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Abstract. Ant Colony algorithm has been applied to various optimization problems, 
however most of the previous work on scaling and parallelism focuses on Travelling 
Salesman Problems (TSPs). Although, useful for benchmarks and new idea comparison, 
the algorithmic dynamics does not always transfer to complex real-life problems, where 
additional meta-data is required during solution construction.  This paper looks at real-
life outbound supply chain problem using Ant Colony Optimization (ACO) and its scaling 

dynamics with two parallel ACO architectures – Independent Ant Colonies (IAC) and 
Parallel Ants (PA). Results showed that PA was able to reach a higher solution quality in 
fewer iterations as the number of parallel instances increased. Furthermore, speed 
performance was measured across three different hardware solutions – 16 core CPU, 68 
core Xeon Phi and up to 4 Geforce GPUs. State of the art, ACO vectorization techniques 
such as SS-Roulette were implemented using C++ and CUDA. Although excellent for 
TSP, it was concluded that for the given supply chain problem GPUs are not suitable due 
to meta-data access footprint required. Furthermore, compared to their sequential 

counterpart, vectorized CPU AVX2 implementation achieved 25.4x speedup on CPU 
while Xeon Phi with its AVX512 instruction set reached 148x on PA with Vectorized 
(PAwV). PAwV is therefore able to scale at least up to 1024 parallel instances on the 
supply chain network problem solved.  
Keywords – transportation network optimization, Ant Colony Optimization, parallel 
ACO on Xeon Phi/GPU.   

 
 

1. Introduction and motivation 
Supply chain optimization has become an integral part of any global company with a 

complex manufacturing and distribution network. For many companies, inefficient 

distribution plan can make a significant difference to the bottom line. Modelling a 

complete distribution network from the initial materials to the delivery to the customer is 

very computationally intensive. With increasing supply chain modelling complexity in 

ever changing global geo-political environment, fast adoptability is an edge. A company 

can model impact of currency exchange rate changes, import tax policy reforms, oil price 

fluctuations and political events such as Brexit before they happen. This requires fast 

optimization algorithms. 

Mixed Integer Linear Programming (MILP) tools such as Cplex are commonly used to 

optimize various supply chain networks [1]. Although MILP tools are able to obtain 

optimum solution for large variety of linear models, not all real-world supply chain models 

are linear. Furthermore, MILP is computationally expensive and on large instances can fail 

to produce an optimal solution.  For that reason, many alterative algorithmic approaches 

(heuristics, meta-heuristics, fuzzy methods) have been explored to solve large-complex SC 

models [1]. One of these algorithms is the Ant Colony Optimization (ACO), which can be 

well mapped to real world problems such as routing [2] and scheduling [3]. Supply Chain 

Optimization Problem (SCOP) includes both, finding the best route to ship a specific order 

and finding the most optimal time to ship it, such that it reaches expected customer 

satisfaction while minimizing the total cost occurred. 

Ant colony algorithms try to mimic the observed behavior of ants inside colonies, in order 

to solve a large range of optimization problems. Since the introduction by Marco Dorigo in 

1992, many variations and hybrid approaches of Ant Colony algorithms have been 

explored [4] [5]. Most ant colony algorithms consist of two distinct stages – solution 
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construction and pheromone feedback to other ants. Typically, an artificial ant builds its 

solution from the pheromone left from previous ants, therefore allowing communication 

over many iterations via a pheromone matrix and converges to a better solution. The 

process of solution creation and pheromone update is repeated over many iterations until 

the termination criterion is reached, this can be either total number of iterations, total 

computation time or dynamic termination.  

Researchers in [6] compared an industrial optimization-based tool – IBM ILOG Cplex with 

their proposed ACO algorithm. It was concluded that the proposed algorithm covered 94% 

of optimal solutions on small problems and 88% for large-size problems while consuming 

significantly less computation time. Similarly, [7] compared ACO and Cplex performance 

on multi-product and multi-period Inventory Routing Problem. On small instances ACO 

reached 95% of optimal solution while on large instances performed better than time-

constrained Cplex solver. Furthermore, ACO implementations of Closed-Loop Supply 

Chain (CLSC) have been proposed; CLSC contains two parts of the supply chain – forward 

supply and reverse/return. [8] solved CLSC models, where the ACO implementation 

outperformed commercial MILP (Cplex) on nonlinear instances and obtained 98% optimal 

solution with 40% less computation time on linear instances.  

The aim of this paper is to explore parallelism techniques across multiple hardware 

solutions for a real-world supply chain optimization problem (where meta-data overhead 

during solution construction plays a significant role on the total compute time). The paper 

is structured as follows: Section 2 explores current state of the art parallel implementations 

of ACO across CPU, GPU and Xeon Phi; Section 3 introduces the hardware and software 

solutions used; Section 4 described the real-world problem being solved; Section 5 details 

the parallel ACO implementations and Section 6 compares the results. Finally, Section 7 

concludes the paper.  

 

 

2. Parallel Ant Colony Optimization 
Since the introduction of ACO in 1992, countless ACO algorithms have been applied to 

many different problems and many different parallel architectures have been explored 

previously. [9] specifies 5 of such architectures:  

• Parallel Independent Ant Colonies – each ant colony develop their own solutions in 

parallel without any communication in-between; 

• Parallel Interacting Ant Colonies – each colony creates solution in parallel and 

some information is shared between the colonies; 

• Parallel Ants – each ant creates solution independently, then all the resulting 

pheromones are shared for the next iteration; 

• Parallel Evaluation of Solution Elements – for problems where fitness function 

calculations take considerably more time than the solution creation; 

• Parallel Combination of Ants and Evaluation of Solution Elements – a combination 

of any of the above.  

  



Researchers have tried to exploit the parallelism offered from recent multi core CPUs [10], 

along with clusters of CPUs ( [11] [12]) and most recently GPUs [13] and Intel’s many 

core architectures such as Xeon Phi [14]. Breakdown of the strategies and problems solved 

are shown in Table 1.  

 
Table 1. ACO architecture and hardware configurations explored. LAC - Longest Common Subsequence Problem, MKP 
- Multidimensional Knapsack Problem, TSP - Travelling Salesman problem. IAC – Independent Ant Colonies, IntAC – 
Interactive Ant Colonies, PA – Parallel Ants. 

 
Task 

parallelism, 
IAC  

Task 
parallelism, 

IntAC 

Task parallelism, 
PA 

Data parallelism, 
PA 

CPU 
Scheduling 

[15] 
Scheduling 

[15] 

TSP [16] [17] 
Scheduling [15] 
Supply chain 
[this paper] 

TSP [18] [19] 
Supply chain 
[this paper] 

GPU n/a n/a 

Protein folding [20] 
TSP [16] 
MKP [21] 
LAC [22] 

TSP [23] [24] [18] 
[19] 

Edge detection 
[25] 

Supply chain 
[this paper] 

CPU 
cluster 

Scheduling 
[26] 

TSP [9] TSP [12] n/a 

Xeon Phi n/a n/a 
Supply chain 
[this paper] 

TSP [27] [28] [29] 
Supply chain 
[this paper] 

 

 

During the search, an Ant has to keep track of the existing state meta-data, for instance 

Travelling Salesman Problem only need to keep the track of what cities have been visited 

as part of problem constraint. However, real-life problems have a lot more constraints and 

therefore requires a lot of meta-data storage during solution creation. This paper explores 

such problem in the supply chain domain. Table 2 shows the most common problems 

solved by ACO and their corresponding associated constraints / meta-data required during 

solution creation. 

 
Table 2. Meta-data required during solution creation based on problem type 

Problem 
Meta-data required during 

solution creation 
Comment 

Scheduling 2 
Resource and precedence 

constraints 
TSP 1 Has the city been visited 

Protein Folding 1 Has the sequence been visited 
MKP 1 Total weight per knapsack 

LAC 1 
Tracking of current position in 

string 
Edge detection 1 Has edge already been visited 

Supply chain (this paper) 3 
Capacity, daily order, freight 

weight constraints 

 



2.1. CPU  

Parallel ACO CPU architectures have been applied to various tasks – for example, [15] 

applied ACO for mining supply chain scheduling problem. Authors managed to reduce the 

execution time from one hour (serial) to around 7 minutes. Both [30] and [31] used ACO 

for image edge detection with varying results, [30] achieved a speedup of 3-5 times while 

[31] managed to reduce sequential runtime by 30%. Most commonly, ACO has been 

applied to Travelling Salesman Problem (TSP) benchmarks. For instance,  [17] proposed 

ACO approach with randomly synchronized ants, the approach showed a faster 

convergence compared to other TSP approaches. Moreover, authors in [19]  proposed new 

multi-core SIMD model for solving TSPs. Similarly, both [32] and [33] tries to solve large 

instances of TSP (up to 200k and 20k cities respectively) where the architectures are 

limited to the size of pheromone matrix. [33] discusses such limitations and proposes a 

new pheromone sharing for local search – effective heuristics ACO (ESACO), which was 

able to compute TSP instances of 20k. In contrast, authors in [32] eliminate the need of 

pheromone matrix and store only the best solutions similarly to the Population ACO. 

Furthermore, researchers implement a Partial Ant, also known as cunning ant, where ant 

takes existing partial solution and builds on top of it. Speedups of as much as 1200x are 

achieved compared to sequential Population ACO. 

Generally, CPU parallel architecture implementations come down to three programming 

approaches - Message Passing Interface (MPI) parallelism, OpenMP parallelism [34] and 

data parallelism with the vectorization of Single Instruction Multiple Data (SIMD).  For 

instance, [35] explored both master-slave and coarse-grained strategies for ACO 

parallelization using Message Passing Interface (MPI). It was concluded that fine-grained 

master-slave strategy performed the best. [36] used MPI with ACO to accelerate Maximum 

Weight Clique Problem (MWCP). Proposed algorithm was comparable to the ones in 

literature and outperformed Cplex solver in both – time and performance. Moreover, 

authors in [26] implemented parallel ACO for solving Flow shop scheduling problem with 

restrictions using MPI. Compared to sequential version of the algorithm, 93 node cluster 

achieved a speedup of 16x. [37] compared ACO parallel implementation on MPI and 

OpenMP on small vector estimation problem. It was found that maximum speedup of 

OpenMP was 24x while MPI – 16x. Furthermore, [18] explored multi-core SIMD CPU 

with OpenCL and compared it to the performance of GPU. It was found optimized parallel 

CPU-SIMD version can achieve similar solution quality and computation time than the 

state of art GPU implementation solving TSP.  

 

2.2. Xeon Phi 

Intel’s Xeon Phi Many Integrated Core (MIC) architecture offers many cores on the CPU 

(60-72 cores per node) while offering lower clock frequency.  Few researchers have had 

the opportunity to research ACO on the Xeon Phi architecture. For instance, [27] showed 

how utilizing L1 and L2 cache on Xeon Phi coprocessor allowed a speedup of 42x solving 

TSP compared to a sequential execution. Due to the nature of SIMD features such as 

AVX-512 on Xeon Phi, researchers in both [29] and [28] proposed a vectorization model 

for roulette wheel selection in TSP. In case of [29] a 16.6x speedup was achieved 

compared to a sequential execution. To the best of authors knowledge, Xeon Phi and ACO 

parallelism has not been explored to any other problem except TSP.  

 

2.3. GPUs 

General Purpose GPU (GPGPU) programming is a growing field in computer science and 

machine learning. Many researchers have tried exploiting latest GPU architectures in order 



to speed optimize the convergence of ACO. ACO GPU implementation expands to many 

fields, such as edge detection ( [25] [38]), protein folding [20], solving Multidimensional 

Knapsack Problems (MKPs) [21]  and Vertex coloring problems [39]. Moreover, 

researchers have used GPU implementations of ACO for classification ( [40] [41]) and 

scheduling ( [42] [43]) with various speedups compared to the sequential execution.  

However, majority of publications are solving Travelling Salesman Problems [44], 

although useful for benchmarking and comparison, little characteristics transfer to other 

application areas. For instance, highly optimized local memory on GPU (Compute Unified 

Device Architecture - CUDA) can significantly speed up the execution for TSP, however, 

when applied to real-life problems where additional restrictions and metadata is required to 

build a solution, most of the data needs to be stored on much slower global memory. 

Authors in [16] did extensive research comparing server, desktop and laptop hardware 

solving TSP instances on both CUDA and OpenCL. Although there are couple ACO 

OpenCL  implementations on GPU ( [45] [22]), the majority of implementations use 

CUDA. For instance, [46] implemented a GPU-based ACO and achieved a speedup of 40x 

compared to sequential ACS. Similarly, a 22x speedup was achieved in [47] solving 

pr1002 TSP and 44x on fnl4461 TSP instance in [48]. However, there are also various 

hybrid approaches for solving TSP - [49] solves parallel Cultural ACO (pCACO) (a hybrid 

of genetic algorithm and ACO). Research showed that pCACO outperformed sequential 

and parallel ACO implementations in terms of solution quality. Furthermore, [50] solved 

TSP instances using ACO-PSO hybrid and authors in [51] explored heterogenous 

computing with multiple GPU architectures for TSP.  

 

Although task parallelism has potential for a speedup, [23] showed how data parallelism 

(vectorization) on GPU can achieve better performance by proposed Independent Roulette 

wheel (I-Roulette). Authors then expanded the I-Roulette implementation in [24], where 

SS-Roulette wheel was proposed. Further, [52] implements a G-Roulette – a grouped 

roulette wheel selection based on I-Roulette, where cities in TSP selection is grouped in 

CUDA warps. An impressive speedup of 172x was achieved compared to the sequential 

counterpart. 

 

2.4. Comparing hardware performances 

Comparing parallel performances of different hardware architectures fairly is by no means 

trivial. Most research compares a sequential CPU ACO implementation to the one of the 

parallel GPUs, which is hardly fair [53]. To amplify the issue, unoptimized sequential code 

is compared to highly optimized GPU code. This results in misleading and inflated 

speedups [13]. Furthermore, [22] argues that often the parameter settings chosen for the 

sequential implementation is biased in favor of GPU. [13] proposes a criteria to calculate 

the real-world efficiency of two different hardware architectures by comparing the 

theoretical peak performances of GPU and CPU. While the proposed method is more 

appropriate, it still doesn’t account for real-life scenarios where memory latency/speed, 

cache size, compilers and operating systems all play a role of the final execution time. 

Therefore, two different systems with similar theoretical floating-point operations per 

second running the same executable can have significantly different execution times.  

Furthermore, in some instances only execution time or solution quality is compared, rarely 

both are taken into consideration when comparing results.   

 

 



3. Background 

This section briefly covers the tools and hardware specific languages used in the 

implementation.  

 

3.1. Parallel processing with OpenMP 

OpenMP is set of directives to a compiler that allows programmer to create parallel tasks 

as well as vectorization (Single Instruction Multiple Data - SIMD) in order to speed up 

execution of a program. Program containing parallel OpenMP directives starts as single 

thread, when directive such as #pragma omp parallel is reached, main thread will create a 

thread pool and all methods within pragma region will be executed in parallel by each 

thread in the thread group. Once the thread reaches the end of the region, it will wait for all 

other threads to finish before dissolving the thread group and only the main thread will 

continue.  

Furthermore, OpenMP also supports nesting, meaning a thread in a thread-group can create 

its own individual thread-group and become the master thread for the newly created 

thread-group. However, thread-group creation and elimination can have significant 

overhead and therefore, thread-group re-use is highly recommended [54].   

This paper utilizes both omp parallel and omp simd directives.  

 

3.2. CUDA programming model 

Compute Unified Device Architecture (CUDA) is a General-purpose computing model on 

GPU developed by Nvidia in 2006. Since then this proprietary framework has been utilized 

in the high-performance computing space via multiple Artificial Intelligence (AI) and 

Machine Learning (ML) interfaces and libraries/APIs. CUDA allows to write C programs 

that takes advantage of any recent Nvidia GPU found in laptops, workstations and data 

centers.  

Each GPU contains multiple Streaming Multiprocessors (SM) that are designed to execute 

hundreds of threads concurrently. In order to achieve that, CUDA implements SIMT 

(Single Instruction Multiple-Threads) architecture, where instructions are pipelined for 

instruction level parallelism. Threads are grouped in sets of 32 – called warps. Each warp 

executes one instruction at a time on each thread. Furthermore, CUDA threads can access 

multiple memory spaces – global memory (large size, slower), texture memory (read only), 

shared memory (shared across threads in the same SM, lower latency) and local memory 

(limited set of registers within each thread, fastest) [55]. 

A batch of threads are grouped into a thread-block. Multiple thread-blocks create a grid of 

thread blocks.  Programmer specifies the grid dimensionality at kernel launch time, by 

providing the number of thread-blocks and the number of threads per thread-block. Kernel 

launch fails if the program exceeds the hardware resource boundaries. 

 

3.3. Xeon Phi Knights Landing architecture 

Knights Landing is a product code name for Intel’s second-generation Intel Xeon Phi 

processors. First generation of Xeon Phi, named Knights Corner, was a PCI-e coprocessor 

card based on many Intel Atom processor cores and support for Vector Processing Units 

(VPUs). The main advancement over Knights Corner was the standalone processor that 

can boot stock operating systems, along with improved power efficiency and vector 



performance. Furthermore, it also introduced a new high bandwidth MCDRAM memory. 

Xeon phi support for standard x86 and x86-64 instructions, allows majority CPU compiled 

binaries to run without any modification. Moreover, support for 512-bit Advanced Vector 

Extensions (AVX-512) allows high throughput vector manipulations.  

 
Figure 1. Knights Landing tile with larger processor die [56] 

  

The Knights Landing cores are divided into tiles (typically between 32 and 36 tiles in 

total). Each tile contains two processor cores and each core is connected to two vector 

processing units (VPUs). Utilizing AVX-512 and two VPUs, each core can deliver 32 

dual-precision (DP) or 64 single-precision (SP) operations each cycle [56]. Furthermore, 

each individual core supports up to four threads of execution – hyper threads where 

instructions are pipelined.  

Another introduction with the Knights Landing is the cluster modes and 

MCDRAM/DRAM management. Processor offers three primary cluster modes – All to all 

mode, Quadrant mode and Sub-Numa Cluster (SNC) mode and three memory modes – 

cache mode, flat mode and hybrid mode. For detailed description of the Knights Landing 

Xeon Phi architecture refer to [56]. 

 

4. Problem description 

A real-world dataset of an outbound logistics network is provided by a global microchip 

producer. The company provided demand data for 9216 orders that need to be routed via 

their outbound supply chain network of 15 warehouses, 11 origin ports and 1 destination 

port (see Figure 2). Warehouses are limited to a specific set of products that they stock, 

furthermore, some warehouses are dedicated for supporting only a particular set of 

customers. Moreover, warehouses are limited by the number of orders that can be 

processed in a single day. A customer making an order decides what sort of service level 

they require – DTD (Door to Door), DTP (Door to Port) or CRF (Customer Referred 

Freight). In case of CRF, customer arranges the freight and company only incurs the 



warehouse cost. In most instances, an order can be shipped via one of 9 couriers offering 

different rates for different weight bands and service levels. Although the majority of the 

shipments are done via air transport, some orders are shipped via ground – by trucks. The 

majority of couriers offer discounted rates as the total shipping weight increases based on 

different weight bands. However, a minimum charge for shipment still applies. 

Furthermore, faster shipping tends to be more expensive, but offer better customer 

satisfaction. Customer service level is out of the scope of this research.  

 

 
Figure 2 - Graphical representation of the outbound supply chain 

 

4.1. Dataset 

Dataset [57] is divided into 7 tables, one table for all orders that needs to be assigned a 

route – OrderList table, and 6 additional files specifying the problem and restrictions. For 

instance, the FreightRates table describes all available couriers, the weight gaps for each 

individual lane and rates associated. The PlantPorts table describes the allowed links 

between the warehouses and shipping ports in real world. Furthermore, the 

ProductsPerPlant table lists all supported warehouse-product combinations. The 

VmiCustomers lists all special cases, where warehouse is only allowed to support specific 

customer, while any other non-listed warehouse can supply any customer. Moreover, the 

WhCapacities lists warehouse capacities measured in number of orders per day and the 

WhCosts specifies the cost associated in storing the products in given warehouse measured 

in dollars per unit. 

 

4.2. Fitness function 

The main goal of optimization is to find a set of warehouses, shipping lanes and couriers to 

use for the most cost-effective supply chain. Therefore the fitness function is derived from 

two incurred costs – warehouse cost  𝑤𝑐𝑘𝑖 and transportation cost 𝑡𝑐𝑘𝑝𝑗 in equation (1). 

The totaling cost is then calculated across all orders 𝑘 in the dataset. 

  𝐦𝐢𝐧 ∑ (𝐰𝐜𝐤𝐢 + 𝐭𝐜𝐤𝐩𝐣)
𝐥

𝐤=𝟏
 (1)  



Where 𝑤𝑐𝑘𝑖  is warehouse cost for order 𝑘 at warehouse 𝑖 and 𝑡𝑐𝑘𝑝𝑗 is transportation cost 

for order 𝑘 between warehouse port 𝑝 and customer port 𝑗, total number of orders 𝑙. 

 𝒘𝒄𝒌𝒊 = 𝒒𝒌 × 𝑷𝒊 (2)  

Where warehouse cost 𝑤𝑐𝑘𝑖 for order 𝑘 at warehouse 𝑖 is calculated in (2), by the number 

of units in order 𝑞𝑘 multiplied by the warehouse storage rate 𝑃𝑖 (WhCosts table). 

 

1. if 𝑠𝑘 = 𝐶𝑅𝐹 then 𝑡𝑐𝑘𝑝𝑗 = 0 

2. else if 𝑚 = 𝐺𝑅𝑂𝑈𝑁𝐷 then 𝑡𝑐𝑘𝑝𝑗 =  
𝑅𝑝𝑗𝑐𝑠𝑡𝑚

∑ 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 𝑙
𝑘=1

× 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 

3. else if 𝑅𝑝𝑗𝑐𝑠𝑡𝑚  ×  𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 <  𝑀𝑝𝑗𝑐𝑠𝑡𝑚  then 𝑡𝑐𝑘𝑝𝑗 =  𝑀𝑝𝑗𝑐𝑠𝑡𝑚 

4. else 𝑡𝑐𝑘𝑝𝑗 = 𝑅𝑝𝑗𝑐𝑠𝑡𝑚 × 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚  

Figure 3. Pseudo code for calculating order transportation cost 

Where 𝑠 is the service level for order 𝑘.  𝑀𝑝𝑗𝑐𝑠𝑡𝑚  is the minimum charge for given line 

𝑝𝑗𝑐𝑠𝑡𝑚, 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚 is the weight in kilograms for order 𝑘 shipped from warehouse port 𝑝 to 

customer port 𝑗 via courier 𝑐 using service level 𝑠, delivery time 𝑡 and transportation mode 

𝑚. 𝑅𝑝𝑗𝑐𝑠𝑡𝑚  is the freight rate (dollars per kilogram) for given weight gap based on total 

weight for the line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).  

Furthermore, transportation cost for a given order and chosen line is calculated by 

algorithm in Figure 3.The algorithm first check what kind of service level the order 

requires, if the service level is equal to CRF (Customer Referred Freight) – transportation 

cost is 0. Furthermore, if order transportation mode is equal to GROUND (order 

transported via truck), order transportation cost is proportional to the weight  consumed by 

the order (𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚) in respect of the total weight for given line 𝑝𝑗𝑐𝑠𝑡𝑚 and the rate 

charged by courier for full track 𝑅𝑝𝑗𝑐𝑠𝑡𝑚. Moreover, a minimum charge of  𝑀𝑝𝑗𝑐𝑠𝑡𝑚  is 

applied in cases where the transportation cost is less than the minimum charge. In all other 

cases, the transportation cost is calculated based on order weight 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚  and the freight 

rate 𝑅𝑝𝑗𝑐𝑠𝑡𝑚. The freight rate is determined based on total weight on any given line 𝑝𝑗𝑐𝑠𝑡𝑚 

and the corresponding weight band in the freight rate table.  

 

4.3. Restrictions 

Problem being solved complies with the following constraints: 

  ∑ 𝒐𝒌𝒊

𝒍

𝒌=𝟏
≤  𝑪𝒊 (3)  

 

Where 𝑜𝑘𝑖 = 1 if order 𝑘 was shipped from warehouse 𝑖 and 0 otherwise. 𝐶𝑖 is the order 

limit per day for warehouse 𝑖 (WhCapacities table). 

  



 ∑ 𝒘𝒌𝒑𝒋𝒄𝒔𝒕𝒎  ≤ 𝐦𝐚𝐱 𝑭𝒑𝒋𝒄𝒔𝒕𝒎

𝒍

𝒌=𝟏
 (4)  

 

Where 𝑤𝑘𝑝𝑗𝑐𝑠𝑡  is the weight in kilograms for order 𝑘 shipped from warehouse port 𝑝 to 

customer port 𝑗 via courier 𝑐 using service level 𝑠, delivery time 𝑡 and transportation mode 

𝑚. 𝐹𝑝𝑗𝑐𝑠𝑡𝑚 is the upper weight gap limit for line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).  

 𝒌𝒛 ∈ 𝒊𝒛 (5)  

Where product 𝑧 for order 𝑘 belongs to supported products at warehouse 𝑖 
(ProductsPerPlant table). Warehouses can only support given customer in the 

VmiCustomers table, while all other warehouses that are not in the table can supply any 

customer. Moreover, warehouse can only ship orders via supported origin port, defined in 

PlantPorts table. 

 

5. Methods and implementation 

In order to solve the transportation network optimization problem, we are using an Ant 

Colony System algorithm first proposed by [58]. Because ACO is an iterative algorithm, it 

does require sequential execution. Therefore,  the most naïve approach for parallel ACO is 

running multiple Independent Ant Colonies (IAC) with a unique seed for the pseudo 

random number generator for each colony (high level pseudo code in Figure 4). Due to the 

stochastic nature of solution creation, it is therefore more probabilistic to reach a better 

solution than a single colony. This approach has the advantage of low overhead as it 

requires no synchronization between the parallel instances during search. At the very end 

of the search, the best solution of all parallel colonies is chosen as the final solution. Main 

disadvantage of IAC is that if one of the colonies finds a better solution, there is no way to 

improve all the other colony’s fitness values.  

 

Independent Ant Colonies (IAC) 

1. for all parallel instances m parallel do 

2.     for all iterations i do 

3.          for all local ants a do 

4.               local pheromone = global pheromone 

5.               construct solution 

6.               local pheromone update 

7.          end for 

8.          update global pheromone update based on best solution 

9.      end for 

10.  end for 

11. find best solution across parallel instances 

    Figure 4. High level pseudo code for Independent Ant Colonies (IAC) search algorithm 



Alternatively, the ACO search algorithm could also be letting the artificial ant colonies 

synchronize after every iteration and therefore all parallel instances are aware of the best 

solution and can share pheromones accordingly. High level pseudo code of such Parallel 

Ant (PA) implementation is shown in Figure 5. Main advantage of this architecture is that 

it allows efficient pheromone sharing, therefore converging faster. However, there is a high 

risk of getting stuck into local optima as all ants start iteration with the same pheromone 

matrix. Furthermore, synchronization of all parallel instances after every iteration is costly. 

 

Parallel Ants (PA) 

1. for all iterations i do 

2.      for all parallel instances m parallel do 

3.            for all local ants a do 

4.               local pheromone = global pheromone 

5.               construct solution 

6.               local pheromone update 

7.            end for 

8.            find best solution across parallel instances 

9.            update global pheromone update based on best solution 

10.      end for 

11. end for 

Figure 5. High level pseudo code Parallel Ants (PA) search algorithm 

Both IAC and PA implementations are exploiting task parallelism – each parallel instance 

(thread) gets set of tasks to complete. An alternative approach would be to look at data 

parallelism and vectorization – each thread processes a specific section of the data and 

cooperatively complete the given task. Due to the highly sequential parts of ACO, it would 

not be practical to only use vectorization alone. A more desirable path would be to 

implement vectorization in conjugate to the task parallelism. In case of CPU, task 

parallelism can be done by the threads, while vectorization done by Vector Processing 

Units (VPUs) based on Advanced Vector Extensions 2 (AVX2) or AVX512. Moreover, in 

case of GPU and CUDA – task parallelism would be done at thread-block level while data 

parallelism would exploit WARP structures. Parallel Ants with Vectorization (PAwV) 

expands on the Parallel Ants architecture by introducing data-parallelism of solution 

creation and an alternative roulette wheel implementation – SS-Wheel, first proposed in 

[24]. SS-Wheel mimics a sequential roulette wheel while allowing higher throughput due 

to parallelism. Local search in Figure 6 expands on the implementation in Figure 5 (lines 

3-7). First the choiceMatrix is calculated by multiplying the probability of the route to be 

chosen with the tabu list – a list of still available routes (where 0 represents not available 

and 1 – route still can be selected). A random number between 0 and 1 is generated in 

order to determine if a given route will be chosen based on exploitation or exploration. In 

case of exploitation, the choiceMatrix is reduced to obtain the maximum and the 

corresponding route index. Furthermore, in case of exploration, the route is chosen based 

on the SS-Roulette wheel described by [24]. 

  



Parallel Ants with Vectorization (PAwV) 

1. for all local ants a do 

2.      local pheromone = global pheromone 

3.      for all orders o do 

4.           for all routes r for order do SIMD 

5.                choiceMatrix[r] = probability[r] * tabuList[r] 

6.            end for   

7.           if rand() <= q0 then  

8.               SIMD reduce max (choiceMatrix) 

9.           else 

10.               SS-Roulette wheel [24] 

11.           end if 

12.      end for 

13.      local pheromone update 

14.  end for 

Figure 6. High level pseudo code for Parallel Ants with Vectorization (PAwV) search algorithm. 

Expanding on Figure 5 lines 3-7.  

 

6. Experiments 

A sequential implementation of ACO described in [58] is adapted from [59] by altering the 

heuristic information calculation for a given route – defined as a proportion of order’s 

weight and the maximum weight gap (see Equation (2)). Furthermore, the Ant Colony 

System set of parameters for all configurations and architectures are shown in Table 3. 

Moreover, we then implement three different Parallel ACO architectures – Independent 

Ant Colonies (IAC), Parallel Ants (PA) and Parallel Ants with Vectorization (PAwV) in 

C++ and CUDA C.  

Experiments were conducted on three different hardware configurations – CPU, GPU and 

Xeon Phi. Where Hardware A is a host system for Hardware C. 

 
Table 3. Ant Colony System set of parameters for all configurations and architectures 

Parameter Value 
Pheromone evaporation rate (rho) 0.1 

Weight on pheromone information (α) 1 
Weight on heuristic information (β) 8 

Exploitation to exploration ratio (q0) 0.9 

 

 

  



Hardware A - CPU 

• CPU: AMD Ryzen™ Threadripper™ 1950X (16 cores, 32 threads), running at 

3.85GHz.  

• RAM: 64GB 2400MHz DDR4, 4 channels. 

• OS: Windows 10 Pro, version 1703 

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64 

Hardware B - Xeon Phi 

• CPU: Intel® Xeon Phi™ Processor 7250F (68 cores, 272 hyper-threads), running at 

1.4GHz. Clustering mode set to Quadrant and memory mode set to Cache mode.  

• RAM: 16GB on-chip MCDRAM and 96GB 2400MHz DDR4 ECC.  

• OS: Windows Server 2016, version 1607 

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64, 

KMP_AFFINITY=scatter 

Hardware C - GPU 

• CPU/RAM/OS – see host Hardware A. 

• GPUs: 4x Nvidia GTX1070, 8GB GDDR5 per GPU, 1.9GHz core, 4.1GHz memory. 

PCIe with 16x/8x/16x/8x.  

• Toolchain: Visual Studio v140 toolset, Windows SDK version 8.1, x64, CUDA 9.0, 

compute_35, sm_35 

 

6.1. Benchmarks 

It is important to take both elapsed time and solution quality into consideration when 

referring to speed optimization of optimization algorithms. One could get superior 

convergence within iteration but, take twice as long to compute. Similarly, one could claim 

that algorithm is much faster completing defined number of iterations, but sacrifice 

solution quality. Furthermore, there is little point comparing sequential execution of one 

hardware platform to a parallel implementation of another. Comparison should take into 

consideration all platform strengths and weaknesses and set up the most suitable 

configuration for given platform.  

In order to obtain a baseline fitness convergence rate at various number of parallel 

instances, we create Iterations vs Parallel Instances matrix for all architectures. An 

example of such matrix for Parallel Ants is shown in Table 4. The matrix is derived by 

averaging the resulting fitness obtained from 10 independent simulations with a unique 

seed value for each given Parallel Instances configuration.  All configurations are run for x 

number of iterations, where x is based on the total number of solutions explored and is a 

function of the number of Parallel Instances. The total number of solutions explored is set 

to 768k.  The number of Parallel Instances is varied by 2𝑛−1 with maximum n of 11, i.e. 

1024 parallel instances. The best value after every 5 iterations is also recorded.  

 

Table 4. Parallel Ants fitness value baseline for different configurations of the number of parallel instances 

and the number of iterations. Each Parallel Instance datapoint is an average of 10 individual runs (table 



derived from 11*10 =110 runs). Expressed as a percentage of proximity of the best-known solution 

(2,701,367.58). Color coded from worse – in red, to the best – in green.   

 

 

We then compute the number of iterations required to reach a specific solution quality for 

different ACO architectures in Table 5, expressed as proximity to the best-known optimal 

solution . For the specific problem and dataset, the best solution is a total cost of 

2,701,367.58. There are 6 checkpoints of solution quality ranging from 99% to 99.9%. 

Although at first 1% gain might not seem significant, one has to remember that global 

supply chain costs are measured in hundreds of millions, and even 1% savings do affect 

bottom line. Empty fields (-) represent instances where the ACO was not able to converge 

to given solution quality.  

On all experiments, IAC was able to obtain solution quality only below 99.6%, whereas 

PA and PA with 5 ant local search was able to obtain optimal solution with 512 and 1024 

parallel instances. Furthermore, IAC did not see any significant benefit of adding more 

parallel instances for 99% and 99.25% checkpoints.  

In contrast, PA does benefit from the increase in number of parallel instances. For instance, 

PA is able to obtain the same solution quality in half the number of iterations at 99% 

checkpoint (scaling of 2x for sequential vs 1024 parallel instances). Scaling of 633.7x in 

case of 99.5% checkpoint for sequential counterpart. Similarly, PA with 5 ant sequential 

local search has the same dynamics, with scaling of 4x at 99% checkpoint compared to 

sequential and 140x at 99.6% checkpoint compared to 2 and 1024 parallel instances. One 

can also note that at increased solution quality and little number of parallel instances, PA 

with 5 ant local search also offers increased efficiency in terms of total solutions explored. 

For example, at the 99.5% checkpoint with 2 parallel instances, PA takes 2590 iterations, 

while PA with 5 ant local search only requires 65 (decrease of 40x iterations, or 8x total 

1 2 4 8 16 32 64 128 256 512 1024

5 98.646% 98.701% 98.740% 98.713% 98.813% 98.825% 98.857% 98.859% 98.881% 98.931% 98.923%

20 98.921% 98.935% 98.973% 98.987% 98.980% 99.063% 99.053% 99.082% 99.102% 99.133% 99.150%

40 99.165% 99.265% 99.315% 99.300% 99.343% 99.355% 99.366% 99.413% 99.410% 99.427% 99.443%

60 99.354% 99.413% 99.466% 99.503% 99.530% 99.536% 99.541% 99.562% 99.573% 99.592% 99.598%

80 99.438% 99.459% 99.547% 99.547% 99.585% 99.585% 99.582% 99.630% 99.638% 99.660% 99.667%

100 99.444% 99.459% 99.548% 99.559% 99.589% 99.592% 99.584% 99.646% 99.641% 99.672% 99.674%

200 99.452% 99.461% 99.551% 99.569% 99.601% 99.605% 99.599% 99.724% 99.717% 99.846% 99.844%

300 99.452% 99.461% 99.558% 99.574% 99.615% 99.615% 99.606% 99.734% 99.743% 99.869% 99.878%

400 99.456% 99.464% 99.559% 99.577% 99.615% 99.628% 99.631% 99.739% 99.763% 99.877% 99.885%

500 99.456% 99.465% 99.560% 99.584% 99.624% 99.637% 99.641% 99.739% 99.772% 99.884% 99.891%

600 99.456% 99.471% 99.560% 99.584% 99.624% 99.641% 99.643% 99.740% 99.772% 99.891% 99.898%

750 99.458% 99.474% 99.560% 99.588% 99.634% 99.647% 99.645% 99.753% 99.778% 99.896% 99.901%

1500 99.462% 99.494% 99.572% 99.590% 99.638% 99.662% 99.656% 99.764% 99.792% 99.917%

3000 99.471% 99.504% 99.582% 99.601% 99.651% 99.672% 99.666% 99.779% 99.812%

6000 99.486% 99.506% 99.596% 99.616% 99.659% 99.675% 99.675% 99.787%

12000 99.494% 99.517% 99.604% 99.626% 99.666% 99.681% 99.692%

24000 99.498% 99.540% 99.611% 99.629% 99.681% 99.693%

48000 99.508% 99.546% 99.622% 99.638% 99.685%

96000 99.514% 99.555% 99.622% 99.643%

192000 99.527% 99.563% 99.622%

384000 99.538% 99.569%

768000 99.551%

The number of Parallel Instances
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solutions explored). However, in most instances, PA without any local search is more 

efficient.  

Table 5. The number of iterations required to reach a specific solution quality. Each datapoint in the table is an 

average of 10 individual runs. Empty fields (-) represent instances where ACO did not obtain specified 

solution quality in 768k solutions explored. The solution quality is expressed as a percentage of proximity of the 

best-know solution (2,701,367.58).  

  

6.2. Speed performance 

To evaluate speed performance, we ran each given configuration and parallel architecture 

for 500 iterations or 10 minutes wall-clock time (whichever happens first) and recorded 

total number of iterations and wall-clock time for 3 independent runs. Then, average wall-

clock time per iteration was calculated. It is important to measure the execution time 

correctly, just purely comparing computation per kernel/method may not show the real-life 

impact. For that reason, total time is measured from the start of the memory allocation to 

the freeing of the allocated memory, however it does not include time required to load the 

dataset into memory. This allows us to estimate, with reasonable accuracy, what is the 

wall-clock time required to run a specific architecture and configuration in order to 

converge to a given fitness quality. Although, running each given architecture and 

configuration 10 times would produce more accurate convergence rate estimates, it would 

also require significantly more computation time. Furthermore, all vectorized 

implementations went through iterative profiling and optimization process to obtain the 

fastest execution time. To the best of the authors’ knowledge, all vectorized 

implementations have been fully optimized for the given hardware.   

 

6.2.1. CPU 

ACO implementation of IAC, PA and PAwV was implemented in C++ and multiple 

experiments of the configurations are shown in Table 6. Intel C++ 18.0 with OpenMP 4.0 

Architecture
Checkpoint of 

optimal solution
1 2 4 8 16 32 64 128 256 512 1024

99.00% 30 30 35 30 30 35 30 30 25 25 25

99.25% 45 45 40 40 45 40 40 35 35 35 35

99.50% 31685 31055 29550 28895 29075 15910 10950 - - - -

99.60% - - - - - - - - - - -

99.75% - - - - - - - - - - -

99.90% - - - - - - - - - - -

99.00% 30 25 25 25 25 25 20 15 15 15 15

99.25% 45 40 40 35 35 35 35 35 30 30 30

99.50% 31685 2590 65 60 60 55 55 55 55 50 50

99.60% - - 9190 2640 195 170 230 70 70 65 65

99.75% - - - - - - - 685 310 140 135

99.90% - - - - - - - - - 800 675

99.00% 20 15 15 15 15 10 10 10 10 10 5

99.25% 30 30 30 30 30 25 30 25 20 25 20

99.50% 400 65 55 55 50 50 50 50 45 45 45

99.60% - 7715 160 135 90 65 60 65 60 55 55

99.75% - - - - 6630 205 150 155 130 125 125

99.90% - - - - - - - - 460 255 160

Parallel Ants with 

5 sequential ant 

local search

The number of parallel instances

The number of iterations required to reach specific solution quality

Independent Ant 

Colonies

Parallel Ants



was used to compile the implementation. KMP1 (an extension of OpenMP) config was 

varied based on total hardware core and logical core count (16c,2t = 32 OpenMP threads).  

Very similar results were obtained for both IAC double precision and PA double precision, 

with PA having around 5% overhead compared to IAC. In both instances, running 32 

OpenMP threads offered around 24% speed reduction compared to 16 threads. 

Furthermore, PAwV with double precision vectorization using AVX2 offered speed 

reduction of 26%, while scaling from 16 OpenMP threads to 32 offered almost no scaling 

at 256 parallel instances upwards.  

The nature of ACO pheromone sharing and probability calculations does not require 

double precision and therefore can be substituted with single precision calculations.  

AVX2 offers 256-bit manipulations, therefore increasing theoretical throughput by factor 

of 2, compared to double precision. 36% decrease in execution time was obtained, as not 

all parts of the code are able to take advantage of SIMD.  

Furthermore, doing 5 ant sequential local search within each parallel instance increases 

time linearly and produces little time savings in terms of solutions explored. The overall 

scaling factor at 1024 parallel instances compared to sequential execution at PAwV (single 

precision with AVX2 and 16c2t) is therefore 25.4x. 

 

Table 6. Hardware A wall-clock time per iteration, in seconds. KMP config is environment variable set as part of 
KMP_PLACE_THREADS, for all instances KMP_AFFINITY=scatter, optimization level /O3, favor speed /Ot. 

 

 

6.2.2. Xeon Phi 

Similar experiments were conducted also on the Xeon Phi hardware, Table 7.  Due to the 

poor convergence rate and search capability, execution time for IAC was not measured. 

Xeon Phi differs from Hardware A with the ability to utilize up to 4 hyper-threads per core 

and AVX512 instruction set. Although Hardware B has 68 physical cores, for simpler 

comparison on base 2, only 64 were used in experiments. At 1024 parallel instances on 

double precision PA, having 2 threads and 4 threads per core does offer speedup of 30% 

and 42% respectively, compared to 1 thread per core.  Moving to the vectorized 

implementation of 256-bit AVX2, gains additional speedup of around 37% across all 

parallel instances, however, did not benefit from 4 hyper-threads. Furthermore, exploiting 

the AVX512 instruction set offers further 24% speedup compared to AVX2. In this 

configuration having 4 hyper threads per core actually worsens the speed performance 

(3.644 seconds vs 3 seconds). Similar to Hardware A, PAwV was explored with single 

 
1 OpenMP Thread Affinity Control https://software.intel.com/en-us/articles/openmp-thread-affinity-control 

KMP config 1 2 4 8 16 32 64 128 256 512 1024

16c,1t 0.196 0.372 0.691 1.368 2.661 5.263

16c,2t 0.148 0.277 0.517 1.002 2.014 4.093

16c,1t 0.205 0.383 0.705 1.411 2.743 5.483

16c,2t 0.153 0.288 0.539 1.044 2.088 4.220

16c,1t 0.131 0.233 0.426 0.805 1.547 3.101

16c,2t 0.107 0.189 0.351 0.749 1.536 3.095

16c,1t 0.111 0.206 0.367 0.699 1.355 2.664

16c,2t 0.088 0.152 0.275 0.501 1.006 1.975

16c,1t 0.484 0.918 1.722 3.380 6.759 13.461

16c,2t 0.347 0.645 1.222 2.369 4.659 9.704

0.049 0.050 0.052 0.055 0.066

The number of Parallel Instances

Hardware A - CPU computation time per iteration (in seconds)

0.115

0.050 0.053 0.057 0.058 0.075

0.078 0.081 0.083 0.085 0.112

0.082 0.084 0.085 0.090

0.212 0.218 0.227 0.241 0.264

Configuration

IAC, double precision

PA, double precision

PAwV, double precision, AVX2

PAwV, single precision, AVX2

PAwV, single precision, AVX2, 

with 5 sequential ant local search

https://software.intel.com/en-us/articles/openmp-thread-affinity-control


precision and offered near perfect scaling on 1024 parallel instances with 4 hyper-threads 

per core, or 40% overall speed improvement compared to PAwV with double precision (3 

seconds vs 1.804 seconds). Alike Hardware A, having 5 sequential local ants does not 

provide any time savings and time increases linearly. The overall scaling factor at 1024 

parallel instances compared to sequential execution at PAwV (single precision with 

AVX512 and 64c4t) is therefore 148x.  

 

Table 7. Hardware B wall-clock time per iteration, in seconds. KMP config is environment variable set as part of 
KM_PLACE_THREADS, for all instances KMP_AFFINITY=scatter, optimization level /O3, favor speed /Ot.  

 

 

6.2.3. GPUs 

A further set of experiments were also conducted for GPU, Table 8. The implementation 

with no vectorization (Blocks x1), uses 1 thread per CUDA block to compute one solution, 

therefore 1024 parallel instances require 1024 blocks. Similarly, for (Blocks x32), 32 

threads are used per block, each thread computing its own solution independently. For 

parallel instances of 32, only 1 block would be used with 32 threads. The implementation 

of no vectorization utilizes no shared memory, however, all static problem meta data is 

stored as textures. A single kernel is launched and best solution across all parallel instances 

is returned.  

Vectorized version implements architecture described in [24], storing the route choice 

matrix in shared memory and utilizing local warp reduction for sum and max operations. 

Each thread-block builds its own solution, while the extra 32 threads assist with the 

reduction operations, memory copies and fitness evaluation. Table 8 shows the comparison 

between the two implementations. Implementation without vectorization performs on 

average 2 times slower compared to the vectorized version. Furthermore, 64 threads per 

block (Blocks x64) performs slower than 32 threads per block (Block x32).  

Next, scaling across multiple GPUs were explored. Each device takes a proportion of 1024 

instances with unique seed values and after each iteration, best overall solution is reduced. 

In case of 2 GPUs and 1024 parallel instances, each device will compute 512 parallel 

KMP config 1 2 4 8 16 32 64 128 256 512 1024

64c,1t 1.417 2.787 5.941 11.089

64c,2t 1.014 1.974 3.845 7.669

64c,4t 1.087 1.606 3.226 6.438

64c,1t 0.818 1.578 3.094 6.114

64c,2t 0.563 1.047 2.022 3.964

64c,4t 0.625 1.101 2.072 4.082

64c,1t 0.608 1.152 2.242 4.404

64c,2t 0.446 0.809 1.535 3.000

64c,4t 0.494 0.982 1.913 3.644

64c,1t 0.521 0.970 1.900 3.806

64c,2t 0.359 0.646 1.210 2.361

64c,4t 0.412 0.542 0.957 1.804

64c,1t 2.342 4.601 9.136 18.844

64c,2t 1.489 2.915 5.743 11.815

64c,4t 1.553 2.225 4.428 9.054

0.726 0.726 0.729

0.332 0.335

PAwV, single 

precision, AVX512

1.205 1.2151.105 1.123 1.195 1.200 1.205

0.284

PAwV, single 

precision, AVX512, 

with 5 sequential ant 

local search

PAwV, double 

precision, AVX512
0.309 0.326 0.326 0.3270.304

0.438

0.261 0.266 0.282 0.284 0.287 0.288

Hardware B - Xeon Phi computation time per iteration (in seconds)

PAwV, double 

precision, AVX2

PA, double precision

0.408 0.411 0.430 0.431 0.433

0.7340.687 0.687 0.725

Configuration The number of Parallel Instances

0.434



instances concurrently. Scaling across 2 (2x) and 4 GPUs (4x) did not provide any 

significant speedup (only 10%). This is due to the fact that each iteration consumes at least 

50 seconds and scaling across multiple GPUs adds almost no overhead. The maximum 

number of parallel instances might need to be increased to fully utilize all 4 GPUs to the 

point where all Streaming Multiprocessors (SMs) are saturated and increasing block count 

increases the computation time linearly.   

GPU implementation is therefore one magnitude of order slower than that of CPU, though 

this could be explained by the nature of the problem and not be specific to ACO 

architecture, as there have been a lot of success on GPUs solving simple, low memory 

footprint TSP instances [24] [46] [47]. However, the problem being solved in this paper 

requires a lot of random global memory access to check for all restrictions such as order 

limits, capacity constraints and weight limits, which are too big to be stored on the shared 

memory.  

 

Table 8. Hardware C wall-clock time per iteration, in seconds. Total number of parallel instances are adjusted for the 
thread-block dimensions. Compiled with CUDA 9.0. 1x, 2x and 4x correspond of number of devices used to compute.  

 

 

6.3. Hardware Comparison and speed of convergence 

If both convergence rate of the architecture and the speed of the hardware is taken into 

account, an estimate can be made on what would be the average wall-clock time to 

converge to a specific solution quality. The fastest configuration for both Hardware A 

(Table 6) and Hardware B ( Table 7) was chosen and then multiplied by the number of 

iterations required to reach a specific solution quality (Table 5) to obtain an estimate of the 

compute time required (Table 9). Therefore, a fairer real-life impact can be derived. GPU 

results (Hardware C) were not included as they are significantly slower.  

If one only considers the best time to converge to 99% solution quality, Hardware A can 

do that in 1.24 seconds on average while, Hardware B would take 6.66 seconds. 

Furthermore, if we look at 99.5% solution quality, Hardware A would take 3.33 seconds 

while Hardware B - 17.01 seconds. Faster clock speed for Hardware A gives advantage 

over Hardware B at lower solution quality checkpoints. In contrast, at 99.75% and 99.9% 

solution quality, Hardware B outperforms. More experimentation is required to determine 

if exploring more than 768k solutions at lower Parallel Instance count affects the dynamics 

at the 99.75-99.9% range.  

  

1 2 4 8 16 32 64 128 256 512 1024

46.792 47.634 47.610 47.499 47.458 48.914 50.811 53.474 60.845 126.897 229.080

- - - - - 108.316 110.571 112.512 113.214 114.512 115.219

- - - - - 49.890 52.457 54.180 55.409 58.802 64.569

- - - - - - 57.139 58.586 59.676 61.031 65.840

- - - - - - 50.048 52.634 55.471 55.509 60.856

- - - - - - - 50.062 52.702 54.406 55.879

The number of Parallel Instances

1x GPU no vectorisation (Blocks x 1)

1x GPU no vectorisation (Blocks x 32)

1x GPU with vectorisation (Blocks x32)

1x GPU with vectorisation (Blocks x64)

2x GPU with vectorisation (Blocks x32)

4x GPU with vectorisation (Blocks x32)

Configuration

Hardware C - GPU computation time per iteration (in seconds)



 

Table 9. Estimated time (in seconds) required to converge to a specific solution quality. Calculated by multiplying the 

number of iterations by the time taken for iteration for individual best performing hardware configuration. Solution 

quality is expressed as a percentage of proximity of the best-know solution (2,701,367.58). 

 

7. Conclusions & Further work 

Nature-inspired meta-heuristic algorithms such as Ant Colony Optimization (ACO) have 

been successfully applied to multiple different optimization problems. Most work focuses 

on the Travelling Salesman Problem (TSP). While TSPs are a good benchmark for new 

idea comparison, the dynamics of the proposed algorithms for benchmarks do not always 

match to a real-world performance where problem has more constraints (more meta-data 

during solution creation). Furthermore, speed and fitness performance comparisons are not 

always completely fair when compared to a sequential implementation.  

This work solves a real-world outbound supply chain network optimization problem and 

compares two different ACO architectures – Independent Ant Colonies (IAC) and Parallel 

Ants (PA). It was concluded that PA outperformed IAC in all instances, as IAC failed to 

find any better solution than 99.5% of optimal. In comparison, PA was able to find near 

optimal solution (99.9%) in less iterations due to efficient pheromone sharing across ants 

after each iteration. Furthermore, PA shows that it consistently finds a better solution with 

the same number of iterations as the number of parallel instances increase.  

Moreover, a detailed speed performance was measured for 3 different hardware 

architectures – 16 core 32 thread workstation CPU, 68 core server grade Xeon Phi and 

general purpose Nvidia GPUs. Results showed that due to the nature of the real-world 

problem, memory access footprint required to check capacity limits and weight constraints 

did not fit on small shared memory on GPU and therefore it performed 29 times slower 

than the other two hardware solutions even when running 4 GPUs in parallel.  

When compared to a real-life impact on time required to reach a specific solution quality, 

both CPU and Xeon Phi optimized-vectorized implementations showed comparable speed 

performance; with CPU taking the lead with lower Parallel Instances count due to the 

much higher clock frequency.  At near optimal solution (99.75%+) and 1024 parallel 

instances, Xeon Phi was able to take full advantage of AVX512 instruction set and 

outperformed CPU in terms of speed.  Therefore, compared to an equivalent sequential 

implementation at 1024 parallel instances, CPU was able to scale 25.4x while Xeon Phi 

achieved a speedup of 148x.  

1 2 4 8 16 32 64 128 256 512 1024

99.00% 1.46 1.24 1.30 1.39 1.64 2.19 3.04 4.13 7.52 15.10 29.63

99.25% 2.19 1.99 2.07 1.94 2.29 3.06 5.31 9.64 15.03 30.19 59.25

99.50% 1539.02 128.82 3.37 3.33 3.93 4.81 8.35 15.14 27.56 50.32 98.75

99.60% 476.40 146.33 12.78 14.88 34.92 19.27 35.07 65.42 128.38

99.75% 188.60 155.33 140.91 266.63

99.90% 805.20 1333.13

99.00% 7.84 6.66 7.04 7.09 7.10 7.18 5.76 6.18 8.13 14.36 27.06

99.25% 11.76 10.65 11.27 9.92 9.94 10.05 10.08 14.42 16.26 28.71 54.12

99.50% 8282.30 689.67 18.31 17.01 17.04 15.79 15.84 22.66 29.81 47.85 90.20

99.60% 2588.73 748.49 55.39 48.80 66.26 28.84 37.94 62.21 117.26

99.75% 282.22 168.02 133.98 243.54

99.90% 765.60 1217.70

Checkpoint of 

optimal 

Estimated time required (in seconds) to reach specific solution quality
The number of parallel instances

Hardware A - 

TR1950x

Hardware B - 

Xeon Phi 7250F

Architecture



Due to the fact that PA fitness performance increases as the number of parallel instances 

increase, it would be worth looking into scaling above 1024 instances using either clusters 

of CPUs or clusters of Xeon Phi’s, which will be part of the future work. Furthermore, 

Field Programmable Gate Arrays (FPGAs) might have potential to take advantage of 

highly vectorized ACO, which is another area of possible future research.   
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