≤ p+ λ−n (δ)
}

and let P denote the zero-time partition of X .

It is clear that

C
p+λ−

n (δ)

−p−λ+
n (δ)

(x) =

(
∨

m∈An

σmP

)
(x), n > N.
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Therefore (18) implies

µ (Bn(f, x, εp)) ≥ µ
((

∨

m∈An

σmP

)
(x)

)
. (19)

Now we shall check that (An) = (An(δ, p)) is a Følner sequence for any δ > 0, p ≥ 1.

Indeed, for any g ∈ Z, g ≥ 0 we have

(g +An) ∩An =
{
m ∈ Z; −p+ g − λ+

n (δ) ≤ m ≤ p+ λ−n (δ)
}

for any n ≥ 0.

Hence for such n we have

|(g +An) ∩An|
|An|

=
(2p− g + λ−n (δ) + λ+

n (δ) + 1)(
2p+ λ−n (δ) + λ+

n (δ)
)

and so

lim
n→∞

|(g +An) ∩An|
|An|

= 1.

In the same way one can show that the above is true for g < 0. Hence (An) is a Følner sequence.

Applying the Ornstein-Weiss theorem (cf. [3]) and the fact that P is a generator for σ we get

lim
n→∞

1

|An|
logµ

((
∨

m∈An

σmP

)
(x)

)
= hµ(P, σ) = hµ(σ) (20)

for x ∈ G. Therefore applying (19) and (20) we have

lim
n→∞

(
− 1

n
logµ (Bn(f, x, εp))

)
≤
(
λ+ + λ− + 2δ

)
hµ(σ),

p ≥ 1, δ > 0 and x ∈ G.

Now taking the limits as δ → 0 and p→∞ we get

hµ(f, x) ≤
(
λ+ + λ−

)
hµ(σ),

and applying the Brin-Katok formula (cf. [1]) we obtain the desired inequality

hµ(f) ≤
(
λ+ + λ−

)
hµ(σ).

�
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We address the notion of partial reversibility of cellular automata rules. The elementary space is the focus of all
analyses, which rely upon the individual initial configurations for which a given rule is reversible or not, under
periodic boundary conditions. These are represented in what is defined herein as the reversibility pattern of the rule.
By lexicographically sorting the elementary space according to this construct, the space becomes partitioned into 45
classes of reversibility equivalence, where their positions provide an indication of their relative reversibility degree.
The analysis of some of the classes unveil very intriguing properties of their rule members. Preliminary ideas towards
modelling the reversibility degree of the classes are discussed. It is tempting that the results can be generalised to
other rule spaces and that they can be used towards defining anabsolute measure of partial reversibility degree of a
rule, but there are difficulties ahead that require further considerations.

Keywords: Cellular automata, reversible rules, partially reversible rules, reversibility pattern, elementary space,α
parameter,Z parameter.

1 Introduction
A well-studied property of some cellular automata (CAs) is reversibility, that is, the property possessed
by some rules of having their temporal evolution regenerated backward in time, regardless of the original
initial configuration, by running the inverse rule of the original [Toffoli and Margolus(1990)]. Reversibil-
ity in CAs is such a well characterised concept that it has been possible to derive many fundamental
results associated with it, such as the undecidability of the property for CAs in dimensions larger than 1
[Kari(2005)], algorithms to enumerate all reversible one-dimensional CAs [Boykett(2004)], etc.

But what if one would be willing to define a notion ofpartial reversibility, such that CA rules could then
be compared in terms of theirdegreeof reversibility? To provide some first insights into issuesinvolving
this question is the motivation of this paper.

In order to go about that, our analyses rely upon the individual initial conditions for which a given
CA rule is reversible or not. And for the sake of simplicity, we restrict the analyses to the elementary CA
space, i.e., the set of one-dimensional cellular automata,with 2 states per cell, and next-nearest neighbours
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(neighbourhood size of 3 cells), that comprises 256 rules. But the insights given from this CA space can
be readily extended to further one-dimensional CA spaces.

One motivation for addressing the notion of partial reversibility is the possibility of probing the notion
for its own sake, looking at possible ways to measure it, possible theoretical models that can account for
the measures, its relations to other CA properties, such as dynamical behaviour, etc. And because there
cannot be an algorithm for establishing the reversibility of CAs in dimensions larger than 1, the possibility
of devising a was to ‘measure’ the partial reversibility degree of a rule would certainly be useful, in that it
would help pointing at specific rules that would stand a chance of being reversible.

Reversibility is a property found in only a handful of rules of any space; for instance, for the elementary
rules, only 6 of them are reversible, out of the 256 possible rules. So, from an applications perspective, the
idea of defining partial reversibility may also be appealing; for instance, just as reversibility has had a role
in conceiving algorithms for encryption (as in [Seredynskiet al.(2004)Seredynski, Pienkosz, and Bouvry]),
one might also think of devising algorithms based on the notion of partially reversible rules which, as for
one advantage, might lead to a much larger set of rule optionsto use in such algorithms.

The focus of this paper is on therelative partial reversibility of the rules, that is, the possibility of
discriminating rules in terms of their relative degree of reversibility. Given the ill-defined nature of partial
reversibility, it seems natural to study first the relative notion of the concept, before an attempt to devise
an absolute notion. This is precisely what is carried out in the paper.

The next section discusses a way to check the reversibility of one-dimensional cellular automata through
their pre-images, as well as the relations of this feature totwo parameters that can be defined for a CA.
The following section introduces the concept ofreversibility patternof cellular automata, which is the
basis for the subsequent discussions on partial reversibility. Some concluding remarks are made at end,
pointing at the following paths to be pursued in the work. Allpresentation is couched in terms of the
elementary space.

2 Reversibility Checking in Cellular Automata

2.1 Direct testing of the pre-images

A cellular automaton (CA) is reversible if there exists aninverserule to the latter, which can undo the tem-
poral evolution backwards of the original CA, thus leading back to its initial configuration (IC), whichever
it is.

In order to establish a rule to be reversible, all initial configurations must have one and only one pre-
image, the irreversible rules thus entailing some configurations to have multiple or no pre-image at all.
Figure 1 illustrates the situation, by displaying the basins of attraction of the elementary rule 38, with
lattice size 6, where the dots represent the26 possible lattice configurations, and the edges their corre-
sponding pre-images; notice that while the configurations in cyclic circuits are reversible, the others are
not.

One procedure for checking whether a given one-dimensionalCA rule is reversible or not is described
in [Wolfram(2002)]. In this procedure, all initial configurations must be tested up to a certain maximum
lattice sizenmax, and what it does is checking whether each IC has one and only one pre-image. Although
it has been proven that the required upper bound isnmax = k2r(k2r−1)+2r+1, with k representing the
number of cell states andr being the neighbourhood radius, [Wolfram(2002)] states that there is empirical
evidence for the necessity of considering only the smaller valuenmax = k2r. In fact, all empirical tests
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Figure 1: Basins of attraction for elementary rule 38 with lattice size 6.

we carried out, involving reversible rules from various one-dimensional spaces, are in tune with such a
statement.

Noticing that the procedure above may require significant computational effort, one might think about
possible less demanding alternatives, which includes the ideal possibility of their being directly drawn
from the rule table of a CA. Two such parameters (Z andα) are discussed next, since both, by definition
and by their own way, are related to the pre-images of a CA ruleand, therefore, may somehow be related
also to reversible rules.

2.2 Z-parameter

The reverse algorithm proposed in [Wuensche and Lesser(1992)] computes all pre-images, if any, of a
global configuration, or determines whether the current state has no pre-image at all, i.e., if it is a Garden-
of-Eden (GoE) configuration.

TheZ parameter is directly derived from this algorithm. As a partial pre-image is being built from a
given configuration,Z provides the probability of the next unknown state in that pre-image being uniquely
determined. As a result, it indicates the density of GoE configurations or the density of pre-images from
the basin of attraction of the corresponding rule. Thus, higher values ofZ imply lower density of GoE
configurations and less ‘bushy’ basins of attraction; in other words, higher values ofZ imply fewer pre-
images from a configuration and longer paths of subsequent pre-images in the basin of attraction of the
configuration.

TheZ parameter is composed byZleft andZright. Zleft is obtained by running the reverse algorithm
from left to right in the partial pre-image, whileZright is obtained by running the same algorithm from
right to left.Z is defined as the largest value among the latter two. As such, the larger the value ofZ, the
‘more’ reversible is the rule, the largest value 1 happeningfor the reversible rules.

2.3 Parameters αand αp

Motivated by the analysis of the relationship between the pre-images of a global configuration and the
reversibility of cellular automata, theα parameter was defined in [Schranko and de Oliveira(2010)].
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Consider a CA withk states per cell (defined over the alphabetΣ = {0, 1, . . . , k− 1}), neighbourhood
with m cells, and transition rulef . Now, lettingBm represent the set of (basic) blocks of sizem, in Σ,
then the set of pre-images ofBm is B2m−1 and its size is given|B2m−1| = k2m−1. Accordingly, in its
simplest form theαparameter can be defined as follows:

α =
1

k2m−1

∑

i∈T
i , where T =

⋃

b∈Bm

{|f−1(b)|} (1)

000 111

001 011

11 010 110

100 101

01

10 00

{}

Figure 2: Pre-images of all blocks, for the binary CA rule 11,with 2 cells in the neighbour-
hood [Schranko and de Oliveira(2010)].

A clarification of the definition can be obtained by calculatingα for the binary CA rule 11 withm = 2;
Figure 2 illustrates the situation. As such,B2 = {00, 01, 10, 11} and|B2∗2−1| = |B3| = 23 = 8. The
application off−1 to each blockb ∈ B2 entails|f−1(00)| = 0, |f−1(01)| = 2, |f−1(10)| = 2 and
|f−1(11)| = 4; then, by uniting the values of|f−1(b)|, one of the values2 is removed, so that the sum of
the remaining values becomes

∑
i∈{0,2,4} i = 6, thus leading toα = 6/8 = 0.75.

The definition in [Schranko and de Oliveira(2010)] is actually more general, in that it can account for
any hyper-rectangular neighbourhood. But the essential isthat they show the existence of a relation
betweenα, the distribution of pre-images into basic blocks and reversibility, so that if a cellular automaton
is reversible, then the number of pre-images for each basic block is equally distributed, andα takes its
minimum value. Naturally, this is in tune with the fact that the distribution of all pre-images of surjective
CA rules is balanced.

Notice that, in the definition ofα, the predecessor blocks associated with the basic blocks ofa rule can
be seen as the required pre-images to generate the basic blocks, in non-periodic boundary conditions. In
analogy with this, we define herein a new parameter, denotedαp, which is a slight variation ofα, with the
only difference being thatαp relies upon the actual pre-images of the possible configurations (or arbitrary
blocks), inperiodicboundary condition. In doing so,αp also becomes somehow related to reversibility,
and this is the issue for present purposes.

Sinceα relies upon the pre-image of each block, one could also question the effects of using not only
the latter, but also the pre-images of the latter, or the pre-images of the pre-images of the latter, etc. As
such, we can generalise the definition ofα in terms of the level (or ‘order’, so to speak) of the pre-images
considered, which leads to the notion of ani-th orderα, where the original definition ofα becomes in
fact the1st orderα, orα1, and correspondingly,α2, α3, and so on. These alternatives are also considered
in the analyses below. But notice that, although it might also be possible to refer to thei-th orderαp, this
is not useful, since the values ofαp are the same for all orders, because all pre-images of any order are
exactly the same.
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3 Towards Partial Reversibility

3.1 Reversibility pattern of a rule

In order to define partial reversibility, every cyclic initial configuration of a particular rule should be
examined from the point of view of its number of pre-images.

Hence, a concept is proposed here, namely,reversibility patternof a rule, which is in the basis for
the characterisation of partial reversibility of the rule,and relies on testing all the initial configurations
of the lattice, from the minimum sizen = 1, up to the maximumnmax. Our approach follows the
procedure in [Wolfram(2002)], that checks whether a given one-dimensional CA rule is reversible or not,
as mentioned earlier. Since our tests rely on the elementaryCA rules, for whichk = 2 andr = 1, it turns
out that, while the theoretical upper bound isnmax = 15, the empirical value isnmax = 4.

For example, the reversibility pattern for elementary rule2, as worked out through the empirical
nmax = 4, is ({2, 2, 2, 2, 8}, {1, 1, 1, 5}, {4}, {2}), where the four multisets refer, respectively,
to the lattice sizesn equals to 4, 3, 2 and 1, and every number in a multiset corresponds to the num-
ber of pre-images of a given configuration of sizen. Hence,{2, 2, 2, 2, 8} represents that, out of the
2+2+2+2+8=16 possible 4-bit-long ICs, 4 of them are not reversible because each one has 2 pre-images,
1 is not reversible because it has 8 pre-images, and the remaining 8 ICs (not explicitly appearing in the
multiset) are not reversible because they are GoE configurations; similarly,{1, 1, 1, 5} represents that,
out of the 1+1+1+5=8 possible 3-bit-long ICs, 3 of them are reversible because each one has a single
pre-image, 1 is non-reversible because it has 5 pre-images,and the remaining 4 ICs (not explicitly ap-
pearing in the multiset) are not reversible because they areGoE configurations; and so on. Naturally, for
present purposes it only really makes sense to consider lattice sizes which are at least the same as the
neighbourhood size; here we display all values ofn just for the sake of simplicity.

As a consequence, it can be argued that the elementary rule 2 has a small partial reversibility degree,
or, it is partially reversible, since some of its initial configurations are reversible and some are not.

But, how can one state that a given rule is ‘more’ (partially)reversible than another? Let us consider the
elementary rules below and their corresponding reversibility patterns, also derived fromnmax = 4. By
comparing the reversibility patterns of rules 62 and 44 it seems reasonable to consider the latter as more
reversible than the former, since they only differ in the information associated with lattice sizen = 3,
which favours rule 44. But the comparison is not as clear, when comparing rules 151 and 223; after all,
while the former has 12 reversible ICs and the latter only 11,the former is totally non-reversible for lattice
sizen = 3 which is not the case for the latter. So, which criteria should be taken into account so that
a comparison can be made is an issue that requires further investigation. This is what is done next, by
analysing the consequences of sorting the elementary rulesin two distinct ways.

62 = ({1, 1, 1, 1, 2, 2, 2, 2, 2, 2}, {1, 1, 1, 2, 3}, {2, 2}, {2})
44 = ({1, 1, 1, 1, 2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 2}, {2, 2}, {2})
151 = ({1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6}, {3, 5}, {1, 1, 2}, {2})
223 = ({1, 1, 1, 1, 1, 1, 10}, {1, 1, 1, 5}, {1, 1, 2}, {2})

3.2 Relative partial reversibility in the elementary space

For what follows, the elementary space is accounted for not in terms of its 256 rules, but in reference to
its 88 classes of dynamical equivalence [Wolfram(2002)], each one being referred to by the rule with the
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smallest rule number in the class. Naturally, such an approach suffices since every rule in a class has the
same reversibility pattern.

Given the difficulties raised above in respect to determining the relative partial reversibility among
rules, here we look at the entire space, trying to obtain insights for the issue. The idea is to derive
the reversibility pattern of all rules in the elementary CA space and order them lexicographically, from
(supposedly) the least to the most reversible rules. As argued in the first section, only after devising a
reasonable rationale for relatively measuring partial reversibility should one think to step forward towards
an absolute measure, which is not within the scope of the present paper.

Even for a relative measure, based upon the notion of reversibility pattern, one decision that has to be
made concerns the two values ofnmax, discussed earlier. After all, they were derived as constraints that
should be respected when establishing the (full) reversibility of a rule; hence, their usage might simply not
be applicable for present purposes. So, a better understanding of the effects of using one value ofnmax
or the other, or even another, is definitely one of the issues that need being addressed here.

Along this line, the first ordering scheme to be looked at herein is the standard, direct lexicographical
order entailed by the reversibility pattern of a rule. Following this scheme, each part that makes up the
reversibility pattern is individually and subsequently taken, starting at the first (associated with the largest
lattice size), and used as the basis for the relative sorting. For the sake of easy reference, let us denote this
approach as thedirect sorting scheme of the reversibility patterns.

For instance, with the empiricalnmax = 4, elementary rules 1, 11 and 27, would be lexicographically
sorted, in relative terms as follows:

1 = ({1, 1, 1, 1, 1, 11}, {1, 7}, {1, 3}, {1, 1})
11 = ({1, 1, 1, 1, 1, 2, 2, 2, 2, 3}, {1, 1, 2, 2, 2}, {1, 3}, {1, 1})
27 = ({1, 1, 1, 1, 1, 2, 2, 2, 2, 3}, { 1, 1, 1, 1, 1, 1, 1, 1}, {1, 3}, {1, 1})

On the other hand, the second relative sorting scheme considered here is based upon the reversibility
pattern of a rule considered as a whole, by merging its the parts into a single set, therefore, with no
distinction among the individual lattice sizes. This type of sorting is referred to below as theabsolute
scheme.

Considering once again the elementary rules 1, 11 and 27, their absolute lexicographical sorting is
shown below. Notice that it is more appealing now that rule 27should be assumed to be more partially
reversible than the others, since it has the largest number of reversible initial configurations.

1 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 11}
11 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3}
27 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3}

The examples above have all been with the smallest value ofnmax. But in order to evaluate the effect
of using the largest value, Table 1 depicts a comparison of the two. Notice that the implicit number of
GoE configurations of each rule is not being taken into account.
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Table 1: Direct and absolute lexicographical sortings of the elementary space, for the two upper-bound
values of lattice size drawn from [Wolfram(2002)].

Direct Sorting Absolute Sorting

nmax = 4 nmax = 15 nmax = 4 nmax = 15

{0} {0} {0} {0}
{90} {105, 150} {90} {46}
{46} {24} {126} {24}
{2, 8} {10} {46} {36}
{126} {46} {24} {126}
{36} {12, 34} {36} {90}
{24} {126} {60} {60}
{60} {36} {2, 8} {10}

{5, 160} {90} {12, 34} {12, 34}
{9, 130} {60} {10} {2, 8}
{12, 34} {2, 8} {18, 72} {11, 138}
{13, 162} {11, 138} {62, 110} {4, 32}
{57, 156} {4, 32} {9, 130} {1, 128}
{33, 132} {1, 138} {1, 128} {43, 142}
{43, 142} {43, 142} {94, 122} {29, 184}
{94, 122} {29, 184} {37, 164} {18, 72}
{18, 72} {18, 72} {11, 13, 58, 78, 138, 162} {13, 162}
{37, 164} {13, 162} {38, 44} {5, 160}

{10} {5, 160} {5, 160} {3, 19, 136, 200}
{62, 110} {3, 19, 136, 200} {4, 32} {27, 172}
{38, 44} {27, 172} {30, 106} {9, 130}
{1, 128} {9, 130} {23, 232} {6, 40}
{11, 138} {77, 178} {22, 104} {77, 178}
{27, 172} {6, 40} {33, 132} {33, 132}
{4, 32} {33, 132} {26, 74} {23, 232}
{23, 232} {23, 232} {25, 152} {28, 50, 56, 76}
{77, 178} {28, 50, 56, 76} {14, 42} {35, 140}
{30, 106} {35, 140} {6, 40} {38, 44}
{14, 42} {38, 44} {54, 108} {14, 42}
{58, 78} {14, 42} {3, 19, 136, 200} {54, 108}

{28, 50, 56, 76} {54, 108} {73, 146} {58, 78}
{26, 74} {58, 78} {27, 28, 50, 56, 57, 76, 156, 172} {7, 168}
{35, 140} {7, 168} {35, 140} {94, 122}
{41, 134} {94, 122} {43, 142} {26, 74}

{3, 19, 136, 200} {57, 156} {41, 134} {73, 146}
{25, 152} {26, 74} {77, 178} {57, 156}
{73, 146} {73, 146} {45, 154} {41, 134}
{45, 154} {41, 134} {7, 168} {25, 152}
{22, 104} {25, 152} {105, 150} {62, 110}
{6, 40} {62, 110} {29, 184} {37, 164}
{29, 184} {22, 104} {15, 51, 170, 204} {22, 104}
{7, 168} {37, 164} {105, 150}
{54, 108} {30, 106} {30, 106}
{105, 150} {45, 154} {45, 154}

{15, 51, 170, 204} {15, 51, 170, 204} {15, 51, 170, 204}

The first general observation is that the table shows that in the absolute sorting scheme the results
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were quite different from those in the direct sorting scheme. In fact, notice that the list generated with
nmax = 4 contains rule classes that have not appeared before, and that the list is shorter than the one with
nmax = 15. Also, the length of the latter list (45 classes) is exactly the same size as both lists of the direct
sorting scheme, all rule classes also being the very same, even though some of them placed at distinct
positions.

Analysing the direct sorting scheme, Table 1 also makes it evident that the position of the set of (linear)
rules{105, 150} in both lists strikes as just too different from each other. In order to examine why that
might have been so, if suffices to check the reversibility pattern of rule 105, withnmax = 15; one can
readily observe that a clear pattern is generated for each lattice size, namely, that the rule is fully reversible
for every lattice size not multiple of 3, and not reversible otherwise, in which case one quarter of the
ICs have 4 pre-images each and the remaining three-quartersare GoE configurations; Table 2 illustrates
the situation, with the smaller valuenmax = 6, for the sake of concisiveness. This is an intriguing
observation, with no obvious explanation and apparently not previously reported in the literature, that
points at the validity and usefulness of the concept of reversibility pattern of a rule defined herein.

Table 2: Reversibility pattern of elementary rule 105, withmaximum lattice sizenmax = 6.

Lattice size Reversibility pattern

6 {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}
5 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
4 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
3 {4, 4}
2 {1, 1, 1, 1}
1 {1, 1}

Comparing the two lists of the direct sorting scheme the consequence of using the distinct values of
nmax becomes evident: almost all rule classes had their positions altered from one list to the other. This
means that, while the upper-bounds defined in [Wolfram(2002)] are sufficient for establishing whether a
rule is reversible or not, they do not equally apply to determining (relative) partial reversibility. In fact,
this even questions the appropriateness of using the largest upper-bound, thus raising the possibility that
another value ofnmax should be used instead, or, in the worst case, of even questioning the existence at
all of a truthful upper-bound.

In order to address these questions, Figure 3 was created, for all values ofnmax from 1 to 18, plotting
the positions of all rule classes from Table 1 that appear in the longer list of the absolute scheme (which are
the same as those in the direct sorting scheme). The higher the position of a rule class, the more reversible
it is. The positions refer to the absolute sorting scheme, sothat all points plotted for everynmax are the
result of computing the reversibility pattern for all lattice sizes from 1 tonmax. It is clear from the figure
that, although there is no convergence for each and every rule class, the vast majority of them do converge,
and the few of those that do not, at least become fairly stabilised, with a local fluctuation. Naturally, in
order to know for sure what happens afterwards for rule classes such as 10 or 23, 232, the figure would
have to be extended for further values ofnmax.
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Figure 3: Position of each rule class for all lattice sizesnmax from 1 to 18, considering the absolute
sorting scheme.

So, all the points above put into perspective suggest that the absolute sorting scheme seems to be more
adequate to represent partial reversibility of rules than the other. And in fact, except in the explicit neces-
sity of addressing the issue for a specific lattice size, there is no apparent reason to weigh the individual
sizes, thus leading to their being taken into account as a single, whole ensemble.

3.3 Relating partial reversibility with CA-based parameter values

It would be useful to model partial reversibility, by resorting to a simple, computationally non-intensive
method. As mentioned earlier, the one in [Wolfram(2002)] does not fit this criterion, so that it can really
be thought of as providing the basis for an empirical measureof the quantity. Naturally, a good candidate
for a model, as hinted at in Section 2, could be CA-based parameters whose values could be more easily
worked out, including the desired possibility of drawing the values directly from the rule table of a CA.

But in order for one such parameter to be a real candidate, it is required that the partition of the ele-
mentary space induced by their values do not compromise the rule classes entailed by the lexicographical
sorting scheme judged as the most adequate (the absolute scheme). In other words, any candidate param-
eter cannot split the rule classes that are obtained out of the absolute sorting scheme, regardless of their
values. This is what is checked next.

The parameters at issue were primarily those discussed previously in the paper (Z, α, α2, α3 andαp),
but also others from the literature, according to [Oliveiraet al.(2001)Oliveira, de Oliveira, and Omar], re-
lated to estimates of the dynamical behaviour of CA rules (λ, Sensitivity, Neighbourhood Dominance,
Absolute ActivityandAbsolute Propagation).
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With the dynamically-oriented parameters, forSensitivityandλ only the class{3, 19, 136, 200}) is
split. For the other parameters (Neighbourhood Dominance, Absolute ActivityandAbsolute Propagation)
almost all classes are split; but this is not surprising since all these parameters show no similarity between
the rule classes they induce in the elementary space and those derived from the sorting schemes.

With the other parameters, onlyαp does not compromise the classes of the sorting schemes; however,
the set of rule classes it induces is much smaller than the latter, meaning that it also has no similarity with
the classes induced by the sorting schemes.

As for parameters,α, α2 andα3, they all show that only one rule class ({3, 19, 136, 200} again) of
the absolute sorting scheme is split. Finally, for parameter Z, two classes of the sorting schemes are split,
{28, 50, 56, 76} and, once again,{3, 19, 136, 200}. Table 3 shows the rule classes entailed fromαp, α
andZ, respectively.

Table 3: Rule classes of the elementary space induced byαp, α andZ.

Rules αp Rules α Rules Z

{15, 27, 29, 43, 45, 51 0.125 {15, 30, 45, 51, 60, 90, 105 0.125 {0} 0
57, 77, 142, 154, 156, 106, 150, 154, 170, 204}

170, 172, 178, 184, 204}
{10, 12, 24, 34, 36, 0.25 {35, 43, 140, 142} 0.25 {1, 2, 4, 8, 32, 128} 0.25
46, 58, 60, 78, 90}

{11, 13, 14, 25, 26, 28, 0.375 {29, 184} 0.3125 {3, 5, 6, 9, 10, 12, 18, 23, 0.5
35, 37, 38, 42, 44, 50, 24, 29, 33, 34, 36, 40, 43,
56, 74, 76, 138, 140, 46, 72, 77, 126, 130, 132,

152, 162, 164} 136, 142, 160, 178, 184, 232}
{23, 105, 150, 232} 0.5 {27, 46, 57, 156, 172} 0.375 {19, 35,50, 76, 140,200} 0.625

{3, 5, 7, 9, 19, 33, 41, 73, 0.625 {23, 77, 178, 232} 0.40625 {7, 11, 13, 14, 22, 25, 26, 27, 0.75
130, 132, 134, 136, 146, 28, 37, 38, 41, 42, 44, 54,56,

160, 168, 200} 57, 58, 62, 73, 74, 78, 94, 104,
108, 110, 122, 134, 138, 146,
152, 156, 162, 164, 168, 172}

{2, 4, 6, 8, 18, 30, 32, 40, 0.75 {7, 168} 0.4375 {15, 30, 45, 51, 60, 90, 105, 1
54, 62, 72, 94, 106, 106, 150, 154, 170, 204}

108, 110, 122}
{0, 1, 22, 104, 126, 128} 1 {13, 28, 50, 56, 76, 162} 0.46875

{26, 41, 54, 58, 0.5
74, 78, 108, 134}

{11, 138} 0.53125
{38, 44, 62, 110} 0.5625

{9, 14, 22, 33, 37, 42, 0.59375
104, 130, 132, 164}
{6, 18, 40, 72} 0.625

{19, 73, 146,200} 0.65625
{3, 36, 126,136} 0.6875
{25, 94, 122, 152} 0.71875
{2, 5,8, 10, 160} 0.75
{12, 24, 34} 0.8125
{1, 128} 0.84375
{4, 32} 0.90625
{0} 1
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Another intriguing fact becomes apparent when attempting to identify a possible cause for why the rule
class{3, 19, 136, 200} is split so often. Taking elementary rule 3 as the representative of that rule class, its
reversibility pattern withnmax = 15 shows a peculiar behaviour. Table 4 exemplifies the situation, where
each column is related to the reversibility pattern associated with a given lattice sizen. More precisely,
for a givenn, each cell in table displays the number of initial configurations of sizen that have a certain
number of pre-images. These two quantities are, respectively, the numbers appearing in each row, in the
form: the number of ICs[the number of pre-images]. So, for example, with lattice size 15 (column 1),
there are 1364 ICs with only one pre-image (row 1), 960 ICs with 2 pre-images each (row 2), etc.

Table 4: The number of initial configurations of sizen that have a certain number of pre-images, for
elementary rule 3.

Lattice size (n)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1364[1] 841[1] 521[1] 324[1] 199[1] 121[1] 76[1] 49[1] 29[1] 16[1] 11[1] 9[1] 4[1] 1[1] 2[1]
960[2] 560[2] 325[2] 180[2] 99[2] 60[2] 36[2] 16[2] 7[2] 6[2] 5[2] 1[7] 1[4] 1[3]
600[3] 350[3] 195[3] 108[3] 66[3] 40[3] 18[3] 8[3] 7[3] 6[3] 1[11]
180[4] 91[4] 39[4] 18[4] 11[4] 5[4] 9[5] 8[5] 7[5] 1[18]
375[5] 210[5] 117[5] 72[5] 44[5] 20[5] 9[8] 8[8] 1[29]
195[6] 84[6] 39[6] 24[6] 11[6] 10[8] 9[13] 1[47]
230[8] 126[8] 78[8] 48[8] 22[8] 10[13] 1[76]
45[9] 21[9] 13[9] 6[9] 11[13] 10[21]

90[10] 42[10] 26[10] 12[10] 11[21] 1[123]
135[13] 84[13] 52[13] 24[13] 11[34]
45[15] 28[15] 13[15] 12[21] 1[199]
45[16] 28[16] 13[16] 12[34]
90[21] 56[21] 26[21] 12[55]
30[24] 14[24] 13[34] 1[322]
15[25] 7[25] 13[55]
30[26] 14[26] 13[89]
60[34] 28[34] 1[521]
15[39] 14[55]
15[40] 14[89]
15[42] 14[144]
30[55] 1[843]
15[89]

15[144]
15[233]
1[1364]

Now, let us take from the table, for every lattice size, the largest number of pre-images associated with
any initial configuration, that is, the number of pre-imagesof the most non-reversible ICs for each lattice
size; in the notation of the table, these are the ones having the form 1[number] for lattice sizes 2 to 15, and
the 2[1] for size 1 (since this is the only possibility). As a consequence, the following numerical sequence
is generated, from the smallest lattice size to the largest:1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521,
843, 1364.

It turns out that these numbers constitute exactly the so-called Lucas numbers, a series of integer digits
akin to the well-known Fibonacci sequence [Weisstein(2010)]; more specifically, then-th term in the
sequence above is exactly then-th Lucas number, forn varying from 1 to 15. It is quite an interesting and
intriguing fact to realise that the Lucas numbers seem to directly govern the amount of least reversible
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initial configurations of every size, that is, those having the largest possible number of pre-images for the
CA rule at issue.

Equally as striking is that the sequence of the number of reversible ICs is also governed by the Lucas
numbers, although not as directly as before. In fact, consideringsn the number of the most reversible ICs
with lattice sizen, andLn then-th Lucas number,sn is given by:

sn =





L0 if n = 1
Ln if n > 1 andn is odd
Ln − 2 if n > 1 andn is even andn/2 is odd
Ln + 2 if n > 1 andn is even andn/2 is even

(2)

Lucas numbers have already appeared in the context of discrete dynamical systems, specifically, in
recursive integer sequences [Wolfram(2002)]; however, asfar as we know, no connection has been made
so far in the literature involving Lucas numbers and the global behaviour of CA rules, or with elementary
rules in particular.

4 Concluding Remarks
Here we studied the possibility of defining the notion of partial reversibility of an elementary CA rule. Our
focus was on the relative comparisons between the rules. By creating a lexicographical sorting scheme of
the rules we showed that it makes sense to point at a rule beingmore reversible than another.

Although how our results generalise to larger one-dimensional, binary CA spaces has not been at-
tempted, it seems likely this can be done. In fact, a key motivation for the research has been the possibility
of modelling partial reversibility, according to the lessons learnt from the elementary space, so that this
can be applicable to other rule spaces.

The experiments carried out involving the absolute sortingscheme clearly showed that both upper
bounds defined in [Wolfram(2002)] (nmax = 4 andnmax = 15, in the case of the elementary space) do
not suffice for establishing the relative partial reversibility of a rule. Nevertheless, the valuenmax = 15
seems acceptable when compared withnmax = 18, the largest value we computed; the ideal upper bound
is unknown.

The experiments also allowed to consider the elementary rule space as partitioned into 45 classes of
reversibility equivalence. Whether this can really be regarded as true in the limit of an infinite lattice size
is something that cannot be asserted by now. Although the possibility is really tempting, a theoretical dif-
ficulty would have to be accommodated, derived from the fact that reversibility over cyclic configurations
does not suffice for granting reversibility of a rule on an unrestricted lattice ([Kari(2005)]). And since this
applies to any CA space, this same difficulty would have to be faced in order to generalise the notions
addressed here, towards larger one-dimensional binary CA spaces and CA spaces with larger dimensions
and/or larger number of states per cell.

By relating partial reversibility with CA-based parametervalues, including those drawn from the rule
tables, it is clear thatZ andα (including its variationsαp, α2, α3) has some correlation with partial
reversibility. Therefore, it may be possible to use them, combined somehow, as models of partial re-
versibility. Evaluating this idea is one of the steps ahead .In this direction, understanding the precise
role of these parameters is a key ingredient, one indicationbeing thatα might possibly be considered a
measure of the surjectivity degree of a CA.
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Another issue also open for further investigation is to comeup with a way to calculate the partial
reversibility degree of an elementary rule. This has to be made so that we can forego the notion of relative
partial reversibility in favour of the absolute notion.

A related conceptual question refers to the definition of theclosest possiblepartially inverse rule that
would correspond to a given partially reversible rule. Thisis a very ill-defined concept that should only
be addressed after the previous questions have been very carefully looked at.

The usefulness of the notion we introduced here, of reversibility pattern, has been made evident with
all the issues above but also because it allowed to unveil intriguing properties, apparently unknown so far,
involving the partial reversibility of elementary rules 105 and 3, and the other members of their respective
reversibility classes. And since we have not inspected other equivalence classes that display curious
behaviour suggested from Figure 3, such as{10} or {23, 232}, it will not be a surprise if further intriguing
phenomena involving their partial reversibility do springup. Nevertheless, the explicit consideration of
the GoE configurations in the reversibility pattern of a ruleis yet another issue that needs to be looked at.
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Given is a2D field ofn×n = N cells (communication nodes) with border. The goal was to solve the routing problem
withN agents, each of them having the task to transport a message from a source to a target. This task is also known
as multiple target searching. The whole agent system was modeled as a uniform cellular automaton. The agents shall
have a probabilistic behavior in order to avoid deadlocks and livelocks. Three types of agents were defined: (1) FSM
controlled agents (with an embedded finite state machine evolved by a genetic algorithm), (2) XY agents using the
XY-routing technique, and (3) MXY agents (modified XY agents). To all agents’ behaviors an optimal amount of
randomness was added. It turned out that forN = 256 the best FSM agents solved the task within 84 generations,
14% faster than the MXY agents, and 31.5% faster than the XY agents. The added randomness was lowest (1.8%)
for the FSM agents. Additional tests have showed that the number of generations can further be reduced by 17.5%
for N = 256, using 420 additional empty cells in an enlarged field of size(n+ 11)2.

Keywords: CA Agents, Routing with Agents, Multiple-Target Searching, Multi-Agent Systems, Evolving Proba-
bilistic Behavior, FSM Controlled Agents

1 Introduction
We are presenting a method that allows evolving the probabilistic behavior of moving CA agents in order
to solve a given task, exemplified by the routing problem. Therouting problem with agents can also be
seen as a multiple target searching problem where each agentsearches for its individual target. A moving
CA agent is a set of CA rules modeling the agent’s behavior within the CA paradigm. In particular, we are
modeling agents that can decide upon their actions by the useof an embedded control automaton (finite
state machine).

In order to communicate between processors on a chip an appropriate network has to be supplied.
We assume that the communication is based on packets/messages transported from a source to a target
(destination) processor. A lot of research has been carriedout in order to find the best networks with
respect to latency, throughput, fault tolerance, and so on.Instead of improving the known design principles
we want to follow a novel approach based on agents that transport messages. Routing a message can be
deterministic(unique path is taken) oradaptive(alternative links are selected during message passing).
Our goal is to find an optimal adaptive routing technique using intelligent agents. Each agent selects
dynamically on its own the links using a control algorithm that was evolved by a genetic procedure. We
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will specialize our investigation to the2D grid structure with cyclic connections, in which the processors
and the network components are located at dedicated positions.

Related Work. A Cellular Automata (CA) based path planning algorithm in multi-agent systems has
been proposed in Tavakoli et al. (2008), where many agents have to find the same target. Our investigation
is related to this work, but a main difference in our task is that each agent has its own individual target.
Target searching in agent systems has been researched in many variations: with moving targets in Loh
and Prakash (2009); Goldenberg et al. (2003); Koenig et al. (2007), and in single-agent systems in Korf
(1990). Here we restrict our investigation to stationary targets and multiple agents having only a local
view. Adaptive routing algorithms with mobile agents have been presented in Caro and Dorigo (1997);
Dhillon and Mieghem (2007) using software agents inspired by ant behavior. In contrast to these works, a
simple finite state machine controls our agents, and the agents are intended to be implemented in hardware.

This contribution continues our preceding work on routing with agents on a2D grid (Ediger and Hoff-
mann (2009, 2010)). In Ediger and Hoffmann (2009) four routing models with agents were proposed and
compared (undirected agent, randomized undirected agent,directed agent, randomized directed agent).
There it turned out, that many of the evolved directed agentswere very reliable, but that deadlocks could
not be avoided securely. In Ediger and Hoffmann (2010) the optimal spatial distribution of communication
nodes was investigated. It turned out that one or two free nodes (buffers, spaces) between communication
nodes were optimal with respect to the overall reachable communication time.

Other routing algorithms were investigated for regular2D grid structures (mesh) including non-adaptive
techniques, e. g., XY-routing in de Mello et al. (2004) and adaptive techniques, e. g., hot potato routing. In
Busch et al. (2001) agreedy, local anddynamichot potato algorithm is presented. Our technique produces
adaptive routing algorithms that are local and not necessarily greedy. The test cases in this paper are all
staticaccording to Busch et al. (2001): “all packets are injected at time zero”, but could also be applied
to dynamic systems: “nodes may inject packets into the network repeatedly over a long duration” (Busch
et al. (2001)).

In other former works, we investigated multi-agent systemsin CA with different tasks, like the Crea-
ture’s Exploration Problem in Halbach et al. (2006) or the All-to-All Communication task in Ediger and
Hoffmann (2008b). In these investigations we used different methods of optimization like genetic pro-
gramming (Komann et al. (2009)), genetic algorithms (Ediger and Hoffmann (2008a)), sophisticated enu-
meration (Halbach (2008)) and time-shuffling techniques (Ediger and Hoffmann (2008b)). A transactional
CA model for multi-agent systems was developed in Spicher etal. (2009). In general our work is also
related to works like: evolving optimal rules for CA (Sipper(1997); Sipper and Tomassini (1999)), detect
centroids with marching pixels (Komann et al. (2007)), simulation of pedestrian behavior (Schadschneider
(2008)) or traffic flow (Schadschneider and Schreckenberg (1993)).

The remainder of this paper is organized as follows. In Section 2 we explain the agents’ task and the
CA model in more detail. The method of evolving the probabilistic FSM controlled agents is described in
Section 3. The performance of the evolved agents is comparedagainst the XY-routing agents in Section
4. Section 5 concludes, and proposes further investigations.

2 The Task and the Modeling of the Agents
2.1 The Routing Task
Given is a2D grid of n × n = N cells with border. A cell can dynamically be either of type EMPTY,
OBSTACLE or AGENT. Obstacles are used to model the border, orthey can be used to model broken
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cells in a network. Each cell can be used as a source and/or thetarget of a message. Therefore, a cell
can act as a communication node or processor. Amessage transferis the transfer of one message from a
source to a target. A set of messages shall be calledmessage set. A message set transferis the successful
transfer of all the messages belonging to the set. The agentsshall perform message transfers, the whole
system we callagent system. Initially the agents are located at their source positions. Then they move
to their targets. When an agent reaches its target, it is deleted. Thereby the number of moving agents is
reduced until no agent is left. This event defines the end of the whole message set transfer. In order to
simplify this investigation we constrained the problem:

• The numbers of source cells is equal to the numberd of target cells, and it is equal to the number
k of agents, and it is equal toN : k = s = d = N . This means that initially an agent is placed in
each cell of the array without spaces. Nevertheless the agents designed in Section 3 will be able to
cope with cellular arrays that initially contain spaces.

• The cells on which the agents are placed initially are calledsource cells. Each agent has stored
initially a target location. Source locations may act as targets for other agents, too. The targets are
mutually exclusive (each agent has a different target).

• Initially an agent cannot be placed already on its target (message transfers within a cell without
movement are not taken into consideration).

• No new messages are inserted into the system until all messages of the current set have reached
their targets. This corresponds to a barrier-synchronization between successive sets of messages.

The goal is to find for a given number ofk (agents, messages per set, sources/targets) the optimal
agents’ behavior in order to transfer a message set (averaged over all possible sets) as fast as possible. We
are searching for behaviors that are reliably, meaning thatthe message set transfer can be accomplished
successfully for any given initial configuration. From former investigations (Ediger and Hoffmann (2009,
2010)) we have learned that agents with deterministic behavior may run into deadlocks or livelocks.
Therefore, we are using here agents with a probabilistic behavior.

2.2 CA Modeling of FSM Controlled Agents
The whole agent system (environment with moving agents) is modeled as auniform CA, e. g. all cells
obey to the same local rule. Uniform CA can also modelnon-uniformCA. In our case this is implemented
by the use of acelltypefield as a part of the cell’s state. Depending oncelltype, the relevant subrule is
activated. Thecelltypecan dynamically be changed by a subrule, e. g. (AGENT→ EMPTY) for the
center cell and (EMPTY→ AGENT) for thefront cell (the cell where the agent is moving to). The cell
under consideration, also calledcenter cellor own cellC, is connected to its neighbors within Manhattan
distance of 2. The updating scheme is synchronous.

Modeling Moving. Modeling moving agents as CA can be described by two complementary rules
(own ruleRC , neighbor’s ruleRN ) (Fig. 1(a)). If an agent moves from its own location C to one of its
neighbor locations N, the own rule deletes the agent and the neighbor’s rule copies it. In addition, conflicts
have to be detected and resolved in the case that a cell can host only one agent (or a limited number). If
more than two agents want to move to the same neighbor, eitherall agents have to wait or one agent is
selected. The neighboring cells (where the agent wants to move to) and the own cell have to perform the
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R
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(delete self)
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N
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N

(copy from)

(a) (b)

Fig. 1: (a) Modeling the moving of an agent in CA requires a couple of two consistent rules (sender ruleRC deletes
agent, receiver ruleRN copies agent). (b) Conflict resolution has to be computed in the sender cell (C) and the
receiver cell (N ) based on the same information. A neighborhood of distance 2in the agent’s direction is required in
order to solve the conflict.

Tab. 1: A state table representing the best found control automatonfor the large environments (N = 256, see Sec. 4,
best of V20). Depending on current control state and inputs,the pairs ofnext state/outputare given.

CONTROL INPUT

STATE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1/0 5/0 0/0 6/2 3/0 6/3 2/2 3/1 7/1 4/2 1/2 0/0 2/2 3/0 7/1 1/1 3/1 3/1
1 6/2 3/0 2/0 0/2 4/1 7/3 1/2 7/1 4/1 1/0 5/0 2/0 5/2 6/2 1/1 7/2 7/1 5/1
2 2/2 5/2 5/0 4/2 1/1 0/3 6/1 1/1 2/1 3/0 0/0 6/0 3/0 7/1 0/1 6/2 6/1 5/1
3 3/0 0/1 4/3 4/2 1/2 5/1 1/2 0/1 4/1 5/0 2/0 6/0 0/1 2/2 5/1 7/2 3/1 7/1
4 3/0 0/0 6/3 4/2 5/2 2/2 4/1 7/2 6/3 3/0 5/0 2/0 2/2 6/2 3/0 6/2 0/1 4/1
5 3/1 7/0 5/3 7/2 2/2 1/0 7/2 2/1 0/1 4/2 0/0 5/0 4/2 0/2 2/3 6/2 4/1 5/3
6 6/2 6/0 6/3 4/2 7/2 1/0 6/1 2/1 5/3 4/2 2/0 1/0 6/2 0/2 4/3 4/1 5/1 0/1
7 4/2 7/0 7/0 1/2 5/2 4/1 2/2 4/1 3/1 4/2 7/0 5/0 3/2 5/2 1/0 6/1 1/1 3/1

same conflict resolution scheme using the same amount of information consistently. In order to access
this information by the neighboring cells as well as by the own cell, in general an extended neighborhood
is required (Fig. 1(b)). I. e., C needs to read the state of thefront cell N, and in addition the states of the
neighbors of N in order to detect a conflict. An empty cell N reads the state of its four neighbors in order
to detect an agent that wants to move to it, or to detect a conflict. In Ediger and Hoffmann (2008a) CA
rules are given describing the moving more formally.

Modeling Behavior. An agent shall react on certain inputs coming from the environment or from other
agents. If an agent behaves according to an internal algorithm that is not trivial, we will call the agent
“intelligent”. We are using a finite state machine (FSM, Mealy type) defining a control algorithm. The
outputs of the control algorithm activate certain actions.The control algorithm together with its actions
define the behavior (or the “algorithm”) of an agent. The whole agent represents a Moore automaton,
which is the type of automaton that is standard in CA.

We represent such control automata by a transition table (Tab. 1), defining the next control state and the
control output. It can be implemented easily by a table stored in a read-only memory. The number of FSMs
that can be coded in a table with#x control inputs,#s states, and#y control outputs is(#s#x)(#s#y).
As the number of FSMs and the storage capacity is exploding with respect to these parameters, this
implementation is of practical use only for a limited complexity. Nevertheless, interesting non-trivial
algorithms can be coded with a limited complexity. – Tab. 1 shows an example with#x = 18 inputs,
#s = 8 control states and#y = 4 control outputs.

Note that the number of control algorithms which fulfill certain properties (only one representative of
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Fig. 2: Control Unit (a). The current direction, and the own and target position of the agent are mapped to 9 control
inputs (“colors”). An agent can observe 9 target areas (colors) where the target may be located (b). Two additional
control inputs are (B∨ C), altogether 18 control inputs. The control automaton computes 4 control outputs (the
conditional actions). The action mapping maps the outputs to the 8 basic actions.

equivalents, state reduced, only one representative of equivalents under permutations of the state/input/out-
put encoding, fully connected, etc.) is much smaller, but still its number is growing exponentially. In
Halbach (2008) algorithms are given that allow enumeratingonly algorithms that fulfill certain properties.
In order to keep the complexity of the control automaton under reasonable limit, the inputs are reduced
by aninput mapping function(Fig. 2(a), Fig. 2(b)), and the control outputs are mapped toa larger set of
basic actions by anaction mapping function(using control outputs and other conditions).

Depending on the random variable R, the conditional action is either taken from the control automaton
with probability(1− p) or is random with probabilityp. Thereby the whole behavior gets probabilistic.

The Cell’s State and Rule. The state of each cell is structured into (celltype, direction, own and
target position, priority, control state, random variable R) (Fig. 3). The celltype is in{AGENT, EMPTY,
OBSTACLE}. Space cells are modeled by EMPTY cells in the initial configuration. Each agent has
a moving direction (toN, toE, toS, or toW) computed in the current generation for the next generation.
Depending on the own position (can be read from the environment, or by the use of a position counter that
is updated according to each moving step) and the target position, the agent can compute its shortest path
(resp. the most advantageous next direction) to the target.The action taken by the agent depends (i) on
the random variable R, (ii) on the inputs, and (iii) the agent’s current control state. The eight basic actions
are (k ∈ (0, 1, ..., 3)):

• “Move and Turn”mTk: move forward and simultaneously turnk × 90◦ clockwise

• “Stay and Turn”sTk: stay and turnk × 90◦ clockwise

The following shortcuts can be used:T0 = N (no turn),T1 = R (turn right),T2 = B (turn back),T3 = L
(turn left), then the basic actions aremN, mR, mB, mL, sN, sR, sB, sL.

An agent can perform one out of fourconditional actions. The conditional action is defined by the
control automaton ifR = 0, or is random (one out of four) ifR = 1. R is a random variable that is set to
one with a probability ofp, otherwise to zero. The changing of the random variable is performed in every
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control state

CONTROL UNIT

(if AGENT)
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(if EMPTY)
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around R random variable

actions

Fig. 3: Structure and neighborhood of an intelligent agent. The actions are determined by a control unit that is
embedded in the cell. If the cell type is AGENT, then the 4 neighbors in front are relevant. If the cell type is EMPTY,
then the 4 surrounding neighbors are relevant.

generation by a random generator available in every cell. Thereby the behavior of the agents becomes
probabilistic. A conditional action depends on the moving conditionm: Tk: if m thenmTk elsesTk.

This means that an agent moves forward whenever it can (m = true). Note that in addition to a move-
ment the direction may be changed. The moving condition is given bym = (B ∧ C) ∨ swap. B means
that there is an agent in front.C means that another agent (the “conflicting agent”) is allowed to move
to the empty cell in front. The moving condition gets false, if there is a blocking agent in front (B), or if
the conflict resolution forbids the agent to move because another agent gets priority (C). The condition
swapmeans that the agent in front points back to the own agent; thereby the head-on meeting agents are
swapped. Note that swapping is very useful in order to avoid blockings and deadlocks.

In case of a conflict (2-4 agents meet at a “crossing” and pointto the same crossing cell), the crossing
cell acts as an arbiter. There are4! = 24 priority schemes (possible permutations) to resolve the conflict
for at most 4 agents. The agent with the highest priority, decided by the crossing, wins and moves to the
crossing point. For example, if the crossing priority scheme is (3, 1, 0, 2) and one agent from direction 1
and another one from direction 3 want to move to the crossing point, then the agent coming from direction
3 will win (is predecessor in the list) and moves. The losers wait and perform one of the turning actions
tk. The 24 schemes are equally distributed over the cell space in the initial configuration (stored in every
cell one after the other, repeated cyclically).

Depending on the direction, the own position and the target’s position, 9 target areas are distinguished
(Fig. 2(b)). The target area 0 contains only the front cell. Four of them are the 4 main directions (lines,
main axes), that are defined by the following condition: the target can be reached (be seen) by going
straight forward (where required after rotation). Anotherfour areas are given for the sectors in between
these lines. Target areas can be interpreted as different colors, which an agent can observe. Our agents
can observe all 9 different colors (If necessary, the numberof colors could be reduced in order to reduce
the inputs for the control automaton to be evolved (Sec. 3).)

The control automaton computes first the preferred conditional action. Then the moving condition (in-
cluding the swapping option) is checked. Thereby the agent adapts to the given situation in its immediate
local neighborhood, because if a desired link is blocked, itwill choose an alternative link in the next step,
determined by the control automaton and by the priority scheme stored in the front cell. The cell rule can
be informally described as follows:
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• If celltype is EMPTY, calculate which of the four neighboring cells with cell type AGENT pointing
to the own cell has the highest priority. If such an agent exists, copy the control state, direction and
the other information and use it in the own control automatonto determine (in the own cell) the
turning decision of the agent. Finally change the celltype to AGENT. If the own cell is the target of
the agent, then the celltype remains EMPTY (agent is deletedon target).

• If celltype is AGENT, detect whether the movement to the front cell is possible (including the
swapping option and taking into account the priority schemestored in the front cell). If the agent
can move, change the cell type to EMPTY.

3 Types of Agents and Investigations
The goal is to find optimal agents to solve the routing problemwith n × n = N = 16, 56, 256 cells and
agents. These different cases are calledCASE(N). Three types of agents will be used: FSM controlled
agents (Sec. 3.1), and for comparison (Sec. 3.2) XY-routingagents (XY) and modified XY-routing agents
(MXY).

3.1 Method of Determining the FSM Controlled Agents

The probabilistic algorithm is defined by the control algorithm of the finite state machine and the proba-
bility p of the randomness parameter. Therefore the genome is composed of an FSM state table (as shown
in Tab. 1) and a probabilityp. In this investigationp can take on discrete values with a precision of 0.1%.
A randomized FSM controlled algorithm will be called FSM(p).

Our method to find (near) optimal algorithms consists of the following steps:

1. (Evolving) A training setof 20 initial configurations was used to evolve a first set of 3,000 algo-
rithmsT3000. An island model as described in Ediger and Hoffmann (2008a); Ediger et al. (2009)
was used. Five islands were used with a population size of 100genomes (initially randomly gener-
ated) and an immigration rate of 2%. Six runs were performed,resulting in5 × 100 × 6 = 3000
algorithms. The fitness value was evaluated for each configuration by using only one simulation of
the CA. It is equal to the number of steps (1/“speed”), that the agents need to complete the message
set transfer (averaged over the 20 configurations).

New automata were constructed during the evolution processusing a uniform crossover with two
parent automata like in Ediger and Hoffmann (2008a); Edigeret al. (2009). Thereby the next state
of a control state and its associated output (conditional action) can be taken from either one of the
parents. The probability (stored in the genome) of the offspring is the average of the probabilities
taken from the parents. In addition, each gene (next state, output, probability) is changed with a
mutation rate of 0.9%.

2. (Fitness Correction) The fitness values of the evolved algorithms T3000 are not precise because
they are evaluated by one simulation only. Different simulations lead to slightly different fitness
values because the CA rule is probabilistic. Therefore the 3,000 algorithms were simulated again,
each 1,000 times. Thereby the confidence into the fitness values was increased significantly. Then
the algorithms T3000 were ranked and the top 20 were selectedfor further processing, let us call
themT20.
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(a) (b)

Fig. 4: Manually designed initial configurations forN = 16 that lead to livelocks or deadlocks if the control algorithm
is unrandomized and equal for all agents. In case (a) the target of each agent is placed in its front cell. In case (b) the
target is placed straight ahead of the agent, two cells in front. The target positions are not depicted here.

3. (Ranking) We want to produce algorithms that are successful and fast on any initial configuration.
Until now the algorithms were optimized for the training setonly. Therefore another, larger set,
called ranking setcontaining 1,000 configurations was used. It consists of 998random initial
configurations and 2 manually designed configurations shownin Fig. 4. We have designed these
two special configurations in such a way that livelocks or deadlocks will occur if unrandomized
algorithms (deterministic FSMs, deterministic XY-routing (see below)) were used. The algorithms
T20 were simulated 10,000 times (forN = 16, 64 cells), and only 1,000 times (forN = 256) in
order to limit the computation time. Then they were ranked yielding the set ofR20algorithms.

4. (Variation) As randomnessp of an algorithm was evolved for the training set only and onlysim-
ulating once, its confidence is low. We are searching for the optimal randomness for the ranking
set. Therefore the randomness was varied using discrete values with a precision of 0.1%; lower and
higher values were used in an iterative way in order to find theoptimal value. The simulations were
carried out 10,000 times (forN = 16, 64) resp. 1,000 times (forN = 256) on the 1,000 initial
configurations of the ranking set for different values ofp. The set of algorithms that results from
variation is calledV20.

3.2 Randomized XY-Routing Agents and Modified XY-Routing Agents
For comparison, XY-routing agents (XY)(i) and modified XY-routing agents (MXY) were defined and
simulated. These agents can see the same colors as the FSM controlled agents, and they can perform the
same basic actions. The state of an XY or an MXY is (direction, own position, target position).

An XY first reduces the difference of the x-coordinates between the current and target position until it
gets zero, then it reduces the y-difference.

An MXY computes in each step the optimal moving direction from the cell in front towards the target
on the shortest path. If there are two equivalent directions, then it takes an arbitrary choice. If the front
cell is free, then the agent will move and turn towards the target. If the front cell is blocked and there are
alternative directions, then the agent takes an arbitrary choice.

For certain configurations, it turned out that that the XYs and MXYs formed clusters (deadlocks and
livelocks) from which they could not escape. Therefore, thecapabilities of the XYs and the MXYs were
enhanced by adding randomness in a similar way as it was done for the FSM agents. An XY(p) is an XY
that turns to a random direction with a randomness ofp, and behaves as an XY for (1 − p). The same
holds for MXY(p). The optimal randomness was searched in the same way as described above in step 4
(variation) (Sec. 3.1).

(i) The “normal” XY-routing procedure uses four message buffers per cell, whereas here only one buffer for the agent is provided.
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Tab. 2: Fitness and randomness values of the Top1 algorithms of R20 and V20, the MXY(p) algorithm and the
XY(p) algorithm for eachCASE(N)on the Ranking Set. Note that the best algorithm of R20 is not necessarily the
best algorithm of V20.

N = 16 N = 64 N = 256
fitness p fitness p fitness p

Top1 of V20 14.8 1.2% 36.7 1.3% 84.0 1.8%
Top1 of R20 15.4 4.5% 37.6 0.6% 86.4 4.4%

MXY( p) 15.8 6.5% 41.1 9.1% 97.8 11.9%
XY(p) 17.9 8.4% 50.2 14.7% 122.7 18.5%

Tab. 3: Average, minimum and maximum of the randomnessp of the FSM algorithms in R20 and V20.
FSMs(p) of V20, optimalp FSMs(p) of R20, evolvedp

N = 16 N = 64 N = 256 N = 16 N = 64 N = 256
Average randomness 3.1% 1.89% 2.19% 3.1% 4.78% 5.69%

Minimum randomness 0.9% 0.8% 1.2% 0.1% 0.6% 2.9%
Maximum randomness 5.6% 3.1% 3.2% 6.1% 7.6% 7.5%

4 Performance of the Agents
4.1 Performance of the Randomized Algorithms

The fitness (1/“speed”) of the found algorithms is shown in Tab. 2. For eachCASE(N)the fitness is
ordered with this precedence: (1) Top1-FSM(p) of V20, (2) Top1-FSM(p) of R20, (3) MXY(p), (4)
XY(p). Thus the evolved FSM controlled agents (after randomnessvariation) are 6%/11%/14% faster
than the MXY(p) agents, for the casesN = 16/64/256. By variation of the randomnessp (of FSM(p) in
R20) the performance was improved by 2-4% (result of variation is V20).

The largest possible distance between an agent and its target in an initial configuration is(n − 1) +
(n − 1). Supposing, that such an agent is facing a border at the beginning, there is one additional step
necessary to turn in the right direction. In such a worst casesituation the message (and thus the message
set) could be transported in2n− 1 steps (assuming a perfect algorithm and no conflicts), whichequals 7,
15, or 31 for the different cases. InCASE(16)2.1 times this limit is needed by the best algorithm (V20),
in CASE(64)the factor is 2.4 and inCASE(256)the factor is 2.7. This means that the agents move slower
to their targets, when there are more agents, because the amount of conflicts per agent per time step is
increasing.

4.2 The Optimal Randomness

It was observed that, the better the algorithm performs, thelower is the optimal randomness. The optimal
randomness increases withN for the MXY(p), the XY(p) and the Top1 V20 algorithms (Tab. 2). After
the ranking step, i. e., after evolving, the average randomness of the R20 algorithms increases withN ,
too (Tab. 3). For the average randomness of the V20 algorithms and the randomness of the Top1 R20
algorithm, this does not hold forCASE(16). A higher randomness value is needed to efficiently resolve
the higher amount of conflicts in configurations with more agents.

Comparing the randomness values after evolving and rankingwith the values after variation, it can be



218 Patrick Ediger and Rolf Hoffmann

 84

 85

 86

 87

 88

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

T
im

e 
S

te
ps

Randomness p

Top1-FSM(p)
Top2-FSM(p)
Top3-FSM(p)
Top4-FSM(p)
Top5-FSM(p)

(a)

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 0  0.05  0.1  0.15  0.2

T
im

e 
S

te
ps

Randomness p

Top1-FSM(p)
XY+

MXY+

(b)

Fig. 5: Curves showing the fitness values forCASE(256)depending on the randomness. The set of curves (a) shows
the top 5 FSM(p) algorithms of V20. The curves (b) show the fitness values of the XY(p), the MXY(p) and the
Top1-FSM(p) algorithm of V20. ForCASE(16)andCASE(64)(not depicted here), the values are different, but the
tendency is the same.

observed that a rather high randomness was evolved and latercorrected downwards by variation. After
variation, also the range of randomness in which the 20 algorithms are placed becomes smaller (Tab. 3).

By performing the variation step, a fitness curve depending on the randomness can be developed. These
curves of the best randomized FSMs have a similar progression (Fig. 5(a)). Furthermore, the optimal
randomnessp of the FSM based evolved algorithms is much lower than the optimal randomness of the
MXY( p) and the XY(p) (Tab. 2, Fig. 5(b)). This is true for all tested cases.

4.3 Adding Spaces between the Communication Nodes
An additional test was carried out in order to verify former results saying that 1-2 spaces between each
agent will improve the speed of the agents. We investigated initial configurations withk = 256 agents
and a grid size of(n + i) × (n + i). This results in2in+ i2 spaces (empty cells, buffers).i was varied
between 1 and 15. For each of the different casesi, a ranking set of 1,000 configurations was generated,
placing the spaces randomly. The Top1-FSM(p) algorithm of V20 ofCASE(256)was simulated 1,000
times on each ranking set. It turned out that fori = 11 it performs best: 69.3 time steps on average, which
is an improvement of 17.5% against the configurations withi = 0 (84 time steps). Fori = 11, there are
420 spaces. Thus the best ratio of agents to spaces is 1.64.

5 Conclusion
Agents modeled within the CA paradigm were developed that can efficiently solve the routing problem.
Three types of agents were defined: (1) FSM controlled agents(with an embedded finite state machine
evolved by a genetic algorithm), (2) XY-routing agents, and(3) modified XY-routing agents (MXY). To
each of them a randomness ofp was added: With the probabilityp they choose an arbitrary moving action
in order to avoid deadlocks and livelocks. The FSM agents were first evolved on a small training set
of initial configurations, then their fitness values were corrected using more simulations, then they were
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ranked on a large training set, and finally the evolved randomness parameterp was varied in order to find
its optimal value. It turned out that the FSM(p) agents are the fastest, the MXY(p) agents are slower, and
the XY(p) agents are the slowest. Furthermore, if an agent performs better then it uses a lower randomness
(it is “more deterministic”). An additional test showed that the speed of the FSM(p) agents can further
be improved by introducing additional spaces between the communication nodes. Using1.64 × k space
cells fork = 256 agents, the speed could be improved by 17.5%. – Future questions are: Is a regular
distribution of the space cells better than a random distribution? Is it better to use different node locations
for sending and receiving messages? How fault tolerant is the agent system, replacing some of the spaces
by obstacles?
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Randomness solves the density classification

problem with an arbitrary precision

Nazim Fatès
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The density classification problem consists in making a population of cells decide, by using only local rules, whether

an initial random configuration contains more 0s or 1s. This problem is known for having no exact solution in the

case of deterministic one-dimensional cellular automata. We propose a probabilistic cellular automaton that solves

the problem with an arbitrary precision. The precision of the classification can be increased with an appropriate tuning

of the CA but comes at a cost of an increased average number of steps times to converge.

Keywords: density classification problem ; probabilistic CA ; discrete dynamical systems

1 Introduction

The density classification problem is one of the most studied “inverse” problems in the field of cellular

automata. Its interest stems from the paradox that it requires a cellular automaton, or more generally a

discrete dynamical system, to compute a trivial task: to decide whether an initial binary string contains

more 0s or more 1s. In its most “classical” formulation, the cells are arranged in a ring and each cell

can only read its own state and the states of the neighbouring cells. The challenge is to design a local

behaviour of the cells that would drive the system to converge to a uniform fixed point, consisting of all 1s

if the initial configuration contained more 1s and all 0s otherwise. In short, the cellular automaton should

decide whether the initial density of 1s was greater or lower than 1/2.

The impossibility to centralise the information is the main difficulty of this problem. All the compu-

tations are local, that is, they are restricted in space and time by the very nature of a two-state cellular

automaton. To reach a global consensus which consists of a uniform state, the cells need to compute

the state that is most present in their neighbourhood and then to propagate this information to the other

cells. However, this can be achieved only with a trade-off between two contradictory objectives: to decide

locally which state is most present and, as the cells have no memory, to simultaneously propagate this

information to the other cells.

The problem has attracted a sustained attention since its early formulations [5]. Studies were mainly

conducted an experimental basis, for instance by using genetic algorithms to find good rules (see e.g. [7]

and references therein). On the analytical side, one of the most surprising discoveries was a negative

statement: there exists no perfect (deterministic) density classifier that uses only two states [6]. This draft

paper presents a kind of “counterpart” to this negative theorem: even though it is impossible to find a
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perfect solution, the density classification problem may be solved with an arbitrary precision, i.e., with a

probability of success arbitrarily close to 1.

Our main idea is to use randomness to solve the dilemma between the local majority decisions and

the propagation of the most frequent state on a global scale. We follow the path opened by H. Fukś

who proposed a probabilistic CA which classifies density by a purely “diffusive” mechanism. In our

construction, the trade-off between local majority computations vs. large-scale diffusion is achieved by

tuning a single parameter. This parameter corresponds to a weight between two well-known deterministic

rules, namely the majority rule and the “traffic” rule. We show that the probability of making a good

classification approaches 1 as the value this parameter is set closer to 0. The drawback of such a gain of

precision is an increase in the average time it takes to converge to a uniform state.

2 Formalisation of the problem

In this section, we define the Elementary Cellular Automata and their probabilistic counterpart.

2.1 Basic notations

Let L = Z/nZ be the set of n cells arranged in a ring. We restrict our study to the binary case, the set of

states is {0, 1}. A configuration is a string x ∈ {0, 1}L that associates to each cell a state. The set of all

configurations of size n is denoted by {0, 1}L.

An Elementary Cellular Automaton (ECA) is a one dimensional binary CA with nearest neighbour

topology, defined by its local transition rule, a function f : {0, 1}3 → {0, 1} that specifies how to

update a cell using only nearest-neighbour information. For a given ring size n, the global transition rule

F : {0, 1}L → {0, 1}L associated to f is the function that maps a configuration xt to a configuration

xt+1 such that:

∀i ∈ L, xt+1
i = f(xti−1, x

t
i, x

t
i+1)

A Probabilistic Elementary Cellular Automaton (P-ECA) is also defined by a local probabilistic tran-

sition rule f but the next state a cell is known only with a given probability. In the binary case, we

define f : {0, 1}3 → [0, 1] where f(x, y, z) is probability that the cell updates to state 1 given that its

neighbourhood has the state (x, y, z).

We define the global transition rule F associated to a P-ECA f as the probabilistic function that assigns

to each random configuration xt a random configuration xt+1 such that:

∀i ∈ L, xt+1
i = Bti

{
f(xti−1, x

t
i, x

t
i+1)

}

where xt+1
i denotes the random variable that is given by observing the state of cell i and Bti(p) are

i.i.d. Bernoulli random variables, i.e., random variables that equal to 1 with probability p and to 0 with

probability 1− p.

2.2 Density Classifiers

We say that a configuration x is a fixed point for the global function F if we have F (x) = x with

probability 1. We say that a global function F is a (density) classifier if 0L and 1
L are its two only fixed

points.
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Tab. 1: Table of the 8 active transitions and their associated letterd that define the notation by transitions of the 256

ECAs.
A B C D E F G H

000 001 100 101 010 011 110 111

1 1 1 1 0 0 0 0

For a classifier C, we define the probabilistic event that C correctly classifies a configuration x as the

probability that there exists a finite time T such that: CT (x) = 1
L if d(x) > 1/2 and CT (x) = 0

L if

d(x) < 1/2.

To evaluate the ”quality” of a classifier requires to introduce a quantitative measures. We use here the

”uniform density quality” UDQ, defined as the limit for the ring size growing to infinity of the probability

of good classification if the initial strings are constructed as Bernoulli strings, i.e., we choose d uniformly

in [0, 1] and construct a random configuration where each cell has a probability d to be in state 1.

2.3 Structure of the P-ECA space

Obviously, the classical deterministic ECA are particular P-ECA with a local rule that takes its values

in {0, 1}. The space of P-ECA can be described as an eight-dimensional hypercube with the ECA in its

corners. This can be perceived intuitively if we see P-ECA rules as points of the hypercube, to which

we apply the operations of addition and multiplication. More formally, taking p P-ECA F1, . . . , Fk and

w1, . . . , wk real numbers in [0, 1] such that
∑k
i=0 wi = 1, the weighted average of the P-ECA (Fi) with

weights wi is the P-ECA g such that:

∀x, y, z ∈ {0, 1}, g(x, y, z) =

k∑

i=0

pi.f(x, y, z)

As a consequence, one may choose any combination of 8 P-ECAthat form a basis as vector coordinates

of the 8-dimensional hypercube. The most intuitive basis is the 8 ECA that have only one transition that

leads to 1: the weights of this combination correspond to the values f(x, y, z).
Equally, one may express a P-ECA as a weighted average of the 8 (deterministic) ECA that have only

one active transition, i.e., only one change of state in their transition table. Such ECA are labelled A,

B, ..., H according to the notation introduced in [2] and summed up in table Tab. 1. Formally, for every

P-ECA f , there exists a 8-tuple (pA, pB, . . . , pH) such that:

f = pA.A+ pB.B + · · ·+ pH.H

We denote this relationship by f = [pA, pB, . . . , pH]T , where the subscript T stands for (active) “transi-

tions”.

This basis has the same advantages as for the deterministic case (see ref [3]). In particular one can notice

that the quantities pA, pB, pC, pD and pE, pF, pG, pH concern the cells with state 0 and 1, respectively. The

group of symmetries of a rule can easily be obtained: the left-right symmetry permutes pB and pC, and

pF and pG, whereas the 0-1 symmetry permutes pA and pH, pB and pG, etc.

3 Fukś density classifier
Let us first consider the probabilistic density classifier proposed by Fukś [4]. For p ∈]0, 1/2], the local

rule C1 is defined with the following transitions:
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Fig. 1: Three evolutions of Fukś classifier C1 with n = 51, p = 1/2, and same initial of density ∼ 0.4. Time goes

from bottom to top ; white cells are 0-cells and blue cells are 1-cells. (left) evolution will most probably end with a

good classification (0L); (middle) equal probabilities of good classification; (right) evolution will probably end with

a bad classification (1L).
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N 000 001 010 011 100 101 110 111

p(1 | N ) 0 p 1− 2p 1− p p 2p 1− p 1

This rule is a density classifier as 0L and 1
L are its only fixed points. With notations introduced above,

we write:
C1 = [0, p, p, 2p, 2p, p, p, 0]

= p.BDEG+ p.CDEF

where BDEG = 170 and CDEF = 240 are the left and right shift respectively. This means that Fuks’

rule can be interpreted as applying, for each cell independently: (a) q left shift with probability p, (b) a

right shift with probability p, and (c) staying in the same state with probability 1 − 2p (see Fig. 1). We

also note that this rule is invariant under both the left-right and the 0-1 symmetries ; indeed, we have:

pB = pC = pF = pG, pA = pH and pD = pE.

Theorem 1 For every x ∈ {0, 1}L , the probability of good classification of x is equal to max {d(x), 1−
d(x)}, where d(x) is the density of x.

This property was observed experimentally with simulations explained partially by combinatorial ar-

guments [4]. We now propose a proof that uses the analytical tools developed for asynchronous ECAs [3]

and completes the results established by Fukś.

The proof stands on the following lemma, see [3].

Lemma 1 If (Xt) is a process that takes its values in {0, . . . , n}, such that:

• (Xt) is a martingale on {0, . . . , n}, i.e., E
{
Xt+1 |,Ft

}
= Xt,

• (Xt) is a Markov process with 0 and n as the two only absorbing states,

then the probability of absorption by state n is equal to X0/n, the probability of absorption by state 0 is

equal to (n−X0)/n.

Proof Proof of Theorem 1: We denoted by |x|P the number of occurrences of a pattern P in x. Let

us now simply take Xt = |xt|1 and show that Lemma 1 applies to Xt. For sake of simplicity, we write

a(x) = |x|000, b(x) = |x|001, . . . , h(x) = |x|111 (see Tab. 1) and drop the argument x when there is

no ambiguity.where |x|P denotes the number of occurrences of p in x. The following equalities hold [3]:

b+ d = e+ f ; c+ d = e+ g; b = c = f = g.

We thus have:

E
{
Xt+1 −Xt

}
= p.b+ p.c+ 2p.d− 2p.e− p.f − p.g
= p.(b+ d− e− f) + p.(c+ d− e− g)
= 0

On the other hand, X0 and Xn are the only two absorbing states of the Markov chain, so Xt ∈ {1, n− 1}
implies that xt is not a fixed point

Let T be the random variable equal to the time where the system reaches an absorbing state, then T is

a stopping time and we can write:

E[XT ] = 0.Pr[XT = 0] + n.Pr[XT = n]
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Fig. 2: Three evolutions of C2 with n = 51 and ǫ = 1/4 and for the same initial condition of density 25/51 ∼ 0.49.

The two first evolutions give a good classification (all 0) in less or approximately 100 time steps; the third evolution

is not finished at time t = 100, but it will evolve toward a bad classification.

and

E[XT ] = X0.

We find that the probability that the chain stops on Xt = n, that is on the fixed point 1L, is equal to

X0/n, i.e., it is equal to the initial density. 2

From this, we derive that the probability of good classification of any configuration x is equal to

max{d(x), 1 − d(x)}. The uniform density quality of C1 is thus equal to 3/4 (obtained y a simple

integration).

It is possible to estimate the convergence time of this classifier by using the same techniques as for

the asynchronous ECAs [3]. Indeed, by noting that the Markov chains that describe C1 and the shift are

similar, this time should scales as n2/p. However, a precise proof of this statement yet remains to be done.

4 Our proposition

For ǫ ∈ [0, 1], let us consider the following P-ECA:

N 000 001 010 011 100 101 110 111

p(1 | N ) 0 0 0 1 1− ǫ 1 ǫ 1

Intuitively, this probabilistic rule can be considred as a mixing of two elementary rules.
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• For ǫ = 0 we have ECA 184, which is a well-known rule, often called the “traffic” rule. This

rule is number conserving, i.e., the number of 1s is conserved as the system evolves (see e.g., [1]).

Observing the evolution of the rule, we see that a 1 with a 0 at its right moves to right while a 0

with a 1 at its left is moved to the left. So all happens if the 1s were cars that tried to go to the right,

with possible traffic jams. These jams resorb by going in the inverse directions of the cars (when

possible).

• For ǫ = 1, we have ECA 232 which is the “majority rule”. This rule acts by selecting the state that

is most present in the neighbourhood of the cell.

With the notations introduced above, we have:

C2 = [0, 0, 1− ǫ, 1, 1, 0, 1− ǫ, 0]T
= ǫ.DE + (1− ǫ).CDEG

For ǫ ∈]0, 1[, the effect of the rule is the same as if, for each cell and each time, we would apply ECA

232=DE with probability ǫ and ECA 184=CDEG with probability 1 − ǫ (see Fig. 2). This combination

generates a surprising property: although the system is stochastic, there exists an infinity of configurations

which can be classified with no error.

Definition 1 For q ∈ {0, 1}, a configuration x is a q-archipelago if all the cells in state q are isolated,

i.e., if x does not contain two adjacent cells in state q.

Theorem 2 For a given odd ring size n, for each p ∈ [0, 1(, there exists an ǫ such that for each configu-

ration x ∈ {0, 1}L, the probability of good classification of x by C2 is greater than 1− p.

The theorem stands on the two lemmas that follow.

Lemma 2 For a given odd ring size n, an archipelago is well-classified with probability 1.

Proof (Sketch): The proof is simple and relies on two observations. Witout loss of generality, let us

assume that x is a 1-archipelago, we then have d(x) < 1/2. First, the successor of an archipelago is an

archipelago (effect of ECA 184). Second, each isolated 1s can disapear with probability ǫ. As a result, all

the 1 will eventually disappear and the system will attain the fixed point 0L, which corresponds to a good

classification.

2

Lemma 3 For a given odd ring size n, for every p ∈ [0, 1(, there exists a setting ǫ of the classifier

such that every configuration configuration x ∈ {0, 1}L has a probability greater than p to evolve to a

1-archipelago (to a 0-archipelago) if d(x) > 1/2 (if d(x) < 1/2, respectively).

Proof (Sketch): The proof relies on the well-known properity of rule 184 to evolve to an archipelago in

at most n/2 steps.

For a given p and given n, without loss of a generality, let us consider a configuration x such that

d(x) < 1/2. Let us consider the probability that the rule does not behave like rule 184. This can happen

only on the “b” and “f” cells, i.e., on the cells whose neighbourhood are 100 and 110, with probability ǫ of

each such cell. As we have b = f = g = c, we can write b+ f ≤ n/2. At each time step, the probability
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pdiff that the evolution of C2 and rule 184 differ on one step is thus majorated by: pdiff ≤ ǫn/2. For T
steps, it is is majorated by: pdiff ≤ 1− (1− ǫn/2)T .

For a given T , by using the equality above, we find that it is sufficient to take:

ǫ <
(
1− (1− p)1/T

)2/n

to guarantee that the probability of occurence of a difference during T steps is less than p.

This inequality is a only gross majoration but it shows that, by taking ǫ small enough, the probability

that a configuration x with d(x) < 1/2 evolves to a 0-archipelago can be made arbritrarily small. 2

Combining the two lemmas to prove the theorem is straightforward: for ǫ small enough, the system

evolves to an archipelago which has the same density as the initial condition (prop. of rule 184). It is then

well-classified as it will progressively “drift” towards the approriate fixed point. Note that in most cases,

there is no need that these two phases occur sequentially. This indicates that the bounds given above can

be largely improved.

The estimation of the time of convergence of this classifier is more complex than for Fukś classifier, as

it is not easy to see which quantities are conserved during the evolution of the system. However, by noting

that the probability of changing the density of a configuration vanishes as ǫ vanishes, it is clear that the

convergence time of the classifier diverges as ǫ tends to 1 and as the quality of classification tends to 1.

5 Discussion

This work-in-progress report presented preliminary results on how a probabilistic cellular automaton can

be used to solve the density classification problem with an arbitrary precision. Our proposition consisted

in finding a “blend” between two rules that have appropriate properties to solve this particular problem.

It is interesting to determine how to “blend” other rules, especially rules with a larger radius or on higher

dimension grids. Far from solving the problem, the existence of such a rule suggests that the quality of

classification cannot be taken as the unique criterion for evaluating the classifiers. Instead, it is some

trade-off between quality and time to give an answer that has to be looked for.

The first informal experiments conducted showed us a good quality of classification, with an answer

given within a short simulation time, at least for small-size configurations. For instance, for a ring size of

n = 51 and ǫ = 0.1, most initial configurations are correctly classified provided their density is not 25/51
or 26/51, i.e., if they are not “too close” from density 1/2. It is now necessary to estimate this data with

large statistical measures. Determining these measures analytically is also a challenging problem. We

believe that the techniques used to estimate Fukś classifier could be adapted to our classifier, even though

such an adaptation does not seem straightforward.

Most of the results so far have been given by using the uniform density quality. As far as we know, it is

an open problem to find a classifier that would have has a uniform configuration quality which differs from

1/2. In other words, is there a classifier which would give a non-random answer when the configurations

are uniformly chosen with large-size grids?
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Cellular Automata configurations are known to be able to generate good pseudorandom sequences. Linear Cellular

Automata and LFSRs are equivalent in pseudorandom sequence generation, but those structures could be easily

cryptanalysed due to their lack of nonlinearity. It is noted in this paper that, introduction of both nonlinear and linear

rules in Cellular Automata structures can reach the desired setup state of a cipher much faster than the LFSR and

NFSR based contemporary systems and provides comparatively secure design. The eStream stream cipher Trivium,

in spite of, being secure in its full round operation, till date, has a large number of cryptanalysis on reduced versions

of it. Trivium also has a long key setup process. In the present paper, we present a modification of the Trivium stream

cipher using Cellular Automata which is shown to be faster in operation and is much secure than the original cipher.

The proposed modification also has a shorter key setup process than Trivium.

Keywords: Cellular Automata, Trivium, Stream Cipher, Strengthening Trivium, Cryptography, Cryptography using

Cellular Automata

1 Introduction

Cellular Automata are self-evolving systems of cells each of which updates itself per cycle following a rule

embedded into it. Cellular Automaton (CA) is known for its ability to generate pseudorandom sequences

needed for various applications like VLSI testing and coding theory, Wolfram (1986). Several researchers

have attempted to apply the pseudorandomness of CA to cryptography. The cryptanalysis of linear CA

based cryptographic techniques, Paterson et al. (1997) show that nonlinearity is needed for cryptographic

applications. A 3-neighbourhood nonlinear CA each of whose cells updates itself by the nonlinear rule

30 has long been considered a very good pseudorandom sequence generator. It passed various statistical

tests for pseudorandomness with good results, Wolfram (1985), until Willi Meier and Othmar Staffelbach

proposed an attack on pseudorandom sequences generated by rule 30 CA, Meier and Staffelbach. (1991),

which would break any such system of 300 cells in complexity of about 219 operation. Other attacks on

rule 30 CA were also reported, Koc and Apohan. (1997). These findings show that for cryptography, the

data stream generated by CA needs to satisfy additional properties. In this paper, we use CA in connection

with feedback nonlinearities as structured in the Trivium stream cipher to illustrate the use of CA in cipher

design.
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Trivium, introduced in the eStream project is among the top 5 stream ciphers at the end of the project.

The cipher is very simple in design yet quite secure in operation. Although Trivium is still secure in

its full round of operation, it is not secure in its reduced round versions. A very small growth rate in

algebraic degree has lent Trivium to various trivial attacks like algebraic attacks, statistical attacks and

higher order differential attacks in reduced rounds. The weakness rendered in Trivium due to the small

growth rate of essential cryptographic properties is compensated by its long key setup process, which

completes in 1152 cycles of operation. After the setup process, the cipher represents a secure structure

against the cryptanalysis methods till encountered. However, as mentioned, a number of cryptanalytic

results on reduced round Trivium are known. Linearization, correlation attacks, algebraic attacks were

reported immediately after the introduction of the cipher. The proposal of AIDA has proved to be the

strongest form of attack against Trivium. Till date AIDA can recover up to 793 reduced rounds of Trivium

and Cube testers can distinguish up to 885 rounds of Trivium from a random sequence. Scan based

side channel attack presented a cryptanalysis on full operational Trivium hardware. Though the cipher is

still considered safe from a full operational attack, certain modifications on the cipher both to strengthen

against reduced round attacks and also to speedup the setup process of the cipher can be proposed. The

aim of the modifications would be to accelerate growth rate of essential cryptographic properties of a

cipher system.

In this paper, we propose a CA based modification of the Trivium stream cipher which strengthens it

against almost all the attacks encountered against reduced round Trivium so far. The modified cipher also

provides a faster key setup process. The modified cipher will be called CAvium. We show quantitatively

that CAvium is resistant against linear and higher order differential cryptanalysis and also resists corre-

lation and algebraic attack. It is also demonstrated to be safe against scan-based side channel attacks. A

hardware and software performance comparison of CAvium with Trivium is also given.

This paper is organized as follows. Following the introduction, section 2 discusses preliminaries. In

section 3, we present a brief description of Trivium and list known attacks on it. CAvium is proposed in

section 4. Section 5 analyzes the security strength of the proposed cipher. Performance of CAvium against

existing attacks is presented in section 6. An overall comparison of CAvium and Trivium is presented in

section 7. The paper is concluded in section 8.

2 Preliminaries

In this section, we present the basic terminology used in this paper.

A variable or its negation (x or x̄) is called a literal. Any number of ’and’-ed literals is called a

conjunction. For example, x.y.¬z is a conjunction.

Definition 1 Algebraic Normal Form: Any Boolean function can be expressed as XOR of conjunctions

and a Boolean constant, True or False. This form of the Boolean function is called its Algebraic Normal

Form (ANF).

Definition 2 Balanced Boolean Function: If the Hamming weight of a Boolean function of n variables is

2n−1, it is called a balanced Boolean function.

Thus, f(x1, x2) = x1 ⊕ x2 is balanced, while f(x1, x2) = x1.x2 is not balanced.

Definition 3 Nonlinearity: Let, f be a Boolean function of variables, x1, x2, . . . xn and A be the set of

all affine functions in x1, x2, . . . xn. The minimum of the Hamming distances between f and the Boolean

functions in A is the nonlinearity of f .
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Hence, nonlinearity of f(x1, x2) = x1.x2 is 1.

Definition 4 Walsh Transform: Let X̄ = (Xn, . . . , X1) and ω̄ = (ω1, . . . ωn) both belong to {0, 1}n and

X̄.ω̄ = Xn.ω1⊕ . . . X1.ωn. Let f(X̄) be a Boolean function on n variables. Then the Walsh transform of

f(X̄) is a real valued function over {0, 1}n that can be defined as Wf (ω̄) = ΣX̄∈{0,1}n(−1)f(X̄)⊕X̄.ω̄.

The Walsh transform is sometimes called the spectral distribution or simply the spectrum of a Boolean

function.

Definition 5 Resiliency: A function f(Xn . . . X1) is m-th order correlation immune (CI) iff its Walsh

transform Wf satisfies Wf (ω̄) = 0; for 1 ≤ wt(ω̄) ≤ m. Further, if f is balanced then Wf (0) = 0.

Balanced m-th order correlation immune functions are called m-resilient functions. Thus, a function

f(Xn, . . . , X1) is m-resilient iff its Walsh transform Wf satisfies Wf (ω̄) = 0; for 0 ≤ wt(ω̄) ≤ m.

For example, resiliency of f(x1, x2) = x1 ⊕ x2 is 1, but resiliency of f(x1, x2) = x1.x2 is 0.

d-Monomial test is a statistical test for pseudorandomness introduced independently in Filiol. (2002)

and Saarinen. (2006). It investigates the Boolean function representation of each output bit in terms of

input bits. If a Boolean function of n Boolean variables is a good pseudorandom sequence generator, then

it will have 1
2

(
n
d

)
d-degree monomials. The distribution is binomial. A χ2 test with one degree of freedom

is applied to count to measure how unbiased the count is. A deviation will indicate non-randomness. For

example, consider the function f(x1, x2, x3) = x1 ⊕ x2, it has 2, 1-degree monomials and 0, 2 degree

monomial. The ideal number of 1, 2 and 3 degree monomials would be 1
2

(
3
1

)
= 1.5, 1

2

(
3
2

)
= 1.5 and 1

2

(
3
3

)

= 0.5. It turns out that it has 2, 1-degree monomials more and 1 2-degree monomial less, hence it is

expected to be non-pseudorandom. On the other hand, f(x1, x2, x3) = x1 ⊕ x2.x3 is expected to be a

good pseudorandom generator.

Definition 6 Cellular Automata: A cellular automaton is a finite array of cells. Each cell is a finite state

machine C = (Q, f) where Q is a finite set of states and f a mapping f : Qn → Q. The mapping f ,

called local transition function. n is the number of cells the local transition function depends on. On each

iteration of the CA each cell of the CA updates itself with respective f .

The number of neighbouring cells, f depends on, may be same or different on different directions of

the automaton. f may be same or different for cells across the automaton. The array of cells may be

multi-dimensional. Hence, a huge number of CA configurations are possible. In this paper, we model

rules as Boolean functions, so that, Q = {0, 1}. Each cell of the system is initialized with a Boolean

value. Collectively, over the automaton it is referred to as the seed.

Definition 7 Dimension: Dimension of the cell array is called the dimension of the CA.

In this paper, we have considered 1-dimensional CA only.

Definition 8 Neighbourhood: Adjacent cells of a cell are called the neighbourhood of CA.

A 1-dimensional CA, each of whose rule depends on left and right neighbour and the cell itself is called a

3-neighbourhood CA. Similarly, if each cell depends on 2 left and 2 right neighbours and itself only, it is

called 5-neighbourhood CA. A CA whose cells depend on 1 left and 2 right neighbouring cells is called a

4-neighbourhood right skew CA. A left skewed 4-neighbourhood CA can be defined similarly.

Definition 9 Rule:The local transition function for a 3-neighbourhood CA cell can be expressed as fol-

lows:



234 S. Karmakar, D. Mukhopadhyay, D. R. Chowdhury

qi(t+ 1) = f [qi(t), qi+1(t), qi−1(t)]

where, f denotes the local transition function realized with a combinational logic, and is known as a rule

of CA, Nandi et al. (1997). The decimal value of the truth table of the local transition function is defined

as the rule number of the cellular automaton.

For example, for 1-dimensional 3-neighbourhood CA,

Rule 30: f = qi−1(t) ⊕ (qi+1(t) + qi(t)), where + is the Boolean ’or’ operator and ⊕ is the Boolean

’XOR’ operator.

Rule 60: f = qi−1(t)⊕ qi(t).
Rule 90: f = qi−1(t)⊕ qi+1(t).

Definition 10 Uniform Cellular Automaton: A CA whose local transition function is same for all the cells

is called uniform cellular automaton.

Definition 11 Hybrid Cellular Automaton: A CA whose local transition function is not same for all the

cells is a hybrid cellular automaton.

Definition 12 Linear Cellular Automaton: A CA whose local transition function ANF does not involve

the ’.’ (Boolean and) operator in any of the cell is called the linear cellular automaton. For example, rule,

f = qi−1(t) ⊕ qi+1(t) employed in each cell is a linear cellular automaton, where qi−1(t) and qi+1(t)
denotes left and right neighbours of i-th cell at t-th instance of time.

Definition 13 Nonlinear Cellular Automaton: A CA whose local transition function is non-linear, i.e., in-

volves at least one . (Boolean and) operator, for at least one of the cells is a nonlinear cellular automaton.

For example, rule, f = qi−1(t).qi+1(t) employed in each cell is a nonlinear cellular automaton, where,

qi−1(t) and qi+1(t) denotes left and right neighbours of the ith cell at tth instance of time.

Any CA can be utilized to generate pseudorandom sequences of different degree of security by first

selecting a seed and then updating each cell according to the transition functions. State values from the

middle cell of the cell array may be taken output to represent generation of pseudorandom sequences.

3 Trivium

In this section, we present the algorithm of Trivium operation. We also brief the known attacks against

Trivium.

3.1 Description of Trivium

Trivium was introduced in the eStream cipher project in, Canniere and Preneel (b) by Christophe De

Cannière and Bart Preneel. It is a synchronous stream cipher. Developers focused on a block cipher based

design principles while constructing Trivium, Canniere and Preneel (a). The cipher works on 80-bit secret

key and 80-bit public initial vector (IV). Hence, the expected security strength of the cipher is 280. It takes

1152 rounds to initialize itself. Key stream bits are output only after this initialization phase is over. Once

initialized, it can produce up to N = 264 pseudorandom key stream bits. We give a short description of

operation of Trivium below. A detailed description can be found in the eStream website.

Trivium consists of 288 internal 1-bit state registers, (s1, s2, . . . , s288). Operationally, the registers are

organized as three right shift registers of lengths 93, 84 and 111 bits, respectively. These three registers are,

key bit registers, IV bit registers and constant bit registers. As already mentioned, the cipher operates in
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two phases, initialization and key stream generation. Both the phases however execute the same algorithm.

The algorithm is presented next.

for i = 1 to N do

t1 = s66 + s93

t2 = s162 + s177

t3 = s243 + s288

zi = t1 + t2 + t3

t1 = t1 + s91.s92 + s171

t2 = t2 + s175.s176 + s264

t3 = t3 + s286.s287 + s69

(s1, s2, . . . , s93) ← (t3, s1, s2, . . . , s92)

(s94, s95, . . . , s177) ← (t1, s94, s95, . . . , s176)

(s178, s179, . . . , s288) ← (t2, s178, s179, . . . , s287)

end for

The registers t1, t2 and t3 are temporary registers and zi is the ith output key stream bit.

During initialization, the above algorithm is executed for 4×288 = 1152 cycles. But, this phase does not

output any key stream bit, zi.
80-bit key, {k1, k2, . . . , k80} and 80-bit IV, {iv1, iv2, . . . , iv80} are loaded in the internal state registers

as follows:

(s1, s2, . . . , s93) ← (k1, k2, . . . , k80, 0, . . . , 0)

(s94, s95, . . . , s177) ← (iv1, iv2, . . . , iv80, 0, . . . , 0)

(s178, s179, . . . , s288) ← (0, 0, . . . , 0, 1, 1, 1)

The key stream generation phase updates internal state registers according to the algorithm. The key

stream bit, zi is output at each cycle in this phase.

3.2 Weaknesses of Trivium

A number of cryptanalytic results on Trivium stream cipher is known. Though almost all of them are on

reduced round versions of Trivium, those nevertheless, demonstrate weaknesses of the cipher. Till date

793 rounds of Trivium could be cryptanlyzed by recovering key with less than brute-force complexity

and 885 rounds of Trvium can be distinguished from a random sequence. Most notably, higher order

differential attack, AIDA happened to be vastly successful against the cipher. Table 1 lists the significant

attacks reported on Trivium.

We would briefly discuss the main reasons of success of the mentioned attacks.
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Tab. 1: Trivium:Known Attacks

Attack Rounds Distinguisher/Key Recovery

Linearization, Turan and Kara 288 Key Recovery

Correlation Attack, Maximov and Biryukov Bivium Distinguisher

Algebraic Attack, McDonald et al. Bivium without Setup phase Key Recovery

Scan-Attack, Agarwal et al. Full Trivium Key Recovery

AIDA (or Cube Attack), Vielhaber (2007) 793 Key Recovery

Cube Tester, Aumasson et al. (2009) 885 Distinguisher

• Linearization Attack: Linearization of a cipher is possible only when a cipher does not grow faster

in nonlinearity. 288 rounds of Trivium could be linearized implies lack of such nonlinearity growth.

A quantitative measure of nonlinerity of Trivium is given in table 3. The lack of enough growth is

due to low nonlinearity addition with iterations.

• Algebraic Attack: Full Bivium without setup phase can be analyzed directly using SAT-solver. This

is again mainly due to addition of low nonlinearities with iterations.

A CA based modification is hence proposed here in view of preventing against the above reported

attacks even on reduced round versions of Trivium.

4 CAvium Proposal

CAvium is a CA based modification of the Trivium stream cipher. Basically, CAvium replaces only the

Shift Register of Trivium with a hybrid < 30, 60, 90, 120, 150, 180, 210, 240 > CA. Here, < 30, 60, 90,
120, 150, 180, 210, 240 > hybrid CA means rule 30, rule 60, ..., rule 240 CA cells placed alternatively.

The basic principle of the design is utilization of parallelization of CA combined with essential crypto-

properties of it.

Like Trivium, CAvium also consists of 288 internal 1-bit state registers, (s1, s2, . . . , s288). Reg-

ister s1 operates on CA rule 30, register s2 operates on CA rule 60 etc. Register s8 has rule 240
embedded and again register s9 operates on rule 30 and so on. So, there are 36 repetitions of each

of the CA rules over the 288 bit register. Operationally, the registers are organized as three hybrid

< 30, 60, 90, 120, 150, 180, 210, 240 > CA of lengths 93, 84 and 111 bits, respectively. These three

CAs are, key bit CA, IV bit CA and constant bit CA respectively. In this construction, we have however

dropped the discontinuities among the registers, so for example, s93 and s94 are adjacent to each other.

Thus for example, neighbouring cells of s94 are s93 and s95. Similar is the case with s93, s177 and s178.

Like Trivium, this cipher also operates in two phases, initialization and key stream generation. Both the

phases as before execute the same algorithm. The algorithm is depicted next.

for i = 1 to N do

t1 = s66 + s93

t2 = s162 + s177

t3 = s243 + s288
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zi = t1 + t2 + t3

t1 = t1 + s91.s92 + s171

t2 = t2 + s175.s176 + s264

t3 = t3 + s286.s287 + s69

(s1, s2, . . . , s93) ← (t3, CA(s1), CA(s2), . . . , CA(s92))

(s94, s95, . . . , s177) ← (t1, CA(s94), CA(s95), . . . , CA(s176))

(s178, s179, . . . , s288) ← (t2, CA(s178), CA(s179), . . . , CA(s287))

end for

Here, CA(s) refers to the Boolean value obtained in the cell s upon operation in < 30, 60, 90, 120, 150,
180, 210, 240 > hybrid CA rule.

The registers t1, t2 and t3 are temporary registers and zi is the ith output key stream bit.

During initialization the above algorithm is executed for 4× 36 = 144 cycles. But, this phase does not

output any key stream bit, zi. 80-bit key, {k1, k2, . . . , k80} and 80-bit IV, {iv1, iv2, . . . , iv80} are loaded

in the internal state registers as follows:

(s1, s2, . . . , s93) ← (k1, k2, . . . , k80, 0, . . . , 0)

(s94, s95, . . . , s177) ← (iv1, iv2, . . . , iv80, 0, . . . , 0)

(s178, s179, . . . , s288) ← (0, 0, . . . , 0, 1, 1, 1)

The key stream generation phase updates internal state registers according to the algorithm. The key

stream bit, zi is output for each cycle at this phase.

5 Cryptographic Properties of CAvium

In this section, we describe the cryptographic advantages we obtain with our modification of the stream

cipher Trivium. The following properties are known to be important for security of ciphers:

1. Balancedness

2. Nonlinearity

3. Correlation Immunity

4. Algebraic Degree

5. d-monomial test

Nonlinearity and correlation immunity are the most important requirements among the first four. Good

nonlinearity characteristics indicate that the cipher is expected to be safe against linear cryptanalysis and
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Tab. 2: CAvium:Cryptographic Characteristics of the Output Bit

Iteration Balancedness Nonlinearity Algebraic Degree Resiliency

1 Balanced 0 1 1

2 Balanced 0 1 3

3 Balanced 384 2 5

4 Balanced 1792 3 6

Tab. 3: Trivium:Cryptographic Characteristics of the Output Bit

Iteration Balancedness Nonlinearity Algebraic Degree Resiliency

1 Balanced 0 1 1

70 Balanced 16 2 3

71 Balanced 32 2 3

83 Balanced 384 3 4

98 Balanced 1792 3 5

also from algebraic attacks. However, good nonlinearity characteristics does not imply correlation immu-

nity, ie, good nonlinear ciphers can display correlations among key, plaintexts and ciphertexts. Hence, a

fair mix of nonlinearity and correlation immunity is required. Algebraic degree characteristics are also

important for resistance against algebraic attacks. Below we show the characteristics of the above prop-

erties for the CAvium stream cipher. A comparison with corresponding characteristics of Trivium is also

given.

5.1 Balancedness

Table 2 illustrates the balancedness property of the CAvium output bit with iterations. All the output

bit expressions are balanced in the initial 4 iterations. Table 3 illustrates the balancedness property of

Trivium output bit expression with iterations. With respect to balancedness property both the ciphers

generate balanced functions as output in the considered rounds.

5.2 Nonlinearity

Table 2 shows the nonlinearity of CAvium with pass of iteration and table 3 shows comparable nonlineari-

ties of Trivium stream cipher. In only 4 cycles of operation nonlinearity of CAvium reaches a nonlinearity

of 1792 which is reached by Trivium output bit at iteration 98. This high growth rate of nonlinearity

guarantees protection against linear cryptanalysis.

5.3 Algebraic Degree

Table 2 shows the growth of algebraic degree of the output bit of CAvium with iterations. It can be

observed that in CAvium the algebraic degree increases almost linearly. Table 3 lists the minimum number

of iterations required in case of Trivium at which algebraic degrees 2 and 3 are reached. Clearly, CAvium

has a much faster growth rate of algebraic degree compared to Trivium. Ciphers having large algebraic

degrees are resistant against linearization and algebraic attacks. So, CAvium is expected to be stronger

than Trivium with respect to these attacks both in reduced round version and the full key-IV setup version.
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Tab. 4: CAvium:d-monomial Test Result Output Bit

Iteration Deg.-1 Deg.-2 Deg.-3 Deg.-4 Deg.-5 Deg.-6

1 2 0 0 0 0 0

2 4 0 0 0 0 0

3 6 2 0 0 0 0

4 6 8 2 0 0 0

5 7 14 12 6 0 0

6 8 14 36 32 8 2

Tab. 5: Trivium:d-monomial Test Result Output Bit

Iteration Deg.-1 Deg.-2 Deg.-3 Deg.-4

1 2 0 0 0

70 4 1 0 0

161 16 11 2 0

239 29 65 38 1

5.4 Resiliency

Table 2 tabulates the resiliency of CAvium output bit with iterations and resiliency of Trivium output bit

is given in table 3. Those tables reveal that higher resiliency is achieved by CAvium at a much lower

number of iterations, for example, Trivium output bit achieves resiliency 5 at iteration 85 while CAvium

reaches it at iteration 3. Due to the faster growth of resiliency of output bit of CAvium, it is expected to

show resistance against correlation attacks.

5.5 d-monomial Test

d-monomial test proposed independently in, Filiol. (2002) and Saarinen. (2006) is a statistical test for

measuring randomness of ciphers. The test compares the closeness of the number of dth degree n variable

terms with the expected ideal number of dth degree n variable terms of a truly random Boolean function.

An ideal random Boolean function will have 1
2×
(
n
d

)
d degree terms. We tabulate in table 4 the d-monomial

test values for the first 6 iterations of the output bit of CAvium.

The growth in number of terms in the resultant Boolean expression and the number of different degree

terms in the output equation are both high. This kind of distribution is expected to resist higher order

differential attacks and distinguishers. In table 5 we tabulate the d-monomial test result of the Trivium at

the iterations 1, 70, 161 and 239, i.e. at iterations where algebraic degrees are incremented. Note that,

Trivium has a better diffusion of various degree terms compared to CAvium.

Considering table 4 once again, note that, at iteration 6 only the number of nonlinear terms in the

expression of the output bit is more than 90, which is more than double the number of nonlinear terms at

iteration 5, it can be expected that any attempt to linearize the expression for algebraic attack will have to

deal with exponential number of nonlinear terms with pass of iterations. Hence, algebraic attacks are not

expected to yield good result against CAvium.
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If we compare over all the properties we have experimented against CAvium stream cipher, we can see

that CAvium reaches the desired property values at very small number of iterations. Hence, the reduction

in number of cycles required to initialize the cipher is not expected to leave any weakness in CAvium.

6 Performance against Existing Attacks
In this section we reason that the number of cryptanalytic results demonstrated against reduced versions

of Trivium may not be successful against CAvium.

1. Linear Cryptanalysis: Linearization attack, Turan and Kara and linear circuit approximation, Khaz-

aei and Hassanzadeh were demonstrated against Trivium in 288 round reduced version. Linear

cryptanalysis on CAvium will not be successful because :

• The high growth rate of algebraic degrees of CAvium (refer table 2).

• Table 2 shows the growth of nonlinearity of the output bit of CAvium with iterations. It can

be noted that the growth rate of nonlinearity is much steeper than Trivium.

• Table 4 indicates that the number of linear terms also increase with iterations. As linear terms

add exponentially to the nonlinearity growth of a Boolean expression, linearization is not

expected to work.

Hence, linear cryptanalysis will not be successful on CAvium.

2. Algebraic Attacks: Algebraic attack, McDonald et al. using SAT-solver was reported on reduced

version of Trivium called Bivium-A. Algebraic cryptanalysis is dependent on the algebraic degree of

a cipher. The increase of number of nonlinear terms of a cipher also increase the attack complexity.

So, the high algebraic degree growth rate and exponential increase in number of nonlinear terms

will prevent algebraic attacks on CAvium.

3. Scan-based Side Channel Attack: A scan-based side channel attack was reported on full round of

Trivium on hardware implementation, Agarwal et al.. Scan-chain based attack on Trivium worked

because of the invertibility of the states of the cipher. The same will not be possible for CAvium

because of the presence of non-invertible CA rule 30. Though rule 30 is partially reversible, pres-

ence of linear rules in the CA configuration reduces the probability of the reversion exponentially

with iterations. Hence, scan-based side channel attack will not be successful on CAvium.

4. Cube Attack/AIDA attack: Till date the most successful attacks on reduced round versions of Triv-

ium were cube attacks (or AIDA attacks). This attack exploits the fact that the distribution of the

d-degree terms is deviant from ideal in d-monomial test. A large algebraic degree of a cipher will

prevent the attack from practically being implemented. Also, the result of d-monomial test of CAv-

ium is much better than Trivium. The density of d-degree terms is though far from ideal in case

of CAvium also; the closeness with ideal values is better than Trivium. The increase in different

degree nonlinear terms with iterations are pretty fast and closer to ideal compared to Trivium. For

example, in CAvium between round 5 and 6, degree 3 and degree 4 terms increase by 24 and 26
respectively which is close to ideal. Note that, Trivium has better growth in linear terms with iter-

ations compared to CAvium (table 4). But, ideal values in higher degree terms are more important

in resistance against AIDA than low degree terms. Hence, cube attack on CAvium is also expected

not to be successful on any reasonable number of rounds on CAvium.
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7 CAvium vs. Trivium

In this section, we enumerate the advantages and disadvantages of CAvium over Trivium.

1. Firstly, the startup process is made about 10 times faster over Trivium. Trivium stream cipher takes

1152 cycles of operation to get ready to produce key stream bits. Though after the initial setup,

Trivium is able to generate 264 key stream bits - for small and even moderately large encryptions,

1152 cycles only for key and IV setup is large. CAvium, on the other hand, takes 144 clock cycles

to complete key and IV setup. Keystreams are generated from 145th clock cycle only. After key

and IV setup, CAvium can also generate 264 key streams. Hence, the introduction of CA in Trivium

design makes the cipher operation faster and suitable for even small length encryptions.

2. The small Cellular Automata based nonlinearity insertion in Trivium has led to a wide range of

key recovery and distinguisher attacks on the cipher including linearization, correlation attacks and

algebraic attacks. As we have shown in the table above, CAvium has a much steeper nonlinearity

growth rate than Trivium. Also, CAvium has a large number of linear terms in its Boolean ex-

pression due to the presence of linear CA rules in its configuration. The presence of linear terms

mandates inclusion of those rules in the linear approximation and the other nonlinear terms de-

creases linearization bias. Altogether, linearization bias of CAvium is much lower than Trivium

even for reduced versions of it. Again, due to the construction of CAvium the increase in number

of nonlinear terms of the output bit, z = t1 + t2 + t3 is exponential.

3. The proposed construction performs better in d-monomial test than Trivium. Hence, higher order

differential (e.g., AIDA) key recovery attacks and distinguishers would be difficult for CAvium. In

comparison, we have known a large number of higher order differential attacks on Trivium.

4. Due to the nature of CA construction, we know that, after t cycles of operation, a CA cell depends

on 2t+ 1 neighboring cells. So, after 55 clocks of operation, every cell is dependent on every other

cell of the 288 bit state register. Therefore, the highest nonlinearity is propagated to the other cells

in at most 55 cycles. Note that, 144 cycles is the time required to set up key and IV hence the

highest nonlinearity is propagated to all the cells at least twice. It also means that algebraic degree

grows exponentially at most after 55 cycle of operation.

5. Though we have not given any theoretical proof of cycle length of CAvium, our experiment suggests

a minimum of about 264 cycle length is possible. However, it is a open problem whether there is

any cycle of length of < 264 in CAvium.

6. The algebraic degree growth rate of CAvium is also quite high. If a simple linearization technique

is used in CAvium for algebraic attack, even after 15 clock cycles, there will be more than 100 new

variables. Hence, possible algebraic attacks will also not be plausible in case of CAvium.

7. Correlation of the CA structure is reduced due to the introduction of linear rules in the CA register.

The measure presented above shows that correlation decreases exponentially with iteration, which

is also a triumph over the original Trivium design, in which due to the presence of linear shift

register, correlation does not decrease exponentially with number of cycles of operation. Hence,

though a uniform rule 30 CA, Meier and Staffelbach. (1991) may be susceptible to correlation

attack, CAvium structure would be safe against any correlation attacks.
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8. Knowing the full state of the Trivium stream cipher after any cycle of operation could reveal the

key of the cipher. This is due to the reversible nature of the Trivium nonlinear equations. This

could lead to scan chain based attacks as depicted in, Agarwal et al.. The knowledge is however

of little relevance for CAvium, since the presence of nonlinear non-invertible rule 30 in the CA

operation prevents any such inversion. Further though rule 30 is partially invertible, the presence of

linear rules along with the nonlinear rules reduces the probability of inversion exponentially as the

correlation decreases. Hence, a scan based attack with non-secure scan chains can not also break

the system.

8 Conclusion

In the current paper, we have presented a modification of the eStream stream cipher winner Trivium,

Canniere and Preneel (b). The proposed modified cipher has comparatively better nonlinearity, algebraic

degree, resiliency characteristics than Trivium. Also, CAvium achieves the mentioned characteristics

faster than Trivium, as fast as, 10 times than Trivium. The faster growth rate of cryptographically essential

properties has also helped CAvium to reduce the longer setup process of Trivium, so that, CAvium takes

only 144 clock cycles of operation to complete setup compared to 1152 clock cycles taken by normal

Trivium operation. It is also reasoned that the proposed modification is expected to be resistant against

attacks such as linearization, algebraic cryptanalysis, correlation attacks, scan-based side channel attacks

and higher order differential attacks such as AIDA (or Cube attack) even in reasonable reduced round

versions. Though not explicitly mentioned the d monomial characteristics of CAvium demonstrates that

differential attacks also may not be successful against CAvium. Again extensive experiment is conducted

to determine small cycle lengths of CAvium but we expect a cycle length of < 264 may not be possible,

though no theoretical explanation is provided. The operation of CAvium could be a bit slower than

Trivium. Hence, CAvium is a secure modification of Trivium with much faster setup.

The construction of CAvium is based on an underlying mixed CA consisting of linear and nonlinear

rules. The fast growth of nonlinearity, resiliency, algebraic degree is attributed mainly to the presence

of nonlinear rule (rule 30). In essence the only Trivium specific operation included in CAvium is the

introduction of three nonlinear terms per cycle of operation. A comparison of d-monomial characteristics

of Trivium and CAvium will show that the essential growth in nonlinearity and algebraic degree is due to

the presence of nonlinear rule 30. So in fact a plain construction of a cipher consisting only of the 288 bit

CA may be a good cipher candidate for study. It can be mentioned that a good d-monomial characteristic

can be the one and only desirable property of a good cipher. Hence, construction of stream ciphers using

CA as the only building block is an interesting area of study.
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We presents a brief description of a stream of research on highway and expressway traffic modeling and simulation. A
first model has been developed starting from ECA Rule 184 and applying concepts similar to the ones employed in the
Nagel Schreckenberg model. The second model is based on the “Global Cellular Automata”(GCA) and the “Global
Cellular Automata with Write access”(GCA-w) developed by Rolf Hoffmann and his collaborators. This allows for
faster execution and for the elimination of some potential conflicts during execution. We present an example of
digital experiment that can be used to help traffic engineersin deciding the topology of entry and exit ramps on an
expressway.

Keywords: Cellular Automata, Global Cellular Automata, Global Cellular Automata with Write access, Highway
Traffic Modeling, Expressway Traffic Modeling.

1 Introduction
Depending on jurisdiction where one resides, the same type of road may be called an “expressway”or
a “freeway”. We refer to the term “expressway”to indicate a divided highway for high-speed vehicular
traffic with controlled access, via entry& exit ramps, and no intersections at grade. We are conducting
research, by modeling and simulation, on the effects of flow and congestion on “travel time”through a
realistic long expressway. “Travel time”is “the total timerequired for a vehicle to travel from one point
to another over a specified route under prevailing conditions”, [1]. The difference between our work and
published research previously conducted by others is that we aim to model much longer expressways, e.g.
at least 1000 km, and a much higher number of vehicles, e.g. realistic traffic conditions over several days,
e.g. a week. Additionally, all models we have seen do not havefeatures that are very important from an
engineering point of view, such as the ability to track individual vehicles during their trip, from entry ramp
to exit ramp. We need this ability to simulate wireless vehicle tracking for only a small subset of vehicles.
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We plan on using this model for practical traffic engineeringapplications. This paper is structured as
follows: section 2 gives some introductory information about microscopic, individually based highway
traffic models, section 3 contains the description of a multilane 2-D CA (Cellular Automata) agent based
model previously developed by us, section 4 describes a multilane single GCA-w (Global Cellular Au-
tomata with Write access) agent based model developed by us and explains its computational advantages,
section 5 presents and example of digital experiment that can be used to help traffic engineers in deciding
the topology of entry and exit ramps on an expressway. Futureplanned work is described in section 6.

2 Microscopic, Individually Based Highway Traffic Models
Traditional macroscopic models of the 50s, such as the LWR model (Lighthill, Whitham, Richards), [2]
and [3], are characterized by a large number of parameters without an immediately intuitive equivalent
when conducting empirical investigations. Microscopic models based on cellular automata (CA) such as
the one of Cremer and Ludwig, [4], and the Nagel Schreckenberg model, [5], have solved this problem.
Their model can be seen as an extension of ECA (Elementary CA)Rule 184. This rule accurately describes
the motion of a vehicle at constant speed of one cell per time step and null acceleration. This is unrealistic,
but is a good starting point to apply extensions to Rule 184 asit may be needed. It is important to notice
that Rule 184 is deterministic and cannot simulate real traffic with accidents. The Nagel Schreckenberg
model solves the problem adding stochastic behaviour, a larger size neighbourhood that can be used to
implement variable speed and non null acceleration. The Nagel Schreckenberg model is the origin of a
very significant stream of research of derived research, seefor instance [6], [7], [8], [9], and [10]. This
stream is still uninterrupted and very rich of results.
However, most of this research has been conducted from the perspective of physics and statistical physics,
to investigate dynamical aspects of highway traffic, see forinstance [11] and [12]. Most such models
lack features that may be required in some engineering applications, such as the ability to track individual
vehicles during their trip, from entry ramp to exit ramp, knowing exactly on which cell a vehicle is at each
time step. However, the Nagel Schreckenberg model is almostalways the starting point of the design of
new models.
Nagel and Schreckenberg proposed a stochastic model based on a neighbourhood of 5 cells and six dis-
crete velocities. The model consists of four steps that haveto be applied simultaneously to all cars:

• Acceleration

• Safety Distance Adjustment (“slowing down due to other cars”)

• Randomization

• Change of Position

During the “Acceleration”phase, at each time step, if the velocity of the vehicle at the end of the previous
time step isv < vmax, the velocity is incremented by one unit:v− > v + 1. If the velocity of the vehicle
at the end of the previous time step isv = vmax, the velocity is left unchanged (null acceleration).
During the “Safety Distance Adjustment”, if a vehicle hasd empty cells in front of it and its velocityv,
after the Acceleration phase, would cause the vehicle to cover a distance larger than d, then the vehicle
decelerates, that is, it reduces its velocity tod: v− > min{d, v}. If the d cells in front of the vehicle are
empty, no deceleration is required.
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As stated by Nagel and Schreckenberg, the randomization “is essential in simulating realistic traffic flow
since otherwise the dynamics is completely deterministic.It takes into account natural velocity fluctua-
tions due to human behaviour or due to varying external conditions.”[5]. Randomization is an extension
to the traditional deterministic paradigm of ECA and can be found in all realistic highway traffic models
based on CA. The “Change of Position”assumes that the new velocity vn for each carn causes advancing
by vn cells:xn− > xn + vn.
The implementation of this model requires to modify the CA paradigm and to make the evolution of the
CA not only dependent on the state of the neighbourhood but also on the current velocity of each vehicle.
This implies that each cell is characterized not only by presence or absence of a vehicle but also by a
pointer to a data structure containing the current velocityof the vehicle. Here we do not use the word
“pointer”in the sense of the C/C++ programming language, but in the sense of “link, connection”. Almost
all models that we have examined implement variable velocity as in the Nagel and Schreckenberg model,
the only substantial difference being the number of cells that the vehicle may need to advance to achieve
its maximum speed.
Nagel and Schreckenberg write that “Through the steps one to four very general properties of single lane
traffic are modeled on the basis of integer valued probabilistic cellular automaton rules.”
We have perused the literature looking for ways in which others have handled multilane highway traffic.
We have found 2-D CA implementations and Multi-CA implementations (i.e., one per lane). In the case
of 2-D implementations the highway is represented by a CA consisting of a number of rows equal to
the number of lanes being modeled and by a large number of cells representing the entire length of the
highway. Lane changing is accomplished by simply moving to the adjacent cell on a different row. We
developed a model of this type in the early stages of our research, [13]. We describe it in Section 3.
Multi-CA implementations threat every CA as a separate road. The transition rules apply equally to every
CA. Lane changing simply implies moving to the cell having the same cell number in the adjacent CA.

3 Our Multilane 2-D CA Agent Based Model
As a first step, we have developed a two dimensional CA expressway traffic model “capable of realistically
simulating: a multi-lane expressway with multiple entry and exit ramps situated at various locations,
vehicle following, speed increment up to maximum speed selectable on a per vehicle basis, lane change
to pass or to go back to the right-most lane as it may be required by road rules in some jurisdictions,
slowing down or stopping to avoid obstacles.”, [13]. We represented the expressway by means of a CA
consisting of a number of rows equal to the number of lanes being modeled and by a large number of cells
representing the entire length of the expressway. Each cellwas assumed to be 7.5 m long, as in most of
the literature of microscopic, individually based highwaytraffic models, e.g. [5] and [14]. This has been
chosen because it corresponds to the space occupied by the typical car plus the distance to the preceding
car in a situation of dense traffic jam. The traffic jam densityis given by 1000/7.5 m approximately equal
to 133 vehicles per km,. We accomplished lane changing by simply moving to the adjacent cell on a
different row, i.e. that is a cell with the same column numberand a different row number, incrementing
the row number when moving to the left and decrementing the row number when moving to the right.
This model is characterized by variable size neighbourhoodto implement safe driving distances. For
every vehicle these safe driving distances are a function ofthe vehicle velocity and of where the vehicle
is at a given moment during the simulation.
Traffic is modeled applying the same algorithm at each time step, when each cell of each lane is examined
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in sequence and, if occupied by a vehicle, the vehicle navigation algorithm is applied. Each vehicle is an
agent capable of deciding which action to take within a certain number of predefined actions. Implemen-
tation details can be found in [13].
Executing the software for a given configuration of the modelmeans executing three nested loops. The
external loop is the time loop, the next loop is the row loop, and the innermost loop is the column loop.
At the end of each step of each loop the end of loop condition istested by the software even if this is not
explicitly evident to the user of the software.

3.1 Our Multilane Single GCA-w Agent Based Model
Thus, modeling traffic is equivalent to executing two large loops, an external time loop and an internal
space loop. In reality, as we will see when describing the implementation the space loop is replaced by a
number of loops where various operations are performed in sequence. Thus, after an initialization of all
data structures used in the model, all execution time of the model is spent in these two loops. At each time
step, vehicles are generated at each entry ramp according toa predefined vehicle generation probability
that can be specified individually for each entry ramp. In theimplementation, the software reads an input
configuration file containing a description of the entire expressway. One of the predefined commands
describes each entry ramps and the characteristics of the vehicles entering at that ramp. This command
can be repeated multiple times for each entry ramp, indicating the different traffic characteristics at various
times of the day (e.g., rush hour, day time, night time, work day, weekend, etc). For each instance of this
command it is possible to specify:

• “Entry lane number”(always lane zero, that is the rightmostlane, except when entry cell is cell
number zero, that is the entry to the expressway);

• “Entry cell number”(the location of the entry ramp from the beginning of the highway);

• “Start Time”and “End Time”measured in time steps from the beginning of the simulation when the
specified creation probability applies;

• “Vehicle creation probability”during the specified time interval;

• Probability that the vehicle will be instantiated with the last cell of the expressway as its destination;

• “Maximum speed”that the vehicle will be able to reach while travelling on the expressway;

• Probability that the vehicle will be instantiated with a maximum speed equal to the one specified in
the command.

The final destination probability and the maximum speed probability define not only the obvious proba-
bilities implied by their names, but also the behaviour of the complementary probabilities. In other words
if Pd is the probability that the vehicle is instantiated with last cell as its destination,(1−Pd) is the proba-
bility that the vehicle will go elsewhere, to other exit ramps. The specific exit ramp is assigned randomly.
Similarly, if Pvmax is the probability that the vehicle will be instantiated with the specified maximum
speed,(1 − Pvmax) is the probability that the vehicle will be instantiated with a different maximum
allowable speed. The specific different speed will be assigned randomly.
After all vehicles have been generated for each entry ramp, they are queued and placed on the ramp data
structure (a first-in-first-out queue).
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At this point, each vehicle on the highway, represented by a different instance of an agent, executes
its navigation algorithm, that is the algorithm allowing changing lane, if required, advance, accelerate,
decelerate, etc. The navigation algorithm is what we have described as a large conceptual space loop.
Once the execution of this loop has been completed, time is incremented. We compare the predefined
destination (exit ramp) of each vehicle with a neighbourhood of the cell where the vehicle is currently
located. Those vehicles that have reached their exit ramp are removed from the expressway. Exit ramps
are listed in the input configuration file without any other parameter than a keyword and the number
corresponding to the cell where the exit ramp is located.
Information about all vehicles is logged to an output data file. This information is not aggregate informa-
tion, but it is individual information about the location ofeach vehicle at the end of the execution of each
time step. This output file allows calculating, off line, at the end of the simulation, the exact travel time
of each vehicle, from entry ramp to exit ramp. The average of all the individual travel times is the travel
time as earlier defined. Aggregate information is output to adifferent data file where we store: current
time step number, total number of vehicles instantiated, total number of vehicles on the road, and total
number of vehicles delayed in entry ramps. Thus, it is possible to infer how many vehicles have exited at
this time.
When the maximum simulation time, as defined in the input configuration file, is reached, some house-
keeping work is carried on and the execution is terminated. The navigation algorithm is divided into the
following subsets:

• Change lane to the right if required (e.g., if no vehicle mustbe passed, as required by the rules of
traffic, or if the vehicle is approaching its exit ramp);

• Change lane to the left if required (e.g., if a slower vehiclehas to be passed or an obstacle has to be
avoided);

• Advance, either at constant speed, if travelling at maximum(vehicle specific) speed, or accelerat-
ing/decelerating as it may be required by the traffic situation;

• Randomly, as specified by a command in the input configurationfile, according to a predefined
probability, execute an erratic behaviour if required.

For each of the above subsets, lane number and cell number areinitialized to zero. Two buffers (i.e.,
arrays) are setup: OldBuffer is set up to contain a snapshot of the current traffic situation, with the location
of each vehicle; NewBuffer is empty. For each lane, all cellsare examined individually. If the cell is
empty, i.e. there is no vehicle at that cell, nothing happens. If a vehicle is located in the cell under
consideration, the algorithm required by the subset being executed is applied. All algorithms are of CA
(Cellular Automata) like algorithms and are applied to the cell and a neighbourhood, i.e. a number of
cells around it. Each lane is treated as a CA. Changing lane islogically equivalent to jumping from one
CA to another one. However, the actual implementation uses 1-D single GCA. When all cells have been
scanned and the related processing has been done, NewBufferis copied into OldBuffer and the display is
refreshed if the model is being executed in graphic mode.
Modeling multilane highway traffic with CA introduces some potential conflict whenever more than one
vehicle “wants to move”to the same cell. This is not different from what happens in real life when, for
example, a car is arriving at high speed on the leftmost lane and another car is changing lane from the
centre lane to the leftmost lane. In real life, drivers can change their actions because time is continuous
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and because decision making is continuous and instantaneous. In a CA model, because all decisions are
made based on the state of the CA at timet-1 and implemented at timet, we can have a conflict. In a
traditional ECA, no vehicle can move ahead of another vehicle, so there is no conflict. In a 1-D CA, even
if higher speeds are modelled, no vehicle can move ahead of another vehicle, so there is no conflict. In a
2-D CA, there is a potential conflict.
The “Global Cellular Automata with Write access”(GCA-w) developed by Rolf Hoffmann and his col-
laborators allows solving the potential conflicts, [15], [16], [17], [18], and [19]. In the GCA-w model
each occupied cell can have write access to the neighbours and can update its neighbours’ private member
variable. Thus, before moving, a vehicle can issue a signal to the other vehicles in potential conflict and
give them an early warning of its intention of moving to a given cell. This is simply done by setting a flag
in a private member variable of the other vehicle.
We have decided to assign the value of 3 seconds to each time step. Thus, the minimum speed of a vehicle
advancing by one cell at each time step is equivalent to 9 km/h(that is, 7.5 x 3600/3 = 7.5 x 1200 = 9000
m/h). This allows representing most realistic and legal speeds observed in Canadian expressways, with a
vehicle advancing by a maximum of 11 cells per time step, thatis, 99 km/h, as the speed limit is at 100
km/h. This is different from the model of Nagel and Schreckenberg, which uses 1 second per time step.
We are currently comparing the results of our model with realistic traffic data in Ontario to decide if our
choice is appropriate or needs to be revisited.
Details about our “Multilane Single GCA-w Agent Based Model”can be found in [20].

3.2 Example of Digital Experiment
As an example of the type of digital experiment that can be conducted with the software package im-
plementing our highway traffic model, we show how it can be used to verify the impact of the relative
position of entry and exit ramps on travel time.
We consider two topologies: “Expressway with Entry Ramp Preceding Exit Ramp”as in Figure 1 and
“Expressway with Exit Ramp Preceding Entry Ramp”as in Figure 2.

Fig. 1: Expressway with Entry Ramp Preceding Exit Ramp
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Fig. 2: Expressway with Exit Ramp Preceding Entry Ramp

The actual choice of one topology or the other depends on manyfactors, such as if the intersecting road
is above or below the expressway. For the purpose of this example we ignore such factors and we focus
only on the impact of the two topologies on travel time.
We assume that the stretch of expressway under consideration is 30 km long and, thus, consists of 4000
cells (i.e. 3000 / 7.5 = 4000). We consider only one directionof travel, rightward (i.e. west - east).
We assume that for Figure 1 the entry ramp is located at cell 2000 (km 15 from the beginning of the
expressway under consideration) and that the exit ramp is located at cell 2200 (km 16.5 from the beginning
of the expressway. This is an approximation for the sake of simplicity in this example. In reality, entry
and exit ramps involve more than one cell. In both cases the rightmost lane and the ramp run parallel for
about 20 cells. When the entering or exiting vehicle is up to the proper speed or down to proper speed, it
will leave the ramp or move to the ramp as it may apply. Likewise in Figure 2 the exit ramp is located at
cell 2000 (km 15 from the beginning of the expressway under consideration) and the entry ramp is located
at cell 2200 (km 16.5 from the beginning of the expressway. Asin Figure 1 in reality, entry and exit ramps
involve more than one cell.
Table 1 shows the travel time, from entry ramp to exit ramp, given a certain vehicle creation probability
(shown in the leftmost column) and given a certain probability that the created vehicle will head to cell
number 4000. For each couple of probabilities, vehicle creation probability and probability that the
created vehicle we head to cell 4000, we show also total number of cars. As expected this number
increases with the vehicle creation probability. From thisexperiment not much can be said about the
impact of the probability that the created vehicle will headto cell 4000.
Table 2 is constructed similarly to Table 1. It makes sense tocompare only the travel time of the cars
travelling from cell number 0 to cell 4000 (actually cell number 3999, because the other travel segments
are of different length in Table 1 and Table 2. The travel timeof these cars is consistently shorter in the
experiment of Table 2. Presumably this is due to the fact thatthe topology with “Exit Ramp Preceding
Entry Ramp”removes cars from the expressway before new carsare introduced, thus locally reducing the
density of cars. Also in the “Entry Ramp Preceding Exit Ramp”topology and car moving from lane 1 to
lane 0 to exit may slow down a car that just entered the expressway, thus slowing down also other cars.
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Probability of Heading To Probability of Heading
Cell 4000 = 0.3 To Cell 4000 = 0.5

Creation Probability at Cell 0 = 0.3 0−→2200; 202 time steps 0−→ 2200; 201 time steps
0−→3999; 365 time steps 0−→3999; 365 time time setps
2000−→ 3999; 184 time steps 2000−→ 3999; 184 time steps
Total# of Cars: 1678 Total# of Cars: 1674

Creation Probability at Cell 0 = 0.4 0−→2200; 202 time steps 0−→ 2200; 202 time steps
0−→3999; 366 time steps 0−→3999; 366 time steps
2000−→ 3999; 184 time steps 2000−→ 3999; 184 time steps
Total# of Cars: 1996 Total# of Cars: 1986

Creation Probability at Cell 0 = 0.5 0−→2200; 204 time steps 0−→ 2200; 205 time steps
0−→3999; 369 time steps 0−→3999; 369 time steps
2000−→ 3999; 186 time steps 2000−→ 3999; 187 time steps
Total# of Cars: 2349 Total# of Cars: 2339

Tab. 1: Average Travel Time for Expressway with Entry Ramp Preceding Exit Ramp - Simulation Time = 3600 Time
Steps

Probability of Heading To Probability of Heading
Cell 4000 = 0.3 To Cell 4000 = 0.5

Creation Probability at Cell 0 = 0.3 0−→2200; 182 time steps 0−→ 2200; 182 time steps
0−→3999; 364 time steps 0−→3999; 364 time time steps
2000−→ 3999; 164 time steps 2000−→ 3999; 164 time steps
Total# of Cars: 1691 Total# of Cars: 1684

Creation Probability at Cell 0 = 0.4 0−→2200; 182 time steps 0−→ 2200; 182 time steps
0−→3999; 364 time steps 0−→3999; 364 time steps
2000−→ 3999; 164 time steps 2000−→ 3999; 164 time steps
Total# of Cars: 2005 Total# of Cars: 1994

Creation Probability at Cell 0 = 0.5 0−→2200; 182 time steps 0−→ 2200; 182 time steps
0−→3999; 364 time steps 0−→3999; 364 time steps
2000−→ 3999; 164 time steps 2000−→ 3999; 164 time steps
Total# of Cars: 2363 Total# of Cars: 2347

Tab. 2: Average Travel Time for Expressway with Exit Ramp PrecedingEntry Ramp - Simulation Time = 3600 Time
Steps.
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We would like to emphasize that this experiment has been presented only as an example of the capability
of the model and of the resulting digital laboratory. This isnot a complete study of the effect of topology
of the relative position of entry& exit ramps over travel time. A much larger number of experiments are
required to reach conclusions, accounting for different expressway topologies (i.e., number of entry and
exit ramps), different traffic densities (i.e. vehicle creation probability at each ramp). Also the length of
the expressway under consideration is expected to be a factor. We are actually conducting these and other
experiments and we plan to discuss them elsewhere.

4 Future Work
We are currently validating our model with information fromtraffic engineers. We plan on using this
model for practical traffic engineering applications, to estimate how some technological innovations af-
fects travel time between two access ramps, an entry ramp andan exit ramp, once certain highway traffic
parameters are known at certain points of the highway. Our concern is primarily with effects of flow and
congestion through a long highway on travel time. The technological innovations include wireless com-
munication from roadside transmitters to vehicles, wireless communication among vehicles, etc. We are
also investigating ways of reducing the computational overhead of handling entry and exit ramps. We are
considering parallelizing our code for execution under SHARCNET, a consortium of Canadian academic
institutions sharing a network of high performance computers, see [21].
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We introduce the notion of ’Composition’, ’Union’ and ’Division’ of cellular automata on groups. A kind of notions
of compositions was investigated by Sato (1994) and Manzini(1998) for linear cellular automata, we extend the notion
to general cellular automata on groups and investigated their properties. We observe the all unions and compositions
generated by one-dimensional2-neighborhood cellular automata overZ2 including non-linear cellular automata.
Next we prove that the composition is right-distributive over union, but is not left-distributive. Finally, we conclude
by showing reformulation of our definition of cellular automata on group which admit more than three states. We also
show our formulation contains the representation using formal power series for linear cellular automata in Manzini
(1998).

Keywords: Cellular automata, Groups, Models of computation, Automata

1 Introduction
The study of cellular automata was initiated by von Neumann (1983) and have been developed by many
researchers as a good computational model for physical systems simulation. Recently cellular automata
have been investigated in various fields including computerscience, biology, physics, since they provide
simple and powerful models for parallel computation and natural phenomena.

In this paper, we investigate cellular automata on groups asa formal model of computation. To compose
simple cellular automata into a complex cellular automaton, we introduce the notion of ’Composition’ of
cellular automata on groups. The notion of automata on groups was first treated as a special case for
automata on graphs (Caley graphs) which represent groups inRóka (1994); Rémila (1998). Watanabe and
Noguchi (1982) investigated the decomposition of finite automata from the view point of spatial networks
using groups. Pries et al. (1986) investigated cellular automata as a tool for implementing hardware
algorithms in VLSI. They considered configurations decidedby a cellular automaton as a group and
divided configurations into simple configurations using group properties. Sato (1994) introduced group
structured linear cellular automata and the star operationof local transition rules. The star operation is a
kind of composition of cellular automata but the definition of it is different from ours. Manzini (1998) also



256 T. Ito, M. Fujio, S. Inokuchi, Y. Mizoguchi

investigated the linear cellular automata using the formalpower series and their product to find inverse
local transition functions. The product of formal power series are equal to our composition of cellular
automata for linear cases. An abstract collision system in Ito et al. (2008) is considered as an extension of
a cellular automaton, the notion of ’composition’ for an abstract collision system onG-sets is investigated
in Ito (2010).

This paper follows on from Fujio (2008). He introduced the composition of cellular automata on groups
in order to reduce a complex behaved dynamics into simpler ones. We introduce a formal definition of
cellular automata on group overZ2. In our framework, operations on cellular automata ’Union’, ’Divi-
sion’ and ’Composition’ are introduced. Unions of all 2-neighborhood cellular automata are investigated.
Compositions of all 2-neighborhood cellular automata are also investigated and determined the subset of
3-neighborhood cellular automata which are generated by composing two 2-neighborhood cellular au-
tomata. Next we prove that the composition is right-distributive over union, but is not left-distributive.
Finally, we conclude by showing reformulation of our definition of cellular automata on group which ad-
mit more than three states. We also show our formulation contains the representation using formal power
series for linear cellular automata in Manzini (1998).

2 Cellular Automata on Groups
Definition 1 Let G be a group. A cellular automaton onC is a triple C = (G, V, V ′) of a groupG,
subsetsV ⊂ G andV ′ ⊂ 2V . For V ′, we define functionslV ′ : 2V → {φ, {e}} by

lV ′(X) =

{
φ (X 6∈ V ′)

{e} (X ∈ V ′),

andFC : 2G → 2G byFC(c) =
⋃

g∈G
glV ′(g−1c∩V ). We call the maplV ′ a local transition function and

FC a global transition function.

Proposition 2 LetC1 = (G, V1, V
′
1) andC2 = (G, V2, V

′
2) be cellular automata. If

e ∈ FC1(c) ⇔ e ∈ FC2(c) (for anyc ∈ 2G)

thenFC1 = FC2

Proof. SinceFC1(c) = {g ∈ G | lV ′
1
(g−1c ∩ V1) = {e}} = {g ∈ G | g−1c ∩ V1 ∈ V ′

1}, we have
g ∈ FC1(c)⇔ g−1c∩V1 ∈ V ′

1 ⇔ e ∈ FC1(g
−1c)⇔ e ∈ FC2(g

−1c)⇔ g−1c∩V2 ∈ V ′
2 ⇔ g ∈ FC2(c).

2

In the followings, we consider the set of all integersZ as an additive groupZ = (Z,+, 0). So usual
one dimensional cellular automata with 2-states are represented as cellular automata on the groupZ. We
define 2-neighborhood and 3-neighborhood 2-states cellular automata in the next definition.

Definition 3 For k ≥ 1 and n ∈ {0, 1, · · · , 22k − 1}, we define cellular automataCA(k, n) on Z

by CA(k, n) = (Z, V, V ′
n) whereV = {0, 1, · · · , k − 1}, andV ′

n is the subset of2V which satisfies
n =

∑
X∈V ′

n
2
∑

i∈X 2i

.

We noteCA(1, 0) = (Z, {0}, φ) andCA(1, 1) = (Z, {0}, {0}).
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Example 4 Since6 = 2+22 = 220

+221

, we haveCA(2, 6) = (Z, {0, 1}, {{0}, {1}}}). Since90 = 2+

23+24+26 = 220

+220+21

+222

+221+22

, we haveCA(3, 90) = (Z, {0, 1, 2}, {{0}, {2}, {0, 1}, {1, 2}}).
The elementsX in V ′

n represents the state of neighborhood which induce the next states ’1’. For a rule
number 90, we have the following table:

Neighborhood 111 110 101 100 011 010 001 000
X ∈ V ′

n {0, 1, 2} {1, 2} {0, 2} {2} {0, 1} {1} {0} φ
l′V (X) φ {e} φ {e} {e} φ {e} φ

The configurationc ⊂ Z represents places where the state is1. Sincen ∈ FC(c)⇔ lV ′(n−1c ∩ V ) =
{e} ⇔ n−1c ∩ V ∈ V ′ ⇔ c ∩ nV ∈ nV ′, the next state atn is 1 if c ∩ nV ∈ nV ′. For 3-neighborhood
case we are choosingV = {0, 1, 2}, the left-hand side of the state is changing. It seems to be better
that we chooseV = {−1, 0, 1} but it is not convenient for even-neighborhood case. Our numbered
3-neighborhood cellular automataCA(3, n) is a shifted version of usual numbered elementary cellular
automata. Later, we define a cellular automaton SHIFT which represent a shift operation and a operator
’composition’ (3) of two cellular automata. After that the usual numbered elementary cellular automata
is represented as SHIFT3CA(3, n).

Example 5 SHIFT= (Z, {−1, 0}, {{−1}, {−1, 0}}) is a cellular automata on groupZ.

Z2 is also considered as a group, so it is easy to represent a multi-dimensional cellular automata such
as The Game of Life (Berlekamp et al. (1982)) as a cellular automata on a group.

Example 6 LIFE = (Z2, VLIFE, V
′

LIFE) is a cellular automata on groupZ2, where

VLIFE = {
(
−1
−1

)
,

(
0
−1

)
,

(
+1
−1

)
,

(
−1
0

)
,

(
0
0

)
,

(
+1
0

)
,

(
−1
+1

)
,

(
0

+1

)
,

(
+1
+1

)
}, and

V ′
LIFE = {v ∈ 2V | (#v = 3) ∨ (#v = 4 ∧

(
0
0

)
∈ v)}.

We note that#v is the number of elements in a setv.

One dimensional cellular automaton onZ is embedded into the two dimensional cellular automaton on
Z2. We define two natural embeddingsEX andEY in the following.

Definition 7 For a cellular automataC = (Z, V, V ′), we define a cellular automataEX(C) on Z2 by
EX(C) = (Z2, VEX(C), V

′
EX(CA)) where

VEX(C) = {
(
x
0

)
|x ∈ V }, and

V ′
EX(C) = {{

(
x
0

)
|x ∈ X} |X ∈ V ′}.

We also define a cellular automataEY (C) onZ2 byEY (C) = (Z2, VEY (C)), V
′
EY (C)) where

VEY (C) = {
(

0
x

)
|x ∈ V }, and

V ′
EY (C) = {{

(
0
x

)
|x ∈ X} |X ∈ V ′}.
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n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15
2 2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15
3 3 3 3 3 7 7 7 7 11 11 11 11 15 15 15 15
4 4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15
5 5 5 7 7 5 5 7 7 13 13 15 15 13 13 15 15
6 6 7 6 7 6 7 6 7 14 15 14 15 14 15 14 15
7 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15
8 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15
9 9 9 11 11 13 13 15 15 9 9 11 11 13 13 15 15
10 10 11 10 11 14 15 14 15 10 11 10 11 14 15 14 15
11 11 11 11 11 15 15 15 15 11 11 11 11 15 15 15 15
12 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15
13 13 13 15 15 13 13 15 15 13 13 15 15 13 13 15 15
14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Fig. 1: Table of unions :CA(2, n) ∪ CA(2,m)

Definition 8 Let 1 ≤ k < k′, 0 ≤ x ≤ k′ − k andCA(k, n) = (Z, V, V ′). CA(k, n)k
′

x is defined by
CA(k, n)k

′

x = (Z, {0, 1, · · · , k′ − 1}, V ′′) where

V ′′ = {s1 ∪ v ∪ s2 | s1 ∈ S1, s2 ∈ S2, v ∈ V ′},

S1 =

{
{φ} (x = 0)

2{0,··· ,x−1} (x > 0)
,

S2 = 2{x+1,··· ,k}

We note thatFCA(k,n)k′
0

= FCA(k,n) andFCA(k,n)k′
1

= SHIFT3FCA(k,n).

Definition 9 (Union) LetC1 = (G, V1, V
′
1 ) andC2 = (G, V2, V

′
2) be cellular automata onG. The union

C1 ∪ C2 ofC1 andC2 is defined byC1 ∪ C2 = (G, V1 ∪ V2, V
′
1 ∪ V ′

2).

Definition 10 (Division) LetC = (G, V, V ′) be a cellular automaton onG. If there existC1 = (G, V1, V
′
1)

andC2 = (G, V2, V
′
2) be cellular automata onG such thatV = V1 ∪ V2 andV ′ = V ′

1 ∪ V ′
2 , then we call

C1 andC2 are division ofC andC is dividable byC1 andC2.

Example 11 The class of all 2-neighborhood cellular automata{CA(2, n) |n = 0, .., 15} is gener-
ated by{CA(2, 0), CA(2, 1), CA(2, 2), CA(2, 4), CA(2, 8)} using ’union’ operations. For example,
CA(2, 13) is dividable byCA(2, 1), CA(2, 4), andCA(2, 8). Fig 1 is the table of unions forCA(2, n)
(n = 0, .., 15).

Definition 12 (Composition) LetC1 = (G, V1, V
′
1) andC2 = (G, V2, V

′
2) be cellular automata onG.

The compositionC13C2 ofC1 andC2 is defined byC13C2 = (G, V1 · V1, V
′
13V ′

2) where

V1 · V2 = {v1v2 ∈ G | v1 ∈ V1, v2 ∈ V2} and

V ′
13V ′

2 = {X ∈ 2V1·V2 | {v ∈ V1 | v−1X ∩ V2 ∈ V ′
2} ∈ V ′

1}.

Example 13 LetC = (Z, V, V ′) be a cellular automaton onZ whereV = {0, 1} andV ′ = {{0}, {1}}.
We haveV · V = {0, 1, 2}. Since1−1{0, 1} ∩ {0, 1} {0 − 1, 1 − 1} ∩ {0, 1} = {0} and0−1{1, 2} ∩
{0, 1} = {1 − 0, 2 − 0} ∩ {0, 1} = {1}, we haveV ′

3V ′ = {{0}, {2}, {0, 1}, {1, 2}}. So we have
CA(2, 6)3CA(2, 6) = CA(3, 90).
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n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 255 236 209 192 139 136 129 128 55 36 17 0 3 0 1 0
2 0 16 34 48 68 68 66 64 8 24 34 48 12 12 2 0
3 255 252 243 240 207 204 195 192 63 60 51 48 15 12 3 0
4 0 2 12 12 48 34 24 8 64 66 68 68 48 34 16 0
5 255 238 221 204 187 170 153 136 119 102 85 68 51 34 17 0
6 0 18 46 60 116 102 90 72 72 90 102 116 60 46 18 0
7 255 254 255 252 255 238 219 200 127 126 119 116 63 46 19 0
8 0 1 0 3 0 17 36 55 128 129 136 139 192 209 236 255
9 255 237 209 195 139 153 165 183 183 165 153 139 195 209 237 255
10 0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255
11 255 253 243 243 207 221 231 247 191 189 187 187 207 221 239 255
12 0 3 12 15 48 51 60 63 192 195 204 207 240 243 252 255
13 255 239 221 207 187 187 189 191 247 231 221 207 243 243 253 255
14 0 19 46 63 116 119 126 127 200 219 238 255 252 255 254 255
15 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

Fig. 2: Table of compositions :CA(2, n)3CA(2, m)

Example 14 The rule numbers of the 3-neighborhood cellular automata generated by composing 2-
neighborhood cellular automata is{0, 1, 2, 3, 8, 12,15, 16, 17,18, 19, 24,34, 36, 46,48, 51, 55,60, 63, 64,
66, 68, 72,85, 90, 102,116, 119, 126,127, 128, 129,136, 139, 153,165, 170, 183, 187, 189, 191,192, 195,
200, 204, 207, 209, 219, 221, 231, 236, 237, 238, 239, 240, 243, 247, 252, 253, 254, 255}. There are 62
kinds of 3-neighborhood cellular automata. Fig 2 is the table of compositions forCA(2, n) (n = 0, .., 15).

Lemma 15 LetC = (G, V, V ′) be a cellular automaton andV0 ⊂ G. For anyc ∈ 2G,

FC(c) ∩ V0 = FC(c ∩ (V0 · V )) ∩ V0

Proof. We haveFC(c) ∩ V0 = {v0 ∈ V0 | v−1
0 c ∩ V ∈ V ′} = {v0 ∈ V0 | c ∩ v0V ∈ v0V ′} = {v0 ∈

V0 | (c ∩ V0 · V ) ∩ v0V ∈ v0V ′} = FC(c ∩ (V0 · V )) ∩ V0. 2

The composition of cellular automata corresponds to find a cellular automaton which global transition
function is the composition of global transition functionsof original cellular automata.

Theorem 16 (Fujio (2008))
FC1 ◦ FC2 = FC13C2

Proof. SinceFC2(c) ∩ V1 = {v ∈ V1 | v−1c ∩ V2 ∈ V ′
2}, we have

e ∈ FC1(FC2(c)) ⇔ FC2(c) ∩ V1 ∈ V ′
1

⇔ FC2(c ∩ V1 · V2) ∩ V1 ∈ V ′
1 (by Proposition. 2)

⇔ {v1 ∈ V1 | v−1(c ∩ V1 · V2) ∩ V2 ∈ V ′
2} ∈ V ′

1

⇔ c ∩ V1 · V2 ∈ V ′
13V ′

2

⇔ e ∈ FC13C2(c)

2

Theorem 17 LetC1 = (G, V, V ′
1), C2 = (G, V, V ′

2) andC3 = (G, V3, V
′
3) be cellular automata on a

groupG. Then,
(C1 ∪ C2)3C3 = (C13C3) ∪ (C23C3)
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Proof. First, we note

(C1 ∪ C2)3C3 = (G, V · V3, (V
′
1 ∪ V ′

2)3V ′
3) , and

(C13C3) ∪ (C23C3) = (G, V · V3, (V
′
23V ′

1) ∪ (V ′
33V ′

1)).

Next, we have

(V ′
1 ∪ V ′

2)3V ′
3 = {X ∈ 2V ·V3 | {v ∈ V | v−1X ∩ V3 ∈ V ′

3} ∈ V ′
1 ∪ V ′

2}
= {X ∈ 2V ·V3 | {v ∈ V | v−1X ∩ V3 ∈ V ′

3} ∈ V ′
1}

∪{X ∈ 2V ·V3 | {v ∈ V | v−1X ∩ V3 ∈ V ′
3} ∈ V ′

2}
= (V ′

13V ′
3) ∪ (V ′

23V ′
3)

2

We note thatC13(C2 ∪ C3) = (C13C2) ∪ (C13C3) does not always holds for cellular automataC1,
C2 andC3. For exampleCA(2, 6)3(CA(2, 2) ∪ CA(2, 4)) = CA(2, 6)3CA(2, 6) = CA(3, 90), and
(CA(2, 6)3CA(2, 2)) ∪ (CA(2, 6)3CA(2, 4)) = CA(3, 46) ∪ CA(3, 116) = CA(3, 126).

Proposition 18 LetCA(1, n)k1x ,CA(k2, n2) andCA(k2, n3) be cellular automata onZ, where0 ≤ x <
k1, andn = 0, 1. Then,

CA(1, n)k1x 3(CA(k2, n2) ∪ CA(k2, n3)) = (CA(1, n)k1x 3CA(k2, n2)) ∪ (CA(1, n)k1x 3CA(k2, n3)).

Proof. Let V1 = {0, · · · , k1 − 1}, V ′
1 = {X ∈ 2V |x ∈ X}), V̄ ′

1 = {X ∈ 2V |x 6∈ X}), CA(k2, n2) =
(Z, V2, V

′
2), andCA(k2, n3) = (Z, V2, V

′
3). First, we note

CA(1, 0)k1x = (Z, V1, V̄ ′
1),

CA(1, 1)k1x = (Z, V1, V
′
1),

CA(1, 0)k1x 3(CA(k2, n2) ∪ CA(k2, n3)) = (Z, V1 · V2, V
′
13(V ′

2 ∪ V ′
3)), and

(CA(1, n)k1x 3CA(k2, n2)) ∪ (CA(1, n)k1x 3CA(k2, n3)) = (Z, V1 · V2, (V
′
13V ′

2) ∪ (V ′
13V ′

3)).

Since

V ′
13(V ′

2 ∪ V ′
3 ) = {X ∈ 2V1·V2 | {v ∈ V | v−1X ∩ V2 ∈ (V ′

2 ∪ V ′
3)} ∈ V ′

1}
= {X ∈ 2V1·V2 |x−1X ∩ V2 ∈ (V ′

2 ∪ V ′
3)}, and

(V ′
13V ′

2) ∪ (V ′
13V ′

3) = {X ∈ 2V1·V2 | {v ∈ V | v−1X ∩ V2 ∈ V ′
2} ∈ V ′

1}
∪{X ∈ 2V1·V2 | {v ∈ V | v−1X ∩ V2 ∈ V ′

3} ∈ V ′
1}

= {X ∈ 2V1·V2 |x−1X ∩ V2 ∈ V ′
2}

∪{X ∈ 2V1·V2 |x−1X ∩ V2 ∈ V ′
3},

we haveV ′
13(V ′

2 ∪ V ′
3) = (V ′

13V ′
2) ∪ (V ′

13V ′
3), and

CA(1, 1)k1x 3(CA(k2, n2) ∪ CA(k2, n3)) = (CA(1, 1)k1x 3CA(k2, n2)) ∪ (CA(1, 1)k1x 3CA(k2, n3)).
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Similarly, we can prove

CA(1, 0)k1x 3(CA(k2, n2) ∪ CA(k2, n3)) = (CA(1, 0)k1x 3CA(k2, n2)) ∪ (CA(1, 0)k1x 3CA(k2, n3)).

2

Example 19 We noteCA(3, 3) = (Z, {0, 1, 2}, {φ, {0}}) andCA(3, 102) = (Z, {0, 1, 2}, {{0}, {1},
{0, 2}, {1, 2}}). The compositionCA(3, 3) 3CA(3, 102) = ({0, 1, 2, 3, 4}, {{1},{0, 1},{1, 4},{0, 1, 4},
{3},{0, 3},{3, 4},{0, 3, 4}}). Since{{1},{0, 1},{1, 4},{0, 1, 4},{3},{0, 3},{3, 4},{0, 3, 4}})=

⋃{{{0}∪
s, s∪ {4}, {0} ∪ s∪ {4}} |s ∈ {{1}, {3}}}, we haveCA(3, 3) 3 CA(3, 102) = CA(3, 18)51. (cf. Fig 3,
Fig 4, Fig 5)

Fig. 3: An example of configurations ofCA(3, 3)
Fig. 4: An example of configurations ofCA(3, 102)

Fig. 5: An example of configurations ofCA(3, 18) = CA(3, 3)3CA(3, 102)

Example 20 A 2-neighborhood cellular automaton is considered as3-neighborhood cellular automaton
and3-neighborhood cellular automaton is also considered as5-neighborhood cellular automaton. The
followings is an observation of the embeddings and compositions.

CA(2, 1) = (Z, {0, 1}, {φ})
CA(2, 1)30 = (Z, {0, 1, 2}, {φ, {2}})

= CA(3, 17)

CA(2, 1)3CA(2, 1) = (Z, {0, 1, 2}, {{0, 1}, {0, 2}, {1, 2}, {1}})
= CA(3, 236)

CA(3, 17)3CA(3, 17) = (Z, {0, 1, 2, 3, 4, 5}, V ′)

= CA(5, 3974950124) = CA(3, 236)50

V ′ =
⋃
{{s, s ∪ {3}, s ∪ {4}, s ∪ {3, 4}}|s ∈ CA(3, 236)}
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3 Generalization
A subsetV of G is considered as a characteristic functionV : G → 2 where2 = {0, 1}. That isV is a
function which values are

V (g) =

{
0 (g 6∈ V )

1 (g ∈ V ).

SometimesV is represented as an injectioniV : V → G whereiV (g) = g.
Extending our 2-states cellular automata on groups to many-states cellular automata on groups, we

replace the set2 = {0, 1} to a finite setS.

Definition 21 LetG be a group,S a finite set. A generalized cellular automaton onG is a four-tuple
C = (G,S, iV , V

′) of the groupG, an injectioniv : V → G, and a functionV ′ : SV → S whereSV

is the set of all functions fromV to S. A configurationc : G → S is a function. The global transition
functionFC : SG → SG is defined byFC(c)(g) = V ′(c ◦ g ◦ iV ).

Proposition 22 LetG be a group, andS = 2 = {0, 1}. The global functionFC : 2G → 2G is the same

as defined in Definition 1. That isFC(c) = {g ∈ G |V ′(c ◦ g ◦ iV ) = 1} =
⋃

g∈G
g · lV ′(g−1 · c ∩ V ).

Proof. Forg ∈ G, we have

g ∈
⋃

g∈G
g · lV ′(g−1 · c ∩ V ) ⇔ lV ′(g−1 · c ∩ V ) = {e}

⇔ g−1 · c ∩ V ∈ V ′

⇔ g−1{x | c(x) = 1} ∩ V ∈ V ′

⇔ {g−1x | c(x) = 1} ∩ V ∈ V ′

⇔ {v | c(gv) = 1} ∩ V ∈ V ′ (cf. (x = gv))

⇔ {v | c(gv) = 1, v ∈ V } ∈ V ′

⇔ {v | c ◦ g ◦ iV (v) = 1} ∈ V ′

⇔ V ′(c ◦ g ◦ iV ) = 1

⇔ g ∈ FC(c).

2

Example 23 LetG = Z, S = Zm, andV = {−r,−r + 1, · · · , 0, · · · ,+r}. For a polynomialf(X) =
+r∑

i=−r
aiX

i, (ai ∈ Zm), we define the functionV ′
f(X) : ZVm → Zm byV ′(x−r , x−r+1, · · · , x0, · · · , x+r)

=

+r∑

i=−r
a−ixi, ((x−r, x−r+1, · · · , x0, · · · , x+r) ∈ Zm

V ). A configurationc ∈ ZZ
m is represented as a

formal power series
∑

ciX
i whereci = c(i) (cf. Sato (1994); Manzini (1998)). Sincec ◦ j ◦ iV (i) =
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c(j + i) = cj+i, andc ◦ j ◦ iV = (cj−r , cj−r+1, · · · , cj, · · · , cj+r), we have

(
∑

c(i)X i)f(X) = (
∑

ciX
i)f(X)

= (
∑

ciX
i)(

+r∑

i′=−r
ai′X

i′)

= (
∑

ciX
i)(

+r∑

i′=−r
a−i′X

−i′)

=
∑

(
+r∑

i′=−r
cia−i′X

i−i′)

=
∑

((

+r∑

i′=−r
a−i′cj+i′ )X

j) (cf. j = i− i′)

=
∑

(V ′(cj−r, cj−r+1, · · · , cj , · · · , cj+r)Xj)

=
∑

(V ′(c ◦ j ◦ iV )Xj).

=
∑

(FC(c)(j)Xj).

The transition of the cellular automatonC = (Z,Zm, iV , V
′
f(X)) is corresponding to the product of

polynomials (the formal power series).
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This work investigates single hybridization in “Non-Interesting” class of Cellular Automata. Detailed analysis has

been reported to model different criteria of single hybridization in this class of CA. The results establish that the

“Non-Interesting” class ofCA rules are the potential candidates in synthesizing Multiple Attractor Cellular Automata

(MACA) with single length cycle attractor.

Keywords: Multiple Attractor Cellularr Automata (MACA), Self Loop Multiple Attractor Cellularr Automata (SMACA),

Single Attractor Cellular Automata (SACA)

1 Introduction

Cellular Automata (CA) is a decentralized dynamical computing paradigm that evolves in discrete time

and space. CA is represented as a spatially extended system, consisting of large numbers of simple iden-

tical components with local connectivity. The simple combinational logics employed at the local sites of

CA give rise to a complex evolution of global states. The potential of CA to perform complex compu-

tations and its robustness has attracted a large section of researchers from diverse fields. Among many

interesting and surprising global state transition patterns of CA evolution, researchers paid an immense

interest towards a special class ofCA referred to as the “Multiple Attractor Cellular Automata” (MACA).

The community of CA researchers has already acknowledged [4, 5, 8, 9, 10] the importance ofMACA
structures in the field of pattern classification, design of associative memory, query processing, etc.
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(a) Phase space diagram for a CA 
with Rule Vector <40, 77, 40, 77> with Rule Vector <40, 77, 77, 40> 

(b) Phase space diagram for a CA  

Fig. 1: Sample MACA (not all attractor being point state) and SMACA (all attractors being point state)

The MACA with single length (i.e point state) cycle called Self Loop MACA (SMACA) has gained

special attention in the recent years. The simple global phase space structure of SMACA promises to

be a better candidate for pattern classification, pattern recognition and other related applications due to

reduced complexities in class identification.

The importance of SMACA as pattern classifier [4], associative memory [5, 4] and other application

areas [8, 9], as well as the absence of simple synthesis scheme for such a CA have motivated us to

concentrate on the characterization of SMACA.

The characterization acts as the first step towards synthesis. It is done from the perspective of hy-

bridization in “non interesting” class of elementary Cellular Automata rule space. The results of such

characterization can be utilized to frame an efficient synthesis scheme for SMACA

Section II of this paper critically discusses the history and general notion about “Non Interesting” class

of elementary Cellular Automata rule space followed by Section III that introduces the basic notations

and terminologies related to SMACA. Finally, Section IV characterizes the effect of single hybridization

on “Non Interesting” class of CA leading to the synthesis scheme for SMACA.
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Tab. 1: Five Classes Elementary Cellular Automata Rules

Class RuleNumber
Null 0, 8, 32, 40, 128, 136, 160, 168

Fixed Point 2, 4, 10, 12, 13, 24, 34, 36, 42, 44, 46, 56

57, 58, 72, 76, 77, 78, 104, 130, 132, 138, 140

152, 162, 164, 170, 172, 184, 200, 204, 232

Periodic 1, 3, 5, 6, 7, 9, 11, 14, 15, 19, 23, 25, 27, 28

29, 33, 35, 37, 38, 41, 43, 50, 51, 74, 108, 131

133, 134, 142, 156, 178

Locally Chaotic 26, 73, 154

Chaotic 18, 22, 30, 45, 54, 60, 90, 105, 106, 129, 137, 146, 150, 151

2 “Non Interesting” Elementary CA Rule Space

In his most influential paper [1], Wolfram reported the existence of four classes of rules for 2 state 3
neighborhood Cellular Automata (CA). This classification reported a class called Class I or Homogeneous

Class where CA evolution led to a homogeneous state. Class I cellular automata evolve after a finite

number of time steps to a unique homogeneous state.

This classification, enabled [2, 3], characterization of CA rule dynamics from the typical initial config-

urations. However, this classification was neither according to the dynamics from all initial configurations,

nor it is the mathematical characterization. It could be thought of simple phenotype classification.

General notion about the class I rules admits the fact that the global state evolution dies out after a

short span of time, thereby calling it “Non Interesting” from the computational complexity as well as uni-

versality perspective. But, critical and exhaustive computational experiments have proved that the “Non

Interesting” CA rules can show some interesting properties if its phase transition length is considerably

high and if the CA is initialized with a proper global configuration. Hence the “Non Interesting” is purely

a qualitative measure and it depends of initial configuration1q of the CA.

Li et al have shown [3] that the 3 neighborhood CA rule space (containing 256 rules) can be folded

down to Elementary rule space (containing 88 rules). Each rule in this Elementary space forms a cluster

of 1, 2 or 4 rules, all of which share similar properties. In the present case, instead of taking the entire 3
neighborhood rule space,the Elementary rule space is considered for simplicity. For example, rule 40 is

an elementary rule and it represents the rule cluster (40, 96, 235, and 249). Hence any discussion related

with rule 40 equally implies to the entire cluster of (40, 96, 235, and 249). The work of Li, Packard and

Langton [2, 3] has extended the Wolfram classification and pointed out five different classes. Among

these, Class A (Null rules) and Class B (FixedPoint rules) are of great importance for the present work.

Class A (Null rules) and Class B (FixedPoint rules) can be summarized as follow:

• Class A (Null rules): CA evolution leads homogeneous fixed-point configurations.

• Class B (FixedPoint rules): CA evolution leads to inhomogeneous fixed-point configurations.

Table 1 shows Li-Packard classification of CA rules with reference to the Elementary rule space.

Wolfram Type 1 Non Interesting class gets directly mapped with Null and FixedPoint classes of Li

Packard classification. Both Null and FixedPoint class rules lead the CA evolution towards a fixed
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attractor but the nature of attractors are different in both the cases. In Null rules, the attractors are

homogeneous that is point states or self loops, whereas in FixedPoint, the attractors may be composed

of multi length cycles of states. Hence, for SMACA , Null rules are the natural choice.

The pattern classification or pattern recognition solutions demand the patterns to be distributed over dif-

ferent dissipative phase space that could be identified by corresponding attractors. Here, the issues of uni-

versality or computational complexities generally do not play significant role. So the Null rules, though

do not show considerable computational complexities, can be thought for ideal candidate for SMACA
synthesis targeting different applications like pattern classification/recognition, associative memory im-

plementations etc.

In the current paper, unless stated otherwise, the “Non Interesting” (NI) CA rules will always refer to

the Null class of Li Packard classification. The NI or Null class CA rules can be characterized by the

fact that within a phase space, all the states eventually move towards a single point state attractor or self

loop. Hence, a Null class CA can contain a cycle of length 1 at the max. Hence the dynamics of Null
class CA rules supports the basic criteria of SMACA. But at the same time, it lacks the presence of

multiple dissipative phase space or basins as it contains only one basin. The presence of only one basin

in the phase space confirms the CA to be referred to as Single Attractor Cellular Automata (SACA).

The present work analyses the conditions for which a single hybridization in Null class uniform CA
transforms SACA dynamics to SMACA dynamics.

3 CA Preliminaries

A Cellular Automaton (CA) can be viewed as an autonomous finite state machine (FSM) consisting of

a number of cells [6]. In a 3-neighborhood dependency, the next state qi(t+1) of a cell is assumed to be

dependent only on itself and on its two neighbours (left and right), and is denoted as

qi(t+1) = f (qi−1
(t) , q

i
(t), q

i+1
(t) ) where qi(t) represents the state of the ith cell at tth instant of time. f is the

next state function and referred to as the rule of the automata. The decimal equivalent of the next state

function, as introduced by Wolfram [7], is the rule number of the CA cell. For example

Rule 90: qi(t+1) = qi−1
(t) ⊕ qi+1

(t) where ⊕ function denotes modulo-2 addition. Sincef is a function of 3

variables, there are 223

i.e., 256 possible next state functions (rules) for a CA cell.

The CA is said to be uniform if the same rule have been introduced to each of the cells of a CA,

otherwise it is termed as hybrid. In this paper we characterize the effect when hybridization occurs at ith

cell of a CA which is governed by the uniform Null class rules. The following definitions are introduced

to follow the reported characterization of null boundary CA.

Definition 3.1 Rule Vector (RV):The ordered sequence of Rules < R0, R1 · · ·Ri · · ·Rn−1 >, of an n

cell CA is referred to as its rule vector (RV) where ith cell of CA is configured with rule Ri. If R0 = R1

= Ri = Rn−1, it is uniform RV other wise it is hybrid.

Definition 3.2 Hybridization: It is the process of introducing a non-homogeneous rule Ri at the ith

cell (i,e ith index of RV) of a uniform CA with RV < R,R,R · · ·R > . Single hybridization means

introduction of one non homogeneous rule at ith cell of the CA.

Definition 3.3 Local Next State Function (f ): The rule employed on a CA cell represents the local map

that is, the local next state function f . Thus fi refers to the local next state function corresponding to the

rule Ri employed on ith cell.
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Definition 3.4 Present and next state of a CA cell: The present and next state of ith cell is denoted as

the ai and bi respectively. Hence bi = fi(ai−1, ai, ai+1).

Definition 3.5 Global next state function (F ): The global next state function F is derived from the local

next state function as F = (f0f1 · · · fi · · · fn−1) with the 3 variable Boolean function fi(ai−1, ai, ai+1).

Definition 3.6 Global present and next state (A and B) : The global present and next states are re-

spectively denoted by A and B. Thus A = (a0, a1 · · · ai · · · an−1), B = F (A) = (b0, b1 · · · bi · · · bn−1).
That is B is the successor state of A, and A is the predecessor state of B.

Definition 3.7 Self Loop Attractor (SLA) : A state A is a SLA if F (A) = B = A. That is, there exists

a cycle of length 1 with the state A.

Definition 3.8 Rule Min Term (RMT ): The 8 Minterms of the 3 variable boolean function fi corre-

sponding to the ruleRi employed on ith CA cell is referred to asRMT s. The three variables are ai−1, ai,
ai+1, the current states of (i−1)th, ith, (i+1)th cells respectively, The minterm m = < ai−1aiai+1 > is

the RMT. The symbol T represents all the RMTs, whereby T = T (0), T (1), T (2), T (3), T (4), T (5), T (6),
T (7) = T (m). In general a single RMT for ith cell is also denoted as T i ǫ T where T i =< ai−1aiai+1 >.

Definition 3.9 CompatibleRMT Pair: A pair ofRMT s T i and T i+1 in anRMT string< · · ·T i−1T i

T i+1 · · · > (where T i ǫ T , T i = < ai−1aiai+1 >, and T i+1 = < ái ´ai+1 ´ai+2 >) are compatible if (i) ai
= ái and (ii) ai+1 = ´ai+1.

Example: Let us consider two RMT s T(2) and T(4) where T(2) = < ai−1aiai+1 > = < 010 > and

T(4) = < ái ´ai+1 ´ai+2 > = < 100 >. Here ai = ái = 1 and ai+1 = ´ai+1 = 0. Hence the RMT pair T(2) and

T(4) is compatible.

Let us consider another case with RMT pair T(3) and T(5) where T(3) = < ai−1aiai+1 > = < 011 >
and T(5) = < ái ´ai+1 ´ai+2 > = < 101 >. Here ai = ái = 1 but ai+1 6= ´ai+1. Hence the RMT pair T(3)

and T(5) is not compatible.

Definition 3.10 Valid RMT String: A RMT string < T 0 · · ·T i−1T iT i+1 · · ·Tn−1 >, representing the

state of a CA is a valid RMT string if each pair T i and T i+1 (i = 0 to n− 2) is a compatible RMT pair.

4 Characterization of Single Hybridization in “Non Interesting” CA

A “Non interesting” CA rule always produces only one cycle of length one, that is only one self loop. The

valid RMT string that corresponds to this self loop is referred to as “Attractor RMT Sequence”. For exam-

ple, let us consider rule 40 (Null rule , Table1). It has only one valid RMT string< T (0)T (0)T (0)T (0) >
which generates the attractor, hence, “Attractor RMT Sequence” for rule 40 is < T (0)T (0)T (0)T (0) >
or simply< 0000 >. The condition for a valid RMT string to be referred to as “Attractor RMT Sequence”

is given as follows

Property 1: For an n length uniform CA withNull rule R, the validRMT String S =< T 0 · · ·T i−1T i

T i+1 · · ·Tn−1 > is said to be “Attractor RMT Sequence” if and only if, for all ith cell ( i = 0 to n-1), the

condition ai = bi is true (where T ii ǫ T , T i = < ai−1aiai+1 >, and bi is the next state of ith cell, hence

bi ǫ 0,1).

TheRMT s that constitute “Attractor RMT Sequence” for rule R, form a setATTR SEQR. Following

algorithm identifies the “Attractor RMT sequence”, given a Null rule for n length CA.
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Algorithm 1: Identify ARS
Input: A Null rule R for an n length CA and an index j set to 0

Output: An n length “Attractor RMT sequence” < T 0 · · ·T j−1T jT j+1 · · ·Tn−1 >
Step 0: for R, pick up the RMT s which holds Property 1

Step 1: for each picked up RMT T in Step 0, do Step 2

Step 2: while j is less than n do the following

Step 3: append T j to the “Attractor RMT Sequence” < T 0 · · ·T j−1 >

Step 4: compute two compatible RMT s T j+1 and ´T j+1 from T j

Step 5: for each of RMT s T j+1 and ´T j+1, computed at Step 4, if it holds Property 1, do Step 2 with

j← j+1, else do Step 6

Step 6: start another execution as per Step 1

Step 7: output “Attractor RMT sequence” < T 0 · · ·T j−1T jT j+1 · · ·Tn−1 > and Stop.

Step 2 to Step 5 of Identify ARS algorithm executes n times and this execution is done for all of the

RMT s satisfying Property 1. For a specific Null rule R, the number of RMT s satisfying Property 1 is

constant (say k) and hence the entire algorothm runs with a time complexity of k.n

In a state space, a cycle of length k can be thought of as a point state or self loop attractor at kth

temporal extension. In case of Null class CA rules, the RMT s with relation ai = bi are so arranged and

distributed that there exists no kth temporal extension at which, for an n cell Cellular Automata, for all

ith cell ( i = 0 to n-1), the condition ai = bi is true. Hence Null class rules are devoid of any attractor of

length k (k = 2 to n-1).

This property, though not the outcome of this study, guides the hybridization in “Non interesting” CA

rules. The possibility of formation of multi-length cycle due to the introduction of single hybridizing rule

gets nullified in the presence of NULL class CA rules.

4.1 Characterization

To proceed with the characterization, let us define the following key concepts

Definition 4.1 Non Point RMT Set: Non Point RMT Set for rule RN PTR is defined as the set of RMTs

of rule R for which the condition ai = bi is not true.

Definition 4.2 RMT Transition Tree: For an n cell CA of rule R, it is a non-linear Binary Tree with

n levels ( 0 to n-1), in which a node containing one RMT is connected with another node containing

compatible RMT. As one RMT always generates a compatible RMT pair as per Definition 3.9, a parent

node will always contain exactly two child nodes excepting at level n-1. At level n-1, no odd RMTs will

be present due to null boundary condition. The RMT transition tree is always drawn with reference to a

specific RMT at jth cell of CA ( j = 0 to n-1). Hence the sub tree, all the complete path of which passes

through specific RMT at level j corresponds to the reference RMT. The nodes of the tree also hold the

status of ai = bi relation.

Let us consider Rule 8(00001000). The next state of all the RMTs excepting T(3) is 0 where as next

state of T(3) is 1. Hence T(2), T(6) and T(7) do not hold ai = bi relation. Hence N PT8 is T(2), T(6),

T(7) or simply 2,6,7.
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Fig. 2: Illustration of Example 1 and 2

Figure 2(a) represents a RMT transition tree (for 5 cell CA with rule 8) with reference to RMT T(3) at

3rd cell or at j = 2 where j = 0 to 4. The reference node marked with bold line and * denotes the node that

does not follow ai = bi relation.

The following theorems lead to characterization of the hybridization in “Non interesting” CA rules.

Theorem 4.1 For a pair of hybridizing rule H and uniform rule R, if the relation N PTR ⊂ N PTH is

true, then the hybridization will never lead to SMACA formation.

Proof: The singletone existence of Self Loop Attractor for rule R is due to violation of the relation ai =

bi for RMT T where T ǫ N PTR. As N PTR ⊂ N PTH holds good, the same violation of the relation

ai = bi exists in the hybridized CA. Hence the singletone existence of Self Loop Attractor never changes

and the hybridization preserves SACA nature not leading to SMACA. Hence proved. 2

Example : Let us consider, R = 8 (00001000) and H = 24 (00011000). Hence N PTR = T(2), T(6),

T(7) or simply N PTR = 2,6,7 and N PTH = T(2),T(4),T(6),T(7) or simply 2,4,6,7. Hence N PTR ⊂
N PTH is true. This hybridization will never lead to SMACA as the same can be reviewed and confirmed

from Figure 2(b).

Theorem 4.2 For a pair of hybridizing rule H (at ith cell) and uniform rule R, the hybridization will

never lead to SMACA formation, if the following conditions are true:

a) N PTH = N PTR ∪ SH where SH ∩ ATTR SEQR 6= Phi; and

b) At least one element of SH must be present at ith position of “Attractor RMT Sequence”.

Proof: The condition N PTH = N PTR ∪ SH dictates that there is no possibility of formation of auxil-

iary “Attractor RMT Sequence” in the hybridized CA. It is due to the fact that RMTs non conforming to
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the relation ai = bi in R have not been changed in H. In addition to this, the existing “Attractor RMT Se-

quence” corresponding to R gets disturbed due to the fact that RMT (s) say T, from ATTR SEQR does

not hold the relation ai = bi any more in H as SH ∩ ATTR SEQR 6= Φ and SH ⊂ N PTH . So at the

hybridizing cell site, “Attractor RMT Sequence” will fail to hold ai = bii relation resulting no formation

of Self Loop Attractor . So as (i) “Attractor RMT Sequence” of uniform CA with R exists no more and

(ii) No possibility of Self Loop formation evolves up due to introduction of rule H, no self loop can be

generated for the hybridized CA and hence SMACA generation is impossible. Proved. 2

Example : Let us consider, R = 8 (00001000) and H = 9 (00001001). For this pair of rules,ATTR SEQR
= T(0) = 0, N PTR = T(2), T(6), T(7) = 2,6,7 and N PTH = T(0), T(2), T(6), T(7) = 0, 2,6,7. Mathe-

matically, N PTH = N PTR ∪ SH where SH = 0. So there exists an RMT T = T(0) = 0 for which T

ǫ SH and T ǫ ATTR SEQR is true. Hence this hybridization will never lead to SMACA. This can be

rechecked with the phase space diagram of Figure 2(c).

Above discussion analyses the conditions which refuse a hybridizing rule H to be introduced into a

uniform CA with rule R in order to possible SMACA generation. Hence the rule non conforming to

these conditions stated in theorem 4.1 and theorem 4.2 has a potential to form SMACA structure when

introduced to a uniform CA with “Non Interesting CA” rule R. One of such rules can be referred to as

“Potential Rule” HP . A “Potential Rule” HP can be characterized by the property N PTR 6⊂ N PTHP
.

Theorem 4.3 An n cell uniform CA with rule R, when hybridized with potential rule HP at ith level or

cell, leads to SMACA with k+1 number of Self Loop Attractors if and only if there exists k number of

complete path (each node satisfying ai = bi relation) from 0th level to (n− 1)th level of RMT Transition

Tree of the hybridized RV with reference to RMT (say T) at level i; where T ⊂ (N PTR −N PTHP
).

Proof: A Potential Rule HP confirms that there lies at least Υ (Υ = 1, 2 · · ·) such RMT s that do

satisfy the relation ai = bi but that used not to satisfy the same in uniform CA rule R. So the “RMT

Transition Tree” constructed with reference to those Υ no of RMT s of R at ith level, could not produce

any auxiliary “Attractor RMT Sequence”. This is due to the fact that in those case, no complete path

could be identified from 0th level to (n − 1)th level with the relation ai = bi satisfied at each level. But

in HP , these Υ no of RMT s maintain the relation ai = bi. Hence for a fresh “RMT Transition Tree”,

with reference to Υ number of RMT s of HP , at ith cell/level. If there are k number of complete paths,

then each of these paths, (satisfying ai = bi all along) will always yield k no of Self Loops or Point States.

The complete paths identified, itself confirms the identification of Self Loop or Point State attractor as

< b0b1 · · · bi · · · b(n−1) > = < a0a1 · · · ai · · · a(n−1) > enabling synthesis of a SMACA with k + 1 no

of basins grown around k +1 no of Self Loops or Point States. The extra one attractor is accounted for the

original Self Loop Attractor of Uniform CA with R. Hence Proved. 2

Example : Let us consider R = 8(00001000) and H = 90(01011010). Here N PTR = T(2), T(6), T(7)

= 2,6,7 and N PTH = T(1), T(2), T(4),T(7) = 1, 2, 4, 7. As N PTR 6⊂N PTH , rule 90 can be treated as

HP . Hence N PTR - N PTHP
yields 6. Let us further consider that a 5 cell uniform CA with rule 8 is

hybridized with rule 90 at i = 2 or in 3rd cell. Now Figure 3(a) shows the RMT Transition Graph of this

5 cell hybridized CA, with reference to RMT T(6) or simply 6 at level i = 2. The Figure 3(a) shows that

only one complete path with condition ai = bi satisfied all along can be identified as <T(1) T(3) T(6) T(4)

T(0)> = <13640> (shown in bold arrows). This auxiliary Attractor RMT Sequence generates the Self

Loop or Point State as < a0a1a2a3a4 > = <01100> = 12. Hence 5 cell hybridized CA < 8, 8, 90, 8, 8 >
will lead to two basin SMACA with two point state attractors (one being 6 and the other being original
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Fig. 3: Illustration of Example 3

attractor 0) . The phase transition diagram of CA with RV < 8, 8, 90, 8, 8 > (as depicted in Figure 3(b))

confirms the result.

Theorem 4.4 An n cell uniform CA with rule R, when hybridized with “Potential Rule” HP at ith level

or cell, leads to destruction of original Self Loop or Point State attractor corresponding to R if N PTHP

∩ ATTR SEQR 6= ∅ and there lies at least one element in N PTHP
that is present at ith position of

“Attractor RMT Sequence”.

Proof: The relation N PTHP
∩ ATTR SEQR 6= ∅ implies that the hybridizing rule HP has some

RMT (s) say T which does not satisfy the relation ai = bi, and at the same time those RMT (s) T also

exists in ith position within “Attractor RMT Sequence” corresponding to R. Hence the “Attractor RMT

Sequence” will not exist any more as the primary condition of being Self Loop State or Point State (ai =

bi) gets hampered at ith position. So the original Self Loop or Point State exists no more as a direct result

of destruction of original “Attractor RMT Sequence”. 2

Example : Let us consider a 4 cell uniform CA with rule 40 (00101000) that has to be hybridized

with rule 77 (01001101) at level i = 2. Hence R = 40 and H = 77. N PTR = 2,5,6,7 and N PTH = 0,7

are computed and as N PTR 6⊂ N PTH is true, H can be treated as HP . Here ATTR SEQR = 0 and

NPTHP
∩ ATTR SEQR 6= ∅ =0, so the original Self Loop State or Point State 0 will not be preserved

in Hybridized CA. Now N PTR - N PTHP
yields 2, 5, 6. Figure 4(a), (b) and (c) show the RMT Tran-

sition Tree with reference to RMT s 2, 5 and 6 respectively at i = 2. Figure 4(b) reveals that no auxiliary

Attractor RMT Sequence generates due to RMT 5, whereas due to RMT 2 and RMT 6, two auxiliary

Attractor RMT Sequence are generate, namely, < T (0)T (1)T (2)T (4) > and < T (1)T (3)T (6)T (4) >
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respectively. These two auxiliary Attractor RMT Sequence yields state 2 (0010) and 6 (0110) as two

attractors. Hence as the original attractor has been destructed and as two new attractors have been gener-

ated, so as a result, the newly formed SMACA structure of CA < 40, 40, 77, 40 > will have two basins

grown around two Self Loop or Point State 2 and 6. This can be verified from Figure 5 which depicts the

phase transition diagram of < 40, 40, 77, 40 >.

5 Conclusion

The present work on characterization of single hybridization in “non-interesting” uniform CA, sets a

platform for simple architecture of two class pattern classifier. The insights developed can be utilized

further in order to have simple and robust algorithm for SMACA synthesis. Characterization of basin

volume or height or even cross basin transition of states may produce useful contribution in that regard.
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In this paper we make a generalization (called g-automorphism) of the automorphism of cellular automata (CA for

short) introduced by H. Nishio in 2009. At defining g-automorphism, we consider both permutations of the position

and the value of the arguments of the local function with relevant permutation of the neighborhood. We prove that

the g-automorphisms constitutes a group under a rule of the semi-direct product. The group acts on the local function

and naturally induces a classification of CA. Every CA in a class has the same global property up to permutation.

For explaining the idea we preferably use rule 110 which has been proved computation universal and calculate all

g-automorphisms of f110. As a byproduct we assert that there are 48 universal functions up to permutation. Finally

we show the g-automorphism classification of 256 local functions of ECA into 11 classes.

Keywords: cellular automaton, automorphism, classification, permutation, neighborhood, semi-direct product

1 Introduction

In the history of the cellular automaton (CA for short), most studies first assume some standard neigh-

borhood (von Neumann, Moore) and then investigate the global behaviors and mathematical properties or

look for a local function that would solve a given problem, say, the self-reproduction, the Game of Life

and so on. One could, however, ask a question: What happens if the neighborhood is changed from the

standard.

Around 1997 H. Nishio showed that infinitely many CA are made by changing the neighborhood with a

fixed local function (4) and Th.Worsh and H.Nishio proposed a computation universal CA which achieves

universality by changing the neighborhood (11).

Another direction of the research which will attack this question is to make clear the conditions for CA

to be the same or equivalent when the neighborhood is changed. Suppose that CA is defined by a 4 tuple

(Zd, Q, f, ν), where Z
d is the d-dimensional Euclidean cellular space, Q is the set of cell states, f is the

local function and ν is the neighborhood, which is a mapping from {1, ..., n} to Z
d. The i-th neighbor

ν(i), 1 ≤ i ≤ n is connected to the i-th argument of f . When the space Z
d and the state set Q are

understood, the global behavior of CA is determined by its local structure (f, ν). Two local structures are
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called equivalent if and only if they induce the same global functions. As for equivalence we particularly

proved a basic theorem: Two CA are equivalent if and only if their local structures are permutation of

each other (7). See Fig. 1. � ��!
 
(�1)�1 
(0)0 
(1)1f
0(0)
x1 x2 x3F (
)

��
(0)0 
(�1)�1 
(1)1f�
0(0)
x1 x2 x3��!(f; �) � (f�; ��)

Fig. 1: Permutation equivalence of 1-dimensional 3-neighbor CA

Based on this theory of the permutation equivalence of local structures, we defined the automorphism

for local structures and investigated the automorphism classification of the local functions (5; 6) . First

we consider the equivalence and then we defined the automorphism as the equivalence plus a permu-

tation ϕ of the states (value of arguments). To explain the point, take for example a computation uni-

versal ECA (f110, (−1, 0, 1)), where f110 = x1x2x3 + x2x3 + x2 + x3 in the polynomial expres-

sion, see Section 2.3. Then by a permutation of the arguments π2 = (12) (transpose x1 with x2), we

obtain fπ2
110 = x1x2x3 + x1x3 + x1 + x3 = f122. The function f122 is probably not universal on

(−1, 0, 1), (0,−1, 1) and others. But, by inversely permuting the local structure (f122, (0,−1, 1)) with

π−1
2 (= π2), we have (fπ2

122, (0,−1, 1)π2) = (f110, (−1, 0, 1)), that is (f122, (0,−1, 1)) is equivalent with

(f110, (−1, 0, 1)). In this sense, rule 122 is called universal up to permutation.

Next we defined the automorphism: (f ′, ν′) is called automorphic with (f, ν) if and only if there

is a pair of permutations ν and ϕ such that (f ′, ν′) = (ϕ−1fπϕ, νπ). For example, if we permute

(f110, (−1, 0, 1)) with π2 and ϕ = (1, 2) (transposition of states 0 and 1) 1, we have (f161, (0,−1, 1)).
Therefore f161 is also universal up to permutation. In what follows we often omit the suffix up to per-

mutation.

Now we generalize the automorphism of CA in such a way that every argument of f is permuted

independently. The local function is expressed by a polynomial in n variables f(xn) = f(x1, ..., xn)
over finite field GF (q) and the set of such polynomials is denoted Pn,q, 1 ≤ n, 2 ≤ q. We are going

to define the g-automorphism for Pn,q . For two CA A and A′, A′ = (f ′, ν′) is called g-automorphic

with A = (f, ν) denoted A ∼=g A
′, if and only if there is a 3-tuple of permutations (π, ψ, ϕ(n)) such that

(f ′, ν′) = (fπ, ψfπϕ(n)), where ϕ(n) = (ϕ1, ..., ϕn) and ϕi, 1 ≤ i ≤ n permutes the value of the i-th

1 ϕ−1fϕ is called conjugation, see Subsection 2.3
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argument, see Fig.2. � ��!
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0(0)
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Fig. 2: g-automorphism of 1-dimensional 3-neighbor CA

The set of automorphisms Gn,q = {(π, ψ, ϕ(n))|π ∈ Sn, ψ ∈ Sq, ϕ(n) ∈ Sn
q } is proved a group

under the group operation of semi-direct product. The g-automorphism group acts on Pn,q and induces a

classification of CA such that every CA in a class has the same global property up to permutation. For

explaining the idea we preferably use rule 110 a computation universal ECA. To be specific we show that

there are 48 functions which are universal up to permutation. This is compared with 6 ECA which are

automorphic with f110 (5; 6).

Finally we show the g-automorphism classification of ELFs in the form of a table, where every g-

automorphism class (GN class for short) is expressed by a union of several NW classes obtained by H.

Nishio (5). It is seen that 256 ELF are classified into 11 GN classes, which is compared with 46 NW

classes.

This work has been inspired by the past mathematical works about the logical circuits made by C. Shan-

non (9),D. Slepian (10) and M. Harrison (2) during 1950s the dawn of the computer science. Specifically

they formulated and generally solved the problem of counting the number of the equivalent or symmetry

classes of Boolean functions by use of the Pólya’s counting theory. However, their motivation for such an

investigation was fairly different from ours. They aimed at elucidating the physical/structural similarity

of logical circuits from the point of view of the technological design . They argued that the cost of the

circuit is invariant when permuting and/or complementing one or more variables. In our terminology the

Boolean functions belonging to the same class are g-automorphic. Mathematically speaking, their theory

is exclusively concerned with the Boolean functions (Pn,2) and even afterward, as far as I know, has not

been generalized to arbitrary functions (Pn,q).
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2 Preliminaries

The definitions and previous results are briefly restated, of which details will be found in (7; 5; 6).

2.1 CA and local structures

A cellular automaton is defined by a 4-tuple (Zd, Q, f, ν), where Z
d is a d-dimensional Euclidean space,

Q is a finite set of cell states, f : Qn → Q is a local function and ν is a neighborhood.

• [neighborhood] A neighborhood is a mapping ν : Nn → Z
d, where Nn = {1, . . . , n} and n ∈ N.

This can equivalently be seen as a list ν with n components (ν1, . . . , νn), where νi = ν(i), 1 ≤ i ≤
n, is called the i-th neighbor. The i-th argument of f is connected to the i-th neighbor.

• [local structure] A pair (f, ν) is called a local structure of CA. We call n the arity of the local

structure. When the space Z
d and the state set Q are understood, CA is often identified with its

local structure.

• [global function] A local structure uniquely induces a global function F : QZ
d → QZ

d

, which is

defined by

F (c)(x) = f(c(x+ ν1), ..., c(x+ νn)), (1)

for any global configuration c ∈ QZ
d

, where c(x) is the state of cell x ∈ Z
d in c.

Remark 1 In the previous paper (7) the definition of local structures was more general, but in this paper

we assume, without loss of generality, a restricted but most usual case of reduced local structures, see

the following definition and Lemma 1.

2.2 Previous results on the equivalence of local structures

Here we extract from the previous papers some basic results on the equivalence of local structures, which

entail the present work on the generalized automorphism.

Definition 1 [reduced local structure] A local structure is called reduced, if and only if

• ν is injective, i.e. νi 6= νj for i 6= j in the list of neighborhood ν and

• f depends on all arguments.

Lemma 1 For each local structure (f, ν) there is an equivalent local structure (f ′, ν′) which is reduced.

Definition 2 [equivalence] Two local structures (f, ν) and (f ′, ν′) are called equivalent, if and only if

they induce the same global function. In that case we write (f, ν) ≈ (f ′, ν′).

Definition 3 [permutation of local structure] For π ∈ Sn we define the permutation of the local function

and neighborhood by

fπ(x1, ..., xn) = f(xπ(1), ..., xπ(n)) (2)

and

νπ = (νπ1 , ..., ν
π
n),where νππ(i) = νi, 1 ≤ i ≤ n. (3)

Then we have the basic properties of the permutation of local structures.
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Lemma 2 (f, ν) and (fπ, νπ) are equivalent for any permutation π.

Theorem 1 [permutation-equivalence of local structures]

If (f, ν) and (f ′, ν′) are two reduced local structures which are equivalent, then there is a permutation π
such that (fπ, νπ) = (f ′, ν′).

2.3 Some technical notes

(1) The local function is expressed by a polynomial in n variables f(xn) = f(x1, ..., xn) over finite field

GF (q) and the set of such polynomials will be denoted Pn,q, n ≥ 1, q ≥ 2. Pn,q is a polynomial ring

over GF (q) mod (xq
1 − x1) · · · (xq

n − xn). Obviously |Pn,q| = qqn

. For small n and q, f is written as

follows.

• If f ∈ P3,q ,

f(x1, x2, x3) = u0 + u1x1 + u2x2 + · · ·+ uix
h
1x

j
2x

k
3 + · · ·

+ uq3−2x
q−1
1 xq−1

2 xq−2
3 + uq3−1x

q−1
1 xq−1

2 xq−1
3 ,

where ui ∈ GF (q), 0 ≤ i ≤ q3 − 1. (4)

• The local function of an ECA is called the elementary local function denoted ELF, which is gener-

ally expressed by a polynomial f(x1, x2, x3) over GF (2) as shown below.

f(x1, x2, x3) = u0 + u1x1 + u2x2 + u3x3

+ u4x1x2 + u5x1x3 + u6x2x3 + u7x1x2x3,

where ui ∈ GF (2) = {0, 1}, 0 ≤ i ≤ 7. (5)

Note that for f ∈ P3,2, the polynomial expression is equivalently transformed to the Boolean

expression by a+ b + ab (polynomial) = a ∨ b (Boolean), ab (polynomial) = a ∧ b (Boolean)
and a+1 (polynomial) = a (Boolean). Conjugation f ′ = ϕ−1

1 fϕ1 = f(x1+1, x2+1, x3+1)+1

• In the sequel, every ELF is numbered by a so called Wolfram number such as f110 = x1x2x3 +
x2x3 + x2 + x3. The Java program catest106d made by C.Lode (3) contains a useful tool for

conversion between the Boolean, the polynomial and the Wolfram number.

(2) Permutations of 3 objects are usually expressed by a symmetric group S3 = {πi, 0 ≤ i ≤ 5} as is

shown below.

π0 = 1 =

(
1 2 3
1 2 3

)
, π1 = (23) =

(
1 2 3
1 3 2

)
, π2 = (12) =

(
1 2 3
2 1 3

)
,

π3 = (123) =

(
1 2 3
2 3 1

)
, π4 = (132) =

(
1 2 3
3 1 2

)
, π5 = (13) =

(
1 2 3
3 2 1

)

Note that S3 is not commutative: π2π1 = (12)(23) = (123) = π3 but π1π2 = (23)(12) = (132) = π4.

The neighborhood (−1, 0, 1) of ECA is called the elementary neighborhood (ENB for short). Then

ENBπ1 = (−1, 1, 0), ENBπ2 = (0,−1, 1) and so on.
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3 (n, q)-permutation of local functions

We define two kinds of permutations called n-permutation and q-permutation of the local function and

then unify them as (n,q)-permutation of f .

1. Definition 4 [n-permutation of f ] The permutation of f defined in Definition 3 is essentially re-

lated to a permutation of the neighborhood and called hereafter the n-permutation of f .

fπ(x1, ..., xn) = f(xπ(1), ..., xπ(n))

Example 1 The n-permutations of f110 = x1x2x3 + x2x3 + x2 + x3 are

fπ0
110 = fπ1

110 = x1x2x3 + x2x3 + x2 + x3.

fπ2
110 = fπ4

110 = x1x2x3 + x1x3 + x1 + x3 = f122.

fπ3
110 = fπ5

110 = x1x2x3 + x1x2 + x1 + x2 = f124.

2. Definition 5 [q-permutation of f ] For an argument x of f which takes a value from Q, define a

permutation ϕ ∈ Sq as a bijection xϕ : Q → Q. Then consider a list of permutations ϕ(n) =
(ϕ1, ..., ϕn) where ϕi ∈ Sq, 1 ≤ i ≤ n or ϕ(n) ∈ Snq = Sq × · · · × Sq (direct product of n copies

of Sq) . Now we define the q-permutation of f by

fϕ(n)(xn) = f(xϕ1

1 , ..., xϕn
n ). (6)

Example 2 For the binary case Q = {0, 1} the permutations ϕ(n) is expressed by a binary word

ϕ(a1 · · · an) which operates on xn such that xai

i = xi if ai = 0 and xai

i = xi+1 if ai = 1 (Boolean

negation). For example f110ϕ(100) = (x1+1)x2x3+x2x3+x2+x3 = x1x2x3+x2+x3 = f230,

f110ϕ(110) = f185 and so on. In general for a prime number of states Q = {0, 1, ..., p − 1} =
GF (p), the permutation of Q is expressed by an addition modulo p such that x+ a, a ∈ Q.

3. Definition 6 [(n, q)-permutation of f ] Combining n-permutation and q-permutation with an ad-

ditional permutation ψ : Q→ Q of the function value, we finally define a unified permutation of f
called (n, q)-permutation of f which is expressed by a 3-tuple of permutations (π, ψ, ϕ(n)).

(π, ψ, ϕ(n))f(xn) = ψfπϕ(n)(xn) = ψf(xϕ1

π(1), ..., x
ϕn

π(n)). (7)

Example 3

(π2, (1, 2), ϕ(100))f110 = f110(x
1
2, x

0
1, x

0
3) + 1

= (x2 + 1)x1x3 + x1x3 + x1 + x3 + 1

= x1x2x3 + x1 + x3 + 1

= f37.

All (n, q)-permutations of f110 are given in Example 5.
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4 Generalized automorphism of CA

In this section, using the (n, q)-permutation of f , we define a generalized automorphism called g-

automorphism of CA and prove that the set of the g-automorphisms constitutes a group under a rule

of the semi-direct product.

Definition 7 For two CA A = (f, ν) and A′ = (f ′, ν′), A is called g-automorphic with A′ denoted

A ∼=g A
′, if and only if there is an (n, q)-permutation (π, ψ, ϕ(n)) such that the following equation holds.

(f ′, ν′) = (ψfπϕ(n), νπ). (8)

Remarks 1 If for any ϕ ∈ Sq, ϕi = ϕ, 1 ≤ i ≤ n, then by taking ψ = ϕ−1, g-automorphism becomes

the original automorphism (5; 6).

We show here that the set of the 3-tuples of permutations

Gn,q = {(π, ψ, ϕ(n)) | π ∈ Sn, ψ ∈ Sq, ϕ(n) ∈ Sn
q }

is a group. The order of Gn,q is n!qn+1.

Theorem 2 Let g = (π, ψ, ϕ(n)) ∈ Gn,q and g′ = (π′, ψ′, ϕ′(n)) ∈ Gn,q . Then Gn,q is a group under

the rule of semi-direct product;

g′g = (π′, ψ′, ϕ′(n))(π, ψ, ϕ(n)) = (π′π, ψ′ψ,ϕ′(n)πϕ(n)), (9)

where ϕ′(n)πϕ(n) = (ϕ′
π(1)ϕ1, ..., ϕ

′
π(n)ϕn) is the componentwise group operation of the direct product

Sn
q .

Proof: The proof is done in the same way as the proof given by M. Harrison for Boolean functions, see

page 822 of (2). He utilizes Theorem 6.5.1, page 88, Section 6.5 of the text book by M. Hall (1), where

the semi-direct product K ⋊ϕ H of K by H is defined by the rule

[h1, k1] · [h2, k2] = [h1h2, k
h2
1 k2], (10)

where h1, h2 ∈ H, k1, k2 ∈ K and the automorphism ϕ2 of K is defined by for any h ∈ H, k ⇋

kh for all k ∈ K. The product rule (10) is shown well defined: (1) associative, (2) the identity is [1,1]

and (3) a left inverse [h, k]−1 of [h, k] is [h−1, (k−1)h−1

].

At applying this standard rule of the semi-direct product to the 3-tuples in Equation (9), first consider

the semi-direct product Sn ⋊ϕ S
n
q and then combine ψ ∈ Sq as a direct product. 2

The following example will help understanding the semi-direct product of Gn,q .

Example 4 Suppose that two group elements g1 = (π1, ψ0, ϕ(100)) and g2 = (π2, ψ0, ϕ(001)) in G3,2

act3 on f110 ∈ P3,2 in this order where ψ0 = 1. That is

g1 ◦ f110 = x1x2x3 + x2 + x3 = f230

g2 ◦ (g1 ◦ f110) = g2 ◦ f230 = x1x2x3 + x1x2 + x1 + x3 + 1 = f229.

2 Note that this symbol ϕ is independent from our permutation ϕ.
3 The symbol of group action ◦ is usually omitted like group operation.
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On the other hand, by applying the rule of the semi-direct product (9), we see

g2g1 = (π2, ψ0, ϕ(001))(π1, ψ0, ϕ(100))

= (π2π1, ψ0, ϕ(001)π1ϕ(100))

= (π2π1, ψ0, ϕ(010)ϕ(100))

= (π3, ψ0, ϕ(110))

= g3

But

g3 ◦ f110 = x1x2x3 + x1x2 + x1 + x3 + 1 = f229.

Lemma 3 Any g-automorphic CA are equivalent (have the same global function) up to permutation.

Proof: It is obvious from Equation (8). Permute the local function f with the inverses of ϕ(n) and ψ. 2

Example 5 [g-automorphism class of f110] As a typical example of g-automorphism classification, we

consider f110 again. Table 1 below lists up the (n, q)-permutations of f110 only for the case of ψ0 = 1.

The permutation ψ1f
πϕ where ψ1 = (12) is obtained by adding 1 to the polynomial of each entry.

For example for ψ0f
π2ϕ(010) = f167 = x1x2x3 + x1x3 + x2x3 + x1 + 1, we have

ψ1f
π2ϕ(010) = x1x2x3 + x1x3 + x2x3 + x1 = f88.

Tab. 1: g-automorphism class of f110

ψ,ϕ\π π0 π1 π2 π3 π4 π5

ψ0fϕ(000) 110 110 122 122 124 124
ψ0fϕ(100) 230 230 218 218 188 188
ψ0fϕ(010) 155 157 167 181 199 211
ψ0fϕ(001) 157 155 181 167 211 199
ψ0fϕ(110) 185 217 173 229 203 227
ψ0fϕ(101) 217 185 229 173 203 203
ψ0fϕ(011) 103 103 91 91 103 61
ψ0fϕ(111) 118 118 94 94 62 62

For f 6= f ′ ∈ P3,2, it is seen that ψ1f 6= f and ψ1f 6= ψ1f
′. Since Table 1 contains 24 different

functions among the 3!23 = 48 entries, it is seen that the number of the functions that are g-automorphic

with f110 is 24× 2 = 48. Then by Lemma 3, we see

Lemma 4 There are 48 local functions which are computation universal up to permutation.

This is compared with 6 functions which are automorphic with f110 (5; 6).
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5 Generalized automorphism classification of CA

g-automorphism ∼=g is an equivalence relation in Pn,q and naturally induces a generalized classification

of CA called g-automorphism classification. Every local function in a class has the same global property

up to permutation by Lemma 3.

5.1 g-automorphism classification of ELF

The classification of 256 ELFs into 11 g-automorphism classes (denoted GN class) is shown in Table 2,

where every g-automophism classes a union of NW classes. The NW classification table will be found in

H. Nishio (2009) (5). 6 functions in GN6** are reversible and 32 functions in GN9*, GN10* and GN11*

are surjective but not injective. The rests are not surjective nor injective. GN8 consists of 48 universal

functions.

Tab. 2: g-automorphism classification of 2-state 3-neighbor CA

GN class size NW classes

GN1 2 NW1
GN2 44 NW2 ∪NW6 ∪NW10 ∪NW22 ∪NW38 ∪NW43
GN3 22 NW3 ∪NW7 ∪NW11 ∪NW29 ∪NW34
GN4 24 NW4 ∪NW9 ∪NW37
GN5 24 NW5 ∪NW8 ∪NW20 ∪NW35
GN6 ∗ ∗ 6 NW12 ∗ ∗ ∪NW44 ∗ ∗(reversible)
GN7 54 NW13 ∪NW14 ∪NW15 ∪NW18 ∪NW21 ∪NW23 ∪NW26

∪NW33 ∪NW36 ∪NW39 ∪NW45 ∪NW46
GN8 48 NW16 ∪NW17 ∪NW24 ∪NW28 ∪NW32 ∪NW41 (universal)
GN9∗ 24 NW19 ∗ ∪NW25 ∗ ∪NW31 ∗ ∪NW42∗
GN10∗ 6 NW27∗
GN11∗ 2 NW30 ∗ ∪NW40∗
total 256 46 NW classes

5.2 Counting problem

From the group theory point of view, g-automorphism classification is considered as a group action of

Gn,q on Pn,q and, for instance, the number of g-automorphism classes will be computed by use of the

Pólya’s counting theory (8) as D. Slepian and M. Harrison did. Computing the cycle index of the permuta-

tion group Gn,q which acts on Pn,q seems a new problem. It will certainly reflect the symmetric structure

of the polynomials over finite field. We have, however, not obtained it yet.

6 Concluding remarks and acknowledgments

We have generalized the automorphism (classification) of CA by considering two kinds of permutations

of the local structures; n-permutation of the neighborhood and q-permutation of the cell states. For ex-

plaining the idea, we inserted several examples using rule f110 and gave the table of g-automorphisms
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of f110. As a byproduct we see that 48 local rules are universal up to permutation. We also gave the

g-automorphism classification of 256 ELF into 11 g-automorphism classes. The counting problem of the

number of the g-automorphism classes has been left for future research.

The author thanks Thomas Worsch from the University of Karlsruhe for establishing Theorem 1 and

his student Clemens Lode for his Java program catest106d. He also thanks Mitsuhiko Fujio from the

Kyushu University of Technology and Fumihiro Ushitaki from the Kyoto Sangyo University for having

interest in this work from the point of view of the action of permutation groups.
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Dynamical Properties of Rule 56 Elementary
Cellular Automaton of Wolfram Class II

Fumio Ohi

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan, E-mail: ohi.fumio@nitech.ac.jp

Rule 56 elementary cellular automaton belongs to Wolfram class II and shows us simple right shift space-time patterns
for randomly given initial configurations by computer simulation. But precisely examining the dynamics of rule 56,
we have unexpected patterns. In this paper we examine the dynamical properties of the rule in detail and shows that
the rule has three chaos dynamical sub-systems, two of whichare subshifts of finite type and generate right or left
shift patterns, but space-time patterns generated by otherone are neither right nor left shift patterns. All of these three
dynamical systems are Devaney chaos.

Keywords: rule 56, elementary cellular automata, Devaney chaos

1 Introduction
Wolfram’s classification of cellular automata based on an extensive computer simulation is well known
and the space-time patterns generated by members of the class II are simple and it is said that there
are different possible final states, but they consist of a certain set of simple configurations that either
remain the same forever or repeat every few time steps. See Wolfram [6]. Rule 56 elementary cellular
automaton(ECA) is a member of the class II, and it is observedby computer simulation that the rule
generates right sift patterns for randomly given initial configurations.

In this paper we examine the dynamical properties of rule 56 in detail and show that the global transition
function of the rule has three chaos dynamical sub-systems,two of which are subshifts of finite type and
generate right or left shift patterns, but space-time patterns generated by other one are neither right nor
left shift patterns. In the process of the examination, it isshown that there is a configuration of which
time development varies every time step and does not settle down. These three dynamical sub-systems
are Devaney chaos.

An ECA is defined to be a tuple({0, 1}, g), whereg is a mapping from{0, 1}3 to {0, 1} and is called a
local transition function. An ECA is determined byg and is simply called an ECAg. There exist28 = 256

ECA’s and each of them has the rule number defined by
∑
a,b,c g(a, b, c)2

a22+b2+c. We denote the local
transition function having rule numberr asgr.

An ECA g defines a mappingg fromA ≡ {0, 1}Z toA, which is called the global transition function
of the ECA, as

x = (· · · , x−1, x0, x1, · · · ) ∈ A, (g(x))i = g(xi−1, xi, xi+1), i ∈ Z.
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We usually use the bold face of the letter denoting the globaltransition function for the corresponding
local transition function. An element ofA is called a configuration.

The left and right shift transformations are written asσL : A → A andσR : A → A, respectively.
Defining a metricd onA asd(x,y) =

∑∞
i=−∞

|xi−yi|
2|i| for x, y ∈ A,we have a topological dynamical

system(A, g), which defines an orbit of an arbitrarily given initial configurationx ∈ A asg0(x) =
x, gt+1(x) = g(gt(x)), t ≥ 0. A topological dynamical system(S, g) is a sub-system of(A, g) if
S ⊆ A andg(S) ⊆ S. The metric onS is the restriction of the metricd. A topological dynamical system
is called Devaney chaos when it has a dense orbit and the classof all periodic configurations is dense in
S. See G.Cattaneo, et al. [1].

The local transition function of rule 56 is given along with that of rule 40 of Wolfram class I in the
following table. In F. Ohi [3] it is shown that(S0(1),1(1,2), g40) is a right-shift dynamical system and
limt→∞ gt(x) = 0 for x ∈ A\S0(1),1(1,2). (The definitions of terminologies are given in Section 1.1.)
From the table we may think that these two rules are close and the dynamical structure of rule 56 is almost
same as rule 40.

In this paper we show that(S0(1),1(1,2), g56) = (S0(1),1(1,2), g40) = (S0(1),1(1,2), σL) and(S1(1), g56) =
(S1(1), σR) are subshifts of finite type(SFT’s). These two SFT’s are Devaney chaos and topologically mix-
ing, since the transition matrix of each SFT is irreducible and aperiodic. Symbolic dynamical approach to
rule 56 is given in the section 2.1.

(a, b, c) (1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)

g40(a, b, c) 0 0 1 0 1 0 0 0
g56(a, b, c) 0 0 1 1 1 0 0 0

Furthermore Rule 56 has another chaotic dynamical sub-system(Y, g56), whereY is a set of configu-
rations of special type defined in section 1.1 and a subset ofS1(1,2)\

(
S0(1),1(1,2) ∪ S1(1)

)
. Sinceg56 is

neither right nor left shift onY, we have some difficulties for examination of the dynamical properties
from the symbolic point of view as SFT’s or sofic systems. Our examination is straightforward.

The space-time pattern of a configuration ofY shows us a kind of confliction between left and right
groups of which front line moves like a wave and neither remains the same configuration forever nor
repeats some specific configurations. This movement has not been found out by computer simulation with
randomly given initial configurations and is not be given by rule 40.

The correspondence
(
100
1

)
of rule 56, which is only one different point from

(
100
0

)
of rule 40, makes the

dynamical properties of rule 56 richer than rule 40. This correspondence emerges intrinsic interactions
between0 and01, between0 and011 and between01 and011, which make the wave-like motions for
configurations ofY. We explain the interactions in Section2.2. In Section 3, Devaney chaos property of
(Y,g56) is proved by practically constructing transitive and periodic configurations and in the process of
the construction the interactions are consistently used.

1.1 Notations
For our straightforward examination, we need the followingnotations.

(1) Forαi ∈ {0, 1}ni, βi ∈ {0, 1}mi, ni ≥ 1, mi ≥ 1, i ∈ Z, we define

(αi,βi)
+∞
i=−∞ =(· · · , α−1

1 , · · · , α−1
n−1

, β−1
1 , · · · , β−1

m−1
,

α0
1, · · · , α0

n0
, β0

1 , · · · , β0
m0
, α1

1, · · · , α1
n1
, β1

1 , · · · , β1
m1
, · · · ),
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whereαi = (αi1, · · · , αini
), βi = (βi1, · · · , βimi

), i ∈ Z.
For a pair(α,β), α ∈ {0, 1}n, β ∈ {0, 1}m

(α,β)k = (α,β, · · · ,α,β︸ ︷︷ ︸
k pairs

), k ∈ N ∪ {0},

which means empty, whenk = 0.
(2) 0k = (0, · · · , 0︸ ︷︷ ︸

k

), 1k = (1, · · · , 1︸ ︷︷ ︸
k

), k ∈ N ∪ {0}.

(3) We intensively use the following terminology.

S0(m1,··· ,mp),1(n1,··· ,nq) = {(0ij ,1kj
)∞j=−∞ | ij = m1 or · · · ormp, kj = n1 or · · · or nq} ,

S1(n1,··· ,nq) = {(0ij ,1kj
)∞j=−∞ | ij ∈ N, kj = n1 or · · ·or nq} .

(4)A = {0, 1}Z and X = S1(0,1,2)\
(
S0(1),1(1,2) ∪ S1(1)

)
. The subsetY ⊆ X is defined to be the

set of configurations of the following type,

· · · (01)ki
0li · · · (01)k10l1011(01)n1011(01)n2 · · · 011(01)nl1

· · · ,

whereni ≥ 0, li ≥ 1, ki ≥ 1. It is easy to see that

S0(1),1(1,2) ∩ S1(1) = {(· · · , 0, 1, 0, 1,
0
⌣
0 , 1, 0, 1, 0, · · · ), (· · · , 0, 1, 0, 1, 0,

0
⌣
1 , 0, 1, 0, · · · )}

2 Basic Properties of Rule 56
2.1 Dynamics of g56 on S0(1),1(1,2) and S1(1) - Symbolic dynamical approach -
We follow B.P.Kitchens [2] for the terminologies of symbolic dynamics.

Theorem 2.1. g56(A) ⊆ S1(0,1,2), g56

(
S1(1,2)

)
⊆ S1(1,2), g56({0}, {1}) = {0}

Proof: Noticing
(

1, 1, 1

0

)
,

(
1, 1, 0

0

)
,

(
0, 1, 1

1

)
,

(
0, 1, 0

0

)
,

(
1, 0, 1

1

)

in the table of the local transition function of rule 56, we have the one step transition

← three or more1’s→
· · · 0 1 1 · · · 1 1 1 0 · · ·
· · · ∗1 1 0 · · · 0 0 0 ∗ · · ·

For∗1 to be1, the above transition should be

← three or more1’s→
· · · 1 0 1 1 · · · 1 1 1 0 · · ·
· · · ∗2 1 1 0 · · · 0 0 0 ∗ · · ·
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and in this case∗2 is necessarily0 from the local transition function of rule 56. Then we have two
possibilities

← three or more1’s→ ← three or more1’s→
· · · 0 1 1 · · · 1 1 1 0 · · · · · · ∗ 0 1 1 · · · 1 1 1 0 · · ·
· · · 0 1 0 · · · 0 0 0 ∗ · · · · · · 0 1 1 0 · · · 0 0 0 ∗ · · ·

which means that a1-block of three or more length is reduced to the one of one or two length in one time
step, where∗ = 0 or 1 according tog56(100) = 0 or g56(101) = 1, respectively.

For a1-block of three or more length to emerge in time-developmentwe need(a, b, c, d, e) such that
g56(a, b, c, d, e) = 111, which is equivalent tog56(a, b, c) = 1, g56(b, c, d) = 1, g56(c, d, e) = 1, but we
cannot construct such(a, b, c, d, e) from the table of the local transition function of rule 56.

From Theorem 2.1,g56(x) ∈ S1(1,2) for everyx ∈ A, then the dynamical system(S1(1,2), g56) is
essentially(A, g56).

It is easily shown from the local transition function of rule56 that(S0(1),1(1,2), g56) = (S0(1),1(1,2), σL).
S0(1),1(1,2) is determined by a set of wordsW = {(010), (011), (101), (110)}, i.e.,

S0(1),1(1,2) = {x ∈ A | ∀i ∈ Z, (xi, xi+1, xi+2) ∈ W}

Letting a transition matrixA be

A =




(010) (011) (101) (110)

(010) 0 0 1 0
(011) 0 0 0 1
(101) 1 1 0 0
(110) 0 0 1 0


,

the left-subshift of finite type(ΣA, σL) determined by the transition matrix is conjugate to(S0(1),1(1,2), g56).
Noticing that the transition matrixA is irreducible and aperiodic, we have the following theorem.

Theorem. 2.2.
(
S0(1),1(1,2), g56

)
=
(
S0(1),1(1,2), σL

)
and

(
S1(1), g56

)
=
(
S1(1), σR

)
hold, and both

of them are Devaney chaos and topologically mixing.

The proposition about(S1(1), g56) is also easy by noticing thatS1(1) is determined a set of words
V = {(00), (01), (10)} and the corresponding transition matrix is given by





(00) (01) (10)

(00) 1 1 0
(01) 0 0 1
(10) 1 1 0



,

which is also irreducible and aperiodic.
The dynamical system(Y,g56), which is examined in the sequel of this paper, is neither right nor

left subshift of(A,g56), and then not a sofic system even when the attractorsS1(1) andS0(1),1(1,2) are
included. We practically construct periodic and transitive configurations ofY to prove the chaotic property
of the dynamical system.
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2.2 Basic dynamical properties of configurations of X
In the sequel we write01 to denote a block01 not a part of the block011. NB-0 (non-belonging0) denotes
a0 which does not a member of01 and011.

Figures 1 and 2 show us key dynamical properties of rule 56. Black and white circle in the figures mean
1 and 0 state, respectively.

From Fig. 1, we see that0n(011)m changes to0n−101(011)m−1 and then to0n−1(011)m−1. This
two-step transition tells us that NB-0 changes011 to 01 and is erased, and NB-0 erases01. Fig. 2 shows
us that(01)n(011)m changes to(01)n−1(011)m in one time step, which shows us that01 is erased by the
right 011. These three interactions between NB-0 and011, NB-0 and01, 01 and011 are crucial for the
time development of configurations ofY.

By these interactions, we have an example of time development shown in Fig.3.

x y

-� -�
0n (011)m

-� -�

0n−1 (011)m−1

Fig. 1: Interactions between NB-0 and011, and between NB-0 and01. xy = 10 or 01 or 00.

-� -�
(01)n (011)m

x y

-� -�

(01)n−1 (011)m

Fig. 2: Interaction between01 and011. xy = 10 or 01 or 00.

From Fig.3 we know that a block011 basically moves leftward and changes to01, when coming upon
a NB-0, and this NB-0 is erased. A block01 is erased by a left-hand NB-0 and this NB-0 is not erased.

Utilizing the interactive properties, we can easily construct a periodic configuration ofY. We examine
the time-development of the following configuration.

the left group → ← the right group
the second block the first block the first block the second block

a ≡ · · · (01)∑k−1
i=1 ni+k

0k (01)∑k−1
i=1 ni+k

0k (011(01)ni
)k−1
i=1 011 (011(01)ni

)k−1
i=1 011 · · ·
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-� -� -� -�
0k (01)n (01)m (01)l↓ 1 step

-� -� -� -�
0k−1 (01)n+1 (01)m (01)l

-� -�
n+ 1 sites n+ 1 sites

↓ n+ 1 steps

-� -� -�
0k−1 (01)m (01)l↓ 1 step

-� -� -�
0k−2 (01)m+1 (01)l

-� -�
m+ 1 sites m+ 1 sites

↓ m+ 1 steps

-�
0k−2

-�
(01)l

Fig. 3: Typical dynamical properties of the blocks011, 01 and NB-0, and their interactions. A block011 moves
leftward byn+ 1 sites, when there existn+ 1 NB-0’s on the left hand, and a NB-0 moves rightward bym+ 1 sites,
when there existm + 1 01’s on the right hand. And a block011 moves leftward bym + 1 sites, when there exist
m+ 1 01’s on the left hand.

Referring to Fig.4, we can observe;0k of the first block of the left group erases the first block of the
right group and the front line moves to the right by

∑k−1
i=1 ni + k sites in

∑k−1
i=1 ni + 2k time steps. Then

the second(011(01)ni
)
k−1
i=1 011 moves to the left by

∑k−1
i=1 ni + k sites, erasing the block(01)∑k−1

i=1 ni+k

and we have the configurationa having the period2
∑k−1
i=1 ni + 3k.

Setting the values of the parametersk, ni(i ≥ 1) of the configurationa appropriately, we have the
following theorem about the periodic properties of rule 56.

Theorem.2.3. g56 has a period-p configuration inS1(1,2)\
(
S0(1),1(1,2) ∪ S1(1)

)
, where

p = 3, 6, 8, 9, 10, 11, 12, 13, · · ·
Proof: For any even integerp ≥ 8, p = 2m = 3 · 2+2 · (m− 3), m ≥ 4 holds. Settingk = 2, n1 =

m− 3, we have a configurationa with periodp. For any odd integerp ≥ 9, p = 3 · 3 + (p− 9), p− 9 is
an even number and can be written as2 · q, q ≥ 0. Thenp is easily expressed asp = 2(n1 + n2) + 3k by
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setting the parametersn1 = q, n2 = 0 andk = 3.

-�
the left group the right group

-�
the second block

-�
the first block

-�
the first block

-�
the second block

(01)∑k−1
i=1 ni+k

0k (01)∑k−1
i=1 ni+k

0k (011(01)ni
)k−1
i=1 011 (011(01)ni

)k−1
i=1 011

-

The front line moves rightward by
∑k−1

i=1 ni + k sites in
∑k−1
i=1 ni + 2k steps.

(01)∑k−1
i=1 ni+k

0k (01)∑k−1
i=1 ni+k

(011(01)ni
)k−1
i=1 011

�

The front line moves leftward by
∑k−1
i=1 ni + k sites in

∑k−1
i=1 ni + k steps.

(01)∑k−1
i=1 ni+k

0k (011(01)ni
)k−1
i=1 011

-�
the second block

-�
the second block

-
the left group

�
the right group

Fig. 4: General form of periodic configuration and its time development.

The following examples are periodic configurations having period 2, 5 and 7, respectively.

· · · 01010101 · · · ,
· · · 010110101101011 · · · ,
· · · 010101101010110101011 · · · ,

which are members ofS0(1),1(1,2) and not ofS1(1,2)\
(
S0(1),1(1,2) ∪ S1(1)

)
.

It has been shown that the dynamical system(A, g56) has every periodic configuration except for period
4. It remains to be an open problem to make sure whether there exists a period-4 configuration.

3 Dynamics on X
The one-stage time development of a configuration ofY

· · · (01)ki
0li · · · (01)k10l1011(01)n1011(01)n2 · · · 011(01)nl1

· · · ,

whereni ≥ 0, li ≥ 1, ki ≥ 1, is shown in Fig.5 is basic for the examination of the chaoticproperty of
the rule 56 onY.
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the front line between the left and the right groups
↓

· · · (01)k10l1 011(01)n1 · · ·
the block011 erases the rightmost NB-0 of 0l1

and changes to01· · · (01)k10l1−1 01(01)n1 · · ·

-
n1 + 1 sites

0l1−1, the block of NB-0, erases01(01)n1 and

the front line moves rightward byn1 + 1 sites

(01)k10l1−1 011(01)n2

(01)k10l1−2 01(01)n2

-
n2 + 1 sites

(01)k10l1−2 011(01)n3

-
n1 + 1 + n2 + 1 + · · ·+ nl1−1 + 1 + 1 =

∑l1−1
i=1 ni + l1 sites

(01)k1 (01)nl1
011(01)nl1+1

�
k1 + nl1 sites

-
∑l1

i=1 ni + l1 − k1 sites

· · · (01)k20l2 011(01)nl1+1
· · ·

Fig. 5: One-stage time development of a configuration ofY. The block (01)k10l1 is erased by
011(01)n1 · · · 011(01)nl1

, and the front line moves rightward by
∑l1

i=1
ni + l1 − k1 sites. When this quantity

is negative, the front line consequently arrives at a left side of the original position at time0.

The moving distance of the front line aftern stages is

An ≡
l1+···+ln∑

i=1

(ni + 1)−
n∑

i=1

ki,

and thus when the co-ordinate number of the right site of the front line is initially n0, the co-ordinate
number of the cell isn0+An after then−th stage . It is easily imagined that the trajectory of{n0+An}n≥0

may form a wave like form, depending on values of the parameterski, li, ni, i ≥ 1. We have the following
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Theorem.

Theorem.3.1. (Y, g56) is Devaney chaos.
Proof: The set of periodic configurations is dense inY.
For a configurationx ∈ Y, we assume the pattern as the following. We take a finite sub-configuration

around the origin of the configuration as shown in Fig.6, not changing the co-ordinate number0 site.

the front line
↓

x = the part constructed by(01)∗0∗ the part constructed by011(01)∗

(01)kp
0lp · · · · · · (01)k10l1 011(01)n1 · · · 011(01)nq

Fig. 6: A finite sub-configuration located around the origin of the configurationx.

The numbers of NB-0’s and011’s in the sub-configuration are
∑p
i=1 li andq, respectively.

(i) When
∑p

i=1 li ≥ q, then we add
∑p

i=1 li − q 011’s to the right side of the sub-configuration.
(ii) When

∑p
i=1 li ≤ q, then we addq −∑p

i=1 li NB-0’s to the left side of the sub-configuration.
The proof is logically same in either case, then we assume (i)without loss of generality. We treat the

following finite configuration.

(01)kp
0lp · · · · · · (01)k10l1 011(01)n1 · · · 011(01)nq

011 · · ·011

-� ∑p
i=1 li NB-0’s

-� ∑p
i=1 li 011’s

-�
q 011’s

-�∑p
i=1 li − q 011’s

(∗ ∗ ∗∗)

Fig. 7: A finite configuration with(011)∑p
i=1 li−q added to the right side of the finite configuration given in Fig.6.

For the case of this finite configuration, the moving distanceafter thep-th stage is

m ≡
l1+···+lp∑

i=1

(ni + 1)−
p∑

i=1

ki =

q∑

i=1

ni +

p∑

i=1

li −
p∑

i=1

ki,

sinceni = 0 for q + 1 ≤ i ≤ l1 + · · ·+ lp.
We addm 01’s to the left side of(∗ ∗ ∗∗) or−m 01’s to the right side of(∗ ∗ ∗∗) according tom ≥ 0 or

m < 0, respectively. Here we consider the former case, then we have the following finite configurations.
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(01)m (01)kp
0lp · · · · · · (01)k10l1 011(01)n1 · · · 011(01)nq

(011)∑p
i=1 li−q

-� -�
II I

Fig. 8: A finite configuration given by adding(01)m to the left-hand side of the finite configuration(∗ ∗ ∗∗).

We may construct a configuration ofY with placing the above finite configurations I and II as

a ≡ · · · , II, II, · · · , II, I, · · · , I, I, · · ·

a is periodic, since the middleII andI simultaneously disappear in the time development ofa and the
trajectory ofa returns toa. Noticing the parametersp andq used for constructinga is taken arbitrarily
from x, it is shown that there exists a periodic configuration in an arbitral neighborhood ofx.

Construction of a transitive configuration is easy after theproof of the dense property of periodic con-
figurations, and then is omitted here.

4 Concluding remarks
In this paper we have examined the dynamical properties of(A, g56) and showed that

(i)
(
S0(1),1(1,2), g56

)
and(S1(1), g56) are left and right subshifts of finite type, respectively, and both

of them are topologically mixing and Devaney chaos,
(ii) Interactions between NB-0 and01, between NB-0 and011, and between01 and011 provide De-

vaney chaos property of(Y, g56) which is neither left nor right shift.
(iii) (A, g56) has every periodic configurations except period 4.
(iv) The dynamics of(A, g56) is richer than that of(A, g40) because of only one difference in the local

transition function corresponding1 or 0 to 100, respectively.
Full examination of the dynamical properties of rule 56 onS1(1,2)\

(
Y ∪ S0(1),1(1,2) ∪ S1(1)

)
remains

to be an open problem, but we conjecturelimt→∞ d
(
gt56(x), S0(1),1(1,2) ∪ S1(1)

)
= 0 for almost all

elementx of the set, that to say, the trajectory ofx is attracted toS0(1),1(1,2) ∪ S1(1).
The dynamical properties observed in this paper have not been observed by computer simulation for

randomly given initial configurations. We could imagine that there remains a lot of interesting properties
of even ECA which are hardly recognized by computer simulation.
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This is a study of the one-dimensional elementary cellular automaton rule 54 in the new formalism of “flexible time”.

We derive algebraic expressions for groups of several cells and their evolution in time. With them we can describe

the behaviour of simple periodic patterns like the ether and gliders in an efficient way. We use that to look into their

behaviour in detail and find general formulas that characterise them.

Keywords: Rule 54, one-dimensional cellular automata, gliders, ether, flexible time

1 Introduction

This is a case study of one specific cellular automaton, Rule 54, with the methods developed in [3]. They

were developed to allow the study of cellular automata with the methods of theoretical mathematics and

without the need for computer simulations. While the previous paper concentrates on the development of

the theory, here the ideas are presented in a less formal way and used to work with larger structures.

Section 2 of this paper introduces the formalism in a less formal way than in [3] and shows how the

transition function of the cellular automaton can be expressed in it. The resulting formulas still describe

only the behaviour of a small number of cells at a time. Therefore in Section 3 rules for larger groups

−→
w

←−
w go ge

Figure 1: Periodic patterns under Rule 54. The diagram shows three types of gliders on an ether background. Time

goes upward. (Since Rule 54 is symmetric,←−w and −→w are viewed as variants of the same particle.)

of cells are found. We use them in Section 4 to study the behaviour of four simple periodic structures

that occur under Rule 54: the ether and three types of gliders (Figure 1). We find formulas for them and

general expressions for gliders and ethers and look into their behaviour.
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2 Local Interactions

2.1 Rule 54

“Rule 54” is the common name – following the naming convention of Stephen Wolfram [4] – of a one-

dimensional cellular automaton with two states and a three-cell neighbourhood.

At every time it consists of an infinite line of cells. The state of each cell is an element of the set

Σ = {0, 1}, and the behaviour of the automaton is given by its local transitions function

ϕ : Σ3 −→ Σ . (1)

It is applied to every three-cell subsequence of the infinite cell line, and the resulting value is the state of

the cell in the middle at the next time step. Rule 54 has

ϕ(s) =

{
1 for s ∈ {001, 100, 010, 101},
0 otherwise.

(2)

Sequences of elements of Σ – like 001 – stand here and later for elements of Σ∗ =
⋃
k≥0 Σk. Note that ϕ

is symmetric under the interchange of left and right.

2.2 Situations

The formalism of Flexible Time [3] is motivated by the idea that it is easier to find patterns in the evolution

of cellular automata if one considers structures that involve cells at different times.

These structures are here calles situations. They are a generalisation of the sequences of cell states (like

001) considered before. These sequences give the states of neighbouring cells at a certain unspecified

time. Thus the sequence 001 describes the states of three cells, possibly at the positions x = 0, 1, 2, and

tells us that the cells at x = 0 and x = 1 are in state 0 and the cell at x = 2 is in state 1. The position

information is implicit in the ordering of the symbols: When a symbol in the sequence stands for the state

of a certain cell, its right neighbour in the sequence gives the state of its right neighbour cell, and so on.

Situations are then cell sequences that extend over space and time. To write them down we need

additional symbols for a change of time. The symbols we actually use stand for a displacement in time

and also in space, because they harmonise then better with the way a cellular automaton evolves.

Under Rule 54, situations are written as sequences of the symbols 0, 1, ⊖ and ⊕. The intended inter-

pretation can most easily be described in terms of instructions to write symbols on a grid. The fields of the

grid are labelled by pairs (t, x) ∈ Z
2; x is the position of a cell and t a time in its evolution. The writing

rules are then

• At the beginning the writing position is at (0, 0).

• If the next symbol is 0 or 1, write it down and move the writing positions one step forward; if it was

(t, x) it is now (t, x+ 1).

• If the next symbol is ⊖, move the writing position from (t, x) to (t− 1, x− 1).

• If the next symbol is ⊕, move the writing position from (t, x) to (t+ 1, x− 1).
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• No overwriting: One cannot write different symbols at the same field. (This concerns expressions

like 01⊕⊖1: After writing 01⊕⊖ one is again at position (0, 1) and tries to write a 1 in a field that

contains already a 0. So 01⊕⊖1 is not a valid situation, but 01⊕⊖0 is.)

The result, in mathematical terms, is a function from a subset of Z
2 to Σ together with an element of Z

2

(the final writing position). The function, which is called πs for a situation s, describes the states of some

cells at some times, while the element of Z
2, written δ(s), will be important when parts of situations are

substituted for others. The whole situation is then the pair s = (πs, δ(s)). We will also need an empty

situation, which is written λ.

ε− = ⊖00: w− = ε−1:
e− = ε−⊖1:

ε+ = 00⊕: w+ = 1ε+: e+ = 1⊕ε+:

go = e+ε+0ε−e−: go = e+ε+0ε−e−:

Figure 2: Useful situations in Rule 54.

In Figure 2 you can see diagrams for some situations that will become useful later. Cells in the states

0 and 1 appear as and , while the initial and final writing position are marked by small triangles:

stands left of the start position, at the end position. The diagram for ge becomes less surprising if one

notices that ε−ε+ = 00⊕⊖00 has the diagram : a first case of overwriting.

I have also treated there the situations as normal algebraic expressions, like elements of a semigroup.

Product and exponentiation are defined in the usual way: ε2 is the result of writing ε twice, and so on.

However, due to the restrictions on overwriting, not all products of situations exist.

2.3 Reactions

The evolution of cellular automata is described by reactions, expressions of the form a → b with two

situations a and b. The situation b represents a “partially later” state of the cellular automaton than a, with

the states of some cells at a later time than a.

To make this notion more precise, let us consider functions of the form π : E −→ Σ. They are called

cellular processes in [3]. If a cellular process fulfills the condition

If (t, x− 1), (t, x), (t, x+ 1) ∈ E then (t+ 1, x) ∈ E
and π(t+ 1, x) = ϕ(π(t, x− 1)π(t, x)π(t, x+ 1)),

(3)

then it describes a part of the evolution of a cellular automaton under the rule ϕ.
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⊖000→ 0⊖00 000⊕ → 00⊕0
⊖001→ 1⊖01 100⊕ → 10⊕1
⊖010→ 11⊖0 010⊕ → 0⊕11
⊖011→ 00⊖1 110⊕ → 1⊕00
⊖10→ 1⊖0 01⊕ → 0⊕1
⊖11→ 0⊖1 11⊕ → 1⊕0

00 = 00⊕⊖00 ⊖00⊕ → λ
01 = 01⊕⊖01 0⊖1⊕0→ 0
10 = 10⊕⊖10 1⊖1⊕1→ 1
11 = 11⊕⊖11

Table 1: Generator reactions for Rule 54

With this notion we can define “→” as a binary relation on the set of situations: a → b is true if

δ(a) = δ(b) and for all cellular processes π that fulfill (3) we have: If π ⊇ πa then π ⊇ πb.
One can see that if xay and xby are situations and there is a reaction a → b, then xay → xby is a

reaction too. This is called the application of a→ b on xay. We can use that and describe the behaviour

of a cellular automaton by a small set of generator reactions between a small number of cells. All the

others follow from them by application on larger situations and by chaining the reactions. Table 1 shows

a set of generator reactions for Rule 54. It is derived from (2) but contains some shortcuts.

To derive Table 1 we start with the rule that

ϕ(αβγ)→ σ becomes ⊖αβγ → σ⊖βγ and αβγ⊕ → αβ⊕σ, (4)

because then σ is placed correctly one time step later than β. The first two lines of Table 1 are found this

way. Other reactions, like ⊖10 → 1⊖0, are the result of a unification: There would be both ⊖100 →
1⊖00 and⊖101→ 1⊖01, but the state of the rightmost cell has no influence on the result and is therefore

left out at both sides of the reaction. These new, shorter reactions can now be applied on the results of

some others: ⊖010 → 1⊖10, a reaction that one gets from (4), is then extended by 1⊖10 → 11⊖0 to

⊖010→ 11⊖0. With these methods the top block of Table 1 is derived.

The purpose of the equations and reactions at the bottom of Table 1 is to create and destroy ⊖ and

⊕ symbols. The destruction reactions at the right remove also cell states that cannot be used in another

reaction.(i)

Together the reactions of Table 1 define a reaction system Φ. It consists of a set of situations and the

reactions between them. We use a common convention and write s ∈ Φ if s is an element of the set of

reactions of Φ.

3 A Reaction System with Triangles

3.1 Triangles

Now we need rules for larger structures. If their behaviour is understood, we can find reaction that simulate

them in one step. At the present stage these structures will be periodic sequences of cells, and we start

with the simplest of then, the sequences in which all cells are in the same state.

(i) In [3], which uses a slightly other definition of situations, the equations would have to be written as reactions. The destruction
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→

(a) Triangle (b) Reaction 17 → 1⊕(02⊕)30(⊖02)3⊖1

Figure 3: Triangles and triangle reactions

There are only two of them, and we evolve them first for only one time step.

0k → 02⊕0k−2⊖02 k ≥ 0 (5)

1k → 1⊕0k⊖1 k ≥ 0 (6)

We can see that 0k is a persistent pattern that reappears in the next time step, while 1k is instantaneous

and exists only for one time step. Our guiding principle for a new, faster reaction system will be that

evolution should never stop when a persistent pattern is reached.

So both reactions should be continued. The result for (5) – and therefore also for (6) – depends on the

parity of k and is best expressed as

02k+ι → (02⊕)k0ι(⊖02)k k ≥ 1, ι ∈ {0, 1}, (7)

12k+ι → 1⊕(02⊕)k0ι(⊖02)k⊖1 k ≥ 1, ι ∈ {0, 1} . (8)

They are both examples of triangle reactions, that are reactions of the general form

a−x
kb+ → a+y

k
+cy

k
−b− k ≥ 0, (9)

which trace the boundaries of a space-time triangle.(ii) Figure 3 shows an example.

Since the “boundary terms” of the triangles will occur often, we will use abbreviations for them,

ε− = ⊖02, ε+ = 02⊕, e− = ⊖02⊖1, e+ = 1⊕02⊕ . (10)

The definitions for e− and e+ have been chosen with the benefit of hindsight – instead of choosing

abbreviations for ⊖1 and 1⊕ – because these terms will be important later. With them (7) and (8) become

02k+ι → εk+0ιεk− k ≥ 1, ι ∈ {0, 1}, (11)

12k+ι → e+ε
k−1
+ 0ιεk−1

− e− k ≥ 1, ι ∈ {0, 1} . (12)

3.2 Destruction of Boundary Terms

We must now extend these reactions to a full reaction system. Since (11) and (12) create the boundary

terms ε−, ε+, e− and e+, the new reactions should destroy them. To keep the number of new reactions

small, we require that the triangle reactions are always used efficiently and never applied to only a part

of a cell sequence. (A reaction like 03 → ε+ε−0 will be forbidden then.) We may express that by the

reactions, which are chosen somewhat ad hoc, are also different from the result of the result of the rules given there.
(ii) We can bring reaction (12) in that form by setting a− = 12+ι, x = 12, a+ = λ, y+ = 02⊖ y+ = ⊖02 and c = 0ι.
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States: 0, 1, ε−, ε+, e−, e+.

Situations: No subsequences ε−0, 0ε+, e−1, 1e+.

Triangles: 02k+ι → εk+0ιεk−, k ≥ 1, ι ∈ {0, 1}
12k+ι → e+ε

k−1
+ 0ιεk−1

− e−, k ≥ 1, ι ∈ {0, 1}
Boundary terms: ε−(10)k1ε+ → 12k+3 k ≥ 0

ε−(10)ke+ → 12k+1ε+ k ≥ 0
e−(01)kε+ → ε−12k+1 k ≥ 0
e−(01)k0e+ → ε−12k+1ε+ k ≥ 0

ε−ε+ → ε+ε−
e−e+ → ε+ε−

Table 2: Rule 54 in triangle form

requirement that the situations may never contain the terms ε−0, 0ε+, e−1 or 1e+: they would be the

result of such an incomplete application.

It will be enough for a working system to consider reactions that start from terms of the form b−sb+,

with b− ∈ {ε−, e−}, b+ ∈ {ε+, e+}, s ∈ Σ∗, to which no other reactions are applicable. The last require-

ment means that s must consist of cells in states 0 and 1 in alternating order: Two cells in the same state

are already the starting point of a triangle reaction. It turns out that there are only six types of reactions

that satisfy this requirement and that of the forbidden subconfigurations in the previous paragraph.

Here they are, together with reactions that start from them:

ε−(10)k1ε+ → 12k+3 k ≥ 0, (13)

ε−(10)ke+ → 12k+1ε+ k ≥ 0, (14)

e−(01)kε+ → ε−12k+1 k ≥ 0, (15)

e−(01)k0e+ → ε−12k+1ε+ k ≥ 0, (16)

ε−ε+ → ε+ε−, (17)

e−e+ → ε+ε− . (18)

The first four reactions have been chosen minimally such that the cell states of s in b−sb+ are replaced

with states that are exactly one time step later, such as in (5) and (6). The last two reactions cover the

situations with s = λ that are not special cases of the previous four reactions. The resulting reactions

system is listed in Table 2.

4 Ether and Gliders

4.1 The Ether

Now we will use the new reaction system to look at some phenomena that occur under Rule 54. The first

of them is the ether, a robust background pattern. It consists at alternating time steps of either the cell

sequence 013 or 103 infinitely repeated. (To verify the reactions in this section Table 3 may be helpful.)
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ε−e+ → 1e+ ε−e+ → w+

e−ε+ → e−1 e−ε+ → w−
ε−1ε+ → e+0e− w−e+ → e+0e−

e−w+ → e+0e−
e−0e+ → e+ 0e−
ε−10e+ → 13 w−0e+ → 13

e−10ε+ → 13 e−0w+ → 13

ε−101ε+ → 15 w−w+ → 15

Table 3: Simple Reactions that are useful in Section 4. Most of them are special cases of Table 2 or derived from

them.

→

e−0e+0→ e+0e−0

Figure 4: How the ether reaction fits into the development if the ether. The cells that belong to the reaction are

marked.

In the reaction system a formula for the ether can be derived from the 013 generation: We have

013 → 0e+0e− (19)

and (see Figure 4)

0e−0e+ → 0e+0e−, (20)

therefore

(013)k → (0e+)k(0e−)k k ≥ 0, (21)

a very simple triangle reaction. This is in contrast to the other possible starting point, 103, where one gets

(103)k → 1ε+(0e+)k(0e−)kε−1 k ≥ 1, (22)

a more complicated triangle reaction, in which also the components of the other ether phase, e− and e+,

reappear. The reaction system selects thus one of the phases of the ether as more natural than the other,

which is a helpful simplification.

If one now looks back at (17) and compares it with (20), one sees that they follow a common pattern.

Both are background reactions of the form

b−b+ → b+b− . (23)

This reaction can easily be iterated to bk−b
ℓ
+ → bℓ+b

k
−, which describes the evolution of a large piece of a

periodic background pattern.

Their involvement in the ether is the reason why e− and e+ got their names in (10).
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4.2 Gliders

There are three kinds of long-lived structures that are described in [1] in some detail. There they are called

particles, now usually gliders. There is one moving particle w, which appears as←−w and −→w , depending on

the direction in which it moves, and the “odd” and “even gutter” g0 and ge, which are immobile.

The w particle “may be generated by three 0’s followed by three 1’s or the converse” [1, p. 870]. We

try this now and get

0313 → ε+0ε−e+0e− → ε+0 1ε+ 0e−. (24)

In it we can recognise 0e− as a part of the ether and ε+0 as a part of the ether in the wrong phase (as in

(20) and (22)), so the rest must be the w particle. Therefore we define

w− = ε−1, w+ = 1ε+. (25)

These definitions must be verified: We must show that w actually moves through the ether. But we have

w−0e+0 = ε−10e+0→ 13ε+0→ e+0e−ε+0→ e+0ε−10 = e+0w−0, (26)

which shows how w− is destroyed and reappears at the right of its previous position (Figure 5). w− is

therefore stable and corresponds to the right-moving glider −→w of [1].

→

w−0e+0→ e+0w−0

Figure 5: A −→w glider moving on an ether background. The w− part is emphasised.

The two immobile gliders, ge and go, are in fact small triangles, as can be seen from the pictures in [1].

It turns out that the right definitions for them are

go = e+ε+0ε−e−, ge = e+ε
2
+ε

2
−e−. (27)

The verification that they actually behave like gliders is straightforward (Figure 6),

e−0go0e+0 = e−0e+ε+0ε−e−0e+0

→ e+0 e−ε+0ε−e+0 e−0

→ e+0 w−0w+0 e−0

→ e+0 150 e−0

→ e+0 e+ε+0ε−e−0 e−0 = e+0go0e−0, (28)

e−0ge0e+0 = e−0e+ε
2
+ε

2
−e−0e+0

→ e+0 e−ε
2
+ε

2
−e+0 e−0

→ e+0 w−ε+ε−w+0 e−0

→ e+0 160 e−0

→ e+0 e+ε
2
+ε

2
−e−0 e−0 = e+0 ge0 e−0, (29)
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but the appearance of the w gliders in the process is a bit surprising. It suggests the interpretation that

the gliders go and ge decay into two w gliders, which then collide and create its next incarnation. With

flexible time the gliders suddenly have an internal structure.

→ →

e−0go0e+0→ e+0w−0w+0e−0→ e+0go0e−0.

→ →

e−0ge0e+0→ e+0w−ε−ε+w+0e−0→ e+0ge0e−0.

Figure 6: Evolution of the go and ge gliders, together with the intermediate states where the w gliders appear.

The three glider reactions (26), (28) and (29) have again a common structure, which can be described

by the glider condition

bk−gb
ℓ
+ → bℓ+gb

k
−. (30)

Here b− and b+ form a background pattern as in (23) and g is the glider. The number (ℓ− k)/(ℓ+ k) is a

measure for the speed of the glider.

We have now already touched the creation of other gliders by the w gliders. Of the two syntheses found

in the behaviour of the g particles, the first one,

w−0w+ → go, (31)

is more important because here the w gliders are at the right distance to have been part of the ether before.

Such a glider synthesis has been already noticed in [1], but here it occurs as a corollary of a previous

analysis.
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Delays in signal transmission are found in many complex systems in nature, e.g. as a consequence of spatial distance
between the elements the system consists of. In standard cellular automata (CAs), however, usually an instantaneous
transmission of information in the update-neighborhood ofcells is assumed, and distance information is disregarded.
The objective of this study is to overcome this limitation bya generalization of the CA update scheme. We investigate
the effect of spatio-temporal delay depending linearly on the distance between cells in synchronously updated, one-
dimensional CAs. We find that delays induce distinctive transitions between different classes of dynamical behavior,
and on average tend to increase the space-time entropy of CA patterns. A more detailed investigation also taking
into account mutual information shows that transitions in the opposite direction are also present in considerable
proportions, indicating a rich space of rule-dependent dynamical transitions induced by delays.

Keywords: 1-d cellular automata, delays, entropy, mutual information

1 Introduction
Complex spatio-temporal patterns are often found in nature, yet in many cases their emergence can be
explained by surprisingly simple dynamical systems of locally interacting elements. Systems of this kind
are found, e.g., in physical chemistry (e.g. reaction-diffusion systems), in biology (e.g. in morphogenesis
of multicellular organisms) and even in sociology and economy. Traditionally, many of these systems are
modeled by sets of coupled partial differential equations,which allow a detailed investigation of possi-
ble dynamical behaviors. However, these approaches often involve a large number of free parameters,
and reach the limits of computational tractability quickly, in particular, if systems involve complex de-
pendencies (networks) between dynamical elements. Furthermore, in many cases dynamical transitions
can be well approximated by discrete state spaces, which sometimes drastically reduces the complexity
of the problem; examples are found in physics, e.g. the Isingmodel of magnetism, in biology, e.g. the
relatively small set of distinct cell types and the well defined transitions between them (differentiation),
and in economy, e.g. the complex dynamics of stock exchangesgenerated from basically binary ”buy”
or ”sell” decisions. Very often, the geometric space in which such discrete interactions take place has
a strong impact on dynamics; this is explicitly taken into account inCellular Automata. Besides highly
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regular, grid-based topologies, that have been extensively explored, recently also CA topologies with par-
tially randomized structure (”small world” CAs) have come into the focus of research (Marr and Hütt,
2005).

Originally introduced byvon Neumannas a theoretical framework for self-replication (von Neumann,
1966), it was realized that CAs could serve as models for muchbroader classes of phenomena. It was
shown, for example, that Conway’s famous ”game of life” (Berlekamp et al., 1982)) as well as simple
one-dimensional cellular automata (Lindgren and Nordahl,1990) are capable of universal computation
in the sense of a Turing machine. Based on methods developed in statistical mechanics, detailed studies
on the simplest class of CA, elementary 1D CA withk = 2 states and 3-cell neighborhood, were carried
out in the 1980’s. Wolfram (Wolfram, 1983, 1984) developed aqualitative classification scheme of the
223

= 256 elementary CA rules that distinguished four different ’complexity classes’ of their dynamics
(class I: fixed-point attractors, class II: space-time periodic attractors (limit cycles), class III: aperiodic
space-time chaos, class IV: ’complex’ dynamics, i.e. traveling, localized aperiodic structures on regular
background). A number of methods was developed to obtain a more quantitative characterization of CA
dynamics, e.g. mean field models (Schulman and Seiden, 1978), local structure theory (Gutowitz et al.,
1987), and quantification of pre-images (Soto, 2008). Recently, the investigation of different classes of CA
update schemes has come into the focus of research, showing,for example, that stochastic, asynchronous
updates can induce distinctive phase transitions in standard CAs that can be well described with methods
from Statistical Physics (Fatès, 2009).

While on one hand the drastic simplification provided by CA models can have obvious benefits, on the
other hand their very idealized dynamics also limits their range of applicability. In real spatially extended
systems, for example, a delayed coupling of dynamical elements naturally emerges from their spatial
distance. It has been shown that delays can substantially alter the phase space of dynamical systems
(Atay et al., 2004; Atay and Karabacak, 2006). In this paper,we generalize the class of standard one-
dimensional CAs by introduction of delays in signal transmission that depend linearly on the distance
between cells, defining a new class of dynamical systems thatwe call delay cellular automata (DCAs).
A comparison with CAs where delays are not present indicatesthat distinctive dynamical transitions are
induced by delays, and on average tend to increase the space-time entropy of CA patterns. A more
detailed investigation also taking into account mutual information shows that transitions in the opposite
direction are also present in considerable proportions, indicating a rich space of rule-dependent dynamical
transitions induced by delays.

2 Model and Definitions
2.1 One dimensional CA without delay
Let us first start with cellular automata without delay. Consider a one-dimensional cellular automaton
(CA) with parallel update.N cells are arranged on a one-dimensional lattice, and each cell is labeled
uniquely with an indexi ∈ {0, 1, ..., N−1}. Each cell can takek possible statesσi ∈ Σ := {0, 1, .., k−1}.
CA dynamics is defined by a map

f : {0, 1, ..., k − 1}n 7→ {0, 1, ..., k − 1} (1)

that determines the stateσi(t) of cell i as a function of its own stateσi(t − 1) and the states of itsn− 1
closest neighbors at timet−1; n (odd) is also called theneighborhood sizeof the CA andr := (n−1)/2
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Fig. 1: Schematic comparison of the conventional CA update scheme (upper panel) and of the DCA update scheme
(lower panel), for the example of a CA with neighborhood sizen = 5. Whereas in CA without delays, for each celli
its own state and the states of its four closest neighbors at time t− 1 are mapped to a new state at timet, in DCA the
cells own state at timet − 1, its nearest neighbors’ states at timet − 2, and its next-nearest neighbors states at time
t− 3 are considered.

theradiusof the CA. The mapf then reads as

σi(t) = f [σi−r(t− 1), ..., σi(t− 1), ..., σi+r(t− 1)]. (2)

f is also called the rule table of the CA; theN cells are updated in parallel by application of this rule table
to each single cell. Notice that we restrict ourselves tosymmetric neighborhoods, which for many pattern
formation problems as observed in nature is the natural choice.

Boundary conditions for the sitesi = 0 andi = N − 1 have to be specified explicitly. In this paper, we
always apply periodic boundary conditions.

2.2 One dimensional CAs with spatio-temporal delay

We now introducespatio-temporal delaysinto CA dynamics (a schematic description is also shown in
Fig. 1.) For this purpose, we assume that the time needed for signal transmission increases linearly with
the distance between cells. Hence, CA dynamics now is definedby a map

g : {0, 1, ..., k − 1}n 7→ {0, 1, ..., k− 1} (3)

which, for the simplest case of delay directly proportionalto the distance of the respective neighbor cells,
is given by

σi(t) = g[σi−r(t− r − 1), σi−r+1(t− r), ..., σi(t− 1), ...

..., σi+r−1(t− r), σi+r(t− r − 1)]. (4)
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Notice that the rule tables defined byg do not differ from those defined byf , the dynamics, however,
is essentially different due to the delays introduced into the map. Henceforth, we will call this new class
of dynamical systemsdelay cellular automata (DCA).

Further, we mention that, due to the delays that introduce a time dependence on the previousr + 1
system states, in DCA initialization there does not exist the notion of a uniquely defined initial state,
rather, one has to define anordered initial set{Σini} of r + 1 system states:

{Σini} = (Σ(t = −r), ...,Σ(t = 0)) (5)

Starting from this initial set, DCA dynamics then is iterated for t ≥ 0. In our simulations, we mostly set
all r + 1 states to the same (randomly generated) initial state; however, setting{Σini} to r + 1 different
states basically leads to the same results.

Fig. 2: Space-time diagrams of cellular automata dynamics for fourrandomly sampled CA rules withk = 2 andn =
7; time is running from top to bottom. In each panel, on the leftside CA dynamics without delays is shown, whereas on
the right side the dynamics for the same rule with delays is shown. The following transitions are frequently observed:
fixed point→ complex, aperiodic dynamics (a), local domains of oscillations→ (almost) globally synchronized
oscillations (b), traveling waves→ complex aperiodic patterns (c), complex patterns→ chaotic pattern (d).

3 Comparing the dynamics of DCAs to CAs without delays
Distance-dependent delays, as defined in section 2.2, introduce additional levels of time dependence into
CA dynamics, which can also be considered as an implicit memory of sizer + 1 (in addition, a local
average over the lastr + 1 states is taken that depends both on time and space). In CAs without delays,
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Fig. 3: Left panel: The block entropyHs as a function of the density of 1’s,ρ, in CAs without delays, numerical
data (red) sampled over107 randomly generated CAs withk = 2, n = 7 andN = 150, compared toHupper

s . Right
panel:Hs(ρ) in DCAs, numerical data (red) sampled over107 randomly generated CA withk = 2, n = 7 and
N = 150, compared toHupper

s .

in the extreme case each cell ’forgets’ its local predecessor states after one dynamical update, in DCA
complete loss of memory takes at leastr + 1 time steps. It has been shown thatexplicit inclusion of
memory into CA dynamics can lead to drastic changes of dynamical behavior (Rohlf and Tsallis, 2007),
hence, we also expect that spatio-temporal delays substantially change CA dynamics.

Let us now compare the dynamics of DCA with its conventional counterpart, i.e. the corresponding
CA rules without delays. Figure 2 shows space-time diagramsof cellular automata randomly sampled
from the rule space of CAs withn = 5 andk = 2. At first visual inspection, the diagrams suggest a
general trend that delays tend to increase the complexity ofspace-time patterns for rules that lead to very
simple asymptotic dynamics without delays. For example, delays can induce a transition from a fixed-
point pattern to complex triangular patterns (Fig. 2 a)), orimprove the synchronization among cells (Fig.
2 b)). On the other hand, ”complex” patterns suggesting to belong to class IV in Wolfram’s classification
scheme tend to become much more randomized when delays are present (Fig. 2 d)). The quantitative
and conclusive classification of ”complex behavior” in CAs is a persistent problem in CA literature, for
which a number of approaches have been suggested (Gutowitz et al., 1987; Li et al., 1990; Sakai et al.,
2004). Here, we cannot go into the details of this matter and hence restrict ourselves to a rather coarse-
grained classification of DCA in comparison to CAs without delays by application of methods derived
from Statistical Mechanics.

3.1 Analysis of block entropies
Any analysis of the complexity of CA dynamics is limited by the “combinatorial explosion” of the num-
ber of different possible rule tables even for quite moderate values ofn andk. For ak-state CA with
neighborhood sizen, i.e. kn different neighborhood configurations, there existZnk := kk

n

different rules
tables, leading e.g. toZ5

3 = 335 ≈ 8.71 ·10115 for a 3-state CA with neighborhood sizen = 5. Therefore,
one needs to identify quantities that can describe the important features of CAs and that can distinguish
different types of qualitative behavior of CAs. For instance, the basic information capacity of a CA can
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be characterized using theShannon entropy H, which for a discrete processA of k states is given by

H(A) = −
k−1∑

i=0

p(i) log p(i). (6)

Here,pi ∈ [0, 1] is the (asymptotic) probability for a cellj of a given CA to have the stateσj = i. This
measure, however, disregards all spatial information. Since our new class of dynamical systems operates
based onspatio-temporal delays, we have to include at least a coarse-grained description ofspace into
our statistical analysis.For this purpose, we consider thespatialblock entropyof a cellular automatonT
Jost (2005):

Hs(T ) = lim
B→∞

lim
ν→∞

− 1

B

2B∑

α=1

pν(α) log pν(α) (7)

Here,pν(α) are the relative frequencies with which blocksα of lengthB of values at consecutive sites
appear at timeν. In practice, neither of the two limits can be really taken, and one has to find some
compromise. A natural choice for the considered block size e.g. could beB = n, i.e. the size of the
update neighborhood of each cell, which at the same time yields the ”rule entropy” (i.e. the relative
frequencies of usage of the different entries in a given ruletable). An upper bound ofHs(T ) as a function
of the average stationary densityρ of 1’s in the pattern can be calculated analytically by a meanfield
theory (Schulman and Seiden, 1978):

Hupper
s (ρ) =

ρ ln ρ− (1− ρ) ln (1− ρ)
ln 2

(8)

Figure 3 shows numerically measured values for ensembles ofrandomly generated CA rules withk = 2
andn = 7, compared to the result of Eqn. 8. We find that, for most rules,Hs is increased when delays are
present, i.e. the block entropy is moved towards the upper bound compatible with the stationary density
ρ of 1’s in the pattern, indicating increased mixing in phase space. This observation confirms the general
impression obtained from Fig. 2.2 with the typical delay-induced transitions fixed point/periodic pattern
→ ’complex’ pattern and ’complex pattern’→ randomized (chaotic) pattern.

3.2 Further classification of dynamical transitions by changes in mutual infor-
mation

The information about dynamical transitions in CA dynamicsinduced by delays, quantified by consider-
ation of (block-)entropies in the previous section, is limited in a number of regards. Entropy is a rather
coarse measure for information content of dynamics, since it not very sensitive to correlations; further-
more, we so far considered ensembles of DCAs and CAs without dynamics seperately, hence loosing the
information of delay-induced effects for a particular update rule. Consequently, we are now interested in
a direct comparison of DCA and CA dynamics for given update rules, applying a measure that is more
sensitive to spatial and temporal correlations in dynamics, namelymutual information. Thespatial mutual
informationIs between two CA cellsA andB is defined as

Is(A,B) = H(A,B)−H(A)−H(B), (9)
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delays. Statistics was averaged over 80000 rules withn = 5, k = 2 andN = 150, for 1000 updates after a transient
of 1000 updates, starting from 250 random initial states foreach rule. Bin size for averaging was 0.05.

whereH(A, B) is the joint entropy

H(A,B) = −
k−1∑

i=0

k−1∑

j=0

p(i, j), log p(i, j), (10)

with p(i, j) as the joint probability for co-occurrence of statei andj in cellsA andB, respectively.H(A)
andH(B) are the single-cell Shannon entropies, as defined in Eq. 6. Similarly, the temporal (future-past)
mutual informationIt for a cellA is defined as

It(A(t), A(t − τ)) = H(A(t), A(t − τ)) −H(A(t))−H(A(t− τ)), (11)

whereτ is the number of update steps one looks back in the past.
Figure 4 exhibits the average statistical dependence between the mutual information of 80000 randomly

generated CA rules withn = 5 andk = 2, for updates without delays (x−axis) and with delays (y−axis).
Obviously, the average trend is that delays tend to reduce correlations (and hence mutual information)
quite considerably, as becomes evident from the fact that the curve, except for very small values of the
temporal mutual information, is always below the lineIDCA = ICA. However, as became already appar-
ent in section 3, this average picture may be deceptive and may hide the richness of possible dynamical
transitions.

A more detailed account of delay-induced changes in dynamical behavior is provided in Fig. 5 (a),
which correlates the delay-induced change in block entropy(which can be positive or negative) to the
change in temporal mutual information; since a decrease (increase) in entropy indicates more ordered
(more chaotic) dynamics, while an increase in MI is indicative of more ”complex” dynamics (i.e. in-
creased correlations), the four quadrants of this diagram can be interpreted with respect to the nature of
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Fig. 5: Left panel: Change in temporal mutual information under DCAupdate relative to CA update without delays,
as a function of the change in block entropy. 80000 randomly sampled rules withn = 5, k = 2 andN = 150 are
shown, mutual information (τ = 10) and entropy where averaged over 1000 updates after a transient of 1000 updates,
starting from 250 random initial states for each rule. The four quadrants, as indicated, allow a coarse classification of
dynamical transitions: 1: chaotic→ complex or ordered, 2: ordered→ complex, 3: complex or chaotic→ ordered,
4: ordered or complex→ chaotic. Right panel: frequency distribution of dynamicaltransitions, numbers referring to
the four quadrants of the left panel.

dynamical transitions: 1: chaotic→ complex or ordered, 2: ordered→ complex, 3: complex or chaotic→
ordered, 4: ordered or complex→ chaotic. Figure 5 (b) shows a statistics of the distributionof rules into
the four quadrants. Evidently, as we already concluded, thetransition from ordered or complex to chaotic
dynamics is most frequent, however, the opposite transitions are also present in considerable proportions,
indicating a rich space of rule-dependent dynamical transitions induced by delays.

4 Discussion
Distance-dependent delays in signal transmission naturally emerge in most spatially extended dynamical
systems, however, were neglected in cellular automata models even when neighborhood sizes substan-
tially larger than3 cells were considered. We introduced distance-dependentdelaysinto one-dimensional
cellular automata, and thereby defined the new class ofdelay cellular automata (DCA). Our results indi-
cate that this type of delays considerably changes the dynamics of cellular automata as a consequence of
the implicit local memoryit creates. Very often, this leads to transitions to a different class of asymptotic
dynamical behavior, when we compare a given CA rule under iteration without or with delays, for exam-
ple fixed point→ complex aperiodic pattern, periodic pattern→ randomized (chaotic) pattern. A general
trend is that, for most CA rules, delays increase the space-time entropy of the system, as quantified by
measurements of block-entropies of observed space-time patterns. However, a more detailed investigation
also taking into account mutual information in space and time, showed that transitions in the opposite di-
rection are also present in considerable proportions, indicating a rich space of rule-dependent dynamical
transitions induced by delays.

Our results indicate that, if cellular automata are considered as serious models of spatially extended
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dynamical systems, effects that naturally result from spatial extension- here delays - cannot be neglected,
since they considerably change the dynamics. Similar observations were made for other classes of dy-
namical systems, for example, coupled logistic maps (Atay et al., 2004; Atay and Karabacak, 2006).
Interestingly, the capacity of cellular automata to carry out complex computations is not reduced, but
ratherimprovedwhen delays are present, similar e.g. to the improved synchronization that was found in
other classes of delayed dynamical systems (Atay et al., 2004). Future research on DCAs will one the one
hand focus on a more detailed understanding of their dynamical properties, but also on applications of
this new class of dynamical systems to problems arising in distributed computation, and complex systems
in nature and society.
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How do gliders move?
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This paper deals with gliders in cellular automata. A study,based on gliders discovered by an evolutionary algortihm,
identifies twelve different ways in which gliders move. The idea is to focus on a glider and on the new cells generated
towards the direction of the glider. The classification of gliders is based on the neighbourhood of these cells at one
generation before they appear.

Keywords: Gliders, Cellular Automata, Classification, Neighbourhoods, Cells

1 Introduction
The theories of complexity are the understanding of how independent agents are interacting in a system
to influence each other and the whole system (1). A complex system can be described as a system com-
posed of interconnected parts in which the whole exhibits more properties that the sum of the parts (2).
Surprising computational tasks could result from interactions of independent agents in complex systems
as emergence of computation is a hot topic in the science of complexity (3). A promising environment to
study emergent computation is cellular automata (4) which are the simplest mathematical representation
of complex systems (5) and an important modelling paradigm in the natural sciences and an extremely
useful approach in the study of complex systems (6). They areuniform frameworks in which the simple
agents are cells evolving through time on the basis of a localfunction, called the transition rules (7).

Emerging computation in cellular automata has different forms. Some have studied specific computa-
tion like density and synchronization tasks (8; 9) and pattern recognition (10). While others have consid-
eredTuring-universal automata(11; 12; 13) i.e. automata encompassing the whole computational power
of the class of Turing machines (14). Some have wondered the question of the frequency of universal cel-
lular automata as Wolfram (15). Some demonstrations of universality are based on mobile self-localized
patterns of non-resting states (13), calledgliders and these patterns are considered to be between order
and chaos (16). The search for gliders is very competitive asit was notably explored by Adamatzkyet
al. with a phenomenological search (17), Wuensche who used his Z-parameter and entropy (18) and
Eppstein (19). Lohnet al. (20) and Sapinet al. (21; 22; 23) have searched for gliders using evolutionary
algorithms.

In this paper, a study, based on the first two thousand discovered gliders of the latter search, identifies
twelve different ways in which gliders move. The paper is arranged as follows: the classification of gliders
is described in Section 2 then the last section summarizes the presented results and discusses directions
for future research.



320 Emmanuel Sapin and Olivier Sapin

Fig. 1: The seven possible neighbourhoods of the cell(c, y) at generationnc − 1.

2 Classification of Gliders
Sapinet al. have searched for isotropic gliders using an evolutionary algorithm (21; 22). This algorithm
found a lot of gliders accepted by different automata of a space of isotropic 2D 2-state automata using
Moore neighbourhood. The study is based on the first two thousand gliders that were discovered on a run
of this algorithm. These gliders are only orthogonal or diagonal as no oblique gliders were found.

Concerning orthogonal gliders, the idea is to locate a glider in a rectangle located at negative x-
coordinate. Orthogonal isotropic gliders move toward the four cardinal points depending on their position
therefore the shape of the glider is chosen in order to make itmove towards the East. At some point, some
cells of the glider will be at every positive x-coordinate. The first cell at each positive x-coordinate is
taken into account. The idea is to try to determine what the neighbourhood of this cell was at the previous
generation.

Concerning diagonal gliders, the idea is to locate a glider in a rectangle located at negative x-coordinate
and at positive y-coordinate. Diagonal isotropic gliders move toward the four bisectrices depending on
their position. Then the shape of the glider is chosen in order to make it move towards the South-East. At
some point, some cells of the glider will be on every diagonalline with the equationY = X − c with c
being a constant determining where the diagonal line crosses x-axis. The first cell on the diagonal line is
taken into account. The idea is to try to determine what the neighbourhood of this cell was at the previous
generation. The first subsection studies how do orthogonal gliders move. How do diagonal gliders move
is studied in a second subsection.

2.1 Orthogonal Gliders
Let g be an orthogonal glider located to move towards the East. Letsx andsy be the size of the smallest
rectangle containing the gliderg at the generation 0. The glider is set up in a rectangle so thatthe upper
right-hand corner is(−1,−1) and the lower left-hand corner is(−sx,−sy). It is possible to prove that for
all c > 0 there exist generations at which one or more cells of state 1 will have c as an y-coordinate. Let
nc be the first generation when it happens and(c, y) the coordinates of a cell in state 1 such that no cell in
state 1, withc as a x-coordinate and with an y-coordinate higher thany exists. At generationnc − 1, as
there is no cell in state 1 withc or c + 1 as x-coordinate, the neighbourhood of the point(c, y) can only
be one of the seven neighbourhoods numbered figure 1. Let us consider all these neighbourhoods:

• If there existsc such that the neighbourhood of the cell(c, y) at generationnc− 1 is the neighbour-
hoods 1 or 3, the neighbourhoods 1 and 3 are isotropic and a cell with the neighbourhoods 3 leads to
the birth of a cell at every generation towards the North-East and a cell with the neighbourhoods 1
leads to the birth of a cell at every generation towards the South-East, this behaviors is not possible
for any isotropic glider.
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Fig. 2: Gliders of typeα and period 1 at generations 0 and 1 separated by a comma.
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Fig. 3: Gliders of typeα and period 2 at generations 0 and 1 separated by a comma.

• If for all c the neighbourhood of the cell(c, y) at generationnc − 1 is the neighbourhood 2, such
gliders are called gliders of typeα. The periods of all the discovered gliders of typeα are 1, 2 and
3 and the velocity is 1. Figures 2, 3, 4 and 5 show the seven discovered gliders of this type. These
figures and all others that show discovered gliders are created with the picture environment of latex
and the code of these figures were generated automaticaly in part thanks to an analysis of the size,
the period and the type of movement of every glider.

• If for all c the neighbourhood of the cell(c, y) at generationnc − 1 is the neighbourhood 6, two
possibilities exist:

– the cell(c, y) is in state 1 with only the other cell(c, y − 1) in state 1 in the columnc, such
gliders are called gliders of typeβ0 and 761 gliders of this type were found. The velocity of
all the discovered gliders of typeβ0 is 1 as shown in figures 6, 7, 8 and 9 for a sample of them
with periods 1, 2, 3 and 4.

– the cell(c, y) of the columnc is in state 1 with a line of cells in state 1 from(c, y) to (c, y− l)
with l > 1, therefore the neighbourhood7 allows also the appearence of cells at columnc. The
146 discovered gliders of this type are called gliders of typeβ1. The velocity of the discovered
gliders of typeβ1 is 1. Some of the discovered typeβ1 gliders of periods 1, 2, 3 and 4 are
shown in figures 10, 11, 12 and 13.

• If the neighbourhood of the cell(c, y) at generationnc − 1 is the neighbourhood 4 then the cells
(c − 1, y + 1) and(c − 1, y + 2) are in state 1, therefore there is a line of cells in state 1 from the
cell (c − 1, y + 1) to the cell(c − 1, y + l) with l > 1. At generationnc − 1 the cell(c, y + l)
has then the neighbourhood 6, the neighbourhoods 4 and 6 are isotropic, therefore at generationnc
the cell(c, y + l) will be in state 1 but(c, y) are the coordinates of a cell in state 1 such that no
cell in state 1, withc as a x-coordinate and with an y-coordinate higher thany exists. Therefore the
neighbourhood of the cell(c, y) at generationnc − 1 cannot be the neighbourhood 4.

• If for all c the neighbourhood of the cell(c, y) at generationnc − 1 is the neighbourhood 5, such

-

6

-

6

-

6

-

6

Fig. 4: A glider of typeα and period 3 at generations 0,1,2 and 3.
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Fig. 5: The discovered glider of typeα and period 4 at generations 0, 1, 2 and 3.
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Fig. 6: Gliders of typeβ0 and period 1 at generations 0 and 1 separated by a comma.
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Fig. 7: Gliders of typeβ0 and period 2 at generations 0, 1 and 2 separated by a comma.
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Fig. 8: A glider of typeβ0 and period 3 at generations 0, 1, 2 and 3.
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Fig. 9: A glider of typeβ0 and period 4 at generations 0, 1, 2, 3 and 4.

-

6

-

6

, -

6

-

6

, -

6

-

6

, -

6

-

6

Fig. 10: Gliders of typeβ1 and period 1 generations 0 and 1 separated by a comma.
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Fig. 11: Gliders of typeβ1 and period 2 at generations 0, 1 and 2 separated by a comma.
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Fig. 12: A glider of typeβ1 and period 3 at generations 0, 1, 2 and 3.
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Fig. 13: A glider of typeβ1 and period 4 at generations 0, 1, 2, 3 and 4.
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Fig. 14: Gliders of typeγ0 and period 2 at generations 0, 1 and 2 separated by a comma.
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Fig. 15: Gliders of typeγ0 and period 3 at generations 0, 1, 2 and 3 separated by a comma.

gliders are called gliders of typeγ0. Among the two thousand discovered gliders, 278 gliders of
type 20 were discovered. No gliders of typeγ0 were found of period 1. Figures 14, 15 and 16 show
the discovered gliders of typeγ0 with periods 2,3 and 4.

• If for all c the neighbourhood of the cell(c, y) at generationnc − 1 is the neighbourhood 7 and
at generationn the state of cells(c, y + 1) and(c, y − 1) is 0 then such gliders are called gliders
of typeγ1. Among the two first thousand, there are 321 discovered gliders of typeγ1 and figures
17, 18 and 19 show a sample of them discovered of periods 2, 3 and 4.

• If for all c the neighbourhood of the cell(c, y) at generationnc−1 is sometimes the neighbourhood
5, sometimes the neighbourhood 7 depending onc, such gliders are called gliders of typeγ2. Only
three gliders of typeγ2 among the two thousand were discovered and they have a periodof 4. One
of these gliders is shown in figure 20.

There is no proof in this paper that gliders for which for allc the neighbourhood of the cell(c, y) at
generationnc − 1 cannot be among another set of neighbourhoods depending onc. Because such gliders
were not found among the first two thousand gliders that were discovered, the conjecture that every glider
is in only one of the six typesα, β0, β1, γ0, γ1 andγ2 is made.

2.2 Diagonal Gliders
Let g be a diagonal glider located to move towards the South-East. Letsx and sy be the size of the
smallest rectangle containing the gliderg at the generation 0. The glider is set up in a rectangle so that
the upper right-hand corner is(−1,−1) and the lower left-hand corner is(−sx,−sy). For all c there
exists generations at which one or more cells of coordinates(X,X − c) is in state 1. Letnc be the first
generation when it happens and(x, x− c) the coordinates of one of these cells such that no cell in state 1
of coordinates such thatY = X − c and with an x-coordinate higher thanx exists. The neighbourhood
of the cell (x, x − c) at generationnc − 1 can only be one of the seven neighbourhoods numbered in
figure 21. Let us consider all these neighbourhoods:

• If there existsc such that the neighbourhood of the cell(x, x − c) at generationnc − 1 is the
neighbourhood 1,g cannot be a glider as shown in the section Orthogonal Gliders.
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Fig. 16: A glider of typeγ0 and period 4 at generations 0, 1, 2, 3 and 4.
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Fig. 17: Gliders of typeγ1 and period 2 at generations 0, 1 and 2 separated by a comma.
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Fig. 18: Gliders of typeγ1 and period 3 at generations 0, 1, 2 and 3 separated by a comma.
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Fig. 19: A glider of typeγ1 and period 4 at generations 0, 1, 2, 3 and 4.
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Fig. 20: A glider of typeγ2 and period 4 at generations 0, 1, 2, 3 and 4.

Fig. 21: The seven possible neighbourhoods of the cell(x, x− c) at generationnc − 1.
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Fig. 22: Gliders of typeω0 and period 2 at generations 0, 1 and 2.
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Fig. 23: Gliders of typeω0 and period 3 at generations 0, 1, 2 and 3.

• It is conjectured that if there existsc such that the neighbourhood of the cell(x, x− c) at generation
nc − 1 are the neighbourhoods 2 or 3 theng is an orthogonal glider so these neighbourhoods are
not possible for the cell(x, x− c) of a diagonal glider.

• If for all c the neighbourhood of the cell(c, y) at generationnc−1 is sometimes the neighbourhood
4, sometimes the neighbourhood 5 depending onc, such gliders are called gliders of typeω0. Only
three gliders of typeω0, shown in figures 22 and 23, among the two thousand were discovered.

• If for all c the neighbourhood of the cell(c, y) at generationnc−1 is sometimes the neighbourhoods
4 or 5, sometimes the neighbourhood 6 or the neighbourhood 7 depending onc, such gliders are
called gliders of typeω1. Only one glider of typeω1, shown in figure 24, among the two thousand
was discovered and it has a period of 2.

• If for all c the neighbourhood of the cell(c, y) at generationnc−1 is sometimes the neighbourhoods
4 or 5, sometimes the neighbourhood 7 depending onc, such gliders are called gliders of typeω2.
Only three gliders of typeω2 among the two thousand were discovered and they has a period of 2.
Two of them are shown in figure 25.

• If for all c the neighbourhood of the cell(x, x − c) at generationnc − 1 is the neighbourhood 6,
such gliders are called gliders of typeψ0. 59 gliders of typeψ0 were found among the two thousand
gliders with periods of 3 and 4, as shown figures 26 and 27.

• If for all c the neighbourhood of the cell(x, x − c) at generationnc − 1 is the neighbourhood 7,
such gliders are called gliders of typeψ1. Some of these gliders with periods 3 and 4 are shown in
figures 28 and 29.

• If for all c the neighbourhood of the cell(x, x− c) at generationnc−1 is sometimes the neighbour-
hood 6, sometimes the neighbourhood 7 depending onc, such gliders, called gliders of typeψ2, are
shown figures 30 and 31.
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Fig. 24: The discovered glider of typeω1 and period 2 at generations 0, 1 and 2.
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Fig. 25: Gliders of typeω2 and period 2 at generations 0, 1 and 2.
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Fig. 26: Gliders of typeψ0 and period 3 at generations 0, 1, 2 and 3.
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Fig. 27: Gliders of typeψ0 and period 4 at generations 0, 1, 2, 3 and 4 separated by a comma.
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Fig. 28: Gliders of typeψ1 and period 3 at generations 0, 1, 2 and 3 separated by a comma.
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Fig. 29: Gliders of typeψ1 and period 4 at generations 0, 1, 2, 3 and 4 separated by a comma.
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Fig. 30: Gliders of typeψ2 and period 3 at generations 0, 1, 2 and 3 separated by a comma.
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Fig. 31: A Glider of typeψ2 and period 4 at generations 0, 1, 2, 3 and 4 separated by a comma.
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The conjecture made for the neighbourhoods 2 or 3 implies every diagonal glider is in one of the six
typesω0, ω1, ω2, ψ0, ψ1 andψ2.

3 Synthesis and perspectives
This paper deals with the emergence of computation in complex systems with local interactions. A study
about how gliders move is performed based on discovered gliders. Twelve types of movement have been
identified depending on how new cells are generated in the sense of direction of the gliders. The first two
thousands gliders discovered by the evolutionary algorithm of (21; 22; 24; 25; 26) have been automaticaly
classified in one of the twelve types and some gliders of each type are shown in figures that were created
with the picture environment of latex and the code of these figures were generated automaticaly in part
thanks to an analysis of the size, the period and the type of movement of every glider..

The knowledge of the type of a glider can help to search for a glider gun emitting this glider and then
to demonstrate the universality of automata that accept it.Moreover this research is a first step to lead
to a better understanding of a link between the transition rules and gliders in cellular automata therefore
a link between the emergence of computation in complex systems with simple components that is a new
contribution to this theory of complex system. Future work could be to demonstrate the conjectures
performed in this paper notably that only these twelve typesexist or to find other types if any would exist.
It also could be relevent to demonstrate properties of periods and velocities of some types. The study
of type to movement could also be extended to gliders of automata with more than two states, gliders of
hexagonal automata and gliders of automata with more than two dimensions.
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An induction algorithm provides unbiased best guess estimates of cellular automata rules generating time series of

binary strings. If the strings were generated by a CA rule, the algorithm returns a rule in a symmetry class containing

that rule. If the time series is random an unexpected outcome occurs: either the algorithm makes a type 1 error and

still predicts a generating CA rule, or stable mixed choice cases appear in which the induction algorithm settles on a

small set of rules as potential series generators. We present numerical results of these mixed choice outcomes, and an

analytic explanation of how they are possible.

Keywords: caellular automata, stable mixtures

1 Introduction
In earlier papers [1, 2] a probabilistic induction algorithm was introduced, providing unbiased best guess

estimates for the cellular automata rule generating a time series {µ(t)} of m-digit binary strings. The

algorithm employs two probability distributions over the modeling set of elementary cellular automata

rules, an a priori distribution and a choice distribution. The a priori distribution begins with conditions:

P (i, 0) =
1

N
,

N−1∑

i=0

P (i, t) = 1 (1)

where the modeling set contains N rules and P (i, t) is the a priori probability for choice of rule Ri. At

iteration t a single member of R is chosen, depending on µ(t) and the choice distribution {P ∗(i, t)|0 ≤
i ≤ N − 1}. Given this choice, the a priori distribution is updated by reinforcement. If element Rs from

R was chosen at iteration t then

P (i, t+ 1) =

{
P (i,t)

r
i 6= s

r−1+P (i,t)
r

i = s
1 ≤ r (2)
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The choice distribution is adapted to the predecessor profile of all rules in the modeling set R. This is

necessary to eliminate bias, it would not do, for example, to allow prediction of a rule at any given iteration

if that rule could not possibly have generated the strings given. If ni(µ(t)) is the number of m + 2 digit

predecessor strings of the string µ(t) for rule Ri then the choice at iteration t will be unbiased if the

distribution used is

P ∗(i, t) =
ni(µ(t))P (i, t)

∑N−1
j=0 nj(µ(t))P (j, t)

(3)

Once a choice is made, however, it is the a priori distribution {P (i, t)} that is updated in accord with

equation 2.

It might seem easier to test rules in the modeling class R to see if any of them satisfy the condition

Ri(µ(t)) = µ(t + 1) for all t, but this method fails when {µ(t)} is the output of an apparatus that

provides finite, discrete time measurements of a continuous dynamical system. Two considerations arise

in this setting:

1. Spatial continuity implies that each µ(t) consists of the first m digits of a half infinite binary string

giving the value of the continuous dynamical variable.

2. Temporal continuity means that the system will have passed through a continuum of states between

the measured values µ(t) and µ(t+ 1).

For binary strings of length m, the predecessor profile V (i) of a rule Ri is a vector in 2m-dimensional

Euclidian space defined by Vµ(i) = ni(µ0 . . . µm−1) where µ0 . . . µm−1 is the binary form of the index

µ. Since all rules have the same total number of predecessors,

∑

µ

Vµ(i) = 2m+k+2 (4)

and all profiles lie in a 2m − 1 dimensional simplex. The minimal length of the predecessor profile

vector occurs for surjective rules, for which this vector terminates at the barycenter of the simplex. Since

all strings have 4 predecessors for surjective rules, location in this simplex is determined by vµ(i) =
Vµ(i)− 4.

2 Empirical Results

If the series {µ(t)} was generated by a CA rule then, with high probability, the induction algorithm re-

turned a rule in a symmetry equivalence class containing the generating rule. What is of interest, however,

is the response of the induction algorithm when the series {µ(t)} is random. Two distinct outcomes are

observed. The first and most frequent is that the algorithm still converges on a predicted series generator,

committing an error of type 1. This is something that all induction is subject to so long as it is necessary

to make a choice from a modeling class and there are no provisions that allow a response of “random.”

Indeed, it is well known in cognitive science that the brain itself is vulnerable to such errors and there are

good evolutionary reasons that this is so. It is far safer to imagine a danger that is not present than it is to

overlook a danger that is.

The second outcome is that a mixed choice, or “faceoff” appears, in which the algorithm settles into

an apparently stable mixture of a small set of rules (2 – 5). What appears paradoxical is the stability of
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these cases. If a rule is chosen at a given iteration, its a priori probability is reinforced. Thus, the initial

expectation was that all faceoffs would be transients, eventually converging to a winning rule. This does

not occur: faceoff cases appear within a few thousand iterations, and persist to the maximum number of

iterations allowed (70,000 – 100,100). What occurs is that for certain combinations of rules, the fact that

a rule is chosen at a given iteration leads to a decrease in its choice probability at the next iteration, even

though the a priori probability is increased.

Analysis of faceoff data shows a correlation between rule table structure and faceoff frequency, both in

terms of the λ and z parameters and in terms of rule decomposition into linear and non-linear parts. There

is a correlation between the frequency that a rule appears in a faceoff and its predecessor profile, both for

individual rules, and for rules showing up in faceoffs together. Figure 1 shows faceoff frequencies with

m = 8 for the 256 elementary CA rules, ordered by increasing faceoff frequency, together with distance

||v|| from the origin in the predecessor simplex. With the exception of the surjective rules, for which

||v|| = 0 and the faceoff frequency is close to 0, this figure indicates an inverse relation between ||v||
and faceoff frequency. The exception for surjective rules occurs because a surjective rule will win against

any non-surjective rule—the few faceoffs that occur involving surjective rules only involve such rules. It

also appears that faceoffs involving rules from the same symmetry class are rare, and that faceoffs tend to

involve rules separated by an intermediate distance in the predecessor profile simplex.

Fig. 1: Profile Deviation ||v|| and Faceoff Frequency for 256 Elementary Rules on Strings of Length 8 (Note: Rules

Ordered by Increasing Faceoff Frequency)

There is some evidence of a power law relation between faceoff frequencies and the value of ||v||. Plots
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of log||v|| versus the log of faceoff frequency f for 3 ≤ m ≤ 8 for all r values show a value for the

slope of the linear regression of −.323674 ± .009980, leading to a relation f ∼ K||v||−3.089553. Taking

the standard deviation of the slope into account, this suggests an inverse cube relation. This breaks down,

however, when data for varying r is examined. As shown in Table 1, this data indicates a dependence on

both m and r. For r = 1.01 the linear relation remains for all m, but now the slope varies as indicated in

Table 1. For r = 1.05 a reasonable linear relation only appears for m greater than five, while for r = 1.1
it only shows up at m = 8 and not at all for r = 1.2 or greater.

m 3 4 5 6 7 8

r=1.01 -.362621 -.2163944 -.189907 -.183785 -.174483 -.153609

r=1.05 Linear relation unclear -.293239 -.321353 -.331769

r=1.1 No discernable linear relation -.339981

r=1.2 No discernable linear relation

Tab. 1: Slope of Linear Regression for log||v|| vs. log(f) for m = 3,. . . ,8

Another perspective is provided by Figure 2, which shows faceoff frequencies for the top 700 pairs of

rules occurring in faceoffs for r = 1.01 with m = 8, combined with the distance between rules found in

these pairs. Also indicated in this figure are the values of this distance for rules related by the symmetry

operations of neighborhood reversal (T1) and predecessor reversal (T3), and the expected distance of rule

pairs chosen at random. Plots of similar figures for values of m from 3 to 7 shows the distance between

rules in faceoffs gradually increasing toward the random expectation line indicating that there is an effect

due to string length. The faceoff distances do not obviously fall below what would be expected on a

random distribution until m = 5. Another effect that shows up when all faceoffs are considered rather

than only the most frequent 700 is that the distance distribution remains relatively flat until about the

2500-th pair and then suddenly increases. This is indicated in Figure 3. No explanation has been found as

yet for the apparent quantization of distances that appears with the sharp jump.

The apparent stability of mixed choice responses was tested by forcing the occurrence of faceoffs. This

was done by choosing two rules and artificially setting their initial probabilities between .49 and .50. The

induction algorithm was then continued for 100, 100 iterations following the emergence of a faceoff. Data

on a priori probabilities was taken at every 100 iterations of the induction algorithm yielding 1001 data

points for each rule in the faceoff. Mean a priori probabilities were computed together with their standard

deviations. Table 2 shows the results for four 2-rule and four 3-rule faceoffs.

3 Faceoff Stability

Stability of faceoffs arises through details of the induction algorithm, which involves both the a priori

probabilities of equations 1 and 2, and contributions from the predecessor profiles of all rules in the

modeling class in the choice probabilities of equation 3. This produces cases in which choice of the

random string µ(t+ 1) results in the probability that a rule is chosen at iteration t+ 1 being less than its

probability of being chosen at iteration t, even though it was chosen at t so that it’s a priori probability is

increased for iteration t+ 1. The obvious case is if the string µ(t+ 1) is a Garden-of-Eden string for the

rule chosen at t. The next theorem describes the more general case.
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Fig. 2: Distances Between Top 700 Rule Pairs in Faceoffs (r = 1.01, m = 8) (Red shows distances between faceoff

pairs, Blue line shows expected distance for T1 related rules, violet for T3 related rules, green for randomly related

rules)

Rules in Faceoff Onset Mean Frequency Standard Deviations

at Iteration

(152,229) 5400 (.51257, .48742) (.05174, .05174)

(57,218) 64,500 (.45920, .54079) (.05411, .05411)

(161,122) 6800 (.50676, .49323) (.05341, .05340)

(145,173) 2900 (.44342, .55658) (.05061, .05061)

(12,58,124) 3200 (.13435, .38054, .48510) (.02990, .05313, .05059)

(88,126,159) 2900 (.67616, .11973, .20410) (.04051, .03671, .04189)

(96,182,244) 11,700 (.25799, .58103, .16097) (.03893, .04796, .04325)

(28,31,39) 2300 (.36764, .29421, .33815) (.04364, .05123, .05591)

Tab. 2: Mean a Priori Probabilities and Standard Deviations for Some Forced Faceoffs

Theorem 1 If a rule Ri is chosen at iteration t, the condition for P ∗(i, t+ 1)− P ∗(i, t) < 0 is

P (i, t)

r − 1 + P (i, t)
>
ni(µ(t+ 1))nj(µ(t))

ni(µ(t))nj(µ(t+ 1))
(5)
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Fig. 3: Distance between 32, 896 rule pairs occurring in faceoffs.

Table 3 shows the percent of pairs of eight digit strings satisfying the condition of equation 5 with

r = 1.01, for the four two rule faceoffs of Table 2 and for two comparison cases of rule pairs (18, 90)
and (24, 126), which have never appeared together in faceoffs. The satisfaction percentage indicates the

percent of all pairs of eight digit strings (µ(t), µ(t + 1)) with ni(µ(t)) 6= 0 that satisfy equation 5. The

larger it is, the more likely equation 5 is to be satisfied, meaning that rule Ri is less likely to be chosen on

the iteration following the one at which it was chosen. The ni(µ(t)) 6= 0 condition is imposed since by

assumption rule Ri was chosen at iteration t and this could not have occurred if ni(µ(t)) = 0. Note that

if nj(µ(t+ 1)) = 0 equation 5 can never be satisfied.

Rule Pair Satisfaction Percentage

(152,229) (.53414, .57045)

(57,218) (.54645, .46960)

(161,122) (.53375, .53375)

(145,173) (.54820, .56682)

(18,90) (.68640, .38878)

(24,126) (.44453, .21447)

Tab. 3: Satisfaction Percentages For Selected Rule Pairs in 2-Rule Faceoffs and Comparison Pairs
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The first comparison case involves rules 18 and 90 (a surjective rule). In this case, examination of the

satisfaction percentages shows a strong bias for continued choice of rule 90. In the second case, neither

satisfaction percentage is above .5, indicating that the two rule situation is unstable.

In three of the four faceoff cases shown, both rules have satisfaction percentages greater than .5, which

can be taken as indication of stability. The remaining case involves rules 57 and 218. This case is also

unusual in that the onset of the two rule faceoff only occurs at iteration 64, 500 and it appears to emerge

from the collapse of a three rule faceoff. Since a cutoff on probability was used to determine which rules

to include in faceoffs, this case may represent a situation in which a three rule faceoff has one rule with a

very low probability, or possibly a two rule case in which additional stability is provided by an infrequent

invasion of other rules.

While Theorem 1 involves a specific pair of strings µ(t) and µ(t + 1), it is also possible to obtain a

stability condition that is independent of the random string generated at any given iteration. Let ∆(i|t, t+
1) = 〈P ∗(i, t+ 1)〉µ − 〈P ∗(i, t)〉µ where 〈·〉µ indicates the average computed over all m-digit strings. If

E[∆(i|t, t+1)] is the expected value of ∆(i|t, t+1), the choice probability of ruleRi will be expected to

increase or decrease with continued iteration of the induction algorithm as E[∆(i|t, t+1)] is respectively

greater than or less than 0. The condition for rule Ri to be in a stable faceoff is that E[∆(i|t, t+ 1)] = 0.

Theorem 2 Let E[∆(i|t, t+ 1)] be the expectation value of ∆(i|t, t+ 1). The condition for E[∆(i|t, t+
1)] = 0 is

P (i, t)
∑

s 6=i
P (s, t)

[
∑

µ

ni(µ)− ns(µ)

v(µ, t)

]

∑

µ′

ni(µ
′)− ns(µ′)

D(µ′, t)


 = 0 (6)

where

v(µ, t) =
∑

s

ns(µ)P (s, t), D(µ′, t) =
1

r
v(µ′, t)[v(µ′, t) + r − 1] (7)

If a faceoff is to be metastable, the condition E[∆(i|t, t+ 1)] = 0 must hold for each rule involved in the

faceoff. If only two rules are involved, say Ri and Rj then, from equation 9, it is necessary that

dij(t) =
∑

µ

ni(µ)− nj(µ)

v(µ, t)
= 0 (8)

Note that this equation is identically satisfied for surjective rules. Table 4 gives the values of dij(t) for

the 2-rule faceoffs of Table 3, averaged over the100, 100 iterations of the induction algorithm, as sampled

every 100 iterations, as well as for the comparison cases of rules (18, 90) and (24, 126). While all of

the faceoff cases are well within their standard deviation of 0, the comparison values are large (since

the comparison rules are never involved in faceoffs, the value was computed on the assumption that the

probability for both rules was .5. Hence there is no standard deviation for these cases).

Rules (152,229) (57,218) (161,122) (145,173) (18,90) (24,126)

〈dij(t)〉t -.53572 2.16914 2.99782 -.25306 -228.60807 -111.82395

Standard Deviation 25.24048 20.77144 23.98559 28.22384

Tab. 4: dij(t) Averaged Over t Together With Standard Deviation
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Examination of equation 6 shows how the presence of an additional rule in a faceoff can help to stabilize

it. For a three rule faceoff involving rules Ri, Rj , and Rk the expectation values to consider are:

E[∆(i|t, t+ 1)] = P (i, t)

[
P (j, t)Φij(t)

∑

µ

ni(µ)− nj(µ)

v(µ, t)
+ P (k, t)Φik(t)

∑

µ

ni(µ)− nk(µ)

v(µ, t)

]

E[∆(j|t, t+ 1)] = P (j, t)

[
P (i, t)Φij(t)

∑

µ

nj(µ)− ni(µ)

v(µ, t)
+ P (k, t)Φjk(t)

∑

µ

nj(µ)− nk(µ)

v(µ, t)

]

E[∆(k|t, t+ 1)] = P (k, t)

[
P (j, t)Φjk(t)

∑

µ

nk(µ)− nj(µ)

v(µ, t)
+ P (i, t)Φik(t)

∑

µ

nk(µ)− ni(µ)

v(µ, t)

]

(9)

Φij(t) =
∑

µ

ni(µ)nj(µ)

D(µ, t)

Note thatE[∆(i|t, t+1)]+E[∆(j|t, t+1)]+E[∆(k|t, t+1)] = 0, reflecting conservation of probability,

and that when P (k, t) = 0 this reduces to the case of equation 8. Now consider a case for which

∑

µ

ni(µ)− nj(µ)

v(µ, t)
> 0,

∑

µ

nj(µ)− nk(µ)

v(µ, t)
> 0,

∑

µ

nk(µ)− ni(µ)

v(µ, t)
> 0 (10)

No pair of rules satisfies equation 7 so no two-rule faceoff involving these rules can be stable. Never-

theless, each of the expectation values in equation 9 can be zero if the bracketed terms in equation 9 are

all zero. In matrix form this is expressed as:




1 −Φjk(t)djk(t)
Φik(t)dki(t)

0

0 1 −Φik(t)dki(t)
Φij(t)dij(t)

− Φij(t)dij(t)
Φjk(t)djk(t) 0 1






P (i, t)
P (j, t)
P (k, t)


 = 0 (11)

It is easy to show that the eigenvalues of this matrix are just the cube roots of unity, illustrating the cyclic

rock-paper-scissors nature of the three rules involved.

4 Discussion

The apparent stability of mixed choice induction suggests a more general possibility. In inductive net-

works with established modeling classes of patterned responses, stable higher-level response patterns may

emerge as stochastic mixed choice blends. This provides a mechanism of behavioral emergence as well

as offering a potential selective advantage in cases in which response to ambiguous input is required. This

also provides a mechanism for the emergence of mixed response strategies that succeed even though each

individual strategy in the blend fails if utilized alone—a situation arising in paradoxical games [3, 4, 5].
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We consider asynchronous one-dimensional cellular automata (CA). It is shown that there is one with von Neumann

neighborhood of radius 1 which can simulate each asynchronous one-dimensional cellular automaton. Analogously

all α-asynchronous CA (where each cell independently enters a new state with probability α) can be simulated by

one α-asynchronous CA (with the same probability for state updates) with von Neumann neighborhood of radius 1.

We also point out a few open problems for asynchronous CA.
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1 Introduction

Asynchronous cellular automata (ACA) are cellular automata where in each global step only the cells in an

arbitrary (non-empty) subset of all cells make a state transition while the others retain their current states.

Recently so-called α-asynchronous CA have gained a lot of interest. Here α ∈]0; 1] is the probability with

which each cell independently of the others makes a state transition during a global step.

This paper is organized as follows: In Section 2 we review the basic definitions and the known con-

structions for asynchronous CA as far as they are relevant in the present context. The core of the paper is

Section 3 where the overall construction is sketched and the main technical tool explained which give rise

to the following result:

Theorem 1 There is a purely asynchronous deterministic CA which is able to simulate all purely asyn-

chronous deterministic CA.

The precise definition of “simulation” needed in the theorem can be seen from the constructions below.

We consider this to be a reasonable approach, but admittedly the situation is more complicated then in the

synchronous deterministic case. In addition until a satisfying definition is agreed upon we use the adverb

“intrinsically” informally: For a set of automataM a member M ∈ M is intrinsically universal forM,

if it can simulate each M ′ ∈M.

It should be pointed out, that an extension of the precise notion of intrinsic universality for S-DCA, as

proposed e. g. by Ollinger (2008), to CA which are not S-DCA is still missing. This is the reason why
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the word “intrinsically” has been put in parenthesis and furnished with a question mark in the title of this

paper.

The main technical problem is that on one hand despite asynchronous updating the universal simulator

has to work reasonably (this is easy) while on the other hand one has to exploit the asynchronicity of the

simulator to generate the different possibilities for global steps of the simulated asynchronous CA.

A closer inspection of the construction reveals that the same ideas can be one applied in several other

situations. These possibilities are discussed in Section 4. We conclude with a summary and a short outlook

in Section 5.

2 Basics

2.1 General notation

In this paper we are interested in one-dimensional cellular automata. If the set of states of one cell is

denoted as Q, the set of all configurations is QZ. (We write BA for the set of all functions from A to

B.) A neighborhood is a finite set N = {ν1, . . . , νk} of integers. A local configuration is a mapping

ℓ : N → Q; thus QN is the set of all local configurations. The local configuration ci+N observed by cell

i ∈ Z in the global configuration c is defined as ci+N : N → Q : n 7→ c(i+ n).
The behavior of a single cell of a nondeterministic CA (NCA) is described by the local transition

function f : QN → 2Q. (We write 2M for the powerset of M .) An NCA is a deterministic CA (DCA)

iff for all ℓ ∈ QN holds: |f(ℓ)| = 1. For a probabilistic CA (PCA) the local transition function is of the

form p : QN → [0; 1]Q, where p(ℓ)(q) is the probability that a cell enters state q if it observes ℓ in its

neighborhood. For PCA it is required that for all ℓ ∈ QN the sum
∑
q∈Q p(ℓ)(q) = 1. To each PCA there

is a corresponding NCA with local transition function f : QN → 2Q : ℓ 7→ {q | p(ℓ)(q) > 0}. Whenever

we speak about PCA and use some notation for NCA, we mean the corresponding NCA as just defined.

We call each tuple (q1, . . . , qk, q
′) with q′ ∈ f(q1, . . . , qk) a rule of the CA.

The triple (Q, f,N) is called the local structure of a CA.

2.2 Updating schemes

In general a local structure (Q, f,N) together with a prescription how cells are updated induce a global

transition relation F ⊆ QZ × QZ describing the possible global steps. If (c, c′) ∈ F we will also write

c ⊢ c′ (possibly with an index for further clarification). In a global step each cell has two possibilities:

to be active and make a state transition (according to a rule) or to be passive and not to change its state.

Restrictions made by different updating schemes lead to different possible behaviors of CA.

A (finite or infinite) sequence (c0, c1, c2, . . . ) of configurations is a computation, iff for all pairs

(ci, ci+1) within the sequence it is true that ci ⊢ ci+1.

Synchronous updating. Synchronous updating means that in a global step all cells are active. Hence

for an NCA c ⊢s c′ holds iff ∀i ∈ Z : c′(i) ∈ f(ci+N ). Of course, for deterministic CA the global step

relation F is in fact a function. We will use the prefix S- to indicate synchronous updating (S-NCA etc.).

Now, we’ll have a look at different types of asynchronous updating.

Purely asynchronous updating. The first version of asynchronous updating has been considered for

many years now (see e. g. Nakamura, 1974). In order to distinguish it from the other forms mentioned
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below we call this version purely asynchronous updating. In this case in each global step there are no

restrictions on whether a cell may be active or passive. Thus for an NCA c ⊢a c′ holds iff ∀i ∈ Z :
c′(i) ∈ f(ci+N ) ∨ c′(i) = c(i). (We remark that formally it is allowed that no cell is active in a global

step. But nothing in this paper gets wrong, if one requires that in each global step the set of active cells is

non-empty.)

Obviously, even for deterministic CA purely asynchronous updating can lead to many different possible

computations starting with the same configuration. See Section 2.3 below for further remarks on this.

We will use the prefix A- to indicate asynchronous updating (A-NCA etc.) and use the term asyn-

chronous CA (ACA) for A-DCA (with a deterministic local function!).

α-asynchronous updating. In recent years so-called α-asynchronous CA have attracted some attention.

Here, α ∈]0; 1] is a positive probability. Similar to PCA one considers the behavior (active or passive)

of each cell during a global step as a random variable, and α is the (uniform) probability of a cell to be

active. We will write β = 1− α for the probability that a cell remains passive.

We will use the prefix A(α)- to indicate α-asynchronous updating (e. g. A(0.5)-NCA etc.).

Fully asynchronous updating. In the fully asynchronous updating scheme it is required that in each

global step only exactly one cell is active. We write c ⊢fa c′ iff there is a cell i ∈ Z such that c′(i) ∈
f(ci+N ) and ∀j 6= i : c′(j) = c(j). Even for relatively simple DCA (e. g. the elementary DCA or two-

dimensional minority) the analysis of their behavior under fully asynchronous updating is surprisingly

“nonsimple” Fatès and Gerin (2008); Regnault, Schabanel, and Thierry (2009); Lee, Adachi, Peper, and

Morita (2004).

2.3 Relations between different types

We will now review some known relations between different types of CA. This quickly leads to the notion

of simulation. In the following we will speak about guest CA and guest cells and about host CA and host

cells. The host is the simulating CA and the guest is the simulated CA.

2.3.1 The obvious

It should be clear that ACA, i. e. A-DCA, are a special case of S-NCA in the following sense: Assume

that A is an ACA with local structure (Q, fA, NA). Define an NCA B with local structure (Q, fB , NB)
as follows: the set of states is the same and the neighborhood is NB = NA ∪ {0} (may be the same, too).

For each local configuration ℓ : NB → Q one requires fB(ℓ) = {ℓ(0)} ∪ fA(ℓ|NA
). (Here we use the

notation f |M for the restriction of function f to the subset M of its domain.)

Then ⊢aA is the same as ⊢sB . This is so, because given c ⊢aA c′, a cell i in configuration c′ of A has the

possibilities c(i) and fA(ci+NA
) (by definition of asynchronicity); and given c ⊢aA c′ in configuration c′ a

cell i in B has the possibilities c(i) and fA(ci+NA
) (by definition of fB) as well.

So in a very strong sense each A-DCA A can be simulated by a S-NCA B: the induced global step

relations are exactly the same. In general the reverse simulation, in the same sense, of S-NCA by A-DCA

is impossible since a cell of an S-NCA may enter one of three or more different states while a cell of an

A-DCA has at most two choices.

Analogously one can consider A(α)-DCA as a special case of PCA, but not vice versa.

2.3.2 Golze’s construction.

Golze (1978) has shown how for each S-NCA B one can construct an A-DCA A simulating B. Besides
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the obstacle of different numbers of choices just mentioned, there is another problem. Whenever one uses

some kind of asynchronous updating, there are infinite computations in which only a constant number of

cells is ever active. Such computations are not useful at all. Roughly speaking, the solution proposed by

Golze (1978) is to consider equivalence classes of space-time diagrams where for example computations

as just mentioned are equivalent to the trivial computation where nothing at all has happened.

The simulations described in Section 3 are reasonable in the sense that the overall approach is along the

lines already proposed by several authors.

It should be noted that in Golze’s construction the size of the neighborhood of the host depends on the

maximum number of nondeterministic choices in one local situation and cannot be bounded by a constant.

As we will point later in some more detail, the construction in Section 3 can be used to achieve the same

while only using von Neumann neighborhood of radius 1 in all cases.

2.3.3 Nakamura’s construction.

Nakamura (1974) has described how an S-DCA D can be simulated (again in a specific sense) by an

A-DCA A. The problem to overcome is that uncontrolled active state changes of one cell may lead to

totally “irrelevant” configurations if neighboring cells do not become active at all. We briefly sketch the

idea (citing from a paper by Worsch and Nishio (2009)).

As the set of states forA one usesQA = QD× QD×{0, 1, 2}. Let ct denote the configuration reached

by D after t steps from some initial configuration c. If in a given configuration cA of A cell j of A has

already simulated t transitions of cell j of S then cA(j) = (ct(j), ct−1(j), t mod 3). Therefore we denote

by current(q), old(q), and time(q) the first, second, and third component of a state q ∈ QA respectively.

time(q) is also called the time stamp of the cell.

In order to maintain this invariant, given q1, . . . , qk the local function fA(q1, . . . , qk) is defined as

follows, assuming without loss of generality that ν1 = 0:

• If for all i: time(qi) = time(q1) or time(qi) = time(q1) + 1 (mod 3), then

fA(q1, . . . , qk) = (fD(q′1, . . . , q
′
k), current(q1), time(q1) + 1 (mod 3)), where

q′i =

{
current(qi) if time(qi) = time(q1)

old(qi) if time(qi) = time(q1) + 1 (mod 3)

• otherwise fA(q1, . . . , qk) = q1.

If a cell is updated according to the first alternative, we will say, that it makes progress.

As in Golze’s construction also in this case for each guest CA to be simulated another host CA to

simulate is used. What we will describe in the following two sections is one host being able to simulate

all guests from an infinite set of CA.

3 Universal simulation of purely asynchronous DCA

In this section we will describe the construction of a purely asynchronous DCA able to simulate each

purely asynchronous DCA. The cases of α-asynchronous and fully asynchronous updating will be dis-

cussed in Section 4.

Since we are interested in one host being able to simulate different guests for different initial configura-

tions it is necessary to provide the host with an encoding of the local structure of the guest and an encoding
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of the initial guest configuration. These are described in Sections 3.1 and 3.2. The general structure of the

simulation is outlined in Section 3.3. This will be done in such a way that it can not only be used in the

purely asynchronous setting, but for α-asynchronous updating as well.

The description will make use of so-called asynchronous coins. These are black boxes consisting of

two adjacent cells. A toss of the coin can be requested by a signal from outside and the result will be a 0

or a 1 (once the cells have been active a constant number of times). In Section 3.3.4 it will be explained

how one can choose the local transition function for the two cells of an asynchronous coin in a purely

asynchronous host. This is the only detail which has to be modified slightly for α-asynchronous CA in

Section 4.

3.1 Encodings of local structures

For convenience we will use the alphabet {0,1,[,]} for representing all the pieces of a guest CA on the

host. Without loss of generality Q = {0, . . . , n − 1}. The encoding of a single guest state is codQ(q) =
[ bin(q)] where bin(q) ∈ {0,1}+ is the binary representation of q, all of them having the same length

⌈log2 |Q|⌉.
As the encoding of a single local rule (q1, . . . , qk, q

′) of a CA we use [ codQ(q1) · · · codQ(qk) codQ(q′)].

The whole local transition function is encoded as cod(f) = [〈concatenation of encodings of all local rules〉].

The members of the neighborhood can for example be encoded as codN (νi) = [1[ bin(−νi)]] if

νi ∈ N is negative and as codN (νi) = [0[ bin(νi)]] if νi ∈ N is non-negative. That allows to find out

easily whether a neighbor is to the left or to the right and how far. The complete neighborhood is encoded

as the word cod(N) = [ codN (ν1) · · · codN (νk)].

Finally the whole local structure of a guest CA is encoded as [ bin(|Q|) cod(N) cod(f)].

3.2 Encodings of CA configurations

Given a guest CA G an encoding codQ of its states there are different possibilities to encode a G-

configuration c. In order to avoid technical complications we will use the following.

A guest configuration c ∈ QZ is encoded by mapping each cell i to a block bi ∈ {0,1,[,]}+ which

consists of three segments:

〈block〉 = [ 〈encoding segment〉 〈state segment〉 〈coin segment〉 ]
The 〈encoding segment〉 will simply store the encoding of the guest CA. The 〈state segment〉 will store

the encoding of the current state of one guest cell (and some additional data as explained later). The

〈coin segment〉 comprises two cells realizing an asynchronous coin.

The symbols of each block are stored in adjacent host cells and the blocks corresponding to consecutive

guest cells are stored consecutively in the host.

3.3 Simulation

For the description of the simulation assume that the host is started in an initial configuration which is

the encoding of a guest configuration as just described. The operation of the host will be explained using

notions like “mark”, “signal” and “moving counter”. It is helpful to imagine that the local set of states of

the host is subdivided into several registers. The complete array of cells then consists of several tracks;

one contains the encoding of the guest configuration, while others are used for specific signals, counters,

etc.

The construction/explanation of the host is successively refined in three steps:
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• In Section 3.3.1 we review a standard construction for synchronous deterministic CA.

• In Section 3.3.2 the simple modification is added to get a simulator with asynchronous updating.

• In Section 3.3.3 we finally add the possibility to simulate guest which use asynchronous updating.

3.3.1 Synchronous Simulation of S-DCA

Parts of the following algorithm are very similar to the simulation described by Worsch and Nishio (2009).

The global steps of the guest are simulated one after the other. For each them the host proceeds as

follows:

1. Collect (the encodings of) the current states of the neighbors of the guest cell to be simulated.

For this signals have to be sent to neighboring blocks. The signals have to know how many blocks

they have to travel (and they have to travel as many blocks back to their origin). One can use a

standard signal of constant speed (smaller than 1 for the algorithms described below to work) and

attach to it a pair of binary numbers (d,D), which initially are both the number of blocks the signal

has to travel. The distance of the blocks is given by the encoded offsets of the guest neighborhood.

When a signal arrives at the right block of a neighboring guest cell the encoding of its current states

is copied and sent back to the origin.

2. Use these information to select the corresponding rules of the guest transition function.

Upon arrival of a guest state in the block that had requested it, the corresponding rules of the

transition table are marked as possibly relevant. If a state qj could be obtained from neighbor j,
state qj in the local rule [q1, . . . , qk, q

′] is marked.

The fact that all signals have returned a valid state can be recognized by the fact that in one local

rule all q1, . . . , qk are marked. This is checked each time a state is marked.

3. Update the state segment of the block. The new state of the guest cell is read off the local rule

[q1, . . . , qk, q
′] in which all of q1, . . . , qk have been marked and it is stored in the state segment.

Also, all the marks attached to any rule in the encoding segment are removed.

3.3.2 Asynchronous Simulation of S-DCA

It is easy to realize the simulation of S-DCA on an asynchronous DCA. One just has to apply Nakamura’s

transformation to the CA described in the previous Section 3.3.1.

One should note, though, that one now has a different type of simulation. In the asynchronous host

CA one can now have computations which are completely useless. As an extreme example consider the

infinite computation where in each step only host cell 0 is active. On the other hand the computation

during which in each step all host cells active is identical to the computation of the synchronous CA

described in the previous subsection.

Assume that m steps of the synchronous host are necessary in order to simulate one step of the guest

CA. Then those computations of the asynchronous host where each host cell makes progress (in the sense

of Section 2.3.3) exactly m times correspond very closely to the m-step computations of the synchronous

host.
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The more general approach by Golze (1978) is to look at (equivalence classes of) space-time diagrams.

If one is interested in the new states of only a finite number of guest cells, one can be even less restrictive.

Questions of this type will be the topic of another paper.

3.3.3 Asynchronous Simulation of A-DCA

As a third step we now want to generalize the construction above in such a way that it is possible to

simulate asynchronous guest DCA.

The goal now is to convert the asynchronous host DCA just described into a A-DCA H with the

following property: For each initial configuration c′ which is the encoding of a configuration c of an

asynchronous guest DCA G, and for each computation of G starting with c there is a computation of H
starting with c′ which simulates the above.

The problem is that one has to exploit the nondeterminism inherent to the asynchronicity of H to

systematically choose whether a guest cell should be passive (and its state left unchanged) or active (and

simulated as described above).

We will now make use of the black boxes called asynchronous coin (which will be explained in detail

in the next subsection. The behavior visible from outside is the following:

• Initially the two coin cells are in a waiting state w.

• A signal can be sent to the coin to the right, requesting a bit 0 or 1.

• Both coin cells become “alerted” and after a certain number of steps when they have been active

sufficiently often, the will have entered 00 or 11.

• The cell to the left then has to change the request signal to a corresponding result signal which does

not yet start to travel back.

• When the left coin cell (is active and) observes that the result bit has been copied it returns to the

waiting state.

• Once the cell with the result signal observes this, said signal starts traveling back.

Assuming for the moment that this indeed can be implemented, it is used as follows for the simulation of

asynchronous guests. Once all prerequisites q1, . . . qk of a local rule [q1, . . . , qk, q
′] have been marked,

instead of assuming that the simulated cell is active and automatically updating the state segment, a request

signal is sent to the coin. Only if a 1 is returned, the step of the guest cell is simulated. On the other hand

a 0 is interpreted as indication that the simulated cell is passive. In this case the state segment is not

changed; the marks at the local rules are removed nevertheless in preparation for the next possible step.

3.3.4 The “asynchronous coin”

It remains to explain how the asynchronous coin works. First we consider the somewhat easier case of

purely asynchronous updating. An asynchronous coin consists of two adjacent cells. Instead of a detailed

description of the local transition function Figure 1 captures the essence of the possible transitions of the

pair. We use possible states w, a and b, and 0 and 1.

Initially both coin cells are is state w, waiting for a request to produce a bit. For the figure we assume

that the request comes from the left and that the result also will be consumed (carried away) to the left.
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An edge indicates a possible transition from one pair of states to the next. The label of the edge shows

which cells have to be active in order to realize this transition. ’L’ means that only the left cell is active,

’R’ that only the right cell is active and ’LR” that both cells are active. The trivial loops have been omitted.

The gray ww pair at the top of Figure 1 is the start, where the coin is waiting for a request to produce a 0

or 1. When the (same) gray ww pair at the bottom has been reached, one tossing cycle has been finished.

Edges which are straight lines indicates transitions which happen without exceptions. Starting from the

top ww pair one can reach 00 as well as 11. This is the result of the coin toss.

The dashed edges indicate that cells leave a state only under certain circumstances. The transition from

ww to aw only happens when the left coin cell sees a request arriving from the left. And once the cells

have entered states 00 or 11 they start to return to ww only when the left coin cell observes that its left

neighbor has copied the produced bit.

w w a w

a a a b

b a

0 a b 0

0 0

w 0

b b

1 b b 1

1 1

w 1

w w

L,LR

LR,R
LR,R

R

L LR

L R
LR

LR,R L,LR

L,LR

LR,R

L R
LR

LR,R L,LR

L,LR

LR,R

Fig. 1: The purely asynchronous coin.

There is one additional problem which has to be taken care of. In Section 3.3.2 the asynchronous host

has been constructed from a synchronous one by applying Nakamura’s technique.

But since the host is asynchronous it can happen that the asynchronous coins for neighboring guest

cells produce their results after significantly different numbers of (host) steps. As a consequence it could

happen that a guest state is requested (by a neighboring block) before it is computed. One possibility to

avoid this is as follows: The mod 3 counter of the host cells is extended by an additional possible time

stamp which is denoted by −1. It is interpreted as being “older” than each of the values 0, 1 and 2, so that
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no activity can pass a cell with time stamp −1.

It suffices to slightly modify the behavior of the left coin cell. When it changes from state w to state a,

it makes a backup of its time stamp and sets it to −1. The right coin cells copies this behavior. After both

have returned to state w they reset their time stamp to the value backed up before.

4 Generalizations

4.1 Universality for α-asynchronous CA

One might have wondered why we did not choose a more symmetric approach in the previous section.

Indeed one could exchange the roles of ’bb’ and ’ab’ at the top of Figure 1 without destroying the con-

struction. But for the construction shown in Figure 2 for α-asynchronous CA this “asymmetry” is vital.

Our goal now is to describe an α-asynchronous host which is able to simulate all α-asynchronous

guests; we want the same probability for guests and host. Remember that a cell is active with probability

α and passive with probability β = 1− α.

Figure 2 results from Figure 1 by replacing the label ’L’, ’R’, ’LR’, etc. with the corresponding prob-

abilities. An edge labeled ’L’ (or ’R’) represented the case that exactly one of the two cells is active.

In α-asynchronous CA this happens with probability αβ. An edge label-led ’LR’ represented the case

that both cells are active. In α-asynchronous CA this happens with probability α2. An edge label-led

’L,LR’ (or ’LR,R’) represented the case that either exactly one of the two cells is active or both. In

α-asynchronous CA this happens with probability αβ + α2 = α(β + α) = α.

It is now easy to deduce the probabilities for the events that the pair of cells enters states 00 and 11

respectively. 00 will happen with probability αβ/(αβ +α2) = β, while 11 will happen with probability

α2/(αβ + α2) = α.

4.2 Universality for fully asynchronous CA

The construction of a fully asynchronous host which is able to simulate any fully asynchronous guest is

beyond the scope of this paper. The problem is that the host has to ensure that for the simulation of one

step of the guest exactly one guest cell is active. Currently the only possibility we are aware of is to use

encodings which contain only one asynchronous coin. Thus one needs an encoding for configurations

which is does not commute with the shift. Such an approach has been used in the literature (see e. g.

Durand-Lose, 2000). But it is so different from the encodings used above, that we will not discuss this

topic in this paper.

4.3 Asynchronous DCA which are universal for all asynchronous NCA

The host constructed in Section 3.3.3 can be generalized such that it can even simulate any asynchronous

non-deterministic CA. We briefly sketch some modifications which are sufficient.

As the encoding of NCA one can choose the obvious generalization of the one described in Section 3.1:

For each q′ ∈ f(q1, . . . , qk) one adds [ codQ(q1) · · · codQ(qk) codQ(q′)] to encoding of the local transi-

tion function.

During the simulation of one global the situation may arise that at least two local rules are marked after

the guest states from the guest neighbors have been retrieved. In such a situation

• first, the leftmost applicable local rule get a special mark.
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w w a w

a a a b
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0 a b 0
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α α
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αβ α2

αβ βα
α2

α α

α

α

αβ βα
α2

α α

α

α

Fig. 2: The α-asynchronous coin. Missing probabilities belonging to self loops not shown for clarity.

• Then the asynchronous coin is used to produce a sequence of bits up to the first 1. The arbitrary

number of 0 generated before is used move the special mark from one applicable rule to the next

one in a cyclic manner.

When the 1 appears, the local rule which has the special mark at that time is used for the transition.

5 Summary and Outlook

We have shown that there is one purely asynchronous DCA which can simulate all purely asynchronous

DCA, and similarly for α-asynchronous DCA. A by-product was an asynchronous but “otherwise” deter-

ministic CA that can simulate all asynchronous nondeterministic CA. This improves an earlier construc-

tion by Golze.

We have restricted ourselves to one-dimensional CA, but only in order keep the descriptions and no-

tations a little bit simpler. The generalizations of the above results to higher dimensions are straight

forward.

A similar result for fully asynchronous CA can be obtained but it seems to require a less stringent

definition of simulation.

In our opinion one major interesting open problem is: Can a definition and concepts of intrinsic uni-

versality as proposed by Ollinger (2008); Delorme et al. (2010) be generalized to CA which are not

synchronous and deterministic? It may be that the idea of U -V -simulation proposed by Golze (1978) is
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useful in this context.
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Undecidability of the Openness problem of
multidimensional cellular automata

Charalampos Zinoviadis†

University of Turku, Department of Mathematics, Turku 20014, Finland

We prove that given a multidimensional cellular automaton,it is undecidable whether the transition function de-
fined by it is open with respect to the standard topology. Thisis another difference between the properties of one-
dimensional cellular automata and their multidimensionalcounterparts. The proof is based on a modification of Kari’s
original proof of the undecidability of the reversibility problem for multidimensional cellular automata.

Keywords: Cellular automata, dimension sensitive properties, openness, plane-filling property.

1 Preliminaries
We will use the abbreviation1-D , 2-D , d-D for one-dimensional, two-dimensional andd-dimensional,
respectively.

Let S be a finite set ofstatescalled thealphabet. A d-D configurationoverS is a functionc: Zd → S

that assigns a state to every position of thed-D grid Zd. The set of all thed-D configurationsSZ
d

is called
thed-D full shift.

We can endow the spaceSZ
d

with a topology so that the resulting topological space is compact. The
simplest way to describe this topology is by use of thecylinders

Cyl(D, p) = {c ∈ SZ
d

: c(~n) = p(~n), for every~n ∈ D} (1)

whereD is a finite subset ofZd andp:D → S assigns states only to the cells ofD.
It can be easily seen that the cylinders satisfy the axioms for being a base of a topology.
Cellular automata(CA from now on) are defined formally as quadruplesA = (d, S,N, g), where

• d ≥ 1 is thedimensionof A,

• S is an alphabet called thestate set,

• N = ( ~n1, ~n2, . . . , ~nm), where~ni ∈ Zd and ~ni 6= ~nj for i 6= j is theneighborhood vector, and

†This work has been supported by the Alexander S. Onassis Public Benefit Foundation and by the Academy of Finland grant
131558.
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• g:Sm → S is thelocal function.

Here,d defines the dimension of the configurations on whichA will work. For example, ifd = 1 then
the space on whichA acts isSZ. The elements of the neighborhood vector specify the (ordered) relative
locations of the neighbors of a cell: the neighbors of cell~n are the cells~n+N = (~n+ ~n1, ~n+ ~n2, . . . , ~n+
~nm).

In every time step, the local ruleg is used to change a configurationc to another onec′ in the following
way:

c′(~n) = g(c(~n+N)) = g(c(~n+ ~n1), c(~n+ ~n2), . . . , c(~n+ ~nm)) (2)

The transformationc 7→ c′ defines a global function

G:SZ
d → SZ

d

, (3)

the transition functionof the CA. This is our main object of study. In fact, when we talk about a CA, we
will often refer only to its transition function.

A CA is calledreversibleif it is bijective and its inverse function is also a CA. The following proposition
is a classical result concerning reversible CA:

Proposition 1 A CA is reversible if and only if it is injective.

Wang tilesare unit squares with colored edges. A finite setT of tiles is called atile set. A tiling with
tiles from the tile setT is a functionc: Z2 → T . Intuitively, a tiling is a way to fill the plane with unit
squares fromT , where abutting squares are put side-to-side. Notice that we are not allowed to rotate the
tiles. A tiling c is valid at point(x, y) ∈ Z2 if the edges of the tilec(x, y) have the same color as the
abutting edges of its neighboring tiles, i.e. if the upper edge of c(x, y) has the same color as the lower
edge ofc(x, y+1), the right edge ofc(x, y) has the same color as the left edge ofc(x+1, y) etc. A tiling
c is calledvalid if it is valid at all points(x, y) ∈ Z2. We also use the expression thatT admitsthe valid
tiling c.

The following proposition states a fundamental fact about Wang tiles:

Proposition 2 (Compactness principle)If a tile set can tile validly arbitrarily large squares, then it can
tile validly the whole plane.

Finally, let us introduce the decision problem from which wewill do our reduction in Section 4:

• Domino problem

• Input : An arbitrary Wang tile setT .

• Question: DoesT admit a valid tiling?

The following proposition is the single most famous result about Wang tiles:

Proposition 3 (1; 2) The Domino problem is undecidable.
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2 The plane-filling property

Directed tilesare normal Wang tiles to which afollower vector ~f ∈ Z2 is associated. Adirected tile
set is a set of directed tiles, i.e. a pair(T , F ), whereT is a Wang tile set andF :S → Z2 is a function
that assigns a follower vector to every tile. From now on, we will refer to a directed tile set using only
its ”base” tile setT . Let c ∈ T Z

2

be a tiling, which is not necessarily a valid tiling, and let~p ∈ Z2 be
a position of the plane. The notion of validness ofc in position~p is the same as in the undirected case,
which means that we do not care about follower vectors when weconsider whetherc is valid in ~p or not.
The follower of~p in c is the position~p + F (c(~p)). In other words, the follower is the cell to which the
follower vector of the tile in position~p is pointing to. Notice that in different tilings the same position
might have different followers. However, we will usually talk about the follower of a position, assuming
that the tiling to which we are referring is fixed. Also, observe that the notions of follower position and
validness are independent. Otherwise stated, in a tilingc ∈ T Z

2

every position has a follower, not only
those positions wherec is valid. In the tile set we are going to use, the follower of every position is one of
the four adjacent positions, that isF (a) ∈ {(±1, 0), (0,±1)}, for everya ∈ T .

A sequence~p1, ~p2, . . . , ~pk, where every~pi ∈ Z2, is called apathon c if ~pi+1 is the follower of~pi, for
everyi = 1, 2, . . . , k−1. The notion of atwo-way infinite pathis defined analogously in the obvious way.

A directed tile setT is set to have theplane-filling propertyif it satisfies the following conditions:

1. T admits a valid tiling of the plane.

2. For every tilingc ∈ T Z
2

, only two different types of infinite paths can appear:

(a) There exists a position on the path where the tiling is notvalid, or

(b) the path covers arbitrarily large squares.

Therefore, if the tiling conditions are not violated on any position of the path, then for everyn ≥ 1, there
exist ann×n square each tile of which is visited by the path and, hence thepath must be infinite. Notice,
also, that this condition does not claim anything about the validity of the whole configuration. As long
as the configuration is valid on the path, arbitrarily large squares are visited. This does not prevent tiling
errors from occuring outside the path.

The above definitions would have absolutely no meaning if notfor the following proposition, whose
proof will not be given.

Proposition 4 (3) There exists a fixed directed tile setK with the plane-filling property.

We will also need the following lemma:

Lemma 1 (4) LetK be the tile set of Proposition 4. There exists a valid tilingk ofK where all positions
of the plane belong to the same path, i.e. they form a two-way infinite, non-intersecting, plane-filling path.

3 Open CA

LetG:AZ
d → AZ

d

be a CA. Then,G is calledopenif G(W ) is open for every openW ⊆ SZ
d

, that is if
G is an open function with respect to the standard topology.
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Let F be a1-D CA with state setS, neighborhood{0, 1} and local rulef . We say thatF is left-
permutiveif for everyb, c ∈ S, there exists a uniquea ∈ S such thatf(a, b) = c. This also means that if
a1 6= a2 andf(a1, b1) = f(a2, b2), thenb1 6= b2.

Two configurationsc1, c2 ∈ SZ are calledleft-asymptoticif there existsm0 ∈ Z such thatc1(m) =
c2(m), for everym ≤ m0. Right asymptoticconfigurations are analogously defined. A1-D CA F is
calledright-closingif F (c1) 6= F (c2), for every pair of left-asymptotic, non-equal configurationsc1, c2.
The definition ofleft-closing1-D CA can be given in a similar way. It is easy to see that a left-permutive
CA is also left-closing.

For the1-D case, there exists the following characterization of open CA:

Proposition 5 (5) A1-D CA is open if and only if it is both right- and left-closing.

Corollary 1 There exists a1-D CA F that is left-permutive but not open.

Proof: Let F :SZ → SZ be the1-D CA with the neighborhood{0, 1} and the following local rule:

x

y
0 1

1

2

10

20

0

1

2 2

1

0

2

F is left-permutive as every column of its transition matrix is a permutation of the state set. However,
asF (ω0.1ω) = F (ω0.2ω) = ω01.0ω, F is not right-closing. According to Proposition 5,F is not open.
2

4 Undecidability of the openness problem
In this final section, we will prove that the following decision problem is undecidable:

• Openness problem ofd-D CA, d ≥ 2.

• Input : An arbitraryd-D CA G.

• Question: IsG open?

The respective problem for1-D CA is known to be decidable, see (6). In fact, using methodssimilat
to the ones introduced in (8), a simple polynomial time algorithm can be given for testing right- and left-
closingness. According to Proposition 5, this gives a polynomial time algorithm for testing openness of
1-D CA.

It is easy to see that it is enough to prove the result ford = 2.

Proposition 6 The Openness problem of2-D CA is undecidable.
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Proof: We are going to reduce the Domino problem to the Opennes problem of 2-D CA. Given an
arbitrary tile setT , we algorithmically construct the following2-D CA G: The state set isS = K × T ×
{0, 1, 2}, whereK is the fixed tile set from Proposition 4. Therefore, the CA is working on configurations
consisting of three different layers. In the first layer, there exist tiles from the fixed tile setK; in the
second layer there exist tiles from the arbitrary tile setT , and on the third one there are the letters0,1
and2. Let us call these layersK-layer,D-layer and letter-layer repsectively. The neighborhood used
is {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)}, so that every cell looks at the state of itself and those of its
immediate neighbors in order to determine its state in the next time step. The local rule only updates the
letter components of a position~p according to the following rule:

• If either theT -layer or theK-layer contains a tiling error at~p, then the letter is not changed, but

• if the tiling is valid in both theK- andT -layers in~p, then the letter of position~p is changed to
f(a, b), wheref is the local rule of the1-D CA defined in Corollary 1,a is the current letter in
position~p andb is the letter of the follower of~p.

Let us now prove that this CA is not open if and only ifT admits a valid tiling. This reduces the Domino
problem to the Openness problem of2-D CA and, hence, completes the proof.

Suppose thatT admits a valid tilingt. Arguing by contradiction, assume thatG is open. Letk be the
validK-tiling from Lemma 1 and consider the setB = k × t × {0, 1, 2}Z2

. Since ink there exists only
one path and bothk andt are valid everywhere, the restriction ofG onB is in some sense the same as
the1-D CA F . Indeed, the unique path ink defines a homeomorphismφ: Z2 → Z that preserves open
sets and in additionG(k, t, c) = (k, t, F (φ(c))). Hence, identifyingW ⊆ Z2 with φ(W ) ⊆ Z, we have
thatG−1(B) = B andG(k, t,W ) = (k, t, F (W )), for everyW ⊆ {0, 1, 2}Z2

. According to Theorem
1,page 116 in (7), ifW ⊆ {0, 1, 2}Z2

is open, thenG(k, t,W ) = (k, t, F (W )) is also open in the relative
topology. In addition, since it is a basic topological fact that all projections are open,F (W ) is also open.
But this means thatF is an open CA, which is a contradiction. Therefore,G is not open.

Suppose, then, thatG is not open. Since reversible CA are always open,G is not reversible either.
Using Proposition 1, we can conclude thatG is not injective. This means that there exist two different
configurationc1 andc2 such thatG(c1) = G(c2). The tile components are not changed byG and thus
they must be identical inc0 andc1, so there exists a position~p1 where they have different letters. Using
the left-permutativity off and the fact that after the application ofG these letters become identical, we

Reversible CA

Non-open CA

Open CA

Fig. 1: Reversible CAs are recursively inseparable from non-open CAs.
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can see that the configurations are valid in both layers and the letters in the follower~p2 of ~p1 must also be
different. Repeating this reasoning, we obtain an infinite path ~p1, ~p2, ~p3, . . . such that the tiling conditions
are satisfied in both theK- andT - components at all positions of the path. SinceK has the plane-filling
property, this infinite path covers arbitrarily large squares. Therefore,T can tile validly arbitrarily large
squares, which means that it admits a valid tiling of the whole plane, according to Proposition 2. 2

By looking a little closer to the CAG of the previous proof, we can see that it is reversible if and only
if it is open. Hence, we have actually proven something stronger than the claim of Proposition 6, namely
that the class of reversible2-D CA is recursively inseparable from the class of non-open ones.
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