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Resumo

Nos últimos anos, diversos autores têm vindo a reconhecer que o caminho a seguir, relativamente
ao reconhecimento da íris, prende-se com o desenvolvimento de algoritmos capazes de ultrapassar
as condições em que as imagens são adquiridas, funcionando independentemente destas. Apesar
de alguns algoritmos para reconhecimento da íris terem já sido publicados, com taxas de precisão
excelentes, trabalhos recentes têm tentado alcançar reconhecimento robusto e não controlado da
íris, de forma a desenvolver métodos para aplicações de uso corrente, como sistemas de segu-
rança em aeroportos ou controlo de transferências bancárias por telemóvel. No seguimento desta
ideia é necessário o desenvolvimento de novos algoritmos que ultrapassem as limitaçoes existentes
aquando da utilização de imagens adquiridas em condições não favoraveis.

Neste trabalho é proposto um novo algoritmo de segmentação e reconhecimento da iris baseado
em divergência de gradiente, em conceitos teóricos de grafos e em descritores de pontos de inter-
esse SURF. Informação de contexto mútuo, incluindo a divergência do gradiente, a forma do con-
torno límbico e intensidade do gradiente ao longo deste, atuam conjuntamente, de forma a de-
tetar o melhor par centro/contorno de um conjunto de candidatos. O reconhecimento foi efectuado
extraindo descritores de pontos de interesse utilizando o algoritmo Speeded Up Robust Features
(SURF) e calculando os erros de matching entre os melhores pares de pontos de interesse de duas
imagens.

O método proposto foi avaliado, inicialmente, na base de dados UBIRISv2, com um erro mé-
dio de segmentação de 5.72% e um erro máximo de 14.74% (valores normalizados em relação
ao raio da íris). Com o objetivo de tentar desenvolver algoritmos com boa performance de re-
conhecimento para utilização em dispositivos móveis, uma nova base de dados (VCMI - Visual
Computing and Machine Intelligence) foi criada, utilizando imagens adquiridas recorrendo a uma
câmara digital convencional e a um smartphone Nokia. Com estas imagens, os resultados de seg-
mentação mostraram ser um pouco Com estas imagens, os resultados de segmentação mostraram
ser um pouco piores quando comparados com os obtidos para a base de dados UBIRISv2, com
um erro médio de 8.18% e de 12.07% para o smartphone e a câmara fotográfica, respectivamente.
Contudo, as im- agens da base de dados VCMI apresentaram valores de equal error rate (EER)
de 5.56% e 9.35% , valores significativamente menores quando comparados com as imagens da
UBIRISv2 (39.2%). Esta discrepância pode dever-se quer à falta de detalhe das imagens da base
de dados UBIRSv2, quer à incapacidade do algoritmo desenvolvido quando exposto a imagens
de resolução menor. O desenvolvimento de novas métricas de dissimilaridade poderá levar a uma
melhoria significativa nos resultados propostos.
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Abstract

In recent years many authors have recognized that the path forward, regarding biometrics and iris
recognition in particular, is the development of iris recognition systems that can work indepen-
dently of the conditions under which iris images are acquired. Even though several algorithms
for iris recognition are already published, with excellent accuracy rates, recent works are trying to
achieve robust and unconstrained iris recognition in order to develop real-world applicable meth-
ods, such as security in airports or bank account management through mobile devices, for exam-
ple. With that in mind new algorithms are needed that can overcome the limitations posed by
working with images acquired under non-ideal conditions.

In the present work a new iris segmentation and recognition algorithm based on gradient flow,
theoretical graph concepts and SURF point of interest descriptors is proposed. Mutual context in-
formation from iris center probability, limbic contour shape and gradient intensity work together
to detect the best center/contour pair from a set of candidates. Recognition was performed by
extracting point of interest descriptor vectors using the Speeded Up Robust Features (SURF) al-
gorithm and computing the matching error between the best point of interest matches between two
images.

The proposed methodology was evaluated initially in the UBIRISv2 database, with a 5.72%
mean and 14.74% maximum segmentation error, with respect to the radius of the iris. With the
goal of analyzing the applicability of the proposed algorithm in images acquired with mobile de-
vices, a new unconstrained iris database, the VCMI (Visual Computing and Machine Intelligence)
database, was created using simple portable devices, such as a smartphone and a standard digital
consumer camera. With such images the segmentation results were slightly worse than for the
UBIRISv2 images, with mean errors of 8.18% and 12.07% for the smartphone and digital camera
images respectively. However, the VCMI images presented equal error rate (EER) values of 5.56%
and 9.35%, which were both significantly lower than the value obtained for the UBIRISv2 images
(39.2%). These discrepancies might indicate either a limitation of the UBIRISv2 database, as far
as recognition algorithm evaluation is concerned, or a limitation concerning the minimum reso-
lution under which the proposed algorithm works correctly. The development of new similarity
metrics might lead to a significant improve on the present results.
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“Every day is a new day. It is better to be lucky. But I would rather be exact. Then when luck
comes you are ready.”

Ernest Hemingway, “The Old Man and the Sea”
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Chapter 1

Introduction

1.1 Overview

The accurate recognition of an individual, from a given set of possibilities, represents a criti-

cal issue in many areas, especially concerning security. The development of reliable and robust

recognition methods has become an increasing challenge over time, due to limitations inherent to

such systems. The use of an identifying item (magnetic card, password, etc.) is still, as of today,

the most widespread method of identification. It is not complicated, however, to imagine the rel-

ative ease with which a system based on these prerogatives may be deceived: the password can

be acquired from the person who would, ideally, be the only one to know it; one card can be lost

and found by another person, etc. Thus the paradigm of personal recognition has shifted from the

use of something that person has to something a person is. This is where biometrics, the methods

for uniquely recognizing humans based on physical and behavioral characteristics of living things

(Jain et al., 2000) may play an important role.

1.2 Motivation

Several biological traits in humans show a considerable inter-individual variability: fingerprints

and palmprints, the shape of the ears, the pattern of the iris, among others. Biometrics works by

recognizing patterns within these biological traits, unique to each individual, to increase the relia-

bility of recognition. Among all the biometric variables that are the subject of research nowadays,

the iris presents itself as a leading candidate to become the standard biometric trait: the variability

is huge, apart from being an organ easily accessible and very difficult to modify. Currently, there

are several systems based on iris recognition with excellent rates of success. However, these re-

sults are due to the very constrained conditions under which iris data is acquired (IR illumination

of the eye, user collaboration, etc.). The new challenges for iris biometric systems arise when the

attempt is made to perform iris recognition without user cooperation or under less ideal condi-

tions (subject on the move, natural illumination, distance, etc.). If there was a system capable to

work under such unconstrained settings, individuals could be covertly identified, that is, identified

1



2 Introduction

without knowing they were being identified. This would represent a huge step forward in security.

Some other applications would be a user friendly method for personal verification, something like

a biological password, unique for every human, acquirable by a simple smartphone camera for

example.

1.3 Objective

The main objective of the present dissertation is the development of robust algorithms for the

detection, segmentation and recognition of the human iris in non-ideal conditions. Such algorithm

was tested both in the UBIRISv2 database (Proença et al., 2010), developed by Hugo Proenca from

Universidade da Beira Interior, and a newly created database developed by the author and some

collaborators of the project. One of the proposed objectives was also to test the application of

the developed algorithms using images acquired with mobile devices, with possible future mobile

recognition applications in mind. As, to our knowledge, no iris database has been developed using

only mobile devices, a new iris database, the VCMI database, was created integrated in the present

dissertation.

1.4 Contributions

The proposed work had three main contributions: first it suggested a gradient flow based algo-

rithm for iris center detection with a variation of a shortest path algorithm to detect iris contour.

Second it used mutual context information from two data sources (iris center and limbic contour)

to perform segmentation of the iris. Finally a new iris database was created, using solely mobile

devices (smartphone and camera), to analyse the usability of the developed algorithms in such

environments. Two papers were produced in the ambit of the present work, with one of them still

awaiting review:

• Monteiro, J. C., Oliveira, H. P., Sequeira, A. F., and Cardoso, J. S. (2012). Gradient flow

based iris segmentation in noisy images. Paper presented at the 1st PhD Students’ Confer-

ence in Eletrical and Computer Engineering, Porto, Portugal.

• Monteiro, J. C., Oliveira, H. P., Sequeira, A. F., and Cardoso, J. S. Robust Iris Recognition

Under Unconstrained Settings. ISRN Machine Vision (submitted).

1.5 Structure of the Dissertation

Besides the introduction, this dissertation is composed of five more chapters. In chapter 2 a global

introduction to the field of biometrics will be presented. In chapter 3 some insight will be provided

regarding the use of the human iris for identification. Still in this chapter the pioneer and state-

of-the-art algorithms for iris recognition, as well as the most recent trends in the area, will be

presented, with major focus on the works for unconstrained iris recognition. Chapter 4 describes
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the developed algorithm, whose main results are presented in Chapter 5. Finally, chapter 6 serves

as a conclusion to the presented dissertation, while presenting a set of future improvements for the

developed algorithm.
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Chapter 2

Biometrics

2.1 Why Biometrics?

From times immemorial mankind has relied on specific features, such as face or voice, to dis-

tinguish between individuals. The term biometrics has evolved through time, as technological

breakthroughs made available new and powerful tools, and nowadays it can be defined as the

automated measurement of intrinsic biological features of a human being, with the objective of

obtaining quantitative values that allow us to, with a high degree of confidence, distinguish be-

tween separate individuals (Proença, 2007). The importance of biometrics is strongly related with

the rising need of reliable recognition systems with multiple purposes and applications, from se-

curity to forensics (Jain et al., 2000). In almost everyone’s daily activities, personal identification

plays an important role. The most traditional techniques to achieve this goal are knowledge-based

and token-based automatic personal identifications. Token-based approaches take advantage of

a personal item, such as a passport, driver’s license, ID card, credit card or a simple set of keys

to distinguish between individuals. Knowledge-based approaches, on the other hand, are based

on something the user knows that, theoretically, nobody else has access to. Examples of these

systems are passwords or personal identification numbers (PIN). Both of these approaches present

obvious disadvantages: tokens may be lost, stolen, forgotten or misplaced, while passwords can

easily be forgotten by a valid user or guessed by an unauthorized one (Jain et al., 2000). In fact,

all of these approaches stumble upon an obvious problem: any piece of material or knowledge can

be fraudulently acquired, making token and knowledge-based identification unsatisfactory means

of achieving the security requirements set by our society’s needs. Some works put numbers on

these disadvantages’ consequences: in 1998, Anil Jain’s research (Bolle and Pankanti, 1998) in-

dicated that 6 billion dollars were reported lost every year as a result of identity fraud, in some

areas where security played a key role: credit-card transaction, cellular phone calls, ATM with-

drawals, etc. Biometrics represents a return to a more natural way of identification: many physical

or behavioral characteristics are unique between different persons and these markers are inher-

ently more reliable than knowledge-based or token-based techniques. Testing someone by what

this someone is, instead of relying on something he owns or knows seems likely to be the way

5
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forward: it is clearly more difficult to change a fingerprint or gait pattern than acquiring a physical

item or piece of knowledge. Taking advantage of specific unique biometric features to develop ro-

bust and reliable identification systems is, therefore, an important challenge for the years to come,

to accompany the growth of technological innovation and the security challenges that such growth

will undoubtedly carry.

2.2 A brief historical overview

Use of human physical and behavioral patterns for identification is as old as mankind itself. Some

paintings in a cave in Avignon, France, dated 31.000 years, and depicting hunting scenes, are ac-

companied by palm prints (Figure 2.1) that archeologists believe to have been used as some kind

of a specific signature by the author (Bala, 2008; Renaghan, 1997). One does not even need to

know history to understand that mankind has always relied on faces and voices to distinguish be-

tween familiar and unfamiliar individuals. However, if written accounts of biometrics are needed

to establish the birth of this science, one must turn to Portuguese writer Joao de Barros, who, in the

14th century, reported its first known application. According to his writings Chinese merchants

stamped children’s palm and foot prints on paper with identification purposes (Proença, 2007;

Bala, 2008).

Figure 2.1: Palmprint discovered in a cave in Avignon, France, dated 31.000 years (Barnett et al.,
2006).

In the 19th century, the first scientific and systematic method for human identification was cre-

ated by French anthropologist Alphonse Bertillon who introduced the use of a number of physical

measurements to identify usual criminals (Jain and A., 2010; Proença, 2007). This method con-

sisted of identifying people by performing several body measurements such as height, arm length,

length and breadth of the head, length of fingers, length of forearms, etc. (Angle et al., 2005). As it

can be deduced by the significant number of features, and their schematization in Figure 2.2, this

was a very time consuming process, which could take up to twenty minutes per person. This fact,



2.2 A brief historical overview 7

Figure 2.2: Schematization of some of the measurements performed as part of Bertillon’s recog-
nition system (Proença, 2007).

combined with the introduction of human fingerprints early in the 1900s, turned the Bertillonage

obsolete, eventually leading to its demise.

In 1880, an article was published in the British scientific journal Nature, where its authors,

Henry Faulds and William James, described the unique nature of fingerprints (Proença, 2007).

Soon after, Sir Francis Galton developed the first elementary fingerprint recognition system, soon

improved by Sir Edward Henry (Figure 2.3) who, for criminal identification purposes, established

the fingerprint Bureau in Calcutta in 1897 [8]. The success of Henry’s method quickly dissemi-

nated throughout the world and led to the inauguration of the first fingerprint system in the United

States in 1903 in the New York State Prison (Proença, 2007). From that point onwards fingerprint-

ing grew on to become the standard security biometric system for worldwide. Nowadays, virtually

all law enforcement agencies use Automatic Fingerprint Identification System (AFIS) (Jain and

A., 2010).

Nevertheless, fingerprints are also facing the risk of becoming an ineffective trait for the pur-

poses they were considered the gold standard for almost a century. With growing concerns about

terrorist activities, security breaches and financial fraud, an increasing number of private and gov-

ernmental companies, with either military or civil purposes, have been investing a considerable

amount of human and financial resources in the attempt of developing biometric systems based on
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Figure 2.3: Examples of patterns used in Sir Edward Henry’s fingerprint classification sys-
tem (Chang and Fan, 2002).

other physical and behavioral human characteristics such as face, iris, palm print and signature (all

of these traits and other will be presented in detail in later sections) (Proença, 2007; Jain and A.,

2010). In the last few years biometrics has started to find its way into an incredibly heterogenic

group of applications, as contrasting as border crossing or visits to Walt Disney Parks, as it grew

to become a mature technology with lots of promise in the years to come (Jain and A., 2010).

2.3 Basic concepts of biometrics

2.3.1 System architecture

A biometric system can be viewed as a pattern recognition system that establishes the authenticity

of a user based on specific physical or behavioral traits. All biometrics systems, independently of

the chosen trait to serve as its basis, follow a specific process, as schematized in Figure 2.4, which

can be divided into two main blocks: enrollment and identification (Jain et al., 2000; Proença,

2007). Enrollment consists in the acquisition of data which is known to belong to a certain indi-

vidual. In this way a database can be built containing template data concerning a specific group of

individuals. Enrollment can, therefore, be simply designated as the registration of a new individual

to the database. Identification consists in data capturing and feature extraction to create a specific

biometric signature. This signature is compared to the several biometric signatures (exactly how

many depends on the mode of operation, as described below), already stored as templates in the

database, yielding, for each one, a similarity value. One assumes that two signatures come from

the same person if this similarity values exceeds a specific threshold (Proença, 2007). The choice

of this threshold value will have the upmost importance in the definition of solid evaluation meth-

ods for biometric systems. This topic will be addressed in later sections.
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Figure 2.4: Functioning process of a biometric system (Jain et al., 2000).

2.3.2 Operating mode

Depending on the application, a biometric system may operate either in verification or recognition

mode (Jain et al., 2000). These two operating modes are depicted in Figure 2.5. A verification sys-

tem, also known as positive recognition, authenticates a person’s identity by comparing captured

data with the person’s own biometric template. In these cases, an individual claims to be a specific

person. This information is passed to the algorithm, which then proceeds to create the biometric

signature from the captured data and to compare it to the stored templates whose ID match the

claim made by the individual, evaluating the probability that this individual is who he/she claims

to be. In a recognition system, one individual’s biometric signature is compared to the entire

database, with the goal of discerning the subject’s ID instead of just proving a claim. In this mode

it is usual to present a list of the k most probable identities for the tested individual (Proença,

2007).

2.3.3 System requirements

No biometric system will ever be perfect, in the sense that no system will ever be able to counter

all the attempts made to circumvent it, presenting 0 error rate, no matter the conditions. However,

with the growing need for reliability and robustness, some expectations started to rise and become

the focal points of attention when someone is trying to develop a new system based on a specific

trait (Jain et al., 2000):

1. Universality: every person must possess their specific variation of the trait.

2. Uniqueness: no two persons should share the same specific variation of the trait.

3. Permanence: the trait should neither change nor be alterable.

4. Collectability: the trait must be readily presentable to a sensor and easily quantifiable.
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Figure 2.5: Functioning process of a biometric system (Biometrics, 2008).

Regardless of the chosen trait, as long as it follows the four focal points presented above, every

biometric system is expected to present some functional requirements that make them acceptable

for the tasks they are developed to perform. From a functional point of view one can define some

specific requirements that are expected from a biometric system (Jain and A., 2010):

1. Performance: a biometric system is prone to many errors such as failure to enroll (FTE),

false accept rate (FAR) and false reject rate (FRR) represent examples of ways in which

performance of a biometric system can be degraded. Performance is not a static value, when

biometric systems are concerned, as it depends in numerous factors such as the quality of

the captured signals/images, the composition of the target user population (gender, race,

age, profession, etc.), the number of subjects enrolled (size of the database), the temporal

gap between enrollment and identification (as the measured traits might, even though they

should not, be time variable), the environmental conditions under which the identification

process is carried (temperature, humidity, illumination, etc.), the operating mode of the

biometric system in a given situation (verification or recognition) and the robustness of

the employed algorithms (how well they behave under distinct conditions than the ones they

were created and tested under). Performance measurements will be addressed in more detail

in subsequent sections.

2. Cost: costs associated with the development and implementation of a biometric system

arise mainly from the direct components such as hardware components (sensor, processor,

memory) and software blocks (graphical user interface and matcher) and the indirect com-

ponents, which include system installation, training/maintenance and user acceptance. The

decision regarding investment on a biometric system will be heavily weighted on how the
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chosen components will affect the performance of the system and how these effects will

condition the return cash-flow associated with its implementation.

3. Interoperability: with a wide range of applications to cover a biometric system should be

capable of functioning in an interoperable way, without the assumption that the same sensor,

algorithms or operating conditions will be available during the entire length of its lifetime.

The interoperability of a biometric system is based in the idea that a system should be able

to perform identification using sensors from different brands and on a broad spectrum of

hardware and software platforms. Achieving this ideal state would have a deep effect in

both costs and performance, as no alternative software development would be needed to

adapt the system to new conditions.

4. Acceptability: Some considerations must be taken into account to try and improve the social

acceptability of a biometric system - Hygiene and health conditions when several individuals

need to contact the same sensor (main reason why contactless fingerprint sensors started to

emerge); Acquisitiveness conditions, as not all biometric traits are so easily captured as

others; Ergonomic, accessibility and user friendliness factors, such as physical and logical

access control, as no one should be unable to use the biometric system because of physical

or mental disorders.

5. Circumvention/Security: biometric systems should offer a high degree of protection against

intrinsic failures of the system in face of adversarial attacks (circumvention). This is espe-

cially important when the security of the biometric template database is concerned, and only

personnel with the highest level of security access should be able to directly contact it.

2.3.4 Evaluation methods

As it was mentioned in the previous section, performance is an indispensible requirement for

the development of a biometric system. The main question regarding performance is how to

quantitatively present this information, as a wide variety of factors influence it. Considering a

known set of conditions, under which a recognition process is being carried by a biometric system,

there are two simple classes of errors: a false match, in which the matcher declares a match

between two different biometric signatures, and a false non-match, where the system is unable to

identify two equal biometric signatures as belonging to the same individual (Jain and A., 2010).

Two quantitative measurements can be defined to assess the rate of false matches and false non-

matches: the false match (or false accept) rate (FMR/FAR) and false non-match (or false reject)

rate (FNR/FRR), respectively. Mathematically, these values can be calculated by Equations 2.1

and 2.2 respectively:

FAR =
FA

FA+T I
(2.1)

FRR =
FI

FI +TA
(2.2)
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Figure 2.6: Graphical representation of the evolution of FAR and FRR values for distinct similarity
threshold values (Nanni and Lumini, 2009).

where FA and TA are the number of falsely accepted and correctly accepted users respectively

and FI and T I are the falsely considered and correctly detected impostors respectively. The way

these two types of errors are balanced depends on a single parameter: the similarity threshold (T ).

This is the measured similarity value above which two biometric signatures are considered to be-

long to the same individual and below which they are considered to belong to distinct individuals.

For low T values comparisons with low similarity values will result in a match. This way many

matches will be made between impostors and authorized individuals because little similarity will

be enough to trick the system. On the other hand with low T values few authorized individuals

will be rejected by the system, because even if they present small similarity values they will still

be considered matches.

The same rationale can be used to understand what happens with high T values: in this case

matches will be only made for high similarity values. This results in fewer impostors being iden-

tified as authorized individuals, unless they somehow present high similarity value with some

identified subject, and higher probability of someone with access not being identified as such even

if the similarity value is reasonably high. These trends of FRR and FAR variation can be plotted

against variable values of T (Figure 2.6).

It can be observed that the two resulting curves intersect in a specific point, in other words, a

point where the FRR and FAR values are equal. The FRR/FAR error value observed in this point

is called the equal error rate (EER), a very common performance measure in biometric systems.

Another typical performance measurement representation is the area under the receiver operating

characteristic (ROC) curve. The ROC curve is obtained by plotting a FAR vs. FRR curve, as

exemplified in Figure 2.7 (Jain et al., 2000; Proença, 2007; Jain et al., 2006).

Even though the EER finds the optimal T value to optimize both FRR and FAR at the same

time, some applications of biometric systems seek to minimize only one of these parameters, with

little or no interest in the other. Forensic applications, for example, cannot accept the mistake

that a criminal is not identified as himself. Therefore forensic biometric systems generally work

at fairly low FRR/fairly high FAR. High security systems on the other hand are more interested

in not allowing unauthorized personnel to access restricted information. These biometric systems
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Figure 2.7: Examples of receiver operating characteristic (ROC) curves for two biometric sys-
tems (Jain et al., 2000).

work, therefore, at low FAR/ high FRR values. Thus, the intended application is an important

factor that affects both development and performance evaluation of biometric systems (Jain et al.,

2000).

The FAR and FRR evaluation measurements are the most common indicators of recognition

accuracy when the biometric system is meant for verification mode. When working on recognition

mode the ratio between number of wrong recognition attempts and the total number of recogni-

tion attempts, also known as the false identification rate (FIR) is the most commonly used and

meaningful variable (Proença, 2007).

Apart from false match, false non-match or false identification, some other big classes of errors

can be assessed to characterize the accuracy of a biometric system. The failure to capture/acquire

(FTC/FTA) rate and the failure to enroll (FT E) rate are two of the most commonly used. The

FTC rate is only applicable when the biometric system presents automatic capture functionality

and denotes the percentage of times the device fails to acquire a sample when the biometric trait is

presented to it, either because of the sensor not being able to locate the biometric trait or because

the acquired data is not of sufficient quality. The FT E rate, on the other hand, relates to the users

who are not able to perform the enrollment process. These errors happen, generally, when the

system rejects poor quality inputs during enrollment. A direct consequence from this selection

during the enrollment process is that the quality of the templates comprising the database is gener-

ally high. A high quality template database causes the system accuracy to improve, as low quality

template data is prone to present low similarity values even when better quality signatures from

the same individual are presented to the biometric system (Jain et al., 2006).



14 Biometrics

2.4 Biometric traits: a comparative approach

As it was seen in previous sections all biometric traits that respect the four requirements – uni-

versality, uniqueness, collectability, permanence – can be considered in the development of a

biometric identification system. In this section some of the most commonly used biometric traits

(Figure 2.8) are presented in detail under the considerations set by these four requirements. In the

end of this section the pros and cons of every trait are summarized in Table 2.1, in an update of

the table presented in (Jain et al., 2000) with additional data from (Proença, 2007).

2.4.1 DNA

The deoxyribonucleic acid (DNA) of every human is a unique sequence of nucleotides of four

types – amine (A), thymine (T), cytosine (C) and guanine (G) – distributed among 23 pairs of

chromosomes (one inherited from the mother and one from the father) and coding the informa-

tion for every biological process of the organism (Seeley et al., 2007). Approximately 99.9% of

the DNA content is conserved between every human being, but the remaining 0.10% differs and

is responsible for the phenotypic differences between individuals (such as eye color, hair color,

skin pigmentation, etc.). The only exception to the uniqueness of DNA is the one related with

homozygotic twins who have exactly the same genetic code, rendering DNA biometric systems

useless in such cases (which might cause serious repercussions ifsecurity applications are the ob-

jective) (Proença, 2007; Jain and A., 2010). DNA extraction presents some serious drawbacks: it

is not an automated process, it carries high associated costs, it is a very time consuming process,

and the possibility of DNA contamination during the handling of samples is significant (Jain and

A., 2010).

2.4.2 Ear

Ear recognition can be achieved by the analysis of three types of data: photos of ears, earmarks

against flat surfaces and thermograms, three simple procedures that can, however, be obstructed

by some less ideal acquisition conditions: hair or ear muffles can cover, partial or totally, the

area of the ear or the ear can be slightly rotated, disabling the system capacity to identify the

tested subject (Proença, 2007; Arbab-Zavar and Nixon, 2011). Nevertheless some main advan-

tages characterize ear recognition: the dimensions of the images to process are relatively small

(decreasing processing time), the structure is relatively permanent with increasing age and practi-

cally every human being has ears. The question of ear uniqueness was studied by Alfred Ianarelli

in 1989 (Iannarelli, 1989), who concluded, after analyzing 10000 ear images, that enough dissim-

ilarity between ear patterns for their use in biometric systems. Even in twins, who generally share

many anatomical traits, ear patterns seemed to provide a good tool for identification, especially in

the concha and lobe areas (Proença, 2007; Geng, 2010).
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2.4.3 Face

Face recognition is probably the oldest and most intuitive recognition process for mankind. Facial

recognition in biometric systems generally takes advantage of spatial relationship among anatom-

ical traits such as eyes, nose, lips or chin or from general characteristics based on edges, lines

and curves to distinguish between individuals. Problems associated with these methods arise from

unconstrained data acquisition which yields different capturing angles, illumination conditions, fa-

cial expressions, makeup usage and partial occlusion, or from the uniqueness problems connected

to twin brothers or modified faces through plastic surgery. The main advantages of this trait for

biometric applications are the high social acceptability of facial recognition, the non-intrusive na-

ture of the process and the existence of widely used databases, such as the FERET database, the

standard database for facial recognition algorithm efficacy comparison (Proença, 2007; Jain and

A., 2010).

2.4.4 Facial thermogram

Capturing face images using an infra-red camera produces a unique facial signature, as a conse-

quence of a unique vascular structure observed in each face, as heat passes through the facial tissue

and is emitted from the skin. These signatures are called facial thermograms. As the heat pattern is

emitted from the face surface, without any source of external radiation, these systems can capture

good quality images despite the external conditions of illumination. It is a non-invasive method

with possible application in covert recognition and it is less vulnerable to disguises such as plastic

surgery. Some disadvantages may arise from acquisition near external sources of heat, emotional

state of the tested subject and off-angle faces, besides the inevitable problem of permanence (as

face changes with time, so does the vasculature pattern (Buddharaju et al., 2007). However, fa-

cial thermogram represents an improved biometric trait over its counterpart (facial recognition): it

works in a considerably less restricted set of conditions and presents a considerably higher diffi-

culty of forging (Proença, 2007; Seal et al., 2011).

2.4.5 Hand geometry

Hand shape, alongside finger length and width are some of the most commonly used human hand

measurements in biometric systems. The main advantages of hand geometry are the relatively

high independence from the acquisition environment conditions (factors such as dry skin play no

important role in defining the geometry of the hand), the ease of use and the low costs associ-

ated with the development of such systems. All these advantages are counterbalanced by its main

disadvantages: low discriminating capacity, variability over an individual’s lifespan, restrictions

regarding jewelry use or dexterity limitations, etc. The development of unconstrained method-

ologies for hand geometry application in biometric systems have focused on the development of

deformable models for hand segmentation (Proença, 2007) and the creation of contact-free sce-

narios, where no platform and pegs for hand positioning are necessary to acquire hand geometry

information (thus demanding almost no collaboration from the user). Contact-free scenarios allow
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the avoidance of hand distortion and lower the hygienic concerns, often associated with social

acceptability (de Santos Sierra et al., 2011).

2.4.6 Palmprint

Palmprint patterns, composed of principal lines, wrinkles and textures, have some interesting fea-

tures for application in biometric identification systems: the principal lines structures are stable

across an individual’s lifetime and the social acceptability regarding palmprint scanning does not

constitute a problem. Although palmprint systems are not as widespread in civilian applications,

such as access control (Proença, 2007; Jain and A., 2010), as fingerprint systems, research is being

conducted with the objective of increasing discriminating capacity of such systems, and palmprints

represent, thus, a promising approach for medium-security access-control (Proença, 2007). One

of the main issues about palmprint recognition is the relatively large size of the required sensors,

when compared to the ones used in fingerprint recognition (Jain and A., 2010).

2.4.7 Hand veins

The vein pattern that characterizes each individual’s hand can be easily acquired using near-

infrared radiation, which illuminates the palm and captures the light that diffuses across the hand

(Proença, 2007; Jain and A., 2010). Deoxidized hemoglobin, one of the main constituents of the

organic phase of venous blood (Seeley et al., 2007), has a peak of absorption for wavelengths

in the infrared range, thereby reducing the reflection rate of NIR radiation near veins, causing

them to appear black in the resulting image. Observed vein patterns are generally stable amongst

adults but begin to shrink as a result of reduction in bone and muscle strength at older ages, and

can be severely influenced by some pathological conditions affecting blood vessels like diabetes,

atherosclerosis or tumors (Proença, 2007). Some concerns regarding biometric systems based in

vascular patterns arise due to the high expected costs associated with their development and the

lack of large scale studies on vein individuality and stability. User acceptability is one of the main

advantages as these systems are contactless, thus overcoming the hygiene concerns of some more

common systems (Jain and A., 2010).

2.4.8 Fingerprints

Fingerprints are universal to all people, unique and stable throughout a person’s lifetime, and

have, thus, been the most commonly used trait in the development and implementation of biomet-

ric system in civilian activities (Ailisto et al., 2006). Their unique characteristics arise from the

pattern of ridges and valleys on the surface of a fingertip, which are defined, by partially random

morphogenesis processes, in the first seven months of fetal development, creating a unique pat-

tern even in homozygotic twins. In the past these patterns were extracted by inked impressions

of fingertips on paper, but today, compact sensors are already available to readily acquire digital

images of fingertips. Image analysis is generally performed over specific critical points, com-

monly designated minutiae points, which are related to either ridge bifurcation or ridge ending
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motifs Proença (2007). Some disadvantages concerning fingertip biometrics are related with the

considerable computational requirements that these systems present, especially when operating in

identification mode, and also with the considerable ease of mutability in the patterns, as a result of

occupational (manual workers tend to develop large number of cuts, bruises, etc.), environmental

(burns in fingertips will mask the fingerprint pattern) or aging (wrinkled surfaces are harder to

recognize) factors (Jain et al., 2004).

2.4.9 Iris

According to the biometric literature, the iris’s structural texture is significantly variable across

the population. Even the irises of monozygotic twins exhibit structural differences, suggesting

that random events play a significant role in the morphogenesis process of the trabecular mesh-

work (see Section 3.1) which defines the observed iris patterns under visible light. Such a high

degree of uniqueness is however constrained by the acquisition condition: the quality of the iris

image must be strictly monitored to ensure reasonable textural detail (Ross, 2010). To improve

the quality of these images, near-infrared (NIR) light is typically chosen for illumination, as it is

detectable by most cameras but not by the tested subject (Proença, 2007). It is almost impossible

to surgically alter iris texture information and algorithms for artificial/fake iris (such as printed

pictures) detection are already developed (Lee et al., 2006) and even blind people can use iris

recognition systems (Mastali and Agbinya, 2010). Early problems related with user collaboration

and high associated costs are already being overcome with the development of user-friendly/cost-

effective versions (Proença, 2007).

2.4.10 Signature

Signature is a behavioral biometric modality that is used daily in many applications like business

transactions. Two major strategies for signature recognition can be distinguished: image-based and

dynamics analysis. The first is the most common method and is based on the visual appearance

of the signature. The latter analyzes speed, direction and pressure of writing (Proença, 2007).

Attempts to develop accurate automatic signature-based biometric systems have been far from

successful. The large intra-class variations in a person’s signature over time are one of the main

causes. Attempts have been made to improve performance by capturing dynamic signatures on a

pressure-sensitive pen-pad. Dynamic signatures help in acquiring the shape, speed, acceleration,

pen pressure, order and speed of strokes, during the actual act of signing. This new information

(speed, acceleration, pressure, stroke order, etc.) seems to improve the verification performance

as well as circumvent signature forgeries (Jain and A., 2010). One of the main advantages that

separates signature from more traditional biometric traits is the fact that it can be changed, like a

password, in a way that iris or fingerprint cannot (Proença, 2007).
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2.4.11 Retina

Retinal scans detect the blood vessel patterns in the posterior part of the eye which are stable

along an individual’s lifetime (except in the case of vessel related diseases (Jain et al., 2004)) and

unique between individuals in a population (Proença, 2007) but whose acquisition involves coop-

eration, contact with the eye-piece, and a conscious effort on the part of the user. All these factors

contributeto the low acceptability and user unfriendliness that characterize these systems (Jain

et al., 2004). However the big advantage of retinal systems is the fact that this anatomical trait

is protected by the eye and is therefore very difficult to access and modify or replicate. Its main

applications are therefore high-security related, like access to prisons (Jain et al., 2004; Proença,

2007).

2.4.12 Keystroke

It is believed that everyone types on a keyboard in a unique way (Proença, 2007). The analysis of

the dynamics of typing, such as rhythm and pressure analysis, might serve as an indication of a

subject’s identity (Proença, 2007; Jain et al., 2004). This behavioral trait might encounter some

adversities, such as large typing pattern variations for the same individual, and privacy concerns

related to some activities that such a technology would allow (analyzing someone’s typing pattern

would allow a tool to quantify his/hers work effectiveness). The main advantage of keystroke is

that it allows continuous scanning and monitoring, reducing the risk of counterfeit, and is generally

well accepted, as people already interact with keyboards in more traditional security systems (i.e.

passwords) (Proença, 2007).

2.4.13 Gait

Gait is the characteristic periodic set of leg movements each individual presents while walking.

Information regarding shape (relative position of several anatomic markers, such as joints) and

dynamics (cycle time, rhythm variations, etc.) can be used to distinguish between individuals,

even though it is only used for verification in low-security applications. This behavioral trait is

not time invariant: fluctuations in body weight, possibility of brain or joint injuries or surface

irregularities, among others, are certain to influence the gait pattern. The permanence of gait is

questionable, as an injury might cause an individual to inadvertly change its common gait pattern,

thus risking an erroneous output from the recognition system. As many articulations are likely to

be analyzed to overcome all these difficulties, a high computational cost is generally associated to

such applications. The great advantage of gait analysis is connected to the ease of collectability

for such images, as any common camera will be enough for the desired analysis (Jain et al., 2004;

Proença, 2007).
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Figure 2.8: Several biometric traits (extracted from (Jain et al., 2004)): (a) DNA; (b) Ear; (c) Face;
(d) Facial thermogram; (e) Hand thermogram; (f) Hand veins; (g) Fingerprint; (h) Gait; (i) Hand
Geometry; (j) Iris; (k) Palmprint; (l) Retina; (m) Signature; (n) Voice.

2.4.14 Voice

Voice is a particular case of a biometric trait, as it is acoustic based, instead of image-based

as the majority of the most commonly used biometric traits (Proença, 2007). Even though the

anatomical features that define each individual’s voice (vocal tract, mouth, nasal cavities, etc.)

are relatively stable during adult lifetime, behavioral changes affect speech features, as a result

of aging, medical conditions and social environment. Voice recognition systems are generally

divided into text-dependent, where recognition is performed using a pre-read phrase as template,

and text-independent, which is harder to circumvent but lacks the accuracy of its text-based coun-

terpart (Jain et al., 2004). Acquisition conditions also play a major role in the success of speech

recognition systems: simple background noise might compromise all the acquired data. Currently

existing applications focus on the telecommunication industry (Jain et al., 2004; Proença, 2007).

2.4.15 Comparative analysis

The characterization of the multiple traits presented in previous sections is summarized in Ta-

ble 2.1. When choosing the biometric trait to serve as the basis for a recognition system one must

ask which of the 4 criteria (universality, uniqueness, collectability, permanence) is indispensable

and which other criteria can be more or less overcome by the developed algorithms. Analyzing

Table 2.1 it can be noted that ear, hand geometry, iris, palmprint and hands veins are the only traits

with no criteria classified as ’low’. However, with this simple discrimination, facial thermogram,

which presents a ’high’ universality, uniqueness and collectability, for example, is easily ruled out.
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The choice must, thus, be made, by considering what is more important for each specific appli-

cation. In the present dissertation the choice of working with iris rose from the fact that this trait

excels in universality, uniqueness and permanence, even though the collectability of good quality

images is conditioned by the use of complex acquistion devices. As the proposed worked aimed

to iris recognition under unconstrained settings, the collectability problems with iris became less

problematic, as it is proposed that the algorithms are able to work under less ideal acquisition set-

tings. Giving less importance to the collectability as a criteria for the choice of a biometric trait,

the iris becomes the primary candidate from the traits described in previous sections.

Table 2.1: Comparative data analysis of the afforementioned biometric traits. Data adapted
from (Proença, 2007) and (Jain et al., 2000)

Requirements

Trait Universality Uniqueness Collectability Permanence
DNA High High Low High
Ear Medium Medium Medium High
Face High Low High Medium

Facial Thermogram High High High Low
Hand Geometry Medium Medium High Medium

Iris High High Medium High
Palmprint Medium High Medium High
Signature Medium Low High Low

Hand Veins Medium High High Medium
Keystroke Low Low Medium Low

Retina High High Low Medium
Gait Low Low High Low
Voice Medium Low Medium Low



Chapter 3

Iris Recognition State-of-the-art

3.1 Eye and Iris anatomy

The human eye (Figure 3.1) is composed by three layers or tunics: the external layer or fi-

brous tunic, constituted by the sclera, and, in its anterior part, by the cornea; the middle layer

or uvea/vascular tunic, composed by the cilliar body and the iris; and the internal layer or the

nervous tunic, where the retina is found (Seeley et al., 2007). In a typical non-invasive image of

the eye (Figure 3.2) three anatomical features are visible: the sclera, the iris and the pupil.

Figure 3.1: Eye anatomy (Proença, 2007).

The sclera is the external, firm, opaque and white posterior layer of the eye. It consists in

conjunctive tissue, made of collagen and elastin fibers, and its main roles are the maintenance

of the three-dimensional structure of the eye and the connection with the insertion points of the

muscles responsible for eye movement (Seeley et al., 2007). The iris is the colored part of the

eye and its denomination comes from the fact that its color difers between individuals (Gray,

2010). Brown eyes possess a brown melanin pigment, absent in blue eyes, where the color derives

from a light diffraction process similar to the one observed in the atmosphere and that confers

the sky its color. It’s a contractile structure mainly composed of smooth muscle, surrounding an

aperture, known as the pupil. Light penetrates the eye through the pupil and the iris regulates the

21
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quantitiy of light by adjusting the size of the pupil (Seeley et al., 2007). The iris begins to form

during the third month of gestation and the structure is complete by the eighth month, although

pigmentation continues into the first year after birth. The visible features of the iris arise from a

complex trabecular meshwork of connective tissues whose complex and unique patterns are seen

under visible light illumination of the iris (Proença, 2007).

Figure 3.2: Typical eye photograph (Bowyer et al., 2008).

3.2 Pioneer works on iris recognition

3.2.1 Daugman’s method

In 1987 American ophthalmologists Flom and Sair patented a concept (Flom and Safir, 1986), de-

veloped in 1949 by James Doggart (Doggart, 1949), concerning the possibility of using the com-

plex patterns of the iris in a similar way as fingerprints, to develop accurate recognition systems.

The first algorithm to take advantage of this concept was published in 1993 by Professor John

Daugman (Daugman, 1993), of Harvard University, who would later patent it in 1994 (Daugman,

1994).

Daugman’s earlier work (Daugman, 1993) established the main principles for almost every iris

based biometric system. The main steps of the algorithm are schematized in Figure 3.3.

The iris localization and segmentation assumed the pupillary (Iris-Pupil) and limbic (Sclera-

Iris) boundaries of the eye as circles, described by three parameters: the radius r, and the coor-

dinates of the center, x0 and y0. He proposed an integro-differential operator (Equation 3.1) that

searched the parameter space for the values that maximized:

Gσ ∗
δ

δ r
·
∮

r0,x0,y0

I(x,y)
2π · r

·ds (3.1)
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Figure 3.3: Schematization of Daugman’s iris recognition method. The global steps presented can
be extrapolated to almost every iris recognition algorithm. Image adapted from (Chang et al.,
2009) and (Ross, 2010).

In the formula of the integro-differential operator I symbolizes the original iris image, Gs is

a low-pass Gaussian filter, used for smoothing, with s standard deviation and is the convolution

operator. The Daugman operator would therefore compute, for each possible combination of x0,

y0 and r the total "energy" of a closed contour (line integral) centered on (x0,y0) with radius r,

choosing the maximum variation in this parameter along the possible radius values, as the optimal

r for the chosen (x0,y0) center. The (x0,y0,r) triplet candidates yielding maximum results for the

integro-differential operator would be assigned to the limbic and pupillary boundaries of the eye.

From this information the iris could be easily isolated, in a process denominated iris segmentation.

The following step consisted in coding the information contained in the segmented iris region

in a way that made it possible to compare between individuals. Some problems appear during

this process when different iris’ sizes are observed or when the dilation or contraction of the iris

(as a result of non-uniform illumination) is variable (Bowyer et al., 2008). Daugman suggested a

normalization step, known as the rubber sheet model (Figure 3.4), to overcome these limitations:

every location on the iris image was defined by two coordinates, relative to the previously detected

(x0,y0) iris center – an angle θ between 0 and 360 degrees, and a radial coordinate ρ ranging

between 0 and 1, normalized to the radius of the iris. For each ρ , n discrete points are chosen

along the radial line that goes from ρ = 0 to ρ = 1. Using this coding technique, regardless of the

size of the iris or its contraction level, a n×θ rectangular image containing all the iris information

is obtained (Proença, 2007; Ross, 2010; Daugman, 1993; Bowyer et al., 2008).

Once the normalized image is computed, Daugman suggests the use of 2D Gabor filters (Ga-

bor, 1946) for texture analysis and feature extraction. To optimize computing times and lower
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Figure 3.4: Daugman rubber sheet model. Adapted from (Velho, 2009).

calculation complexity, the resulting phase response to each Gabor filter was summarized in 2

bits: each pixel is assigned 1 to the first bit if the real part of the phase response is positive and 1

to the second bit if the imaginary part is real (Figure 3.5). Thus, for every iris image a simple bi-

nary code was obtained, and the matching process against iris templates was performed by simple

bitwise operations.

Figure 3.5: Schematization of the encoding process of the normalized iris image using bidimen-
sional Gabor filter. Image adapted from (Ross, 2010).

The dissimilarity measurement used by Daugman was the normalized Hamming distance

(Equation 3.2), which measures the fraction of bits where the two binary codes from iris sig-

nature and iris template disagree (Proença, 2007; Daugman, 1993; Bowyer et al., 2008). Such a

simple way to quantitatively measure dissimilarity was only possible due to the binarization step

of the Gabor filter response.

HD(A,B) =
1
N
·∑ai⊗bi

n
i=1 (3.2)
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This pioneer work set the basis of the typical iris recognition system architecture: segmen-

tation, normalization, feature extraction and matching are the four main components of every

system. Almost every commercially available iris recognition system nowadays is based on Daug-

man’s patented system (Daugman, 1994). The results for this method, under optimal conditions

are presented in Figure 3.6 with an equal error rate of 1 in 131.000 (Daugman, 1994), for a dataset

of 2064 iris signatures.

Figure 3.6: FAR vs FRR results in Daugman’s patented method (Daugman, 1994).

3.2.2 Wildes’ method

Alongside Daugman’s method as a classical approach to iris recognition, a very distinct approach

was taken by Richard Wildes in 1997 (Wildes, 1997). The acquisition module used by Wildes

captured images that comprised not only the iris but also surrounding structures of the eye. The

segmentation is accomplished by first converting the iris image into a binary edge map. This is

accomplished by convolving a Gaussian-derivative filter (which enhances edges/high frequency

areas), weighting the horizontal and vertical components of the gradient operator for preferential

directional enhancement, with the original image, and then applying a simple threshold for bina-

rization. The limbic contour is then assessed by a maximization process similar to the Daugman

integro-differential operator. The parameters for such maximization are here represented by r, xc

and yc, and are used by a different scoring method, namely the Circular Hough Transform, CHT :
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H(xc,yc,r) =
n

∑
j=1

h(x j,y j,xc,yc,r) (3.3)

where, (3.4)

h(x j,y j,xc,yc,r) =

1, i f g(x j,y j,xc,yc,r) = 0

0,otherwise
(3.5)

and, (3.6)

g(x j,y j,xc,yc,r) = (x j− xc)
2 +(y j− yc)

2− r2 (3.7)

The CHT checks every pixel resulting from the edge map binarization as a possible (xc,yc)

combination, that is, as a possible center for the iris. It then counts the number of pixels (x j,y j)

with value 1 that can be found in a circular region with radius r centered on the tested (xc,yc)

candidate. The algorithm will return an accumulator array, H, with a scoring value for each

(xc,yc,r) triplet. The global maximum of the accumulator array is identified as the most probable

candidate for limbic boundary.

The normalization step in this method consists in an image registration process, where a map-

ping function is applied to the original image to compensate translational and scaling differences

between acquired images and database templates. The translation and scaling functions are cho-

sen so that corresponding pixel’s intensity in the signature image, I a , and the tested database

image, Id , is as close as possible. Feature extraction is accomplished by a multi-spectral analysis

of the segmented iris using Laplacian-of-Gaussian (LoG) filters with distinct sizes and s values.

The matching is accomplished by normalized correlation between Id and normalized Ia, the re-

sult of which will express a similarity value between the two matched images. Results from

Wildes’ works reveal a higher EER value (1,76% (Ma et al., 2004)) when compared to the one

obtained with Daugman’s patented system. However there are some functional advantages to

Wildes’ method. Table 3.1 summarizes the pros and cons of Wildes’ method when compared to

Daugman’s (adapted from (Bowyer et al., 2008)).

Table 3.1: Pros and cons of Wildes’ method when compared to Daugman’s method.

Wildes’ method
Pros Cons

Less intrusive light source More complex acquisition system
Removal of specular reflections Smaller sensitivity to some details

(as a result of binary edge map abstraction)

Segmentation is more stable to noise perturbations Less compact representation of iris features
Capable of finer distinctions Higher computational cost

(Multiple LoG filter responses are not binnarized)

Better adaptability to real world situations
(Image registration)
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3.3 Recent works on iris recognition

The original approach to the segmentation task made by Daugman (1993) consisted in the use

of an integro-differential operator. In a different approach, Wildes (1997) suggested a method

involving edge detection followed by circular Hough transform (CHT). For years, many works in

the iris biometrics area focused on Daugman’s and Wilde’s algorithms, presenting variations at

many levels.

Tan et al. (2010) first extracted a rough position of the iris by performing a clustering-based

scheme and then localised the pupillary and limbic boundaries using a new constructed integro-

differential operator. In the work of He et al. (He et al., 2009), an Adaboost-cascade iris detector

is built to extract a rough position of the iris centre and then the centre and radius of the circular

iris are localized by employing an elastic model named pulling and pushing. The segmentation

of the pupil and iris by fitting a rotated ellipse after a sequence of procedures for compensating

the detected noises was proposed by Zuo and Natalia (Zuo and Schmid, 2010). In a different ap-

proach, Roy et al. (Roy et al., 2010) consider the iris as a non-circular structure and use an elliptic

fitting model to fit both the limbic and pupillary contours. Then they perfect it by a geometric

active contour procedure based on Chan-Vese’s energy minimization process. Krichen et al. pre-

sented a work (Krichen et al., 2009) based on Gabor filter phase response for iris localization. The

segmentation step was an altered version of the CHT-based Masek algorithm (Masek, 2003). In

their work, Ma et al. (Ma et al., 2004) created a system that mixed both the CHT segmentation ap-

proach and the rubber sheet model normalization, introducing some concepts like pre-processing

of iris images for specular reflection removal. In the work of Abhyankar et al. (Abhyankar and

Schuckers, 2009) segmentation starts with the transformation of the iris image into the wavelet

domain and enhancement of image contours by a process of in-band denoising, which works by

thresholding and filtering low energy components of both high and low frequency components.

The Canny edge detector is then applied to the enhanced image and CHT is used for the detection

of both iris boundaries. The approach taken by Chen et al. (Chen et al., 2010) starts by detecting

the sclera region of the eye, thresholding and filtering the image to detect a rectangular region for

iris localization. An edge map of the region of interest is then obtained with a horizontal Sobel

operator, and a dynamic programming variation of the CHT algorithm was implemented to detect

the limbic boundary. This method corrects the non-circularities of the off-angle iris and combines

the intersection of circles obtained by the two CHT algorithms and a linear Hough transform to

perform eyelid detection.

Since iris boundaries are often not circular or elliptical, curve fitting techniques can be valu-

able to approximate real iris contours (Proença et al., 2010). To further improve the segmentation

performance, recent methods attempted to use active contour models to accurately localise irregu-

lar iris boundaries (Daugman, 2007; Vatsa et al., 2008; Houhou et al., 2008; Shah and Ross, 2009).

A illustrative example for limbic and pupillary contour detection was presented by Lu and Lu (Lu

and Lu, 2008): first they use a deformable model (snake), which requires the manual definition of

a starting contour which is then optimized through an iterative energy minimization process based
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on image gradient and snake bending (Kass et al., 1988), to detect the pupillary contour; finally,

they apply the integro-differential operator suggested by Daugman to detect the limbic boundary.

Some works use texture analysis to perform segmentation. Nabti and Bouridane’s work (Nabti

and Bouridane, 2008) is based in a multiscale approach, using Gabor filters and wavelet transform

coefficients, to improve edge detection process that determines the success of iris segmentation. A

work based on dyadic wavelet transform zero-crossing as iris signature was published by Roche

et al. (Sanchez-Avila et al., 2002) where images were pre-processed by histogram stretching (im-

proving contrast between pupil, iris and sclera) before the limbic boundary detection. After this

contour is detected, the same algorithm is used inside its area to detect the pupillary boundary. The

iris localization method by Guo and Jones (Guo and Jones, 2008) is based on intensity gradient

and texture difference, using the standard integro-differential operator.

In the work of Tan et al. (Tan et al., 2010), segmentation was divided into four main blocks.

The first step consisted in a region growing based algorithm to distinguish between iris candidates

and the remaining image. The regions resulting from this iterative process are then analysed for

specific iris characteristics, such as roundness and relative position to other regions (for example,

eyebrows could be distinguished from the iris as they are a dark region, horizontal, placed above

the iris). The second step consists in iteratively finding the shortest path that maximizes the Daug-

man integro-differential operator so that the limbic and pupillary boundaries can be detected. The

next steps deal with eyelid/eyelash detection and removal.

A gradient vector field based method appears in the work of Chen et al. (Chen et al., 2011).

In this work the iris template gradient allows the detection of iris borders, but was not tested for

detecting the iris center, probably because the images in the selected database (CASIA, 2004) have

a very well defined pupil (as the value of pixels in that area is set to zero).

When analysing much cited methods in the literature is possible to detect some of their main

drawbacks. In almost all of these methods, inner and outer boundaries, eyelashes and eyelid

are detected in different steps, causing a considerable increase in processing time of the system.

Usually, the inner and outer boundaries are detected by circle fitting techniques. This is a source of

error, since the iris boundaries are not exactly circles and, in noisy situations, the outer boundary

of iris does not have sharp edges. (Barzegar and Moin, 2008)

In some of the aforementioned algorithms, there are a lot of implicit or explicit assumptions

about the acquisition process, which are no longer valid in unconstrained acquisition scenarios.

Therefore, some of the promising results reported in the literature must be taken with caution and

reassessed under these new, more challenging, conditions.

3.4 The path forward

A lot of conditions are involved in the acquisition of the iris images that were used in the develop-

ment of the aforementioned algorithms:
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• Image acquisition uses NIR illumination so that illumination can be controlled without hu-

man perception. Near-infrared illumination also helps reveal the detailed structure of heav-

ily pigmented irises. Melanin pigments absorb much of visible light, but reflect more of the

longer wavelengths of light (such as IR) (Proença, 2011; Bowyer et al., 2008; Daugman,

1994).

• Subjects have to position their eye within the camera’s field of view and stand still as the

iris photographs are acquired (Bowyer et al., 2008).

• The iris and pupil are considered to always present a circular shape (Sung et al., 2002).

In recent years it has been recognized that the path forward, regarding iris recognition, is the

development of algorithms that can work independently of such conditions, in order to achieve

robust (i.e. accurate even with noisy images) and unconstrained (i.e. accurate for several sets of

acquisition conditions: distance, movement, illumination, etc.) iris recognition and, in this way,

become a real-world applicable method (Ross, 2010; Proença, 2010). This paradigm shift lead to

the rise of new trends in the research of iris recognition:

1. Using visible wavelength (VW) light instead of NIR: Current recognition systems re-

quire high illumination levels, to maximize the signal-to-noise ratio in the sensor and cap-

ture enough iris features with sufficient contrast. However if acquisition of iris images is

pretended to work with longer distances and for moving individuals, significantly higher

f-numbers and very short exposure times would be needed. Both these features require high

levels of light intensity, which, in the case of NIR, could be hazardous to the eye, as its

instinctive responses (aversion, blinking or pupil contraction) are not affected by NIR wave-

lengths. The use of VW light finds none of these constraints, and is, therefore, the current

trend for iris image acquisition and database creation (iris databases will be discussed in

section 3.5). However one main concern is strongly connected with the use of VW images:

noise artifacts are more common and spectral reflectance is more prone to happen in such

images. Figure 3.7 shows an example of both NIR and VW illumination effect on iris image

qualities (Proença, 2010).

2. Processing non-ideal irises: Lots of factors may affect iris images and challenge the ro-

bustness of proposed algorithms. Some of these factors are motion blur, camera diffusion,

out-of-focus imaging, occlusion from eyelids and eyelashes, off-axis gaze, specular reflec-

tions, poor contrast or natural luminosity (Ross, 2010). In the iris database sections some

of these factors will be discussed with more detail. Attempts to process these less ideal

features have been reported. Abhyankar et al. (Abhyankar et al., 2005) used repositioning

of bi-orthogonal wavelet network (BWN) to compensate for off-angle iris images, with ex-

cellent results for angle offset values below 50 ◦. Du et al. (Du et al., 2004) tested various

methods of iris signature comparison for images with only partial zones of the iris available,

with 90% accuracy rate for 40% occluded iris. Sung et al. (Sung et al., 2002) use eye corner

detection to compensate the non-circularity induced in the iris shape by gaze direction.
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Figure 3.7: Comparison between the typical appearance of (a) NIR iris images and (b) VW iris
images (Proença, 2010).

3. Active contour models: instead of relying on rigid geometric models, many attempts have

been made to develop models whose shape is deformable and adjustable to certain fea-

tures of the iris image. Arvacheh (Arvacheh, 2006) uses an altered version of the Daugman

integro-differential operator, which works by maximizing the external forces associated with

the points of a contour, in small angular intervals, to detect the nearcircular contour of the

pupil and use it as the beginning point for an iterative external force minimization process

to detect the limbic boundary; Daugman (Daugman, 2007) suggests the use of Fourier se-

ries coefficients to actively detect iris contours; Ross et al. present an active contour-base

method using a simple thresholding method, helped by 2D median filtering, to segment

the pupil, and then use a geodesic active contour (GAC) approach to estimate the limbic

boundary (Shah and Ross, 2009).

4. Eyelid and eyelash model fitting: Eyelids and eyelashes occluding the iris region are noise

factors that degrade the performance of iris recognition. If they are incorrectly classified

as the iris region, the false iris pattern information will increase, decreasing the recognition

rate. Masek (Masek, 2003) proposed a post-segmentation step to separate iris and eyelid

by horizontal lines (Figure 3.8). The linear Hough transform is used to detect the eyelid

boundaries, and the intersection of these lines with the segmented iris contour will define

the horizontal line. One of the main problems with this approach is that some information

of the iris might be lost when such a coarse approach is applied. Kang and Park (Kang and

Park, 2007) took a computationally more complex approach, by using the parabolic Hough

Transform lowering the chance of missing iris zones, when compared to Masek’s work.

5. Performance Improvement: In order to improve the computational speed and the result-

ing performance of iris recognition systems, some works have taken into consideration the

development of faster algorithms. Liu et al. (Liu et al., 2005) base themselves in Masek’s
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Figure 3.8: Application example of Masek’s eyelid boundary detection via linear Hough trans-
form (Masek, 2003).

work (Masek, 2003) with the Canny edge detector and the CHT and suggest some optimiza-

tion steps, such as switching the border detection order (from limbic–pupillary to pupillary–

limbic) because the iris/pupil contour normally presents higher contrast than the iris/sclera

contour. This claim is highly dependent on the nature of the images, but, as seen on Fig-

ure 3.7 it seems to be a valid claim when working with NIR images. Some other suggested

optimization steps are the reduction of edge pixels (restricting the number of high intensity

edge candidates, generally associated with the reflections observed in the pupil), and the

reduction of calculations in the Hough transform for eyelid detection, namely by reducing

the range of possible values for the Hough transform parameters.

6. Multiscale for iris image pre-processing and pattern analysis: Because of their intrinsic

characteristics, limbic and pupillary boundaries are found in zones of the image that cor-

respond to local maxima of image gradient. However, due to the existence of noisy areas

of the image, locating specific maxima is not an easy job. Smoothing operators provide

an interesting weapon for noise removal, but their use is limited by the need of manually

defining their scale: small smoothing kernels don’t affect the global information of the

image but might also not remove all the noise, while larger kernels will certainly remove

the unintended noise, but might also remove information of interest. Taking this problem

into consideration, some tools for multiscale analysis, like the wavelet transform, started to

gain some importance in pre-processing of iris images or analysis of different texture levels.

Edges of higher significance are more likely to be preserved by the wavelet transform across

the scales. Edges of lower significance are more likely to disappear when the scale increases

(Figure 3.9). Some works using multiscale analysis are (Nabti and Bouridane, 2008; Lu and

Lu, 2008; Sanchez-Avila et al., 2002; Abhyankar and Schuckers, 2009).
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Figure 3.9: Example of multiscale approach for iris contour enhancement (Nabti and Bouridane,
2008).

3.5 Iris databases

Several free public databases are made available online for the testing of iris recognition algo-

rithms. In this section the most commonly used databases are described, specifically the quality

of the images, the different classes of images and the various kinds of noise factors that were

considered. All these factors weighted the choice of the best database for the development of

unconstrained iris recognition algortihms.

3.5.1 BATH database

The University of Bath iris image database (Figure 3.10) is a constantly growing database currently

composed of over 16000 iris images taken from 800 eyes of 400 subjects. A series of acquisition

and post-processing constraints assure good image quality with the main sources of noise being

only obstruction by eyelids and eyelashes. For these reason this database in not very appropriate

for the development of iris recognition algorithms under unconstrained settings.

3.5.2 CASIA database

Apart from being the oldest iris database, this is clearly the most known and widely used by the ma-

jority of the researchers. CASIA iris image database (Figure 3.11) includes 756 iris images from

108 eyes, captured in two distinct sessions. Similarly to the BATH database, described above, its
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Figure 3.10: BATH database image examples (BATH, 2004).

images were captured under highly constrained capturing conditions, yielding very homogeneous

characteristics and their noise factors are exclusively related with iris obstructions by eyelids and

eyelashes. The images were also filled, in the pupil regions, with black pixels, which some authors

used to facilitate the segmentation task. This way, the CASIA database cannot be considered to

develop algorithms to be used under unconstrained environments.

Figure 3.11: CASIA database image examples (CASIA, 2004).

3.5.3 ICE database

The Iris Challenge Evaluation (ICE) is a contest designed to measure the accuracy of iris recogni-

tion algorithms and is comprised of 2954 images (Figure 3.12), with a variable number of images

per subject. Quality was the main concern in the creation of this database. Therefore, the noise

factors that the ICE database contains are mainly related with iris obstructions and poorly focused

images. Another drawback with this database is that it was only made available for researchers

and entities that showed interest in participating in the competition (Proença, 2007).

Figure 3.12: ICE database image examples (ICE, 2006).
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3.5.4 WVU database

The West Virginia University developed an iris image database (Figure 3.13) comprised of 1852

images from 380 different eyes. Images were captured in less constraining acquisition conditions

and, due to this, incorporate several types of noise, such as iris obstructions, poorly focused and

off-angle images. However, few iris images present significant specular and lighting reflections,

which are believed to be the most common type of noises in images acquired under natural light.

Figure 3.13: WVU database image examples (A. Ross and Schuckers).

3.5.5 UBIRISv2 database

The UBIRISv2 database is comprised of 1877 images collected from 241 subjects within the

University of Beira Interior in two distinct sessions and constitutes the world’s largest public and

free iris database for biometric purposes. Acquisition conditions were unconstrained with several

classes of noise factors characterized in several of the images that comprise this database. These

factors are listed below and depicted in Figure 3.14:

• Iris obstruction by eyelids

• Iris obstruction by eyelashes

• Lightning reflections

• Specular reflections

• Poor focus

• Partially captured iris

• Out-of-image iris

• Off-angle iris

• Motion blurred images



3.6 Proposed work motivation 35

Figure 3.14: Types of noise found in UBIRIS database: (A) Eyelid obstruction; (B) Eyelash
obstruction; (C) Lighting reflections; (D) Specular reflections; (E) Poor focus; (F) Partial iris
images; (G) Out-of-image iris; (H) Off-angle iris; (I) Motion blurred image (Proença et al., 2010).

3.6 Proposed work motivation

The proposed work was motivated by all the limitation presented in the previous sections, re-

garding both algorithms and databases. Where algorithms are concerned the goal is the develop-

ment of an algorithm that doesn’t rely on the fact that the iris and the pupil are perfectly circular,

and doesn’t require complex acquisition systems (IR illumination, user collaboration or proxim-

ity, etc.) for iris images. This second objective seems to be overcome by using the UBIRISv2

database. However, as will be referred in further sections, it is proposed that the images from the

UBIRISv2 database don’t present enough information so as to allow the evaluation of feature ex-

traction and matching algorithms, reducing its utility to the evaluation of segmentation and noise

detection. With that in mind a new iris image database was created to allow both the evaluation of

segmentation and recognition of the proposed algorithm.
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Chapter 4

Proposed work: VCMI database and
developed algorithm

4.1 Introduction

In this chapter the proposed algorithm is presented in two main sections: Section 4.3.1 presents

the proposed segmentation algorithm, as well as some insight into some algorithms that inspired

it; Section 4.4 gives some insight of the SURF feature extractor as well as its application for iris

recognition. Additionaly the newly created VCMI iris database is presented in detail as well as the

motivation behind its creation.

4.2 VCMI database

images are depicted in Figure 4.1. A new iris database was created, in a partnership with two

students from ESEIG (Escola Superior de Estudos Industriais e de Gestão), with the main goal

of testing the applicability of the developed algorithms, when working with images acquired with

mobile devices.

For example, anyone could use bioemtric login in a smartphone to manage a bank account, or

simply to substitute the commonly used PIN numbers. With this in mind a new iris database was

created, using a smartphone and a camera, whose specifications are presented in Table 4.1.

The images were acquired in uniform yet uncontrolled conditions, with constant illumination,

Table 4.1: Specifications of the devices and images for each of the tested databases.

Database
UBIRISv2 VCMI Smartphone VCMI Camera

Device Canon EOS 5D Nokia 5800 Panasonic DMC-FX3
Resolution (pixels) 300×400 3.2 Megapixel (2048×1536) 6 Megapixel (3032×2008)

Image Format *.tiff *.jpeg *.jpeg

37
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and a distance between user and camera of approximately 20-30cm. Only photos from the right

eye were taken, exploring a series of eye orientations , such as looking to the camera, looking

sideways, upwards and downwards, and with partially occluded eyes. 100 individuals were in-

volved in the acquisition session, with 10 images per device being taken. For the evaluation of the

proposed algorithm a subset of 100 images per device, from 25 randomly chosen individuals (4

per individual) was created. Examples of the obtained images are depicted in Figure 4.1.

It is interesting to note that the images acquired for the VCMI database were all acquired is

compressed .jpeg format. It is not known if the compression affected the iris images such as to

affect the recognition results presented in Section 5.3. This interesting observation might be the

focus of future works: to develop a database of both compressed and uncompressed images and

assess the possible nefarious effects of such process in iris recognition.

Careful observation of the images presented in Figure 4.1 show that the images obtained with

the camera are seriously affected by reflections of the person taking the images. The extent of

such noise is variable in size but, in some images, covers the entire iris region, affecting all the

information present in such area. This fact should affect recognition results but, as will be seen

in Section 5.3, the error rates obtained for such images are still a lot lower than the ones obtained

with the UBIRISv2 images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Examples of images in the VCMI database. (a)-(d): Smartphone images and (e)-(h):
Camera images

4.3 Segmentation

4.3.1 Simultaneous detection of iris center and limbic contour

Researchers are now paying more attention to the context to aid visual recognition processes.

Context plays an important role in recognition by the human visual system, with many important
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visual recognition tasks critically relying on it. Central to the proposal in this work is the modeling

of the mutual context of limbic contour and iris centre, so that each can facilitate the recognition

of the other. When performed independently, both tasks are nontrivial since many other parts of

the image may be falsely detected. However, the two tasks can benefit greatly from serving as

context for each other.

4.3.1.1 Algorithm overview

The main steps of the proposed algorithm are systematized in Figure 4.2. The simultaneous detec-

tion of the iris centre and limbic contour was simplified by first over-detecting centre candidates,

followed by a contour detection around each of them. The centre candidates are estimated by a

method resembling the use of convergence index filters (Kobatake and Hashimoto, 1999). Next, a

window centred in each candidate is converted into the polar domain and a shortest path algorithm

is used to determine the best closed paths around the centre. Using combined data from the centre

and respective contour, the best pair centre/contour is selected.

Figure 4.2: Flowchart of the proposed iris segmentation algorithm.

Typical iris images present two very distinct regions: a high intensity region corresponding to

the eye and the skin, and the iris region, at least partially circular and lower in intensity. These

two sources of knowledge can be presented separately but are intrinsically connected. The fact

that the iris is a darker region against a brighter background translates into a specific divergent

gradient orientation from its centre. At the same time the limbic contour (iris outer edge) will

present a high gradient magnitude as well as a closed shape. The approach taken in this work was

that of detecting pairs of iris centre and limbic contour candidates that maximize a quality factor

weighted by the afforementioned combined knowledge.

4.3.1.2 Convergence index filters

The convergence index filter for vector fields was proposed by Kobatake et al. in 1999 (Kobatake

and Hashimoto, 1999) as an algorithm for detection of round objects in images, such as cancerous

tumour masses in chest X-ray images. The idea proposed by Kobatake et al. seemed interesting
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for application in the proposed iris segmentation algorithm as the iris is, at least partially, a distinct

round object in eye images.

To aid the comprehension of this algorithm one must first understand the notion of gradient

vector field applied to images. Theoretically the gradient is a vector field that points in the direction

of the greatest rate of increase of a scalar field (Hazewinkel, 2001). Working with images the

gradient is a vector field that points from darker regions (of lower intensity) towards brighter

regions (of higher intensity) (Gonzalez et al., 2007). With this in mind it is easy to deduct that in

an image composed of a brighter circular region, surrounded by a darker background, the gradient

orientation vector field will be as depicted in Figure 4.3.

Figure 4.3: Gradient vector field orientation in a synthetic image.

The computation of the gradient orientation is achieved by first computing the horizontal and

vertical components of the image gradient, Gx and Gy respectively. This can be achieved, as

proposed by Kobatake, by using both orientations of Prewitt’s kernel (Gonzalez et al., 2007): −1 0 1

−1 0 1

−1 0 1


 −1 −1 −1

0 0 0

1 1 1


From the values of Gx and Gy the gradient magnitude and orientation can then be computed

using Equations 4.1 and 4.2 respectively:

|g(x,y)|=
√

Gx
2 +Gy

2 (4.1)

φ(x,y) = arctan
Gy

Gx
(4.2)

The theoretical basis behind Kobatake’s algorithm was to compute, for each point in an image,

a value, called convergence index, that measured how strongly the gradient vectors around a given

point pointed towards it. A circular region of radius R, centered on each point of interest, P=(x,y),

was considered, as schematized in Figure 4.4. Considering an arbitrary point Q→ (k, l) in R,

the convergence index for point P will be obtained by computing the cosine of the angle θ(k, l)
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between the line PQ and the gradient orientation vector in Q, g(k, l). The output of the convergence

index filter, C(i, j) at point P is given by taking the average convergence index of all points Q in

R, considering the image as a discrete set of points. Formally the convergence index filter on point

P→ (x,y) is given by Equation 4.3:

Figure 4.4: Region of interest for convergence index filter computation, as proposed by Kobatake
in (Kobatake and Hashimoto, 1999).

C(i, j) =
1
M ∑

(k,l)∈R
cos(θ(k, l)) (4.3)

The output of a convergence index (or COIN) filter is always between −1 and +1, with maxi-

mum value +1 corresponding to all the gradient vectors in R pointing towards P.

For the developed algorithm the idea behind COIN filters was applied to detected a set of iris

center candidates, from the knowledge that the iris is a region of low intensity against a brighter

background composed by the sclerotic region of the eye and the surrounding skin.

4.3.1.3 Iris center candidate detection

Iris centre candidates are detected using a template matching step between the gradient orientation

of an iris image, exemplified in Fig. 4.5(b), and the template presented in Figure 4.5(a). This tem-

plate fits the gradient orientation vector field observed in dark regions against bright backgrounds.

By computing the cross-correlation, ccorr, between the template and gradient orientation vector

fields, a measure of the gradient divergence in each point can be achieved. The cross-correlation

is obtained as described in Equation 4.4:

ccorr=( f ∗g)[n] de f
= ∑

m
f ∗[m]g[n+m] (4.4)

where f ∗ and g represent the gradient orientation vector field and the template vector field,

respectively.
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(a) (b)

Figure 4.5: The iris centre detection is based on two vector fields: a) Template vector field and b)
Gradient orientation vector field. Note how the orientation around the iris centre fits the orientation
template.

The resulting correlation values for each point can be represented as an image such as exem-

plified in Figure 4.6(a). The center candidates are chosen as the local maxima of cross-correlation,

above a manually-tuned threshold, th. The local maxima are the set of points Ploc which, present-

ing a value above th, are higher than every neighboring pixel in a square window with size l. With

this approach we significantly reduce the number of center candidates. For example, Figure 4.7,

the direct application of the threshold would yield N candidates, while the local maxima detection

reduces such number to one single point. The template matching step will, thus, yield a set of N

iris center candidates. In the proposed work the variables th and l assumed the values 0.85 and

41 respectively, considering that all the images were resized to 300×400 and that the th value is

normalized with respect to the maximum cross-correlation value obtained.

(a) (b)

Figure 4.6: Iris centre candidate detection: a) Cross-correlation result and b) Local maxima of
cross-correlation (yellow circles) are the iris centre candidates. The white cross represents the real
centre, manually annotated.

Since in the proposed method for limbic boundary detection the image grid is considered as

a graph with pixels as nodes and edges connecting neighbouring pixels, we start by introducing
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(a) (b) (c)

Figure 4.7: Local maxima computation: a) Original cross-correlation results (zoom to region of
local maxima) b) pixels with intensity above threshold th = 0.85 c) Local maxima above threshold
th = 0.85.

some graph concepts.

A graph G = (V,A) is composed of two sets V and A. V is the set of nodes, and A the set

of arcs (p,q), p,q ∈ V . The graph is weighted if a weight w(p,q) is associated to each arc. The

weight of each arc, w(p,q), is a function of pixels values and pixels relative positions. A path

from vertex (pixel) v1 to vertex (pixel) vn is a list of unique vertices v1,v2, . . . ,vn, with vi and vi+1

corresponding to neighbour pixels. The total cost of a path is the sum of each arc weight in the

path ∑
n
i=2 w(vi−1,vi).

A path from a source vertex v to a target vertex u is said to be the shortest path if its total cost

is minimum among all v-to-u paths. The distance between a source vertex v and a target vertex u

on a graph, d(v,u), is the total cost of the shortest path between v and u.

A path from a source vertex v to a sub-graph Ω is said to be the shortest path between v and Ω

if its total cost is minimum among all v-to-u ∈Ω paths. The distance from a node v to a sub-graph

Ω, d(v,Ω), is the total cost of the shortest path between v and Ω:

d(v,Ω) = min
u∈Ω

d(v,u). (4.5)

A path from a sub-graph Ω1 to a sub-graph Ω2 is said to be the shortest path between Ω1 and

Ω2 if its total cost is minimum among all v ∈Ω1-to-u ∈Ω2 paths. The distance from a sub-graph

Ω1 to a sub-graph Ω2, d(Ω1,Ω2), is the total cost of the shortest path between Ω1 and Ω2:

d(Ω1,Ω2) = min
v∈Ω1,u∈Ω2

d(v,u). (4.6)

4.3.1.4 Limbic contour as shortest closed path

Intuitively, limbic boundary appears as a closed contour in the image, enclosing the iris centre, and

over pixels with a strong transition in the grey-level values. Assuming that paths through pixels

with high gradient are preferred over paths through low gradient pixels, the limbic contour can

then be found among the shortest closed paths enclosing the iris centre candidate. A difficulty
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with searching for the shortest closed path enclosing a given point C (shortest in the sense of min-

imizing the cost of the path) is that small paths, collapsing in the point C, are naturally favoured.

We overcome that difficulty by working on polar coordinates. We assume that the origin of the

coordinates is the candidate iris centre.

A circular window centred in each candidate is transformed to polar coordinates, as depicted

in Figure 4.8. A closed path in the original Cartesian coordinates is transformed into a path from

left to right margins in the window in polar coordinates, starting and ending in the same row of the

transformed window.

Note that the main assumptions are a) the candidate centre lies within the true limbic contour;

b) the limbic contour constitutes a closed path over pixels of strong gradient. The limbic contour

is not necessarily circular and the candidate centre does not need to match the true iris centre for a

correct contour detection.

(a) (b)

(c) (d)

Figure 4.8: a) Circular window in original cartesian coordinates for polar transformation; b)
Closed path in cartesian coordinates. c) Window after polar transformation. The origin is the
top-left corner, the horizontal axis represents the angle, from 0 to 360 degrees, and the vertical
axis the radius. d) Easily observable high gradient path, corresponding to the circular closed path
of b).
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4.3.1.5 Computation of the Shortest Closed Path

In spite of the efficiency of the computation of the shortest path between the whole left and right

margins, or between two pre-defined points in the margins, or between one of the margins and a

pre-defined point in the other margin, the search for the shortest path between the left and right

margins with the constraint that the path should start and end in the same row seems to increase

the complexity of the procedure. As typical, optimisation with constraints is more difficult than

without.

Had one been interested in the simple shortest path between the left and right margin and

the computation would be very efficiently performed using dynamic programming. Assuming the

simplifying assumption that the vertical paths do not zigzag back and forth, up and down, in the

transformed image, the search may be restricted among connected paths containing one, and only

one, pixel in each column between the two end-columns.

Formally, let I be an N1×N2 window (after polar coordinate transform) with N1 columns and

N2 rows (N1 = 360 and N2 = 175 in the proposed work); define an admissible path to be:

s = {(x,y(x))}N1
x=1 , s.t. ∀x |y(x)− y(x−1)| ≤ 1,

where y is a mapping y : [1, · · · ,N1]→ [1, · · · ,N2]. That is, an admissible path is an 8-connected

path of pixels in the image from left to right, containing one, and only one, pixel in each column

of the image.

The first step is to traverse the image from the second column to the last column and compute

the cumulative minimum cost C for each entry (i, j):

C(i, j) = min


C(i−1, j−1) + w(pi−1, j−1; pi, j)

C(i−1, j) + w(pi−1, j; pi, j)

C(i−1, j+1) + w(pi−1, j+1; pi, j)

,

where w(pi, j; pl,m) represents the weight of the edge incident with pixels at positions (i, j) and

(l,m). At the end of this process,

min
j∈{1,··· ,N2}

C(N1, j)

indicates the end of the minimal connected path. Hence, in the second step, one backtrack from

this minimum entry on C to find the optimal path.

Note that this procedure gives not only the shortest path between the left and right margins

but also yields the shortest path between any point in the right margin and the whole left margin:

for any point (N1, j) in the right margin, C(N1, j) indicates the cost of the shortest path between

(N1, j) and the whole left margin, see Figure 4.9. Finally, it should be clear how to change the

initial conditions of the above procedure to yield the shortest path between two pre-defined points

in the opposite margins.

Unfortunately, the computation of the shortest path constrained to start and end in the same

row (corresponding to closed contours in the original window) does not seem amenable to such an
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(a) (b)

Figure 4.9: Example of shortest path starting point detection. (a) shows all paths from the left
margin to the right margin and (b) all the paths from the right margin to the left margin. As is
observable all paths converge to a set of convergence points (in this case this set is composed by a
single point), which serve as start/end points for a set of closed contours.

efficient procedure. The brute force solution of computing the shortest path between the i-point in

the left margin and the i-point in the right margin, for i = 1 · · ·N2, and taking the minimum, is not

compatible with requirements of near real-time in our application.

Noting that if j and ` are two distinct points in the right margin, then the shortest paths between

each of these points and the whole left margin do not intersect, it is trivial to conclude that there is

at least one point m in the right margin for which the shortest path between m and the whole left

margin starts also at row m. Note that the paths correspond to closed paths in the original window

in cartesian coordinates (not necessarily including the shortest one). Similarly, interchanging the

role of the left and right margin, it is possible to obtain at least one point n in the left margin

for which the shortest path to the whole right margin is closed. By computing all the paths from

the left to the right margin (and vice-versa), a set of k closed contours is obtained for each centre

candidate. The procedure is illustrated in Figure 4.9.

4.3.1.6 Design of the Weight Function

The weight of an edge in the graph is a function of the values of the incident nodes (pixels). We

start by computing the derivative in the radial direction (centred in the iris candidate position) in

the original space, using a 3-point numerical differentiation (Secant), as defined in Eq. (4.7).

Gθ (r) =
I(r+h)− I(r−h)

2h
,withh = 1 (4.7)

In the graph, to each edge incident with 4-neighbouring pixels correspond a weight determined

by the derivative value of the two incident pixels, expressed as an exponential law, presented in

Eq. (4.8).

f (g) = f`+( fh− f`)
exp(β (255−g))−1

exp(β 255)−1
(4.8)

In this function f`, fh,β ∈ ℜ and g is the minimum of the derivative computed on the two

incident pixels. For 8-neighbour pixels the weight was set to
√

2 times that value. The parameters
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f` and fh were fixed at f` = 2 and fh = 32; β was experimentally tuned using a grid search method,

yielding β = 0.0208.

4.3.2 Best center/contour pair discrimination

From the previously described steps a set of centre/contour candidate pairs (Cp) is built. The joint

decision for the centre and contour is taken to maximize the joint probability of the individual

parts. In here, we assume that the joint probability is a monotonous function of the product of

individual measures of quality, combined in an overall quality factor, Q. The discrimination be-

tween candidates is performed by choosing the pair with the highest Q. The quality factor is given

by:

Q(Cp) =
µ(∆C) ·ρp

(1−S(C))

where µ(∆C) is the mean derivative alongside the contour, ρp is the cross-correlation value of the

centre candidate, and S is the shape factor of the contour (with perimeter P and area A), given by:

S(C) =
P2

4π ·A

The center/contour pair with the highest quality factor was chosen as the limbic contour. A

high quality factor assured that the chosen pair presented a high cross-correlation value in its cen-

ter candidates, a high mean gradient alongside its contour and an at least partial circular shape.

This way the centre/contour pair is selected based on an optimal combination of these three fac-

tors. An example of two candidate pairs and their respective quality factor values is presented in

Figure 4.10.

Figure 4.10: Examples of the quality factor values, Q, for the two centre/contour candidates of a
given image.
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4.3.3 Pupillary contour and normalization

As it was referred, when presenting the pioneer works on iris recognition (Section 3.2), normal-

ization of the segmented iris regions is an important step, in order to overcome size diferences

between different iris images, as well as distinct contraction states of the pupil, by transforming

the image into a fixed size polar image. This step was indispensible because such differences in

iris image nature would affect the performance of the feature extraction and matching algorithms.

However, in recent years, a series of algorithms have been developed that focus on the detection

of scale invariant features in certain points of interest in the image:

• Scale Invariant Feature Transform - SIFT (Lowe, 1999)

• Speeded Up Robust Features - SURF (Bay et al., 2006)

• Gradient Location and Orientation Histogram - GLOH (Mikolajczyk and Schmid, 2005)

• Histogram of Oriented Gradients - HOG (Zhu et al., 2006)

• Local Energy based Shape Histogram - LESH (Sarfraz and Hellwich, 2008)

• Local Descriptor for Dense Wide-Baseline Stereo Matching - DAISY (Tola et al., 2010)

With such algorithms, objects can be described by certain features of specific points of interest, in

a way that is independent of scale, illumination and rotation. In the proposed work, SURF (Bay

et al., 2006), which will be described in detail in the next section, was used as the feature extraction

algorithm. Normalization becomes less indispensible with SURF because points of interest can be

extracted without the need for scale normalization and image transformation into the polar domain.

By eliminating the need for a normalization step, the segmentation of the pupillary contour is also

dispensable. The segmentation of the pupil in traditional methods aimed to compensate different

pupil sizes, depending on its contraction state, allowing a normalization step that resulted in iris

signatures with the same size, regardless of the pupillary dilation. With no need for normalization

it was chosen not to perform pupillary segmentation as well. Another factor that also weighted

in this choice was the fact that unconstrained settings in image acquisition yielded oftimes images

where the distinction between iris and pupil, either due to heavily pigmented iris or reflection

noise, was not considerable. Figure 4.11 shows some examples of this effect. Some attempts

were made, using the UBIRISv2 database, at executing pupillary segmentation with an approach

similar to the one proposed for the limbic contour. However, due to the problems outlined above

the results were far from satisfactory, especially when images from different databases were tested.

With this in mind, the pupillary segmentation process was discarded.
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(a) (b)

(c) (d)

Figure 4.11: Example of iris images, acquired under unconstrained settings, where the contrast
between pupil and iris is significantly low. Images like these backed the idea that pupillary seg-
mentation in such images is not as straightforward as limbic contour segmentation.

4.4 Recognition

4.4.1 Speeded Up Robust Features

Typically, the search for image point correspondences can be divided into three main steps. A

set of interest points are selected at distinctive landmarks in the image, such as corners, blobs, or

T-junctions. These points all present the key property of repeatability, that is, the reliability of

a detector for finding the same physical interest points under different viewing conditions. The

neighbourhood of every interest point is then represented by a feature vector. This descriptor

has to be distinctive and at the same time robust to noise, detection, displacements and geometric

deformations. Finally, the descriptor vectors are matched between different images. The matching

is based on a distance between the vectors, like the Mahalanobis or Euclidean distance. The

dimension of the descriptor has a direct impact on the computing time of such process, with lower

dimensions being more desirable for fast interest point matching. However, lower dimensional

feature vectors are in general less distinctive than their high-dimensional counterparts (Bay et al.,
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2008).

In 2006, Bay et al. proposed a methodology denominated Speeded Up Robust Features or

SURF that aimed to achieve a computationally fast, with little or no effect on performance, detector

and descriptor algorithm that achieved scale and rotation invariance (Bay et al., 2006). As these

are two factors that are difficult to control while acquiring iris images, as depicted in Figure 4.12,

the SURF algorithm seemed an interesting alternative to attempt recognition between two iris

signatures.

(a) (b)

Figure 4.12: Example of two iris images from the same person but with distinct scale and rotation
values.

4.4.1.1 Point of interest selection

The most widely used detector probably is the Harris corner detector (Harris, 1988), proposed

back in 1988. However, due to Harris corners not being scale-invariant, Lindeberg (Lindeberg,

1998) proposed the detection of interest points in an image, each with their own characteristic

scale, experimenting both the determinant and the trace of the Hessian matrix. On the original

SURF paper (Bay et al., 2006) the authors analyze a series of variants of interest point detection

algorithms based on Harris corners and features of the Hessian matrix and achieved two main

conclusions:

• Hessian-based detectors are more stable and repeatable than their Harris-based counterparts.

• Using the determinant of the Hessian matrix rather than its trace seems advantageous.

With this in mind they proposed a point of interest detection based on the determinant of the

Hessian matrix. However, rather than using a different measure for selecting the location and the

scale, they relied on the determinant of the Hessian matrix H(X ,σ), for both. For each point

X = (x,y) in an image I, the Hessian matrix in X at scale σ is defined as:



4.4 Recognition 51

H =

(
Lxx(X ,σ) Lxy(X ,σ)

Lxy(X ,σ) Lyy(X ,σ)

)

where Lxx(X ,σ) is the convolution of the Gaussian box filters second order derivative δ 2

δx2 g(σ)

with the image I in point X and similarly for Lxy(X ,σ) and Lyy(X ,σ). The use of box filters instead

of normal 2D Gaussians, as depicted in Figure 4.13, arises as a result of the need for discretization

and crop of Gaussians for their practical application, which can bring about problems such as

aliasing as the resulting images are sub-sampled, with the possibility of new structures appearing

when working at lower resolutions (higher σ values). Box filters are easy to implement using

integral images and allow fast computation time because of the simple weights applied in the

rectangular regions presented in Figure 4.13.

Figure 4.13: From left to right: Discretized and cropped Gaussian second order partial derivatives
in y-direction and xy-direction, and proposed approximations by box filters. The grey regions are
zero (Bay et al., 2006).

The 9× 9 box filters in Fig 4.13 are approximations for Gaussian second order derivatives

with σ = 1.2 and represent the lowest proposed scale (i.e. highest spatial resolution). The results

of the convolutions with the proposed box filter approximations of second derivative Gaussians

are denoted Dxx,Dyy, and Dxy and the calculation of the Hessian matrix determinant can be easily

accomplished using these three values:

det(H(X ,σ)) = Dxx ·Dyy− (Dxy)
2

To work with variable scales algorithms generally work with image pyramids: each scale

will yield a result and such results will be stacked in a three-dimensional array. In the SURF

point detector the images are repeatedly smoothed with Gaussian box filters and subsequently sub-

sampled (i.e. the σ value is doubled and the filter size is adapted) in order to achieve a new scale

value for a new level of the image pyramid. The interest points are detected as local maxima in the

image pyramid array, using a non-maximum suppresion algorithm in a 3 x 3 x 3 neighbourood.

4.4.1.2 SURF point descriptors

Each point of interest, detected as a local maximum of the Hessian determinant image pyramid,

is associated to a feature vector, extracted from its neighborhood, also known as the descriptor.

To create these descriptors an orientation value is computed for each point of interest, based on
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Gaussian weighted Haar wavelet response in both x and y directions in a circular region around

the interest point. The size of the region is dependent on the scale value, s, of the interest point.

The orientation of each point of interest is computed by plotting the horizontal against the vertical

components of the Haar wavelet responses, and calculating the maximum response sum in a sliding

window like the one depicted in Figure 4.14. By assigning an orientation value to each point of

interest, SURF descriptors may achieve orientation invariance.

Figure 4.14: Orientation assignment of each point of interest: a sliding orientation window of size
π/3 detects the dominant orientation of the Gaussian weighted Haar wavelet responses at every
sample point within a circular neighbourhood around the interest point (Bay et al., 2006).

After the orientation value is computed, a square region, centered on the point of interest,

oriented along its orientation direction and with side length proportional to the scale value is

defined. This region is divided into smaller 4×4 square sub-regions, and for each sub-region the

Haar wavelet responses along x and y are computed for 5 equally separated sample points. The

x and y directions are considered with respect to the orientation direction of the point of interest.

Each sub-region will yield as final feature vector a set of 4 values: (∑dx,∑dy,∑ |dx|,∑ |dy|), where

dx and dy are the horizontal and vertical components of the Haar wavelet response in each of the

sample points of the sub-region. The final feature vector for each point of interest will, therefore,

be composed by the 16 sets of 4 features, yielding a 64 features descriptor for each point of interest.

This process is depicted in Figure 4.15.

4.4.1.3 Matching of points of interest from two images

The matching between points of interest in two different images is simply made by calculating

the point in one of the images that presents the minimum distance (Euclidean or Mahalanobis,

for example) to a point in the other image. Even though this seems trivial, one simple addition is

made to the obtained 64D descriptors for each point. As it can be seen in Figure 4.16 two similarly

shaped regions should not be considered a match. One simple way to distinguish between them

without the need to compute distance measures is to compare the trace of the Hessian matrix
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Figure 4.15: Descriptor building process for each point of interest: an oriented quadratic grid
of 4× 4 square sub-regions is laid over the interest point (left). For each square, the wavelet
responses are computed from 5×5 equally separated sample points (for illustrative purposes, only
2× 2 sub-divisions are shown). For each field, the Haar wavelet responses in both direction, dx

and dy, and their respective modulus, |dx| and |dy|, were computed relatively to the orientation of
the grid (right). (Bay et al., 2008).

for each point of interest, and using the sign of this result as a first matching step, without extra

additional computing cost (Bay et al., 2008).

Figure 4.16: If the contrast between two interest points is different (dark on light background vs.
light on dark background), the candidate is not considered a valid match (Bay et al., 2008).

4.4.2 Iris mask estimation

4.4.2.1 Mask effect on SURF point of interest detection

To compare two iris images one most only consider the region corresponding to the iris. The

segmentation algorithm presented in previous sections achieved this goal by detecting the limbic

contour, that separates the iris from the sclerotic region of the eye. However, the SURF algorithm

searches all the points in a given image for points of interest. Without iris segmentation, SURF
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would detect a lot of keypoints with no interest for recognition. For example in Figure 4.17 it can

be observed that the SURF point detector yields a significant set of points of interest. Without

any conditioning to the keypoint localization the regions of the eyebrows and the shadows, that

naturally arise from varying illumination conditions, will present gradient characteristics that fit

the SURF point detector targets. With this in mind it is important to create a binary iris mask

image to restrict the possible locations of the detected keypoints. Figure 4.17 shows the difference

between the detected keypoints with and without the application of the mask image.

(a) (b)

Figure 4.17: Results of the SURF keypoint detector for: a) the full iris image and b) the masked
iris image.

4.4.2.2 Mask estimation

To estimate such mask a set of parameters was considered:

• The region surrounded by the detected limbic contour, Lch;

• A circular region, centred on Ci and with radius ri/3 to serve as an approximation of the

pupil region.

The first item of the list presented above is simple to understand: after detecting the limbic contour

with the proposed segmentation algorithm, the region of interest (ROI) corresponding to the iris

will be the area surrounded by such contour. However, inside this region one can also find the

pupil. Even though the pupil is generally a region of very uniform low intensity, some features

of such region might introduce noise on the SURF algorithm. For example, if no removal of

the pupil was performed, the segments of the pupillary contour that present higher contrast will

probably be detected by the SURF point of interest detector. The problem with such points is that,

as refered above, pupillary segmentation is not a trivial step when working with images acquired
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under unconstrained settings. To overcome such problem an approximation of the puppilary region

was performed in order to assure that no points of interest in the puppilary contour were considered

for matching.

It is known that illumination affects the size of the pupil (Taptagaporn and Saito, 1990). This

is a difficult problem to overcome, as it implies that no direct relation exists between the size of the

iris and the pupil. With this in mind, a choice had to be made whether to consider always the worst

cas scenario, that is, consider that the pupil is always fully dilated and work only with the points

of the iris farthest away from the center, or risk a smaller pupil region with the tradeoff of a larger

region of the iris. Regardless of the choice, the rationale followed to create an approximation of

the pupil was to compute a circular region centred on the same point as the iris, Ci, and with a

radius proportional to the radius of the iris, ri. The proportionality constant used in this work was

1/3.

4.4.3 Matching

The SURF algorithm finds, for each point of interest in an image I1 , the best match with all the

points in another image I2 . The best match is the point of interest in I2 that presents lowest distance

to the point of interest of I1. To perform matching between two iris images the best matches

from the pair of images are considered. By considering only the best matches, iris belonging to

the same person will present lower mean errors than iris from different persons. Using the iris

mask defined by the segmentation process only points of interest arising from iris patterns are

considered. Figure 4.18 exemplifies the point of interest matching for two images of the same

individual and for two images of distinct individuals. After the matching of the best pairs of points

of interest from two images is carried out, the mean matching error from each pair is computed.

The recognition is carried out by using as a similarity measure the mean error from the 10%

best matches from a pair of images, that lie inside the iris mask defined by segmentation. This

approach may seem too simple but presented some interesting results (see Section 5). However

such approach does not take in account the position of the points of interest, or other geometric

measurements. Using geometric information (such as relative point position, convex hull area

and perimeter, etc.) might be an interesting approach to achieve more accurate recognition using

SURF point of interest descriptors.
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(a)

(b)

Figure 4.18: Results of matching for: a) images from the same individuals and b) image from
distinct individuals.



Chapter 5

Results and Discussion

In this chapter the main results of the proposed algorithm are presented. The results are divided,

as the description of the algorithm, in two main sections: Section 5.2 presents the segmentation

errors and Section 5.3 the recognition results with all the tested databases.

5.1 UBIRISv2 database

The proposed algorithm was evaluated, initially, in the UBIRISv2 database Proença et al. (2010).

Images in UBIRISv2 were captured under non-constrained conditions (at-a-distance, on-the-move

and on the visible wavelength), with corresponding realistic noise factors. In Figure 5.1 some

of these noise factors (reflections, occlusions, pigmentation, etc.) are exemplified. A subset of

the original database composed by 100 images from 20 distinct individuals was created. All

100 images were manually annotated so as to allow the evaluation of the obtained results. All

individuals and respective images were chosen randomly.

5.2 Segmentation

5.2.1 Colour channel selection

In order to apply the proposed algorithm the RGB images from the UBIRISv2 database were con-

verted to a single colour channel. Literature suggests that the red channel is the optimal colour

channel for iris segmentation. Behind this statement is the fact that the iris presents more sen-

sitivity to infra-red wavelength. With this in mind working with the red channel should convey

the most useful information for iris segmentation (Tan et al., 2010). Such information led to the

choice of the red channel as the input for the segmentation algorithm and all the results presented,

regardless of the database, were obtained using that channel.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: Examples image classes in the UBIRISv2.0 database: a) Heavily occluded; b) Heavily
pigmented; c) Glasses occlusion; d)Reflection occlusion; e) Off-angle; f) Rotated eye; g) Black
subjects and h) Normal.

5.2.2 Iris centre

The iris centre detection accuracy was measured as the Euclidean distance between the centre

of the automatically selected centre/contour pair and the manually marked iris centre. In order

to report errors, independently of the distance of the camera to the individual, the distance was

normalised by the mean radius of the manually annotated limbic contour. As the iris is not always

exactly circular, the point from which the gradient diverges is not always the real iris centre. This

observation helps to understand why the iris centre errors, summarized in Table 5.1 are not lower.

However it can be noted that the mean error is significantly lower than the radius of the iris, and

the automatically detected centre lied always inside the iris region. This is the most significant

observation, since it is a pre-requisite for a successful limbic contour detection. With this in mind

the obtained results show that the proposed algorithm accomplishes its main goal, with errors

significantly lower than the iris radius, regardless of the tested database.

Table 5.1: Main results obtained with the proposed algorithm.

Database
UBIRISv2 VCMI Smartphone VCMI Camera

Centre Distance (%) 14.56 11.27 14.81

Contour
Mean error (%) 5.72 8.18 12.07

Hausdorff distance (%) 14.64 21.93 30.21
Mean iris radius (pixels) 65.1 31.4 37.8

The presented results show that the images acquired with the camera give the worst segmenta-

tion results. However these results are affected by a common cause for high segmentation errors:
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as depicted in Figure 5.2 some of the off-angle images (where the iris is totally shifted to one side

of the sclera) present the iris/sclera contrast only one of the sides of the image. This confuses the

shortest path algorithm: instead of sticking to the limbic contour the shortest path will diverge to a

region of higher contrast, like the skin and the eyelashes, thus causing segmentation errors such as

the ones exemplified in Figure 5.2. Such error could be possibly overcome by detecting the sclera

before starting the segmentation of the limbic contour and using such information to better limit

the segmentation process. It must be noted that all the images, regardless of the database, were

resized to approximately 300× 400 to speed up the segmentation process. The original images

were then cropped (bounding box of the iris region), according to the region segmented as iris, for

the recognition process.

(a) (b) (c)

Figure 5.2: Segmentation errors with off-angle images. As it can be observed the existence of a
well defined sclera region on only one of the sides of the iris affects greatly the limbic contour on
the side where the contrast is reduced.

5.2.3 Limbic contour

The evaluation of the limbic contour was performed by computing the mean distance between each

point of the detected contour and the closest point of the manually annotated contour. Besides the

mean error, the Hausdorff distance between both the aforementioned contours was also calculated.

The Hausdorff distance is defined as the “maximum distance of a set to the nearest point in the

other set”. Roughly speaking, it captures the maximum separation between the manual and the

automatic contours. As with the centre error calculation, both distances were normalized with

respect to the iris radius.

Some of the obtained results are depicted in Figures 5.3 and 5.4, for the UBIRISv2 and VCMI

Smartphone databases respectively, alongside de manually annotated ground truth. It is observable

that the most considerable errors are observed in the upper part of the eyes, near the eyelashes. This

is easily explained as the eyelashes are generally dark regions that are easily mistaken with the iris,

given that the cost function for the shortest path algorithm is based solely on gradient magnitude.

However, these errors could be easily overcome by the application of an eyelid/eyelash detection

algorithm like the ones proposed by Masek (2003) or Kang (Kang and Park, 2007). The UBIRISv2

database presented the best segmentation results. However none of the results obtained with the

other database (VCMI Camera and VCMI Smartphone) can be considered negative, as the iris was
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localized (i.e. the correct center/contour pair was selected) for all the tested images, regardless of

the database.

(a) (b) (c)

Figure 5.3: Contours obtained by the proposed algorithm on the UBIRISv2 database (black) and
the manually annotated contours (yellow).

5.2.4 Centre/contour pair discrimination

The quality factor proved to be an excellent asset for discrimination of the best centre/contour pair,

as is observed by the results summarized in Table 5.2. Some images present very high correlation

values on other dark regions of the image, such as eyebrows or thicker eyelashes. Such areas also

presented high gradient values and, thus, created the need for a third evaluation parameter. The

shape factor gave higher weight to more circular shapes, such as the iris. The quality factor allowed

zero miss detection of the best centre/contour pair. To prove the importance of mutual context

information, all the images were re-tested with the assumption that the best centre/contour pair

would always correspond to the highest cross-correlation value. With this new assumption a miss-

detection ratio of 8% was obtained, for the UBIRISv2 database, thus confirming the importance

of mutual context information. An example of the segmentation results with both approaches is

depicted in Figure 5.5. With the VCMI database the importance of the quality factor was even

more pronounced with miss-detection ratios of 14% and 11% obtained using the highest cross-

correlation value (for VCMI smartphone and VCMI camera images respectively), and a zero miss-

detection obtained through the calculation of the quality factor. Figure 5.6 shows an example of

the quality factor discriminative power with an image from the VCMI smartphone database.

Table 5.2: Miss-detection results of the tested databases with and without the quality factor. With-
out the quality factor the best center/contour pair qas considered as the candidate with higher
cross-correlation value.

Database
UBIRISv2 VCMI Smartphone VCMI Camera

Without Q (%) 8 14 11
With Q (%) 0 0 0
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(a) (b) (c)

Figure 5.4: Contours obtained by the proposed algorithm on the VCMI smartphone database
(black) and the manually annotated contours (yellow).

(a) (b)

Figure 5.5: Example of segmentation results with the discrimination by (a) proposed quality factor
and (b) global maximum of cross-correlation as best centre.

(a) (b)

Figure 5.6: Example of segmentation results with the discrimination by (a) proposed quality factor
and (b) global maximum of cross-correlation as best centre on images from the VCMI database.
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5.2.5 Comparative analysis with state-of-the-art algorithms

In 2008, Hugo Proenca and Luis Alexandre, from Universidade of Beira Interior (UBI), Portugal,

promoted the NICE.I Contest (http://nice1.di.ubi.pt/). This contest aimed to “evaluate the robust-

ness to noise of iris segmentation and noise detection algorithms, toward iris recognition systems

within less constrained image capturing conditions, eventually to covert ones, in the near future”.

The NICE results represent the great majority of the already available segmentation results using

the UBIRISv2 database. However the evaluation parameters of the aforementioned contest are

based on two principles that significantly vary from our proposed approach:

1. The segmentation of the iris region of the eye was based both on the detection of the limbic

and the pupillary contours. In our work we performed no segmentation of the pupillary con-

tour, as we argue that performing recognition regardless of this step might prove as the path

forward, as far as unconstrained iris recognition is concerned. The rationale behind such de-

cision is based on the fact that the contrast between the pupil and the iris is very dependent

on many factors (illumination, iris pigmentation, obstructions, etc.) thus creating a serious

challenge as far as the development of robust segmentation algorithms is concerned.

2. The final segmentation results are evaluated as number of pixels correctly classified as iris.

This description takes in consideration the detection of noisy areas (reflections or eyelashes

for example) which surpasses the scope of the proposed work.

With these two points in mind it is obvious that a direct comparison with the NICE.I segmen-

tation results is not possible.

5.2.6 Processing time

The proposed segmentation algorithm was developed in MATLAB r2011a and presented a mean

processing time of 18.83 seconds. The algorithm was tested on a Pentium (R) Dual-Core T4200@

2.00GHz, 3.00GB RAM memory Toshiba Satellite portable computer.

5.3 Recognition

The recognition results for the UBIRISv2 database and the VCMI images (smartphone and cam-

era) are presented in Figure 5.7. On the left side of each subfigure is the ROC curve for the two

sets of images and on the right side the FAR vs. FRR curves. As it can be seen a significantly

lower equal error rate (5.56% and 9.35% vs. 39.2%) was obtained for both the VCMI image types.

Although a few works present better recognition results with the UBIRISv2 database (Santos

and Hoyle, 2012; Tan et al., 2012; Wang et al., 2012), this results are still very modest when

compared to the existent systems working under constrained settings, as refered by Bowyer in his

review on recognition works using the UBIRISv2 database (Bowyer, 2012). The obtained results

with the UBIRISv2 database seem to indicate that the proposed algorithm might not work, as it is
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developed at the moment, with images with as low resolution as the UBIRISv2 images. However

a few observations can be made regarding the usability of such a database for the evaluation of

recognition algorithms. Using the SURF points of interest detector all the images in the VCMI

database presented, at least, 100 points of interest, while 18% of the UBIRISv2 images presented

no points of interest inside the iris region. This observation may present a limitation to the use

of point-of-interest descriptors for iris recognition, but the number of recent works following this

rationale (Bakshi et al., 2012; Liu and Li, 2012; Bakshi, 2011) might point that using SURF for

feature extraction is a valid approach. The simplistic way of similarity calculation between two

images might account for the big error rates obtained for the UBIRISv2 images, and further work

in this area might lead to interesting results.

For real life applications the smartphone images, as well as the images acquired with the cam-

era, presented promising results to be applied in security applications. The feature extraction and

matching step needs to be perfected and the real applicability of techniques like SURF needs to be

assessed. Noise assessment in the iris masks and the development of a robust pupil segmentation

algorithms are the two logic steps to follow the presented work.
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(a)

(b)

(c)

Figure 5.7: Recognition results, on the form of ROC curves and FAR vs FRR graphics, with: (a)
VCMI smartphone images, (b) VCMI camera images and (c) UBIRISv2 database images.
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Conclusion

With the rising challenges in the unconstrained iris recognition field, regarding the use of images

acquired under an unconstrained set of conditions, the development of new improved systems is

gaining renewed interest. In the presented work a new rationale for iris segmentation, the first step

in iris recognition, was presented.

The use of mutual information from gradient orientation for centre detection and gradient mag-

nitude for contour detection presented good results, regardless of the chosen database, with zero

miss-detection ratio of the best centre/contour pair. Future improvements on the segmentation

algorithm should centre on the idea of improving the iris mask to help the recognition algorithm

by either detecting zones of noise or attributing noise probabilities to each pixel and use such

information when extracting the points of interest. SURF proved as an usefu alternative to the

traditional Gabor based feature extraction methods by overcoming the need for pupillary segmen-

tation (difficult in images acquired under unconstrained settings) and, thus, normalisation. The

future work proposed for segmentation would improve the discrimination of points of interest, but

testing new metrics (instead of just the mean matching error, as proposed) would also allow the

improvement of the results presented in Chapter 5. With such metrics the algorithm could become

less dependent in the resolution of the images, as observed by the results of the lower resolu-

tion UBIRISv2 images, and reach more interesting error rates. The VCMI database can also be

perfected, by working with variable illumination conditions, distances between user and device,

acquiring images from both eyes, testing different image formats and even acquire only partial

regions of the iris.

Improving the robustness of the recognition algorithm and implementing it in a functional proto-

type is the near future goal for the present work.
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