27 research outputs found

    Re-engineering the ant colony optimization for CMP architectures

    Full text link
    [EN] The ant colony optimization (ACO) is inspired by the behavior of real ants, and as a bioinspired method, its underlying computation is massively parallel by definition. This paper shows re-engineering strategies to migrate the ACO algorithm applied to the Traveling Salesman Problem to modern Intel-based multi- and many-core architectures in a step-by-step methodology. The paper provides detailed guidelines on how to optimize the algorithm for the intra-node (thread and vector) parallelization, showing the performance scalability along with the number of cores on different Intel architectures, reporting up to 5.5x speedup factor between the Intel Xeon Phi Knights Landing and Intel Xeon v2. Moreover, parallel efficiency is provided for all targeted architectures, finding that core load imbalance, memory bandwidth limitations, and NUMA effects on data placement are some of the key factors limiting performance. Finally, a distributed implementation is also presented, reaching up to 2.96x speedup factor when running the code on 3 nodes over the single-node counterpart version. In the latter case, the parallel efficiency is affected by the synchronization frequency, which also affects the quality of the solution found by the distributed implementation.This work was partially supported by the Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities as well as European Commission FEDER funds under Grants TIN2015-66972-C5-3-R, RTI2018-098156-B-C53, TIN2016-78799-P (AEI/FEDER, UE), and RTC-2017-6389-5. We acknowledge the excellent work done by Victor Montesinos while he was doing a research internship supported by the University of Murcia.Cecilia-Canales, JM.; García Carrasco, JM. (2020). Re-engineering the ant colony optimization for CMP architectures. The Journal of Supercomputing (Online). 76(6):4581-4602. https://doi.org/10.1007/s11227-019-02869-8S45814602766Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, LebanonAkila M, Anusha P, Sindhu M, Selvan Krishnasamy T (2017) Examination of PSO, GA-PSO and ACO algorithms for the design optimization of printed antennas. In: IEEE Applied Electromagnetics Conference (AEMC)Dorigo M, Stützle T (2004) Ant colony optimization. A bradford book. The MIT Press, CambridgeCecilia JM, García JM, Nisbet A, Amos M, Ujaldón M (2013) Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 73(1):42–51Dawson L, Stewart I (2013) Improving ant colony optimization performance on the GPU using CUDA. In: IEEE Conference on Evolutionary Computation, pp 1901–1908Llanes A, Cecilia JM, Sánchez A, García JM, Amos M, Ujaldón M (2016) Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization. Cluster Comput 19(1):1–11Cecilia JM, Llanes A, Abellán JL, Gómez-Luna J, Chang L, Hwu WW (2018) High-throughput ant colony optimization on graphics processing units. J Parallel Distrib Comput 113:261–274Lloyd H, Amos M (2016) A Highly Parallelized and Vectorized Implementation of Max–Min Ant System on Intel Xeon Phi. In: IEEE computational intelligenceTirado F, Barrientos RJ, González P, Mora M (2017) Efficient exploitation of the Xeon Phi architecture for the ant colony optimization (ACO) metaheuristic. J Supercomput 73(11):5053–5070Montesinos V, García JM (2018) Vectorization strategies for ant colony optimization on intel architectures. Parallel Computing is Everywhere. IOS Press, Amsterdam, pp 400–409Lawler E, Lenstra J, Kan A, Shmoys D (1987) The Traveling salesman problem. Wiley, New YorkMontesinos V (June 2018) Performance analysis of ant colony optimization on intel architectures. Master’s Thesis, University of Murcia (Spain)Lloyd H, Amos M (2017) Analysis of independent roulette selection in parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 19–26Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, ItalyDuran A, Klemm M (2012) The intel many integrated core architecture. In: Internal Conference on High Performance Computing and Simulation (HPCS), pp 365–366The OpenMP API specification for parallel programming. URL: https://www.openmp.org . [Last accessed 14 June 2018]The Message Passing Interface (MPI) standard. URL: http://www.mcs.anl.gov/research/projects/mpi/ . [Last accessed 15 June 2018]Vladimirov A, Asai R (2016) Clustering modes in Knights landing processors: developer’s guide. Colfax international. URL: https://colfaxresearch.com/knl-numa/ . [Last accessed: 16 June 2018]Intel Developer Zone. URL: https://software.intel.com/en-us/modern-code . [Last accessed 02 Oct 2018]Pearce M (2018) What is code modernization? Intel developer zone. URL: http://software.intel.com/en-us/articles/what-is-code-modernization . [Last accessed 15 Feb 2018]Stützle T ACOTSP v1.03. Last accessed 15 Feb 2018. URL: http://iridia.ulb.ac.be/~mdorigo/ACO/downloads/ACOTSP-1.03.tgzReinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3:376–384Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. State-of-the-art handbook in metaheuristics. Kluwer Academic Publishers, Dordrecht, pp 475–513Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel ant colony optimization on graphics processing units. J Parallel Distrib Comput 73(1):52–61Skinderowicz R (2016) The GPU-based parallel ant colony system. J Parallel Distrib Comput 98:48–60Zhou Y, He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core SIMD CPUs. Future Gener Comput Syst 79:473–487Peake J, Amos M, Yiapanis P, Lloyd H (2018) Vectorized candidate set selection for parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 1300–1306Stützle T (1998) Parallelization strategies for ant colony optimization. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature—PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, HeidelbergAbdelkafi O, Lepagnot J, Idoumghar L (2014) Multi-level parallelization for hybrid ACO. In: Siarry P, Idoumghar L, Lepagnot J (eds) Swarm Intelligence Based Optimization. ICSIBO 2014. Lecture Notes in Computer Science, vol 8472. Springer, ChamMichel R, Middendorf M (1998) An island model based ant system with lookahead for the shortest super sequence problem. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature— PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, HeidelbergChen L, Sun H, Wang S (2008) Parallel implementation of ant colony optimization on MPP. In: International Conference on Machine Learning and CyberneticsLin Y, Cai H, Xiao J, Zhang J (2007) Pseudo parallel ant colony optimization for continuous functions. In: International Conference on Natural Computatio

    Accelerating supply chains with Ant Colony Optimization across range of hardware solutions

    Get PDF
    This pre-print, arXiv:2001.08102v1 [cs.NE], was published subsequently by Elsevier in Computers and Industrial Engineering, vol. 147, 106610, pp. 1-14 on 29 Jun 2020 and is available at https://doi.org/10.1016/j.cie.2020.106610Ant Colony algorithm has been applied to various optimization problems, however most of the previous work on scaling and parallelism focuses on Travelling Salesman Problems (TSPs). Although, useful for benchmarks and new idea comparison, the algorithmic dynamics does not always transfer to complex real-life problems, where additional meta-data is required during solution construction. This paper looks at real-life outbound supply chain problem using Ant Colony Optimization (ACO) and its scaling dynamics with two parallel ACO architectures - Independent Ant Colonies (IAC) and Parallel Ants (PA). Results showed that PA was able to reach a higher solution quality in fewer iterations as the number of parallel instances increased. Furthermore, speed performance was measured across three different hardware solutions - 16 core CPU, 68 core Xeon Phi and up to 4 Geforce GPUs. State of the art, ACO vectorization techniques such as SS-Roulette were implemented using C++ and CUDA. Although excellent for TSP, it was concluded that for the given supply chain problem GPUs are not suitable due to meta-data access footprint required. Furthermore, compared to their sequential counterpart, vectorized CPU AVX2 implementation achieved 25.4x speedup on CPU while Xeon Phi with its AVX512 instruction set reached 148x on PA with Vectorized (PAwV). PAwV is therefore able to scale at least up to 1024 parallel instances on the supply chain network problem solved

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció

    Parallelised and vectorised ant colony optimization

    Get PDF
    Ant Colony Optimisation (ACO) is a versatile population-based optimisation metaheuristic based on the foraging behaviour of certain species of ant, and is part of the Evolutionary Computation family of algorithms. While ACO generally provides good quality solutions to the problems it is applied to, two key limitations prevent it from being truly viable on large-scale problems: A high memory requirement that grows quadratically with instance size, and high execution time. This thesis presents a parallelised and vectorised implementation of ACO using OpenMP and AVX SIMD instructions; while this alone is enough to improve upon the execution time of the algorithm, this implementation also features an alternative memory structure and a novel candidate set approach, the use of which significantly reduces the memory requirement of ACO. This parallelism is enabled through the use of Max-Min Ant System, an ACO variant that only utilises local memory during the solution process and therefore risks no synchronisation issues, and an adaptation of vRoulette, a vector-compatible variant of the common roulette wheel selection method. Through the use of these techniques ACO is also able to find good quality solutions for the very large Art TSPs, a problem set that has traditionally been unfeasible to solve with ACO due to high memory requirements and execution time. These techniques can also benefit ACO when it comes to solving other problems. In this case the Virtual Machine Placement problem, in which Virtual Machines have to be efficiently allocated to Physical Machines in a cloud environment, is used as a benchmark, with significant improvements to execution time

    Optimización de algoritmos bioinspirados en sistemas heterogéneos CPU-GPU.

    Get PDF
    Los retos científicos del siglo XXI precisan del tratamiento y análisis de una ingente cantidad de información en la conocida como la era del Big Data. Los futuros avances en distintos sectores de la sociedad como la medicina, la ingeniería o la producción eficiente de energía, por mencionar sólo unos ejemplos, están supeditados al crecimiento continuo en la potencia computacional de los computadores modernos. Sin embargo, la estela de este crecimiento computacional, guiado tradicionalmente por la conocida “Ley de Moore”, se ha visto comprometido en las últimas décadas debido, principalmente, a las limitaciones físicas del silicio. Los arquitectos de computadores han desarrollado numerosas contribuciones multicore, manycore, heterogeneidad, dark silicon, etc, para tratar de paliar esta ralentización computacional, dejando en segundo plano otros factores fundamentales en la resolución de problemas como la programabilidad, la fiabilidad, la precisión, etc. El desarrollo de software, sin embargo, ha seguido un camino totalmente opuesto, donde la facilidad de programación a través de modelos de abstracción, la depuración automática de código para evitar efectos no deseados y la puesta en producción son claves para una viabilidad económica y eficiencia del sector empresarial digital. Esta vía compromete, en muchas ocasiones, el rendimiento de las propias aplicaciones; consecuencia totalmente inadmisible en el contexto científico. En esta tesis doctoral tiene como hipótesis de partida reducir las distancias entre los campos hardware y software para contribuir a solucionar los retos científicos del siglo XXI. El desarrollo de hardware está marcado por la consolidación de los procesadores orientados al paralelismo masivo de datos, principalmente GPUs Graphic Processing Unit y procesadores vectoriales, que se combinan entre sí para construir procesadores o computadores heterogéneos HSA. En concreto, nos centramos en la utilización de GPUs para acelerar aplicaciones científicas. Las GPUs se han situado como una de las plataformas con mayor proyección para la implementación de algoritmos que simulan problemas científicos complejos. Desde su nacimiento, la trayectoria y la historia de las tarjetas gráficas ha estado marcada por el mundo de los videojuegos, alcanzando altísimas cotas de popularidad según se conseguía más realismo en este área. Un hito importante ocurrió en 2006, cuando NVIDIA (empresa líder en la fabricación de tarjetas gráficas) lograba hacerse con un hueco en el mundo de la computación de altas prestaciones y en el mundo de la investigación con el desarrollo de CUDA “Compute Unified Device Arquitecture. Esta arquitectura posibilita el uso de la GPU para el desarrollo de aplicaciones científicas de manera versátil. A pesar de la importancia de la GPU, es interesante la mejora que se puede producir mediante su utilización conjunta con la CPU, lo que nos lleva a introducir los sistemas heterogéneos tal y como detalla el título de este trabajo. Es en entornos heterogéneos CPU-GPU donde estos rendimientos alcanzan sus cotas máximas, ya que no sólo las GPUs soportan el cómputo científico de los investigadores, sino que es en un sistema heterogéneo combinando diferentes tipos de procesadores donde podemos alcanzar mayor rendimiento. En este entorno no se pretende competir entre procesadores, sino al contrario, cada arquitectura se especializa en aquella parte donde puede explotar mejor sus capacidades. Donde mayor rendimiento se alcanza es en estos clústeres heterogéneos, donde múltiples nodos son interconectados entre sí, pudiendo dichos nodos diferenciarse no sólo entre arquitecturas CPU-GPU, sino también en las capacidades computacionales dentro de estas arquitecturas. Con este tipo de escenarios en mente, se presentan nuevos retos en los que lograr que el software que hemos elegido como candidato se ejecuten de la manera más eficiente y obteniendo los mejores resultados posibles. Estas nuevas plataformas hacen necesario un rediseño del software para aprovechar al máximo los recursos computacionales disponibles. Se debe por tanto rediseñar y optimizar los algoritmos existentes para conseguir que las aportaciones en este campo sean relevantes, y encontrar algoritmos que, por su propia naturaleza sean candidatos para que su ejecución en dichas plataformas de alto rendimiento sea óptima. Encontramos en este punto una familia de algoritmos denominados bioinspirados, que utilizan la inteligencia colectiva como núcleo para la resolución de problemas. Precisamente esta inteligencia colectiva es la que les hace candidatos perfectos para su implementación en estas plataformas bajo el nuevo paradigma de computación paralela, puesto que las soluciones pueden ser construidas en base a individuos que mediante alguna forma de comunicación son capaces de construir conjuntamente una solución común. Esta tesis se centrará especialmente en uno de estos algoritmos bioinspirados que se engloba dentro del término metaheurísticas bajo el paradigma del Soft Computing, el Ant Colony Optimization “ACO”. Se realizará una contextualización, estudio y análisis del algoritmo. Se detectarán las partes más críticas y serán rediseñadas buscando su optimización y paralelización, manteniendo o mejorando la calidad de sus soluciones. Posteriormente se pasará a implementar y testear las posibles alternativas sobre diversas plataformas de alto rendimiento. Se utilizará el conocimiento adquirido en el estudio teórico-práctico anterior para su aplicación a casos reales, más en concreto se mostrará su aplicación sobre el plegado de proteínas. Todo este análisis es trasladado a su aplicación a un caso concreto. En este trabajo, aunamos las nuevas plataformas hardware de alto rendimiento junto al rediseño e implementación software de un algoritmo bioinspirado aplicado a un problema científico de gran complejidad como es el caso del plegado de proteínas. Es necesario cuando se implementa una solución a un problema real, realizar un estudio previo que permita la comprensión del problema en profundidad, ya que se encontrará nueva terminología y problemática para cualquier neófito en la materia, en este caso, se hablará de aminoácidos, moléculas o modelos de simulación que son desconocidos para los individuos que no sean de un perfil biomédico.Ingeniería, Industria y Construcció

    Systolic genetic search, a parallel metaheuristic for GPUs

    Get PDF
    La utilización de unidades de procesamiento gráfico (GPUs) para la resolución de problemas de propósito general ha experimentado un crecimiento vertiginoso en los últimos años, sustentado en su amplia disponibilidad, su bajo costo económico y en contar con una arquitectura inherentemente paralela, así como en la aparición de lenguajes de programación de propósito general que han facilitado el desarrollo de aplicaciones en estas plataformas. En este contexto, el diseño de nuevos algoritmos paralelos que puedan beneficiarse del uso de GPUs es una línea de investigación prometedora e interesante. Las metaheurísticas son algoritmos estocásticos capaces de encontrar soluciones muy precisas (muchas veces óptimas) a problemas de optimización en un tiempo razonable. Sin embargo, como muchos problemas de optimización involucran tareas que exigen grandes recursos computacionales y/o el tamaño de las instancias que se están abordando actualmente se están volviendo muy grandes, incluso las metaheurísticas pueden ser computacionalmente muy costosas. En este escenario, el paralelismo surge como una alternativa exitosa con el fin de acelerar la búsqueda de este tipo de algoritmos. Además de permitir reducir el tiempo de ejecución de los algoritmos, las metaheurísticas paralelas a menudo son capaces de mejorar la calidad de los resultados obtenidos por los algoritmos secuenciales tradicionales.Si bien el uso de GPUs ha representado un dominio inspirador también para la investigación en metaheurísticas paralelas, la mayoría de los trabajos previos tenían como objetivo portar una familia existente de algoritmos a este nuevo tipo de hardware. Como consecuencia, muchas publicaciones están dirigidas a mostrar el ahorro en tiempo de ejecución que se puede lograr al ejecutar los diferentes tipos paralelos de metaheurísticas existentes en GPU. En otras palabras, a pesar de que existe un volumen considerable de trabajo sobre este tópico, se han propuesto pocas ideas novedosas que busquen diseñar nuevos algoritmos y/o modelos de paralelismo que exploten explícitamente el alto grado de paralelismo disponible en las arquitecturas de las GPUs. Esta tesis aborda el diseño de una propuesta innovadora de algoritmo de optimización paralelo denominada Búsqueda Genética Sistólica (SGS), que combina ideas de los campos de metaheurísticas y computación sistólica. SGS, así como la computación sistólica, se inspiran en el mismo fenómeno biológico: la contracción sistólica del corazón que hace posible la circulación de la sangre. En SGS, las soluciones circulan de forma síncrona a través de una grilla (rejilla) de celdas. Cuando dos soluciones se encuentran en una celda se aplican operadores evolutivos adaptados para generar nuevas soluciones que continúan moviéndose a través de la grilla (rejilla). La implementación de esta nueva propuesta saca partido especialmente de las características específicas de las GPUs. Un extenso análisis experimental que considera varios problemas de benchmark clásicos y dos problemas del mundo real del área de Ingeniería de Software, muestra que el nuevo algoritmo propuesto es muy efectivo, encontrando soluciones óptimas o casi óptimas en tiempos de ejecución cortos. Además, los resultados numéricos obtenidos por SGS son competitivos con los resultados del estado del arte para los dos problemas del mundo real en cuestión. Por otro lado, la implementación paralela en GPU de SGS ha logrado un alto rendimiento, obteniendo grandes reducciones de tiempo de ejecución con respecto a la implementación secuencial y mostrando que escala adecuadamente cuando se consideran instancias de tamaño creciente. También se ha realizado un análisis teórico de las capacidades de búsqueda de SGS para comprender cómo algunos aspectos del diseño del algoritmo afectan a sus resultados numéricos. Este análisis arroja luz sobre algunos aspectos del funcionamiento de SGS que pueden utilizarse para mejorar el diseño del algoritmo en futuras variantes

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine

    Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization

    Get PDF
    In October 2014, the EU leaders agreed upon three key targets for the year 2030: a reduction by at least 40% in greenhouse gas emissions, savings of at least 27% for renewable energy, and improvements by at least 27% in energy efficiency. The increase in computational power combined with advanced modeling and simulation tools makes it possible to derive new technological solutions that can enhance the energy efficiency of systems and that can reduce the ecological footprint. This book compiles 10 novel research works from a Special Issue that was focused on data-driven approaches, machine learning, or artificial intelligence for the modeling, simulation, and optimization of energy systems
    corecore