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Abstract

Glaucoma is a high prevalence optic neuropathy that may lead to irreversible blindness.

The assessment of the anterior chamber angle of the eye is recommended by international

guidelines to evaluate risk factors, categorise the disease and decide treatment strategies. The

clinical-standard technique, called gonioscopy, is a difficult manual examination, seldom

practised in primary care settings.

The NIDEK GS-1 digital imaging device has automated several phases of gonioscopy

making it available to non-expert operators and allowing to store high quality pictures of

the eye region. However, images of the angle still need extensive knowledge and time to be

interpreted correctly to produce a diagnosis.

We aimed to research whether deep learning systems, currently studied in many other

applications in medicine and ophthalmology, could effectively support the analysis of digital

gonioscopic images, enabling patient screening in primary care settings. Experienced

ophthalmologists have been involved in the collection and evaluation of clinical requirements

to focus our work, leading to the selection of two main image analysis tasks to investigate.

The first is the semantic segmentation of anatomical layers in gonioscopic images.

We designed and developed an algorithm capable of providing, for the first time, rich

morphological information about the eye region. The algorithm can deal with specific image

(e.g., peripheral blur and vignette) and ground truth (e.g., partial annotations) characteristics

that would make other state-of-the-art systems ineffective, returning an overall segmentation

accuracy above 90% on our test set. Moreover, the system may estimate the reliability of

its results by generating uncertainty maps through Monte Carlo dropout that proved to be

effective at detecting small segmentation flaws.
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The second is the automatic grading of angle aperture, a measure of clinical relevance.

Differently from existing literature, in which the angle aperture is estimated over large angle

quadrants (90°-wide), we explored solutions to grade smaller angle regions (about 5°-wide)

for an increased sensitivity at detecting local angle closures. Our results highlight potentials

and limitations of this approach and provide useful hints for future development in this field.

Both development phases followed inter-domain sessions with clinical and technical

collaborators for the formulation of annotation protocols and the generation of ground truth.

Moreover, we have studied inter-annotator variability of ground truth delineations of

angle layers to provide a comprehensive context for evaluating the performance of automated

systems. In particular, we compare the performance of our segmentation model with the

average per-layer variability among experts finding good correlation. Results suggest that the

identification and delineation of some of the anatomical layers of the angle is difficult even

to experts and that, as a consequence, the limited agreement among annotators reflects on the

algorithm’s performance.

Despite the limited size of our annotated datasets, we demonstrated that deep learning

systems can aid the analysis of digital gonioscopic images, possibly encouraging further

research in this field. Semi-automated imaging devices and automatic analysis software may

offer an effective and efficient alternative to conventional gonioscopy (the current clinical-

standard) and help both prevent the development of glaucoma through better screening plans,

and manage its treatment.
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Chapter 1

Introduction

1.1 About this Chapter

This chapter provides the motivation and the clinical background of this research, the research

questions, the main contributions to the field and the structure of this thesis.

1.2 Motivation

Glaucomas are a family of optic neuropathies (i.e., diseases damaging the optic nerve) and

are the second leading cause of irreversible blindness worldwide after cataract [84] affecting

nowadays between 70 and 80 million people [94], a number that is predicted to considerably

increase to more than 110 million within twenty years [125]. It is commonly referred to

as the silent thief of sight since it often remains asymptomatic for years and is diagnosed

only at a late stage of progression when some degree of irreversible visual impairment has

already been caused. It has been estimated that, depending on the geographical area, 50% to

90% of the people affected by glaucoma may be unaware they have it [69, 99, 43, 105, 9].

Glaucoma reduces patients’ quality of life [93] and impacts healthcare costs [128, 95]. It

is thus fundamental to discover, evaluate and monitor risk factors in advance and diagnose

the disease at the earliest stage possible. Several factors have been associated with higher

chances of developing glaucoma. Among them, age, ethnicity, the morphology of the anterior
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chamber angle of the eye (described in the next section) and an elevated intraocular fluid

pressure (IoP) [135]. The assessment of the anterior chamber angle is particularly important

and recommended by current international guidelines [31, 1].

The inspection of the anterior chamber angle is performed through an examination

called gonioscopy [4], that will be better described in a later section of this chapter. It is

however worth highlighting here that the conventional way to perform this exam has several

known limitations. The current clinical standard technique for gonioscopy is a fully manual

procedure which requires significant time, patient cooperation, and operator expertise [44, 23].

It does not enable to acquire images of the eye region (also known as gonio-photographs)

easily, thus preventing comparisons and follow-up. The result is that gonioscopy is often

performed less frequently than recommended [17] and is seldom practised by optometrists in

primary-care settings. To overcome some of these disadvantages, few imaging devices for

digital gonioscopy have been developed in recent years [87, 114].

Our work aimed to investigate solutions for the automated analysis of digital gonio-

photographs to support the detection and evaluation of glaucoma-related conditions, consid-

ering requirements collected from clinical experts. It was motivated by the importance of

gonioscopy, a recommended clinical practice related to a high-prevalence disease (glaucoma),

and by the clinical need (common to many fields in medicine) for a more efficient analysis

of data, which has not been tackled yet for gonioscopy by previous contributions in the

literature.

The medical background of this research, with a description of the anterior chamber

angle, of gonioscopy, and of complementary examinations to image this eye region, is

briefly described in the next few sections to provide the reader with the information useful to

contextualise the technical work.

1.3 The Anterior Chamber Angle

The anterior chamber angle (also called irido-corneal angle or drainage angle) is the region

of the anterior chamber of the eye located at the interface between the iris and the cornea. It
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Fig. 1.1 Top: a schematic representation of a human eye anterior section (adapted and reproduced under
CC BY-SA 3.0, source: https://commons.Wikimedia.org/wiki/File:Schematic_diagram_of_the_
human_eye_en.svg). Bottom: the anterior chamber angle as magnification of the area highlighted by the
green rectangle.

is composed of several anatomical layers that extend along the entire circular periphery of

the iris. With reference to Figure 1.1, moving from the cornea towards the iris, we traverse

the main structures of the angle:

• cornea: the transparent front of the eye that covers the iris, the pupil and the whole

anterior chamber;

• Schwalbe’s line: a thin layer made up of collagen that separates the cornea from the

trabecular meshwork. It usually appears white, but it may be pigmented in some cases;

• trabecular meshwork: a mesh of collagen fibres and epithelium. It is divided into

two parts, a non-functional and usually paler one (anterior or non-pigmented trabec-

ular meshwork) and a functional pigmented one (posterior or pigmented trabecular

https://commons.Wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
https://commons.Wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
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meshwork). The functional part of the trabecular meshwork is located in front of the

Schlemm’s canal;

• Schlemm’s canal: a circular vessel that surrounds the entire drainage angle circum-

ference along the border located behind the posterior trabecular meshwork and thus

normally invisible in a gonioscopic exam;

• scleral spur: a ridge of white collagen fibres of the sclera, between the anterior ciliary

body and the trabecular meshwork. It is usually relatively bright with respect to the

neighbouring regions;

• anterior ciliary body band: longitudinal fibres of the ciliary body. Normally, it appears

as a light brown or grey band;

• iris root: the peripheral region of the iris originated from the anterior ciliary body.

The layers described above are always present in the anterior chamber angle but, depend-

ing on the morphology of the region, some of them may not be visible during a gonioscopic

examination. This happens for example when there are local adhesions of the iris root with

the trabecular meshwork or the cornea, called synechiae, or when the iris root is very close

(i.e., in apposition) to the cornea. The impossibility of seeing some of the layers through

gonioscopy may relate with an increased risks of developing certain sub-types of glaucoma,

as will be discussed shortly.

The trabecular meshwork is a layer with an important physiological role. It regulates the

drainage of the aqueous humour, the fluid that fills the anterior chamber of the eye and that

is continuously produced by the ciliary processes in the posterior eye chamber (a small space

between the iris and the lens). The aqueous humour flows through the meshwork towards the

Schlemm’s canal and is then collected by the circulatory system. By allowing the correct

amount of fluid to filter through, the trabecular meshwork is the structure mainly responsible

for the control of the overall IoP.

Some pathological conditions may lead the trabecular meshwork to lose efficiency at

draining the aqueous humour or prevent it from functioning properly. This might be due to
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structural degradation or to some extent of physical occlusion, e.g. due to iris apposition.

As previously mentioned, it is well known that an increase in IoP is one of the main risk

factors of developing glaucoma [135], hence being able to see the anterior chamber angle

and evaluate its conditions is important.

According to the characteristics of the drainage angle, two most common broad categories

of glaucoma may be identified. They are:

• open-angle glaucoma: this is the most common type of glaucoma. It is caused by a

slight imbalance between the average amounts of aqueous humour produced by the

ciliary processes and that filtered by the trabecular meshwork. This imbalance makes

the IoP increase slowly and painlessly and can take years to cause symptoms detectable

by the patient;

• angle-closure glaucoma: it is caused by an extended coverage of the trabecular mesh-

work by the iris. The progression is often slow and painless (primary angle-closure),

but sometimes may evolve suddenly and painfully, especially when caused by traumas

or infections (secondary angle-closure). Though, worldwide, open angle glaucoma is

more common, angle-closure glaucoma is responsible for a disproportionate number

of patients with severe vision loss [94, 24].

In a study published in 2014 [125] the overall prevalence of glaucoma worldwide among

people aged 40-80 years (2.33 billions in total in 2013, based on the World Population

Prospects) was estimated to be the 3.54% (3.04% of open-angle and 0.5% of angle-closure

glaucoma). However, when considering different geographical regions, these values may

vary. For instance, the combined prevalence was estimated to be higher than average in

Africa and Latin America (4.79% and 4.51% respectively) and lower in Europe and Oceania

(2.93% and 2.97% respectively). Angle-closure glaucoma is more prevalent in Asia (1.09%)

and less in North America (0.39%). The number of glaucoma cases is predicted to grow

between 2020 and 2040 mainly due to increases in Asia and Africa (+49.5% and +87.3%

respectively). Statistics from a study published in 2001 [24] report that the angle-closure

type is responsible for 91% of total bilateral blindness cases due to glaucoma in China,



6 Introduction

highlighting that, despite being less common, it is a much more severe condition that needs

to be diagnosed and treated promptly.

Glaucoma may also develop in patients with no increased ocular pressure, in which case

it is called normal-tension glaucoma. In this case the anterior chamber angle is not directly

involved in the pathogenesis and, therefore, this thesis will not further discuss this condition.

A study conducted in the United Kingdom [95] estimated that the average per-patient

annual cost of glaucoma treatment (comprising both non-drug and drug costs) is 475£,

however, according to the authors “the wider societal costs from caring for the visually

impaired patient are not covered in the database and these are excluded from the cost

analyses, but could be expected to represent a significant aspect of the overall cost burden of

glaucoma” (Rahman et al., 2013, p. 1). Another European study [128] conducted in 2005

reports that the annual cost of a glaucoma patient depends on the severity of the disease and

may span from 455C to 969C.

Blindness caused by glaucoma is not curable. However, if risk factors are found, preven-

tive actions can be taken, or, if the disease is diagnosed in its early stages, it is possible to

effectively slow down its development through medications, laser treatments or surgery.

1.4 Visualise the Anterior Chamber Angle

1.4.1 Gonioscopy

IoP can be measured through an easy and uninvasive exam called tonometry. However, when

an increased IoP is found, understanding the cause may not be straightforward and a more

detailed assessment must be performed. Gonioscopy is the clinical standard examination for

drainage angle assessment according to international guidelines [31, 1].

The aim of gonioscopy is the visual assessment of the anterior chamber angle to evaluate

the appearance and morphology of its anatomical structures. Characteristics such as the

visibility of layers, the shape and extent of their occlusion, the pigmentation of both the

trabecular meshwork and the Schwalbe’s line, and the presence and shape of vessels guide
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the evaluation of risks of glaucoma development, the categorization of the disease and,

eventually, the choice for the best treatment strategy.

For example, the visibility of anatomical structure and the extent and type of occlusions

(i.e., the concept of angle aperture that will be better explained in the following chapters)

are fundamental for angle-closure glaucoma diagnosis which, in turn, may require specific

surgery if compared to open-angle glaucoma that is, instead, mainly treated using drugs.

The grading of trabecular meshwork pigmentation, instead, may be used to tune the

power of laser treatments, since the darker the area to target, the higher the energy that will

be absorbed by tissues.

Conventional Gonioscopy

Fig. 1.2 Schematic representation of the working principle of indirect gonioscopy (reproduced under CC BY-SA
3.0, source: https://commons.Wikimedia.org/wiki/File:Gonio.png).

Conventional gonioscopy is performed manually, using a slit-lamp or an operating

microscope together with a special lens, called goniolens. The lens allows to inspect the

surface of the drainage angle directly or indirectly (using mirrors) (Figure 1.2). The procedure

requires to hold the lens in contact with the patient’s cornea, using a thin layer of gel as

interface. The gel lubricates the surface of contact and allows the ophthalmologist to adjust

the lens position in order to inspect the angle without damaging the cornea.

This examination technique has not significantly evolved over the past fifty years. It is

not easy and requires substantial experience [44, 23]. Moreover, it requires time, has a low

https://commons.Wikimedia.org/wiki/File:Gonio.png
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repeatability and it does not enable an easy acquisition of digital pictures of the eye region

making the follow up of patients difficult. Because of all this, it may procure discomfort to

the patient, that, in turn, makes the exam itself more difficult and less effective.

Conventional gonioscopy is not performed as frequently as recommended [17] especially

in primary-care settings, potentially missing patients at risk. In order to overcome some of

its limitations, digital imaging devices have been developed [87, 114].

Digital Gonioscopy: the NIDEK GS-1

For the purpose of this research, only the NIDEK GS-1 digital device has been used and a

brief description of the way it works is provided here.

Fig. 1.3 Left: two images of drainage angle sectors; at the top a partially closed angle due to a synechia, at the
bottom a healthy, open angle. Right: an image of the NIDEK GS-1 device.

The GS-1 device shares the same basic working principles of manual indirect gonioscopy,

such as the use of the multi-mirrored prism and the lubricating gel. It aims to improve the

conventional examination by reducing both the operator’s experience required and the time

needed. It can actively support the operator during the examination, detecting the angle

automatically and, based on that, adjusting the alignment to speed-up the acquisition and
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increase reproducibility. Several studies have reported the clinical utility of this device

[114, 76, 8].

Fig. 1.4 Left: the whole exam acquired by the NIDEK GS-1, represented as the software-generated circular
stitching of multiple sector images. Right: a single sector acquisition.

The whole 360° drainage angle region is assessed by acquiring digital images of sixteen

22.5°-wide sectors of the interface. Since the depth-of-field of each shot is limited, each sector

is imaged through several pictures at different focal distance. Digital images are immediately

saved and stored on a hard drive and it is easily possible to use them for comparisons and

analysis. This represents an important advantage with respect to the conventional examination

technique. An example of software-generated stitching image capturing the whole drainage

angle circumference is shown in Figure 1.4 (left) together with one of the angle sector

acquisition (right) used to create it.

The NIDEK GS-1 can effectively simplify and speed up the examination by automating

some of the most difficult steps of conventional gonioscopy. However, the data analysis to

identify conditions that may need medical intervention is still a time-consuming practice that

must be performed by experts.
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1.4.2 Optical Coherence Tomography

The anterior segment optical coherence tomography (AS-OCT) [49] is the main alternative

to gonioscopy for assessing the drainage angle. It is a non-invasive and non-contact diagnosis

method based on a principle similar to ultrasonography, but it uses light instead of ultrasounds.

It extracts longitudinal sections of the anterior chamber (called B-scans) measuring the

interference patterns produced by light reflected by different tissues and transforming these

in distances between anatomical surfaces.

From each of these sections it is possible to estimate the angle width, as an indicator

for diagnosing angle-closure glaucoma. This technique has a primary disadvantage with

respect to gonioscopy: it doesn’t allow direct access to the surface of the angle, that is a

precious source of information (e.g., to evaluate trabecular meshwork pigmentation and to

monitor post-surgical healing of tissues). Moreover, it is not able to acquire a complete

overview of the angle (along the circumference where iris and cornea meet, Figure 1.1), but

only one section at a time; in practice, the sampling of radial B-scans along the drainage

angle generates gaps, possibly missing localized morphological features of interest (e.g.,

synechiae). Finally, important landmarks, like the scleral spur, may not be visible clearly.

AS-OCT and gonioscopy have different advantages for the detection and evaluation

of glaucoma-related conditions in the anterior chamber angle, remaining complementary

examination approaches in clinical practice [18].

1.5 Research Questions and Contributions

Current clinical set-ups, e.g., virtual clinics and telemedicine, often require the separation of

data-acquisition (performed by a technician) and data-analysis (performed by a clinician) and

conventional gonioscopy is not suitable for this scenario. Digital imaging devices may be used

by medical photographers to efficiently examine patients, but the large amount of images they

collect must be viewed by an expert. As it happens for other medical specialities, software

may help data evaluation, speeding up the process and saving substantial time. However, we
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must keep in mind that applications in medicine are critical in terms of reliability of results

and safety of the patients.

For these reasons, our work focused on the following research questions:

• Can deep learning algorithms perform a clinically motivated analysis of digital gonio-

scopic images, supporting diagnosis?

• What performance assessment of such algorithms can support clinical acceptability,

and what clinical ground truth is needed?

and produced the following contributions:

• the first study on inter-annotator variability at delineating anatomical layers of

the drainage angle in gonio-photographs (Chapter 4): this is the first study aiming at

evaluating inter-annotator agreement using delineations of anatomical layers provided

by multiple clinical experts. Importantly, a meaningful evaluation of medical image

analysis algorithms requires first to assess inter-annotator variability at performing

the same task. Ideally, intra-annotator variability would be needed too, but it was

impossible to secure it given the limited annotator time available compared to the time

required by each annotation. This analysis enables to put algorithm performance in

the correct perspective and helps one to understand the potential and limitations of

such systems for real applications. The output of this study has been published in

Translational Vision Science and Technology [89];

• the development and evaluation of a new approach for the semantic segmentation

of anatomical layers of the drainage angle in gonio-photographs (Chapter 5):

despite similar systems have been deployed for other clinical applications, the deep

learning algorithm reported here is the first specifically addressing digital gonioscopic

images. It has been comprehensively evaluated and compared to the results of the

inter-annotator variability study to interpret correctly its performance. This research

has been published in Communications in Computer and Information Science [88] and

BMJ Open Ophthalmology [90] and in Investigative Ophthalmology & Visual Science

[91] as a conference abstract;
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• the investigation on advantages and limitations of a system for automatic local

angle aperture grading (Chapter 6): a dataset of digital gonioscopic exams has been

annotated by multiple experts. Each exam sector has been divided into multiple sub-

sectors and classified according to its aperture, obtaining local ground truth for angle

aperture (about every 5-7°). A custom deep learning classification algorithm has been

evaluated for the local classification of angle aperture in digital gonio-photographs

with the aim to investigate the potential and challenges of performing this task and to

provide a baseline for future work.

It is worth mentioning that the semantic segmentation of angle layers and the grading

of angle aperture are somehow correlated tasks. The grading of angle aperture, in fact, may

depend, among other criteria, on the visibility of anatomical layers, which is an obvious

information from segmentation outputs.

The semantic segmentation system is, potentially, extremely powerful and versatile and

may be a baseline for a large number of future studies comprising the grading of angle

aperture, the measurement of layers’ width and synechiae’s extent, and even the development

of advanced automatic alignment and online target detection (i.e., augmented visualization)

systems during surgery. However, mainly due to the difficulty in obtaining ground truth

for semantic segmentation (due to the complexity of the annotation task itself and to the

COVID-19 pandemic, which largely limited the availability of experts to support our work),

we decided to investigate a separate system for grading angle aperture at this stage of research.

Moreover, a stand-alone angle aperture classifier has been considered of greater interest

based on considerations about its translational potential since it may be designed to have

lower memory-related requirements. These facts motivated our decision to keep the two

systems independent at this stage of research, but our intention in the future is to investigate

what advantages may be obtained by making them inter-operate.
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1.6 Disclosure

This research has been fully funded by NIDEK Technologies Srl. (Albignasego, Italy) and

has been conducted with the collaboration of several international clinical centres:

• Ninewells Hospital, NHS Tayside, Dundee, United Kingdom;

• Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, United Kingdom;

• Hospital de Santa Maria, Lisbon, Portugal;

• Clinica Oculistica, Di.N.O.G.M.I., University of Genoa, Genoa, Italy;

and research groups working on image analysis from two universities:

• CVIP/Vampire group, University of Dundee, Dundee, United Kingdom;

• Vampire group, University of Edinburgh, Edinburgh, United Kingdom.

1.7 Structure of the Thesis

The thesis is structured as follows:

• Related Work: Chapter 2 briefly summarizes literature on the evolution of image

analysis with deep learning, focusing on the approaches and techniques that are more

relevant for our research and providing examples of applications similar to our study

case whenever possible;

• Clinical Requirements and Annotations: Chapter 3 describes the collection and

selection of clinical requirements, and the consequent annotation of gonio-photographs

for the image analysis tasks selected;

• Inter-annotator Variability Study: Chapter 4 presents the inter-annotator variability

study on delineations of anatomical layers in digital gonio-photographs as a baseline

for the evaluation of automatic analysis systems performance;
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• Semantic Segmentation of Drainage Angle Layers: Chapter 5 describes the design,

the development and the evaluation of the first semantic segmentation algorithm for

digital gonioscopic pictures with particular focus on the approaches devised to deal

with specific data characteristics and clinical usability issues;

• Angle Aperture Classification: Chapter 6 reports the pilot study on the local angle

aperture classification algorithm, with experiments and considerations about current

challenges and future opportunities;

• Discussion and Future Work: Chapter 7 concludes the thesis and discusses this

research highlighting achievements and limitations, with suggestions for future work.



Chapter 2

Related Work

2.1 About this Chapter

This chapter discusses the background and the literature most relevant to our research. The

topics are: (i) general basic deep learning concepts and processing units, (ii) convolutional

neural networks for image classification, (iii) convolutional neural networks for semantic

segmentation, (iv) architecture improvements common to both tasks, (v) introduction to

epistemic uncertainty estimation, (vi) applications of classification and semantic segmentation

systems in ophthalmology (with focus on digital gonio-photographs whenever possible),

and (vii) published work on inter-annotator variability highlighting the issue of ground truth

reliability and its effects on the assessment of automatic systems performance.

2.2 General Deep Learning Concepts

Deep learning models (also known as neural networks) are non-linear computational systems

developed to learn mapping functions between inputs and outputs to address specific analysis

tasks (e.g., classification or translation of data). Neural networks consist of structured

ensemble of processing units (described later), some of which have learnable weights,

parameters to be optimized. The optimization is performed during a process called training.

Depending on the task to solve, it may be required to include ground truth data (also
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called annotations) in the training process. They are used to supervise the optimization by

comparing network’s outputs with references through a loss function. Learnable weights are

iteratively updated to decrease the loss function value. Once the network has been trained, it

can be used to process new, unknown data, a step called inference.

Early studies on neural networks started in the late fifties with the perceptron [98] and saw

key advances in the eighties and nineties, developing some of the fundamental components

of all modern architectures for image analysis, e.g., the introduction of convolutions [29]

and back-propagation learning [101, 66, 67]. Despite the encouraging results obtained,

limitations in computational power and unresolved issues regarding the training process

(e.g., over-fitting and vanishing gradients) slowed down the development of this technologies

until about 2005 when powerful GPU systems started to become available and new studies

improved the training process addressing some of the known issues [45, 46, 32, 33].

This chapter focuses on convolutional neural networks (CNNs) as they are the family of

deep learning models our work is based on. Other recent important deep learning systems

comprise vision transformers [57] and, more specifically, convolutional vision transformers

[136].

The main advantage of convolutional neural networks over conventional machine learning

approaches is their capability of processing raw data without requiring hand-crafted features

extraction and, ideally, any kind of ad-hoc pre-processing. These systems process input

images using a minimum set of basic constituent modules, that are:

• convolutional layers: weight matrices used to filter inputs through the convolution

operation. Filters have an assigned size (e.g., 3x3 pixels) along input’s dimensions,

which defines their receptive field, and may extend across several channels. The

main advantages of convolutional layers are: (i) sparse interactions, meaning that,

considering a specific convolutional filter, each value of its input feature maps affects

only a limited region of its output feature maps, proportional to the kernel size, and (ii)

weight sharing, which is a way to reduce the number of weights in a network since

small convolutional kernels are used to filter the whole input. These two concepts

improve models’ invariance against the location of discriminative features in the data;
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• fully connected layers: mainly used in classification networks, they are filters that map

each input point into every output point. Several of these layers are usually stacked to

reduce the dimensionality of data representations and match the number of possible

output classes;

• non-linear operators: also called activation functions, they allow the network to learn

and model non-linear decision class boundaries (e.g., ReLU and LeakyReLU [81, 74]);

• pooling layers: layers that reduce the width and size of intermediate features to

increase the receptive field of convolutional kernels and enable to capture more context,

introducing also additional non-linearities. They are not essential, but used by almost

all deep learning systems.

Remarkable results have been reached so far in a wide variety of tasks using deep learning

models, e.g., natural language processing [85], image classification [132], object detection

[71] and image segmentation [78].

2.3 CNNs for Image Classification

CNNs for image classification have been designed and improved over the years to address

a basic and important task for automatic image analysis which is the categorization of a

whole input sample (an image) into one of a set of pre-defined classes. Large datasets have

been generated and used to evaluate new approaches [61, 19] since the annotation of images

showing natural objects, e.g., vehicles and animals, for classification purposes is relatively

fast and does not require specialized knowledge.

For the purposes of this thesis, the focus will be on fundamental classifier architectures,

still widely used as baseline for the development of application-specific systems.
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2.3.1 Examples

An overview of a few examples of deep CNN classifier architectures, important for the

evolution of these systems over the years, is proposed in this section to introduce the

solutions and improvements that characterise these models and to provide useful references.

Additional information can be found in recent reviews, e.g., [11, 113].

Approaches that are particularly relevant for our research and common to both classifica-

tion and segmentation systems are discussed more in detail in Section 2.5.

AlexNet

AlexNet [62] is the neural network that won the ILSVRC 2010 [102] image classification

contest on a subset of the ImageNet dataset [19] and contributed to generate new interest

for deep learning. The architecture consisted of five convolutional layers, with variable

decreasing size (from 11x11 to 3x3 pixels) and three fully connected layers. It used rectifier

linear units (ReLU) as non-linear activations [81, 74], Dropout [119] (see Section 2.5) and

label-preserving data augmentation.

VGG Nets

VGG Nets [116] are a group of network configurations designed to explore the effects of

increased model depth (number of successive convolutional filters) on performance. The

number of convolutions considered ranges from 8 to 16 and all models terminate with three

fully connected layers. Groups of two or three convolutional layers are followed by max-

pooling layers and, moving towards the output, they return an increasing number of feature

maps. In order to limit computational requirements, all kernels have size equal to 3x3 pixels.

The study demonstrated that depth is a crucial characteristic for achieving better performance

and allows to use small convolutional kernels.
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GoogLeNet and Inception Nets

GoogLeNet [120] has been devised to reduce the problem of vanishing gradient. It consists

of 22 layers and introduces a new processing block called inception module which performs

multiple parallel convolutions each using a different receptive field size, also making the

model less sensible to target objects’ dimension in the image. The inception module proposed

in [120] has been further refined and led to the design of a family of Inception Nets [121, 122]

characterized by different implementations of the inception module.

ResNets ad DenseNets

ResNets [38, 39] are a family of very deep (up to more that 100 layers) classifiers designed

to be effectively trained end-to-end by incorporating short skip connections that provide

a preferential path for the back-propagation signal to flow during optimization. A hybrid

Inception-ResNet model has also been proposed [122]. The success of ResNets highlighted

the importance of skip connections and led to the design of DenseNet [47], where feature

maps are forwarded to multiple convolutional layers through skip connections to encourage a

better reuse of encoded information. More details on the processing solutions characterising

residual and dense models are provided in Section 2.5.

Some of the classifiers introduced above (e.g., VGG Nets, Inception Nets, ResNets

and DenseNets) can still be considered important architectures as they are among the most

frequently used either off-the-shelf (e.g., [124]) or through some kind of adaptation (e.g.,

[104, 103, 60]) for most practical applications, e.g., in medical image analysis, and are often

the baseline for the evaluation of new approaches.

2.4 CNNs for Image Segmentation

One particularly sophisticated application of deep learning algorithms consists in the seg-

mentation of multi-dimensional data arrays, that is the automatic delineation of targets in

images according to one of the following approaches:
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• semantic segmentation: each spatial data point (pixel) in an image is assigned a label

indicating the specific class of targets it belongs to;

• instance segmentation: data points (pixels) belonging to one class of targets are grouped

according to the particular class instance they belong to;

• panoptic segmentation: each spatial data point (pixel) in an image is assigned both its

class and instance labels.

Although much of the literature discussed in this chapter is suitable for all the above

mentioned tasks, the main focus will be on semantic segmentation [123]. One of the main

contributions of this work is, in fact, the development of a new semantic segmentation

algorithm for digital gonio-photographs (Chapter 5). In this context, only one instance of

each of the segmentation targets may be visible in an image (possibly the only instance

may be partially occluded thus being split into several regions), thus excluding the need to

discriminate between multiple objects of the same class.

2.4.1 Examples

To address the semantic segmentation task, several CNNs have been proposed over about the

past ten years. Similarly to what has been done in Section 2.3, a few baseline state-of-the-art

models are discussed here, leaving a more detailed description of relevant architectural

improvements to Section 2.5.

Patch-based Segmentation

Proceeding in chronological order, one of the first ways to tackle this task was presented by

Ciresan et al. in 2012 [16]. In this article, the authors developed a system to segment neuron

membranes in serial-section transmitted electron microscopy. An image classifier was used to

label each image pixel as membrane or non-membrane based on the context within a squared

window centred on it. They also studied the performance of network ensembles, finding that

they led to better results than a single network. The main drawback of this approach is that it
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does not exploit the local correlation of image features. In fact, image patches analysed to

label adjacent pixels share most of the information but need to be processed separately by

the system.

Fully Convolutional Networks

Long et al. [73] adapted several classification models for the semantic segmentation task

and compared them using the PASCAL dataset [22]. Their intuition was to replace the

fully connected layers of classification networks with additional convolutional layers and

up-sampling layers. They would output coarse feature maps exploiting a wide context to

assess what is visible in the input data. They incorporated (learnable) deconvolutional filters

to upsample the feature maps from layers located at different depths of the architecture and

merged global and local features to return the final semantic segmentation map. The model

was trained end-to-end using dense per-pixel annotations.

DeconvNet and SegNet

While in [73] the upsampling path of the network is quite simple (i.e., only one deconvolu-

tional layer regardless of the dimension of the map to up-sample), other authors proposed

to expand the decoder to reconstruct a better high resolution segmentation map of the input.

Both Noh et al. [82] and Badrinarayanan et al. [7] independently designed deep encoder-

decoder models built upon the VGG-16 classifier [116], and using un-pooling as upsample

technique. Un-pooling layers receive the indexes of the pixels selected by the corresponding

max-pooling layers and use them to resample feature maps considering the original location

of detected features. This makes the network reconstruct target edges more accurately.

Noh et al. [82] used the whole VGG-16 architecture (including the fully connected

layers) as encoder, which alone consists of more than 100 million parameters, and a specular

deconvolutional decoder (made up of deconvolutions), obtaining a complex model. The

convolutional encoder was initialized with weights pre-trained on the ImageNet dataset [19].

To facilitate the training process and to correctly segment targets of variable size, they first

generated multiple candidate proposals (i.e. image crops possibly containing an object),
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segmented them and then aggregated the results to obtain the overall input segmentation.

They also verified that an ensemble of the architecture in [73] and theirs usually led to better

segmentations than either method alone. Badrinarayanan et al. [7], instead, removed the fully

connected layers from the VGG-16 model, obtaining a much lighter network (the encoder

consists of about 15 million parameters) that was possible to train end-to-end. They used

convolutions instead of deconvolutions in the deep decoder to densify the upsampled, sparse

feature maps.

U-net

Introduced by Ronneberger et al. in 2015 [97], U-net set a new gold-standard in semantic

segmentation tasks. The model consists in a contracting path to capture context (global

image features) and a symmetric expanding path to refine the final segmentation map with

local details. Long skip connections between corresponding layers of the contracting and

expanding paths are included to propagate and reuse detail information from shallow layers

of the encoder. The very effective architecture, the use of data augmentation through elastic

deformations as well as the use of a weighted loss led U-net to achieve the best performance

in both the ISBI 2012 segmentation challenge (previous best result was obtained by Ciresan

et.al. [16]) and the ISBI 2015 cell tracking challenges. U-net has become the fundamental

backbone for several modern semantic segmentation architectures [115].

Attention U-net

The attention U-net is an architecture capable of refining feature maps generated by the

encoder layers before they are forwarded and processed by the corresponding decoder layers

through addition of attention gates [83, 107]. These modules can trim features that are not

relevant for a specific task and, thus, refine the final segmentation map. Attention gates can

be included in standard U-net models as well as in more complex and sophisticated variants

as those introduced below.
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Inception, Residual and Dense U-nets

Inception [120–122], residual [38, 39] and dense [47] processing blocks, initially conceived

in the context of classification, have been introduced into U-net architectures (replacing

simple convolutional layers) to make them inherit their advantages. In particular incep-

tion blocks may help improve the segmentation performance whenever target objects are

represented at different scales in the inputs, residual blocks enable to design very deep

segmentation networks, and dense blocks optimise the use of information and help reduce

the issue concerning vanishing gradients during optimization. More details on the processing

solutions characterising residual and dense variants are provided in Section 2.5.

U-net++

U-net++ [140] is an architecture inspired by dense blocks [47], in which long skip con-

nections between each level of the encoder and the corresponding level of the decoder are

replaced by a sequence of densely connected convolutional layers linked by short skip con-

nections. Short skip connections may also include the upsampling of feature maps when

placed between convolutional layers at different network’s levels. The long skip connections

of the conventional U-net do not ensure that feature maps originated from the encoder are

effectively used by the decoder. U-net++ aims at making the information encoded by the

downsampling path of the network more useful for the decoder, by adaptively refining it

through intermediate filters.

2.5 Architecture Improvements

Most of the recently designed CNNs systems for both image classification and semantic

segmentation tasks are based on the architectures presented in the previous sections and may

comprise different combinations of the advanced modules and optimization techniques that

are detailed hereafter. The approaches and network modules most relevant for this research

thesis are described in the next paragraphs.
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Features Normalization

In convolutional neural networks, input data are sequentially processed and transformed

by model filters, meaning that each layer adapts its parameters according to the distribu-

tion of the outputs returned by the previous layer(s) over the training process. Learnable

weights are updated multiple times proportionally to their effect on the loss value, leading

to continuous changes in the distribution of intermediate feature maps. This makes the

epoch-wise optimization suboptimal and increases time to convergence. In order to prevent

this phenomenon and speed up training, several techniques have been proposed to normalize

features distribution and make it more independent from the parameters update.

Data features generated by a specific layer may be seen as a multidimensional array

F ∈ RD1·D2·...·Dn·C·B where F is the feature array, D1,D2, ...,Dn are the dimensions of each

feature (n = 2 for images), C is the number of features and B is the mini-batch size (i.e., the

number of input data processed before each optimization step).

Depending on the dimensions over which the normalization (i.e., subtraction of mean

value and division by standard deviation) is applied, some of the most used approaches are:

• batch normalization [48]: over D1,D2, ...,Dn and B;

• layer normalization [6]: over D1,D2, ...,Dn and C;

• instance normalization [130]: over D1,D2, ...,Dn.

Each of the previous techniques may include additional learnable parameters (usually

scale and shift). Data normalization techniques are effective at reducing the variability of

features distribution over training, thus leading to better and faster convergence.

Dropout

Increasing depth and width of convolutional neural networks (i.e., their capacity) is usually

a sensible way to improve their performance. The large number of trainable parameters

may, however, cause over-fitting on the training set samples and reduce the generalization of

the model to unknown data. Ensembles of networks have proven to considerably increase
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both performance and generalization, but they come with an increased computational cost.

Dropout [119] is a convenient way to regularize network training by randomly selecting

feature maps values to be zeroed. In case of 2D (or spatial) dropout [127], entire feature maps

are zeroed, while others are not altered. Dropout prevents processing units (e.g., convolutional

layers) from strongly relying on the output of specific previous filters (i.e., memorize the

training set) since they may be disabled by dropout, so the overall architecture must adapt to

learn better and more general data representations reducing the issue of over-fitting.

Residual and Dense Blocks

The depth of a convolutional neural network is strongly associated with its capability to

exploit context information. However, as extensively verified, for instance, by He et al. [38],

deeper networks are usually affected by a performance degradation, not associated either

with over-fitting or with vanishing/exploding gradients. Long sequences of convolutional

filters and non-linearities hamper the back-propagation of the error signal and prevent an

effective optimization of model’s weights. Several studies have presented a common solution

to this problem: the introduction of signal shortcuts (also known as short skip connections).

He et al. proposed [38] and subsequently improved [39] a new network module, called

residual block, to learn residual transformations. A residual transformation reinterprets the

relation between the input x and the output y, usually written as y = f (x), as y = x+g(x).

This relation is made up of two parts, the identity one and the residual one. The former

ensures a preferential route for back-propagation without increasing computational costs or

complexity.

The concept was further expanded by Huang et al. [47] designing densely connected

blocks within which the feature maps from the first n−1 layers are concatenated and for-

warded to the next one. The result is a high reuse rate of features. Thanks to this improvement,

dense networks achieved state-of-the-art performance while requiring a reduced number of

trainable parameters since the convolutional layers could be made up of fewer kernels. This

approach can also be interpreted as deep supervision [68], since the back-propagation signal

flows easily even to the layers furthest from the output.



26 Related Work

Short signal shortcuts have been used to improve the conventional U-net, especially for

clinical applications, e.g., by using residual blocks ([70, 58]) and dense blocks ([50, 131]).

Short skip connections have proven to be fundamental for effectively propagating the error

signal in deep networks [20].

2.6 Epistemic Uncertainty Estimation

During inference, deep learning models for classification and semantic segmentation are

used to process unknown data and obtain the corresponding output. This standard, fully

deterministic approach makes it impossible to know whether the model has a sufficient

comprehension of the input for returning a reliable result. For this reason, techniques

for estimating decision uncertainty have gained considerable attention in recent years [2],

especially in those applications where the consequences of false positives/negatives is high,

e.g., for clinical purposes.

Sources of uncertainty may be divided into two main classes: epistemic (or model’s

uncertainty) if it can be reduced by increasing the knowledge about the problem (e.g. by

improving the model or increasing the amount of data), and aleatoric (or observations’

intrinsic noise) if it cannot be reduced either by adding knowledge or improving the model.

The sources of aleatoric and epistemic uncertainties are not always well defined and may be

application-dependent [59]. Only epistemic uncertainty will be considered in this thesis, as

more relevant in safety-critical applications (e.g. to detect out-of-distribution examples) and

when limited data are available [56].

According to literature [64, 72], the most widely used approaches for epistemic uncer-

tainty estimation in image analysis-related tasks are Monte Carlo dropout (MC dropout) [30]

and deep ensemble [63] methods. Both techniques aims at modelling the variability among

several predictions for the same input sample as a measure of epistemic uncertainty. The

former method randomly switches-off intermediate neurons (or entire feature maps) of a

single trained neural network using dropout [119, 127], while the latter uses the outputs from
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multiple models (e.g., a set of identical architectures initialized randomly and thus having

reached different local minima over optimization).

Our research will focus on MC dropout by Gal et al. [30] as it is more convenient in

terms of memory requirements (only one set of weights must be stored). The authors have

conceived a practical way to approximate the Bayesian framework (i.e., the gold-standard

approach). It consists in activating dropout layers during inference and generating several

output candidates by sampling weights from their approximated posterior distribution.

The final classification is obtained by averaging the softmax activations of the candidates

and the epistemic uncertainty estimated by their pixel-wise variance or entropy. If the

model has sufficient knowledge about the input to provide a reliable output, we expect

final activations not to change much due to dropout action, thus returning a low uncertainty.

Conversely, if the dropout action heavily affects output values, results are likely unreliable.

Uncertainty estimation is closely related to another property of deep learning models,

called calibration, defined as the capability of a model to output confidence values (i.e., the

outputs of the final softmax activation layer) that follow the actual classification accuracy.

For instance, when a well-calibrated model classifies 100 samples with 0.9 confidence, only

90 of their output classes should ideally be correct. Bad calibration may lead networks to

be very confident even when a result is wrong (or underconfident when it is right), making

estimating uncertainty as the variance (or entropy) of multiple output candidates pointless.

The effect of calibration on segmentations obtained with deep learning systems and on the

estimation of uncertainty in several clinical applications has been investigated by Mehrtash

et al. [77]. Model calibration can be verified both qualitatively (e.g., using calibration plots)

and quantitatively. The quantitative evaluation of miscalibration can be performed using

expected calibration error (Naeini et al. [80], Guo et al. [35]) by calculating the average

value of the absolute difference between model’s accuracy and confidence over a number of

samples.
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2.7 Clinical Applications

2.7.1 Image Classification

Convolutional neural networks have been deployed successfully for the detection or grading

of many pathologies of the eye, the organ on which this thesis concentrates. Some examples

of disease-specific applications comprise diabetic retinopathy [34], macular degeneration

[86, 137], glaucoma [3, 5]. Multi-disease detection models have also been developed [126].

According to existing literature, the main application of classification systems to the

analysis of anterior chamber angle characteristics concerns the classification of its aperture,

as it is related to the risk of developing glaucoma and to its categorization (see Chapter 1).

Angle Aperture Classification in AS-OCT Data

Generally speaking, the angle aperture grading task concerns the classification of a visual

representation of the irido-corneal region (e.g., an AS-OCT image or a gonio-photograph)

into one of a set of clinical grades that associate its morphology (e.g., the curvature of the

iris in AS-OCT scans or the visibility of angle layers in gonio-photographs) with the risk of

trabecular meshwork obstruction (and consequently of an increased intra-ocular pressure).

Several deep learning systems for angle aperture grading have been developed in recent years

using AS-OCT B-scans as input data.

Fu et al. proposed several solutions [26, 25, 27]. The simplest one [26] was an adaptation

of a VGG-16 [116] network which was pre-trained on the ImageNet dataset [19] and then

fine-tuned on AS-OCT scans. In this work the authors supported results with attention maps

to show what region of the image was affecting classifications the most. In [25, 27] multi-

level parallel classification paths based on VGG-16 are proposed to exploit important image

features of regions of interest increasingly focusing on the irido-corneal junction. In [25]

two regions of interest are considered, the smallest one being extracted using an automated

segmentation algorithm which also provides clinical parameters of the anterior chamber that

are processed through a linear support vector machine (SVM). The final classification is

obtained by considering both the SVM classifier and the two-level deep classifier outputs. In
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[27] a three-level deep classification network was investigated by comparing the performance

using different backbone architectures (e.g. VGG-16 and ResNet [38])

Porporato et al. [92] implemented a VGG-16 network to classify multiple AS-OCT

B-scans as “Open” or “Closed” and provided a global classification of the eye that was

then compared with one obtained using conventional gonioscopy finding good agreement

(AUC = 0.85) with high sensitivity and specificity (83% and 87% respectively).

Angle Aperture Classification in Gonio-photographs

To our best knowledge, only one publication describes so far the application of a deep

learning model for the classification of angle aperture in gonio-photographs [14]. Images

were acquired using an EyeCam device (Clarity Medical Systems, Pleasanton, California,

USA) and depict quadrants (i.e. 90°-wide sectors) of the drainage angle. Authors use a

ResNet-50 network [38] pre-trained on ImageNet [19] and fine-tuned on EyeCam gonio-

photographs to detect angle-closure, defined as the absence of the pigmented trabecular

meshwork (see Chapter 1) in more than half of the image. The training dataset (not publicly

available) was composed of 33,635 quadrant images from more than 4000 patients. Training

was performed ensuring that the training-test split of data was performed at patient level.

Automatic classifications were compared with expert’s gradings and the authors found very

good agreement (AUC = 0.96). As reported in the paper, the training dataset is representative

only for Chinese patients with limited variability of some characteristics of the eye region

(e.g., iris colour). The authors also suggest to investigate similar solutions for other types of

gonio-photographs, e.g., those obtained with a NIDEK GS- 1 device, as the EyeCam system

takes a long time to acquire data. This work will be considered when describing our angle

aperture classification algorithm in Chapter 6.

2.7.2 Image Semantic Segmentation

CNNs for semantic segmentation have been deployed in many clinical applications and on

different image modalities [36, 51, 139, 79].
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One case close to the purpose of our research, i.e., to apply semantic segmentation

techniques to gonioscopic images, is the segmentation of retinal layers in morphological

OCT data.

Semantic Segmentation of OCT Retinal Data

Both OCT B-scans of the retina and digital gonio-photographs show layered anatomical

structures and for this reason it is meaningful to report relevant work that investigated the

semantic segmentation of retinal layers in OCT scans.

The first network specifically designed and trained for this purpose is ReLayNet by Roy

et al. [100], where a U-net backbone model [97] is enriched with un-poolings [82, 7], and

a combination of Dice and multi-class logistic losses is used to improve the segmentation

performance. The loss accounts for class pixel-count imbalance and gives more importance

to layers’ boundaries.

Subsequently Wei and Peng [134] presented a modified version of ReLayNet replacing

concatenations with depth max-pooling layers and introducing a new mutex Dice loss. The

loss accounts for the morphological properties of retinal layers (e.g., their order) to guide

the segmentation by penalizing the predictions proportionately to their distance from the

annotation. It is worth mentioning that a similar approach cannot be used when segmenting

gonio-photographs since the possible visual occlusion of one or multiple layers in one image

would make it unreliable. Fu et al. [28] designed a multi-prediction guided network based on

U-net [97] using feature refinement modules to adaptively weigh encoder features before they

are concatenated with the corresponding decoder ones, and multi-prediction guided attention

modules to refine and deeply supervise [68] the feature maps along the decoding path.

Several work on OCT data has also employed epistemic uncertainty estimation through

Monte Carlo dropout [30], e.g. to detect anomalies [110], to improve results visualization

and explainability [108] and to improve semi-supervised training frameworks [109].

There are important differences between OCT data and digital gonio-photographs. While

OCT B-scans depict a 2D longitudinal scan and the sequence of layers does not change,

digital gonioscopic images show a 3D region and, even if the order of layers is constant,
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some of them may be completely or partially hidden. Image modalities are also different,

with digital gonio-photographs being affected by shallow depth of field and vignetting. Even

if the acquisitions for the two anatomical regions may look alike to some extent (both show

layered anatomical structures), the profound differences in both acquisition modality and

morphology (3D for the anterior chamber angle and 2D for the retinal B-scans) make the

methods reported in the existing literature on semantic segmentation of OCT data unsuitable

for off-the-shelf deployment in digital gonioscopy.

2.8 Inter-annotator Variability

In order for automatic algorithms to be deployed in real-life scenarios, they need first to

be validated, meaning that their outputs have to be compared with a reference standard

to evaluate how well they perform. In the case of artificially generated data or phantoms,

a perfect reference standard can be obtained easily. However, when dealing with real

applications, e.g., medical image analysis, ground truth information is usually impossible

to obtain, unless perhaps in some cases through invasive surgery. For this reason, ground

truth measurements are usually approximated by experts’ annotations and the two terms will

be used interchangeably in this thesis. Human annotations are, however, affected both by

systematic bias (due, e.g., to training) and noise (random variations due, e.g., to tiredness).

These aspects lead to some degree of variability among experts, called inter-annotator

variability, and also among multiple annotations from the same person at different times,

called intra-annotator variability. When ground truth from multiple experts is available, the

evaluation of variability is essential to interpret the results of the validation process including

the comparison between different algorithms [75].

In the remainder of this thesis, only inter-annotator variability will be discussed, since

multiple annotations from the same rater were not obtained for this study as too time consum-

ing. Despite its importance, the effects of inter-annotator variability on automatic systems

validation has been investigated rather sparsely in the literature. Moreover, frameworks and

metrics to quantify variability are highly heterogeneous [129].
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Lampert et al. [65] investigated inter-observer variability in four different scenarios and

how ground truth fusion methods, e.g., consensus voting [54] and STAPLE [133], might

affects algorithms’ performance. Consensus annotations, i.e., the image areas annotated by

a minimum number k of experts, were proven to considerably decrease, as k increased, in

all the considered case scenarios, with consensus worsening the more linear the structures

were. Moreover, ground truth obtained through consensus voting usually comprise only more

obvious features, possibly leading to overoptimism when evaluating an algorithm. STAPLE

does not perform well when limited data is available or there is high variability. Annotations

from multiple experts or methods to merge them affect the evaluation of models and their

comparison. The authors of this study suggest to validate algorithms with ground truth from

multiple experts whenever possible.

Joskowicz et al. [52] studied inter-annotator variability when segmenting various organs

in computerized tomography (CT) scans. They found that the range of variability between

pairs of raters may vary a lot (5% - 57%) and that two or three annotators may be not

sufficient to estimate the ground truth variability for a specific segmentation problem and to

establish a reliable standard for the evaluation of automatic algorithms.

Ribeiro et al. [96] tackled the inter-annotator variability issue in skin lesion segmentation.

They argued that the accuracy of annotations imposes an upper bound to the performance

of an algorithm and that is important to decide whether it is worth to keep working on a

model. Inter-annotator variability may be a proxy for annotation accuracy in this sense.

They also studied simple ways to pre-process annotations to reduce variability, e.g., though

morphological operators, assuming that the detail remains suitable for the specific task.

Recent studies have also investigated the relation between inter-annotator variability and

the epistemic uncertainty estimated by probabilistic models (e.g., [55]).

Jungo et al. [53] postulated that, whenever disagreement is observed among annotators,

supervised models need to be able to reflect it through uncertainty estimation in order to

provide useful results. The authors explored the effects of ground truth fusion strategies on

the way models infer epistemic uncertainty. They found that common fusion approaches

reduce models’ capabilities of reproducing experts’ variability that is fundamental to detect
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unreliable segmented areas and trigger additional human intervention. For this reason, they

suggest to train automatic systems using multiple references from different annotators.

Chotzoglou and Kainz [15] studied the correlation among annotators’ variability, prob-

abilistic models’ predictive epistemic uncertainty (computed either as the variance or the

entropy of the segmentation candidates) and segmentation quality (quantified using Dice

score). They found a negative correlation between segmentation quality and epistemic uncer-

tainty meaning that, as expected, worse segmentations are associated with larger predicted

uncertainty. Epistemic uncertainty was also found related to experts’ variability meaning that

probabilistic models may return reliable estimates of human uncertainty.

2.9 Discussion and Conclusions

Deep learning models have been demonstrated to be powerful tools for automatically analyse

data and return relevant information for detection, localization and delineation of features.

State-of-the-art architectures (e.g., ResNets, DenseNets and their segmentation counterparts

Residual and Dense U-nets) enabled to reach remarkable performance in the analysis of

different types of natural images.

Many opportunities exist for applying these systems to healthcare to support disease

diagnosis and grading and the interest within the clinical community has considerably

increased with time. However, the deployment of these technologies to the medical field

requires particular attention about results interpretability and data curation. Since the output

of an automatic system may have important (potentially dangerous) consequences on patients

lives, there must be a way to interpret and understand model’s confidence through reliable

uncertainty estimation techniques. Moreover, ground truth for clinical applications is often

impossible to obtain and its approximation relies on experts’ opinions that may be affected by

bias (inter-annotator variability) and noise (intra-annotator variability). Estimating variability

in annotators’ choices is important to assess the performance of automatic systems for data

analysis.



34 Related Work

While several papers on classification and segmentation of OCT data exist in literature,

the available work on the analysis of gonio-photographs is very limited (classification)

or even absent (semantic segmentation). Considering the importance of gonioscopy as

clinical-standard, this gap motivated our research.



Chapter 3

Clinical Requirements and Annotations

3.1 About this Chapter

This chapter describes the preliminary phases of this research on the design and the develop-

ment of deep learning algorithms for digital gonioscopy, collecting and evaluating clinicians’

preferences on the type of automatic systems that would best support data analysis. The

clinical requirements obtained were used to focus the research questions and lead to the

contributions listed in Chapter 1. The chapter then presents the activities related to the

annotation processes designed to meet the requirements and provide ground truths for the

training and the evaluation of the systems to be developed.

3.2 Requirements Collection and Evaluation

The automatic analysis of digital gonioscopic images both through conventional and machine

learning-based systems is a complex and almost unexplored research field, as highlighted in

Chapter 2. As the pool of tasks possibly helpful in clinical practice and never addressed on

gonio-photographs is large, clinical experts were inquired on what the most useful analysis

tools would be.

Eight clinical collaborators at six international clinical centres (in the United Kingdom,

Portugal, Italy, France, United States and Japan) with extensive experience in gonioscopy
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rated a list of image analysis tasks in order to identify those with higher consensus. A copy of

the questionnaire shared with the clinicians is reported in Appendix A. Many of the tasks in

the list were collected by NIDEK Technologies Srl. during clinical conferences and meetings

with clinical partners over a period of time antecedent to the beginning of this research. Some

of them were included after a preliminary review of deep learning applications in image

analysis for medicine and presented to experts to evaluate the potential interest. The tasks

considered ranged from the detection/localization of anatomical landmarks of the anterior

chamber angle to the assessment of more general features such as its aperture. Divided, for

simplicity, into three broad categories, they were:

1. detection/localization of features:

• synechiae: iris tissue locally adhering to the trabecular meshwork or cornea, thus

preventing the aqueous humour outflow (see Chapter 1);

• neo-vascularizations: blood vessels growing in the drainage angle, possible

symptom of some glaucoma sub-types;

• Schwalbe’s line: one of the main landmarks of the anterior chamber angle located

between the trabecular meshwork and the cornea, relevant for angle aperture

grading (see Chapter 1);

• scleral spur: another important landmark of the anterior chamber angle located

between the ciliary body and the trabecular meshwork, fundamental for angle

aperture grading (see Chapter 1);

2. classification/grading of features:

• drainage angle aperture: according to one of the available clinical grading

systems (e.g., Spaeth’s [117] or Scheie’s [106]) to evaluate risks of angle closure;

• trabecular meshwork pigmentation: according to one of the available clinical

grading systems (e.g., Scheie’s [106]) as a preliminary step for laser surgical

procedures (e.g., laser trabeculoplasty);
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3. others:

• semantic segmentation of layers: to distinguish between different anatomical

tissues visible in the images;

• extraction of the angle profile: to approximate the 3D structure of the region;

• estimation of synechiae size in degrees: important to estimate the total extension

of angle closure;

• angle aperture in degrees: to evaluate the aperture of the angle geometrically and

not based on other features, e.g., on the visibility of the layers;

• classification of image focus: to flag poor quality images.

Ophthalmologists assigned a priority score (High, Medium or Low) to each task. N/A

could be assigned if the clinician was not sure about the answer. The results are reported in

Table 3.1.

The three tasks that received the largest percentages of High priority rates are the de-

tection/localization of synechiae, the detection/localization of the scleral spur and the

semantic segmentation of the anterior chamber angle layers. In particular, the detection

of the Scleral spur relates to the need for a way to estimate angle aperture, as its visibility is

the discriminant characteristic of a fully open drainage angle.

Among the three tasks with the highest priority according to experts, the semantic

segmentation of angle layers was selected as first task to tackle for the automatic analysis

of digital gonio-photographs in this research project. In fact, the automatic delineation of

anatomical layers of the anterior chamber angle can be a suitable pre-processing step to

address many other tasks in the list that were considered useful by the ophthalmologists

(comprising the two with the highest priority).

In particular, once the layer interfaces are obtained, it is possible to infer the localization

of both the Schwalbe’s line and the scleral spur. Synechiae may be detected by evaluating

the intersections of the outer boundary of the iris with other layers (e.g., if at any point of

the segmentation map the ciliary body and the scleral spur are hidden by the iris, that is

a synechia) and their size (in degree) could be estimated from the segmentation map by
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accounting for additional information on the geometry of the eye (e.g., average iris radius)

and of the optical system (e.g., field of view). Angle aperture may be graded, for example,

according to the visibility of the layers (directly, using Scheie’s grading system [106] or

indirectly, according to the apparent level of iris insertion, using Spaeth’s system [117])

across the whole extension of the drainage interface. The trabecular meshwork could be

segmented as pre-processing step for grading its pigmentation (e.g., according to Scheie’s

system [106]), which is an important practice prior to laser treatments.

Moreover, given the time required to obtain data annotations, the choice of the semantic

segmentation task was deemed more effective since it requires ground truth that may be also

suitable for other development purposes (see discussion above).

We remind the reader that this research thesis has been funded by an industrial grant and

that its objectives reflect both academic and industrial (i.e., translational potential) interests.

For this reason the second task selected consists in the direct classification of angle aperture,

without necessarily relying on image segmentation.

The training and evaluation of machine learning algorithm requires a curated set of

annotated images. The tools and protocols for collecting annotations to develop solutions for

the two analysis tasks selected above are the topic of the next sections.

3.3 Annotations for Semantic Segmentation

In the case of semantic segmentation algorithms, the annotations consist in the boundaries of

targets delineated on the best-focus frame selected from the stack of acquisitions for each

angle sector. We remind that the best-focus frame of an angle sector is the image of the

focus stack (the device acquires multiple shots at different focus planes) showing the best

sharpness in the region centred on the trabecular meshwork (or on the outer iris boundary if

the meshwork is not visible). Best-focus shots were automatically chosen by the imaging

device software through proprietary algorithms that first locate the interface point along the

oriented (according to the sector location) median segment [10] and then evaluate the focus

of a region of interest centred on that point [138]. Best focus frames were always inspected
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by the author of this thesis and corrected in the unlikely case they were suboptimal. The

choice of the best-focus image is fundamental in order to provide the segmentation system

with the most informative (better detailed) data as input.

To facilitate the annotation process and increase the consistency of semantic segmentation

ground truth from different annotators, a suitable annotation tool has been selected from the

public domain and an annotation protocol has been devised. This work was conducted in

close collaboration with the clinicians involved.

3.3.1 Annotation Tool

The use of third-party software to annotate medical data introduces constraints:

• file sharing: medical data may not be shared with any non-authorized individual/institution

according to the General Data Protection Regulation (GDPR). Thus, the data should

be stored locally and the annotation tool should not forward any information remotely;

• operative system-independent: the annotation tool should be usable with most operative

systems in use in the clinical world transparently.

Our choice was the VGG Image Annotator (version 2.0.8) [21], an open source application

suitable for both research and industrial purposes, developed by the Visual Geometry Group

(VGG) at Oxford University. It consists in a portable .html file, it neither requires nor uses

internet at any time and is usable with all the most common operative systems, since it only

requires a browser interface to be run on. The annotation tool is suitable for segmenting

target regions in images through the delineation of polygons and allows the user to assign a

label to each of them. Annotations can be exported in a convenient tabular format (in a .json

file) storing the coordinates of the vertices of each polygon and the corresponding label.

Figure 3.1 shows the annotation tool user interface, a digital gonio-photograph and the

annotation of one of the layers.

The annotation tool provides a standard framework for general-purpose annotation of

images. Specific region labels were defined to adapt the tool to the purpose of this annotation

task.
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Fig. 3.1 VGG Image Annotator user interface with an example of digital gonio-photograph showing a sector of
the anterior chamber angle and the annotation of one layer.

3.3.2 Annotation Protocol

The annotation protocol was conceived to deal with specific target and image features in

order to promote consistency across annotators.

The full protocol document, provided to the clinical annotators, can be found in Ap-

pendix B. The protocol concerns the annotation of the six anatomical layers, namely: the

iris root, the ciliary body band, the scleral spur, the pigmented (or posterior) trabecular

meshwork, the non-pigmented (or anterior) trabecular meshwork and the cornea. Please

refer to Chapter 1 for a description of the layers. Note that not all of them may be visible

simultaneously in each gonio-photograph.

Importantly, the protocol states that layers must be annotated only if the clinician is

confident in detecting their boundaries with adjacent tissues by looking solely at the images

and not by making hypothesis on their location based on medical knowledge. In fact, layers

of the anterior chamber angle have a consistent structural sequence and the presence of one

of them may be deducted by the visibility of the adjacent ones even if its boundaries are not

clearly detectable in an image. Sometimes a layer may not be visible at all meaning that it is
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occluded by the iris (appositional or synechial closure) or by another foreign object, e.g., a

stent (a small implant that facilitates the aqueous humour outflow).

The protocol also includes guidelines aimed at dealing with specific digital gonio-

photographs characteristics, mainly due to the limited depth-of-field that usually leads

to a blurred (out of focus) and dark (vignette) image periphery.

The main guidelines are reported here, with examples:

• annotate only the part of the image that is bright enough and in-focus so that layers

boundaries can be identified (Figure 3.2);

(a) (b)
Fig. 3.2 Examples of: (a) bright image region and (b) in-focus part of the iris-root.

• do not overlap delineations of different layers;

• annotate layer-layer interfaces as accurately as possible, without gaps (Figure 3.3);

• choose the number and placement of polygon vertices so that the delineation does not

include pixels from adjacent layers.

As brightness and focus vary smoothly across the frame, the identification of the in-

formative image region is subjective and does not rely on the morphology of the angle

layers. Despite the protocol guidelines, annotations could present overlapping regions. We

considered the size of each of these overlapping regions to decide how to deal with the issue

time-by-time. In case of small (a few pixel wide) regions, the overlapping area was arbitrarily
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(a) (b)
Fig. 3.3 Examples of annotations without (a) and with (b) gaps between delineations.

assigned to the smaller layer. In case of larger overlapping areas, the clinician was asked to

refine the ground truth. Gaps between delineations were to avoid whenever the local detail of

the image was sufficient to identify interfaces. However, clinicians might ignore image areas

they could not identify clearly. This was not an issue for our studies, as the un-annotated

image areas were managed properly as described in Chapter 4 and Chapter 5 in order not to

compromise the reliability of our results.

The annotation protocol also reports instructions on how to annotate other features of

interest in digital gonio-photographs. They aim to locate pathological traits like neo-vessels

and synechiae and to provide a classification for the Schwalbe’s line (which can not be

segmented easily using a polygon due to its very limited thickness). The instructions for

annotating these additional features are not discussed here, since they have not been used in

the research conducted so far.

Annotations of pigmented and non-pigmented trabecular meshwork have been merged

before use as a way to circumvent the low agreement among ophthalmologists on the location

of their mutual interface (see Chapter 4 for more details).

Different sets of images have been annotated by possibly non-identical groups of annota-

tors depending on the purpose of the studies described in the following chapters (either the

development of the semantic segmentation algorithm or the inter-annotator variability study).

A description of the datasets and the number and affiliations of the annotators who provided

the ground truths for a specific study will be always provided.
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3.4 Annotations for Aperture Classification

Annotations for the image classification task consist in labels associated to specific sub-areas

to be processed independently from others, as discussed below for our angle aperture system.

In this case, annotations were performed by clinicians on a software-generated all-in-focus

version of each exam sector image, obtained using Navis-Ex (version 1.11.0.6) and the GS-1

Viewer (version 1.0.0.3, not commercially available yet), two proprietary software developed

by NIDEK Co., LTD. The algorithm that produces all-in-focus sector representations uses

the full stack of images acquired by the NIDEK GS-1 device at different focus planes,

and merges the in-focus area of each of them in a single frame. This approach has been

considered advantageous in this case since all-in-focus representations allow the clinician to

evaluate angle aperture more clearly. Software-generated all-in-focus images would have not

been suitable for segmentation purposes, since the blending algorithm may produce artefacts

not perceivable by humans but possibly affecting algorithms designed to return pixel-level

delineations of targets.

3.4.1 Annotation Tool

The annotation tool used to grade angle aperture in digital gonio-photographs was developed

by NIDEK Technologies Srl. and made available for this research. An annotation protocol

has been devised in collaboration with clinical experts. The tool complies with GDPR and

can be run on Microsoft Windows devices.

The user interface of the annotation tool with examples of images and annotations thereof

is depicted in Figure 3.4.

Sector images were first rotated so that they showed the iris at the bottom of the frame, and

a region of interest (960 x 960 pixels) was selected to highlight the central area of each picture.

A grid overlaid on the sector image identified three sub-sectors to be annotated independently.

The reason of this choice was to generate local aperture ground truth as opposed to coarser

aperture characterizations in previous work, as will be clarified in Chapter 6 when discussing

our study on algorithms for angle aperture classification in gonio-photographs. The choice
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Fig. 3.4 Annotation tool for grading angle aperture in digital gonio-photographs acquired with the NIDEK
GS-1 device. It shows examples of gonio-photographs and the angle aperture annotations for their sub-sectors
(the first row of coloured rectangles).

of dividing each sector image into three sub-sectors was a compromise between several

technical and clinical considerations. An aperture classification based on three sub-sectors

each covering 5°-7° degrees of the angle interface would be a huge improvement with respect

to previous proposed algorithms (classification of 90°-wide sectors) as it would ideally allow

to spot small synechiae. It is also a good compromise in terms of time spent annotating the

data, and likely provides enough context for the deep learning model to associate anatomical

traits to the corresponding aperture grades.

The annotation tool allows to navigate among images of the same exam, to inspect them,

select and review labels. Annotations were conveniently stored in .xml files.

3.4.2 Annotation Protocol

The protocol for this task concerns the annotation of angle sub-sectors into three aperture

classes based on the visible angle layers. The full protocol document, provided to the clinical

annotators, can be found in Appendix C.
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The classification criteria rely on a clinical grading system called Spaeth’s system [117]

and an additional class aggregation criteria approved by experts. The Spaeth’s system grades

the angle aperture into five classes according to the apparent iris insertion (which implicitly

relies on the visibility of angle layers through gonioscopy, refer to Appendix C for more

details). Our aggregation simplifies the problem to three classes and an additional class

is used for un-gradable sub-sectors (e.g., if the area is hidden by artefacts like bubbles or

shadows). The classes are:

• open (colour code: GREEN): scleral spur and / or ciliary body band visible (Spaeth’s

grades D and E);

• occludable (colour code: YELLOW): Schwalbe’s line and trabecular meshwork visible

to some extent (either posterior or anterior), scleral spur and ciliary body band not

visible (Spaeth’s grade C);

• closed (colour code: RED): trabecular meshwork not visible. Schwalbe’s line can be

visible or not (Spaeth’s grades A and B);

• unknown (colour code: GREY): the angle is not visible due to misalignment, because

its view is prevented from obstacles (e.g. bubbles, eye lashes), or the quality of the

sub-sector (e.g. sharpness and / or illumination) is not good enough to evaluate the

structures.

Spaeth’s grade C considers the trabecular meshwork as a single layer (pigmented and

non-pigmented parts together). It is advantageous since it is often very difficult to discern

between the two areas (as found in Chapter 4).

The protocol also reports how to deal with ambiguous cases: “In case the angle aper-

ture varies in the considered sub-sector, the classification that better describes it (that is,

applicable to the most part of it) shall be chosen. In case it is not possible to assess which

classification is predominant in the sub-sector, the one corresponding to the more anterior

iris insertion shall be chosen (e.g., if part sub-sector is Open and part Occludable, the

classification shall be Occludable; if some is Occludable and some Closed, the classification
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shall be Closed). If a sub-sector is in part gradable (Open, Occludable or Closed) and

in part un-gradable (Unknown) the classification shall be that of the gradable part”. The

choice of assigning the more severe class when it is not possible to decide which aperture

grade is predominant in a sub-sector was made to increase the sensitivity of the system to

pathological cases (i.e., to make it favour more pessimistic output classes in ambiguous

cases), as it is preferable according to ophthalmologists.

The annotation protocol also reports instructions on how to label angle sub-sectors

according to the variability of another feature of clinical interest in digital gonio-photographs,

which is the trabecular meshwork pigmentation. These annotations have not been used in our

research yet and will not be discussed in this thesis.

3.5 Discussion and Conclusions

Clinical requirements have been collected from a network of experts located at different insti-

tutions worldwide. The tasks to investigate solutions for and thus focus our research questions

have been selected based on: (i) the results of the questionnaire (the template of which is

reported in Appendix A), (ii) the opportunities they could give for future developments (e.g.,

potential utility for multiple applications) and (iii) their industrial interest,. Ophthalmologists

have been involved in the design of the annotation protocols for the different research phases

and agreed on their final versions. They were consulted when technical compromises (e.g.,

class aggregation criteria) were deemed necessary and approved them. This approach ensured

that annotations were clinically meaningful and suitable for the development of automatic

systems for image analysis.





Chapter 4

Inter-annotator Variability Study

4.1 About this Chapter

Obtaining ground-truth (i.e., annotations) for training and validating machine learning algo-

rithms for real-life applications is usually costly and difficult. This is particularly challenging

in medical data analysis where the exact classification of tissues, their detection or their

segmentation may be impossible without invasive procedures (e.g., biopsy) and usually rely

on non-invasive inspections, e.g., MRI or CT scans. This is, for example, the case of mole

classification (as benign or malign) often performed, at least initially, by visual evaluation

rather than through biopsy.

The reliability of the ground truth obtained in this way may be affected by many factors

involving both the data and the observer(s). For example, the quality of data (e.g., the signal-

to-noise ratio of an EEG or the sharpness of a picture) is crucial for inferring parameters

of clinical relevance with confidence. In turn, quality itself may depend on several factors,

among which the acquisition protocol, the experience of the person responsible for data

collection and the differences between instruments (e.g., different makers).

Observers may also be conditioned by their specific experience/preparation, that may

introduce systematic bias between experts (i.e., inter-annotator variability), and other factors

that may affect the repeatability of their own analysis (i.e., intra-annotator variability), such

as tiredness.
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The variability in the ground truth provided by a group of experts has direct consequences

on the design, training and validation of systems for automated data analysis and must be

considered carefully [75]. Collecting ground truth from multiple observers is encouraged

in the current literature and modelling annotation variability is a fundamental requisite for

meaningful software validation [52].

This chapter reports, to our best knowledge, the first inter-annotator variability study on

manual delineations of anterior chamber angle layers in digital gonio-photographs. It aims

to provide a comprehensive context for the correct evaluation and validation of algorithms

performing an automated analysis of digital gonio-photographs, in particular for detection

and segmentation of anatomical layers.

Note that current literature about automatic analysis systems for gonio-photographs

is limited to the classification of images using labels describing large anatomical regions

[14]. However, supported by the opinion of experts, we argue that the assessment of other

clinically relevant features could benefit from a local, rather than global, characterization

of the anterior chamber angle anatomy (i.e., a pixel-wise classification or segmentation). A

precise delineation of anterior chamber angle layers could be advantageous, for example, for

measuring synechial closure extension and its changes over time, or segmenting the trabecular

meshwork to allow automatic pigmentation grading (e.g., prior to laser trabeculoplasty).

Moreover, auto-alignment and auto-tracking systems based on layers segmentation could

improve examinations in remote and virtual clinics, which are currently gaining importance

due to the COVID-19 pandemic. This inter-annotator study on dense annotations of anterior

chamber angle layers has been motivated by all these premises.

Intra-annotator variability was not investigated due to the prohibitive effort required to

collect multiple annotations for a representative set of images from the experts and to the

issues caused to healthcare systems by the pandemic.

This study has been published in Translational Vision Science and Technology [89].
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4.2 Materials

Data

As part of the data annotation process described in Section 3.3.2 for the development of the

semantic segmentation algorithm, a sub-set of the digital gonio-photographs was chosen to

be annotated by multiple ophthalmologists. 20 angle sector images, each depicting a 22.5

degree wide portion of the irido-corneal interface, were selected from 18 eyes of 17 patients

and used to study inter-annotator variability.

Digital gonio-photographs of the anterior chamber angle consist of 1280 x 960 (width,

height), RGB images stored in .jpeg image format, acquired using a NIDEK GS-1 device at

two clinical sites located in Genova (Italy) and Dundee (United Kingdom).

Figure 4.1 shows two anterior chamber angle sectors, acquired with a NIDEK GS-1.

Fig. 4.1 Example of two images of anterior chamber angle sectors taken with a NIDEK GS-1 device. The
in-focus and bright areas are highlighted by green ellipses.

As described in Chapter 1, the NIDEK GS-1 takes several shots per angle sector by pro-

gressively changing the focal plane in order to acquire the full depth of the three-dimensional

drainage angle. For each sector considered, the image with the focus on the edge of the

drainage angle (i.e., on the ciliary body band or the scleral spur if the angle sector was open

or on the iris–cornea interface if it was closed) was selected to provide the sharpest (highest

contrast) visualization of the layer interfaces. As previously mentioned, the acquisition

device automatically selects from the acquisition stack the shot with the estimated best focus
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on the edge of the angle, through a proprietary algorithm [10, 138]; automatically selected

best-shot images have been inspected anyway by the author of this thesis and modified in the

unlikely case they were not optimal. The iridocorneal interface region may be not always

centred in the frame. Note that the limited depth of field implies that the inner portion of the

iris and the outer portion of the cornea may appear blurred and that a vignette is visible in

most images, whereby the image periphery appears darker than its centre. Both phenomenon

are visible outside the green ellipses in Figure 4.1.

Image selection was not based on acquisition conditions or the patient’s diagnosis (e.g.,

ocular hypertension, glaucoma) but only on local layers morphology, as this study aimed to

assess inter-annotator variability on descriptive image features and not to relate these features

to diagnosis. A clinical stratification of patients was, thus, not relevant and is not provided.

Rather, the images selected are representative of the variability of visual features of the eye

region observed in clinical practice, such as iris colour and trabecular meshwork pigmentation,

and include relevant local variations of layers interfaces, such as appositional angle closure

and peripheral anterior synechiae (see Chapter 1 for a description of these conditions). More

in detail, the images included 6 light and 14 dark irises (where blue or green eyes were

considered light and brown eyes were considered dark); 5 highly and 11 slightly pigmented

trabecular meshworks in non-closed angle sectors (where slightly pigmented corresponds to

Scheie’s pigmentation grades1 none, 1, and 2, and highly pigmented corresponds to Scheie’s

grades 3 and 4); four angle-closure images defined as appositional irido-corneal contact in

at least 50% of the sector (Scheie’s aperture grade2 4); and four images showing anterior

synechiae.

Annotations

Images were annotated according to the annotation protocol described in Section 3.3.2. We

remind that “to annotate” means to trace the contours of the layers visible in the image and

1The Scheie’s pigmentation grading scale is a clinical standard based on pigmentation density. It ranges
from 0 (or None) to 4, the higher the number the more pigmented the trabecular meshwork [106].

2The Scheie’s aperture grading scale is a clinical standard based on the visibility of angle layers. It ranges
from 0 (or Wide) to 4, the higher the number the narrower the anterior chamber angle [106].
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assign them the correct label using the annotation tool (VGG Image Annotator 2.0.8 [21]).

Image regions were highlighted using polygonal shapes, and labels selected from a list of

pre-defined entries.

The annotation of a single image took, on average, 10 minutes. It was unfeasible to

obtain multiple annotations for more images at this stage, since the delineation of layers is a

time-consuming process and the availability of clinical experts to annotate data was limited.

The annotation protocol stipulates to annotate only the sharp (in-focus) and bright image

areas; to avoid tracing the contours of target layers that were not clearly identifiable with

respect to neighbouring ones; and to trace layer–layer interfaces as precisely as possible. We

highlight that this protocol is designed to generate annotations suitable for validating auto-

matic segmentation systems, and not to necessarily reflect the normal practice of clinicians.

The specific subset of images used to evaluate inter-annotator variability was annotated by

five ophthalmologists from four clinical institutions located in Genoa, Italy; Lisbon, Portugal;

Dundee, United Kingdom; and Los Angeles, California, USA. Clinicians had different levels

of experience; this was not included as a parameter to model inter-annotator variability. When

they performed the annotations, two annotators were, respectively, year 4 and 7 specialty

trainees with experience in gonioscopy; one was a clinical study investigator with 5 years of

experience in an image reading centre; one was a glaucoma specialist with 5 years of clinical

experience in glaucoma management; and one had more than 10 years of clinical experience

in tertiary referral centres.

Annotations consist of a set of non-overlapping polygonal contours enclosing the bright

and sharp area of each anterior chamber angle layer considered in this study: iris root (IR),

ciliary body band (CBB), scleral spur (SS), trabecular meshwork (TM), and cornea (C). Since

the annotation tool did not provide a way to automatically avoid different polygons to overlap,

the raw annotations were pre-processed in order to deal with small overlapping areas (width

of few pixels) by being arbitrarily assigned to the layer with the smaller surface. Larger

overlapping regions were re-annotated by the clinical expert. Gaps between layers are not

an issue according to our methods (please refer to the next section for detailed information).

As anticipated in Section 3.3.2 pigmented and non-pigmented trabecular meshwork regions,
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although annotated independently, were merged together before use. This was done to

increase annotations reliability when training the semantic segmentation system (Chapter 5)

and to conduct the inter-annotator variability study accordingly. Even if the discussion on

inter-annotator variability will mainly consider the trabecular meshwork as a whole, a few

useful comparisons with the results obtained without merging the two sub-regions will be

provided to justify our choice.

Image characteristics and protocol guidelines had important consequences on the anno-

tations. For example, even if the layers span the whole image from side to side, vignetting

and blur often make the annotators ignore the image periphery. As a result, most images

have annotations concentrated in a limited image area (Figure 4.2). A degree of subjectivity

was always present, for instance when locating the transition between in-focus and blurred

regions of the iris or the transition between well-lit and dark regions within the trabecular

meshwork. Moreover, annotators could choose not to annotate part of an image if they did

not feel sufficiently confident (e.g., if they judged the quality of an image region too poor).

This did not necessarily indicate disagreement with the other annotators, but resulted in part

of each image being left unannotated (labelled NA). Overall, each clinician annotated at least

one anatomical layer in every image.

4.3 Methods

In our analysis, inter-annotator variability only accounted for annotated image regions and

was not affected by un-annotated areas. This ensured that variability measures reflected only

differences in clinical judgement made with confidence.

An example of digital gonio-photograph and an annotation thereof is shown in Figure 4.2.

All of the image pixels within a delineation were labelled as pertaining to a single layer. The

two pixels highlighted in the figure belong to the same anterior chamber angle layer (iris

root), but the point labelled “2” in the image was not included in the annotated region, given

the (subjectively) estimated border between well-lit and dark regions. This is a departure

from many inter-annotator variability studies for segmentation systems in medical image
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NA

IR

CBB

SS

TM

C

1 2 1 2

Original Image Annotation

Fig. 4.2 Original gonio-photograph (left) and an annotation (right). Points 1 and 2 highlight two pixels in
the iris root. Point 2 has been excluded from the annotation, given the subjective estimation of the transition
between the bright and the dark image regions.

analysis [52, 96], which typically expect the full extent of targets to be annotated. These

choices imply that standard analysis methods, such as consensus and comparison metrics,

such as the Dice score, required adapting in order to be used consistently. Inter-annotator

variability was analysed in three experiments, reported below.

4.3.1 Layer-wise Annotation Frequency

Layer-wise annotation frequency refers to the number of times each clinician delineated

the contours of each structure, as a measure of their confidence at recognizing and locating

drainage angle layers in digital gonio-photographs. Annotators were instructed to trace

contours only when they judged them to be clearly visible. Occasionally, some layers were

not visible at all; for example, the scleral spur was not visible in the case of angle closure.

For this experiment, we were only interested in the existence of a layer annotation, not in its

geometry; hence, two annotators could be equally confident in delineating a specific layer

even if the two actual contours differed. This methodology was designed to provide insight

into the variability in experts’ confidence in identifying anatomical layers from local image

features of digital gonio-photographs.
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4.3.2 Layer-wise Consensus

This analysis examined consensus by the number of pixels agreed to be part of a given layer

by a minimum number of annotators. Its size was plotted as a function of the minimum

number of agreeing annotators, i.e., the consensus threshold. The purpose was to obtain

an indication of which layers were annotated with high and low consistency among the

annotators in terms of location and size. In the literature [52], the consensus of multiple

annotations of the same image is usually computed as the subset of pixels labelled in the same

way by at least n (consensus threshold) annotators, with all of the other pixels considered

as background. The consensus is always maximum when n equals 1. In that case, in fact,

the consensus area for a given target is trivially the union of all image pixels annotated as

belonging to that target by at least one of the annotators. Consensus is expected to decrease

as the threshold n increases unless the delineations drawn by several annotators coincide

perfectly.

We adapted this concept for our study to deal correctly with the un-annotated areas (i.e.,

not background), defining a three-category label for each pixel, as follows:

1. consensus region (label 1): the set of pixels annotated as appertaining to a given

layer by at least n observers. For example, given 5 annotators and n = 3, the iris root

consensus region would be the set of pixels classified consistently as iris by at least 3

experts, regardless of who these experts are;

2. disagreement region (label –1): the set of pixels annotated as the given layer by k

annotators, with 1 ≤ k < n, and differently (i.e., belonging to another layer) by at

least one. According to the example introduced earlier, given 5 annotators and n = 3,

this region would collect all the pixels classified as iris by one or two annotators and

differently, e.g., ciliary body band, by at least one expert;

3. ignored region (label 0): the set of pixels annotated as the given layer by k annotators,

with k < n, and left un-annotated by the others; this region is ignored when computing

consensus size variations, as its variability does not necessarily reflect changes of the

actual agreement level. In the example, given 5 annotators and n = 3, this area would
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comprise all those pixels annotated as iris by less than 3 experts and left un-annotated

by the others.

It follows that NA image regions do not affect consensus computation according to our

experimental design.

Original Image Consensus Threshold = 1 Consensus Threshold = 2

Consensus Threshold = 3 Consensus Threshold = 4 Consensus Threshold = 5

1

0

1

1

0

1

1

0

1

1

0

1

1
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1

Fig. 4.3 Original RGB image (top left) and the five scleral spur consensus maps as the consensus threshold
varies. Label 1 is the consensus region, –1 is the disagreement region, and 0 is the ignored region.

An example of how the consensus region varied with the consensus threshold is shown

in Figure 4.3. The extent of disagreement increased with the consensus threshold value, as

expected. In the ideal case of perfect agreement among all the annotators, the agreement

region size would not change varying the threshold.

After generating five consensus maps for each target layer, one per threshold value (when

the threshold equalled 1 it led to the union of annotated pixels, and when it equalled 5 it led

to their intersection), we studied how the consensus size decreased as the threshold increased.

4.3.3 Agreement Analysis

This analysis compared agreement between pairs of annotators, with one annotator chosen

as reference for each pair. Each comparison yielded a 5 × 5 confusion matrix, given that

there were five target anatomical classes. Un-annotated regions were excluded from the
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computation so that intersections between areas that were annotated by one annotator but not

by the other one did not affect the results. Layer-wise precision, sensitivity, and Dice scores

of each annotator were calculated as follows:

• Precision: T P/(T P+FP), where T P is the true positives and FP is the false positives.

• Sensitivity: T P/(T P+FN), where FN is the false negatives.

• Dice score: 2 · (precision∗ sensitivity)/(precision+ sensitivity)

Average values and standard deviations of each annotator were computed as an overall

measure of inter-annotator agreement.

4.4 Results

4.4.1 Layer-Wise Annotation Frequency
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Fig. 4.4 Plot of per-layer annotation frequencies for each annotator.
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Figure 4.4 shows the per-layer annotation frequency of each annotator, a measure of how

confidently they identified and traced contours. Note that the fixed sequence of the layers

provides expectations about what layers are present in a given location, but segmentation

(contours) depends on local image features. The iris root was the only region segmented by

all participants the same number of times (i.e., most consistently). This can be explained by

considering that the boundary between the iris and the next visible layer is usually sharp and

thus well identifiable, but this may not be true for other layers. The relative segmentation

frequency measured for the remaining layers varied, up to a maximum percent difference of

31% for the scleral spur (annotator 2 vs. annotators 1 and 3). Only one participant (annotator

3) provided the observed maximum number of annotations for all of the layers.

4.4.2 Layer-wise Consensus
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Fig. 4.5 Plot of the ratio between consensus pixels and annotated pixels against the consensus threshold
(minimum number of annotators agreeing).

Figure 4.5 shows how the area of the consensus region for each layer decreased as

the consensus threshold (minimum number of annotators agreeing) increased. Per-layer
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consensus areas have been normalized to [0, 1] where 1 means that, for a given layer and

consensus threshold, all annotated pixels are also agreement pixels. Thus, the normalized

consensus value does not depend on the size of the annotations.

As previously mentioned, a consensus variation only occurred if the consensus threshold

exceeded the actual number of agreeing annotators for a given pixel and at least one of them

disagreed. This ensured that we only considered actual pixel-wise classification differences

and not the subjective choice to not annotate an image region. The plot suggests that the

consensus levels on some layers were low; for example, the minimum average agreement

(i.e., the agreement calculated when the consensus threshold equals the number of annotators,

averaged over all the images in the dataset) was only about 28% of the annotated pixels for

the scleral spur. It is also worth noticing that, although the consensus for the cornea and

iris root converged to an almost stable percentage for high consensus threshold values, the

consensus for the trabecular meshwork, scleral spur, and ciliary body band kept decreasing

approximately linearly (for thresholds ≥ 2).

4.4.3 Agreement Analysis

The ground truth provided by every pair of participants was compared, generating a set of

5×5 confusion matrices, given that five was the number of anterior chamber angle layers

considered. The cell Ci, j of a confusion matrix gives the number of pixels that belong to

the intersection between the annotation of target i by the first annotator and the annotation

of target j by the second annotator, taken as reference. Perfect agreement would result in

a diagonal confusion matrix. Three layer-wise metrics of inter-annotator agreement were

computed from each confusion matrix: precision, sensitivity, and Dice score. Specificity was

not considered since layer annotations are often small compared to the image area and the

variability would only slightly affect the specificity values thus leading to overoptimistic

results. Finally, per-annotator mean values and standard deviations were obtained.
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Fig. 4.6 Annotators’ average precision (plot points) and standard deviation (whiskers) when annotating each
layer. Layers acronyms are reported in the x axis according to their anatomical topology. The order of
annotators is not relevant.
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Fig. 4.7 Annotators’ average sensitivity (plot points) and standard deviation (whiskers) when annotating
each layer. Layers acronyms are reported in the x axis according to their anatomical topology. The order of
annotators is not relevant.

The annotators’ mean precision and standard deviation values for each layer are reported

in Figure 4.6. The ciliary body band and scleral spur overall show the lowest mean precision
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values and/or the highest standard deviations. Figure 4.7 shows the mean sensitivity values

and standard deviations. As in the case of precision, the maximum overall variability occurred

for the ciliary body band and scleral spur.

Comparing Figures 4.6 and 4.7 gives us an insight into the differences between anno-

tations from different clinicians. For a specific annotator and target, good precision but

low sensitivity suggests that, compared with contours traced by others, the area delineated

was thinner but centred on average, thus generating a prevalence of false-negative classi-

fications (e.g., for annotator 1, ciliary body band). Good sensitivity but lower precision

suggests that the delineated area was larger but centred on average, generating a prevalence

of false-positive classifications (e.g., for annotator 5, ciliary body band). Low precision and

sensitivity suggest that the delineated area was displaced from the average (e.g., for annotator

2, scleral spur).
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Fig. 4.8 Annotators’ average Dice score (plot points) and standard deviation (whiskers) when annotating
each layer. Layers acronyms are reported in the x axis according to their anatomical topology. The order of
annotators is not relevant.

Figure 4.8 shows the mean Dice scores and corresponding standard deviation values,

providing a quantitative metric to compare annotations from different clinicians. The graphs

show a common pattern: good agreement on the iris root, trabecular meshwork, and cornea
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(with average Dice score ranges of 0.97–0.98, 0.84–0.9, and 0.93–0.96, respectively) and

lower agreement on the scleral spur and ciliary body band (with average Dice score ranges

of 0.61–0.7 and 0.73–0.78, respectively).

In all previous plots, the segment of the horizontal axis referring to any specific annotator

reports the ordered sequence of angle layers according to their natural topology. The order of

annotators is not relevant instead. It is worth highlighting that the iris root and the cornea (the

first and the last in the sequence) have only the top or, respectively, the bottom annotation

border bounded by other layers, making it reasonable to expect higher average precision,

sensitivity and Dice score values as confirmed by our results. In case of the iris root, its

interface with the following layer (or layers if the morphology is pathological, e.g., in case of

a synechia) is usually much sharper than those between any two other layers and easier to

delineate in our images. Its variability was low in general in our dataset, except when the iris

and the ciliary body band are characterized by a very similar shade of brown which makes

the identification of their mutual boundary more difficult.
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Fig. 4.9 Visual representation of cases that led to low agreement metric values. (a) Low-precision CBB
annotation and low Dice score SS annotation. (b) Low-sensitivity TM annotation.

Figure 4.9 shows two examples of annotations that led to low values of per-layer agree-

ment metrics. Figure 4.9a compares annotator 3 and annotator 1. The ciliary body band
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annotation provided by annotator 3 included that of annotator 1, but it was larger and gen-

erated false positives in regions annotated differently by annotator 1 and, in turn, a low

precision score. In the same comparison, the two scleral spur annotations cover different

regions of the image, thus returning a low Dice score (low sensitivity and low precision).

Figure 4.9b compares annotator 5 with annotator 3. The trabecular meshwork annotation

of annotator 5 was included in that of annotator 3 but it was thinner, which caused false

negatives in part of the region annotated as cornea by annotator 5, thus returning a low

sensitivity score.

4.5 On the Effect of Splitting the Trabecular Meshwork

In Section 3.3.2 we have anticipated that, although the annotation process for producing

semantic segmentation ground truths initially considered two sub-regions of the trabecular

meshwork separately (i.e., pigmented and non-pigmented), the segmentation algorithm (see

Chapter 5) has been trained and evaluated after merging these two sub-regions in a single

layer (simply called trabecular meshwork). The inter-annotator variability study presented

so far has been conducted according to that choice, since our aim was to study the issue of

ground-truth variability to provide the correct context for the evaluation of our segmentation

algorithm.

However, in this section we briefly discuss how inter-annotator variability would vary if

the annotations of the pigmented and non-pigmented trabecular meshworks were kept apart.
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Fig. 4.10 Layer annotation frequency plot (left) and consensus plot (right) when the trabecular meshwork
annotation is split into its pigmented (PTM) and non-pigmented (NPTM) parts.
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Fig. 4.11 Annotators’ average Dice score (plot points) and standard deviation (whiskers) when annotating
each layer. Pigmented (PTM) and non-pigmented (NPTM) trabecular meshwork sub-regions are now two
independent annotations.

From the annotation frequency plot (Figure 4.10 (left)) it is possible to appreciate how

the non-pigmented trabecular meshwork is now the layer annotated less frequently by some

of the experts, with a maximum relative difference in the number of times it was delineated

in the dataset equal to 41%. By looking at Figure 4.10 (right), the pigmented and non-

pigmented regions show much worse consensus compared to when they are merged together

(Figure 4.5).
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Figure 4.11 shows that the average per-annotator Dice scores for pigmented and non-

pigmented trabecular meshwork regions is lower that the values obtained when considering

their surfaces as a whole.

Given the clinical importance of the trabecular meshwork and, in particular, of its

pigmented (functional) component, these findings lead to an interesting hypothesis to be

confirmed by future studies: since the decrease in metrics may be only due to the variabil-

ity of the interface delineation between the pigmented and the non-pigmented trabecular

meshworks, our results suggest that, despite the whole trabecular meshwork being delineated

with fairly high consensus, the mutual boundary between its two sub-structures is difficult to

localize precisely even by experienced ophthalmologists. This is to be accounted for when

assessing algorithms for angle aperture grading since a few studies in the literature (e.g.,

[14]) consider the visibility of the pigmented part of the meshwork as the criterium to grade

an angle section as Open.

4.6 Discussion and Conclusions

Well-designed data annotations are a crucial component of the development of reliable ma-

chine learning algorithms. When annotations from different experts are available, modelling

their variability is important to interpret algorithm performance correctly, especially in the

field of medical data analysis, where it is often impossible to obtain objective ground truth.

In this study, to our best knowledge, we have presented the first inter-observer variability

study on segmentations of anatomical layers in digital images of the anterior chamber angle.

This study has been designed to support the evaluation of the deep learning algorithm for

semantic segmentation of drainage angle layers presented in Chapter 5.

From the analysis of the annotations provided by five experienced ophthalmologists we

obtained a detailed, quantitative description of the inter-annotator variability that can be

summarized in the following points:

• providing contours of anterior chamber angle structures in digital gonio-photographs

is challenging due to target feature variability (e.g., pigmentation, colour shades) and
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image quality (e.g., illumination, sharpness, focus). This led to differences in the

number of times the participants felt sufficiently confident to delineate target structures

even where their presence was expected from anatomical knowledge;

• the consensus area of per-layer segmentation regions, defined as the number of pixels

labelled the same by a minimum number of annotators, was much smaller for the

scleral spur and ciliary body band compared with other layers (only about 28% and

41% of the pixels annotated as such by at least one expert). This result is particularly

relevant because the scleral spur is an important marker to classify a drainage angle

sector as fully open;

• the average values of agreement metrics showed a common pattern among annotators.

High agreement values were found for structures with boundaries better characterized

in terms of visual features of the images (e.g., contrast, colour, texture), namely, the

iris root, trabecular meshwork, and cornea. Low agreement values were found for the

ciliary body band and scleral spur regions.

This study has some limitations, in particular the limited numbers of images and oph-

thalmologists involved, although many papers in the literature of ophthalmic image analysis

report experiments involving up to only three or four annotators. The reason for this is that

generating annotations is time consuming, and clinical time is at a premium.

Nevertheless, our results provide important information on inter-annotator variability at

delineating anatomical layers of the drainage angle in digital gonio-photographs, at least in

two ways. First, they provide a quantitative context for interpreting values of assessment

measures obtained when evaluating automatic systems (e.g., our semantic segmentation

system in Chapter 5). Second, they give a first insight into the consensus of clinicians

analysing digital gonio-photographs, which seems clearly dependent on specific layers.

Given the variability of annotations by different experts, training and validating systems for

automated gonioscopy with data acquired from several annotators seems strongly advisable

to improve generalization. Estimating output uncertainty is necessary to highlight image

features that are more difficult to classify (and possibly linked to increased inter-annotator
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variability), thus improving interpretability and ultimately clinicians’ trust in these algorithms.

We included uncertainty estimation in our segmentation algorithm that will be discussed in

Chapter 5.

Larger studies are advisable to firm up our conclusions to obtain truly reliable validation

of artificial intelligence and machine learning applications for computer-aided analysis of

gonioscopic images in the framework of evaluation of risk factors associated with glaucoma

development, categorization of the disease, and support for the choice of treatments.



Chapter 5

Semantic Segmentation of Drainage

Angle Layers

5.1 About this Chapter

This chapter aims to describe the deep learning model developed to perform the semantic

segmentation of anatomical layers of the anterior chamber angle in digital gonio-photographs

acquired with the NIDEK GS-1 device. The choice of this research target was based on the

results of a consultation with participating clinicians and the evaluation of the advantages

that this system could provide in practice, as discussed in Chapter 3.

As explained in Chapter 2, only very limited literature exists about the automatic analysis

of gonio-photographs and only concerns the direct classification of angle aperture. We

remind the reader that the grading of angle aperture implicitly relies on the visibility of the

anatomical layers, the characteristics of those are thus expected to be somehow modelled by

the classifier during training. Other information of clinical interest relies, at least partially, not

just on the visibility of layers but also on their shape, size and location in the acquired images.

This is, for example, the case of systems for grading the pigmentation of the trabecular

meshwork (necessary to tune laser treatments), auto-alignment and auto-tracking algorithms

for automating the examination in non-contact clinical settings, and augmented visualization

of the eye region during the implantation of stents, to help the ophthalmologist insert the
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device into the trabecular meshwork. Thus, the semantic segmentation of layers may provide

a more exhaustive description of the relevant features of the iridocorneal angle and may be a

powerful backbone for further analysis tools to support digital gonioscopy.

The algorithm we propose has been designed to deal with specific data characteristics (e.g.,

vignette and shallow depth-of-field) that would prevent other state-of-the-art segmentation

systems from being effective. It aims to fill a gap in the literature about clinical applications

of deep learning to gonioscopy and to provide a cornerstone for future developments.

This study has been published at different stages of development in the Communications

in Computer and Information Science [88] and BMJ Open Ophthalmology [90] journals and

in the Investigative Ophthalmology & Visual Science [91] as a conference abstract.

5.2 Materials

Data

A pilot dataset of digital gonio-photographs (1280 x 960 pixels, RGB), acquired with a

NIDEK GS-1 device was selected from the databases shared by the clinical sites in Genova

(Italy), Lisbon (Portugal) and Dundee (United Kingdom). A total of 274 sector images from

214 exams of 162 patients was annotated by four clinical experts (from Ninewells Hospitals,

Dundee, UK; Hospital de Santa Maria, Lisbon, Portugal; and Ospedale San Martino, Genoa,

Italy) according to the annotation protocol described in Section 3.3.2. Each sector image was

annotated by only one expert, except for a subset of 20 images which was annotated by all

the clinicians involved (plus another one who annotated only this subset) and used to study

inter-annotator variability (Chapter 4). For the purposes of this study, whenever multiple

annotations were available for a sector image, the one provided by the clinician with more

experience (measured in years) was selected.

All images were acquired with patients’ agreement and following General Data Protection

Regulation rules (including anonymisation at source) during routine clinical examinations.

Since this work focuses on the development of a software tool and is not an association study

requiring cross-linked patient data, none was sought.
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Table 5.1 Segmentation dataset features distribution (% rounded at first decimal). Each image has been
categorized by two main visual traits: the iris colour (rows) and an additional predominant feature of the sector
(columns).

Anterior
Synechiae

Appositional
Angle Closure

Highly
Pigmented

TM

Slightly
Pigmented

TM

Light Iris 7 (2.6 %) 1 (0.4 %) 43 (15.7 %) 45 (16.4 %)

Dark Iris 43 (15.7 %) 24 (8.8 %) 60 (21.9 %) 51 (18.6 %)

Table 5.1 shows the distribution of the features of interest in our dataset by two main traits.

The first is the iris colour, light (blue or green) or dark (brown); the second is the predominant

feature of the angle sector, that can be only one of the following four: (1) the presence of

anterior synechiae, (2) appositional closure of the angle (in at least half of the frame), or (3,

4) the trabecular meshwork pigmentation grade in all the other images (two cases: highly

pigmented, corresponding to Scheie’s grades II, III and IV; slightly pigmented, Scheie’s

grades None and I). Dark irises are predominant (65%), especially in the subsets representing

synechiae and angle closures (86% and 96%). Moreover, structural changes in the angle

layers represented by synechiae and angle closures are considerably under-represented in the

dataset (27.5%).

Annotations

We remind the reader that these digital gonio-photographs show a narrow depth-of-field and

vignetting, so that only part of them can be evaluated confidently. Deciding which part to

evaluate is left to the annotators, introducing a degree of subjectivity in the ground truth and

features correlation between the annotated and the un-annotated (label NA) image regions

(refer to Section 3.3.2 and Chapter 4 for a detailed discussion on this). These limitations

must be carefully accounted for when designing and training a segmentation algorithm. In

fact, semantic segmentation depends on anatomical features visible in the images, e.g. layers’

interfaces, while the (subjective) boundaries between the annotated and un-annotated regions

of the image depend on the gradual reduction of local information content due to de-focusing

and vignetting.
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The results of our analysis on inter-annotator agreement, discussed in Chapter 4, will be

fundamental when assessing system performance.

5.3 Methods

5.3.1 Pre-processing and Data Augmentation

Sector images were first rotated to a common orientation of layers (horizontal, iris at the

bottom) to make the segmentation task insensitive to the sector location along the angle

circumference. The deterministic rotation of sector images was possible by associating each

sector number (reported in the file name) with the corresponding acquisition angle along

the 360° iridocorneal interface. As previously explained, each examined eye provides 16

best-focus sector images, meaning that the rotation angle of each sector is a multiple of 22.5°

(360° / 16). They were then resized from 1280 x 960 to 320 x 240 pixels (width, height)

through nearest neighbour interpolation and preserving the aspect ratio. Each colour channel

was divided by 255 (the maximum possible value stored in an unsigned byte) to normalize

inputs to the [0, 1] range.

The augmentation pipeline comprised both geometric and photometric transforma-

tions. All transformation parameters were randomly extracted from uniform distributions

at each new training epoch. Geometric transformations consisted of: translations along

x and y axis (ranges [0, image_width/3] and [0, image_height/3] respectively); rotations

(range [−30◦,30◦]); shears along x and y axis (range [−10◦,10◦]); and magnification (range

[0.8,1.2]). Zero-padding was used whenever needed to make the resolution of the trans-

formed images correspond to 320 x 240 pixels. Photometric transformations consisted of:

contrast variations (range [0.8,1.2]); Gaussian noise injection (zero mean, standard deviation

range [0,0.02]); uniform brightness variation (range [0.8,1.2]); and non-uniform (sinusoidal)

brightness variations (mixture of two sinusoids with amplitude, frequency and phase ranges

tuned based on a qualitative analysis of augmented images). In particular, the sinusoidal

brightness perturbation introduces random vertical shadows in the image that resemble those

caused, for example, by eye lashes or blurred gel bubbles and aims to increase the insensitivity
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of the network to local brightness variations and improve the continuity of interfaces between

layers in the final segmentation map. An example of sinusoidal brightness perturbation is

provided in Figure 5.1.

(a) (b)

Fig. 5.1 Example of original sector image (a) and its augmented version using the sinusoidal brightness
perturbation (b).

Except for the sinusoidal brightness perturbation and the Gaussian noise injection that

were developed from scratch, the other augmentation techniques and the ranges of their

parameters refer to the implementations available in the Pytorch (version 1.7.0) library called

torchvision (version 0.11.2). Ranges of transformations have been determined empirically

based on a trial and error approach and the qualitative evaluations of augmented data.

Both geometric and photometric transformations were meant to simulate the reasonable

effects of slight device misalignments during examination and the variability of acquisition

conditions (e.g., focus, illumination, possible movements of the patient).

5.3.2 Network Architecture

Figure 5.2 summarizes our approach to provide an accurate segmentation map of anterior

chamber angle layers and deal with the characteristics of our ground truth (e.g., vignetting

and blurring) effectively.

We remind the reader the acronyms used to identify the different areas in both the

annotations and the segmentation maps returned by the algorithm: NA, un-annotated region;

IR, iris root; CBB, ciliary body band; SS, scleral spur; TM, trabecular meshwork; C, cornea.
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Fig. 5.2 Overview of network architecture with examples of input, intermediate and final results, also compared
with the ground truth.

The data representation generated by the network encoder is processed in parallel by

two independent network units: the semantic decoder, which returns the estimated class for

each image pixel (the segmentation map), and the region of interest (ROI) decoder, which

highlights an image ROI (the sharp and well-lit area). The two outputs are combined to

provide a final segmentation map within the estimated image ROI.

The basic processing blocks are shown in Figure 5.3 (a). The convolutional block (Fig-

ure 5.3 (a1)) (ConvB) is a sequence of dropout [119] (0.2 drop probability), 2D convolutional

layer (3x3 kernel size, with Kaiming-He uniform initialization [37], zero-padding), instance

normalization [130] and Leaky-ReLU activation [74] (0.01 negative slope). Dense blocks

(Figure 5.3 (a2)) (DenseB), inspired by [47], are sequences of four ConvBs with two interme-

diate concatenations of output pairs. The encoder block (Figure 5.3 (a3)) (EncB) is a DenseB

followed by an input-output concatenation. The decoder block (Figure 5.3 (a4)) (DecB) is

a DenseB followed by a ConvB that reduces the number of feature maps. Figure 5.3 (b)

captures the three network components in detail. The encoder (Figure 5.3 (b1)) is composed

of two initial ConvBs with 8 filters (dropout in the first ConvB is disabled), followed by three

combinations of max pooling and EncB, each doubling the number of feature maps. A final

DenseB generates the latent data representation. The semantic decoder (Figure 5.3 (b2)) up-

samples feature maps via max un-pooling [82] and concatenates them with those forwarded

by the encoder. The resulting feature maps are processed through DecBs, each reducing
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Fig. 5.3 Basic processing blocks (a): convolutional (a1), dense (a2), encoder (a3) and decoder (a4) blocks;
detail of the proposed architecture (b): encoder (b1), semantic decoder (b2) and ROI decoder (b3).

by a factor 4 the number of feature maps. The processing ends with a DenseB and a 1x1

2D convolution, followed by a six-class softmax activation. The un-annotated (NA) label is

considered for consistency but does not contribute to semantic decoder optimization. In fact,

the un-annotated image area, does not have any anatomical semantics and only refers to the

region that was not possible to annotate with confidence by clinicians.

The ROI decoder (Figure 5.3 (b3)) is our solution to filter out the artefacts expected in the

segmentation map periphery (since dark and blurred image areas are not informative enough

to be correctly classified). A detached copy of the data representation is processed through

a DecB, a ConvB (dropout is deactivated) and a 2D convolution with a sigmoid activation

(more details on this in the following section). The intermediate feature maps are up-sampled

by a factor 4 using bilinear interpolation.
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After ROI map binarization (threshold 0.5 in our results), the ROI map and the semantic

map are multiplied. Semantic segmentation of anatomical layers of the drainage angle and

ROI localization are two un-correlated tasks that rely on different interpretations of the same

image. The former looks for patterns and textures that characterize the different anatomical

layers; the latter evaluates sharpness and illumination variations across the frame. We

verified experimentally that other systems, like attention mechanisms [83], are not effective

at addressing this problem since they do not deal with the two tasks independently.

5.3.3 Network Training

The sequence of encoder and semantic decoder can be interpreted as a segmentation U-Net

[97] trained end-to-end via weighted categorical cross-entropy with equal weights for all

the anatomical layers considered and weight 0 for the region of the image not annotated by

the experts. In our first implementation of this model [88], class weight proportional to the

average target sizes were used to compensate for the overall imbalance in the average size of

the different anatomical layers considered. However, this approach led to worse performance

in terms of poorer precision (many false positives) for the thinner layers of the eye region,

i.e. the scleral spur and the ciliary body band. This can be explained considering that the

scleral spur and the ciliary body band are the layers of the angle that returned the largest

inter-annotator variability (Chapter 4). Assigning larger loss weights to these classes is likely

to lead to overfitting and poor generalization.

Ground Truth Binarization Smoothing

R

Fig. 5.4 Example of ROI likelihood map generation. The semantic ground truth (left) is binarized first (annotated
region = 1; un-annotated region = 0) and gaps between adjacent layers are filled-in (centre). The binarized
image is then smoothed to simulate a distribution of clinician’s confidence when annotating the image and
obtain the final ROI likelihood map (right) that will be used to train the ROI Decoder.
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To train the ROI decoder we first generated ROI likelihood maps from the original

semantic annotations: all annotated pixels were first assigned value 1 (binarization), gaps

between layers (if any) were filled using the closure morphological operator to obtain a

dense region that was then smoothed to simulate a probabilistic distribution of annotator’s

evaluation confidence (Figure 5.4). Smoothing was performed using an averaging filter with

kernel size (input_width / 6, input_height / 6). ROI likelihood maps were used as reference

when computing the mean squared error (MSE) loss for the ROI decoder, independently from

the semantic segmentation optimization. The estimation of the most informative image ROI

has been treated as a regression, rather than a classification, problem. The ROIs delineated by

experts are, in fact, just a subjective representation of slowly varying features of the images,

i.e., brightness and focus, that do not have sharp boundaries. Despite the ROI decoder

being optimized through MSE error loss minimization we opted to include a final sigmoid

activation to constrain outputs. We also verified experimentally that, in our case study, a

final sigmoid activation makes the ROI decoder less sensitive to local image features and

provides more homogeneous regions of interest than a linear activation. The loss affects only

the update of ROI decoder weights and not of the network encoder. This is done to ensure

that the encoder can focus on the more complex features that discriminate layers.

Optimization of model’s weights was performed through stochastic gradient descent with

Nesterov momentum equal to 0.9 (as per PyTorch implementation), learning rate equal to

0.01 and 8 images per batch. Model development and training was carried out in Python

(version 3.7.9) and PyTorch (version 1.7.0).

5.3.4 Epistemic Uncertainty Estimation

We included dropout layers in our model and used Monte Carlo dropout [30] to generate

multiple softmax activations for an input image at inference time. This approach allows to

assess how small variations in the network structure affect the segmentations, thus suggesting

whether local output values are the result of the generalization of useful features over training

or just the specialization of specific nodes (likely due to overfitting).
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The predicted class for each pixel is the argmax of the average activations, and the

activations’ variance for the assigned class estimates the model (epistemic) uncertainty. If

the pixel activations for a given final class are consistent across several output candidates, the

variance is low; otherwise, the variance is high (high uncertainty).

5.4 Results
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Fig. 5.5 Example of gonio-photograph (top left) and ground truth delineations of the visible layers (top right);
boundaries of the segmentation map output by the semantic decoder and refined by the ROI (bottom right);
uncertainty (variance) map (bottom left). Results obtained using 7 predictions through Monte Carlo dropout.

Figure 5.5 compares an example of combined network output (edges of the segmentation

map refined by the ROI, bottom right) with the ground truth delineation (top right). The

segmentation is noticeably accurate and the ROI very similar to that highlighted by the

annotator. The uncertainty (variance) map provides useful information about the model

confidence in the results. In this case, the variance map only highlights layers interfaces, as

expected even when the segmentation is accurate, since layers boundaries are often not very

sharp features.
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Fig. 5.6 Example of gonio-photograph (top left) and ground truth delineations of the visible layers (top right);
boundaries of the segmentation map output by the semantic decoder and refined by the ROI (bottom right);
uncertainty (variance) map (bottom left). The arrows indicate a small misclassified area (bottom right) and
the corresponding local uncertainty (bottom left). Results obtained using 30 predictions through Monte Carlo
dropout.

Figure 5.6 shows another example of overall good segmentation performed by our deep

learning model. In this example it is possible to notice a small area within the trabecular

meshwork that has been mislabelled as scleral spur (indicated by the black arrow in the

bottom right image). The corresponding area of the variance map (bottom left) informs

the user of the uncertainty associated with that segmented region, suggesting that an expert

re-evaluation is advisable.

From both previous examples it is possible to appreciate the visual characterisation of

target layers. Their boundaries are not sharp edges but usually just low-contrast transitions or

changes in the density of pigmentation.

The performance of the segmentation model was evaluated. First, we split the dataset into

a test set (31 images from 25 exams of 17 patients) and a training-validation set (243 images

from 189 exams of 145 patients), with similar distributions of the features described in

Section 5.2. We then configured the training pipeline to randomly split the training-validation
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set into 5 folds of 29 patients each, to cross-validate the model, each fold consisting of a

variable number of images (mean: 48.6, std: 5.7). Importantly, according to our methods

the training, the validation and the test sets are always granted to contain data from non-

overlapping groups of patients.

We considered the segmentation accuracy within the annotated images area over training

and implemented a policy for storing model weights after each epoch returning an increased

validation accuracy. Accuracy only accounted for pixels within the annotated image regions,

since segmentation performance on the un-annotated area is, by definition, not measurable.

We noticed that using maximum accuracy rather than minimum loss as early stopping

criterium caused the training to stop earlier on average and, thus, made the model less

sensitive to noise in the data (i.e., the saved parameters are less affected by overfitting on the

training set).

Table 5.2 reports average (fold-wise) per-layer performance of the segmentation model

computed on the hold-out test set. Precision, sensitivity and Dice scores were the metrics

considered. It is worth noticing that the average metrics resemble the values of inter-annotator

agreement presented in Chapter 4 highlighting that model performance is likely affected by

the degree of variability in specific layer annotations in the dataset, as expected.

The average (fold-wise) per-pixel segmentation accuracy within the annotated image

region was about 91%. ROIs estimated by the model and those identified by the annotators

cannot be compared quantitatively since their delineation depends on slow-varying features

(brightness and focus) and, thus, subjective. To qualitatively validate the ROI decoder of our

model we asked a clinician, blinded to our ground truth data, to verify that ROIs estimated by

the model did not leave out any anatomical feature of clinical interest present in the original

image. The result was that our model was judged capable to highlight an appropriate ROI in

every test image and in every cross-validation fold even when the angle interface was not

centred in the frame, suggesting a stable, reliable approach.

Model calibration was verified on the hold-out test set after every cross-validation fold

by computing the expected calibration errors (ECE) [80]. An average (across folds) ECE of
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Table 5.2 Layer-wise segmentation model performance. Mean precision, sensitivity and Dice score values and
standard deviations obtained from the comparison between network’s semantic decoder outputs (argmax of
softmax actvation outputs) and experts’ annotations (un-annotated regions do not affect the results) over a
5-fold cross validation experiment.

Mean (%) Std (%)

I
Prec. 92.8 1.3

Sens. 97.4 0.8

Dice 94.8 0.4

CBB
Prec. 84.8 1.0

Sens. 64.0 4.3

Dice 72.8 2.9

SS
Prec. 68.4 1.7

Sens. 69.6 3.3

Dice 68.8 1.2

TM
Prec. 84.6 2.0

Sens. 91.2 1.2

Dice 87.6 0.5

C
Prec. 96.4 0.5

Sens. 92.2 1.2

Dice 94.2 0.4
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0.01 was obtained, suggesting that our model is well calibrated and that activation variance

may be used to estimate epistemic uncertainty.
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Fig. 5.7 Example of calibration plot; the fraction of pixels classified correctly is plotted against the average
value of final network activations within equally ranged intervals (100 bins in this example).

Figure 5.7 shows an example of calibration plot obtained during the cross-validation of

our model. Te calibration plot starts at an average probability value of about 0.25, this is

expected since the minimum activation value necessary for classifying a pixel in a 5-class

(the un-annotated class is never predicted by the model) segmentation task must be > 0.2.

Uncertainty estimation highlighted local segmentation artefacts correctly in our tests set.

5.5 Discussion and Conclusions

The morphology of the anterior chamber angle layers is clinically relevant as related to a

high-prevalence disease (glaucoma), therefore automatic systems for its analysis will be

increasingly important. Existing papers on deep learning applications for the automatic

analysis of gonio-photographs consider only the direct angle aperture classification task

(e.g., [14]) assigning a single state to each image (a label that globally grades a, possibly,

large angle region) that may obscure relevant local conditions. Moreover, there are clinical
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needs (according to ophthalmologists) that require the localization and delineation of angle

structures and not just their visibility, e.g., precisely highlighting the trabecular meshwork as

augmented visualization mode during the insertion of draining implants. In order to assess

the angle morphology accurately and account for local variations of layers’ interfaces, a

segmentation approach is certainly more suitable.

The theoretical approach implemented by most state-of-the art semantic segmentation

networks (comprising attention models [83]) is not suitable for dealing with limitations posed

currently by the annotation of our gonio-photographic images, i.e., the partial annotation

of target layers due to vignette and blur, without modifications. In fact, the simultaneous

but independent analysis of both anatomical (e.g., layer boundaries) and qualitative (e.g.,

brightness and blur) features variation across a single frame is not required in many real-life

applications. In particular, our un-annotated class cannot be treated as many segmentation

network do with the background class, as its characterization is profoundly different.

The solution presented in this thesis overcomes the limitations we found by adaptively

identifying a ROI to refine segmentation maps and improve results readability. Moreover,

the calibrated model can support data analysis and interpretation further by highlighting

uncertain segmentation areas. This is done by estimating pixel-wise epistemic uncertainty as

the activation variance of the final predicted class over multiple segmentation candidates. The

overall segmentation accuracy ( 91%) is promising, albeit within a limited dataset. The layer-

wise Dice scores on the test set correlate well with those resulted from the inter-annotator

variability study in Chapter 4.

The current limitations of this research are as follows. Firstly, the limited amount of

data available must be acknowledged. Although the dataset is representative for a variety of

anterior chamber angle features, larger datasets of annotated images are needed to train and

evaluate comprehensively deep learning systems for gonio-photographs analysis in clinical

practice. The relative novelty and still limited use of digital devices for gonioscopy currently

limits the availability of data for rarer conditions. In particular, more images representing

complex layers morphologies, e.g. synechiae, shall be collected and annotated in the future

to further improve the generalization capabilities of our models.
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Secondly, our algorithm does not currently consider any prior knowledge on angle topol-

ogy (e.g., the fixed order of layers) that could potentially improve the quality of segmentation

outputs. Some work on this topic has been conducted using OCT retinal scans (e.g., [40, 41])

and shall be investigated in the future.

The segmentation model presented here fills a gap in current applications of deep learning

for ophthalmology, ideally enabling a much more informative analysis of digital gonio-

photographs than classification algorithms for angle closure and possibly providing a pro-

cessing backbone for the measurements of clinical parameters, for evaluating changes of

layers morphology over time and for developing auto-tracking systems for device alignment

in non-contact clinical settings.

Despite being theoretically very powerful and capable of supporting clinicians in a wide

variety of analysis and measurements, our semantic segmentation system currently suffers

from the lack of reliable annotated data to be trained on. For this reason, we decided to

investigate the problem of direct angle aperture classification similarly to the limited existing

literature, as a stand-alone task independent from the segmentation of layers. This is the topic

of Chapter 6. It is an important purpose of our future work to develop a reliable angle aperture

classifier based on or capable of interacting with the segmentation network. Encouraging

steps have already been performed to improve the image annotation process. A proprietary

annotation tool has been developed by NIDEK Technologies Srl to specifically delineate

layer interfaces in gonio-photographs, although it could be adopted for many more practical

applications [118]. This new annotation tool will likely make the delineation of anatomical

layers in digital gonio-photographs much easier and effective, and allow to collect a much

larger dataset to train our segmentation models.



Chapter 6

Angle Aperture Classification

6.1 About this Chapter

Angle aperture and the importance of its estimation in the screening and categorization of

glaucoma have been presented in Chapter 1. We remind that a narrow angle is a condition

which increases the chances of developing angle-closure glaucoma. The assessment of

angle aperture is, thus, fundamental in clinical practice to evaluate risks and to choose

what procedures are most suitable to prevent or treat the disease. The characterization of

angle closure, for instance, its morphology and extent, must be taken into account when

assessing gonioscopic exams as the preferred treatment of extended appositional closures

may differ from that of local synechial closures. As the evaluation of a large volume of

digital gonio-photographs requires a long time, machine learning systems could support data

analysis, enabling the screening of a larger number of patients, more effectively.

We found only few previous studies on machine learning systems based on support

vector machines (SVM) for angle aperture classification in gonio-photographs (Cheng et

al. [13, 12]) and, as reported in Chapter 2, just one very recent work aiming to address this

task using a deep learning model (Chiang et al. [14]). This chapter will focus on the deep

learning system as it exceeds the performance of the SVM-based ones in this task and is

more relevant for discussing our research.
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The system described in [14] is trained to detect angle closure (defined as the absence

of the pigmented trabecular meshwork in at least half of the angle interface) on gonio-

photographs taken with an EyeCam device (Clarity Medical Systems, Pleasanton, California,

USA) and representing about 90◦-wide quadrants of the drainage angle.

This approach may not be sufficiently sensitive to local features of interest that may be

only a few degrees wide (e.g., synechiae), and provides only an approximate estimate of the

patient’s condition. Thus, the exploration of possible solutions for a more detailed evaluation

of angle aperture, capable of detecting, among others, small synechial closures, has been

deemed of both research and commercial interest. Moreover, in the conclusions of their

work, Chiang et al. recommend to investigate systems for the estimation of angle aperture in

digital gonio-photographs acquired with faster and less operator-dependant devices such as

the NIDEK GS-1.

According to clinical assessment, the measure of angle aperture can be approximated by

estimating the apparent iris insertion, which, in turn, often relies on the visibility of angle

layers. Several aperture grading scales include the visibility of layers or the apparent iris

insertion in their classification criteria (e.g., Scheie’s [106] and Spaeth’s [117] scales).

From a computational point of view the problem of assessing the visibility of anterior

chamber angle layers (and, thus, angle aperture) may be addressed through deep learning

approaches at least in two main ways:

• semantic segmentation: this approach enables an arbitrarily dense (even column-

wise) estimation of angle aperture based on the segmentation map. It is however

extremely costly both in terms of ground truth generation (i.e., delineating the contour

of each layer in each image) and processing resources (especially memory, since the

segmentation network requires intermediate feature maps to be stored and shared

between the encoder and the decoder);

• classification: this approach allows to estimate the angle aperture by processing patches

of gonio-photographs. The size of these patches may be selected to optimize the trade-

off between clinical needs, effort required to obtain ground truths and computational
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power for training and inference phases. Here, the ground truth consists of labels (e.g.,

Open, Occludable, Closed and Unknown in our study).

The semantic segmentation algorithm presented in Chapter 5 showed promising overall

performance. It could be used as a pre-processing step to generate segmentation maps of

angle sections, which could then be classified according to the layers visible. Its application

to the angle aperture task is discussed in Chapter 7 as part of our future work. However, the

segmentation network is computationally expensive in terms of memory required (which

may be an issue in case of deployment on the acquisition device) and the generation of

new ground truth annotations to consolidate its performance requires resources and time.

Therefore, solutions requiring less computational resources and/or reducing the need for large

sets of dense ground truth have been considered preferential, from a translational perspective,

to ensure scalability.

This chapter aims to describe the pilot experiments that have been carried out and the

results obtained so far for the classification of angle aperture in digital gonio-photographs

acquired with the NIDEK GS-1 device, without relying on the semantic segmentation

algorithm. We compare our approach with the previously published work [14] highlighting

clinical advantages and discussing limitations and suggestions for future work.

6.2 Materials

Data

110 digital gonioscopic exams (16 sectors each) acquired with a NIDEK GS-1 device were

selected from the available pool of data shared by the clinical sites in Vienna (Austria), Los

Angeles (US), Lisbon (Portugal) and Genova (Italy).

The selection was carried out by the author of this thesis by visually inspecting the

available exams to identify those showing pathological morphologies (in terms of angle

closure) of the iridocorneal angle. The aim was to optimize the distribution of instances

showing different degrees of angle closure. The variability of the iris colour was taken into
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account; 68% of data were exams of dark irises (i.e. brown eyes). The variability of the

trabecular meshwork pigmentation was not quantified.

The cardinality of the dataset to annotate was mainly limited by the actual availability of

exams showing, to some extent, Occludable and Closed angle sections. Including additional

Open (healthy) exams was possible but would just likely worsened the issues related to

using an already highly un-balanced dataset in terms of angle grades distribution (see next

paragraph for more details).

Exams were acquired with patients’ agreement and following General Data Protection

Regulation rules (including anonymisation at source) during routine clinical examinations.

Annotations

Annotations were performed using an annotation tool developed by NIDEK Technologies

Srl. according to the annotation protocol described in Section 3.4.2. Two experienced

ophthalmologists performed the annotations. Two disjoint sub-sets, consisting of 50 exams

each, were randomly extracted from the whole dataset and assigned to the experts. The

remaining 10 exams were labelled by both the experts with the purpose of assessing inter-

annotator variability, similarly to what was done for the semantic segmentation task. However

we did not have the time to carry out this study, but it remains among the purposes of our future

research. We decided to choose as ground truth of the 10 common exams the annotations

provided by the ophthalmologists with more years of experience.

Despite the effort to make the dataset as balanced as possible with respect to the pre-

defined angle aperture classes, that are Open, Occludable and Closed (see Section 3.4.2 for

definitions), only about 12.6% and 15.3% of all the sub-sectors were representative for the

Occludable and the Closed classes respectively. Also, about 7.4% of all the sub-sectors were

labelled as Unknown by the annotators, meaning that the image quality was not sufficient for

grading or the expert was not confident enough.
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6.3 Methods

6.3.1 Pre-processing and Data Augmentation

Differently from the strategy adopted when addressing the semantic segmentation task, which

consisted in choosing the best-focus image (i.e., the image of the acquired focus stack with

the focus plane centred on the outer boundary of the iris) of each angle sector considered,

for this classification task we chose to use the artificially reconstructed all-in-focus images

for both training and evaluation. We remind that all-in-focus images are obtained from the

whole acquisition stack by merging the most informative areas of each focus plane using an

algorithm included in the NIDEK Navis-Ex software. The advantage of all-in-focus images is

that layer-layer interfaces are more likely sharper than in best-focus images and may, ideally,

better guide the aperture grading system. Conversely, they may be affected by pixel-level

artefacts due to the reconstruction algorithm and could decrease the quality of boundary

delineations returned by the segmentation task.

1280 x 960 pixels (width, height) RGB images depicting sectors of the anterior chamber

angle were rotated so that the iris was at the bottom of the frame, and then re-sized to 640 x

480 pixels. Both rotation and re-sizing used bicubic interpolation to reduce negative effects

on image quality. The rotation filled the empty corners of the resulting image with zeros.

Images were then cropped centrally to obtain 480 x 480 pixels pictures, equivalent (a part

from the scale) to the regions highlighted to be labelled by annotators (see Section 3.4.2 for

detailed information on the annotation process). The coordinates of the trabecular meshwork

(or those of the direct iridocorneal interface if the meshwork was not visible) in each original

sector image were estimated by the device during acquisition [10]. They were extracted from

the exam metadata and geometrically transformed to account for the pre-processing already

performed on the original images in order to locate the interface correctly.

Transformed trabecular meshwork coordinates were used to select a 480 x 160 pixels

region-of-interest (ROI) from each image, vertically centred on the trabecular meshwork as

shown in Figure 6.1 (if the trabecular meshwork coordinates are too close to the upper or

lower bound of the image, the ROI selected is the upper or lower 480 x 160 pixels area of the
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Fig. 6.1 Example of greyscale 480 x 160 (width, height) ROI extracted using the trabecular meshwork coordi-
nates.

image respectively). Each ROI was divided into three 160 x 160 sub-sectors, corresponding

to the three angle interface regions of each sector image independently annotated by the

experts (see Section 3.4.2) and were then paired with the corresponding aperture class.

At the beginning of each training epoch, training images (i.e., 160 x 160 pixel sub-

sector images) were independently augmented by applying geometric and photometric

transformations, as follows:

1. affine transformation: comprising random rotation (uniform distribution, range [−30◦,30◦]);

random translations along x and y axes (uniform distributions, ranges [−width/6,width/6]

and [−height/6,height/6] respectively); random shears (uniform distribution, range

[−10◦,10◦], random scale (uniform distribution, range [0.8,1.2]); and random horizon-

tal flip (Bernoulli distribution, p = 0.5). Affine transformation is currently performed

using bilinear interpolation which has been considered an acceptable trade-off between

quality of results and speed of computation;

2. sharpening/blurring: sharpness enhancement / blur by a factor randomly selected from

a uniform distribution, range [0.8,1.2];

3. brightness variation: global brightness increase / reduction by a factor randomly

selected from a uniform distribution, range [0.8,1.2];

4. Gaussian noise injection: additive Gaussian noise with 0 mean and standard deviation

randomly selected from a uniform distribution with, [0,3].
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Except for the Gaussian noise injection which was inherited from the semantic segmen-

tation algorithm pre-processing pipeline, augmentation techniques and the ranges of their

parameters refer to the implementations available in the Pytorch (version 1.7.0) library called

torchvision. Ranges of transformations have been determined empirically.

At the beginning of each new epoch, every training image was augmented with a prob-

ability equal to 0.9 so that the original version of each sub-sector image was available to

the network on average once every ten epochs. Given the high correlation between adjacent

sub-sectors of the angle, the actual variability of features among training samples (e.g., iris

colour, trabecular meshwork pigmentation) from the same exam was often very low. Data

augmentation was used to alleviate over-fitting and regularize the training process. Test

images were never augmented, but both training and test images were normalized to the [0,

1] range before being fed to the convolutional neural network, by dividing each 8-bit colour

channel by 255, its maximum representable value.

6.3.2 Network Architecture

The model we used is a custom convolutional neural network with ten convolutional layers

and three fully connected layers. The basic processing blocks as well as the overall network

architecture are depicted in Figure 6.2.

All the convolutional layers consist of multiple 3 x 3 2D convolutional kernels with

1 x 1 zero-padding. They are initialized using the Kaiming-He uniform distribution [37]

and are followed, in this order, by a layer normalization [6], a leaky-ReLU activation [74]

with negative slope equal to 0.01, and a 2D dropout [127] with drop probability equal to 0.2.

After two convolutions a max-pooling layer halves the width and height of feature maps. The

unit comprising two sequences of convolutional layer, layer normalization, activation and 2D

dropout, and followed by a max-pooling layer will be called, from now on, convolutional

block (Figure 6.2 (a)). The first convolutional layer in a convolutional block doubles the input

number of feature maps, except for the one receiving the network’s input that always returns

8 feature maps, despite the number of channels of the input image (RGB or greyscale).
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Fig. 6.2 Basic constituent blocks and overall convoutional neural network architecture.

The first two fully connected layers are followed by layer normalization, leaky-ReLU

activation and dropout [119] (0.2 drop probability). Each sequence of fully connected layer,

layer normalization and leaky-ReLU will be called, from now on, fully connected block

(Figure 6.2 (b)). The first fully connected block receives as input the vector obtained after

linearizing the 128, 5 x 5 feature maps and outputs 1024 nodes. The second fully connected

block reduces the number of nodes from 1024 to 256. The last fully connected layer is

followed by a softmax activation that returns normalized scores that associate each input

angle patch with the considered set of output classes. The number of input channels and

output classes is not specified in the scheme of the overall model architecture (Figure 6.2 (c)),

as it may vary with the experiment (as described in Section 6.3.4).

The depth of the network (number of blocks in sequence) as well as its width (the

number of convolutional kernels in each processing block) were tuned over an optimization

experiment aiming at assessing how variations in the overall capacity of the model would
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affect its performance in our classification task. We started with a very simple network made

up of two convolutional blocks and one fully connected block (both defined above) and

gradually included additional modules until the performance saturated, thus obtaining the

proposed architecture.

We acknowledge that more sophisticated architectures, e.g., attention mechanisms [83],

could lead to further improvements. Moreover, network pre-training could allow to increase

the complexity of the classifier without incurring in over-fitting. Additional investigation on

alternative network implementations is recommended in the future.

6.3.3 Network Training

Training consisted of 500 epochs using batches of 128 sub-sector images. We verified

experimentally that increasing the number of training epochs did not lead to any performance

improvements. The stochastic gradient descent optimizer had a learning rate of 0.01 and

Nesterov momentum equal to 0.9 (according to PyTorch implementation). The loss function

was a weighted categorical cross-entropy with all weights equal to 1 (except when otherwise

stated in Section 6.4) but that of the Unknown class, which is always 0. This means that

sub-sectors that were deemed unclassifiable by experts do not affect the learning process.

They are however kept in the dataset to ensure consistency in the number of input sub-sectors

for each exam.

Training was always performed from scratch, with weights initialized randomly according

to the selected distributions (e.g., Kaiming-He uniform for convolutional kernels).

6.3.4 Evaluation Set-up and Metrics

Several possible frameworks for angle aperture classification have been considered and

compared to evaluate the performance of the classification model. In particular, the following

variations have been tested:

• comparison between RGB and greyscale inputs for the three-class classification prob-

lem (Open, Occludable and Closed);
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• comparison between different aggregations of output classes. In particular, by merging

classes Open and Occludable, and Occludable and Closed;

• comparison between class weights in the loss function that either ignores or account

for the unbalance of the dataset in the case of Open vs Occludable + Closed class

aggregation.

5-fold cross-validation experiments have been carried out in each case. Training and

test sets were split by patient to avoid data correlation. Average (computed over each cross-

validation experiment) per-class sensitivity and precision (with standard deviations) have

been used in the three-grade classifier case, and average test and training losses (with standard

deviations) have been plotted to analyse the training process. Average receiver operating

characteristics (ROC) curve and area under the ROC curve (AUC) have been used in the

two-grade classification set-up.

ROC curves were obtained by calculating sensitivity and specificity values respectively for

the Closed or the aggregation between the Occludable and Closed classes at 100 classification

thresholds, i.e., the minimum value required to classify an input as appertaining to the class,

equally spaced between 0 and 1.

6.4 Results

Greyscale vs RGB Input Data

The first comparison involved training using either greyscale (one channel) or RGB (three

channels) input data. All processing and network hyper-parameters were kept un-altered

except for the number of input channels.

The reason for comparing the greyscale and RGB inputs is to verify whether the informa-

tion on colours may help the grading of angle aperture.
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over the cross-validation experiments on greyscale and RGB input data.
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experiments) for training using greyscale and RGB input data.
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Figure 6.3 shows the average training and test losses (solid lines) and the corresponding

standard deviations (shaded areas) computed over the cross-validation experiments in both

cases. They show very similar trends and, even if a reduced training stability may be observed

at the initial stages in the case of greyscale inputs (larger standard deviation). It is possible to

notice that the test loss reached a plateau very soon during the training process.

Figure 6.4 reports per-class precisions and sensitivities (means and standard deviations

over the cross-validation experiments) in the two cases. The cross-validation experiment

on RGB inputs resulted in only marginally better values at an increased computational cost.

Therefore it has been deemed reasonable to run all the following experiments on greyscale

images.

Class Aggregation

The second experiment aimed to evaluate classification performance after aggregating the

output classes in two ways: Open vs Occludable + Closed and Open + Occludable vs

Closed (where the sign + is used to indicate aggregation). In both cases class instances

were aggregated before training the model, to obtain a binary classification problem; the

Unknown class is always an output class but is never predicted by the network since it does

not contribute to the loss function. The two-class problem allowed us to use ROC curves and

the AUC metric for evaluation of results. Everything else was left unaltered.

Figure 6.5 shows the ROC curves in the two cases. The average AUC value for the cross-

validation using the Open + Occludable aggregation was 0.91, while for the cross-validation

using the Occludable + Closed aggregation it was 0.88. The difference may be due to the

higher imbalance in class examples in the first case. Average ROC curves were computed by

calculating the mean sensitivity and specificity values at each threshold (a sample point of the

ROC). Standard deviations were computed at each threshold value from the corresponding

distribution of sensitivities across validation folds.

Clinical considerations must be taken into account when deciding if these aggregations

are meaningful. A discussion with clinicians on this matter has not been possible yet because

of lack of time, but will be part of our future work.
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Fig. 6.5 Average ROC curves (solid lines) and standard deviations (shaded areas) for the Open + Occludable
and the Occludable + Closed aggregations. AUC values are reported in the titles.

Balanced vs Unbalanced Class Weights

In this last experiment we tested how assigning loss weights proportional to the cardinality

imbalance between classes affects the ROC curves and AUC values in the case of Open vs

Occludable + Closed class aggregation. We compared the metric values obtained when the

class weights in the loss function either ignore or account for class imbalance (the weight for

the Unknown class is always 0). In the former case the loss weights were (1, 1, 0); in the

latter, the weight for the Occludable + Closed class equalled the ratio between the number of

elements in class Open and the number of elements in class Occludable + Closed. This ratio

was 2.3 and the weights were thus (1, 2.3, 0).

Results are shown in Figure 6.6. The two cross-validation experiments returned compara-

ble AUC (0.88 and 0.89 for the non weighted and weighted cases respectively), but in the

weighted case the variability among folds (the standard deviation of sensitivities, depicted as

the shaded area) was reduced considerably. This may be motivated by the fact that, when

increasing its weight in the loss computation, the sensitivity of the model to the Occludable +

Closed grade is less affected by the variable imbalance among classes in each cross-validation

fold, i.e., the variability of false negatives count decreases.
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6.5 Discussion and Conclusions

We discuss our study comparing data and framework with those reported in the previously

mentioned research article by Chiang et al. [14] on angle aperture classification in digital

gonio-photographs. Briefly, in [14] the authors fine-tuned a ResNet-50 convolutional neural

network [38], pre-trained (on ImageNet [19]), to solve the two-class problem concerning the

detection of angle closures in digital gonio-photographs acquired with an EyeCam device

and representing quadrants (90°-wide sectors) of the anterior chamber angle. Their dataset

(training and test) was made up of 33635 quadrant images (∼30300 open and ∼3300 closed)

from 4152 patients, and angle closure was defined as the absence of the pigmented trabecular

meshwork in at least half of the quadrant image. The training-test split was performed at

patient level thus ensuring the un-correlation of data between the two sets. The performance

reported in the article is very good with AUC higher than 0.96. Our classifier obtained,

depending on the experiment, AUC values ranging between 0.88 and 0.91.

The classification of angle aperture in very-wide angle sectors may easily fail to detect lo-

cal pathological tissue (e.g., synechiae) with negative consequences concerning the diagnosis

and the choice of treatment. This limitation motivated our investigation to focus on grading
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much narrower angle regions, thus returning an, ideally, more detailed characterization of the

iridocorneal interface capable of highlighting the presence of local tissue abnormalities.

Several differences between our study and the one by Chiang et al. must be considered to

contextualize the findings. Firstly, although our dataset consisted of about 1/6 of their overall

number of images (5280 sub-sector images vs 33600 quadrant images), it was generated by

only 1/38 of the patients. This means that the intra-patient correlation of features (e.g., iris

colour and texture, trabecular meshwork colour and texture, characterization of pathological

conditions) is much higher in our dataset than in theirs; we have, in fact, 48 sub-sector images

per exam, one exam per patient, while they have 4 quadrant images per exam and 1 or 2

exams per patients (from different eyes).

On the other hand, their dataset, although much larger than ours, is less representative for

the variation of visual features linked to ethnicity (as they acknowledge in the Discussion

section) since it only comprises patients that have identified themselves as Chinese Americans.

Our dataset, instead, accounts for a larger ethnical variability given both the geographical

distribution of the clinical sites that acquired the exams and the absence of any ethnicity

constraint for patient selection.

Secondly, the field of view of their quadrant images is very different from that of the

sub-sector images we extracted from the original GS-1 acquisitions. The higher magnification

of our images may cause small textures to affect the classification and make the distribution

of input data more complex to learn and generalize. For example, the trabecular meshwork

appears in their images as an almost homogeneous brown-ish stripe, while in ours it is a

highly heterogeneous region characterized by complex textures (e.g., the pigmentation).

However, the approach discussed in our study is suitable for a local classification of angle

sections that, in turn, can improve the clinical value of this system.

Thirdly, the availability of a larger volume of less correlated input data, presumably

enabled the authors of [14] to use a much larger network (∼23 vs ∼4 million parameters)

without incurring in over-fitting. It is likely that a deeper network trained on a larger amount

of data could lead to better performance, as generally suggested in the deep learning literature.

We must highlight that in [14] the network was pre-trained on the ImageNet dataset [19],
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while in all our experiments it was trained from scratch. Pre-training our model or using a

larger, pre-trained state-of-the-art classification network could reduce the over-fitting issue in

our study case as well, and this approach will be tested in our future work.

It is also important to highlight that in [14] the closure of an angle sector was defined as

the absence of the pigmented trabecular meshwork in at least half of a quadrant image, but

the grades in our study did not distinguish between pigmented and non-pigmented meshwork,

making the two approaches not directly comparable. The reason for our choice was that,

according to our inter-annotator variability study (see Section 4.5), the difference between

pigmented and non-pigmented trabecular meshwork may be unclear, even to the expert

ophthalmologist.

It must be acknowledged that, despite the relatively small size of the drainage angle

regions we considered and annotated, changes of state (e.g., Open to Occludable) may still

be present within the same sub-sector, so that a single class label is not always an accurate

characterization and it may be difficult to evaluate quantitatively whether a misclassification

is actually a mistake or just the result of the network focusing on a different image region

than that considered by the annotator. For example, a sub-sector image equally representing

an Open and an Occludable areas and annotated as Open could be predicted as Occludable

by the model (and quantitatively counted as a mistake) without actually being entirely wrong.

This is a situation quite common in our annotated dataset. The implementation of systems

capable of explaining classification outputs (e.g., Grad-Cam [111, 112]) may help us better

understand model’s behaviour. According to their annotation protocol, the issue of multiple

aperture grades coexisting within the same image reasonably exists also in [14], however the

authors do not make any mention about it.

The very low precision and sensitivity of the Occludable class observed in the three-class

experiments (Section 6.4) may be caused by the weak features, computationally speaking,

that differentiate it from the Open class, making the model often mislabel them, both with

false positives and negatives. Moreover, according to our inter-annotator variability study,

the scleral spur and the ciliary body band (the visibility of which discriminates between the

Open and the Occludable classes) are those with highest variability among experts. The Open
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class metrics were just slightly affected by this trend since the cardinality of this set is much

larger and most of its instances were correctly classified. In order to verify this theory, it will

be advisable to conduct an inter-annotator study using a common dataset to be annotated by

multiple experts.

The approach we adopted when building the neural network, consisting in gradually

adding processing blocks and consequently evaluating the model, showed that performance

saturates quickly (when the classifier structure is still very simple), making any addition

to the architecture only worsen over-fitting. This suggests that the size of the dataset (110

exams from 110 different patients), considering also the high correlation of its samples

(48 sub-sector images for each exam), may not be sufficiently informative for addressing

this task more effectively. Repeating this experiment including both pre-training and more

sophisticated networks (like in [14]) is recommended in the future to verify this hypothesis.

Moreover, when multiple aperture grades are (about) equally represented in an sub-sector

image, a single label may not describe the input properly, possibly leading to noise in the data.

However, especially when aggregating classes, performance indicates that further research

and effort in collecting and annotating new data may lead to good results.

Even if the training process could be driven by changing the class weights to account for

class cardinality differences, it must be acknowledged that further work in collaboration with

clinicians is needed to properly evaluate the minimum requirements in terms of discrimination

power. A different approach based on the semantic segmentation algorithm presented in

Chapter 5 will be considered in future research. Once obtained, segmentation maps could be

scanned column by column (given that all images have been pre-processed to show the iris

at the bottom of the frame) and the classification of angle sub-sectors might be obtained by

directly applying the deterministic rules that are based on layers visibility and by considering

the additional segmentation uncertainty to refine and explain results.





Chapter 7

Discussion and Future Work

7.1 About this Chapter

This chapter first reviews and summarises the work conducted for this thesis, then discusses

its limitations and possible solutions to be considered in the future.

7.2 Summary of the Thesis

The assessment of the anterior chamber angle is fundamental for the diagnosis, categorization

and management of glaucoma, a high prevalence disease that leads to severe visual impair-

ment and even irreversible blindness. One of the current clinical standard examinations,

gonioscopy, requires extensive experience and time, thus not being performed as often as

necessary, causing misdiagnoses and preventing people in need of treatment from receiving

it.

The NIDEK GS-1 device enables easier and faster examinations with the additional

advantage of automatically storing digital images of the drainage angle. It can be used

by inexperienced ophthalmologists, by optometrists, and by medical photographers in the

context of virtual clinics. Although the acquisition phase is fast, images of the angle must be

still viewed and evaluated by an expert to produce a diagnosis.
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The aim of our research was to investigate possible applications of deep learning systems

to the analysis of digital gonio-photographs to support their evaluation. Despite deep

learning algorithms have been developed for and deployed to many image processing tasks

in medicine (and, more specifically, in ophthalmology), very limited contributions exist

about the automated analysis of gonio-photographs. In fact, only very few studies have been

published so far and most of them only consider the problem of angle aperture grading in

digital gonio-photographs acquired with a different device (EyeCam). All of them except one

are based on conventional image processing techniques or support vector machine classifiers.

Our research started by involving clinical experts from several sites located worldwide in a

requirements collection process. They were asked to fill in a questionnaire assigning a priority

score to several analysis tasks on digital gonio-photographs. The feasibility of the tasks with

highest average priority score was assessed to select development aims. The commercial

interest in, potentially, translating the technologies developed was also considered during

selection.

Two analysis tasks were selected to be studied: the semantic segmentation of drainage

angle layers, and the grading of local angle aperture. In both cases, the earliest design

phase concerned the formulation of an annotation protocol to generate ground truth data for

supervised model training.

Annotations for the semantic segmentation task consisted of manual delineations of

anatomical layers visible in a pilot set of digital gonio-photographs that were selected to

account, as much as possible, for the distribution of features of the drainage angle. These

features comprised both physiological (e.g., iris colour, trabecular meshwork pigmentation)

and pathological (e.g., the shape of synechiae) characteristics of the angle. Ground truth was

provided by four ophthalmologists who also annotated a set of 20 common images for an

inter-annotator variability study. An additional annotator provided ground truth just for the

20 images thus being included only in the variability study.

Annotations for the angle aperture grading task consisted of local aperture labels (Open,

Occludable or Closed) assigned to equally wide sub-sectors of digital gonio-photographs

(three sub-sectors per image). Ground truth was provided by two experts.
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7.2.1 The Inter-annotator Variability Study

The effectiveness of deep learning algorithms largely depends on the quality of the ground

truth. In particular, the variability in annotations provided by multiple experts imposes

an upper bound to system’s performance. This is a phenomenon that too often is not

considered or studied when evaluating automatic systems, thus making their performance

hardly interpretable correctly. In order to evaluate the semantic segmentation network

consistently, we studied the inter-annotator variability of manual delineation of anterior

chamber angle layers in our digital gonio-photographs. This study was described in Chapter 4.

We measured variability in three ways: (i) by counting the number of times each expert

was confident at detecting layers; (ii) by measuring the variability of consensus (i.e., the area

annotated by many clinicians accordingly) when increasing the consensus threshold; and

(iii) by computing average per-layer annotators’ precision, sensitivity and Dice score when

comparing their ground truth with others’.

Our results suggest that even expert ophthalmologists don’t feel always confident at

detecting drainage angle layers in digital gonio-photographs, especially the scleral spur

and the non-pigmented part of the trabecular meshwork, when considering its pigmented

and non-pigmented components separately. Consensus decreases considerably, and linearly,

for scleral spur, ciliary body band and trabecular meshwork (or its two components when

considered separately). Per-layer metric trends confirm that scleral spur and ciliary body

band delineations show highest overall variability among annotators.

This is the first time an inter-annotator variability study on manual delineation of layers in

digital gonio-photographs has been conducted and published, being potentially a reference for

future research not only concerning automatic systems for the analysis of gonio-photographs

but also clinical studies.
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7.2.2 The Semantic Segmentation Algorithm

The design and development of a semantic segmentation algorithm for anatomical layers of

the drainage angle was motivated by the interest of clinicians and the advantages it could

have in future applications. This work was presented in Chapter 5.

The rich morphological information provided by semantic segmentations may be, in fact,

useful as preprocessing step for a wide variety of measurements (e.g., the identification of

pathological tissues or the estimation of trabecular meshwork pigmentation, necessary in

case of laser treatments). Segmentation systems are being developed and tested for layer

segmentation on OCT scans of the retina for similar purposes, however they can not be

used off-the-shelf on digital gonio-photographs because of the specific characteristics of

these images (e.g., de-focusing and vignetting) and the effects they have on the ground truth

(i.e., partial annotations). The vignette and blur visible in our digital gonio-photographs

prevented annotators from delineating the whole extent of layers, thus creating inter-class

feature correlation between layer annotations and the un-annotated image region. To solve

this issue, we designed a network architecture with one decoder and two decoders that

perform two independent tasks. The first one assigns each image pixel a class label, without

considering the un-annotated image region. This may cause segmentation artefacts over

the image periphery, where there is not enough information for providing a meaningful

classification of pixels. The second decoder evaluates image sharpness and brightness and

returns a region of interest to refine segmentation results. The overall network is trained so

that the encoder is optimized only by the back-propagation signal coming from the semantic

decoder. Combined results proved to provide accurate segmentation of layers and reliable

ROIs, even when the area of interest was not centred in the frame. We verified model’s

calibration so that the adoption of the Monte Carlo dropout approach allows to estimate

pixel-wise epistemic uncertainty maps that were consistent with local segmentation flaws

in our tests. Overall segmentation accuracy was above 90% and layer-wise metrics well

correlated with those in the inter-annotator variability study suggesting the possibility to

obtain better results with refined ground truth.
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This is the first published work on semantic segmentation algorithms specifically devised

for digital gonio-photographs.

7.2.3 The Angle Aperture Classification Algorithm

The estimation of the angle aperture is important for the categorization and management

of glaucoma and for the correct assessment of risk factors. Previous work on automatic

angle aperture grading has been based on gonio-photographs acquired with the EyeCam

device and reported good overall performance. However the images considered in those

studies represent very wide angle sectors (about 90°-wide) and their grading is not suitable

for the identification of local angle closures (e.g., synechiae). Motivated by the clinical need

for a more precise evaluation of angle closures we generated a pilot dataset of local (about

5°-wide) angle aperture annotations and trained and tested a custom baseline deep learning

classifier to have a preliminary understanding of potentials and limitations of this approach.

This work was presented in Chapter 6.

We started considering a three-class grading problem, with the Open, Occludable and

Closed classes based on a simplified version of the Spaeth’s clinical grading system. We

noticed that the Occludable class is the one returning worse classification performance likely

because of the weak characterization of the features that differentiate it from the Open class,

that rely on the visibility of ciliary body band and/or the scleral spur (the layers showing the

largest variability in annotations from multiple experts according to our previous study).

We then found that different class aggregation strategies and loss weighting may improve

classification performance obtaining useful information to guide future developments.

7.3 Contributions

This research thesis contributes to the very limited existing literature on automatic systems

for the analysis of gonio-photographs both with new technical developments and with the

generation and analysis of new annotated datasets. The key contributions may be summarised

as follows.
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• The first study on inter-annotator variability at delineating anatomical layers of the

drainage angle in gonio-photographs (Chapter 4) relevant both for the development

and the evaluation of automatic systems and for future clinical studies.

• The development and evaluation of a new approach for the semantic segmentation of

anatomical layers of the drainage angle in gonio-photographs (Chapter 5) capable of

effectively dealing with limitations of ground truth posed by the characteristics of the

images under study.

• The completion of a pilot study aiming at investigating advantages and limitations

of a prototype deep learning classifier for automatic local angle aperture grading

(Chapter 6) in digital gonio-photographs.

7.4 Limitations and Future Work

This section discusses the main limitations of our work and considers possible solutions to

be explored in the future.

7.4.1 Datasets

The most important limitation of our research is the size of the datasets that have been

collected and annotated.

The NIDEK GS-1 is still quite a novel imaging device and the availability of exam

databases is very limited. Moreover, the vast majority of available exams show healthy

anterior chamber angles that are not representative for the extremely large variability of

pathological features, e.g., the shape of synechiae. The under-representativeness of patholog-

ical exams makes the training and evaluation of deep learning algorithms problematic, with

substantial risk of overfitting the training set and obtain poor generalization.

The annotation of data is costly in terms of time and must be performed by experts with

limited availability. This has been particularly true in our work because of the COVID-19
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pandemic which has focused most of the efforts and time of our clinical collaborators towards

more urgent activities over an extended period of time.

The activity of annotating images is particularly difficult and tedious in the case of

generating semantic segmentation ground truth. Our choice of using an already available

annotation tool [21], despite this software being very effective in a wide variety of scenarios

and adequately customizable to meet specific requirements, was mainly dictated by the lack

of time necessary to develop our own tool and was a sub-optimal solution in our case. In

particular the annotation of adjacent angle layers led the experts to delineate layer-layer

interfaces twice. However a new semi-automatic proprietary annotation tool has been recently

developed by NIDEK Technologies Srl. (Spagnuolo and De Giusti [118]) specifically to ease

and speed up the delineation of targets in images and will be used to obtain ground truth

for our future work, thus allowing to generate more annotations in the same amount of time

spent in this activity.

The selection and annotation of more pathological cases is advisable in future research to

better train and evaluate the performance of automatic analysis systems and also to confirm

the baseline obtained with the inter-annotator variability study.

7.4.2 Variability of Annotations

Our study on inter-annotator variability of anatomical layers delineations provides a means to

specifically assess the performance of the segmentation model meaningfully, but also insights

useful for the evaluation of other analysis systems for our digital gonio-photographs. We

acknowledge, however, that a really comprehensive study on the variability of annotations

should, possibly, involve more experts and, more importantly, comprise an analysis on intra-

annotator variability. This would provide an estimate of the ground truth variability due to the

random contribution of, among others, human attention and tiredness, and of human-machine

interactions (e.g., eye-hand coordination) rather than due to experts’ bias. This information

might be then compared with the inter-annotator variability to understand which of the two is

the most relevant.
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7.4.3 Semantic Segmentation

Our semantic segmentation network performs well in most of the examined cases, and, from

a preliminary qualitative analysis on a limited set of images, appears to provide a reliable

interpretation of its outputs that can highlight flaws and suggest the user to perform further

actions in case of uncertain results. A more accurate assessment of this has to be carried out

on a larger test dataset and under clinicians’ supervision.

It must be said that most of the current imperfections returned by the segmentation model

involve local (and usually very limited) patches of pixels that do not comply with the topology

of the angle layers. A suitable strategy for incorporating constraints about the topology of the

anterior chamber angle should be devised, to further improve the performance of the system.

Few research papers on topologically correct segmentations of retinal OCT layers have been

published and should be considered as baseline [41, 42].

7.4.4 Angle Aperture Grading

The deep learning classifier trained and tested in our work receives sub-sectors of the anterior

chamber angle as inputs and returns the predicted aperture class. The variability of the

visual features in our gonioscopic images is extremely large and most of them do not

directly concern the aperture of the angle. This means that the classifier must identify few

relevant characteristics of the images, while learning to generalise the useless (for this task)

information provided by many others. This makes the training process very difficult given

the limited size of the dataset, an issue already discussed previously in this chapter.

A possible solution could consist in preprocessing the input data to reduce their complex-

ity, e.g., by filtering out features that are not discriminative for angle aperture grading, and

so allow the model to focus on better detecting relevant ones. Additional experiments using

more sophisticated, pre-trained networks are recommended in the future to better evaluate

whether the current limitations are mainly due to the size of the annotated dataset.

The assignment of a single aperture class label to images that could show features asso-

ciable to more than one morphological condition makes the dataset noisy and the evaluation
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of results difficult. The implementation of systems to better interpret model’s outputs, e.g.,

Grad-Cam [111], could help better interpret model’s behaviour and support predictions.

Moreover, inter and intra-annotator variability studies are advisable to quantitatively assess

the consistency of ground truth.

The evaluation of relevant features should be conducted involving clinical experts to

ensure a clinically sound approach to this issue.

Additional investigation should be carried out on using the semantic segmentation algo-

rithm as backbone for the estimation of angle aperture. This approach could be advantageous

for several reasons; among them the fact that the morphological information obtained trough

segmentation could return a deterministic and arbitrarily dense aperture grading based on

a selected clinical system relying on the visibility of angle layers. This allows criteria for

angle grading to be adjusted without needing either to obtain new ground truth or retrain the

network.
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Appendix A

This appendix reports the questionnaire that was shared with ophthalmologists to collect

their opinion on what automatic analysis tools would be the most useful for supporting the

clinical evaluation of digital gonio-pohotographs acquired with the NIDEK GS-1 device.

Results were used to focus our research as it is discussed in Chapter 3
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NIDEK GS-1 Automatic Image Analysis – Questionnaire 
 

The present questionnaire has the purpose of collecting the clinicians’ valued opinion on which would be the 

most clinically useful automatic analysis tools for NIDEK GS-1. The results will lay the base for successive 

feasibility studies.   

 
1. In your opinion, how important/useful would be to automatically detect and localize the following 

anatomical structures? 

 Priority Estimated number of 
cases seen in a month 

(if pathological)  High Medium Low 

1.1. Synechiae □ □ □ ____ 

1.2. Neovascularization □ □ □ ____ 

1.3. Schwalbe’s line □ □ □  

1.4. Scleral spur □ □ □  

Notes:  

_______________________________________________________________________________________

_______________________________________________________________________________________ 

 
2. In your opinion, how important/useful would be to automatically classify the following elements? 

 Priority 

 High Medium Low 

2.1. Angle aperture classification, according to one of the standards  
(i.e., Spaeth) □ □ □ 

2.2. Trabecular meshwork pigmentation □ □ □ 

Notes: 

_______________________________________________________________________________________

_______________________________________________________________________________________ 
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3. In your opinion, how important/useful would be to perform the following analyses?   

 Priority 

 High Medium Low 

3.1. Automatic identification of the angle layers (sclera, trabecular 
meshwork, ciliary body, etc) □ □ □ 

3.2. Angle profile extraction □ □ □ 

  
 

   

3.3. Estimation of the synechiae size in degrees □ □ □ 

3.4. Angle aperture measurement in degrees □ □ □ 

3.5. Image focus level classification (on focus, blurred, etc) □ □ □ 

 

Notes:  

_______________________________________________________________________________________

_______________________________________________________________________________________

 





Appendix B

This appendix reports the final version of the annotation protocol devised for the delineation

of anatomical layers in digital gonio-photographs. More details on this can be found in

Chapter 3. Ground truth obtained according to this annotation protocol have been used in

the study on inter-annotator variability (Chapter 4) and in the development of the semantic

segmentation algorithm (Chapter 5).
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1. Project Overview 
 

1.1. G.A.I.A. Project General Aims 
 

The G.A.I.A project is a collaboration between the CVIP/Vampire research group at the 

University of Dundee, NIDEK Technologies S.r.l. and clinical structures in Dundee, Edinburgh, 
Genova and Lisbon. 

Its target is the development of machine learning algorithms for a new ophthalmic device 

conceived to perform gonioscopy, called GS-1. These algorithms will support the diagnosis 

procedure providing information of interest to clinicians. 

The project is divided into several phases, each with different purposes. In this document, the 

first phase is described together with the annotation tool user guide and the annotation 
protocol. 

 

1.2. Phase 1: Semantic Segmentation of Structures 
 

The Phase 1 target is the design of a semantic segmentation algorithm capable of identifying 

all the different structures of interest located in the irido-corneal angle region in order to 

provide information on the layers interfaces location and their visibility. 

It is also a general-purpose algorithm that can be used to achieve more specific outcomes in 

subsequent project phases. 

 

1.3. Phase 1: Annotation Task 
 

Neural networks need many annotated images in order to learn how to identify features 
associated with the specific regions that we want to automatically locate in GS-1 acquisitions. 

The aim of the annotation task for this particular purpose is to provide accurate information 

about the boundaries between the irido-corneal angle structures.  

These annotations will be used to train and validate a semantic segmentation algorithm which 
is already under development. 
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2. Scope of Annotations 
 

Targets for annotations are three: angle layers, synechiae and neovessels. 

 

2.1.  Angle Layers 
 

For the purposes of this study, seven physiological angle layers have been selected to be 

annotated. 

Two different kind of annotations shall be performed, depending on the considered angle layer. 

 

2.1.1. Segmentation of Layers 
 

This kind of annotation must be used to segment six out of the seven angle layers. 

Starting from the iris and moving towards the cornea, they are: 

• Iris root 

• Ciliary body band 

• Scleral spur 

• Pigmented trabecular meshwork 

• Non-pigmented trabecular meshwork 

• Cornea 

Annotations shall consist of polygons outlining the contours of the above-mentioned regions; 

the polygon points shall be manually selected by the annotator and shall follow the contours of 

each visible layer at their best. 

 

2.1.2. Information on Visibility – Schwalbe’s Line 
 

A different kind of annotations shall be provided for the Schwalbe’s line.  

In this case a mutually exclusive choice among three possible options is requested, after an 

accurate inspection of the image. 

The available options are: 

• Visible & Pigmented: if the Schwalbe’s line is visible and pigmented. 

• Visible & Not Pigmented: if it is visible and not pigmented. 

• Not Visible: if it is not clearly identifiable in the image. 
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2.2.  Synechiae and Vessels 
 

An additional annotation is required if synechiae or vessels are present.  

Synechiae shall be annotated using a bounding-box that includes the synechia and part of the 
surrounding image region. 

Vessels can be annotated using a bounding-box or a polygon. As a rule of thumb, a bounding-

box is appropriate if the vessel length is approximately <1/10 of the image width, otherwise a 
polygonal shape is to be preferred. 

As for synechiae, the bounding-box or the polygon that highlights the vessel must include some 

context. Vessels shall be labelled as “Normal Vessel” or “Neovessel”.   

 

3. Configuring Google Chrome 
 

NOTE: this procedure needs to be performed only once, before starting the annotation 

process for the first time; on subsequent annotation sessions, it shall not be necessary to 

repeat it. 

Before starting the annotation process, Google Chrome must be properly configured to comply 
with the way annotations must be saved, which is described in depth in Section 4.8.   

Start up Google Chrome, click on the Customize and control Google Chrome icon on the top right 
of the browser interface window and select Settings (Figure 1). 

 

 

Figure 1: Opening Google Chrome Settings 
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The Settings menu appears. Select Advanced, then Downloads from the side menu (Figure 2). 

 

 

Figure 2: Opening Google Chrome Download menu 

 

From the Download menu, enable the “Ask where to save each file before downloading” feature 
by clicking on the icon highlighted in Figure 3. 

 

 

Figure 3: Enabling "Ask where to save file" feature 
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You can now quit the Settings tab; Google Chrome browser is now properly configured. 

 

4. Annotation Tool and Protocol 
 

4.1. Provided Files 
 

In order to annotate a set of GS-1 images, a folder called GS-1_Dataset will be provided.  

It contains the following files: 

• The annotation tool, called AnnotationTool.html. 

• A file called Annotations.json which stores all the pre-defined settings for the 

AnnotationTool.html and will store all the annotations as soon as they are available. 

• A folder called images that stores all the images to be annotated.  

• A folder called exams that contains a list of subfolders. Each of these subdirectories is 

called like one of the images in the dataset and stores the image itself as well as the 

complete exam it has been selected from. The exam can be inspected in order to exploit 

a wider context while annotating the selected irido-corneal angle sector. 

The annotation tool shall be started by simply opening the corresponding .html file with Google 

Chrome, which must have previously configured as described in Section 3. Please note that all 

the information provided in the following paragraphs specifically refers to using this browser. 

 

4.2. Annotation Process Flowchart 
 

In this paragraph the annotation process flowchart is reported (Figure 4). 

The flowchart is structured so that actions (blue rectangles) and choices (green rhombuses) 
are well identifiable. 

In particular, the first choice (“Will you annotate a new image?”) may lead to the end of an 

annotation session (a condition in which the images may not have all been annotated yet), while 

the second one (“Have all images been annotated?”) checks whether the entire annotation task 

is terminated or not (all the images of the dataset have been annotated). 

Close to the actions’ rectangles, the references to the document sections describing the action 

in detail are reported. 
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Figure 4: Annotation process flowchart 
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4.3. Backing up the Annotations.json file 
 

Every time a new annotation session starts, the already existing Annotations.json file must be 

backed up.  

In order to store a sequence of Annotations.json backup files (each corresponding to a different 

annotation session) a copy of this file must be first created and must be then renamed 
accordingly to the following template: 

Annotations_backup_date_##.json 

Where date must be replaced by the current date in the format yyyymmdd and ## specifies the 

session number in that date. 

For example, if two annotation sessions were performed on December 1st, 2019, the 

corresponding backups must be saved as: 

• Annotations_backup_20191201_01.json 

• Annotations_backup_20191201_02.json 

 To do so, open the GS-1_Dataset folder, select the Annotations.json file and then copy-and-paste 
(Ctrl + C, Ctrl + V) it in the same folder, a file called Annotations – Copy.json is created (Figure 5).  

 

 

Figure 5: Annotations - Copy.json file 

 

Right-click on the Annotations - Copy.json file and select Rename. Write the new file name as 

described above and press Enter to confirm (Figure 6).  
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Figure 6: Renaming the Annotations - Copy.json file 

 

 

4.4. Annotation Tool User Interface 
 

 

 

Figure 7: Annotation Tool – home page 

 



 

9 
 

The annotation tool selected for this task is the VGG Image Annotator (version 2.0.8) developed 

by the Visual Geometry Group (VGG) at Oxford University and available for academic and 
commercial projects1.  

Once the annotation tool is started up by clicking on the AnnotationTool.html file, a Google 

Chrome window opens and the interface represented in Figure 7 is shown. It is composed by 

three main sections: 

• The top bar, which comprises project related menus together with view and annotation 

options. It can be used for: 

o Loading and saving the project, through the “Project” menu 

o Showing/hiding region labels, through the “View” menu 
o Deleting a polygon 

 

• The side menu, where the images are listed, and both the annotation shape and the 

annotated regions attributes can be handled. It can be used for: 

o Visualizing the list of images 

o Checking what images are still to be annotated 

o Checking the currently visualized image 

o Selecting the region shape 
o Listing the keyboard shortcuts, by expanding the “Keyboard Shortcuts” menu 

 

• The central panel, where the image to annotate will be shown once selected. It can be 

used for: 
o Performing/visualizing the annotations on the current image.  

 
1 Abhishek Dutta and Andrew Zisserman. 2019. The VIA Annotation Software for Images, Audio and Video. In 
Proceedings of the 27th ACM International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, 
France. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3343031.3350535. 
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4.5. Project Initialization 
 

NOTE: the following procedure shall be repeated every time an annotation session is 

started. 

In order to load the pre-generated settings, select the “Project” menu in the top bar, then select 

“Load”. A local folder browser appears. 

Navigate to the GS-1_Dataset folder, select the Annotations.json file and press “Open” (Figure 8). 

 

 

Figure 8: Loading the settings file 

 

Please note that every time you load the Annotations.json file at the beginning of a new 
annotation session, a backup copy of that file must have already been created. 

All the images in the images folder (both annotated and not) will be listed in the “Project” side 

menu. 

Please note that in this example there are only two images in the folder, but they will be more in 

real applications.  

The first image of the list (alphabetic order) is highlighted in bold type and is shown in the 
central panel of the tool as reported in Figure 9. 
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Figure 9: Dataset loaded 

 

If you want the image list to show only the unannotated pictures, select “Show files without 

regions” from the drop-down list in the “Project” side menu. To show again the entire list of 

images, select “All files” from the same drop-down list. The other options in the drop-down list 

will always lead to an empty list and should not be selected. 

 

4.6. Layers Annotation 
 

4.6.1. Segmentation of Layers 
 

It is now possible to select the “Polygon region shape” from the “Region shape” in the side menu 

and start creating the contour of all the layers except the Schwalbe’s line by marking a 

sequence of points that belong to its boundary. 

Layers must be annotated only if they are clearly identifiable in the image with respect 

to their adjacent structures. If, considering only the visual information the image 

provides, a layer is not well visible and there is no confidence about the exact location of 
its boundaries, don’t annotate it. 

Note: before starting to draw a new annotation, be sure that no other regions are currently 
highlighted. If so, they could be dragged over the image. 

Once a layer annotation is terminated press “Enter” on your keyboard in order to confirm the 

polygon. To make the labels checklist appear, click on an unannotated region of the picture first, 
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then click again inside the polygon. Choose the correct name from the checklist, as shown in 

Figure 10. 

Note: if, by clicking on the image, an unwanted new polygon is created, just press the “Esc” button 

of your keyboard to delete it. 

Sometimes, the layer labels may hide an image region you are interested in interacting with. To 

temporarily remove the labels, select the “View” menu from the top bar and click on “Show/hide 

region labels (I)”. To make the labels appear again, re-click on the same option. 

 

 

Figure 10: Example of layer annotation 

 

Polygon points are easily and freely adjustable after the polygon has been drawn. To adjust a 

polygon vertex, keep it clicked and move it over the image. 

On Windows, it is possible to add or remove specific polygon vertices once it has been drawn 

on the image and confirmed.  

To add a vertex, keep the Ctrl button of the keyboard pressed and left-click with your mouse 

over the edge of the polygon you want to add the point to. 

To remove a vertex, keep the Ctrl button of the keyboard pressed and left-click with your mouse 
over the vertex you want to delete. 

Unfortunately, adding/removing a vertex is not possible on Macs. 

In “Appendix A: how to choose the correct number of vertices” some examples about the 

suggested way to draw annotation polygons can be found. 

If you want to delete an entire annotated region after its creation, click a point inside the 

corresponding polygon (the region is now highlighted and all its vertices are visible) and press 
the “X” button in the right end of the top bar (shown in Figure 11). 
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Do not use the “Remove” button from the side menu, it will delete the entire image from the 

dataset. 

 

 

Figure 11: “Delete region” button 

 

In the case a layer label needs to be edited, select the corresponding polygon to make its 
checklist appear and change the label. 

The following general rules must be considered in order to provide consistent annotations: 

• Annotate and label only the visible layers in every image. 

 

• Annotate the image portion that is reasonably bright (e.g. the region inside the ellipse in 

Figure 12). 
 

 

Figure 12: Bright region in a picture 

 

• Annotate only the reasonably in-focus part of the iris (as shown in Figure 13). 
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Figure 13: In-focus part of the iris 

 

• Most of the images show a darker layer in the cornea region. If it is present, annotate 

only the region of the cornea that is externally bounded by this darker layer, as reported 

in Figure 14. 

 

 

 

Figure 14: Correct annotation of the cornea 

 

• If something (e.g. MIGs or synechiae) occludes a structure, thus dividing it into several 

separate regions, draw multiple polygons and assign the same label to all of them. Two 
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examples can be found in Figure 18 (synechia) and in Appendix C: How to deal with 

implants in images. 

 

• Polygons that refer to different regions should not overlap. 

 

 

• Every time there exists an interface between two angle layers, any gap between the 

annotations of the two subsequent layers must be avoided and the common boundary 

must correspond to the interface itself (example in Figure 15). 

 

 

Figure 15: A good interface annotation (left) vs a wrong one (right) 

 

A list of additional useful keyboard shortcuts is reported in “Appendix B: useful keyboard 

shortcuts”. 

 

4.6.2. Information on Visibility – Schwalbe’s Line 
 

The Schwalbe’s line shall be annotated differently from the other layers since its characteristics 
make it difficult to be segmented using a polygon. 

In this case, the information about its visibility in the image and its pigmentation grade must be 

provided.  

It can be done by selecting the correct choice among the three available options: 

• Visible & Pigmented: if the Schwalbe’s line is visible and pigmented 

• Visible & Not Pigmented: if it is visible and not pigmented 

• Not Visible: if it is not clearly identifiable in the image 

Please note that the choices are mutually exclusive, therefore only one of them must be 

selected. 

In order to perform this annotation, press the Space button of the keyboard first. 

A new menu appears in the bottom side of your screen, as reported in Figure 16. 
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Figure 16: Bottom menu layout 

 

It is divided into two subsections: 

• The first one is called Region Annotations and shows all the region annotations of the 

current image (if already performed) 

• The second one is called File Annotations and shows the checkbox for annotating the 

Schwalbe’s line  

Select the Image Annotations tab and tick the correct choice (Figure 17). 

 

 

Figure 17: Schwalbe's line checkbox 
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Once the correct option is selected, the annotation is correctly performed. 

Before quitting the bottom menu, select the Region Annotations tab again. If you don’t do 
so, you won’t be able to assign a label to further polygons. 

You can now make the bottom menu disappear by pressing again the Space button on your 

keyboard. 

 

4.7. Synechiae and Vessels Annotation 
 

In images in which one or more synechiae or vessels are present, an additional annotation must 
be performed. 

Note: before starting to draw a new annotation, be sure that no other regions are currently 

highlighted. If so, they could be dragged over the image. 

Every synechia annotation is drawn using the “Rectangular region shape” from the “Region 

shape” side menu, must include the entire synechia and part of the context around it (see the 
example in Figure 18) and must be labelled as “Synechia”. 

Please note that once a rectangle is placed, the checkbox appears immediately. Every vessel 

annotation must highlight a single vessel and comprise a limited region that surrounds it. For 
this reason, two different approaches may be adopted: 

1. The vessel length is approximately < 1/10 of image width: in this case the annotation is 

performed using the “Rectangular region shape” from the “Region shape” side menu. 

2. The vessel is longer: the annotation shall be performed using the “Polygon region shape” 
from the “Region shape” side menu. 

If there are several vessels in a small image area, draw multiple annotations, each one centred 

on a specific neovessel (see some examples in Figure 19). 
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Figure 18: Example of synechia annotation 

 

 

 

Figure 19: Example of vessels annotation  
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4.8. Saving Annotations 
 

Every time an image has been completely annotated (see an example in Figure 20), save the 

annotations through the “Project” menu in the top bar. 

 

 

 

Figure 20: Annotated image 

 

Select “Save”. The “Save Project” dialog window will appear, as reported in Figure 21. 
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Figure 21: "Save Project" dialog window 

 

Select “OK” without changing any of the other options. 

The window reported in Figure 22 appears. 

 

 

Figure 22: Path selection 

 

Here, the correct path to the GS-1_Dataset folder must be provided. 
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If Google Chrome suggests you rename the file you are going to save by adding a number in 

round brackets, remove it. The filename must be Annotations, the type extension (.json) is 
automatically added and must not be written explicitly 

Press Save and confirm that you want to overwrite the existing Annotations.json file (Figure 23). 

 

 

Figure 23: Confirmation window 

 

The updated Annotations.json file has now been correctly saved in your GS-1_Dataset folder.  

You can now annotate a new image or quit the annotation tool. 

 

4.9. Pausing the Annotation Process 

 

If you want to pause the annotation process, save the project as reported in Section 4.8 before 
quitting the tool. 

At the next start up, load the Annotations.json file, as in Section 4.5, and restart from where you 

had stopped. 

 

4.10. Quitting the Annotation Tool 
 

After the project has been saved, it is possible to quit the annotation tool by closing the 

browser. 

If you are asked whether to leave the current page or not, confirm. 
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4.11. Feedback on the Annotation Process 
 

The annotation of a large batch of images is a process that may require a lot of time. For this 

reason, it is requested to provide periodic feedbacks in order to evaluate annotations, discuss 

about possible issues and align the involved clinical partners. 

Each periodic feedback shall refer to a specific number of annotated images, and shall consist 

in a backup of the latest version of the annotation file, created as explained in Section 4.3. The 

Annotations_backup_yyyymmdd_##.json file shall be sent by email to Mauro Campigotto 
(maurocampigotto@nidektechnologies.it).  
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Appendix A: how to choose the correct number of vertices 
 

In this appendix, good practices for an efficient and correct annotation are explained. 

It is important to notice that, to make the annotation of a specific structure useful for this 
research purposes, it should not contain pixels that belong to other regions. 

Let’s show some examples in order to evaluate the possible consequences of different kind of 

annotations 

In Figure 24, an inaccurate annotation is shown. It contains pixels that belong to different 

layers. Such an annotation is not useful and even confusing for a neural network that tries to 

learn the characteristics associated with a specific layer. This kind of annotation must be 

avoided. 

 

 

Figure 24: Inaccurate annotation 

 

In Figure 25, an example of an even too accurate annotation is shown. 

In this case, there are no negative side effects concerning the learning process of the neural 
network, but this annotation style is inefficient and time consuming. 



 

24 
 

 

Figure 25: Too accurate annotation 

 

The best solution is an adaptive accuracy approach, characterized by a sequence of vertices that 

follow the real boundary between two regions, without being too accurate but correctly 

avoiding the inclusion of different layers. 

An example of correct annotation is shown in Figure 26. 

 

 

Figure 26: Correct annotation 
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Appendix B: useful keyboard shortcuts 
 

Here, a list of useful keyboard shortcuts is reported (Figure 27). 

 

 

Figure 27: Keyboard shortcuts 

 

Appendix C: How to deal with implants in images 
 

If one or more implants are visible in an image, they must be cut out from the annotations of 

every layer by following their contours while drawing the region polygons. 

If an implant divides a layer into two separate regions, two polygons must be drawn and the 
same label must be assigned to both of them, as described in Section 4.6.1. 

An example on how to deal with their presence is shown below (Figure 28). 

Please note that all the layers except for the iris and the cornea have been annotated using two 
polygons. 
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Figure 28: How to cut out an implant 





Appendix C

This appendix reports the final version of the annotation protocol devised for the local grading

of angle aperture in digital gonio-photographs. More details on this can be found in Chapter 3.

Ground truth obtained according to this annotation protocol have been used in the pilot study

on local angle aperture classification (Chapter 6).



 

 

 

 

 

G.A.I.A. Project – Gonioscope Automatic Image Analysis 

 

Phase 2: Angle Aperture and Trabecular Meshwork 

Pigmentation Grading 

 

ANNOTATION TOOL AND PROTOCOL 

 

Andrea Peroni 

July 2021 

 

 

 

 

  



Contents 
1 Project Overview ............................................................................................................................. 3 

1.1 G.A.I.A. Project General Aims ..................................................................................................... 3 

1.2 Phase 2: Angle Aperture and  Trabecular Meshwork Pigmentation Grading ............................. 3 

1.3 Phase 2: Annotation Task ............................................................................................................ 3 

2 Scope of Annotations ...................................................................................................................... 4 

2.1 Angle Aperture ............................................................................................................................ 4 

2.2 Trabecular Meshwork Pigmentation .......................................................................................... 5 

3 Annotation Tool and Protocol ......................................................................................................... 6 

3.1 Annotation Process Flowchart .................................................................................................... 6 

3.2 Annotation Tool User Interface .................................................................................................. 7 

3.3 Opening a GS-1 Exam ................................................................................................................ 11 

3.4 Performing Annotations............................................................................................................ 12 

3.5 Checking the Annotation Status ............................................................................................... 14 

3.6 Saving Annotations and Quitting the Tool ................................................................................ 14 

 

  



1 Project Overview 
 

1.1 G.A.I.A. Project General Aims 
 

The G.A.I.A project is a collaboration between the CVIP/Vampire research group at the University of 
Dundee, NIDEK Technologies S.r.l. and clinical sites in Dundee, Edinburgh, Genoa and Lisbon. 

Its target is the development of machine learning algorithms for a new ophthalmic device conceived 
to perform gonioscopy, called GS-1. These algorithms will support the diagnosis procedure providing 
information of interest to clinicians. 

The project is divided into several phases, each with different purposes. In this document, the second 
phase is described together with the annotation tool user guide and the annotation protocol. 

 

1.2 Phase 2: Angle Aperture and  

Trabecular Meshwork Pigmentation Grading 
 

The target of G.A.I.A. Project Phase 2 is the design and development of machine learning algorithms 

for the automatic classification of angle aperture and trabecular meshwork pigmentation in radial, 

equally wide sub-sectors of GS-1 acquisitions depicting the irido-corneal angle. 

 

1.3 Phase 2: Annotation Task 
 

Developing machine learning algorithms requires annotated data, i.e. data previously evaluated by an 

expert and graded into categories (classes) of interest for a given task. Algorithms can be trained to 

identify the features (e.g. signal patterns) that better characterize each of the output classes, and can 

be subsequently used to automatically evaluate unknown data, aiding the analysis of large amounts 

of raw information. 

The aim of this annotation task is to grade radial, equally wide sub-sectors of GS-1 acquisitions in terms 

of irido-corneal angle aperture and trabecular meshwork pigmentation (when visible), as explained in 

the following paragraphs. 

The resulting annotations shall be used to train and validate classification algorithms to automatically 

evaluate and grade angle aperture and trabecular meshwork pigmentation of irido-corneal angle sub-

sectors of GS-1 acquisitions. 

 

 

 



2 Scope of Annotations 
 

GS-1 full-mode exams consist of 16 partially overlapping sectors of the irido-corneal interface of an 

eye, each acquired as a stack of several shots with different focal planes. A representative image of 

each sector is considered for the purposes of this work. All sector images are pre-processed to uniform 

the visualization of data by rotating them so that the iris root is always shown at the bottom of the 

image and the cornea at its top. Three radial, parallel and equally wide sub-sectors are highlighted in 

the best-lit region of each sector image; these are the sub-sectors to annotate (Figure 1). 

 

 

Figure 1: pre-processed sector image; the three sub-sectors of the region to annotate are highlighted 
by the blue dashed lines. 

 

For each of these sub-sectors, the annotator is asked to grade two anatomical features: the local 

aperture of the irido-corneal angle and the pigmentation of the trabecular meshwork (if visible). 

 

2.1 Angle Aperture 
 

The local aperture of each irido-corneal angle sub-sector of a given GS-1 image shall be graded 

according to the apparent iris insertion. Three classes are defined based on the visible angle 

structures. An additional class is used for un-gradable sub-sectors. 

• Open: scleral spur and / or ciliary body band visible (D, E) 



• Occludable: Schwalbe’s line visible, trabecular meshwork visible to some extent 

(either posterior or anterior), scleral spur and ciliary body band not visible (C) 

• Closed: Trabecular meshwork not visible. Schwalbe’s line can be visible or not (A, B) 

• Unknown: the angle is not visible due to misalignment, because its view is prevented 

from obstacles (e.g. bubbles, eye lashes), or the quality of the sub-sector (e.g. 

sharpness and / or illumination) is not good enough to evaluate the structures. 

Annotations shall be performed by selecting the most appropriate class of each sub-sector of a given 

GS-1 image from a combo box menu in the annotation tool. All the sub-sectors of a given GS-1 image 

must be assigned one of the classes described above. 

 

 

Figure 2:The Spaeth Grading System of gonioscopic finding. 

 

In case the angle aperture varies in the considered sub-sector, the classification that better describes 

it (that is, applicable to the most part of it) shall be chosen. In case it is not possible to assess which 

classification is predominant in the sub-sector, the one corresponding to the more anterior iris 

insertion shall be chosen (e.g., if part sub-sector is Open and part Occludable, the classification shall 

be Occludable; if some is Occludable and some Closed, the classification shall be Closed). If a sub-

sector is in part gradable (Open, Occludable or Closed) and in part un-gradable (Unknown) the 

classification shall be that of the gradable part. 

 

2.2 Trabecular Meshwork Pigmentation 
 

The local trabecular meshwork pigmentation of each irido-corneal angle sub-sector of a given GS-1 

image shall be graded according to four categories including a simplified three-class Scheie’s 

pigmentation scale and an additional class for un-gradable cases, being the classes defined as: 

• Level 1: absent-to-low pigmentation (Scheie’s classes None and 1) 

• Level 2: mid pigmentation (Scheie’s class 2) 

• Level 3: high-to-very-high pigmentation (Scheie’s classes 3 and 4) 

• Unknown: the trabecular meshwork is not visible (e.g. in angle closure sub-sectors) 

The original Scheie’s scale for the grading of trabecular meshwork pigmentation is represented in 

Figure 3. 



Annotations shall be performed by selecting the most appropriate class from a combo box menu in 

the annotation tool. All the sub-sectors of a given GS-1 image must be assigned one of the classes 

described above. 

 

Figure 3: Scheie’s system of grading trabecular meshwork pigmentation. a, Schwalbe’ s line; b, 
anterior and posterior trabecular meshwork; c, scleral spur; d, ciliary body band; e, iris root. 

 

In case the pigmentation varies in the considered sub-sector, the classification that better describes it 

(that is, applicable to the most part of it) shall be chosen. In case it is not possible to assess which 

classification is predominant in the sub-sector, the one corresponding to the highest Scheie’s grade 

shall be chosen (e.g., if part sub-sector is Level 1 and part Level 2, the classification shall be Level 2; if 

some is Level 2 and some Level 3, the classification shall be Level 3). If a sub-sector is in part gradable 

(Level 1, Level 2 or Level 3) and in part un-gradable (Unknown) the classification shall be that of the 

gradable part. 

 

3 Annotation Tool and Protocol 
 

3.1 Annotation Process Flowchart 

The annotation process flowchart is reported in Figure 4. 

The flowchart is structured so that actions (blue rectangles) and conditions (green rhombuses) are 
well identifiable. 



In particular, the first condition (“Exam Annotation Completed?”) may lead to the opening of a new 
exam to annotate / check it, or to the end of the annotation session even if the current exam 
annotation has not been completed yet. 

Next to each action rectangle, the reference to the document section describing said action in detail 
is reported. 

 

 
 

Figure 4: Annotation process flowchart 

 

3.2 Annotation Tool User Interface 
 

The user interface of the main page of the Annotation Tool is shown in Figure 5. 

 



 

Figure 5: Annotation Tool user interface - main page. (Aperture and pigmentation classes in the 
image have been assigned randomly and may not be clinically correct) 

 

The interface may be conveniently divided into 4 panels characterized by their location and functions, 

highlighted in Figure 5 using rectangles of different colours. 

GS-1 sector view panel (red rectangle in Figure 5). It shows the following information: 

• Date-time of the currently open exam 

• Three views representing adjacent angle sectors of the currently open exam. All the sectors 

are pre-processed to uniform the order and orientation of angle layers in the frames (iris at 

the bottom and cornea at the top) and to highlight a region of interest for each sector.  

The middle view shows the entire 960x960 pixels ROI of the angle sector to annotate and 

highlights the three sub-sector boundaries. The user can zoom in/out to better visualize 

features of interest and pan horizontally and vertically.  

The view on the left shows the right-most half of the ROI for the preceding image in the 

sequence, with its right-most sub-sector highlighted; the view on the right shows the left-most 

half of the ROI for the following image in the sequence, with its left-most sub-sector 

highlighted; the user can not interact with these images. 

• Initial(s) of the sector location on the irido-corneal interface circumference. 

 

Annotation panel (green rectangle in Figure 5; reported in detail in Figure 6).  

 



 

Figure 6: Annotation panel. (Aperture and pigmentation classes in the image have been assigned 
randomly and may not be clinically correct) 

 

It shows the following information: 

• (a): “Prev” and “Next” buttons to move back and forth along the sequence of sectors to 

annotate for the currently open GS-1 exam. “Prev” (“Next”) button is disabled when the left-

most (right-most) sector of the sequence is reached (according to linear stitching 

representation). 

• (b1): the aperture classification of the right-most sub-sector of the preceding sector in the 

sequence (if already annotated, empty otherwise) 1 . 

• (b2): the aperture classifications of the three sub-sectors of the current sector in the sequence 

(if already annotated, empty otherwise) 1, with the left-most classification corresponding to 

the left-most sub-sector, the central classification to the central sub-sector, the right-most 

classification to the right-most sub-sector. 

• (b3): the aperture classification of the left-most sub-sector of the following image in the 

sequence (if already annotated, empty otherwise) 1 . 

• (c1): the trabecular meshwork pigmentation classification of the right-most sub-sector of the 

preceding sector in the sequence (if already annotated, empty otherwise) 2 . 

• (c2): the trabecular meshwork pigmentation classifications of the three sub-sectors of the 

current sector in the sequence (if already annotated, empty otherwise) 2 , with the left-most 

classification corresponding to the left-most sub-sector, the central classification to the 

central sub-sector, the right-most classification to the right-most sub-sector. 

• (c3): the trabecular meshwork pigmentation classification of the left-most sub-sector of the 

following sector in the sequence (if already annotated, empty otherwise) 2 . 

• (d1): the three combo box menus for selecting the aperture class for the three sub-sectors of 

the current sector image according to the guidelines provided in Section 2.1. 

• (d2): the three combo box menus for selecting the trabecular meshwork pigmentation class 

for the three sub-sectors of the current sector image according to the guidelines provided in 

Section 2.2. 

 

Side menu: this is the one highlighted by the blue rectangle in Figure 5. From top to bottom, it shows 

the following information: 

• Open exam button: when pressed, an additional floating window appears (Figure 7) showing 

the complete list of exams date-times, together with their annotation status reporting the 

 
1 Colour coded according to the aperture legend reported in the side menu. 
2 Pattern coded according to the trabecular meshwork pigmentation legend reported in the side menu. 



annotation status (Absent, Partial, Complete, see Section 3.3). The user can select an exam 

and open it by pressing “OK”, or go back to the main Annotation Tool page by pressing 

“Cancel”. If the listed exams are too many to fit in the window, the user can scroll the list 

up/downwards. While this floating window is open, interaction with the main Annotation Tool 

page on the background is disabled.  

 

 

Figure 7: Open exam floating window. (Aperture and pigmentation classes in the image have been 
assigned randomly and may not be clinically correct) 

 

• Annotation progress counter: the fraction of sectors of the currently open exam that have 

been fully annotated. A sector is considered fully annotated only when both the aperture and 

pigmentation class have been selected for all its sub-sectors. 

• Aperture legend: it links the colour codes to the corresponding aperture classes, defined in 

Section 2.1. 

• Pigmentation legend: it links the pattern codes to the corresponding trabecular meshwork 

pigmentation classes, defined in Section 2.2. 

• Pigmentation grading button: when pressed, an additional floating window appears (Figure 

8) showing several image patches as reference for different trabecular meshwork 

pigmentation grades, according to their definition in Section 2.2. When this floating window 

is open, the user can still interact with the main Annotation Tool page. 

 



 

Figure 8: Pigmentation grading reference window. (Aperture and pigmentation classes in the image 
have been assigned randomly and may not be clinically correct) 

 

• Selected facet indicator: it shows the location of the current sector image on the irido-corneal 

angle circumference. 

Stitching panel: the one highlighted by the yellow rectangle in Figure 5. It shows the linear stitching 

of the currently open exam. The stitching can be used to quickly inspect the overall patient’s condition. 

It is not possible to interact (e.g. to zoom or pan) with this panel. 

Note: on start-up, the Annotation Tool does not show any exam, all fields are empty and all commands 

are disabled except for the “Open” button to select an exam to annotate. 

 

3.3 Opening a GS-1 Exam 
 

Opening an exam is possible at any moment during the annotation process. 

By pressing the “Open” button from the side menu, a new floating window appears (Figure 7) showing 

the list of all exams to be annotated together with an indication of their annotation status: 

• absent means that no aperture or pigmentation class has been assigned to any sub-sector of 

the exam; 

• partial means that aperture or pigmentation class has been assigned to at least one sub-sector 

of the exam; 

• complete means that all exam sub-sectors have been assigned both aperture and 

pigmentation classes. 



After selecting an exam from the list, select “Ok” to open it. The Annotation Tool now shows the first 

sector image in the middle view and all the commands are enabled. To go back to the main Annotation 

Tool page without opening a new exam, press “Cancel”. 

Despite the status, any exam can be selected and opened to start, resume, amend or just check its 

annotations. 

Note: if a new exam is opened while another exam was being annotated, all the performed annotations 

for the previous exam are automatically saved and the new exam is opened. It is not possible to open 

more than one exam at the same time. 

 

3.4 Performing Annotations 
 

Once an exam has been opened, the first sector image (corresponding to the left-most part of the 

linear stitching representation) is shown in the middle view and all the commands are enabled. 

The user can assign aperture and pigmentation classes to a given image sub-sector using the 

corresponding combo box menu located below the middle sector image. To do so, click on the combo 

box to show the available classes and then select the most appropriate one.  

In Figure 9 the correspondence between combo box menus and sub-sectors of the image in the central 

view is shown. 

 

 

Figure 9: correspondences between combo box menus (and the corresponding annotation values) 
and the sub-sectors in the central view. (Aperture and pigmentation classes in the image have been 

assigned randomly and may not be clinically correct) 



 

The user can also interact with the middle view by zooming in/out and panning horizontally and 

vertically. To go back to the original field of view, double-click anywhere on the middle view; the 

960x960 pixels sector ROI will automatically fit into the view. 

Note: be careful to consider that the correspondence between combo box menus and image subsectors 

can be affected by the interaction with the image (by zooming or panning).   

The user can select or amend aperture and pigmentation classes for any of the exam sub-sectors at 

any moment and in any order. However, annotating both aperture and pigmentation sequentially 

from left to right enables handy shortcuts.  

By annotating an exam sequentially from left to right, the user can exploit the expected correlation 

between adjacent sectors and propagate the already performed annotations (either aperture or 

pigmentation or both) to the right.  

This works for both aperture and pigmentation annotations independently and is possible in two case 

scenarios only, here explained: 

• the right-most sub-sector of the previous sector image in the sequence (left view) has been 

annotated and all three the sub-sectors of the current sector image in the sequence (central 

view) have not yet. By right-clicking on the annotation for the right-most sub-sector of the 

previous sector image in the sequence (labelled as b1 or c1 in the “Annotation panel” 

paragraphs of Section 3.2), the user can select the “Copy aperture” or “Copy pigmentation” 

command to copy the annotation to all three the sub-sectors of the current sector image in 

the sequence; 

• the left-most sub-sector of the current sector image in the sequence (central view) has been 

annotated and the other two sub-sectors of the current sector image in the sequence (central 

view) have not yet. By right-clicking on the annotation for the left-most sub-sector of the 

current sector image in the sequence (the left-most rectangles among those labelled as b2 or 

c2 in the “Annotation panel” paragraphs of Section 3.2), the user can select the “Copy 

aperture” or “Copy pigmentation” command to copy the annotation to the other two sub-

sectors of the current sector image in the sequence. 

An example of “Copy aperture / Copy pigmentation” context menu is shown in Figure 10. 

 

 

Figure 10: sub-set of Annotation Panel commands for the current sector image in the sequence with 
the “Copy aperture / Copy pigmentation” context menu highlighted by the blue rectangle. 

 

In fact, aperture and trabecular meshwork pigmentation are features that usually vary slowly or do 

not change at all in an exam. These two commands can be used to propagate the right-most sub-

sector annotation of the preceding sector or the first sub-sector annotation of the current sector to 



all the sub-sectors of the current sector. Once propagated, annotations can be amended, e.g. to 

account for local variations of angle aperture. 

The user can inspect the linear stitching to have a general idea of the patient’s condition, but all the 

annotations shall be based on the images highlighting the sub-sectors of interest, located above the 

combo box menus. 

Note: by design of the GS-1 acquisition process, the outermost sub-sectors of adjacent sector images 

are partially overlapped. The annotation could be, however, different based on local image 

characteristics. 

The user shall always keep in mind the definitions of aperture and pigmentation classes and shall use 

the legends in the side menu, as well as the reference image for the pigmentation grading (shown 

after pressing the pigmentation grading button), so as to make sure their annotations conform with 

the grading adopted for this task. 

 

3.5 Checking the Annotation Status 
 

Before quitting the Annotation Tool or opening a new exam, the user may want to check the 

annotation status for the current exam. 

This is possible by simply checking the Annotation progress value from the side menu. If all the exam 

sectors have been fully annotated, meaning that all the sub-sectors have been assigned both an 

aperture and a pigmentation class, the reported value is 16/16. The ratio decreases by one unit for 

each sector of the currently open exam that has not been fully annotated yet, meaning that at least 

one of its sub-sectors has not been assigned either the aperture or the pigmentation class (or both). 

If, for example, the Annotation progress ratio is 13/16, it means that three sectors of the exam have 

not been fully annotated yet. 

 

3.6 Saving Annotations and Quitting the Tool 
 

The user can quit the Annotation Tool at any moment by simply pressing the [X] button at the top-

right end of the Annotation Tool window. All the performed annotations are saved before the 

application is terminated. 

Annotations are also automatically saved every time a new exam is opened. 
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