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Abstract

Methods for Iris Classification
and

Macro Feature Detection

by

Manisha Sam Sunder
Master of Science in Electrical Engineering

West Virginia University

Arun A. Ross, PhD., Chair

This work deals with two distinct aspects of iris-based biometric systems: iris classi-
fication and macro-feature detection. Iris classification will benefit identification systems
where the query image has to be compared against all identities in the database. By pre-
classifying the query image based on its texture, this comparison is executed only against
those irises that are from the same class as the query image. In the proposed classification
method, the normalized iris is tessellated into overlapping rectangular blocks and textural
features are extracted from each block. A clustering scheme is used to generate multiple
classes of irises based on the extracted features. A minimum distance classifier is then
used to assign the query iris to a particular class. The use of multiple blocks with decision
level fusion in the classification process is observed to enhance the accuracy of the method.

Most iris-based systems use the global and local texture information of the iris to per-
form matching. In order to exploit the anatomical structures within the iris during the
matching stage, two methods to detect the macro-features of the iris in multi-spectral
images are proposed. These macro-features typically correspond to “anomalies” in pig-
mentation and structure within the iris. The first method uses the edge-flow technique
to localize these features. The second technique uses the SIFT (Scale Invariant Feature
Transform) operator to detect discontinuities in the image. Preliminary results show that
detection of these macro features is a difficult problem owing to the richness and vari-
ability in iris color and texture. Thus a large number of spurious features are detected by
both the methods suggesting the need for designing more sophisticated algorithms. How-
ever the ability of the SIFT operator to match partial iris images is demonstrated thereby
indicating the potential of this scheme to be used for macro-feature detection.
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Chapter 1

Introduction

1.1 Iris Introduction

1.1.1 Structure of the Human Eye

The human eye is divided into two chambers namely the anterior chamber and the

posterior chamber [8]. Figure 1.1 shows the sagittal anatomy of the human eye. From the

figure it is observed that posterior chamber lies behind the iris and in front of the lens and

the anterior chamber is located behind the cornea. The posterior chamber is dark and is

usually dark-brown in color. It contains the aqueous humor produced by the ciliary body

located behind the iris, providing nutrients to the lens and cornea. This transparent fluid

flows from the pupil to the anterior chamber. The anterior chamber is lightly colored due

to the genetically determined density of melanin granules.

These two chambers are separated by the iris and the lens. The lens focuses the images

on to the retina which is lined up with light receptors, namely the rod and cone cells,

which are broadly responsible for perception of intensity and color, respectively. The

iris is the colored part of the eye which is surrounded by the white sclera and the pupil.

Figure 1.2 shows the sectional anatomy of the anterior iris.

The iris tissue is soft and is called the stroma. It is highly vascularized with interlacing

ligaments containing melanocytes. The iris stroma is usually blue, hazel, green and brown

in color based on the presence of melanin granules in the stroma. Blue irides contain the

least number of melanosomes in the stromal melanocytes and the brown eyes contain

the highest number of melanosomes in the melanocytes. The iris controls the amount
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Figure 1.1: Sagittal section of the Human eye [1]

Figure 1.2: Sectional anatomy of the iris
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of light that enters the eye by controlling the size of the pupil. The iris begins to form

during the third month of the gestation period and the distinctive patterns of the iris

are completed by the eighth month. The pigmentation of the iris which determines the

eye color continues up to the first year after birth. These distinctive texture patterns

formed during the gestation period are assumed to be stable throughout the lifespan of

an individual [9] and is the result of the initial conditions in the embryonic mesoderm

and ectoderm from which it develops [10]. Examples of distinctive features of the iris

which may be considered stable thoughout the lifespan of an individual and result in an

iris structure which is random and unique are usually the pigment frill, collarate, radial

furrows, contraction furrows, arching ligaments, and Fuch’s crypts. The figure 1.3 shows

the iris structures.

Figure 1.3: Stuctures of the iris

Some other patterns visible in the iris are due to pigmentation. Some examples of

pigmentation are due to nevi, tumors or melanoma in the eye, Lisch nodules, Wolfflin

Spots, Brushfield spots, Yellow coloration, Central heterochromia, Sectoral heterochro-

mia, and Bilateral heterochromia [2]. Melanomas or tumors are uncontrolled reproduction

of melanocytic pigment granules and melanomas in the eye can be intraocular or extraoc-

ular. Intraocular melanoma is the melanoma in the uveal tract comprising of the iris,

ciliary body, and choroid [11]. Melanoma in the iris is the most uncommon location of

primary uveal melanoma, with choroid and ciliary body as common locations in descend-

ing order [12, 13]. Iris melanomas are either benign or malignant. Uveal melanomas are

mostly diagnosed in older ages [14, 15] and usually occur in caucasians, light color irides,

and fair skinned color [11]. Average age of patients diagnosed with iris melanomas is 40

compared to the average age of patients diagnosed with choroidal and ciliary melanoma
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which is 50 [13]. Iris melanomas have two patterns of growth: circumscribed and diffused.

Circumscribed melanomas usually have flat or rounded anterior contours, whereas diffuse

melanomas are present as a unilateral dark iris leading to heterochromia and do not have

focal thickening [13]. The iris melanomas are considered to be small, slow growing and

dormant compared to other uveal melanomas, and they do not metastasize [16]. They

are usually yellow, tan, and brown in color. Some iris melanomas which are clinically less

detectable resemble a tapioca. Freckles and nevi in the iris are benign tumors and are

usually circumscribed. On the contrary, melanomas are cancerous and usually replace

or distort the iris stroma and pupil [15]. Cataract surgeries can change iris texture and

require re-enrollment of iris biometric for recognition [17]. Lisch nodules are benign tu-

mors. These are oval or round shaped tumors which are well circumscribed and project

from the surface of the iris. Wolfflin and Brushfield spots are white spots around the pe-

riphery of the iris. Wolfflin spots are due to clumps of connective tissues and Brushfield

spots are due to Down’s Syndrome. Wolfflin spots are more distinct compared to the

Brushfield spots. Pigmentation such as Central heterochromia, Sectoral heterochromia,

and Bilateral heterochromia are due to diffusive growth of iris melanomas. They result

in pigmentation of the eye around the pupil (Central Heterochromia), a sector of the iris

(Sectoral Heterochromia), and the whole iris in the case of Bilateral heterochromia. In

the case of Bilateral heterochromia both the irises of an individual are of different colors.

In a study by Wistrand.et.al [18] it is observed that the iridial pigmentation also changes

with time during the treatment using latanoprost. The latanoprost treatment results in

change in iris color but may not cause changes or growth in nevi or melanoma. Figure 1.4

shows examples of the pigmentation features discussed.

1.2 Iris as a Biomarker and Biometric

Iris has been used for two different studies related to psychology and security. Follow-

ing is a brief discussion on these perspectives of iris where iris characteristics are used as

a “biomarker” and as a ”biometric”.
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(a) Lisch Nodules (b) Wolfflin Spots

(c) Bilateral Heterochromia

(d) Sectoral Heterochromia (e) Central Heterochromia

(f) Nevi and Yellow Coloration

Figure 1.4: Examples of pigmentation features. In 1.4(f) block A: example of nevi, block
B: example of yellow coloration [2] [3]
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1.2.1 Iris as a Biomarker for Personality

In the dissertation by Mats Larsson [19] based on three studies on iris textural char-

acteristics, he concludes that an iris can be used as a biomarker to define an adults

personality. Iris characteristics, namely frequency of Fuch’s crypts, frequency of pigment

dots, iris color, the extension and distinction of Wolfflin nodules, and contraction furrows,

were used for this purpose. His studies are based on the heritability of these characteris-

tics [20], the correlation among genes responsible for these iris textural characteristics [4],

and the association of iris textural characteristics with the personality of an adult [21].

The experiments were performed on monozygotic twins, dizygotic twins and randomly

paired people. Monozygotic refers to like-sex identical twins with most of their genes being

shared and dizygotic refers to unidentical twins (includes both like and unlike sex twins)

who on average share half of the segregating genes between them. Larsson constructed

continuous scales for each of the iris characteristics. Except for iris color, all other charac-

teristics had five continuous scale steps. The iris color has four, namely blue, green, hazel

and brown. Figure 1.5 shows examples of the scales used in the experiments [19]. The

experiments required, two raters to grade the test images for iris characteristics, according

to the scales constructed. Once the grading was completed, the data was analyzed using

certain models. The details of the computations are provided in [20, 4, 21].

From each of his studies he concluded that,

a Some of the iris features had higher heritability or higher genetic influences

b There is some degree of correlation between the genes responsible for the various iris

characteristics (the correlation measured the extent to which the same genes influenced

two iris characteristics)

c The iris may be used as a biomarker for personality in adults.

His first study showed that among the iris characteristics aforementioned, the highest

heritability factor was observed for Wolfflin nodules or white dot rings among the older

cohort and followed by contractional furrows and Fuch’s crypts. The heritability factor

is 90, 78 and 66 percent for each of the characteristics. The second study by the author

concluded that genetic correlations were not high between some iris characteristics if they

had different timings for formation, and if they originated from different processes. For
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(a) Color Scale

(b) Scale for frequency of Fuch’s
crypts.

(c) Scale for frequency of pigment
dots.

Figure 1.5: The scale constructed by Mats Larsson for iris characteristics, namely color,
frequency of Fuch’s crypts and frequency of pigment dots [4].



CHAPTER 1. INTRODUCTION 8

example, the fuch’s crypts are present from birth where as the pigment dots start to

appear mostly from age 6. On the same lines, the iris color is not determined until early

childhood. On the other hand, the Wolfflin nodules are accumulations of fibrous tissue

which is different from pigment dots due to melanosomes. The genes responsible for this

pair of iris characteristics have insignificant correlation.

In his second study he also observed that the iris characteristics originating from the

same cell layers had genetic correlations. For example the contraction furrows which allow

the iris to fold with the change in pupil dimensions to allow light, exist in all the layers

of the iris. Consequently the contraction furrows have genetic correlation with iris color,

Fuch’s crypts, and pigment dots in decreasing magnitude.

From the above two studies, it is observed that the iris characteristics are due to certain

genes and that they have a certain degree of correlation among them. It would be possible

to have these characteristics as biomarkers to adult personality if the genes responsible

for these characteristics are also responsible for personality traits. The left hemisphere of

the brain is responsible for approach related behaviors and studies show that the genes

which may directly influence the formation of crypts and contraction furrows, that is

degeneration of the anterior layer of the iris, do cause tissue loss in the left hemisphere of

the brain. This may help determine the extent by which people engage in approach related

behaviors by observing the iris characteristics. Apart from Fuch’s crypts and contraction

furrows, pigment dots may influence personality though there is not much evidence. The

author showed that the frequency of crypts is related to approach related behavior and

that more number of personality traits are associated with crypts. From his studies he

also showed that crypts with dense structure score more on traits than crypts with open

structure. That is, dense crypts are related to lesser tissue loss in the left hemisphere of

brain and score more on approach related behaviors such as openness,warmth, and positive

feelings. Also, from the analysis it was observed that the pigment dots are not associated

with any of the dominant personality traits. Finally, in his third study, concluded that

the iris characteristics could be used as biomarkers for personality. It is not in the scope

of this thesis to describe the analysis methods used.
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1.2.2 Iris as a Biometric

In another field of study, “Biometric Recognition”, the iris has been used to identify

a person or to verify the identity claimed by a person. Biometrics measure the physical

or behavioral attributes of a person statistically analyses the data. A biometric system is

an automated or semi-automated system which makes use of the measured attributes in

order to establish the identity of a person. The physical and behavioral attributes used in

the field of biometrics are fingerprints, face, iris, hand geometry, gait, and keystrokes. A

biometric attribute must possess certain properties to be considered ideal for a biometric

system. The properties are:

A. Universality : Everyone in the population must posses the biometric attribute.

B. Uniqueness : The attribute should be unique for each individual.

C. Permanence : The biometric attribute must not change over a period of time. That

is with passage of time the attribute must remain stable.

D. Collectability : The attribute should be easily procured from an individual without

being invasive.

E. Acceptability : The attribute should be such that the population is willing to provide

it. Due to some inhibitions and cultural values the population may not be willing to

provide the biometric.

In a biometric system an identity can be established in one of two ways, “identification”

or “verification”. Identification is the process in which the question ‘Who is this person?’

is answered. That is, the system tries to identify a person based on the biometric data.

Verification is the process in which the question ‘Is the person who he claims to be?’ is

answered. This process verifies the identity claimed by comparing the biometric data of

the user and the claimed identity. The above system can be summarized as a biometric

recognition system operating either in the “identification” mode or “verification” mode.

In this thesis we focus on the iris as a biometric trait. The following is a brief discussion

on an iris based biometric.
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Iris Recognition System

The randomness in the texture content formed during the initial conditions of the

embryonic mesoderm has made it possible to use the iris as a biometric for the pur-

pose of recognition (identification, verification). Figure 1.6 shows the steps involved in

an iris recognition system. In a recognition system features of the query image whose

identity is to be established is compared either with all the images in the database under

“identification” mode or the features of the claimed identity under “verification” mode.

Figure 1.6: Iris Recognition System

Segmentation, normalization, image enhancement, features extraction and matching

are the key steps involved in an iris-recognition system. Segmentation is the process in

which an iris is segmented from the captured image of the eye. The captured image may

be a grayscale or a colored image. Many image processing methods may be applied to

obtain a segmented iris image. Segmentation of the iris requires localization of two bound-

aries namely, iris-pupil boundary and the iris-sclera boundary. Some of the techniques
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used for the purpose of segmentation are: Daugman’s Integro Differential operator, Libor

Masek’s Hough transform, and Geodesic Active Contours [22, 23]. Once the boundaries

are localized, it is assumed that the pupil and iris are circular. The pupil and iris are

segmented by fitting circles with radius equivalent to the radius of the pupil and iris. The

iris is then finally represented as a circular disc.

The next step is optional. It is usually based on the way the features are extracted

from the image for the purpose of recognition. This step is normalization or unwrapping,

where the circular iris is transformed from a circular entity in the Cartesian coordinate

system to a rectangular entity in the polar coordinate system. This transformation is

done using Daugman’s rubber sheet model [24], which transforms the points within the

iris to polar coordinates (r, θ), where r lies between 0 and 1 and θ lies between 0 and 2π.

The r represents the radial distance from the iris-pupil boundary to iris-sclera boundary,

and θ represents the angle subtended by a pixel relative to horizontal axis at the origin,

with the origin at approximately the center of the pupil. The following is the equation

used for the transformation:

I(x(r, θ), y(r, θ)) → I(r, θ)

Here x(r, θ) and y(r, θ) are pixel positions within the circular disk and defined as

a linear combination between points on the pupillary boundary, (xp(θ), yp(θ)) and the

iris-sclera boundary, (xs(θ), ys(θ)). The points within the iris are defined as,

x(r, θ) = (1− r)xp(θ) + rxs(θ)

y(r, θ) = (1− r)yp(θ) + rys(θ)

The normalization procedure helps to transform every iris to a predefined size. This

avoids the scaling issues due to pupil dilations and different diameters of the iris. The

image is then enhanced to perform photometric normalization. Here all the irises are

enhanced to have the similar luminosity and contrast. The simplest technique for contrast

enhancement is the histogram equalization.

The features are then extracted, either from the normalized iris or the circular iris.

The literature discusses many techniques to represent the iris in order to perform recogni-
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tion. These techniques can broadly be classified into four categories, namely Phase based

methods, zero crossing representation, texture analysis and intensity variation analysis.

Flom and Safir [9] had proposed the concept of automated iris recognition. In 1994

John Daugman had patented his “Biometric Personal Identification System Based on Iris

Analysis”. Daugman used multiscale Gabor filters to demodulate texture phase structure

information of the iris. This information was binarized and used for recognition using

hamming distance as the distance metric. Wildes [25] represented the iris texture with a

Laplacian pyramid. Boles and Boashash [26] characterized the iris texture by calculating

zero-crossing representation of the one-dimensional wavelet transform at various resolu-

tion levels of a concentric circle on an iris image. Park et al. extracted the normalized

directional energy as features and Bae et al. [27] used the quantized results of the projec-

tion of iris signals on filter banks derived by independent component analysis as features.

In each of the techniques the iris texture which is a result of characteristics such as crypts,

furrows, pigment dots, arching ligaments has been encoded [28]. The whole of the iris

texture is encoded without discrimination of each of the characteristics responsible for

the iris texture.

There have been attempts to extract and characterize the micro features of the iris in

the past. Micro features in this thesis, refer to any textural features that have not tradi-

tionally been focussed upon. Sung et al. [29] proposed to localize the collarate boundary

and perform iris recognition using only the collarate region as the textural feature. Also,

Wen et al. [30] obtained the key locations that is the barycenter of iris features extracted

by Gabor filtering, and computed the Euclidean distance between barycenters of two im-

ages to measure the similarity. Although the features extracted are digital features due to

intensity variation in each of the filtered sub-images, they may not in particular represent

the macro features such as the freckles, nevi, or blood vessel patterns. Another attempt

was to extract four micro features, namely the nucleus, collarate, valleys and radius and

consider them as minutiae for identification. Nucleus are the possible zones inside the

contour of the pupil which do not satisfy circular symmetry. Collarate is the zig-zag pat-

tern which divides the iris into the pupillary zone and the ciliary zone. It is considered to

be the thickest part of the iris. Valleys correspond to zones of intense pigmentation of the

iris in the pupillary zone. The radius feature corresponds to the intensity variation to-
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wards white color compared to the intensity of the iris. The matching counts the number

of corresponding micro features [31]. Figure 1.7(a)1.7(b) show the features considered by

proposed techniques of Sung et al. and Wen et al. [29, 30].

(a) Keypoints used for iris recognition [30]

(b) Collarate region used for recogni-
tion [29]

(c) Iris regions used by the SIFT tech-
nique [32]

Figure 1.7: Examples of non-traditional iris features used for recognition

Each of the above techniques used a normalized iris. In a recent paper by Belcher

and Du [32], they performed iris recognition using SIFT points detected by matching

the relative orientation and magnitude of the gradient and the relative position of each

point within a window W with respect to the feature points detected. This approach did
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not require iris normalization. The feature points detected are extrema points, that is

they are the maximum or minimum intensity points. This is a region based approach in

the sense that feature points are detected in different regions of the iris, namely the left,

right, and bottom portion of the circular iris around the pupil. Figure 1.7(c) shows the

iris regions considered for feature point detection. The feature points detected in each of

these regions is matched to the feature points of the corresponding region. This approach

is extended by the authors for iris recognition of off-angled irises where the iris is not at

the center of the eye.

Matching is the process of comparing the features of a test image with the features

of images in the database. As mentioned earlier, in a verification based system a test

image’s feature set is matched against those of claimed identities stored features in the

database. This is a one-to-one matching. In an identification-based system, the features

of the test image are matched with all the stored features in the database in order to find

the closest match from the database, which in turn would decide the identity associated

with the test image. This is a one-to-many matching. Each match results in a match

score. The matching metric used depends on the type of features extracted. For instance,

in Daugman’s iris recognition system, matching is performed using the Hamming distance

while in the SIFT based method [32] the Euclidean distance is used to match the features.

1.3 Motivation

As explained above, an identification-based system requires one to many matching.

The current iris recognition systems are fast and perform a large number of one-to-one

comparisons in a second. The iris recognition system deployed in Dubai performs around

420,000 comparisons per second [33]. But with the growing size of the database the

number of comparisons increases, increasing the computational complexity. Thus, there is

need to reduce the search space for recognition systems. That is, the number of identities

a query image is compared against has to be reduced. The two ways by which the

search space can be reduced are classification and indexing. Classification of images in a

database involves partitioning the database into subsets based on certain characteristics.

These subsets may not be mutually exclusive. The search space for a query image will be
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limited to the subset it is classified to. For example, fingerprints are typically classified

into 5 classes. They are based on the type of ridge flow observed on the print. The

classes are whorl, left loop, right loop, arch, and tented arch. The classification results

in subsets which are not of uniform size. Further, these subsets are small in number [34].

The classification process still results in a large subset of candidate identities. Indexing,

on the otherhand, reduces the search space significantly. Indexing works by assigning a

numerical value to the biometric data based on the features or match score. Once the

query image is assigned an index value, it is compared with the set of stored images

which have similar index values. This reduces the search space to the top m identities

with similar index values. The importance of reducing the search space for faster and

reduced number of comparisons is clearly seen.

The increasing computational complexity with increasing datasize has motivated us

to focus on textural features which can be used for grouping of iris texture. Some of

the other characteristics we propose to detect may also establish a new set of features

for the purpose of recognition of two iris images. These new features may represent

the new set of minutiae points within the iris which may be used for matching two iris

images. A Match between the iris images is established by determining the number of

minutiae correspondences. These features may also be used for the purpose of indexing

based on their location and characteristics on an iris image. Chapter 2 discusses the

features extracted and the experimental setup for the purpose of classification. Chapter 3

discusses the different approaches for the detection of macro features proposed by us such

as, pigment dots, nevi, and freckles. These characteristics may be used for iris recognition

and image retrieval.



16

Chapter 2

Iris Texture Classification

2.1 Introduction

As mentioned in chapter 1, due to the chaomorphogenic nature of formation of iris, it

is one of the most reliable biometric for the purpose of recognition. No two irises, even the

left and the right iris of an individual are expected to be identical. A typical biometric

recognition system operating in identification mode requires that features extracted from

a query image be compared with features of the enrolled identities in the database to

determine the identity. The identity is determined when the result of matching satisfies

a criteria for establishing the identity. Matching is the process of comparing the features

extracted from the query image with features extracted from images in the database.

Figure 2.1 shows the modules of a biometric recognition system.

In the case of iris biometric recognition system, typically a query iris image is sub-

jected to segmentation, normalization, may be enhancement before feature extraction,

and matching. As mentioned in Chapter 1, fingerprints could be classified to 5 classes

at a preliminary level based on the orientation of the ridges. In the case of iris there is

no such coarse level classification. As mentioned earlier, in the case of “identification”, a

number of one-to-one matches are performed. Though iris recognition systems can per-

form a large number of one-to-one comparisons efficiently and with high accuracy, with

the increasing size of database the computational processing increases. For example, the

most efficient deployment of an iris recognition system performs iris recognition for a
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Figure 2.1: A biometric recognition system operating in identification mode

query image using multiple servers [33].

The search space which is the number of identities to which the query image is com-

pared can be reduced by two techniques, classification and indexing. Classification is the

process in which the database is clustered to a pre-determined set of classes based on the

features extracted. A query image is then assigned to one or more of these classes and is

compared with all the identities present in the class to determine the identity. Indexing

involves retrieval of top m identities based on comparison of the index values assigned to

each entry in the database. The index values can be a vector entity ?? and are compared

using a metric to retrieve the top m closest matches. These m identities are then exhaus-

tively compared with the query image. Figure 2.2 shows a recognition system in which

the identification is performed using the classification technique in which the database is

partitioned into a number of classes.

Classification and indexing are the algorithmic solutions for faster matching results by

reducing the search space. Some indexing techniques are discussed in [34, 35]. Though the

iris texture is due to the chaomorphogenic nature, the focus of this thesis is to determine

if the irises can be partitioned to groups based on similarity in the textural content.
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Figure 2.2: An identification system using classification technique

2.2 Literature survey on iris classification based on

texture

As mentioned in Chapter 1, the iris is composed of many layers and many components

such as arching ligaments, Fuch’s crypts, contraction furrows, radial furrows, collarate

and other pigmentation structures. The iris texture is considered to be stochastic, as

it is random due to the presence of many iris characteristics and depends on the initial

morphogenesis in the mesoderm. Most applications involving iris such as iris recognition,

iris classification and iris indexing are performed by analyzing its texture using texture

analysis methods. Figure 2.3 shows examples of irides with different textures.

Fingerprints can be classified to 5 classes at a preliminary level based on the orientation

of the ridges. In the case of iris there is no such coarse level classification of iris except

for the manual scales described by Mats Larsson in [19]. An automated iris classification

based on the difference in texture due to the presence of Fuch’s crypts is discussed in [5].

Iris texture has been analysed, both for the purpose of classification and indexing.

Some examples of iris classification and indexing using textural features are discussed

in [34, 6, 5]. An iris classification system would require image preprocessing (segmenta-

tion of iris, normalization, enhancement), and feature extraction using texture analysis

methods. Figure 2.4 depicts the flow of a classification algorithm for iris.
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(a) (b)

(c) (d)

Figure 2.3: Examples of iris textures

Two examples of classification based on iris texture analysis are: classification of iris

texture to pre-determined number of classes [5] and classification of ethnicity based on

iris texture analysis [6]. The latter assigns the iris only to two classes namely, asian and

non-asian.

According to [5] the iris is classified to pre-determined number of classes namely, net

structure, silky structure, linen structure and hessian structure. Texture analysis is per-

formed only on the circular iris disk corresponding to 3
4

of the iris radius. The 3
4

iris is

considered to avoid occlusions due to eyelashes and eyelids. This portion of the iris is first

normalized to 64 x 256 and the texture analysis is performed by computing the fractal

dimension [36] of 32 x 32 blocks from the middle and lower part of the normalized iris.

This results in 8 block each from the middle and the lower part of the normalized iris.

Figure 2.5 shows the portion of the normalized iris considered for texture analysis, and

the blocks considered for feature extraction. The classification accuracy is evaluated by

counting the number of times the sample queries of the same subject are assigned the

same class as that of the enrolled identity of the same subject.
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Figure 2.4: Iris texture classifier
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(a)

(b)

(c)

Figure 2.5: (a) ROI is 3
4

of the iris, (b) normalized ROI, (c) 16, 32 x 32 Blocks of iris for
fractal analysis based on [5]
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In the ethnicity classification method, the iris texture is analyzed to classify the query

image’s ethnicity as Asian or Non-Asian [6]. The work tries to relate texture to ethnicity.

The iris texture at a coarse level is analyzed assuming that the iris texture is correlated

to genes at large scale. Like in the previous iris classification technique, the iris texture

considered for analysis is the inner 3
4

of the lower half of the segmented iris. The iris

image is enhanced and normalized such that the region of interest is 60 x 256. This region

of interest is equally divided to two regions: region A and region B, as shown in figure 2.6.

(a) (b)

(c)

(d)

Figure 2.6: Extraction of ROI. (a) Acquired image, (b) Iris localization and ROI, (c) Iris
normalization and ROI, (d) ROI after enhancement. Images based on [6]

These regions are filtered using a bank of Gabor filters with 4 orientations (0, 45,
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90, 135 degrees), 6 spatial frequencies and 10 space constants [6], resulting in 240 filters.

The energy of each of the filter responses is computed using the L2 norm at each pixel

location. The Gabor energy(GE, mb) and Gabor energy ratio(GER, mA

mB
) are extracted

from the average energies mA, mB of the regions A and B.

In both of these methods the iris texture is characterized using texture analysis. The

following sections discuss texture and texture analysis in order to understand the methods

which can be used for iris feature extraction.

2.3 Texture

Texture, in general, may be defined as the appearance of an object on a digital image.

An image texture is considered to have certain properties [34, 37, 38]:

• A texture is attributed to a set of pixels in the local neighborhood and not to a

pixel by itself.

• The gray levels in an image help the human eye visualize texture of an object.

Hence, the statistical measures which quantify the gray scale distribution can be

considered as one of the tools to measure texture.

• The texture can be measured in terms of coarseness, smoothness, regularity, homo-

geneity, direction, contrast, density and other statistical measures. These measure

the textural properties of an image or regions defined by sets of pixels in an image.

Texture analysis helps in characterizing the texture of an image and extract quantita-

tive textural attributes associated with the texture. The level of features extracted partly

depend on the resolution of an image [34, 37]. At low resolution global texture features

are captured and at high resolution local texture features are used.

An image may be considered as an agglomeration of a number of visual textures.

These visual textures can be either structural or stochastic [39]. By structural texture

we mean textures which have repetitive patterns of small elements arranged via some

placement rules. Such textures are generated using deterministic or structural methods.
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On the other hand there are textures which do not have noticeable elements arranged

in a regular pattern. They have random orientation and placements and exhibit random

arrangement of different elements of texture. Such textures are generated from stochastic

processes.

The textural features which can be extracted are based on statistical, geometrical,

model and signal processing based methods [40]. Following is a brief description on the

way texture can be analysed.

2.4 Methods of Texture Analysis

2.4.1 Statistical Methods

Statistical methods typically measure the spatial distribution of gray scale values.

They measure the statistical relation between pixels in the image [37]. The statistical

features measured are typically of second and higher order statistics.

Gray Level Co-Occurence Matrix

The first order gray level histogram represents the probability of occurrence of gray

levels in an image [41]. A gray level co-occurrence matrix is considered to measure the

second order histogram as it considers gray level distributions of pairs of pixels in each

direction [41]. The gray level co-occurrence matrix is defined as H(x, y, d, θ), where H

represents the matrix computing the frequency of occurrence of all pairs of gray level

values ((i, j), with i and j in [0, 255], separated by a distance ‘d’ (dx,dy) in direction ‘θ’.

That is, in a co-occurence matrix the element (i,j) represents the number of pixel pairs in

the image separated by a distance ‘d’ in a direction θ such that the intensity of the first

pixel is ”i” and that of the second pixel is ”j”. There is no criteria to select the distance ‘d’.

This results in a number of sparse co-occurrence matrices for different combinations of ‘d’

and‘θ’. These matrices do provide some amount of information on the spatial distribution

of gray levels with respect to the displacement ‘d’ and direction ‘θ’ [40]. For example if the

diagonal of a co-occurrence matrix with displacement ‘d’ is concentrated then the texture

is coarse in direction θ. But these matrices are not used directly to analyze texture. Many
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Haralick textural features [42] can be computed from these matrices. Some of them are

characteristics of texture such as homogeneity(smoothness), contrast, entropy and energy.

These features can be used in isolation, or combinations of these features can be used for

classification. Following are the formulas used to compute certain textural features from

the co-occurrence matrix M(i,j) where, µx, µy and σx and σy are the means and standard

deviations of M(x) and M(y) where, M(x) =
∑

j M(x, j), M(y) =
∑

i M(i, y).

i Energy -
∑

i

∑
j M2(i, j)

ii Entropy -
∑

i

∑
j M(i, j) log M(i, j)

iii Contrast -
∑

i

∑
j(i− j)2M(i, j)

iv Homogeneity -
∑

i

∑
j

M(i,j)
1+|i−j|

v Correlation -
∑

i

∑
j(i−µx)(j−µy)M(i,j)

σxσy

Auto-correlation

Texture is considered as a repetitive placement of a textural pattern or “texton”.

This measure quantifies the property of repetitive placement of patterns in a textured

image. It measures the regularity, fineness or coarseness of the texture in an image. The

auto-correlation of an image I(x,y), is defined as,

ρ(x, y) =

∑N
u=0

∑N
v=0 I(u, v)I(u + x, v + y)∑N
u=0

∑N
v=0 I2(u, v)

It measures the correlation between the pixel and its surrounding pixels in an image

or correlation with a subimage. The autocorrelation function depends on the size of

texton. The texture can be known from the response of an autocorrelation function. For

example for coarse textures the autocorrelation function drops of slowly where as for fine

textures it drops off sharply. For textures exhibiting regular patterns in the image the

autocorrelation function is periodic with peaks and valleys.

2.4.2 Geometrical Methods

Geometrical methods are used to analyze textures which are regular patterned or

composed of texture elements or primitives. In other words these methods analyze tex-
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tures which are repetitive or textures formed due to arrangement of texture primitives.

Geometrical methods are used to measure the geometric properties of the primitives or

texture. The geometric methods extract the placement rules describing the texture of an

image. Following is a brief discussion on one example of the geometric method for texture

analysis.

Structural Methods

This method of analysis is used for textures which have repetitive patterns which

are placed according to some placement rules. The efficiency of the algorithm is limited

to regular structures. The texture analysis consists of extraction of texture primitives

and inference of placement rules for these texture primitives. The texture elements are

considered as regions with uniform gray levels. Multi-scale analysis and blob detection

techniques are used to extract the texture elements. Some additional features such as

shape and intensity are extracted from detected elements. In another work the placement

rule is defined as a tree grammar [40, 43]. This method can be used both for texture

generation and texture analysis [40].

2.4.3 Model Based Methods

This method also constructs a texture model which not only describes the texture but

can also be used for synthesizing the texture. The goal of the model is that the parameters

capture the perceived qualities of texture. Markov Random Fields are widely used for

modeling the images. The textural model is based on the statistical interactions within

the local neighborhoods. That is, an intensity of a pixel depends to a large extent on the

neighboring pixel intensity. Markov fields capture the spatial contextual information in

an image. It has been used in many image processing applications such as image segmen-

tation, image compression and restoration. It is also applied for texture synthesis and

texture classification.

Fractals is another model used in this method of analysis. It is based on the fact that

most images conform to the statistical property of texture “roughness” and that they

have self similarity at different scales. Self similarity in a image refers to the multiple

scales of a texture primitive arranged randomly. Fractal dimension is the measure of
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texture using fractals. For a deterministic texture the higher the value of fractal dimension

the rougher is the texture. But most textures are not deterministic. They have certain

statistical variation and are categorized as stochastic textures. This makes computation of

fractal dimension to model texture difficult. Fractal dimensions fail to capture all textural

properties. Lacunarity is the metric to measure texture with same fractal dimensions [44].

2.4.4 Signal Processing Based Methods

In texture analysis using signal processing methods, features are extracted from the

filtered responses of an image [40, 37]. Either spatial domain or frequency domain filters

can be used. These features can be used for classification or segmentation. Usually the

features extracted from the responses of the frequency domain filters perform the best.

This is based on research in psychophysics that humans perform frequency analysis on

texture. The human brain analyzes an image by decomposing it to frequency and orien-

tation components. Along the same line the concept has been extended to decomposing

the image to frequency and orientation components by using banks of filters with different

frequencies and orientations. This method is also referred as multi-resolution processing.

The filtering is performed in Fourier domain and it also obtains phase information which

helps in classifying or segmenting images comprising of texture with similar intensity and

textural features but varying in phase. For example two images with black and white

horizontal bars, one image starting with white bars and the other black bars. These two

images can be differentiated using the phase information.

This concept is further extended to the multi scale processing using wavelets and Gabor

filters. Here the image is decomposed to a set of frequency and orientation components

along with the scale of the image being reduced. Further applications require that there

is spatial localization. This is achieved using window filtering or short term Fourier

transform. In case of Gabor filters the window is defined by the Gaussian kernel.

2.5 Proposed Technique

To study the iris texture and its ability to be grouped, we propose to extract statistical

textual features from iris and group the iris texture based on the textural features. Both
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signal based and statistical texture analysis is performed to extract textural features.

The proposed technique performs iris classification by classifying block of a query image

to one of the pre-determined clusters or classes using the minimum distance rule. The

clusters are obtained by partitioning the database using the textural features extracted

from a certain block of iris. In order to obtain pre-determined number of clusters, the

features extracted from the iris image database are subjected to unsupervised clustering

using the principal direction divisive partitioning method (PDDP) [45]. The query image

block to be classified is subjected to textural analysis and is assigned the class based on

the minimum distance rule. The minimum distance rule is used to compute the distance

between the feature vector of the query image and either the cluster centroid or the

features corresponding to each sample in the cluster class. Assigning a query image to

one of the clusters by comparing its features with the cluster centroids is the centroid based

classification scheme and assigning the query image to one of the clusters by comparing the

features of the query with the elements of clusters is the K-Nearest Neighbor classification

scheme. In K-Nearest Neighbor classification scheme, the query image is assigned to the

cluster represented by a majority of the k-closest neighbors. The query iris texture is

classified by minimizing the cosine angle between features of the query iris and that of

the cluster centroid or elements of a cluster. The cosine distance measures the similarity

between two features vectors f1 and f2 as,

Angle = cos−1 f1.f2
‖f1‖.‖f2‖

The smaller the angle the larger is the similarity between the two features. For the

purpose of analysis of the proposed approach, textural features are also extracted from

the synthesized iris images. The iris images are synthesized using the textural features

extracted from the original iris images in the database resulting in a synthesized iris image

for each of the iris images in the original database.

2.6 Feature Extraction

The iris image is pre-processed to obtain the region of interest from the the features

are extracted. This is discussed in the following sections.
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2.6.1 Region of Interest

The normalized iris is not free from noise such as eyelids, eyelashes, and specular reflec-

tions. The pupillary zone, the portion of iris from the pupil-iris boundary to the collarate

of iris, is rich in texture and not adversely affected by eyelids and eyelashes. In order to

minimize the effect of noise we consider blocks from the inner half of the normalized iris

corresponding to pupillary zone for feature extraction. The region of interest (ROI) is the

iris region from the iris-pupil boundary upto half of the iris radius. Figure 2.7 shows the

outputs of preprocessing steps, region considered for feature extraction (region of interest,

ROI), and blocks of iris considered for feature extraction. Overlapping blocks of height

= 32 and width = 2i, where 6 ≤ i ≤ 9 are considered for feature extraction. The blocks

for each width are numbered progressively from the left to the right of the normalized

image. For example, blocks of size 32 x 64 are numbered from 1 to nreg from the left to

the right of the normalized iris, where nreg is the total number of blocks obtained of size

32 x 64. Similarly regions of different widths are numbered from 1 to the total blocks of

width 2i obtained from the normalized iris, such that 6 ≤ i ≤ 9. The features of each of

these blocks are extracted, both for original and synthetic iris images using the texture

analysis algorithm proposed by [7]. The following section discusses the feature extraction

technique adopted for texture analysis.

2.6.2 Feature Extraction

Both model based and signal based texture analysis methods used for the purpose

of iris texture classification [5, 6]. Since human brains process visual information by de-

composing it to frequency and orientation components [40] and the iris image requires

statistical analysis due to the non-deterministic chaomorphogenic nature of texture, tex-

ture analysis using both of these methods via statistical analysis on the filtered signals

is proposed. The filtered signals are obtained as a result of convolving image with linear

kernels oriented at multiple spatial scales. One advantage of characterizing an image with

statistical features is that it provides a compact representation of an image and an approx-

imation of the original texture can be synthesized using the features extracted. Features

are extracted from different regions of original iris texture as well as the synthesized iris

texture. The iris texture is synthesized using the features extracted from the original iris
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(a) Segmented Iris

(b) Normalised Iris

(c) Enhanced Image

Figure 2.7: The output of the preprocessing steps along with the region of interest. The
white and yellow boxes in 2.7(c) show the overlapping blocks on the enhanced image
considered for feature extraction
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texture [7].

Portilla and Simoncelli [7] extract the statistical features from the complex multi-scale

wavelet representation of the texture. The complex multi-scale wavelet representation is

obtained by decomposing an image using steerable pyramids, which, decompose images

at different scales and orientations using complex filters. The statistical textural features

are extracted from the iris blocks decomposed using complex steerable pyramid to 2 scales

and 4 orientations. The frequency response of the steerable pyramid is implemented by

initially decomposing an image to low (L) and high pass residual (H). The low pass residual

is then recursively decomposed to orientated band pass (Bk) and low pass residual bands

at each scale. The filters used are polar separable in Fourier domain and are represented

as:

L(r, θ) =


2 cos(π

2
log2(

4r
π

)), π
4

< r < π
2

2, r ≤ π
4

0, r ≥ π
2

(2.1)

Bk(r, θ) = H(r)Gk(θ), k ∈ [0, K − 1], (2.2)

where K is the total number of orientations and H(r) and Gk(θ) are the radial and

angular parts written as,

H(r) =


cos(π

2
log2(

2r
π

)), π
4

< r < π
2

1, r ≥ π
2

0, r ≤ π
4

(2.3)

G(θ) =

{
αK [cos(θ − πk

K
]K−1, |θ − πk

K
| < π

2

0, otherwise,
(2.4)

r, θ are polar frequency coordinates and αK = 2k−1 (K−1)!√
K[2(K−1)]!

. Figure 2.8 shows the

iris blocks and the and magnitude responses of iris blocks at 2 scales and 4 orientations.

The textural characteristics of the iris image are represented by the pixel intensity

distribution, visual description such as coarseness, fineness, and regularity due to peri-

odic or globally oriented features like radial furrows, crypts at different scales, contraction

furrows and pigments spots. Apart from this, the crypts and furrows at different scales
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Figure 2.8: Iris blocks and corresponding responses

produce oriented edges and corners. These features representing the iris texture may be

captured using first, second, third, fourth order statistics, and correlation features from

the original iris image and the decomposed subbands of the iris.

The relative amount of each intensity and the visual description of the iris image is

measured from the original image and low pass bands at each scale by computing the

minimum, maximum, mean, variance, skewness and kurtosis. The low pass bands are

reconstructed at each scale from the real or imaginary parts of the oriented bands. The

spectral features which represent periodicity (spectral peaks) and ridges (globally oriented

structures) are usually captured by computing the local autocorrelation of the lowpass

residuals at each level of the pyramid decomposition. The high contrast regions oriented

at each scale such as the edges, bars and corners are captured from the cross correlation

statistics. The cross correlation is computed between the magnitudes of each oriented

bandpass response at a scale with the magnitudes of the oriented bandpass responses at

the same scale and a coarser scale. Given an image I with total number of pixels |I|,
pixel intensities xi and mean of all intensities m, the variance skewness and kurtosis are

computed as,

V ariance, σ2 =
1

|I|
∑

1≤i≤|I|

(xi −m)2, (2.5)
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Skew =
1

|I|
∑

1≤i≤|I|

(xi −m)3

σ3
, (2.6)

Kurtosis =
1

|I|
∑

1≤i≤|I|

(xi −m)4

σ4
. (2.7)

All the statistical features computed are concatenated to form a feature vector Fi of

dimension 68 for each of the iris blocks considered.

The above mentioned features are extracted both from the original images and synthe-

sized iris images. Texture synthesis is the process of generating the textured image which

has been characterized using the textural features or constraints. Each of the extracted

textural features are considered as a constraint for the purpose of synthesis. The textural

features are represented as Φk with values, ck, where 1 ≤ k ≤ Nc and Nc is the total

number of constraints. Portilla and Simoncelli [7] include some additional constraints for

texture synthesis. The criteria of texture synthesis is that the constraints of the synthe-

sized texture be the same as ck, that is if I1 is the original iris texture with ck as the

values for the statistical feature set, then the synthesized texture I2 must satisfy,

E(Φk(Y )) = ck, ∀k

where E is the expected value of the texture parameter measured over the synthesized

image.

A synthesized texture I2, having the same textural measurements as of I1, is obtained

by selecting a high entropy distribution, such white Guassian noise (−→x (0)) with the same

mean and variance as of I1 for texture synthesis. This is then decomposed to orientation

subbands at each scale using the complex steerable pyramid. The set of features com-

puted on the original image are sequentially imposed on the lowpass subband and the

bandpass subbands in a recursive manner. This is the coarse to fine block in Figure 2.9.

A lowpass image is simultaneously reconstructed in this step. The auto correlation, skew

and kurtosis of the reconstructed lowpass image is then imposed on the synthesized image.

The marginal statistics or pixel statistics are later imposed on the output of adding the

lowpass image and the variance adjusted highpass band. The final synthesized image is

obtained by repeating this whole procedure for a pre-determined number of iterations.

Figure 2.9 shows the steps involved in the synthesis of the iris texture.
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Figure 2.9: Block diagram for the synthesis of texture based on [7]

In the experiments the synthesis algorithm is repeated for 25 iterations. At each

iteration the constraint is imposed such that the new image has not changed much from

the original. This condition is imposed by moving in the direction of the gradient of the

texture parameters measured, ∇Φk(
−→x ), where −→x is the image from the previous iteration.

The new texture at each iteration is thus obtained as follows:

−→x (n) = −→x (n−1) + λk
−→
∇Φk(

−→x (n−1)),

Here λk is chosen such that,

Φk(
−→x (n)) = ck.

Also in the experiments the number of scales (N) and orientations (K) used in con-

structing the steerable pyramid are 2 and 4, respectively. This results in 8 subbands. The

spatial neighborhood (M) used is 5 x 5.

2.7 Creating cluster classes

Principal Direction Divisive Partitioning

PDDP [45] is an unsupervised hierarchical divisive method of clustering a set of sample

data based on principal component analysis. It is a top down approach to clustering. In

our case the input data to be clustered are the feature vectors extracted from each of the

iris images in the database. A matrix FnXp representing feature vector matrix for p sub-

jects in the database with each feature vector of dimension ‘n’ is constructed to partition
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the data. The feature set is considered as one whole entity and is recursively partitioned

to two using the principal component analysis making the algorithm divisive. During the

process a hierarchical partition structure is generated to represent each leaf node and the

children partitions of a parent cluster. Each time the p samples are partitioned based on

the principal component or direction which is the leading eigen vector of the covariance

matrix of FnXp. Each feature vector is projected on to the leading component u as,

συi = uT (fi −w),

w is the mean of the features in the matrix F and σ is a constant. A feature vector fi

in the parent node is partitioned to the left child node if its projection υi is ≤ 0 and

right child node if υi > 0. A feature vector is arbitrarily placed in the left node if its

projection is zero. This is repeated until the desired number of clusters are obtained. At

each iteration, the cluster with the highest scatter value or non cohesiveness is chosen to

be partitioned. The sum of eigen-values is used as the measure of scatter or cohesiveness

of a cluster. The higher the scatter value, higher is the cohesiveness and the cluster is

chosen to be split into two.

2.8 Database

Experiments are performed on the datasets UPOL and CASIA V.3-Interval. UPOL

dataset consists of 24 bit RGB color images for each of the 64 users with 3 samples per

each eye. They are scanned using the TOPCON TRC50IA optical device connected to

Sony DXC-950p 3CCD camera [46]. CASIA-IrisV3-Interval [47] dataset, collected by Chi-

nese Academy of Sciences Institute of Automation (CASIA), consists of 8 bit gray scale

images captured at near infrared illumination. The images are captured using the self

developed camera by the Center for Biometrics and Security Research. The database

consists of left and right eye images of 249 users. There are total of 192 images each of

the left and right eye in UPOL database, and 1335 and 1320 images of the left and right

eye in the CASIA-IrisV3-Interval database.
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2.9 Iris pre-processing

Before feature extraction each of the iris images are subjected to image pre-processing.

The preprocessing step includes, iris segmentation (localizing the two boundaries, pupil-

iris boundary and iris-sclera boundary), iris normalization, and image enhancement. The

localization of the two boundaries are performed either using the geodesic active con-

tours [23, 48] or by manually segmenting the iris. The CASIA-IrisV3-Interval database

is segmented using geodesic active contours and the UPOL database is segmented manu-

ally. Two circles are then fit to the localized boundaries. The parametric representation

of the circle provides the center and radius of the circles, representing the center and ra-

dius of the pupil-iris boundary and the iris-sclera boundary, respectively. The segmented

iris is then normalized using Daugman’s rubbersheet model as discussed in chapter 1.

The normalized images are enhanced using contrast-limited adaptive histogram equaliza-

tion (CLAHE) technique. The image is tessellated to 64 tiles, and each tile is histogram

equalized such that its original histogram distribution matches a uniform flat distribution.

Each of the neighboring tiles are bi-linearly interpolated to remove the artificially induced

boundaries.

The features of the UPOL database are computed on gray scale converted iris images.

Red (R), green (G) and blue (B) components are of a colored image are converted to gray

scale image (I) via,

I = 0.2989 ∗R + 0.5879 ∗G + 0.1140 ∗B

The segmented irises are normalized using the Daugman’s rubbersheet model. The

images in the UPOL database are normalized to size of 150 x 720 pixels. Images in

the UPOL database are also normalized to size 64 x 360 pixels in order to compare the

performance of proposed technique on iris rich in texture (UPOL at 64 x 360) and noisy

database (CASIA-IrisV3-Interval at 64 x 360). The normalized irises of size 64 x 360

pixels is labeled as low resolution UPOL database for experimental purpose. Features

from blocks of width 2i, with 6≤ i ≤ 9 on UPOL and 6≤ i ≤ 8 on low resolution UPOL

and CASIA-IrisV3-Interval database are extracted for the purpose of texture analysis as

discussed in the following sections.
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2.10 Experimental Evaluation

In order to evaluate the results of classification the database is split to two sets:

train set and test set. The left irises are used for training and right irises for testing.

Each of the iris images in both the sets are subjected to segmentation, normalization,

enhancement, and feature extraction. The features of the train set are used to obtain the

pre-determined cluster classes. Experiments are evaluated for number of clusters nc =, 3

and 5. Figure 2.10 shows the examples of samples in each class.

Figure 2.10: Examples of irises in the 5 clusters

The block location considered for test set is the same as the block location considered

during the training phase of creating texture classes. The test set consists of multiple

samples for each subject in the database. During testing a randomly selected sample of a

subject is used to determine the class assigned to the subject. The remaining samples of

the same subject are used for testing. In cases of subjects with only one sample, we do

not use the subject in the test set. The classification is correct if the remaining samples

of a subject are assigned to the same class as the first random sample. Figure 2.11 shows

the way the experiments are evaluated. In order to evaluate the We perform decision level

fusion and feature level fusion and evaluate the classification accuracies. The decision level

two independent iris blocks are considered for testing and correct classification of iris using

any of the blocks results in correct classification of the iris. On the other hand feature

level fusion, fuses the features extracted from two iris blocks and performs classification.

As mentioned earlier the features extracted from the original and synthetic iris textures
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Figure 2.11: Our approach for iris classification

are classified based on minimum distance rule using centroid based classification scheme

and K-Nearest Neighbor classification scheme. Three experiments are performed:

i. Classifying an iris using features from only one block of the iris.

ii. Feature level fusion: Classifying an iris by concatenating two feature sets extracted

from two different blocks- One from the original iris and the other from another block

of the original iris or from the synthetic image.

iii. Decision level fusion: Classifying an iris by performing independent classification on

the features extracted from two blocks of same dimension. One set of features is from

the original iris image and the other is either from the synthesized iris image or a

different region from the original iris.

Figure 2.12 shows the outline of the three experiments conducted. Experiment I is

shown in 2.12(a), experiment II is shown in 2.12(b) and experiment III is illustrated

in 2.12(c).

The results of K-nearest neighbor classification scheme are not included as it per-

formed equivalently to the centroid based classification scheme. It was observed that for

experiments 2 and 3 the feature vector fsynth from the synthetic iris texture performed

similarly as the feature from the original texture forig. the fsynth is similar to forig since
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(a) Experimental setup for experiment I

(b) Experimental setup for experiment II

(c) Experimental setup for experiment III

Figure 2.12: Experimental Setups for experiment I 2.12(a), experiment II 2.12(b) and
experiment III 2.12(c)
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the synthesis of an image uses the criteria that the expected values of the constraints or

features of the synthesized image is similar to the values, ck of the original image. This is

because the synthesis of texture was performed such that the textural features extracted

both from original and synthesized texture are similar. For simplification these results

are not included.

Experiment 1

In this experiment, the features from each block of the original texture are considered

for classification. A set of blocks with the same width are numbered incrementally starting

from 1. The numbering of blocks proceeds from left to right of the normalized iris. The

accuracy of the classifier is evaluated for features from each block. Following are the

results on UPOL, low resolution UPOL and CASIA-IrisV3-Interval database for 3 and 5

clusters.

The following tables show the results of classification for each of the blocks with

different column sizes or widths.

Table 2.1 has the results for experiment 1 on the UPOL database, which are classified

by comparing the query feature vector with centroids of clusters. This is done for a pre-

determined number of 3 and 5 clusters. Table 2.2 shows the results of classification on

the low resolution UPOL database and Tables 2.3 shows the results on the CASIA-Irisv3-

interval database.

Experiment 2

The features from two different blocks (fB1, fB2), are fused to form one feature vector

fB1B2. Training and testing is performed on the fused feature sets. Experiments are

performed on all three databases. The performance on feature level fusion did not show

any improvement over the results of classification using just one block and is therefore

redundant. Thus results on UPOL database are not included.

Tables 2.4, 2.5 show the results for top 3 classification accuracies obtained for combina-

tion of two features for the classification of iris texture on low resolution UPOL databse

for 3 and 5 clusters respectively. Results for CASIA-IrisV3-Interval database is shown

in 2.6, 2.7
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Table 2.1: Exp1 : Results of classification experiment to 3 and 5 clusters using features
extracted from each of the iris blocks from the UPOL database

Region number Number of clusters, nc

nc = 3 nc = 5
Column size 64

1 87.50 78.91
2 89.84 78.13
3 85.94 82.03
4 83.60 86.72
5 79.69 75.00
6 88.28 75.78
7 82.81 78.91
8 82.81 79.69
9 80.47 79.69
10 73.44 72.66
11 87.50 78.91
12 88.28 85.16
13 78.91 66.41
14 83.60 75.00
15 71.88 65.63
16 75.78 66.41
17 78.91 71.09
18 67.19 67.19
19 77.34 69.53
20 75.78 69.53
21 82.03 78.91

Column size 128
1 92.18 82.03
2 85.16 82.81
3 90.63 78.91
4 84.38 78.13
5 88.28 81.25
6 84.38 77.34
7 73.44 71.88
8 75.00 72.66
9 78.12 69.53
10 79.69 64.84

Column size 256
1 87.50 84.38
2 91.41 79.69
3 83.59 72.66
4 72.66 64.84

Column size 512
1 85.16 78.91
2 85.94 69.53
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Table 2.2: Exp1 : Results of classification experiment to 3 and 5 clusters using features
extracted from each of the iris blocks from the low resolution UPOL database

Region number Number of clusters, nc

nc = 3 nc = 5
Column size 64

1 92.18 85.15
2 88.28 78.90
3 87.50 84.37
4 85.15 83.59
5 81.25 75.00
6 82.03 71.88
7 83.60 72.66
8 77.34 69.53
9 78.13 70.31
10 79.69 73.44

Column size 128
1 90.63 78.91
2 82.81 73.44
3 75.78 73.44
4 83.60 74.22

Column size 256
1 78.91 75.78
2 82.03 66.41
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Table 2.3: Exp1 : Results of classification experiment to 3 and 5 clusters using features
extracted from each of the iris blocks from the CASIA-IrisV3-Interval database

Region number Number of clusters, nc

nc = 3 nc = 5
Column size 64

1 61.50 50.45
2 62.66 49.29
3 66.31 43.85
4 60.87 45.81
5 56.51 51.43
6 63.81 52.41
7 65.33 52.32
8 64.71 48.84
9 65.86 51.88
10 64.62 54.19

Column size 128
1 56.51 46.08
2 58.82 51.78
3 64.44 52.14
4 65.78 51.69

Column size 256
1 66.49 53.12
2 64.35 53.03
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Table 2.4: Exp2 : Results of classification of low resolution UPOL database to 3 clusters.
The features of two blocks are fused before classification

Column size 64
ROI2/ROI1 1 3 2

1 - - -
2 85.16 - -
3 80.47 75.78 -
4 78.91 75.78 -
5 77.34 79.69 68.75
6 76.56 78.12 60.94
7 78.12 82.81 76.56
8 79.69 82.03 69.53
9 76.56 73.44 74.22
10 81.25 77.34 82.81

Column size 128
ROI2/ROI1 1 3 2

1 - - -
2 72.66 - -
3 78.12 - 68.75
4 78.91 78.12 60.16

Column size 256
ROI2/ROI1 1

1 -
2 79.69



CHAPTER 2. IRIS TEXTURE CLASSIFICATION 45

Table 2.5: Exp2 : Results of classification of low resolution UPOL database to 5 clusters.
The features of two blocks are fused before classification

Column size 64
ROI2/ROI1 1 2 4

1 - - -
2 87.50 - -
3 82.81 - 85.94
4 92.19 85.94 83.59
5 89.84 85.16 77.34
6 83.59 82.03 84.38
7 78.91 73.44 85.94
8 84.38 78.91 82.81
9 77.34 78.12 82.81
10 82.03 89.84 87.50

Column size 128
ROI2/ROI1 1 3 2

1 - - -
2 89.84 - -
3 82.03 - 82.03
4 79.69 83.59 66.41

Column size 256
ROI2/ROI1 1

1 -
2 85.94
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Table 2.6: Exp2 : Results of classification of CASIA-IRISV3-Interval database to 3 clus-
ters. The features of two blocks are fused before classification

Column size 64
ROI2/ROI1 7 4 2

1 - - -
2 - - -
3 - - 60.52
4 - - 57.22
5 - 56.60 56.68
6 - 62.66 63.46
7 - 60.07 61.94
8 67.74 66.84 66.67
9 61.14 63.19 63.19
10 63.37 62.03 65.51

Column size 128
ROI2/ROI1 3 2 1

1 - - -
2 - - 58.91
3 - 59.98 55.35
4 62.83 61.59 59.54

Column size 256
ROI2/ROI1 1

1 -
2 57.22
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Table 2.7: Exp2 : Results of classification of CASIA-IRISV3-Interval database to 5 clus-
ters. The features of two blocks are fused before classification

Column size 64
ROI2/ROI1 8 9 5

1 - - -
2 - - -
3 - - -
4 - - -
5 - - -
6 - - 54.01
7 - - 51.25
8 - - 51.16
9 52.67 - 53.03
10 55.53 55.08 51.07

Column size 128
ROI2/ROI1 3 1 2

1 - - -
2 - 46.08 -
3 - 50.18 50.00
4 51.87 46.26 49.73

Column size 256
ROI2/ROI1 1

1 -
2 51.16
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Experiment 3

Here features from two different blocks are classified independently. That is, each

iris block from a users normalized iris undergoes testing phase independently. A texture

is considered to be correctly classified if either of the test features from two different

blocks of the same user are labeled to the class the users first sample was assigned. For

example, consider two iris blocks from a subjects first sample used for class assignment

have two feature vectors (Utr1, Utr2), and the blocks from a test sample have feature

vectors (Ute1, Ute2) respectively. If the random features are assigned to class A and B

during class determination for the user, then the test features are correctly classified if

either Ute1 is assigned to class A or Ute2 is assigned to class B. Here, the classification

accuracy for combinations of different blocks with same widths is evaluated. In the tables,

ROI1 and ROI2 correspond to the location from which the blocks are extracted for the

purpose of classification. The results are provided for the top 3 combinations of blocks

for classification. The ‘-’ represent no classification is done for those regions as they are

redundant in the evaluation of classification accuracy.

Tables 2.8, 2.9 show the results of classification for 3 and 5 clusters on the UPOL

database. The two features used are from two different blocks of the original texture.

Table 2.10, 2.11 show the results of classification on the low resolution UPOL database and

Table 2.12, 2.13 show the results of classification on the CASIA-IrisV3-Interval database

for 3 and 5 clusters respectively.

2.11 Analysis of Experimental Results

The goal of experiment1 was to determine if regions with smaller widths can be used

for the purpose of classification. It is observed from all three databases that we obtain

comparable classification accuracies for blocks with different widths. Apart from this it

is also observed that performance either remains constant or decreases with increasing

widths. The classification accuracies for 5 clusters with width 64 shows that the regions

with low performance could be due to the noisy regions such as eyelids and eyelashes.

This shows that in case of a noisy database it helps to perform classification by extracting

features from regions corresponding to iris texture. Figure 2.13 illustrates an example of

the normalized UPOL, low-resolution UPOL and the CASIA-IrisV3-Interval database.



CHAPTER 2. IRIS TEXTURE CLASSIFICATION 49

Table 2.8: Exp3 : Results of classification of UPOL database to 3 clusters. Each block is
classified independently

Column size 64
ROI2/ROI1 7 1 2

1 - - -
2 - 96.88 -
3 - 96.88 98.44
4 - 98.44 96.09
5 - 96.88 99.22
6 - 98.44 98.44
7 - 96.88 98.44
8 99.22 99.22 99.22
9 96.09 97.66 97.66
10 90.63 92.97 96.88
11 100.00 99.22 98.44
12 100.00 99.22 98.44
13 92.97 94.53 98.44
14 96.88 98.44 97.66
15 94.53 98.44 94.53
16 93.75 96.09 96.09
17 92.19 97.66 98.44
18 93.75 96.88 98.44
19 96.88 95.31 95.31
20 92.19 96.88 98.44
21 97.66 94.53 95.31

Column size 128
ROI2/ROI1 1 3 2

1 - - -
2 96.88 - -
3 100.00 - 99.22
4 99.22 96.09 98.44
5 98.44 99.22 96.09
6 99.22 96.09 95.31
7 98.44 96.88 94.53
8 98.44 98.44 96.09
9 99.22 100.00 97.66
10 96.88 99.22 92.19

Column size 256
ROI2/ROI1 2 1 3

1 - - -
2 - 96.88 -
3 96.88 95.31 -
4 97.66 96.09 91.41

Column size 512
ROI2/ROI1 1

1 -
2 93.75
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Table 2.9: Exp3 : Results of classification of UPOL database to 5 clusters. Each block is
classified independently

Column size 64
ROI2/ROI1 3 4 5 2

1 - - - -
2 - - - -
3 - - - 92.19
4 97.66 - - 95.31
5 93.75 96.88 - 96.10
6 99.22 95.31 92.97 96.10
7 97.66 96.88 93.75 91.41
8 97.66 95.31 96.88 96.10
9 96.88 97.66 96.10 95.31
10 96.88 94.53 91.41 96.10
11 98.44 94.53 94.53 96.88
12 96.10 96.88 98.44 96.88
13 92.19 98.44 94.53 91.41
14 96.10 93.75 92.19 92.97
15 96.88 92.97 91.41 92.19
16 91.41 95.31 90.63 92.19
17 95.31 94.53 89.84 92.97
18 94.53 92.97 92.97 94.53
19 96.88 97.66 93.75 97.66
20 94.53 94.53 92.97 94.53
21 96.88 96.10 93.75 96.88

Column size 128
ROI2/ROI1 1 2 3 4

1 - - -
2 97.66 - -
3 91.41 95.31 -
4 94.53 95.31 92.97
5 95.31 94.53 96.09
6 96.88 96.88 96.09
7 95.31 94.53 96.094
8 94.53 91.41 92.19
9 90.63 93.75 91.41
10 94.53 94.53 92.19

Column size 256
ROI2/ROI1 1 2 3

1 - - -
2 92.97 - -
3 94.53 90.62 -
4 92.19 92.19 88.28

Column size 512
ROI2/ROI1 1

1 -
2 87.5
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Table 2.10: Exp3 : Results of classification of low resolution UPOL database to 3 clusters.
Each block is classified independently

Column size 64
ROI2/ROI1 3 1 2

1 - - -
2 - 98.44 -
3 - 99.22 98.44
4 100.00 98.44 97.66
5 96.88 99.22 98.44
6 98.44 96.88 96.88
7 98.44 96.88 99.22
8 97.66 98.44 96.09
9 97.66 93.75 96.09
10 98.44 98.44 96.88

Column size 128
ROI2/ROI1 1 2 3

1 - - -
2 99.22 - -
3 96.88 98.44 -
4 98.44 96.09 95.31

Column size 256
ROI2/ROI1 1

1 -
2 96.09
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Table 2.11: Exp3 : Results of classification of low resolution UPOL database to 5 clusters.
Each block is classified independently

Column size 64
ROI2/ROI1 1 2 3

1 - - -
2 96.09 - -
3 97.66 92.97 -
4 95.31 96.09 93.75
5 96.88 93.75 96.09
6 94.53 92.97 93.75
7 92.19 92.19 92.19
8 90.63 90.63 94.53
9 92.97 93.75 95.31
10 93.75 96.09 96.09

Column size 128
ROI2/ROI1 1 2 3

1 - - -
2 96.09 - -
3 93.75 95.31 -
4 93.75 90.63 89.06

Column size 256
ROI2/ROI1 1

1 -
2 87.50
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Table 2.12: Exp3 : Results of classification of CASIA-IrisV3-Interval database to 3 clus-
ters. Each block is classified independently

Column size 64
ROI2/ROI1 1 2 6

1 - - -
2 84.58 - -
3 88.77 86.45 -
4 86.36 85.65 -
5 81.99 83.87 -
6 84.67 85.03 -
7 86.54 86.45 85.47
8 84.58 88.50 87.25
9 83.24 85.91 86.63
10 84.04 85.65 86.90

Column size 128
ROI2/ROI1 3 1 2

1 - - -
2 - 74.51 -
3 - 84.58 81.91
4 84.76 84.31 84.22

Column size 256
ROI2/ROI1 1

1 -
2 81.02
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Table 2.13: Exp3 : Results of classification of CASIA-IrisV3-Interval database to 5 clus-
ters. Each block is classified independently

Column size 64
ROI2/ROI1 2 6 7

1 - - -
2 - - -
3 69.61 - -
4 68.36 - -
5 74.78 - -
6 78.2531 - -
7 76.92 72.73 -
8 74.42 75.58 72.73
9 75.76 76.29 76.56
10 76.47 76.92 75.31

Column size 128
ROI2/ROI1 1 3 2

1 - - -
2 65.95 - -
3 71.39 - 71.84
4 75.04 75.04 72.10

Column size 256
ROI2/ROI1 1

1 -
2 72.91
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(a) UPOL

(b) low-resolution UPOL

(c) CASIA-IrisV3-Interval

Figure 2.13: Examples of normalized iris images in the database
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In order to understand the performance of the algorithm on a low resolution database,

images in the UPOL database are downsampled to the size of images in the CASIA-IrisV3-

Interval database. It is observed that with the decreasing resolution, the classification

accuracy decreases. A similar trend is observed in all three experiments.

In the case of experiment 2 (Feature level fusion) the maximum accuracy achieved by

fusing features extracted from blocks of irises of similar widths is lesser than the maximum

accuracy accomplished using just one iris block. This could be accounted to decrease in

discriminativeness due to direct fusion of features.

For experiment 3 (decision level fusion) it is clearly seen that fusing the result of

classification of an iris sample at the decision level using two different blocks increases the

performance to a large extent. The advantage of performing independent classification is

that we take advantage of features from two different blocks which may be discriminative.

It is observed that the classification accuracies achieved using decision level fusion is equal

to or higher than the maximum accuracy achieved using only one region for classification.

Further analysis and experimentation is required to find which iris blocks result in better

classification.

2.12 Summary and future work

The experiments show a promise in grouping iris texture based on statistical texture

analysis and are successful in correctly assigning samples of an iris to a cluster. The

above experiments show that small iris blocks can be used for the purpose of iris texture

classification. It is also observed that the resolution of the original iris image and size

of the blocks considered for feature extraction affect the classification accuracy. Also the

experiments to some extent show that the classification performance decreases when using

blocks of iris containing noise such as eyelashes and eyelids, compared to block containing

only the iris texture.

Other types of analysis can be performed for texture classification using the proposed

method:

a In experiment 1, though UPOL database is of high resolution and the iris is not occluded

due to eyelids and eyelashes, very high classification rates were not observed. One reason
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could be due to down sampling the ROI for computational purpose. The iris texture

classification can be analyzed at more scales and at higher resolution resulting in feature

vectors of higher dimensions.

b Though we observe that the blocks of iris with no occlusion give better performance,

it is required to probe into the reason for difference in performance for different blocks

of same width and identify the best ROI for iris classification.

c Further analysis can be performed on feature selection in the feature level fusion for

better performance in grouping iris texture.
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Chapter 3

Detection of Macro Features

3.1 Introduction

Figure 3.1 illustrates the biometric recognition using indexing.

Figure 3.1: Identification using indexing

Rajiv Mukherjee [34, 35] in his work, discussed some of the iris indexing techniques

where iris texture is analysed to retrieve a small number of identities from the database

for the purpose of identifying the query image. This work explores anatomical structures

of the iris, such that detection and characterization of the anatomical structures referred
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to macro features may provide a novel set of features for iris recognition and indexing or

image retrieval.

Iris characteristics such as pigmentation spots, nevi, and freckles as discussed in Chap-

ter 1 are the macro features proposed to be detect. The successful detection and repre-

sentation of these macro features may provide a new set of landmark or minutiae points,

which can be used for iris recognition (by obtaining corresponding minutiae points be-

tween two images) and to retrieve only those images from the database which have these

macro features at a certain location with certain characteristics. Figure 3.2 shows an

example of the macro features proposed to be detected and characterized using centroids.

Figure 3.2: Example of macro features

In this thesis we look at anatomical structures of the iris. The features such as freckles,

nevi and other pigmentation features such as sectoral heterochromia in the iris are referred

to as macro features. These features are usually not permanent and are observed in pa-

tients from the age group of 40 [13], yet these may be sufficient enough to differentiate two

irises with macro features at different locations in iris and with different characterization.

In addition these structures are not present in every iris giving the advantage for use in

image retrieval based on these macro features. For the purpose of recognition or image

retrieval these features first need to be detected in an iris. Characteristics and challenges

associated with the detection of macro features may provide better understanding of the
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techniques used for the purpose of detection.

3.1.1 Characteristics of macro features

The detection approaches can better be handled by understanding the characteristics

of these macro features in terms of image processing. High resolution color images are

used in this thesis.

• Size - The macro features vary in size from the order of few tens of pixels to thou-

sands of pixels.

• Color - The color of the macro features within a single iris is not constant. The

macro features usually are characterized with colors from light orange, yellow to

dark brown.

• Texture - Unlike the texture of moles and blob like structures, the texture within the

area of the feature of interest is not always homogeneous. The texture also varies

across macro features within the same iris and across different irises. But texture is

usually smooth and pigmented compared to the iris texture.

• The color and texture of macro features is similar to texture of other iris character-

istics such as pupillary frill, crypts. Also the color and texture of macro features is

similar to the color and texture of other colored irises. For example, some macro

features are similar in color and texture to certain brown colored irises.

• Compared to blue colored irises, the contrast between brown colored iris texture

and a potential macro feature is low.

Due to these characteristics of the macro features, traditional image processing detec-

tion techniques fail to detect and localize the macro features. Following are some of the

challenges associated with the detection techniques.

Challenges associated with the detection techniques for macro

features

1. Texture based detection of macro features : Many regions in the iris have the same

texture and intensity as the macro features, for example, the pigmented anterior
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layer exposed due to crypts and the pupillary frill. In addition it is not possible

to eliminate erroneous regions detected based on size due to the variable size and

shape of the macro features.

2. Traditional edge detection based on intensity : The iris is a highly textured image

as can be observed by the scales defined by Mats Larsson [19] to classify iris. With

the change in texture of iris, distinguishing the edges of macro features from the

edges in the iris gets complicated. Increase in complexity to distinguish the edges

associated with macro features from the spurious edges due to radial furrows and

crypts can be observed for blue eyes (refer to figure 3.3). In the case of brown eyes

it is observed that due to low contrast the edge detection algorithms fail.

The rest of this chapter discusses the approaches studied and evaluated for the purpose

of detection of macro features from the textured iris background. Also the ability of partial

iris matching using multi-scale local minutiae points is demonstrated. Furthermore the

ability of macro features to perform image retrieval is discussed.

3.2 Proposed approach

The macro features correspond to either small regions in the iris or regions correspond-

ing to a sector in the iris. The macro features typically correspond to image discontinuities

such as color, texture and intensity. We propose to extract regions corresponding to the

image discontinuities due to color, texture and intensity, but due to the presence of other

anatomical structures such as crypts and radial furrows, spurious detections are obtained.

Finally classification is performed to obtain detections corresponding only to the macro

features. Features are extracted from the neighborhood of the detections for the purpose

of classification.

Due to the variable factors such as size, texture and shape, we propose two approaches

namely region based approach and multi-scale approach. In the region based approach,

an iris image is partitioned to small regions based on image discontinuities and select

few regions corresponding to high magnitude of image discontinuity. On the other hand,

multi-scale approach detects local feature points or extremum points corresponding to

image discontinuities of different sizes. Features extracted from the regions selected or a
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(a)

(b)

Figure 3.3: Example of (a) blue iris (rich in texture), (b) brown iris (low contrast iris )
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local neighborhood around the extremum points are subjected to unsupervised clustering

in order to classify image discontinuities detected due to macro features from spurious

features.

3.3 Feature Extraction

Feature extraction is the process of extracting discriminating features for each of the

detections obtained. Due to the non-homogeneous nature of iris texture we have regions

corresponding both to the macro features and regions belonging to iris texture. The

features that are extracted from each of these regions are color, statistical textural features

computed directly on the gray scale image or from filtered responses of the image as

discussed in chapter 2. Some of the statistical features computed for a region with L

possible intensity levels represented with the random variable zi and the pixel intensity

histogram p(z) are:

Mean, m =
L−1∑
i=0

zip(zi)

Standard deviation σ =
√

µ2(z) =
√

σ2, µ2 is the second moment

Smoothness R = 1− 1

(1 + σ2)

Third-moment µ3 =
L−1∑
i=0

(zi −m)3p(zi)

Uniformity U =
L−1∑
i=0

p2(zi)

entropy e = −
L−1∑
i=0

p(zi) lg2 p(zi)

The above textural measures can be computed on the gray scale image along with other

higher order moments. The mean - measures the average intensity, standard deviation -

measures the average contrast, R - measures the smoothness of a region and is zero for

regions with constant intensity and 1 for regions with large excursions, third moment -

measures the skewness of the histogram, uniformity measures the uniformness in a region



CHAPTER 3. DETECTION OF MACRO FEATURES 64

and is maximum when all gray levels in a region are constant, and the entropy measures

the randomness in a region. A subset of these textural measures or the entire set of

textural features extracted may be used for classification.

3.4 Region Based Approach

3.4.1 EdgeFlow based segmentation

Segmentation is the process of partitioning an image to indexed region map such that,

each region is homogeneous in terms of the features or attributes describing the region,

and that each region has well defined boundaries. Traditional segmentation algorithms are

based on texture or grayscale images. The images are segmented using the gradient of an

image (discontinuities in intensity), unsupervised clustering of pixels or by characterizing

the texture and classifying the texture to different classes. The texture features are usually

computed on grayscale images or filtered outputs of an image as described in chapter 2.

The pigmentation features desired to be captured have different pigmentation from the

color of the iris and in some cases different texture from the iris. We choose to segment

images using both color and texture features according to [49]. The boundaries of indexed

regions are not detected from the gradient of an image. The boundaries are rather detected

indirectly by computing the flow direction at each pixel location pointing to the nearest

boundary and then localizing boundaries at locations that encounter opposing directions

of edge flows. Edge flow vector is defined at each pixel location using a predictive model

identifying the direction of change of color and texture attributes at a given scale σ, where

σ is the user input defining the resolution at which the boundary detection and image

segmentation is performed. An edge flow in general at an image location ‘s’ with an

orientation θ is defined as:

F (s, θ) = F [E(s, θ), P (s, θ), P (s, θ + π)], where

1. E(s,θ) is the edge energy at location ‘s’ along the orientation ‘θ’, measuring the

energy corresponding to the change of local image information with respect to color

or texture.

2. P(s, θ) is the probability of finding the image boundary if the corresponding flow at
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location ‘s’ flows in the direction of ‘θ’.

3. P(s, θ + π) is the probability of finding image boundary if the flow at location ‘s’ is

in the opposite direction (θ + π).

The edge energy is computed for each of the attributes considered namely, color and

texture at each pixel location and is iteratively propagated to the neighboring pixels if

they have the same direction of flow. A region boundary is detected if two image locations

have opposite direction of edgeflows.

In order to compute the edge flow vectors, the edge energies are computed from filtered

responses of image I(x,y) for each attribute. The intensity edge flow is computed as the

magnitude of the gradient of the Gaussian smoothed image Iσ(x, y) along the orientation

θ at scale σ.

E(s, θ) =

∣∣∣∣ ∂

∂n
[I(x, y) ∗Gσ(x, y)]

∣∣∣∣ = |I(x, y) ∗GDσ,θ(x, y)| = |Iσ(x, y)|

Here ‘s’ is the location (x,y) and n is the unit vector in the direction of the gradient. The

probability of finding the nearest boundary is computed for two directions namely θ and

θ+π at location ‘s’ for each of the edge energies along the orientation θ. The probabilities

are computed from the prediction errors of the neighbors at location ‘s’ in the direction θ.

That is the neighbors in the direction θ should have similar intensity if they belong to the

same object, and higher the prediction error in a direction θ higher is the probability of

finding a boundary in that direction. The prediction error and probabilities of edge flow

direction along θ at a prediction distance d, such that d = 4σ, are computed as follows,

Error(s, θ) = |Iσ(x + dcosθ, y + dsinθ)− Iσ(x, y)| = |I(x, y) ∗DOOGσ,θ(x, y)|

P (s, θ) =
Error(s, θ)

Error(s, θ) + Error(s, θ + π)

Difference of offset Gaussian (DOOG), is the difference between two Gaussian convo-

luted images separated by a constant ‘d’. Texture edge flow is computed on the same

lines. The texture is captured from the image decomposition using bank of Gabor filters.

The bank of Gabor filters are generated according to the scale parameter provided by the

user. The lowest frequency Ul of the Gabor filters is set to 1
4σ

cycles/pixel and the highest



CHAPTER 3. DETECTION OF MACRO FEATURES 66

Uh is set to 0.45 cycles/pixel. The mother complex Gabor filter is defined as,

g(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
· exp[2πjWx], with W = Uh

A bank of Gabor filters is obtained by appropriate dilations and rotations of g(x, y)

using,

gmn(x, y) = a−mg(x′, y′), with a>1, and m,n = integer

x′ = a−m(xcosθ + ysinθ),

y′ = a−m(−xsinθ + ycosθ),

with θ = nπ
K

and K is the total number of orientations, a = (Uh/Ul)
1

S−1 and S is the total

number of scales in the multi resolution decomposition and m = 0, 1, ...S − 1.

The images are decomposed using the Gabor filter bank such that I(x, y) ∗ gi(x, y) =

mi(x, y) exp[φi(x, y)], where 1 ≤ i ≤ N , and N = S.K is the total number of filters.

mi(x, y) is the amplitude of the subbands at each location (x,y). The texture edge energy

measuring the change in local texture information is given by,

E(s, θ) =
∑

1≤i≤N

|mi(x, y) ∗GDσ,θ(x, y)| .wi

where wi = 1/‖αi‖ and ‖αi‖ is the total energy of the subband ‘i’. The probabilities of

the direction of edgeflow are computed from the weighted sum of the prediction errors at

each location (x,y) from each of the subbands:

Error(s, θ) =
∑

1≤i≤N

|mi(x, y) ∗DOOGσ,θ(x, y)| .wi,

P (s, θ) =
Error(s, θ)

Error(s, θ) + Error(s, θ + π)

The edge flows from each attribute are combined to form a single edge flow vector. In

case of color images the intensity edge flow is computed on each of the color bands and

the texture edge flow is computed on the illuminance component, which is the average of
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all three subbands. The single edge flow is obtained as,

E(s, θ) =
∑
a∈A

Ea(s, θ).w(a), and
∑
a∈A

w(a) = 1

P (s, θ) =
∑
a∈A

Pa(s, θ).w(a)

where a is the image attributes color, texture and Ea(s, θ) and Pa(s, θ) are the edge en-

ergy and the probability of edge flow at location ‘s’ along direction ‘θ’ obtained from each

attribute considered for the purpose of segmentation. For an image the edge flow vector at

each location is computed along direction ranging from 0 to π, that is {F [E(s, θ), P (s, θ), P (s, θ+

π)]|0≤θ<π}. The final set of edge flow direction to be searched for nearest boundary at

each location ‘s’ is obtained by identifying a continuous range of flow directions which

maximizes the sum of probabilities in the half plane considered, that is

Θ(s) = arg max
θ

 ∑
θ≤θ′<θ+π

P (s, θ
′
)


and the final edge flow F at the location ‘s’ is given as a vector sum of edge flows at

location ‘s’ along the continuous range of directions identified such that the magnitude

represents the edge energy and angle represents the flow direction,

F (s) =
∑

Θ(s)≤θ<Θ(s)+π

E(s, θ).exp(jθ)

The edge flows at each location are propagated iteratively to the neighboring pixel

in the direction of edge flow if both the pixels under consideration have similar flow

direction which is an angle less than 90 degrees. Once the edge flows reach a stable

state, the edges are identified at pixel locations which have two edge flows opposing

each other, resulting in disconnected edges. A boundary connection and region merging

algorithm is used to obtain final indexed regions which are homogeneous in terms of the

attributes considered for the purpose of segmentation according to [49]. Figure 3.4 shows

the result of performing edge flow based segmentation and its corresponding indexed map

on normalized iris.
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Figure 3.4: Left: Result of edgeflow based over segmentation on each normalized iris,
Right: Corresponding indexed segmentation map

The next section provides a brief introduction on detection of image discontinuities

using intensity edge detection and the extension of edge detection to colored images.

3.4.2 Color edge detection

Edge detection is the process of detecting image discontinuities. The visual disconti-

nuities observed could be due to intensity or texture. The discontinuities are measured

directly on grayscale in case of intensity or from filtered responses of image in case of tex-

ture. Some of the ways in which textural discontinuities have been measured are with the

use of textural filters such as laws filter, discrete wavelet transforms (DWT), Gabor filters.

The filtered responses are subjected to any classifier in order to obtain segmented regions

or are subjected to boundary detection technique as mentioned in the previous section.

In case of measuring intensity based discontinuities the grayscale image is subjected to

filters for example directional edge operators such as Roberts filter, Prewitt filter at 0,

45, 90, 135, 180, 225, 270, 315, 360 degrees. These filters measure the intensity difference

between center pixel of the filter and pixels spaced at a distance of ‘d’ pixels in each of

the direction considered. Shown in Tables 3.1, 3.2 are examples of Sobel and Prewitt’s

filter at 0 and 90 degrees measuring the intensity difference between pixels around the
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center pixel in the horizontal and vertical direction spaced at a distance of one pixel from

the center pixel.

Table 3.1: Sobel filter

-1 -2 -1
0 0 0
1 2 1

-1 0 1
-2 0 2
-1 0 1

Table 3.2: Prewitt filter

-1 -1 -1
0 0 0
1 1 1

-1 0 1
-1 0 1
-1 0 1

The edge detection is computed at the center pixel as a result of convolution of the

filter with the image. These filters can be extended to compute the pixel differences in all

directions such as 0, 45, 90, 135, 180, 225, 270, 315, 360 degrees as shown in Table 3.3.

Table 3.3 computes pixel differences between two pixels which are spaced one pixel apart.

But it can be extended to compute pixel differences between two pixels space d pixels

apart in the 8 directions. The edge detector then can be defined as,

edge = max
i=1..8

(X0 −Xi)

where X0 is the center pixel at which the edge is computed and Xi are the 8 neighboring

pixels.

Table 3.3: Filter measuring the difference for the 8 neighbors

-1 -1 -1
-1 1 -1
-1 -1 -1

These filters are applied on grayscale images. These can be extended to color images

or indexed images. Indexed images can be visualized as a stack of multiple grayscale
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components. For example an RGB color image is an indexed image with red, green and

blue representing each component of an indexed image. Each pixel in an indexed image is

represented as I(x,y,z) where ’z’ represents the indexed component and (x,y) provide the

spatial coordinates of a pixel in the indexed component. Figure 3.5 shows the arrangement

of an indexed RGB image of size 5 x 5 x 3, where 3 indicates the three components of an

RGB image.

Figure 3.5: Indexed RGB image

Other examples of indexed images are Lab, HSV, HSI. These are color models which

measure the color information. Each of the color spaces can be obtained directly from

the (sRGB) standard RGB or from other colorspaces. sRGB is the color model used

for computer based applications. CIE Lab color space is obtained from the CIE XYZ

colorspace derived from the sRGB image. L measures the luminosity and a, b measure

the variations of red versus green and yellow versus blue. Hue Saturation Value (HSV)

color space is derived directly from the sRGB image. Hue measures the pure color value

ranging from 0-360 and saturation measures the intensity of the color varying from 0-1, and

value measures the brightness with 0 representing black and 1 representing the brightness

or the saturated color. CIE lab and HSV colorspaces are obtained as follows [50],

If RGB are the components of sRGB then the normalized [rgb] components are ob-

tained as follows
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r =

{
R/12.92, R ≤ 0.0405,

(R+0.055
1.055

)2.4, R > 0.04045,

g =

{
G/12.92, G ≤ 0.0405,

(G+0.055
1.055

)2.4, G > 0.04045,

b =

{
B/12.92, G ≤ 0.0405,

(B+0.055
1.055

)2.4, B > 0.04045,

The CIE XYZ color transformation and the CIE Lab transformation are obtained as

follows,

[XY Z] = [rgb] [M ] ,

If (xr, yr), (xg, yg), (xb, yb) represent the chromaticity coordinates and (XW , YW , ZW )

be the coordinates of the white point of the RGB system. The following values are

calculated as,

Xr = xr/yr,

Yr = 1,

Zr = (1− xr − yr)/yr,

Xg = xg/yg,

Yg = 1,

Zg = (1− xg − yg)/yg,

Xb = xb/yb,

Yb = 1,

Zb = (1− xb − yb)/yb,

[SrSgSb] = [XW YW ZW ]


Xr Yr Zr

Xg Yg Zg

Xb Yb Zb


−1
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The transformation matrix M is calculated as,

M =


SrXr SrYr SrZr

SgXg SgYg SgZg

SbXb SbYb SbZb


The Lab components are computed as,

L = 116fy − 16,

a = 500(fx − fy),

b = 200(fy − fx),

where,

fx =

{
3
√

xr, xr > ε,
κxr+16

116
, xr ≤ ε

,

fy =

{
3
√

yr, yr > ε,
κyr+16

116
, yr ≤ ε

,

fz =

{
3
√

zr, zr > ε,
κzr+16

116
, zr ≤ ε

,

xr =
X

Xr

yr =
Y

Yr

yr =
Y

Yr

ε =

{
0.008856, Actual CIE Standard
216

24389
, Intent of the CIE Standard
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κ =

{
903.3, Actual CIE Standard
24389

27
, Intent of the CIE Standard

The Xr, Yr, Zr are the reference of the white point in the CIE XYZ colorspace. In

the calculations the actual CIE standard is for the ε and κ.

The HSV color model is derived as,

H =



undefined, MAX = MIN,

60◦ G−B
MAX−MIN

+ 0◦, MAX = R and G ≥ B,

60◦ G−B
MAX−MIN

+ 360◦, MAX = R and G < B,

60◦ B−R
MAX−MIN

+ 120◦, MAX = G,

60◦ R−G
MAX−MIN

+ 240◦, MAX = B.

S =

{
0, MAX = 0,

1− MIN
MAX

, otherwise.

V = MAX.

This results in a vector representation for each pixel in an image. That is each pixel

is represented as an intensity vector V, with each element of the vector representing

the intensity of the pixel in each of the indexed components. For example in a colored

RGB image, vector (r,g,b) represents the intensity at a pixel location from each of the

indexed components red, green and blue. Grayscale intensity edge detection is extended

to indexed images by measuring the distance between two vectored pixels. Distances can

be measured using any of the distance metrics used to measure the distance between two

vectors. For example euclidean and vector angle distance are two metrics used to measure

the difference between two pixel vectors. Euclidean distance and vector angle distance for

two vectors U, V, with U = (u1, u2, u3) and V = (v1, v2, v3) are defined as follows

EuclideanDistance = ‖U−V‖

cos θ =
UTV

‖U‖‖V‖

sin θ =

(
1− (UTV)2

‖U‖‖V‖

) 1
2
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where, ‖ • ‖ is the L2 norm of the vector.

Euclidean distance and sine angle measure the dissimilarity between two color vectors,

where as cosine angle measures the similarity between two color vectors. Colors which vary

in intensity are referred as co-linear and colors which vary in hue or saturation are usually

separated by an angle. It is observed that vector angles capture small color differences

better than euclidean distance [51]. Also the convention is to represent non edges with

zero and cosine angle represents large angular differences with zero. On the other hand

sine angle is convenient as it represents collinear edges with zero angle and larger angle

have larger sine values [51]. An edge detector is then defined as the maximum of the 8

pixel color differences using one of the metrics discussed above. The edge is defined as,

edge = max
1=1..8

D(U,V)

where D is the distance metric used to compute the pixel color differences. In order to

detect the prominent edges or edges corresponding to color discontinuities in an image

we perform thresholding operation on the edges detected. Thresholds in our experiments

are determined empirically. Figure 3.6 shows examples of euclidean distance, sine angle

distance on an RGB iris images and the results of thresholding edge outputs using each

metric on the normalized examples shown for segmentation. The next section discusses

the multiscale method for the detection of macro features.

3.5 Mutiscale detection of macro features

The main objective of multi-scale approach is to detect a set of local interest points

from an image. These points are further used for the purpose of object recognition,

tracking, and other image matching tasks. Some of the interest point detectors are Harris

corner detector, Laplacian detector, and Difference of Gaussian (DoG) detector. The

Harris corner detectors detect regions with large gradients in all directions at a pre-

determined scale. In order to detect local keypoints in an image which are invariant to

scale changes of the image, the approach is extended to scale space [52]. This approach

relates to searching for stable features across all scales of an image, using a continuous

function of scale known as scale space. Gaussian function is observed to be the best scale-

space kernel [53]. A scale-space L(x, y, σ) is obtained by convolving the image I(x,y) with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.6: (a,b,c): Euclidean distance based edge detection, (d,e,f): Threshold operation
on Euclidean distance, (g,h,i): Vector Sine angle distance based edge detection, (j,k,l):
Threshold operation on Vector angle distance

a variable-scale Gaussian, G(x, y, σ).

G(x, y, σ) =
1

2πσ2
exp−(x2+y2)/2σ2

The most stable features are detected by the Laplace of Gaussian (LoG), compared

to all other detectors such as, gradient, Hessian and Harris corner detector [54]. The

scale normalized Laplace of Gaussian is defined as σ2∇2G, where G is the scale variable

Gaussian kernel. The difference of Gaussians between two scales which are separated by

a multiplicative factor k is defined as

D(x, y, σ) = G(x, y, kσ)−G(x, y, σ)

From the heat diffusion equation and finite difference approximation, the difference of
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Gaussian can be approximated to scale normalized Laplace of Gaussians multiplied by a

factor (k-1) [52], that is

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G

The difference of Gaussian scale space is defined as

DoG = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ)

The above implementation is easier as it is computed as a difference of the Gaussian

smoothed images.

The scale invariant feature transform based on DoG is used to detect regions with

intensity discontinuities of different scales or sizes.

3.5.1 Scale invariant feature transform (SIFT)

The scale invariant feature transform detects local interest points which are invariant

to scale and orientation. Which means that the points detected are stable at all scales

and are not affected by the change in view angle which is angle in which the image is

captured. The SIFT detections are obtained by first detecting the scale-space extrema

detections at each scale and each location of the image, filtering the extrema detections

based on stability, performing keypoint localization during which the location, scale of

the interest point that is scale at which it is detected and the orientation of the keypoint

is determined.

In order to detect the extrema points the initial image is incrementally convolved with

Gaussians to produce images separated with a constant k in scale space. In each octave

the difference of Gaussians are obtained by subtracting adjacent scales. Once an octave

is processed the Gaussian smoothed image with scale twice the initial value of sigma is

sampled by taking every second pixel in each row and column. Figure 3.7 shows the scale

space at each octave on the left and the difference of Gaussians of the image on the right.

Local extrema points are determined by checking for maxima or minima at each loca-

tion in the image. At each location a neighborhood defined as 8 neighbors in the current

image and 9 neighbors each in the images above and below the current image in the Dif-

ference of Gaussian images is checked for extrema (maxima or minima) points. Figure 3.8
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Figure 3.7: Left: Each octave of scale space is generated by repeated convolution of the
initial image with Gaussians. The Gaussian image is down sampled and the process is
repeated for the next octave. Right: Adjacent Gaussian smoothed images in each octave
is subtracted to produce the Difference of Gaussian images
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shows the neighborhood considered for each location. If a point is maximum or minimum

in the neighborhood considered it is considered as a local extrema.

Figure 3.8: The pixel marked X is determined as an extrema point by comparing it with
the 26 neighbors in the current DoG image and the DoG images above and below the
current image

Once the local extrema are detected the next step filters the sample points based on

the stability and fits the detected point to the near by data in order to compute the

location and scale of the sample point. Many points may have low contrast and may be

poorly localized along the edge. Such points are sensitive to noise and are filtered during

this process. The extrema points are localized by fitting a 3D quadratic function to the

local sample points to determine the interpolated location of the extrema points. This

involves Taylor expansion of the scale space function S = DoG(x, y, σ) upto quadratic

terms, which are shifted so that the origin is at the sample point, that is,

S(x) = S +
∂

∂x

T

x +
1

2
xT ∂2S

∂x2
x

where, S and its derivatives are evaluated at the sample point with the offset from the

sample point being x = (x, y, σ)T . The location of the extrema, x̂ is obtained by taking

the derivative of the function and setting it to zero,

x̂ = −∂2D−1

∂x2

∂S

∂x

The Hessian and derivative of S are obtained from differences of neighboring sample
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points. The resulting 3×3 linear system is solved and if the value of offset is greater than

0.5 in any dimension then the extremum is considered closer to a different sample point

and the sample point is changed and interpolation is performed around the new point.

The final offset x̂ is added to the location of the sample point to get the location of the

extremum.

The unstable extrema points with low contrast can be rejected by computing,

D(x̂) = D +
1

2

∂ST

∂x
x̂

If |D(x̂)| is less than 0.03 with the range of values of image pixels between [0,1], the

extrema is rejected as low contrast point.

Another filtering process is to remove points with low principal curvatures. That is

some extrema have strong response along the edge but are poorly localized and unstable to

noise. A poorly defined peak in the difference of Gaussian has large principal curvature

across the edge and a small principal curvature in the perpendicular direction. The

principal curvatures are computed from the Hessian matrix computed at the location and

scale of the keypoint by taking differences of neighboring sample points.

H =

[
DoGxx DoGxy

DoGxy DoGyy

]
The principal curvatures are proportional to the eigen values α and β, with α > β. In

order to discard keypoints with low principal curvatures in perpendicular direction to the

edge, two conditions are checked,

1 If the curvatures have different signs.

2 If the ratio of principal curvatures is above a threshold r, where r is the ratio given by

α = rβ.

These conditions are checked from the trace and determinant of the Hessian matrix.

The trace Tr(H) provides sum of eigen values and the determinant Det(H) gives the

product of the eigen values. If the determinant is negative it implies that the principal

curvatures have opposite signs and the keypoint is discarded. The ratio between trace

and determinant is proportional to the ratio between the principal curvatures as,
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Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(r + 1)2

r

The ratio of trace and determinant is miminum when the two eigenvalues are equal

and increases with increasing r, that is increasing ratio between the curvatures. Therefore

keypoints with the ratio of principal curvatures greater than a threshold are eliminated.

The experiments in this thesis use r = 10 and eliminate all those keypoints whose ratio

between trace and determinant of the Hessian matrix around the keypoint is greater than

the threshold r.

Orientation assignment

Each keypoint is represented using the spatial coordinates, scale of the Gaussian kernel

at which it was detected, and orientation of the keypoint. Orientation of the keypoint is

to assign a consistent orientation to the local extrema detected. This allows obtaining a

descriptor at the extrema detected (discussed in 3.7.1), relative to the orientation assigned

and results in a descriptor invariant to orientation. At this point, it is required to under-

stand orientation assignment to understand why multiple SIFT keypoints are generated

for a single object at the same location.

Using the scale of the keypoint we obtain the Gaussian smoothed image L. This allows

computations which are scale invariant. From the Gaussian smoothed image the gradient

magnitude m(x,y) and orientation θ(x, y) are computed at each location of the image.

The gradient magnitude and the orientations are computed using the pixel differences in

grayscale images as follows,

m(x, y) =
√

(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x + 1, y)− L(x− 1, y)))

An orientation histogram is computed around each keypoint detected with 36 bins

covering the range of 360 degrees for orientation. The samples within a region around

the keypoint are weighted by the gradient magnitude and a Gaussian - weighted circular

window with standard deviation equal to 1.5 times the scale of the keypoint or the scale

at which the keypoint is detected. This is done as the characteristic scale of the object
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detected is approximated to a circle with radius R =
√

sσkeypoint, where σkeypoint is the

Gaussian scale at which the keypoint is detected [55]. The highest peak in the histogram

is typically the orientation assigned to the keypoint. In some cases any other histogram

peak which is within 80% of the highest peak is used to generate a new keypoint at the

same location, with same scale and different orientation. For each of the peaks obtained

a parabola is fit to the 3 histogram values closest to the peak. This is done to best

interpolate the peak position or the orientation.

3.5.2 Database

The database used for the experiments is from the miles research. It is captured

using the coaxial biometric illuminator. This equipment produces images with uniform

illumination. The images are multispectral, high resolution color images in the standard

RGB domain captured using the Nikon digital SLR. Miles database used for experiments

consisted of 390 iris images with blue, hazel and brown iris with 1187 macro features

in total which have been marked manually. Figure 3.9 shows the distribution of macro

features across the database. The database is pre sorted from blue to brown irises. The

distribution shows that the brown irises have fewer macro features compared to blue and

green irises.

Figure 3.9: Distribution of macro features.
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3.6 Experiment

The iris images in the database are preprocessed such that the iris-sclera boundary and

iris-pupil boundary are localized manually and the iris is normalized using the Daugman’s

rubber sheet model. The macro features are detected on the normalized iris using region

based and multi-scale based approach. The accuracy of detection is evaluated using the

following experimental setups.

3.6.1 Experiment 1

Following is a brief description of the region based approach for the detection of macro

features.

Figure 3.10: Block diagram of Region based detection of macro-features

The normalized iris is converted to Lab colorspace and subjected to edge flow based

segmentation. Color edge detection is performed on the RGB colorspace using the vector

angle distance. The edges detected in the previous step correspond to both macro features

and non-macro features. The edges corresponding to non-macro features are detected due

to the limitation that the edge magnitude changes with the change in the color of iris,

change in the color of the macro features and the richness of iris texture specially in

blue colored iris requiring a change in threshold for edge detection. Thus further pruning

of the edges obtained as a result of edge detection is required. For further pruning

feature extraction is performed in regions encompassed by the edges detected. This is



CHAPTER 3. DETECTION OF MACRO FEATURES 83

performed in order to obtain features corresponding only to the regions corresponding to

the edges. The regions corresponding to the edges detected by color edge detection are

selected either by region growing or defining a fixed size of region at each of the edge

pixels resulting as an output of edge detection. Due to the variable size of the macro

features it is inappropriate to define a fixed size region around the edges corresponding

to a macro feature. Apart from this it is computationally expensive to perform region

growing around spurious edge detections. We choose to perform region selection by fusing

the results of image segmentation and edge detection. That is for each pixel obtained as a

result of edge detection, its corresponding segmented region is obtained from the indexed

segmentation map obtained as an output of edgeflow based segmentation. The features

are extracted from regions selected as a result of vector angle based edge detection on RGB

images. Figure 3.11 shows the result of performing region selection on edges detected using

euclidean and vector angle metric on RGB image for the example irises shown in figure 3.4.

A feature vector with the mean red, green, blue, hue and saturation is constructed for

each of the regions selected. The feature vectors are classified to 3 clusters using the

K-means algorithm. The cluster with the maximum macro features is selected manually

and the algorithm is evaluated to check the number of macro features detected in the

final cluster. The final evaluation is performed by evaluating the total number of macro

features present in the final cluster selected for each image.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: (a,b,c): Result of region selection on edges detected using euclidean distance,
(d,e,f): Result of region selection on edges detected using Vector angle distance

The edge detection was performed both on the RGB and LAB colorspaces using both

vector angle and euclidean distance. The thresholds were determined empirically. The
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vector angle distance on RGB colorspace resulted in comparatively lesser regions selected

and higher macro features selection. Figure 3.12 shows the results of region selection of

edge detection on RGB colorspace using the vector angle for each image in the database.

Table 3.4 shows the percentage area of mask, and the detection rate of macro features

for combination of distance metrics Vector angle (VA), Euclidean (ED) and colorspaces

RGB, Lab. The percentage area of mask is the ratio of total pixels retained from all

the iris images in the database and the total size of all irises, in pixels in the database.

The plot depicts that a large area is retained for certain irises during edge detection,

which in our database are brown colored irises. The result of classification is shown in

the Table 3.5. The true detection corresponds to percentage of macro features detected

across all 390 images and false detections correspond to percentage of detected regions

not corresponding to macro features.

Figure 3.12: Plot depicting the percentage area retained per image as a result of region
selection

Table 3.4: Evaluation of distance metric on each colorspace

metric colorspace Percentage area of mask Detection rate of macro features
V A RGB 39.05 90.83
V A Lab 35.39 88.43

ED RGB 77.57 96.2
ED Lab 52.06 94.38
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Table 3.5: Results for Region Based Approach

Ground Truth : Total number of manually marked features 1187
Total number of regions selected across 390 images before clustering 41353
Total number of regions selected across 390 images after clustering 16022

Percentage of true detection 864/1187, 72.78%
Percentage of false detection 15158/16022, 94.6%

3.6.2 Experiment 2

The scale invariant feature transform is applied to normalized iris from miles database,

to detect the scale and rotation invariant local features. The SIFT is applied to red, green

or blue component of the iris based on the color of the iris. The selection of the color

component for each iris is done manually. This resulted in increase in detection rate of

macro features compared to direct detection on grayscale converted images. The features

at each keypoint are extracted to obtain a feature vector for classification. The features

extracted are mean red, green, blue, hue and saturation in a window of size 2∗1.5∗σ at each

of the local keypoints, where 1.5∗σ is the radius of the circle that fits the object [55]. The

local keypoint detections in image are classified using the K-means to 3 clusters and the

cluster with the maximum keypoints matching the macro features is retained manually.

Figure 3.13 is the block diagram of the algorithm to detect macro features at multiscale

using SIFT.

Figure 3.13: Block diagram of scale invariant based detection of macro features
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Figure 3.14 shows the result of SIFT detections on the respective color channels for

each of the examples shown for region based approach.

(a) (b)

(c)

(d) (e)

(f)

Figure 3.14: (a,b,c): Respective color channel for each iris example, (d,e,f): SIFT detec-
tions on the respective color channel

The result of the following experiment are as shown in Table 3.6. True detections

correspond to percentage of macro features detected across 390 images. False detections

are the percentage of SIFT detections not corresponding to macro features.

3.6.3 Summary on experiment 1

The region based approach has issues such as

• The number of regions selected as a result of edge detection and segmentation is

about ≈ 33 times more than the number of regions representing the macro features.
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Table 3.6: Results of multiscale detection of macro features

Ground Truth : Total number of manually marked features 1187
Total number of regions selected across 390 images before clustering 58333
Total number of regions selected across 390 images after clustering 22911

Percentage of true detection 1086/1187, 86.43%
Percentage of false detection 20227/22911, 88.28%

• The segmentation algorithm does not localize around macro-features of different

sizes. That is, the segmentation algorithm does not localize on small macro features

resulting in a region selection consisting of iris texture for the respective macro

feature under consideration.

• The segmentation algorithm also fails in cases of macro features that are greater

than thousands of pixels. In such cases the segmentation algorithm oversegments

the macro features. This results in selection of regions only around the boundaries

not encompassing the centroid of macro feature, which is a failure to detect the

macro feature during the evaluation stage.

• The edges corresponding to macro features vary in intensity. A consequence of this is

that weak edges are obtained. Reducing the threshold to increase the macro feature

detection even for weak edges results in many spurious edges as a consequence of

which a number of regions are selected from the segmentation map.

• The clustering still retains regions corresponding to spurious detections.

3.6.4 Summary on experiment 2

To overcome some of these issues such as, localizing the area of macro features which

are too small in scale and to prevent the oversegmentation of macro features which are

big in scale we choose the multiscale detection of macro features.

The SIFT detection resulted in a large number of keypoint detections due to the highly

textrous iris. That is iris has many repeating textures at different scales such as crypts

and many other textural features such as Wolfllin nodules and radial furrows, resulting

in a large number of keypoint detections. It is observed that the keypoint detections

are so large that the keypoints associated with 1187 macro features in our experiments

correspond to only ≈ 3000 and the total number of SIFT detection is around ≈ 58000.
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This resulted in further complexity to classify keypoints associated with macro features

and false detections. Apart from this though the points are well localized in spatial and

frequency domain the location of the keypoint is not always at the center of the object.

Also due to the variable shape of the macro feature defining a window based on scale of

macro feature resulted in feature extraction from the background iris texture. Apart from

the issues of characterizing a macro feature, in some cases the macro features were very

thin or elongated and small in size. In such cases SIFT failed to detect the macro feature.

The above results show that though the detection rate of macro features increased

using multiscale approach, due to the highly textrous nature of iris and the variability

in the nature of macro features it is difficult to detect discontinuities corresponding only

to the macro features, and also that the macro features are similar in color and texture

to other discontinuities within the same iris the problem of classification gets even more

difficult.

Few other experiments were performed to reduce the number of keypoint detections or

the regions selected from edge flow based segmentation for the purpose of classification.

Figure 3.16, 3.17 show the block diagrams for the experiments. In the first experiment

regions corresponding to the keypoint detections were selected from the indexed seg-

mentation map obtained using edge flow based segmentation and along with the region

corresponding to the keypoint, the surrounding regions are also selected from the indexed

segmentation map. The indexed region on which the keypoint lies is the region corre-

sponding to the keypoint. Figure 3.15 shows the region selection method for the SIFT

keypoint detections.

The ratio of between class variance and within class variance is computed for the re-

gions selected. The between class variance is computed between all the pixels surrounding

the region selected and the pixels belonging to the keypoint region. Within class vari-

ance is the variance of pixel intensities in the keypoint region selected. The higher the

ratio implies the higher image discontinuity in intensity. The threshold on this ratio was

empirically determined in order to eliminate those SIFT detection which did not show

considerable variation between classes. The ratio of between class variance and within

class variance is computed as,

J =
V ARBW

V ARW
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Figure 3.15: Regions surrounding the region selected for a keypoint. R1, R2,R3, R4, R5
are the surrounding regions encompassing the region selected for a keypoint

where V ARBW denotes between class variance and V ARW denotes within class variance.

The above experiment was performed to reduce the total number of SIFT detections for

the purpose of further processing.

In another experiment the above two algorithms were used parallely. That is the iris

images were segmented and the regions were selected for the edges obtained as a result of

edge detection. The SIFT detections are performed on the normalized iris images. The

regions are then selected for the SIFT detections which lie on the final regions grown

as a consequence of edge based detection. Ideally, a parallel configuration could reduce

either the SIFT detections or the number of regions selected by SIFT for the purpose of

classification.

These experiments however resulted in lesser detection rate for macro features and the

issue of many keypoint detections or regions considered for the purpose of classification

persisted. The result of combining the two methods is shown is Table 3.7.

Table 3.7: Results of classification of SIFT keypoints detected after edge detection,region
selection for SIFT keypoints detected

Number of marked macro features 1187
SIFT detections retained after classification 11930

Macro features retained 945/1187, 79.6%
SIFT keypoints corresponding to macro features 2478

The focus of this thesis was to detect macro features for the purpose of proposing a new

set of points to perform iris recognition and image retrieval. We had proposed to detect
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Figure 3.16: Block diagram for combination of edge flow based segmentation and SIFT
detections of macro features

certain macro features in two irises and determine a match result by matching these macro

features between the two irises. As seen from the experiments it is a difficult problem to

detect only the macro features. A large number of spurious discontinuities are detected.

These discontinuities can be used for the purpose of matching two irises. [30, 32, 56]

have extended iris recognition using local keypoints. We propose to perform partial iris

recognition using the keypoints detected. That is, to match a partial iris with the whole

iris based on features extracted around the keypoints detected. In some cases these

keypoints correspond to extended set of macro features which would be other anatomical

structures present in the iris as discussed in Chapter 1. Furthermore the ability of macro

feature to perform macro feature recognition and help in image retrieval by identifying

the iris containing the query macro feature is also examined.

3.7 Partial Iris recognition using local keypoints de-

tected

Partial irises occur as a result of occlusions due to eyelids and eyelashes, pupil dilations

and off-angled irises. Figure 3.18 shows examples of partial irises and Figure 3.19 shows
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Figure 3.17: Block diagram for combination of edge detection, region selection and SIFT
detections of macro features

the block diagram for the recognition of iris using sift descriptors.

(a) (b)

Figure 3.18: (a): Partial iris due to eyelid occlusion, (b): Partial iris due to off-angled iris

As discussed in the previous sections the SIFT is applied to the normalized or enhanced

iris texture. As a result of execution of SIFT on an iris image, a large number of keypoint

detections are obtained, which can be used for partial iris recognition. These keypoints

are used for recognition using SIFT descriptors as discussed in the next section.
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Figure 3.19: Block diagram to perform partial iris recognition using keypoints detected

3.7.1 SIFT Descriptors

As discussed earlier the SIFT descriptors are computed relative to the orientation

assigned to the keypoint. This results in a descriptor which is invariant to rotation. Like

in the case of orientation assignment the Gaussian blurred image L is obtained from the

scale of the keypoint. The gradient magnitude and orientation are computed at each

location of the image. The gradient magnitude and orientations are sampled from a

descriptor region of size 16 X 16 window around the keypoint. The sampled gradient

orientations and coordinates of the descriptor are rotated relative to the orientation of

the keypoint. This provides orientation invariance or rotation invariance [52]. Each of

the sample points magnitudes in the descriptor window are weighted using a Gaussian

weighted function with σ equal to half the width of the descriptor window. The keypoint

descriptor is computed as a 8 bin orientation histogram over 4 X 4 sample regions within

the descriptor window. In order to mitigate the effects of a sample point shifting from one

histogram to other, tri-linear interpolation is used to distribute the value of each gradient

sample to adjacent histogram bins. Each entry to a bin is multiplied with a weight 1 - d

for each dimension, where d is the distance of the sample from the central value of the

bin as measured in units of the histogram bin spacing. This results in a descriptor of size

4 X 4 X 8 = 128 dimensions. The descriptor is then normalized to unit length to reduce

the effects of illumination changes such as affine illumination changes. Further processing

is done to reduce the effects of nonlinear illumination changes [52]. Figure 3.20 shows the

image gradients and keypoint descriptors around a keypoint using a descriptor window of

size 8 X 8, and 2 X 2 sample regions each of size 4 X 4.
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Figure 3.20: Example of descriptor computation on an 8 X 8 region around the keypoint

3.7.2 Matching

The output of the matching algorithm is the number of keypoint correspondences ob-

tained. In order to obtain the number of correspondences the SIFT detections from two

images are matched using the descriptors extracted for each keypoint detected. The de-

scriptors are matched using the nearest neighbor matching, according to which a matching

correspondence is the keypoint from the set of keypoints which has the minimum distance

between the query keypoint and all other keypoints of the image in the database. In

order to obtain reliable matching and prevent discarding possible matches using global

threshold the top two closest matches are compared. This results in correct closest match

which is significantly closer than the second closest incorrect match. The cosine similarity

metric is used to obtain the similarity measure between two keypoint descriptors des1 and

des2. The cosine angle is defined as,

Theta = cos−1(
desT

1 des2

‖des1‖‖des2‖
)

The closest correct match is obtained with high probability if the first closest match

is lesser than 0.6 times the second closest match.
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3.7.3 Experiment

Matching experiments were performed on the UPOL database. Experiment performs

iris recognition using partial iris images and the whole iris. The segmented iris images are

normalized and enhanced using the CLAHE as described in Chapter 2. SIFT keypoints

are detected for the partial probe images and are compared against the SIFT detections

for each image in the database. Experiments consist of performing SIFT detections on

10, 30, 50 and 75 percent of the probe iris and matching with the SIFT detections on the

100% of each iris in the database. Figure 3.21 shows the partial irises and the matching

result of 30% iris with the 100% iris. Figure 3.22 shows the ROC plots for each of the

keypoint matching experiment on the UPOL database. The number of correspondences

are normalized between 0 and 1 in each of the experiments. It consisted of 384 genuine

and 73152 impostor scores from total of 64 subjects each with 3 left and right iris images.

(a) Partial irises

(b) Partial iris matching

Figure 3.21: Partial iris images representing 10, 30, 50, 75 and 100 percent of the nor-
malized iris. 3.21(b) result SIFT matching between 30% and 100% irises using keypoint
descriptors
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Figure 3.22: ROC plots for matching partial iris

3.7.4 Analysis

It is observed that with the increasing percentage of the iris the equal error rate

decreases. In fact it shows recognition using just 30% of the iris results in an equal error

rate of zero percent. One reason for high error rate matching 10% of iris could be the

fact that we do not look for correspondences based on locations of keypoints. That is for

example if we extract the 10% of iris from the left most of the normalized iris region, it

should not be matched to features from the right most portion of the normalized iris. This

could be the reason for high error rate, as SIFT detects local features in iris at different

scales and we perform matching only based on descriptors and not on the relevance to

region. As seen in [32], Belcher and Yingzi performed region based relevance experiments

and got low equal error rates of 5.57% and 8.28% on ICE and WVU database.

3.8 Summary

It is observed that with the increasing percentage of the iris and with the region rele-

vance the performance can be increased. Apart from this the local keypoints detected by

SIFT on the UPOL database corresponded to image discontinuities induced due to en-

hancement operation. Figure 3.23 shows the UPOL images before and after enhancement



CHAPTER 3. DETECTION OF MACRO FEATURES 96

and the SIFT detections on the images before and after enhancement. But in the exper-

iments for detection of macro features due to the resolution and the coaxial illumination

used to capture the database there was no requirement to perform enhancement on the

images. On observation, we find that the SIFT keypoint in the case of miles database

corresponds to the iris characteristics such as the macro features, Lisch nodules, Wolfflin

and Brushfields spots, anterior layer exposed due to crypts and the fibrous texture. These

may be considered as extended macro features. Figure 3.24 shows the results of SIFT

detections on the segmented miles iris database. Based on the results of UPOL, the per-

fomance can be improved with regional relevance and using local keypoints corresponding

to extended macro features. Figure 3.25 shows the results of SIFT matching on samples

of the same eye of the subject, matching of left and right eyes of subject, matching the

original and rotated samples of the subject. This shows that these features can be used

reliably with the region relevance for recognition.

(a) (b)

(c) (d)

Figure 3.23: Results of SIFT detections on the UPOL database. Above: Original and
enhanced iris images. Below: SIFT detections on the original and enhanced iris images

Based on the observation of SIFT detections on the macro features and other iris

structures the reliability of these extended macro features to perform iris recognition can

be explored as shown in Figure 3.25. These macro features may also be used for the

purpose of image retrieval. A simple experiment is performed using the macro features

for the purpose of image retrieval or identity retrieval as discussed in the following section.
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Figure 3.24: Above: Example of iris images from miles database. Below: SIFT detection
on miles database showing the detections of iris characteristics such as crypts and white
spots.

3.9 Macro feature recognition and image retrieval

From the example images in Figure 3.25 there seemed a potential for iris recognition

using these macro features. The successful recognition of these macro features will result

in,

1. Image retrieval by matching the macro features and

2. Establishment of new set of minutiae points which can be used for the purpose of

recognition of two iris images.
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Figure 3.25: Results of SIFT matching on samples of two left eyes, samples of left and
right eye, samples of left and sample rotated by 30 degrees
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A simple experiment is performed to determine, if the macro features can indeed

retrieve images from the database and be used as a new characteristic in addition to

traditional features used for iris recognition.

3.10 Database

As mentioned earlier the miles database with the marked macro features is used for

the experiments. The database of macro features consists of 1187 macro features and

the gallery of iris images consists of 390 iris images from which the macro features are

extracted and 380 iris images without any iris characteristic. In image retrieval experiment

a set of 500 randomly selected macro features are used. Figure 3.26 shows examples of

the macro features used in the experiments.

Figure 3.26: Examples of macro features in the database.

3.11 Experiment

Figure 3.27 shows the block diagram for image retrieval experiment. Based on the color

of the iris the red, green or blue component is used for the purpose of the experiments

both for the query macro feature and the gallery iris image. The query macro feature is

subjected to SIFT keypoint detection and characterized using the SIFT descriptors. The

set of query keypoints Qk are matched to each of the gallery iris’s keypoints Gk and the
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top K identities are retrieved based on the closest match of the query keypoints to the

gallery iris image’s keypoints. The closest match is determined by the number of keypoint

correspondences obtained between Qk and Gk. The top k identities are retrieved based

on the maximum number of keypoint correspondences obtained.

Figure 3.27: Block Diagram for image retrieval using macro-features

3.12 Results

Figure 3.28 shows the examples of query macro feature and the 3 false identities with

same match score retrieved as a result of matching at rank 1 which is due to detection

of just one keypoint associated with the macro feature. The graph in Figure 3.29 shows

the cumulative curve for the image retrieval experiment where, a hit is the case when the

iris image from which the macro feature is extracted is retrieved among the top k images.

We observe a hitrate of 88.2% at rank 2.
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Figure 3.28: Examples of false identities retrieved as a result of image retrieval using
macro features
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Figure 3.29: Cumulative match characteristic curve for image retrieval using macro
features

3.13 Summary and Future work

The above experiment shows that a hitrate of 88.2% is obtained at rank 2. Which

means that the identity from which the macro feature is extracted is among the top two

identities retrieved. This shows the potential of macro features to be used as additional

set of features for the purpose of iris recognition and image retrieval. A higher hitrate

could not be obtained due to algorithmic issues such as a homogeneous macro feature is

characterized only by one keypoint and in some cases by zero keypoints.

This work can further be extended and explored to perform iris recognition for im-

ages with macro features using SIFT. Apart from this the features describing the macro

feature may be improved. Additional information such as location and other textural

characteristics describing a macro feature may be incorporated in the experiment for im-

age retrieval. Furthermore the experiments are performed by selecting a color channel

based on the color of the iris. This process is done manually and may be automated.
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Chapter 4

Conclusion and Future work

4.1 Conclusion

In this thesis it is observed that high classification accuracy is achieved using statistical

features extracted from small blocks of iris. Also that smaller blocks provided higher

classification than larger dimensioned blocks. Detection of macro features proposed in

this thesis is a difficult problem. Though detection of macro features is a difficult problem

the image retrieval experiment using macro features, the sample results for macro feature

matching as shown in Figure 3.25 and results of partial iris matching using SIFT establish

the potential of these macro features to be proposed as a new set of features in addition

to the existing techniques. These macro features may serve as landmarks and aid iris

recognition by matching landmarks and also aid in image retrieval.

4.2 Future Work

As seen in this thesis detection of these macro features with simple image processing

technique would not be possible. The algorithm may need an in depth understanding of

the characteristics of the macro features such as size, shape, categories of macro features,

texture and color of both the iris and the change in color and texture based on the color

and texture of iris. For example the detection techniques may be varied based on the

color of the iris. Further it may be varied based on the texture of the iris. As seen from

the [19] classification of iris, we see that within the blue iris there is a change in texture
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due to which any edge detection technique would detect many edges. The problem would

be to classify these edges from the edge corresponding to macro features. Apart from

this the algorithm must take in to account the intensity variations of the macro features

within the same iris and the changes in contrast in dark colored irises. Another aspect to

be considered would be the type of macro feature. For example sectoral heterochromia

may need different segmentation techniques as they correspond to a large iris region and

usually end up in over-segmentation using the method of edge flow based segmentation

described in Chapter 3.

Some of the other extensions which are possible would be,

1. The keypoints detected may be matched using other descriptors or other detectors

may be used to detect stable keypoints. These keypoint can also be matched based

on relevance such that the left portion of normalized iris is always matched with the

left portion like in [32]. In addition to SIFT based recognition other patch based

recognition techniques can be applied to improve the performance of image retrieval

and recognition. This is useful in cases when the SIFT fails to detect keypoints

around the macro feature for matching.

2. Potentiality of the macro feature to search the database and retrieve a small number

of identities is already seen. This is achieved by performing object recognition in

each of the images in the database. Image retrieval using multiple macro features

from an iris image can be performed. It can also be improved by incorporating the

information of each macro features position on the segmented iris defined by an

angle between 0-360 degrees. Given a small patch of macro feature with the angular

position, each image in the database can be searched. Figure 4.1 shows the object

recognition applied directly on the image. The patch is obtained from one sample

of the subject and the object recognition is performed on the other sample. Region

relevance that is the coordinates of the patch are not used to limit the search in the

sample iris. Advantage of SIFT based recognition is that it is rotation invariant and

is not affected if the query macro feature is rotated or the gallery iris image.

3. Apart from this the keypoints detected may be used to perform indexing or clas-

sification of iris. Each of the keypoints detected on the iris in the database can

be clustered to a pre-determined set of clusters. A frequency count of each of the
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(a) (b)

Figure 4.1: (a) Object recoognition on the sample iris image, (b) Recognizing rotated
object on the sample iris.

keypoint classes can be used to create a feature vector. This feature vector can be

used to create a class of irises or used to create an index number. When a test image

is presented the same process can be repeated and the features extracted may be

used to determine the class of the iris or to retrieve identities which have similar

index numbers generated based on the frequency counts.
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