6,854 research outputs found

    Postmortem iris recognition and its application in human identification

    Full text link
    Iris recognition is a validated and non-invasive human identification technology currently implemented for the purposes of surveillance and security (i.e. border control, schools, military). Similar to deoxyribonucleic acid (DNA), irises are a highly individualizing component of the human body. Based on a lack of genetic penetrance, irises are unique between an individual’s left and right iris and between identical twins, proving to be more individualizing than DNA. At this time, little to no research has been conducted on the use of postmortem iris scanning as a biometric measurement of identification. The purpose of this pilot study is to explore the use of iris recognition as a tool for postmortem identification. Objectives of the study include determining whether current iris recognition technology can locate and detect iris codes in postmortem globes, and if iris scans collected at different postmortem time intervals can be identified as the same iris initially enrolled. Data from 43 decedents involving 148 subsequent iris scans demonstrated a subsequent match rate of approximately 80%, supporting the theory that iris recognition technology is capable of detecting and identifying an individual’s iris code in a postmortem setting. A chi-square test of independence showed no significant difference between match outcomes and the globe scanned (left vs. right), and gender had no bearing on the match outcome. There was a significant relationship between iris color and match outcome, with blue/gray eyes yielding a lower match rate (59%) compared to brown (82%) or green/hazel eyes (88%), however, the sample size of blue/gray eyes in this study was not large enough to draw a meaningful conclusion. An isolated case involving an antemortem initial scan collected from an individual on life support yielded an accurate identification (match) with a subsequent scan captured at approximately 10 hours postmortem. Falsely rejected subsequent iris scans or "no match" results occurred in about 20% of scans; they were observed at each PMI range and varied from 19-30%. The false reject rate is too high to reliably establish non-identity when used alone and ideally would be significantly lower prior to implementation in a forensic setting; however, a "no match" could be confirmed using another method. Importantly, the data showed a false match rate or false accept rate (FAR) of zero, a result consistent with previous iris recognition studies in living individuals. The preliminary results of this pilot study demonstrate a plausible role for iris recognition in postmortem human identification. Implementation of a universal iris recognition database would benefit the medicolegal death investigation and forensic pathology communities, and has potential applications to other situations such as missing persons and human trafficking cases

    An LBP based Iris Recognition System using Feed Forward Back Propagation Neural Network

    Get PDF
    An iris recognition system using LBP feature extraction technique with Feed Forward Back Propagation Neural Network is presented. For feature extraction from the eye images the iris localization and segmentation is very important task so in proposed work Hough circular transform (HCT) is used to segment the iris region from the eye mages. In this proposed work Local Binary Pattern (LBP) feature extraction technique is used to extract feature from the segmented iris region, then feed forward back propagation neural network is use as a classifier and in any classifier there to phases training and testing. The LBP feature extraction technique is a straightforward technique and every proficient feature operator which labels the pixels of an iris image by thresholding the neighbourhood of each pixel and considers the feature as a result in form of binary number. Due to its discriminative efficiency and computational simplicity the LBP feature extractor has become a popular approach in various recognition systems. This proposed method decreased the FAR as well as FRR, & has increases the system performance on the given dataset. The average accuracy of proposed iris recognition system is more than 97%

    A high performance biometric system based on image morphological analysis

    Get PDF
    At present, many of the algorithms used and proposed for digital imaging biometric systems are based on mathematical complex models, and this fact is directly related to the performance of any computer implementation of these algorithms. On the other hand, as they are conceived for general purpose digital imaging, these algorithms do not take advantage of any common morphological features from its given domains. In this paper we developed a novel algorithm for the segmentation of the pupil and iris in human eye images, whose improvement’s hope lies in the use of morphological features of the images of the human eye. Based on the basic structure of a standard biometric system we developed and implemented an innovation for each phase of the system, avoiding the use of mathematical complex models and exploiting some common features in any digital image of the human eye from the dataset that we used. Finally, we compared the testing results against other known state of the art works developed over the same dataset.publishedVersionFil: Rocchietti, Marco Augusto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Scerbo, Alejandro Luis Ángel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Ciencias de la Computació

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Methods for iris classification and macro feature detection

    Get PDF
    This work deals with two distinct aspects of iris-based biometric systems: iris classification and macro-feature detection. Iris classification will benefit identification systems where the query image has to be compared against all identities in the database. By preclassifying the query image based on its texture, this comparison is executed only against those irises that are from the same class as the query image. In the proposed classification method, the normalized iris is tessellated into overlapping rectangular blocks and textural features are extracted from each block. A clustering scheme is used to generate multiple classes of irises based on the extracted features. A minimum distance classifier is then used to assign the query iris to a particular class. The use of multiple blocks with decision level fusion in the classification process is observed to enhance the accuracy of the method.;Most iris-based systems use the global and local texture information of the iris to perform matching. In order to exploit the anatomical structures within the iris during the matching stage, two methods to detect the macro-features of the iris in multi-spectral images are proposed. These macro-features typically correspond to anomalies in pigmentation and structure within the iris. The first method uses the edge-flow technique to localize these features. The second technique uses the SIFT (Scale Invariant Feature Transform) operator to detect discontinuities in the image. Preliminary results show that detection of these macro features is a difficult problem owing to the richness and variability in iris color and texture. Thus a large number of spurious features are detected by both the methods suggesting the need for designing more sophisticated algorithms. However the ability of the SIFT operator to match partial iris images is demonstrated thereby indicating the potential of this scheme to be used for macro-feature detection

    Hand Geometry Techniques: A Review

    Full text link
    Volume 2 Issue 11 (November 2014

    Robust iris recognition under unconstrained settings

    Get PDF
    Tese de mestrado integrado. Bioengenharia. Faculdade de Engenharia. Universidade do Porto. 201
    corecore