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ABSTRACT 

We optimise daily, whether that is planning a round trip that visits the most 

attractions within a given holiday budget or just taking a train instead of driving a car 

in a rush hour. Many problems, just like these, are solved by individuals as part of our 

daily schedule, and they are effortless and straightforward. If we now scale that to 

many individuals with many different schedules, like a school timetable, we get to a 

point where it is just not feasible or practical to solve by hand. In such instances, 

optimisation methods are used to obtain an optimal solution.  

In this thesis, a practical approach to optimisation has been taken by developing an 

optimisation platform with all the necessary tools to be used by practitioners who are 

not necessarily familiar with the subject of optimisation.  

First, a high-performance metaheuristic optimisation framework (MOF) called 

OptPlatform is implemented, and the versatility and performance are evaluated across 

multiple benchmarks and real-world optimisation problems. Results show that, 

compared to competing MOFs, the OptPlatform outperforms in both the solution 

quality and computation time.  

Second, the most suitable hardware platform for OptPlatform is determined by an 

in-depth analysis of Ant Colony Optimisation scaling across CPU, GPU and enterprise 

Xeon Phi. Contrary to the common benchmark problems used in the literature, the 

supply chain problem solved could not scale on GPUs.  

Third, a variety of metaheuristics are implemented into OptPlatform. Including, a 

new metaheuristic based on Imperialist Competitive Algorithm (ICA), called ICA with 

Independence and Constrained Assimilation (ICAwICA) is proposed. The ICAwICA 

was compared against two different types of benchmark problems, and results show 

the versatile application of the algorithm, matching and in some cases 

outperforming the custom-tuned approaches.   

Finally, essential MOF features like automatic algorithm selection and tuning, 

lacking on existing frameworks, are implemented in OptPlatform. Two novel 

approaches are proposed and compared to existing methods. Results indicate the 

superiority of the implemented tuning algorithms within constrained tuning 

budget environment.  
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1. INTRODUCTION 

An optimisation is part of our daily schedule. A school timetable is an excellent 

example of a scheduling problem that could still be performed by hand, though it would 

be impractical. Once the timetable gets more involved with many students, classrooms 

and teachers, the naïve exhaustive search becomes infeasible in polynomial time. We 

refer to these kinds of problems as NP-complete or NP-hard. These NP-hard problems 

can be found in scheduling, timetabling, routing, logistics, supply chain management, 

finance and engineering. 

Finding a global optimum in a complex optimisation problem is not trivial. In some 

cases, the search space's size is so big that even combined computation power of the 

whole world would struggle to solve the problem exhaustively in our lifetimes. In these 

instances, approximate solutions might be a reasonable trade-off if the solution found 

is near-optimal, and the computation time and resources are acceptable. Heuristic 

approaches offer this trade-off as a practical method for solving real-world problems, 

where the near-optimal solution may be enough. In a real-world optimization model, 

not all parameters are known or are recorded correctly and are usually approximated. 

Therefore, even if the exact optimization method is used, it is still likely to find a non-

optimal solution while requiring more compute time and resources.  

Metaheuristics, or generic heuristics, are optimisation algorithms that offer more 

generalisation than heuristic algorithms and are not problem limited. The generic 

nature allows the same algorithm to be applied to a wide variety of problems. However, 

the no-free-lunch theorem [1] suggests that no single algorithm would be the best for 

all possible problems; thus, multiple different metaheuristics exist. The ability to apply 

metaheuristics to various problems, or rather, solving the same problem with multiple 

metaheuristics, has been an inspiration of many Metaheuristic Optimisation 

Frameworks (MOFs) in the last two decades. MOFs are standardised frameworks that 

utilises metaheuristic methods for optimisation. This thesis implements such MOF for 

real-world optimisation problems.  
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1.1. Motivation 

As the world gets more interconnected, companies and governments try to optimise 

their processes and lower the cost. The ever-growing data availability and increase in 

computing power is the perfect storm for global, intercontinental optimisation. 

Unexpected events such as the Covid-19 outbreak have made many companies re-

plan their businesses, especially their supply chains. A more resilient or faster-

adapting business is an edge against competition and competition drives more 

efficient use of limited resources.    

Gaining an edge against competition involves robust and scalable optimisation 

frameworks. These platforms are required to not only be able to produce useful 

solutions in a reasonable time frame but also have all the essential supporting tools to 

implement the results to generate the most impact. Existing MOFs are mostly made 

for academia for research and new algorithms development. They are limited in 

applicability to real-world and expect some expert knowledge in metaheuristics.   

1.2. Thesis Contributions 

The work presented in chapters 3, 4, 5 and 6 discuss the proposed methods of 

efficient metaheuristics optimization platform aimed for complex real-world 

optimization problems. These methods have been accepted and published in two 

journal papers and two conference papers. The original contributions of this thesis can 

be summarized as follows: 

1. OptPlatform: high-performance metaheuristic optimization platform aimed at 

solving a class of complex real-world optimisation problems. The developed 

software system incorporates necessary toolset for efficient optimization problem 

implementation and analysis. It comprises of three metaheuristic algorithms – Ant 

Colony Optimization (ACO), Evolutionary Strategy (ES) and Imperialist 

Competitive Algorithm (ICA). The developed OptPlatform can derive optimal 

solutions quicker than comparable existing metaheuristic optimization frameworks 

and introduces tools that are not available on other platforms, such as automatic 

algorithm selection and tuning. The superior efficiency of the OptPlatform has 

been considered for several optimisation problems, both benchmark and real-life 

models. The OptPlatform architecture is inspired based on previously published 

work in [2]. 
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2. Imperialist Competitive Algorithm with Independence and Constrained 

Assimilation (ICAwICA): an improved metaheuristic algorithm based on classical 

Imperialist Competitive Algorithm (ICA). The proposed algorithm introduces the 

concept of colony independence – a free will to choose between classic ICA 

assimilation to the empire’s imperialist or any other imperialist in the population. 

Furthermore, a constrained assimilation process is introduced that replaces 

classical ICA assimilation and revolution operators. ICAwICA shows definite 

improvement over classical ICA and outperforms most of the competition across a 

variety of optimization problems. The proposed algorithm was published in [3]. 

3. A study of parallel Ant Colony Optimization: an in-depth analysis of parallel Ant 

Colony Optimization architecture scaling across numerous hardware solutions – 

high-end workstation CPU, Intel Xeon Phi architecture and General Processing 

Units (GPUs). Although previous research indicates that GPUs are the most 

suitable for benchmark routing problems, this study empirically demonstrates how 

the scaling dynamics do not translate to a real-world optimisation problem due to 

memory access patterns necessary. The contradictory findings with the supporting 

dataset were published in [4]. 

4. eTuner and eTunerAlgo hyperparameter tuning algorithms: two simple 

generate-evaluate algorithms are developed for automated metaheuristic and their 

hyperparameter selection. A benchmark dataset, containing three metaheuristics 

and their performance for set of hyperparameters (18,760 configurations), is 

generated and published in [5]. Later, this benchmark dataset is used to evaluate 

and compare the different methods with the current state-of-the-art. Results show 

that the presented approach is more suited for low tuning budgets than the 

competition. Methods used and the results are published in [6].  
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1.3. List of publications 
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• I. Dzalbs and T. Kalganova, “Simple generate-evaluate strategy for tight-budget 

parameter tuning problems,” in IEEE Symposium Series on Computational 

Intelligence (SSCI), 2020, doi 10.1109/SSCI47803.2020.9308348.  

• I. Dzalbs, T. Kalganova and I. Dear, “Imperialist Competitive Algorithm with 

Independence and Constrained Assimilation,” in 2020 International Congress on 

Human-Computer Interaction, Optimization and Robotic Applications (HORA), 

2020, pp. 1–11, doi: 10.1109/HORA49412.2020.9152916.  

• I. Dzalbs and T. Kalganova, “Accelerating supply chains with Ant Colony 

Optimization across a range of hardware solutions,” Comput. Ind. Eng., vol. 147, 

p. 106610, Sep. 2020, doi: 10.1016/j.cie.2020.106610.  

• I. Dzalbs and T. Kalganova, “Forecasting Price Movements in Betting Exchanges 

Using Cartesian Genetic Programming and ANN,” Big Data Res., vol. 14, pp. 112–

120, 2018, doi: 10.1016/j.bdr.2018.10.001.  

 

1.4. Thesis contents 

This thesis consists of seven chapters. The first chapter familiarises the reader with 

a brief background, motivation, and significance of this research.  

Chapter 2 covers an in-depth literature review of optimization methods, with a focus 

on metaheuristics. Furthermore, Chapter 2 also presents and analyzes various 

existing metaheuristic optimization frameworks in the literature. Finally, Chapter 2 

introduces multiple optimization problems that will be solved throughout the further 

chapters.  Figure 1 summarises the connections between different optimization 

problems across chapters.  
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Figure 1. Connections between the thesis chapters. 

Chapter 3 introduces the optimization platform – OptPlatform. It starts by defining 

the target users and software requirements as well as justifies the technologies used. 

Furthermore, Chapter 3 describes the software architecture and gives user workflow 

examples. The three implemented metaheuristic algorithms are described in detail, 

including supporting modules such as Search Visualizer, Transition Opt and Global 

Grid. Search visualizer module creates a graphical report of the statistical metrics 

about the search, while Transition Opt module creates a step by step transition plan 

of implementing the resulting optimized solution. Global Grid animates the 

geographical paths in the map for more straightforward analysis and solution 

understanding. A real-world Transcom scheduling and routing problem is solved as a 

case study, to demonstrate the platform and its modules. Finally, the developed 
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OptPlatform is compared to existing metaheuristic optimization frameworks using the 

Multiple Knapsack Problem. 

In Chapter 4, a new algorithm based on the Imperialist Competitive Algorithm is 

developed – Imperialist Competitive Algorithm with Independence and Constrained 

Assimilation (ICAwICA). ICAwICA improves on existing implementations by replacing 

traditional assimilation and revolution operators with constrained assimilation. 

Furthermore, independence operator is used for local search. The algorithm's 

performance is evaluated on two benchmark problems – Multi Depot Vehicle Routing 

Problem (MDVRP) and Multiple Knapsack Problem (MKP). The experimental results 

demonstrate the superiority over classic ICA and universality of the local search.  

Chapter 5 presents a detailed exploration of parallel Ant Colony Optimization (ACO) 

algorithm and its scaling dynamics on various hardware types. Academic literature 

indicates that Graphical Processing Units (GPUs) can speed-up the search process 

for benchmark problems by 172 times. Chapter 5 investigates if the same ACO 

architectures can be applied for a real-world supply chain optimization problem. 

Results indicate that although suitable for simple benchmark problems, GPU ACO 

architectures cannot scale for more complex supply chain problems. 

In Chapter 6, two simple generate-evaluate hyperparameter tuners are introduced 

for automated metaheuristic algorithm selection and evaluation. A benchmark dataset 

is generated based on all three metaheuristics – ACO, ICA, and Evolutionary Strategy 

(ES) and used to evaluate the performance. Two optimization problems were used for 

the underlying optimization – Aerial Surveying problem (a real-world problem adapted 

as a benchmark) and MKP. Results demonstrate the superiority over existing 

parameter tuning algorithms.  

Finally, Chapter 7 concludes the thesis and lists potential future research directions.   
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2. LITERATURE REVIEW 

Although the main research area is in Metaheuristic Optimization Frameworks 

(MOFs), the first section of this paragraph introduces the background of optimisation 

methods and introduces the reader to various metaheuristics found in the literature. In 

particular, section 2.1 highlights an overview of the current state of the art optimization 

methods with a focus on metaheuristics (section 2.1.2). Section 2.2 reviews and 

analyzes the current state of the art MOFs, where research gaps are established 

(section 2.2.1). The chapter continues by introducing various optimization problems 

that are solved throughout the consecutive paragraphs in section 2.3. Finally, the 

chapter is summarized in section 2.4.  

2.1. Optimization methods 

Optimization is the process of finding the best solution among a pool of possible 

solutions. Optimization is applied to a wide range of engineering, economic and even 

social systems to minimize cost or maximize profits. There is no single optimization 

technique that can be efficiently applied across all optimization problems. Hence 

several optimization methods have been developed for different kinds of optimization 

problems [7]. The optimum pursuing behaviour is also referred to as mathematical 

programming in operations research. Operations research is a branch of mathematics 

focusing on applying scientific methods and techniques for the decision-making 

process. The research area's roots can be traced down to World War II, where the 

British military faced the problem of allocating constrained resources, such as 

aeroplanes, radars, and submarines to different destinations. At the time, there were 

no systematic methods for resource allocation, and hence a group of mathematicians 

was called for assistance. The mathematical methods developed were instrumental in 

the winning of the Air Battle by Britain. Techniques, such as linear programming, were 

created as part of military research operations and therefore came to be known as 

operations research [7].  

The optimization problem needs to be modelled first before it can be solved. To 

develop the mathematical model of an optimization problem, the following components 

should be fully characterized [8]: 
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1) The set of optimization variables 𝑥1, 𝑥2, . . . , 𝑥𝑛. 

2) The objective function 𝑓(𝑥) that applies to the optimization variables and 

returns a real value. The objective function can be either minimized or 

maximized. 

3) A set of constraints that should hold on the optimization variables. 

4) The domain sets 𝐷1, 𝐷2, … , 𝐷𝑛 as the domains of the optimization variables 

𝑥1, 𝑥2, . . . , 𝑥𝑛. 

However, some optimization problems can be described without constraints; 

similarly, optimization variables’ domain set can be the entire space [7].   

The optimal or near-optimal solution can then be found by either exact (or 

deterministic, classical) or approximate (or random, modern) methods, hierarchy 

shown in Figure 2. Exact methods offer a mathematically provable optimal solution; 

however, because large proportion of real-world optimization problems are NP-hard, 

deterministic methods are not always suitable due to computation expense. NP-hard 

refers to problems that are impossible to predict whether an optimal solution can be 

computed in less than exponential time [9]. Furthermore, it is not always possible to 

define an exact technique for every optimization problem. In contrast, approximate 

methods offer short-time solving of NP-hard problems while finding optimal or near-

optimal solutions [10]. Due to the shortcomings of the exact techniques and ever-

increasing complexity of problems being solved, approximate methods have gained 

traction in the last few decades. These methods cannot guarantee the optimality of the 

final solution; however, offer a near-optimal solution with reasonable computation time.  
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Figure 2. Taxonomy of optimization methods 

2.1.1. Heuristics 

Even though a theoretically provable optimal solution is desirable, it is not always 

possible or practical. Due to runtime complexity, most exact methods are not 

applicable to high dimensionality real-world problems.  In these instances, 

approximate solutions might be a reasonable trade-off if the solution found is near-

optimal, and the computation time and resources are acceptable. Heuristic 

approaches offer this trade-off as a practical method for solving real-world problems, 

where the near-optimal solution may be enough. In a real-world optimization model, 

not all parameters are known or are recorded correctly and are usually approximated. 

Therefore, even if the exact optimization method is used, it is still likely to find a non-

optimal solution while requiring more compute time and resources. Furthermore, in 

real-time systems, a good enough solution is necessary in a matter of seconds.  

Heuristic approaches offer practical implementation of hard to solve optimization 

problems based on knowledge gained from experience. Examples of this method 

include using a rule of thumb, an educated guess, an intuitive judgement, or common 

sense [10]. Constructive heuristics are usually the fastest to implement, and they 
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construct a solution from scratch by iteratively adding solution sub-components till a 

complete solution is obtained. Determining constructive heuristic is easy in most 

combinatorial problems; however, the resulting solution quality strongly depends on 

the level of the expertise used to design the implementation.  

In the last three decades, the interest of more generic heuristics has been growing 

exponentially [11]. These general heuristics, called metaheuristics, combine the basic 

heuristics with a higher-level search framework for efficient exploration of the search 

space and are entirely independent of the application domain.   

2.1.2. Metaheuristics 

In the 70ies, a new paradigm was introduced that promised to combine basic 

heuristic methods at a higher level to explore search space more effectively – called 

modern heuristics [12]. These days more commonly referred to as metaheuristics. 

Metaheuristics include simulated annealing, evolutionary strategy, tabu search, ant 

colony optimization and many more. The specific implementation of metaheuristics 

varies from one another; however, they all implement two operators – diversification 

and intensification [13].  Diversification refers to the exploration of the search space, 

while intensification – exploitation of the knowledge about the search space. All 

metaheuristics need to balance the exploration and exploitation – too high 

intensification and search may get stuck into local optima (sub-optimal solution); too 

high diversification and global optima may never be found or convergence takes too 

long [13]. Fundamental characteristics of metaheuristics are summarized based on 

[13] and [14]: 

• Metaheuristics are usually approximate and non-deterministic. 

• Metaheuristics are not problem-specific. 

• Metaheuristics explore the search space to find “good enough” solutions. 

• Metaheuristics may incorporate domain-specific knowledge in the form of 

heuristics. 

• Metaheuristics can be described by an abstraction level. 

• Metaheuristics may use various strategies to avoid premature convergence. 

• Metaheuristics usually allow highly parallel implementation. 

• Metaheuristics may use search experience as a form of memory to guide the 

search. 



11 
 

There are many ways that metaheuristics can be classified, and some of the 

groupings are subjective and depend on the author’s viewpoint. Some of the 

algorithms may fit into one or two taxonomies and sometimes overlap [10]. 

For example, some metaheuristic algorithms can be classified as nature-inspired, 

like ant colony optimization and genetic algorithm, while others as non-nature inspired 

– tabu search and iterated local search. Work in [15] performed extensive taxonomy 

on nature and bio-inspired metaheuristics by comparing 300 papers over different 

years. Furthermore, authors in [15] also categorized nature-inspired algorithms as 

follows: Breeding-based Evolution, Swarm Intelligence, Physics and Chemistry based, 

Social Human Behaviour algorithms, plant-based and other miscellaneous.  

Furthermore, metaheuristic algorithms can also be divided into trajectory-based 

(sometimes referred to as single-point) and population-based search [16]. This division 

specifies how many solutions are created at any given iteration. Trajectory-based 

methods include most local search approaches such as iterated local search, tabu 

search and simulated annealing, where the current best solution is replaced by a new 

one. On the other hand, population-based algorithms maintain many solutions 

(population) in the search space (in evolutionary methods), or they perform search 

processes that alter the distribution probability over the search space (ant colony 

optimization for example) [12]. Usually, population-based algorithms start with a 

random population that is enhanced throughout the search. Trajectory-based 

algorithms tend to favour exploitation, while population-based are more exploration 

oriented. Often additional methods are implemented for local search when using 

population-based algorithms and a global search for trajectory-based.  

Authors in [14] used taxonomy of metaphor-based and non-metaphor based 

metaheuristics. The former are algorithms that simulate natural phenomena, human 

behaviour or mathematics, the latter, metaheuristics that do not use any form of 

simulation for determining their search strategy.  

Metaheuristics can also be with or without memory. Majority of population-based 

algorithms are with-memory as they use previous search history to guide and assist 

the search processes. In contrary, memory-less algorithms only use current state to 

determine the next action, i.e. follow the Markov process.  

Although numerous metaheuristic algorithms exist in the literature [17],[14],[11], the 

following section aims to provide an overview of the most common metaheuristic 

algorithms, with the focus on Ant Colony Optimization, Evolutionary Strategy and 
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Imperialist Competitive Algorithm, all three used as optimization algorithms in section 

3.6. 

2.1.2.1. Trajectory-based 

The main characteristics of trajectory-based metaheuristics are that they start from 

a single solution and iteratively move away from it, describing a search space 

trajectory. These techniques aim to improve local search in a more intelligent way. 

Trajectory methods consist of the Simulated Annealing (SA) method, the Greedy 

Randomized Adaptive Search Procedure (GRASP) method, the tabu search, and 

many local search variations. 

• Simulated Annealing (SA) 

The algorithm is inspired by the annealing process of metal or glass, where the 

material's temperature is slowly reduced till low energy state is reached. First proposed 

by [18] and then adopted by [19] for optimization problems.  The fundamental idea is 

to use temperature as an explicit strategy to guide the search. The algorithm starts by 

generating a random or heuristic-based initial solution. In the beginning, when the 

temperature is still high, the algorithm prefers exploration and accepts good and bad 

solutions. But as the temperature is reduced, the requirements for improving existing 

solution becomes stricter and stricter. The strengths of SA is the ability to avoid getting 

stuck in local minima which is directly linked to the cooling schedule [20]. The cooling 

schedule determines the functional form of the change in the temperature needed in 

SA. SA has been applied to multiple discrete and continuous optimization problems 

[21], though rarely on combinatorial problems as a standalone algorithm [17]. Most 

commonly, SA is used as a form of local search in hybridization with other algorithms. 

Variations of SA such as Microcanonic Annealing [22], Threshold accepting method 

[23] and Noising method [24] aim to improve the generic form of SA.   

• Greedy Randomized Adaptive Search Procedure (GRASP) 

The GRASP algorithm [25],[26] is a multi-start or iterative metaheuristic with two 

phases in each iteration: solution construction and local search. The construction 

phase uses a Greedy Randomized Adaptive algorithm to build a solution. If the 

solution is not valid, a repair procedure is applied. The solution is then improved by 

local search. The improved solution is the final result of the search. In the greedy part 
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of the heuristic, a solution is built iteratively by adding partial solutions. It means that 

list of partial solution entries needs to be created beforehand. In each iteration the list 

is sorted based on a greedy function. Each of the partial solutions are selected 

randomly from the set of restricted candidates (RCL) [17]. A comprehensive summary 

of common approaches of GRASP and problem domains are provided by the survey 

in [27] and a more recent survey of [28]. Most commonly GRASP is combined with 

other local search techniques, such as simulated annealing, variable neighbourhood 

search and iterated local search [29], [30].  

• Tabu Search (TS) 

The Tabu search (TS) first introduced in 1986 by [31]. Its main characteristic is 

based on the use of mechanisms inspired by human memory [17]. Improvement on 

the Local Search which can avoid local minima by use of memory methods in three 

schemes: 1) use of flexible memory structures to search and evaluate information 

based on previous moves; 2) control the actions to be applied on the time of search 

process; 3) use of memory functions of long term and short term memory to diversify 

and intensify the search [32]. The main idea of the TS is the restrictions of already 

visited areas of the search – tabu list. The length of the tabu list controls the memory 

dynamics of the search process. Small list leads to concentration on small areas – 

intensification, while long list encourages exploration of larger regions – diversification. 

A detailed description of the TS with its variations can be found in [33]. Although 

attempts to apply tabu search for continuous problems exist [34], most of the TS 

research focuses on discrete combinatorial optimization [33].  

 

• Iterated Local Search (ILS) 

The Iterative local search (ILS) [35] iteratively applies the local search algorithm to 

the candidate solutions. Each move is only performed if the new solution is better than 

the current one based on the acceptance criterion. The algorithm selects the starting 

point in the search space either randomly or based on domain-knowledge. The 

acceptance criterion alongside perturbation mechanism allows altering the dynamics 

of search intensification and diversification [17]. Because the algorithm lacks the ability 

to detect or escape local minima, it is generally not used in its standard form. Variations 

of iterative local search are described in [36], which typically implements more 

sophisticated termination criteria.  
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2.1.2.2. Swarm Intelligence  

The Swarm Intelligence (SI) is a population-based paradigm for solving optimization 

problems and has been inspired by the collective behaviour of a group of insect 

colonies or other animal societies.  Many such organisations can be observed in 

nature, such as ant foraging behaviour, fish schooling, animal herding, bird flocking, 

and many more. Although there is usually no central entity dictating how the swarm 

individuals should behave, the interaction between the agent and the environment 

often leads to the emergence of global and self-organizing behaviour [17]. For 

example, individual ants do not exhibit sophisticated behaviour; however, many ants 

in an ant colony working together can achieve more complex tasks [37].  In recent 

times, swarm intelligence has seen growth in popularity for solving NP-hard problems 

where finding global optima becomes increasingly hard in real-time scenarios [38]. 

Most common problems include the travelling salesman problem (TSP), feature 

selection, robot swarm learning, clustering and scheduling [39].  

Although other emerging SI algorithms based on the behaviour of glow-worms, 

lions, wolfs, bats and monkeys exist [38], [40], this section focuses on the most 

common SI algorithms. Ant Colony Optimization (ACO) is discussed separately in 

section 2.1.2.4.  

 

• Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) was first introduced in 1995 by [41] as global 

optimization algorithm; however, the concepts of autonomous agents (particles) can 

be traced back to 1983 [38], where the idea of many individuals working together for 

creating a fuzzy graphical object was used in early animation [42]. PSO is inspired by 

the flocking behaviour of birds or fish schooling. The technique is often compared to 

that of an evolutionary optimization, where the population is randomly sampled and 

evaluated to determine the best solution, and the process is repeated over many 

iterations. However, unlike evolutionary algorithms, each particle also has a velocity 

and memory assigned to it [14]. Individuals in the population – particles, move around 

in a search space. During movement, each particle adjusts their position according to 

that of their own experience or the whole population's experience. Therefore, PSO 

combines the local search (through self-experience) with global search methods 
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(through neighbouring experience), balancing the intensification and diversification of 

the search [43]. 

A detailed description of PSO types and a survey of its hybrids are available in [44]. 

Because PSO is population-based, meaning, each of the agents can build solution 

independently at any given iteration, many parallel implementations have been 

explored. For example, [45] summarizes all parallel PSO implementation, including 

the usage of graphical processing units (GPUs). The PSO is popular across a range 

of research areas; thus, many surveys have been carried out. For instance, authors in 

[46] summarize recent advances of PSO in the solar energy domain. Furthermore, 

[47] carried out a PSO survey in filter-based classification and [48] focused on PSO 

for feature selection. 

 

• Artificial Bee Colony (ABC) 

There are multiple bee-inspired optimization algorithms like Bee Colony 

Optimization (BCO) [49], Virtual Bee Algorithm (VBA) [50], beehive algorithm [51], 

Discrete Bee Dance Algorithm (DBCA) [52] and other variations. This section focuses 

on the most popular honeybee inspired algorithm – Artificial Bee Colony (ABC) [53]. 

Just like honeybee colonies in nature, the ABC algorithm divides all the bees into three 

categories based on their purpose in the colony. A colony is composed of Employed 

Bees (EB), Onlooker Bees (OB) and Scout Bees (SB). The employed bees are 

responsible for searching for new food sources and providing feedback to the bees in 

the hive (onlooker bees). Based on the provided information by waggle dance, 

onlooker bees start exploiting these food sources. As the nectar amount of a food 

source increase, the probability of visiting the source by onlooker bees rises. Once the 

food source is exhausted (due to intensification), scout bee is responsible for finding 

a new food source. The bees iteratively look for new food sources while improving 

solution till termination criteria is reached [54].  

A comprehensive summary of the latest advances in ABC algorithms is provided in 

[54]. ABC algorithm has been applied to many NP-hard problems, both in benchmarks 

such as travelling salesman problem (TSP) and real-life applications like image 

segmentation [55], well placement [56], solving sudoku, job shop scheduling and many 

others [57]. Furthermore, a survey in [58] summarizes ABC's many application areas 

in a wide range of engineering domains. 
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• Cuckoo Search Algorithm (CSA) 

Cuckoo search algorithm (CSA), created by [59] in 2009, is a novel population-

based algorithm that mimics the obligate brood parasitism behaviour of a bird called 

the cuckoo. Some cuckoos have involved a way that allows their parasitic females to 

imitate the eggs of few chosen host species. This phenomenon reduces the probability 

of the host birds detecting the parasitic egg. If the host birds discover alien egg, they 

either dispose of the intruder egg or abandon their nest altogether [60]. The CSA 

combines this obligate brood parasitic behaviour with Lévy flight, a type of random 

walk with step-lengths calculated according to heavy-tailed probability distribution [61]. 

The CS algorithm is based on three simplified and idealized rules: a) each cuckoo lays 

one egg at a time and dumps it in a randomly chosen nest; b) the best nests with high 

quality of eggs (solutions) will carry over to the next generations; c) the number of 

available host nests is fixed, and a host can discover an alien egg with probability 

following a normal distribution. In the last case, the host bird can either throw away the 

egg or abandon it to build a new nest in different locations [59].   

Even though CSA is one of the newer SI family algorithms, numerous 

implementations and applications are found in the literature [62]. For instance, [63] 

explores standard CSA modifications, commonly used parameter settings and 

different hybrids in detail. Furthermore, [61] investigates the broad area of real-world 

CSA applications, such as medical applications, clustering and data mining, image 

processing, energy and economic load dispatch problems, to name a few. 

  

• Firefly Algorithm (FA) 

Firefly Algorithm (FA) proposed by [64] in 2008 is another recent metaheuristic 

optimization algorithm. It is based on how fireflies attract mating partners or warn 

potential predators by their flashing light, produced by the biochemical process – 

bioluminescence. In the FA implementation, all fireflies are assumed to be unisexual 

so that any individual firefly is attracted to all other fireflies. The attractiveness is 

proportional to the brightness of the flash, and they both decrease as distance 

increases. Thus, for any two flashing fireflies, the less bright individual will move 

towards the brighter one. If the brightness of both fireflies is the same, the fireflies will 

move randomly. The landscape of the objective function determines the brightness of 

a firefly.  



17 
 

Compared to other metaheuristics, FA can solve both continuous [65] and discrete 

[66] optimization problems. Multiple variations of the algorithms where explored and 

compared in the study conducted in [67]. Application areas include various 

optimization, classification and wide range of engineering applications, all summarized 

in [68] and [69]. Recently, FA has been explored as viable option in combination with 

neural networks [70].  

2.1.2.3. Evolutionary algorithms 

Evolutionary Computation (EC) is a category of population-based metaheuristics 

inspired by the Darwinian principles of evolution of living beings. The beginnings of 

applying Darwinian principles to solve computing problems can be traced back to 

sixties, where three different implementations of the idea developed separately for 

many years [71]. In the USA Fogel introduced the evolutionary programming [72], 

while Holland referred to his as genetic algorithm [72]. Furthermore, in Europe, 

Rechenberg [73] and Schwefel [74] called theirs – Evolution strategies.  Only in the 

early nineties, these different representatives of one technology were labelled under 

one name – evolutionary computing. After a while, concepts of genetic programming 

[75] were also introduced [71]. 

These days there are numerous variations and adaptions of the classical 

evolutionary algorithms (surveys in [76], [77] and [76] describe them in detail); 

however, they all follow principles of natural selection (survival of the fittest individual) 

in a population.  Evolutionary algorithms can therefore be structured based on [78] as 

follows: a) one or more individuals are competing for constrained resources; b) 

population changes dynamically due to the cycle of death and birth of individuals; c) a 

notion of fitness, which reflects the ability of individual to survive and reproduce; d) 

offspring closely resembles their parents, but are not identical.   

The following section briefly describes the most common evolutionary algorithms. 

Evolution Strategy algorithm (ES) and Imperialist Competitive Algorithm (ICA) are 

discussed separately in section 2.1.2.5 and section 2.1.2.6, respectively.  

 

• Genetic Algorithm (GA) 

The Genetic Algorithm (GA) is one of the most well-known and most applied 

algorithms out of evolutionary computation family. Developed by John Holland in the 

early 1970s [72], it has gained interest in various research communities. The genetic 
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algorithm starts with a set of solutions called population. Each solution is represented 

by a chromosome, that encodes a set of genes. The simplistic implementation of GA 

is very generic and is usually adapted based on the problem solved: representation of 

the chromosome, selection strategy, crossover and mutation operators. 

Chromosomes are evaluated based on their fitness – ability to survive and reproduce, 

over iterative process called generations. In each generation, individuals are selected 

for reproduction by exchanging some of their parts – crossover. After crossover, 

individuals are subjected to a mutation operator, based on mutation rate. Mutation 

operator introduces some randomness in the search. This process continues till a 

termination criterion is met.  

There are multiple GA selection schemes, for instance, roulette-wheel selection, 

tournament selection, ranking selection and others. A comprehensive comparison of 

the selection methods used is described in [79]. Furthermore, the crossover is another 

important GA operator with many different implementations, single point and n-point 

crossover being the most common. However, more sophisticated implementations like 

uniform, three-parent, arithmetic, partially mapped crossovers have also been 

proposed. Both [80] and [81] provides detailed descriptions of different crossover 

methods. There are also multiple mutation strategies; the GA survey in [82] describes 

them in detail.  

The popularity of GA has resulted in numerous variants of the algorithm and its 

application to a wide range of optimization problems. Overviews of recent advances 

tend to be surveyed in specific research fields, such as genetic algorithms applied in 

operation management [83], supply chain management [84], lens design [85], 

composite structure design [86], scheduling [87] amongst others. Moreover, parallel 

implementations of GA were explored in [88]. 

 

• Coevolutionary Algorithms (CoEAs) 

Coevolution is the mechanism by which two or more species evolve in tandem by 

interacting with each other. Examples of coevolutionary processes include hosts and 

parasites, predators and prey, insects pollinating the flower and other cooperative or 

symbiotic relationships. Biological coevolution occurs in many natural processes and 

has been the inspiration for Coevolutionary Algorithms (CoEAs). Compared to single 

population evolutionary algorithms, CoEA consists of two or more populations of 

species that continuously interact and co-evolve simultaneously [17].  Although there 
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are many variants of CoEAs, the most common categories are competitive coevolution 

and cooperative coevolution. As names suggest, in competitive coevolution 

populations compete during optimization and individuals are rewarded at the expense 

of those they interact with. Conversely, in cooperative coevolution, individuals are 

rewarded when working with other individuals and punished when they perform poorly 

together [89].  

In the cooperative coevolution, the different species live together for a mutual 

benefit – symbiosis. The first cooperative coevolution algorithm was proposed in 1994 

by Potter and De Jong [90].  The idea was to divide a complex problem into sub-

problems, where each of the sub-problems is assigned to a population. These 

populations evolve independently and only interact to obtain fitness. Cooperative 

CoEAs are often integrated into other metaheuristics like cooperative PSO ([91],[92]) 

and cooperate ABC [93]. 

Competitive coevolution, however, simulates competing forces in nature like 

predators and prey, where prey evolve to defend themselves better, while predators 

develop better attack strategies. It was first introduced by Hillis [94] for sorting 

networks, where one population was assigned a set of sorting networks (the hosts), 

and another population was assigned the test cases (the parasites). Fitness was given 

to each of the sorting network based on the ability to solve the test case. Furthermore, 

each test case was assigned fitness based on the number of times the networks 

incorrectly sorted it. This process allowed both populations to evolve simultaneously 

while interacting only through fitness function evaluations [89]. Moreover, competitive 

coevolutionary models are well suited for models where it is difficult or impossible to 

formulate an objective fitness function explicitly [16].  

Summaries of recent advances of coevolutionary algorithms are discussed in [95]. 

Furthermore, CoEAs applications to multi-objective optimization problems reviewed in 

[89]. 

 

• Genetic Programming (GP) 

Genetic Programming (GP) was first introduced in by Koza [75]. Although based on 

a similar strategy as a GA, the GP offers a more high-level automated approach for 

creating a computer program based on the goal of the problem [17]. GP still uses the 

same genetic operators as selection, crossover and mutation; however, the solutions 

are based on the decision rules (variables or terminals) and arithmetic operations – 
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functions and not fixed-length string like in a GA. GP solutions are usually expressed 

as a tree, where the tree leaves are the terminals, and the arithmetic operators are the 

internal nodes. Like in a GA, the initial population of computer programs (individuals) 

is usually generated randomly and evolved over many generations to improve the 

fitness value. In every generation, each program is evaluated based on the fitness 

function, which determined the program's ability to survive and reproduce [96].  

There are many types of GP algorithms, and authors in [97] classified them in eight 

major types: Tree-based GP, Stack-based GP, Linear GP, Extended Compact GP and 

Grammatical Evolution GP. Applications of GPs range from biological and genome 

structure optimization [98] to image processing [99], scheduling [96], forecasting [100] 

and many more. Summary of all types of GPs and their application areas is structured 

in a recent survey in [97].  

2.1.2.4. Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) takes inspiration from ant cooperative behaviour of 

finding a food source. The origins of the phenomena can be traced to the double bridge 

experiment by Deneubourg et al. in [101]. A controlled experimented of ants’ 

movement was conducted by constructing two variable-sized bridges between the 

food source and the ant nest. At the start, ants moved randomly in all experiments but 

eventually converged to the single shortest path. In experiments where both bridges 

were equal size, ants converged towards using one of the two bridges. When the 

experiment was repeated multiple times, each of the two bridges was used an equal 

number of times. It was concluded, that because ants lay down pheromone, their 

behaviour is influenced by the pheromone's concentration on the chosen path, i.e. 

higher concentration – more likely ant will choose the given path. Furthermore, 

naturally, pheromone scent evaporates on the longer, no more used paths, giving a 

higher probability of re-deposit of pheromone on shorter, more appealing paths [102]. 

This behaviour is modelled in Figure 3, where initially ants move randomly, before 

converging to the single shortest path at the final stage of the search. 

This ant behaviour was a base for the development of Ant System (AS) algorithm 

by Dorigo [103]. The initial work in [104] looked at three different AS – ant-density, ant-

quantity and ant-cycle, and solved small TSP instances. A pheromone is deposited on 

the graph's edges in the ant-density approach if ant moves between two connected 

nodes. Furthermore, in ant-quantity, the pheromone is deposited over the distance of 
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the edge between two connected nodes. Finally, ant-cycle only deposited pheromone 

when ant completes the full tour. It was concluded that ant-cycle approach offers the 

best results [104].  

 

Figure 3. Ant behaviour (inspired by [105]) 

Although AS could solve small TSP instances, it was not competitive to other state-

of-the-art algorithms at the time for solving TSP. One of the first improvements was 

the introduction of elitist ant in the Elitist Ant System [104], where the best performing 

ant (elitist) in the iteration has more pheromone weight compared to other ants. Since 

then, many other improvements for the original AS have been explored [102], with Ant 

Colony System (ACS) being one of the most adopted by researchers.   

The ACS was first introduced by Dorigo et al. [106] for effectively solving TSP 

instances as an improvement to the original AS. The improvements were as follows: 

first, the ant state transition rule included a direct way of controlling the balance 

exploitation and exploration, by the introduction of the pseudo-random-proportion rule. 

Second, the global pheromone updating rule is only applied on the edges of the best 

performing tour in the iteration. Finally, a local pheromone update rule is applied while 

ants are construction solutions. Therefore, as in AS, ants build their solution based on 

the greedy state-transition rule and local pheromone. Once all ants have completed 

their tours, the pheromone is updated again based on the global pheromone update 

rule. Furthermore, just like in AS, ants are guided by heuristic information (preference 

for shorter routes) and pheromone information (routes with more pheromone are more 
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desirable). The pheromone update rules are designed such that pheromone is 

deposited on the trails that should be visited by future ants [106].  

Ant Colony Optimization (ACO) has a long history for solving TSP instances [105]; 

however, it can also be applied to other NP-hard optimization problems, like vehicle 

routing [107], various types of assignment problems [108], scheduling [109], subset 

selection [110] and even machine learning [111] and bioinformatics [112]. This 

metaheuristic algorithm's versatility and its recent application areas are detailed in 

both [113] and [105]. Moreover, the parallel implementations of ant colony optimization 

surveyed in [114]. 

2.1.2.5. Evolution Strategy (ES) 

Just like genetic algorithm, Evolution Strategies (ES) was inspired by the principles 

of natural evolution. Initially created as a technique for automated experimental design 

optimization by Rechengerb [73] and later adopted by Schwefel [74]. The first 

implementation of ES was a simple algorithm that used only mutation and selection, 

called two membered ES. In the two membered ES, each parent produces a single 

child by means of mutation. Furthermore, the selection process determines the fittest 

individual to become the parent of the next generation. This scheme is also referred 

to as (1+1)-ES as it contains a population of one parent individual and one descendant 

[115]. The basic flow diagram is shown in Figure 4. 

 

Figure 4. Evolution cycle of Evolution Strategy 

The (1+1)-ES got extended to a population-based ES, referred to as multimember 

ES. In multimember ES, multiple parents (µ > 1) can participate in the creation of the 

offspring individual, therefore denoted as (µ+1)-ES. As there are multiple parents, 

additional recombination operators are possible – two of the µ parents are selected 
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randomly to create the child. The selection undergoes “survival of the fittest” evolution, 

by eliminating the worst offspring while keeping population size constant. The rise of 

parallel computers was the motivation of the extensions of (µ+1)-ES, such as (µ+λ)-

ES and (µ,λ)-ES [115]. In the (µ+λ)-ES, multiple parents µ are able to produce multiple 

children λ by means of mutation and recombination, worst performing individuals are 

discarded to maintain the population size constant. Moreover, in the (µ,λ)-ES the 

parents µ, that are creating the next generation λ, are discarded unconditionally of 

their fitness values [116].  

In contrast to GA, where most of the research focuses on the recombination and 

crossover operators, ES mutation is the dominating operator for the search [117]. The 

mutation is usually implemented as a normal (Gaussian) distribution with a step size 

σ. The most straightforward implementation keeps mutation step constant, while more 

sophisticated implementations adopt σ dynamically. Dynamic mutation step 

approaches include 1/5 success rule [73], the σ-self-adaption [73], the meta-ES [118] 

and others [119].  

Variations of ES are commonly applied to machine learning [120], constrained 

optimization [121], finance [122], among others. Detailed theoretical investigation of 

evolution strategy algorithm search performance is available in [123] and [119].  

2.1.2.6. Imperialist Competitive Algorithm (ICA) 

Imperialism is a policy to extend an empires or nation's rule or jurisdiction over other 

nations or establish and retain colonies and dependencies. In modern colonialism, 

more developed countries are attempting to dominate less developed countries to 

extend their power by political-military alterations. The drive for influence motivates 

imperialist competition, which consequently creates a race of political, military and 

economic development amongst the imperialist countries. Once the country has been 

colonized, its empire attempts to spread its cultural values, by building schools, 

libraries, railroads and other public infrastructure. An excellent example of such 

influence on culture is British colonization of India, where English was taught 

extensively in schools and gradually became India's second language [124].   
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Figure 5. Convergence representation of ICA [124]. With stars representing empires and 
circles – their colonies.  

Imperialist Competitive Algorithm (ICA) is a subset of metaheuristic algorithms 

modelled based on geopolitical behaviour. It can also be classified as a social 

Darwinism that follows evolutionary computing principles. Atashpaz-Gargari and 

Lucas first proposed the ICA in [125] for solving continuous cost functions and since 

has generated interest amongst many researchers. Like many other population 

algorithms, ICA starts its search by generating a random initial population where each 

individual of the population represents a country. Countries within ICA can be thought 

of as chromosomes in a genetic algorithm. The initial population is separated into 

multiple groups (so-called empires). Strongest countries become imperialist within the 

empire, while weakest - their colonies.  Each colony within empire moves closer to 

their imperialist in the form of assimilation operator. In order to provide diversity 

amongst countries, a revolution operator (mutation in GA) is implemented. If a colony 

becomes stronger than its imperialist at any point, then the two countries are swapped, 

such that imperialist is the strongest country in the empire. The search follows an 

iterative process. After each iteration, the weakest colony within the most powerless 

empire is assigned to one of the stronger empires – following the imperialist 

competition process. An empire is eliminated once it contains no more colonies. The 

search usually continues until the termination criteria are met. Ideally, the search is 

terminated once all empires are eliminated and only one, the best, empire remaining. 

This convergence process is shown in Figure 5, where a star represents an empire 
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and circles – their colonies. As the search process progresses, the number of empires 

shrink, while the remaining empires gain power. At the final stage, only a single empire 

remains. 

Although initial ICA was created for continuous problems, researchers have 

extended the algorithm to solve various NP-hard discrete problems. According to the 

survey performed in [124], ICA is most commonly applied for industrial engineering 

problems, scheduling in particular. Though most recently applications such as 

prediction [126][127], clustering [128] and encryption [129] have emerged, 

demonstrating the versatility and wide application areas of the algorithm.  

2.2. Metaheuristic Optimization Frameworks (MOFs) 

One of the characteristics of metaheuristics described in the previous section – 

problem non-specificity, has inspired many metaheuristic optimization frameworks 

(MOFs) in the last two decades. These frameworks aim to provide simplified and 

standardised techniques for solving a wide range of optimization problems using pre-

implemented metaheuristics.  Furthermore, the user can take advantage of already 

implemented and debugged high-performance algorithms with little additional effort. 

All the supporting tools, like monitoring, reporting, parallel and distributed computing, 

are already integrated, and therefore the user can focus the efforts only on the problem 

on hand.   

However, generic optimizers are argued as impossible [130]. Similarly, The No Free 

Lunch (NFL) theorem [1] states that no single strategy or algorithm always performs 

better than another for all possible problems. And the ideology behind MOFs follows 

this logic – there is no single metaheuristic algorithm that will solve all problems to an 

optimal solution; therefore a wide range of metaheuristics are available to be matched 

to the specific problem. The saying “Jack of all trades, master of none, oftentimes 

better than a master of one” is applicable when referred to MOFs. By definition, 

metaheuristics cannot guarantee optimal solutions but offer close to optimal solutions 

for wide range of problems. Furthermore, MOFs facilitate re-use and comparisons of 

metaheuristics, therefore allowing user to focus only on the algorithms that perform 

the best for the problem.  

Numerous frameworks for problem-solving using metaheuristics are found in the 

literature with similar features and usage scenarios. Authors in [131] identified three 
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main MOF usage scenarios: industrial application, research and teaching. In the 

industrial application scenario, the MOFs reduce the implementation burden. For 

practitioners, optimal search performance and the ease of use are the most valuable 

features. Furthermore, when the frameworks are used for research on metaheuristics 

and optimization problems, the monitoring and analysis tools are preferred. Finally, 

graphical representations of the solutions, reports and the ease of use are likely valued 

for MOFs used in teaching. Moreover, a recent study in [132] focused on comparing 

and analysing different MOFs, especially multi-agent structures and the hybridization 

of metaheuristics.  

Both [131] and [132] list numerous MOFs found in the literature, the sixteen of the 

most relevant MOFs are summarized in Table 1, sorted by the year of inception. 

Furthermore, technology such as programming language and platform used is also 

listed. The table also shows the available metaheuristic algorithms and the benchmark 

discrete combinatorial problems solved. If the framework has had a software update 

or any research contributions in the past year, it is labelled as active. 

The next section briefly introduces each of the MOF, while overall comparisons and 

limitations are discussed in section 2.2.1. 

• MALLBA 

The MALLBA project was started in 2000 by [133] and is based on the concept of 

skeletons in C++. The aim is to create a library of skeletons for combinatorial 

optimization (including exact, heuristic and hybrid methods) for easy and efficient 

parallelism. It is targeted to sequential computers and LAN or WAN clusters. The 

skeletons refer to classes that are required to be implemented for any given algorithm. 

Although the framework offers multiple population-based algorithms like GA, ES, ACO 

and PSO, it lacks documentation and examples. The latest version of this framework1 

was presented in [134] and since has been abandoned. 

  

 
1 MALLBA project website at http://neo.lcc.uma.es/mallba/easy-mallba/ 

http://neo.lcc.uma.es/mallba/easy-mallba/


27 
 

Table 1. Summary of the most popular metaheuristic optimization frameworks sorted by 
creation year. 

Framework Year Active Technology Algorithms 

Discrete 
combinatorial 

examples 
MALLBA 

[133] 
2002 No C++ GA, SA, ES, ACO, PSO - 

ParadisEO 
[135] 

2004 No C++ PSO, GA, EA TSP, DVRP 

HeuristicLab 
[136] 

2004 Yes C# 
ES, GA, PSO, TS, VNS, 

GP 
JSS, KP, QAP, 

TSP, VRP 
BEAGLE 

[137] 
2006 No C++ GA, ES, GP KP, TSP 

JCLEC 
[138] 

2008 No Java GA, GP KP, TSP 

JCOP 
[139] 

2009 No Java GA, SA 
JSS, KP, SAT, 

TSP 
OptFrame 

[140] 
2010 Yes C++ EA, SA, TS, LS VRP, TSP, KP 

EvA2 
[141] 

2010 No Java ES, GA, DE, PSO, SA KP 

jMetal 
[142] 

2011 Yes Java GA, PSO, ES, DE mQAP 

Opt4j 
[143] 

2011 No Java EA, DE, PSO, SA KP, TSP 

ECJ 
[144] 

2012 Yes Java 
ES, SA, AS, ACO, PSO, 

DE, GP 
KP, SAT, TSP 

HyperSpark 
[145] 

2015 No 
Scala, 

Apache Spark 
GA, SA, TS, ACO PFSP 

JAMES 
[146] 

2016 No Java TS, LS KP, TSP 

EvoloPy 
[147] 

2016 Yes Python 
MFO, MVO, BAT, FA, 

CSA, GWO, WOA, PSO 
- 

jMetalSP 
[148] 

2018 Yes 
Java, 

Apache Spark 
GA, PSO, ES, DE mQAP 

jMetalPy 
[149] 

2019 Yes 
Python, 

Apache Spark 
GA, PSO, ES, DE mQAP 

OptPlatform 
(this work) 

2020 Yes C#, C++ ES, ICA, ACO 
MKP, MDVRP, 

TSP, ASP 

• ParadisEO 

ParadisEO (Parallel and Distributed Evolving Objects) is a white-box C++ 

framework that offers parallel and distributed metaheuristics. Created in 2004 by [135] 

and has evolved to support multiple modules: EO provides a set of classes for the 

development of population-based metaheuristics (ES, GA, PSO); MO provides tools 

for trajectory-based metaheuristics; MOEO provides tools for implementation of 

evolutionary techniques for multi-objective optimization; PEO provides classes for 

parallel and distributed applications and finally MO-GPU for GPU implementation 

[150]. The GPU implementation is one of this framework's unique features; however, 

the authors concluded that the application areas for speedup might be limited. The 
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platform2 is well documented, however, appears to be no longer supported, with the 

last update in 2012. 

• HeuristicLab 

HeuristicLab is another MOF that has been in constant development since 2002. 

Heuristic and Evolutionary Algorithm Laboratory (HEAL) first presented the framework 

in [136]. The long development has allowed HeuristicLab to be one of the leading and 

most feature-rich frameworks available today. It integrates population-based 

metaheuristics like GA, ES and PSO and multiple trajectory-based algorithms like LS, 

TS, VNS. Although initially developed for heuristic optimization, the software has 

evolved and integrated aspects of machine learning using genetic programming and 

classification techniques. Amongst many other features, HeuristicLab offers well 

established GUI, SDK and extension called HeuristicLab Grid for support of grid 

computing. Both [151] and [152] offer comprehensive reviews of the framework's 

features and limitations. One of the main limitations is the use of C#, therefore 

supported natively only on Windows. Furthermore, authors in [152] state the lack of 

documentation as another drawback on such a feature-rich framework, although many 

problem examples and tutorials exist. Latest version 3.3.163 was released in 2019 and 

therefore is still in active development.  

• Beagle 

Beagle is an open-source Evolutionary Computing (EC) framework proposed in 

2006 [137]. The framework explicitly focuses on traditional EC, i.e. Genetic Algorithm 

(GA), Evolutionary Strategy (ES) and Genetic Programming (GP). It also introduces 

six basic configurable principles for creating new EC algorithms: representation of 

chromosome, fitness, operators, evolutionary model, parameter management and 

configurable output. Furthermore, the framework uses C++ implementation with XML 

structures for data management. The project directory4 suggests that no advances or 

updates have been introduced since 2017. Examples include various GP benchmarks 

and Knapsack (KP) and Travelling Salesman Problems (TSP). The framework 

appears to be strictly limited to EC development and does not support non-EC 

metaheuristics.  

 
2 ParadisEO project website at http://paradiseo.gforge.inria.fr/index.php 
3 HeuristicLab project website at https://dev.heuristiclab.com/ 
4 Beagle project directory available at https://github.com/chgagne/beagle 

http://paradiseo.gforge.inria.fr/index.php
https://dev.heuristiclab.com/
https://github.com/chgagne/beagle
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• JCLEC 

In [137], the authors presented a Java-based framework for JCLEC (Java Class 

Library for Evolutionary Computing). The software is split into three modules: JCLEC 

core that specifies the data types and functionality; JCLEC experiments runner that is 

responsible for the algorithm execution and finally the GenLab – a graphical interface 

for rapid prototyping. Just like many other frameworks, it explicitly focuses on 

evolutionary algorithms. A case study of the Knapsack problem was performed in 

[138]; however, no comparisons or results were presented. Currently, the framework's 

development has been abandoned, with the last version of JCLEC 4.0.05 released in 

2014.  

• JCOP 

JCOP (Java Combinatorial Optimization Platform) was developed as part of Ondřej 

Skalička's master thesis in 2009 [139]. One of the project's main aims was to develop 

a platform in which any of the implemented problems can be solved by any of the 

available algorithms without the need for customization per algorithm. Author of JCOP 

implies that the platform was not designed to be fast but rather a tool to choose the 

best amongst multiple algorithms. The framework implements basic GA and SA. 

Furthermore, the platform is well documented and includes numerous combinatorial 

problem examples. Project GitHub page6 suggests that the project has not been 

updated since 2014.  

• OptFrame 

OptFrame [140] aims to provide a simple C++ interface for standard components of 

trajectory and population-based metaheuristics. Authors claim to deliver a smarter 

version of traditional methods to consider problem-specific characteristics. The 

software is structured based on two container classes – Solution and Evolution. 

Evaluator class allows the implementation of both single and multi-objective functions. 

Furthermore, the framework also supports parallelism with shared and distributed 

memory, and basic GA and TS algorithms. The project is well documented with 

multiple examples, and the latest OptFrame v4.07 integrates C++20 features.  

 
5 JCLEC project website at http://jclec.sourceforge.net/index.php 
6 JCOP project website at http://jcop.sourceforge.net/en/index.html 
7 OptFrame project website at https://github.com/optframe/optframe 

http://jclec.sourceforge.net/index.php
http://jcop.sourceforge.net/en/index.html
https://github.com/optframe/optframe
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• EvA2 

EvA2 (an Evolutionary Algorithms framework, revised version 2) is a heuristic 

optimization framework with an emphasis on EA implemented in Java. It is an 

improved version of previous JavaEvA optimization toolbox. EvA2 is being used as a 

teaching aid in lecture tutorials and is aimed to two groups of users: non-expert user 

that wants to apply EA for solving application problem and scientist that want to use 

the platform for algorithm development or performance comparisons. EvA2 

implements various population-based algorithms, like ES, GA, DE, PSO and 

trajectory-based techniques like SA. Furthermore, the framework also offers a simple 

GUI and integration with MATLAB. Based on the project page8, the latest version of 

2.2 was published in 2015 and is no longer in active development.  

• jMetal 

jMetal is another framework with a long history of development, dating back to the 

introduction in 2010 by [142]. jMetal stands for Metaheuristic Algorithms in Java and 

follows object-oriented principles. Although some implementations of single-objective 

optimization problems exist, the framework mostly focuses on multi-objective 

problems. Based on evolutionary algorithms, it follows the structure of an Algorithm 

that solves a Problem using one or more SolutionSet and a list of Operator objects. 

Both SolutionSet and Solution classes allow the representation population and 

individuals in population-based metaheuristics. The framework incorporates multiple 

multi-objective tools, such as Pareto convergence quality indicators, statistical tests, 

and GUI due to the multi-objective problem focus. Just like the majority of other 

frameworks, jMetal implements GA, ES and PSO. The platform offers detailed 

instructions and documentation9. More recently jMetal migrated to Maven and version 

6 is in active development.  

• Opt4j 

Another evolutionary computing framework based on Java was presented in [143], 

called Opt4j. It uses modular in design and uses the genotype-phenotype principles 

for the solution encoding. Compared to other similar frameworks, Opt4j explicitly 

implements functions that translate genotype into phenotype and vice versa. It also 

 
8 EvA2 project website at http://www.ra.cs.uni-tuebingen.de/software/EvA2/ 
9 jMetal project website at https://jmetal.github.io/jMetal/ 

http://www.ra.cs.uni-tuebingen.de/software/EvA2/
https://jmetal.github.io/jMetal/
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implements a graphical interface where users can view and analyse the performed 

tests and perform optimization without code. Unfortunately, the framework10 has not 

been updated since 2015 and is limited to EA class algorithms.  

• ECJ 

ECJ is a research Evolutionary Computing system written in Java [144]. The ECJ 

framework is one of the most established metaheuristic frameworks with extensive 

documentation. It is developed by dozens of research contributors and has covered 

many features such as GUI with charting and support for parallelism and distributed 

computing. The GUI allows loading and executing algorithms based on checkpoint 

and parameter files, editing parameters and charting statistics. Although metaheuristic 

algorithms like AS and PSO are supported, the framework mainly focused on EC and 

GP for continuous optimization problems. Work in [153] summarizes the recent 

advances of the ECJ and concludes that support for combinatorial optimization is 

lacking. Furthermore, out of the 23 available benchmark examples, only three – KP, 

SAT, TSP – are for discrete combinatorial optimization. The framework is in active 

development, and the latest version (27th iteration) is available on their website11.  

• HyperSpark 

HyperSpark is a cloud computing oriented metaheuristic framework first introduced 

in 2015 as part of Master thesis [145]. The framework focuses on the area of Big Data 

processing with the use of Scala and Apache Spark. It supports population-based 

algorithms like GA and ACO, as well as a trajectory-based search like SA and TS. 

More recently, the authors refined HyperSpark to solve the Permutation Flow-Shop 

Problem (PFSP) [154]. The work in [154] shows that HyperSpark is struggling to scale 

across the cluster due to the overheads. 

Furthermore, when compared to other MOFs, HyperSpark lacks in the ability to 

produce good quality solutions. Moreover, the framework is implemented in a less-

used programming language (Scala), leading to slower adoption. Similarly, the 

software lacks documentation and working examples. The framework was last 

updated in 2016 and is available on the project GitHub page12.  

 
10 Opt4j project website at http://opt4j.sourceforge.net/index.html 
11 ECJ project website at  https://cs.gmu.edu/~eclab/projects/ecj/ 
12 HyperSpark project website at https://github.com/deib-polimi/hyperspark 

http://opt4j.sourceforge.net/index.html
https://cs.gmu.edu/~eclab/projects/ecj/
https://github.com/deib-polimi/hyperspark
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• JAMES 

JAMES (Java Metaheuristic Search)13 was developed to solve discrete optimization 

problems using local search algorithms [155]. The software emphasises the 

separation of a problem specification and the search algorithm. Although limited to 

forms of iterative local search, the platform is well documented and has multiple 

examples. Unfortunately, since the introduction in 2016, the development on the 

framework has stopped.  

• EvoloPy 

EvoloPy is a relatively new nature-inspired optimization framework in Python [147]. 

It focusses on the implementation of the most recent metaheuristic algorithms such as 

Grey Wolf Optimizer (GWO), Multi-Verse Optimizer (MVO), Moth-flame Optimization 

(MFO), Whale Optimization Algorithm (WOA), Bat algorithm (BAT), Cuckoo Search 

Algorithm (CSA) and Firefly algorithm (FA). As it is a new framework, documentation 

is limited, and currently, only 23 benchmarks based on math equation optimization are 

made available. However, activity on the project GitHub14 suggest that the project is 

in active development. 

• jMetalSP 

jMetalSP [148] is another extension of jMetal that offers parallel computing features 

based on apache Spark. Mainly aimed for dynamic multi-objective Big Data 

optimization problems. The case study of 100 city TSP showed the advantages and 

limitations of the system. More recently, authors in [156] adopted the framework to 

integrate various streaming services for dynamic multi-objective optimization. The 

framework15 is still in active development.  

• jMetalPy 

Just recently, a Python implementation of jMetal was proposed in [149]. The 

framework implements most features from jMetal while leveraging Python’s 

visualization and statistical tools for easier analysis. The framework16 is very recent 

and still in active development.  

 
13 JAMES project website at http://www.jamesframework.org/ 
14 EvoloPy project website at https://github.com/7ossam81/EvoloPy 
15 jMetalSP project website at https://github.com/jMetal/jMetalSP 
16 jMetalPy project website at https://github.com/jMetal/jMetalPy 

http://www.jamesframework.org/
https://github.com/7ossam81/EvoloPy
https://github.com/jMetal/jMetalSP
https://github.com/jMetal/jMetalPy
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2.2.1. MOF trends and limitations 

Analysing the MOFs discussed above leads to conclude that generally these 

frameworks are created for academic research – in which algorithm dynamics and 

comparisons are performed on benchmark datasets, but rarely adopted by 

practitioners for solving real-world problems. This leads most (9 out of 16 MOFs 

discussed here) platforms to be abandoned after the research project is complete.  On 

the other hand, the platforms that have gained traction in research community like 

jMetal have multiple adaptions to other languages and architectures – jMetalSP and 

jMetalPy. The active development in jMetal’s github indicate multiple researchers 

participating in the project. Moreover, some MOFs like HeuristicLab has a long-

established history with good documentation and support forums that leads to ever-

increasing adoption in the research community. However, only a few references of 

real-world usage by practitioners can be found in the literature.  

The lack of supporting tools for deploying the final solution in real-life, limits the  

practical applications. For example, automatic parameter tuning is beneficial for users 

that are not specialists in metaheuristic algorithms; however, none of the above 

frameworks supports automatic algorithm selection or tuning. Furthermore, only a 

couple of MOFs, like HeuristicLab and jMetal, support the results' statistical analysis. 

Another consideration for adaption is the ease of use, and only a handful of MOFs 

(ECJ, EvA2, HeuristicLab, JCLEC and Opt4j) support graphical interface. Similarly, 

solution visualisation is limited and supported only on a few platforms. None of them 

implements tools to guide the user on implementing the proposed solution most 

effectively.  

Moreover, as multi-core CPU architectures become mainstream, these computing 

resources must be utilised efficiently. Optimisation algorithms are compute-intense, 

and thus, any MOF should implement parallelism to speed-up the search process. 

Unfortunately, not all existing frameworks even support basic parallelism, and even 

fewer do it effectively. The efficiency of parallelism implementation varies and may 

sometimes can be lost at the cost of higher-level generalisation. However, at least in 

three MOFs, namely, HyperSpark, jMetalSP and jMetalPy, distributed computing is in 

the framework's core. Other frameworks, such as HeuristicLab and ParadiseEO, 

implement parallel computing as separate modules that are generally loosely coupled 

with the base framework and may not be as efficient. Furthermore, BEAGLE and 
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JAMES frameworks only support parallelism partially. It is worth noting that recently 

MOFs based on Apache Spark has become popular, with three out of five MOFs 

reviewed using the technology in the past five years.  

Examining the supported metaheuristic algorithms by each of the frameworks, 

indicate the overwhelming majority is only supporting solution representation that is 

well suited for Evolutionary Computing algorithms and their variations – GA, ES, DE 

and GP. This encoding is also suitable for algorithms like PSO and trajectory-based 

searches like AS, SA, LS and TS. Only a few platforms, namely MALLABA, ECJ and 

EvoloPy, are generic enough to implement metaheuristics that do not follow 

Evolutionary Computing (EC-style) encoding, like the ACO. In particular, EvoloPy is 

the only MOF that covers a comprehensive and diverse set of metaheuristic 

algorithms. Even when platform supports multiple metaheuristic algorithms, not all of 

them can be applied successfully. For example, some frameworks, namely 

HeuristicLab, limit the usage of metaheuristic algorithm depending on the solution 

encoding. This is the main limitation of most existing metaheuristic frameworks, as 

they are not generic enough to accommodate a wide range of metaheuristic algorithms 

for any problem. 

Table 2 summarizes the available features for all sixteen platforms. From this table, 

only a few features are covered by all evaluated frameworks. None of them covers all 

of them – which presents a research opportunity in this area – for example, none of 

the analysed MOFs supports automatic algorithm selection and parameter tuning. 

Automatic algorithm selection and tuning accelerates the development process and 

reduces the expert knowledge required to use metaheuristics effectively.  
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Table 2. MOF supported features. 

Framework 

Characteristics 

Statistical 
analysis 

Graphical 
interface 

Automatic 
algorithm and 

parameter 
selection Parallelism 

Support 
for non-

EC 
solution 
encoding 

MALLBA No No No Yes Yes 

ParadisEO No No No Yes No 

HeuristicLab Yes Yes No Yes No 

BEAGLE No No No Yes, limited No 

JCLEC No No No No No 

JCOP No No No No No 

OptFrame No Yes No Yes No 

EvA2 No No No Yes No 

jMetal Yes Yes No Yes No 

Opt4j No No No Yes No 

ECJ No Yes No Yes Yes 

HyperSpark No No No Yes Yes 

JAMES No No No Yes, limited No 

EvoloPy No Yes No No Yes 

jMetalSP Yes Yes No Yes No 

jMetalPy Yes Yes No Yes No 

OptPlatform 
(this work) 

Yes Yes Yes Yes Yes 

2.3. Optimization Problems 

This section introduces the optimization problems solved throughout the thesis. It 

is divided by benchmark problems – problems available in academic literature and 

more theoretical nature. The second part is real-world optimisation problems – 

optimisation models based on physical geographical locations and distribution 

networks.  

2.3.1. Benchmark problems 

2.3.1.1. Multiple Knapsack Problem (MKP) 

The Multidimensional Knapsack Problem (MKP) is a well-known constrained 

optimisation problem, that has multiple real-world engineering applications, such as 

cutting stock [157], distributed computing resource allocation [158], cargo loading 

[159], satellite management [160], project selection [161] and capital budgeting [162]. 

The MKP is an extension of the 0-1 knapsack problem, where items have weight 
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vectors in multiple dimensions. The goal is to maximise the total profit by putting items 

into knapsacks while satisfying weight capacity constraints across all dimensions. 

MKP is formulated in (1) [163].  

max: ∑(𝑝𝑟𝑜𝑓𝑖𝑡𝑖  ×  𝑠𝑒𝑙𝑖)

𝑛

𝑖=1

 
  

subject to: ∑(𝑤𝑒𝑖𝑔ℎ𝑡𝑗𝑖 × 𝑠𝑒𝑙𝑖) ≤ 𝑊𝑗

𝑛

𝑖=1

      ∀𝑗 ∈ {1, … , 𝑚} (1) 

 𝑠𝑒𝑙𝑖  ∈ {0,1} ∀𝑖 ∈ {1, … , 𝑛}  

where every item 𝑖 in the list of 𝑛 items (𝑦 = 1 …  𝑛) has a profit 𝑝𝑟𝑜𝑓𝑖𝑡𝑖 and weight 

𝑤𝑒𝑖𝑔ℎ𝑡𝑗𝑖 associated with an 𝑚-dimensional weight vector (𝑗 = 1 …  𝑚), that tries to 

satisfy a weight capacity constraint 𝑊𝑗 in that dimension. Variable 𝑠𝑒𝑙𝑖  indicates 

whether the item is selected and included in the solution. Capacities, weights and 

profits are assumed to be positive.  

Being an NP-hard problem with practical applications, many different approaches 

have been proposed for solving MKP, which can be divided into two groups – exact, 

deterministic, single-solution based algorithms and stochastic population/meta-

heuristic based algorithms, with this thesis focusing on the latter approach. 

2.3.1.2. Multi Depot Vehicle Routing (MDVRP) 

The Vehicle Routing Problem (VRP), first described in 1959 [164], is an extension 

of the Traveling Salesman Problem (TSP) [165]. Compared to TSP, where an agent 

has only to visit all cities once, VRP introduces demands for each customer or stop. 

Demands need to be satisfied by routing vehicles such that they start and finish their 

paths at the same depot. Many real-life problems can be modelled as a form of VRP, 

for example, picking up and delivering mail, packages or any other goods or services. 

Due to the wide range of practical applications, many variations of VRP have since 

been explored. For instance, capacitated VRP introduces capacity constraints on the 

vehicles; VRP with Time Windows (VRPTW) requires delivery to happen within a 

specific time window; VRP with maximum vehicle distance constraints (DVRP) and 

many others [166].  

A common VRP derivation is the Multi-Depot Vehicle Routing Problem (MDVRP). 

MDVRP is an extension of classical VRP by the introduction of multiple depots. 

Vehicles in the MDVRP are subject to capacity constraints (how much cargo can be 
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carried on board) and the route's maximum duration before the vehicle needs to return 

to the original depot.  The MDVRP resembles a lot of everyday transportation, logistics 

and distribution problems and, therefore, has been a common research area [167]. 

Furthermore, the MDVRP is also an NP-hard combinatorial optimisation problem; thus, 

optimal solutions are hard to find [168]. Although exact algorithms for solving these 

problems exist, they are limited to small problem instances [169]. A wide range of 

metaheuristics and population-based algorithms have been used [167] to solve larger 

instances of the MDVRP. 

The main aim of the MDVRP is to route a fleet of vehicles from multiple depots to 

multiple customers requiring goods or services. Figure 6 shows an example of a 

simple MDVRP solution with ten customers (as circles) and two depots (as 

rectangles). Although multi-objective approaches exist for solving MDVRP [170], the 

most common goal is to minimise the total cost.  

 

Figure 6. Example of an MDVRP with ten customers (as circles) and two depots (A and B as 
rectangles) 

The MDVRP can be formalised in a mathematical model based on [171] and [172]. 

Given a direct graph 𝐺 =  (𝐴, B) where 𝐴 =  𝐻 ∪ 𝐷 is a set of customers 𝐻 =

 {𝐻1, 𝐻2, … , 𝐻𝑁} and depots 𝐼 =  {𝐼 1, 𝐼 2, … , 𝐼 𝑀} and 𝐵 is a set of edges between all the 

nodes in the graph. In a fully connected graph, every edge 𝐵𝑖𝑗 between nodes  𝐴𝑖 and 

𝐴𝑗  (𝑖 ≠ 𝑗) has associated positive cost 𝑐𝑜𝑠𝑡𝑖𝑗   - distance or time, for example. Each 

customer has a positive demand 𝑑𝑖 (𝑖 ∈ H). Furthermore, there is also a fleet of 𝐾 

identical vehicles available at each depot 𝐼 𝑘 𝜖 𝐼  (that are not allowed to exceed 
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capacity 𝑄𝑚𝑎𝑥  and duration 𝑅𝑚𝑎𝑥). The goal is to minimise the total cost across all 

vehicles (2).  

𝑚𝑖𝑛 ∑ ∑ (𝑐𝑜𝑠𝑡𝑖𝑗 ×  𝑡𝑟𝑎𝑣𝑖𝑗)

𝑗 ∈ 𝐴𝑖 ∈ 𝐴

 
(2) 

where 𝑡𝑟𝑎𝑣𝑖𝑗 equals to 1 if 𝑖 comes after 𝑗 in the customer sequence on any route 

of all vehicles and 0 otherwise. The problem is subject to the following constraints a) 

each vehicle route starts and ends at the same depot; b) the total demand on each 

route does not exceed vehicle capacity 𝑄𝑚𝑎𝑥; c) the maximum route duration 𝑅𝑚𝑎𝑥 is 

not exceeded; e) each customer is served by exactly one vehicle.  

Since the first formulation in [164], many exact and heuristic algorithms have been 

explored for vehicle routing problems. Most notably, [173] proposed a heuristic 

approach based on the cost savings algorithm that has since been used in some form 

in many other algorithms [174]. Another popular heuristics approach was introduced 

in [175] that allowed problems divided into sub-problems based on vehicles and then 

solved separately, combining results into a single solution afterwards. Although 

heuristic approaches such as integer programming [176] and variable neighbourhood 

search [177] have the potential to find optimal solutions every time, they generally do 

not scale well with the problem size and are limited to smaller MDVRP instances or 

are very time-consuming [169]. 

Meta-heuristic algorithms offer a stochastic approach for solving highly complex 

combinatorial problems with near-optimal or optimal solutions. They have been a 

growing interest in many areas [11], and MDVRP is no exception. A recent survey of 

metaheuristic algorithms [167] suggests that two of the most common algorithms used 

for solving MDVRP are Ant Colony Optimization (ACO) and Genetic Algorithm (GA). 

However, other algorithms like Particle Swarm Optimization (PSO) [178] and Ant Lion 

Optimization (ALO) [179] have also been successfully applied. GA is a nature-inspired 

algorithm that is based on the natural selection process.  A comprehensive summary 

of methods and approaches used for solving MDVRP with GA is presented in [166]. 

ACO is another popular approach for solving VRP class problems as it mimics ants 

travelling and searching for food while creating paths for other ants to follow. Many 

ACO implementations for MDVRP exist in the literature; the most recent work includes 

[180] who applied the ACO algorithm for fresh seafood delivery routing problems.  
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2.3.2. Real-world problems 

2.3.2.1. Aerial Surveying Problem (ASP) 

Aerial surveys also referred to as drone surveys, Unmanned Aerial System (UAS) 

surveys or Unmanned Aerial Vehicle (UAV) surveys are becoming popular for 

surveying from the air. This inspection method offers a faster, safer and more cost-

effective way to scan infrastructure objects, such as bridges, roads, wind turbines and 

rooftops. Furthermore, inspection from the air allows access to remote locations for 

forestry and agriculture plantations, and fast response for disaster management, such 

as oil spills, forest fires and earthquakes.  

A recent survey in [181] looked at more than 200 articles related to aerial drones 

used for civil (non-military) applications.  In particular, the survey focused on research 

that formulates an optimisation problem within the UAV domain. One of the most 

significant areas covered by previous research is UAV routing for a set of locations – 

these include applications such as surveillance [182] and deliveries [183], in the 

context of agriculture, infrastructure, transport and disaster management [181]. These 

aerial surveying problems can be modelled based on simpler routing problems such 

as the Travelling Salesman Problem or Vehicle Routing Problem.  

This section takes a look at one such Aerial Surveying Problem (ASP), that can be 

modelled as multiple depots, mixed vehicle routing problem with multiple trips, where 

each of the vehicles can start and return to a different depot, or use a depot for 

refuelling/charging. A simplified example is provided in Figure 7, where each of the 

rectangles (A-C) represent a base station (depot), each of the circles (1-9) pose a 

task/location that needs to be surveyed (visited) once. Furthermore, the routes are 

colour coded for each of the aircraft.  
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Figure 7. Graphical representation of simplified Aerial Surveying Problem. Each rectangle (A, 
B, C) represent a base station and each of the circles (1-9) pose a task/location that needs to 
be visited. In this example, there are four different routes, route A-1-8-4-A in black, route A-7-
B-3-A in blue, route A-C-5-9-6 in red and finally route A-2-C in yellow.  

Path in red in Figure 7 shows an aircraft that fly from base A to C, refuels and 

proceeds to visit tasks 5, 9 and 6 before returning to base C. The ASP's goal is to 

survey each of the tasks with the available fleet of aircraft while occurring the least 

amount of cost. The cost of an aircraft 𝑎 is a function of the flight time and hourly rate. 

The total flight time for a path 𝑖 between two edges is calculated as total distance over 

the cruise speed of the aircraft 𝑎.  Therefore, the total cost is a sum of all path flown 

𝑃𝐹 for each aircraft 𝑎, calculated in (2).   

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  ∑ ∑(
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑐𝑟𝑢𝑖𝑠𝑒𝑆𝑝𝑒𝑒𝑑𝑎
× 𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑎)

𝑃𝐹

𝑖=1

𝑇𝐴

𝑎=1

 

 

(3) 

where 𝑇𝐴 is the total number of aircraft used.  

Like the vehicle routing problem, each aircraft is subject to the maximum range 

before it needs to refuel/recharge. Moreover, due to the aircraft's size or type, not all 

base stations can safely support all aircraft types, so additional aircraft type constraints 

are applied for each base station. The ASP dataset (made available in [184]) consists 

of 11 base stations, 10 types of aircraft and 12 locations that need to be surveyed, 

based on real-world locations and aircraft.  This problem is an adopted version of a 

real-world Intelligence Surveillance and Reconnaissance (ISR) problem as part of 

Multi-Domain Operations (MDO) challenge [185].  
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2.3.2.2. Outbound supply chain problem 

Supply chain optimisation has become an integral part of any global company with 

a complex manufacturing and distribution network. For many companies, inefficient 

distribution plan can make a significant difference to the bottom line. Modelling a 

complete distribution network from the initial materials to the customer's delivery is 

very computationally intensive. With increasing supply chain modelling complexity in 

ever-changing global geo-political environment, fast adaptability is an edge. A 

company can model the impact of currency exchange rate changes, import tax policy 

reforms, oil price fluctuations and political events such as Brexit, Covid-19 before they 

happen.  

This section looks at a real-world dataset of an outbound logistics network is 

provided by a global microchip producer. The company provided demand data for 

9,216 orders that need to be routed via their outbound supply chain network of 15 

warehouses, 11 origin ports and one destination port (see Figure 8). Warehouses are 

limited to a specific set of products that they stock, furthermore, some warehouses are 

dedicated for supporting only a particular set of customers. Moreover, warehouses are 

limited by the number of orders that can be processed in a single day. A customer 

making an order decides what sort of service level they require – DTD (Door to Door), 

DTP (Door to Port) or CRF (Customer Referred Freight). In the case of CRF, the 

customer arranges the freight and company only incur the warehouse cost. In most 

instances, an order can be shipped via one of 9 couriers offering different rates for 

different weight bands and service levels. Although most of the shipments are made 

via air transport, some orders are shipped via ground – by trucks. The majority of 

couriers offer discounted rates as the total shipping weight increases based on 

different weight bands. However, a minimum charge for shipment still applies. 

Furthermore, faster shipping tends to be more expensive, but offer better customer 

satisfaction. Customer service level is out of the scope of this research.  
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Figure 8. Graphical representation of the outbound supply chain. Each warehouse i is 
connected to one or many origin ports p. The shipping lane between origin port p and 
destination port j is a combination of courier c, service level s, delivery time t and transportation 
mode m.  

Figure 8 shows a simplified example case of the supply chain model. Warehouses 

𝑖1 and 𝑖2 can be supplied by either origin ports 𝑝1 or  𝑝2. In contrast, warehouse 𝑖3 can 

only be supplied via origin port 𝑝3 and warehouse 𝑖15 can be only supplied by origin 

port 𝑝11. In the example shipping lane 𝑝1𝑗1𝑐1𝑠1𝑡1𝑚1 is chosen between 𝑝1 and 

destination port 𝑗1 with courier 𝑐1, service level 𝑠1, delivery time 𝑡1 and transportation 

mode 𝑚1.   

Dataset [186] is divided into seven tables, one table for all orders that need to be 

assigned a route – OrderList table, and six additional files specifying the problem and 

restrictions. For instance, the FreightRates table describes all available couriers, the 

weight gaps for each lane and rates associated. The shipping lane refers to courier-

transportation mode-service level combination between two shipping ports. The 

PlantPorts table describes the allowed links between the warehouses and shipping 

ports in the real world. Furthermore, the ProductsPerPlant table lists all supported 

warehouse-product combinations. The VmiCustomers contains all edge cases, where 

the warehouse is only allowed to support specific customer, while any other non-listed 

warehouse can supply any customer. Moreover, the WhCapacities lists warehouse 

capacities measured in the number of orders per day and the WhCosts specifies the 
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cost associated in storing the products in a given warehouse measured in dollars per 

unit. 

The optimisation's main goal is to find a set of warehouses, shipping lanes, and 

couriers to use for the most cost-effective supply chain. Therefore the fitness function 

is derived from two incurred costs – warehouse cost  𝑊𝐶𝑘𝑖 and transportation cost 

𝑇𝐶𝑘𝑝𝑗 in equation (4). The totalling cost is then calculated across all orders 𝑜 in the 

dataset. 

𝑚𝑖𝑛 ∑(𝑊𝐶𝑘𝑖 + 𝑇𝐶kpj)

𝑇𝑂

𝑘=1

 (4) 

Where 𝑊𝐶𝑘𝑖 is warehouse cost for order k at warehouse 𝑖 and 𝑇𝐶𝑘𝑝𝑗 is 

transportation cost for order 𝑘 between warehouse port 𝑝 and customer port 𝑗; the total 

number of orders 𝑇𝑂. 

𝑊𝐶𝑘𝑖 = 𝑔𝑘 × 𝑃𝑖 (5) 

Where warehouse cost 𝑊𝐶𝑘𝑖 for order k at warehouse 𝑖 is calculated in (5), by the 

number of units in order 𝑔𝑘 multiplied by the warehouse storage rate 𝑃𝑖 (WhCosts 

table). 

Furthermore, transportation cost 𝑇𝐶𝑘𝑝𝑗 for a given order k and chosen line between 

origin port 𝑝 and destination port 𝑗 is calculated by the algorithm in Figure 9: 

Transportation cost (𝑻𝑪𝒌𝒑𝒋) 

1. if 𝑠𝑘 = 𝐶𝑅𝐹  

2.        𝑇𝐶𝑘𝑝𝑗 = 0 

3. else  

4.        if 𝑚 = 𝐺𝑅𝑂𝑈𝑁𝐷  

5.             𝑇𝐶𝑘𝑝𝑗 =  
𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚 𝑇𝑂
𝑘=1

× 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚 

6.       else  

7.             𝑇𝐶𝑘𝑝𝑗 = 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚 ×  𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚 

8.             if 𝑇𝐶𝑘𝑝𝑗 <  𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚 

9.                  𝑇𝐶𝑘𝑝𝑗 =  𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚 

10.             end if 

11.        end if 

12.   end if 

Figure 9. Pseudocode for calculating order transportation cost 
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where 𝑠𝑘 is the service level for order 𝑘, 𝑝 – origin port, 𝑗 – destination port, 𝑐 – 

courier, 𝑠 – service level, 𝑡 – delivery time, 𝑚 – transportation mode. Furthermore, 

𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚 is the minimum charge for given line 𝑝𝑗𝑐𝑠𝑡𝑚, 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚 is the 

weight in kilograms for order 𝑘,  TO – total number of orders; 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚 is the 

freight rate (dollars per kilogram) for given weight gap based on the total weight for the 

line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).  

The transportation cost logic in Figure 9 first checks what kind of service level the 

order requires; if the service level 𝑠𝑘 is equal to CRF (Customer Referred Freight) – 

transportation cost is 0. Furthermore, if order transportation mode 𝑚 is equal to 

GROUND (order transported via truck), order transportation cost is proportional to the 

weight consumed by the order (𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚) in respect of the total weight for given 

line 𝑝𝑗𝑐𝑠𝑡𝑚 and the rate charged by a courier for full track 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚. In all 

other cases, the transportation cost is calculated based on order weight 𝑤𝑒𝑖𝑔ℎ𝑡𝑘𝑝𝑗𝑐𝑠𝑡𝑚 

and the freight rate 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒𝑝𝑗𝑐𝑠𝑡𝑚. The freight rate is determined based on total 

weight on any given line 𝑝𝑗𝑐𝑠𝑡𝑚 and the corresponding weight band in the freight rate 

table. Furthermore, a minimum charge 𝑀𝑖𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝𝑗𝑐𝑠𝑡𝑚 is applied in cases where the 

air transportation cost is less than the minimum charge.  

The problem being solved complies with the following constraints: 

∑ 𝑜𝑘𝑖 ≤  𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑖

𝑇𝑂

𝑘=1

 (6) 

where 𝑜𝑘𝑖 = 1 if order 𝑘 was shipped from warehouse 𝑖 and 0 otherwise. 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑖 

is the order limit per day for warehouse 𝑖 (WhCapacities table). 

∑ 𝑤𝑘𝑝𝑗𝑐𝑠𝑡𝑚

𝑇𝑂

𝑘=1

 ≤ max{𝑍𝑝𝑗𝑐𝑠𝑡𝑚} (7) 

where 𝑤𝑘𝑝𝑗𝑐𝑠𝑡 is the weight in kilograms for order 𝑘 shipped from warehouse port 𝑝 

to customer port 𝑗 via courier 𝑐 using service level 𝑠, delivery time 𝑡 and transportation 

mode 𝑚. 𝑍𝑝𝑗𝑐𝑠𝑡𝑚 is the upper weight gap limit for line 𝑝𝑗𝑐𝑠𝑡𝑚 (FreightRates table).  

𝑘𝑧 ∈ 𝑖𝑧 (8) 

where product 𝑧 for order 𝑘 belongs to supported products at warehouse 𝑖 

(ProductsPerPlant table). Warehouses can only support given customer in the 

VmiCustomers table, while all other warehouses that are not in the table can supply 
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any customer. Moreover, the warehouse can only ship orders via supported origin port, 

defined in PlantPorts table. 

The outbound supply chain problem discussed above represents a real-world 

model, where the products need to be routed from various warehouses to the 

customers via different modes of transport. However, the problem only considers the 

flow and distribution of goods and omits the logistics of scheduling and managing the 

courier vehicle fleet. The Transcom scheduling and routing problem (discussed in the 

next section) models even more complex supply chains. Not only are goods delivered 

to their destinations, but vehicle availability, scheduling, and refiling are also 

considered.  

2.3.2.3. Transcom scheduling and routing problem 

These days we rely on complicated global supply chains for everyday shopping 

from the pasta imported from Italy and distributed across UK grocery stores; to the car 

we drive, whose components were sourced across multiple countries and continents. 

This section presents a cross-continent supply chain in the US air force called 

Transcom. The supply chain is modelled based on the distribution of quotidian goods 

– food, medicine, and other consumables – across multiple base stations located 

around the world. 

Transcom problem considers a complex logistics network that includes multiple 

base stations that can both request and supply number of goods, usually on pallets. 

The demand can be satisfied either directly by the organisation or by outsourcing it to 

a third party – commercial partners. The cargo can either be supplied by a different 

kind of aircraft or by ground via trucks – each with different speed and carrying 

capacities. Furthermore, both aircraft and trucks require personal to be scheduled and 

supporting personnel for loading and unloading cargo. This creates a multi-

dimensional optimisation problem, where both the best routes between the edges 

need to be found, as well as the best route sequence for delivering the cargo. A 

simplified example is given in Figure 10. A more realistic model with a numeric 

examples are provided in the Appendix.   



46 
 

 

Figure 10. Simplified Transcom supply chain example. 

There are two main objectives to optimize for in Transcom scheduling and routing 

problem: 

• Least time solution 

Total time required to fly a path 𝑖 between two edges with given aircraft type 𝑎 is 

calculated based on path distance and aircraft cruise speed. Furthermore, in cases 

where aircraft 𝑎 has in-air refuel capability, additional time is added based on the 

number of in-air refuels executed (𝑁𝑅).  

𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒𝑖𝑎 =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑐𝑟𝑢𝑖𝑠𝑒𝑆𝑝𝑒𝑒𝑑𝑎
+ 𝑁𝑅 ∗ 𝑖𝑛𝐴𝑖𝑟𝑅𝑒𝑓𝑢𝑒𝑙𝑇𝑖𝑚𝑒𝑎 (9) 

In addition to a flight time, the cargo pallets of material need to be loaded and 

offloaded of the plane or truck. This model assumes that each pallet takes 10 minutes 

to be loaded and 10 minutes to be unloaded. Therefore, an aircraft with a capacity of 

36 pallets takes 6 hours to be fully loaded and an additional 6 hours to be fully 

offloaded. Furthermore, for aeroplanes that do not support in-air refuel, refuel time is 

done on the ground and it takes a duration specified in the Aircraft data table. It is 

assumed that all aeroplanes are fully fuelled at Time zero, partial refuels (fuelling up 

half the tank) are not allowed in this model. Therefore, the total time for a solution is 

the timespan required to satisfy all demand and land military aircraft back to military 

bases.  

  



47 
 

• Lowest cost solution 

Similarly, the lowest cost objective tries to minimize the total cost occurred while 

satisfying the demand. Transcom problem consists of three transportation types of 

transportation for supplying the goods, each with its cost calculation: 

- Military Aircraft (MA) 

Total cost for given aircraft type 𝑎  is calculated as a sum of all paths flown (𝑃𝐹)  

and the total number of aircraft (𝑇𝐴) of such type used on path 𝑖. 

𝐶𝑜𝑠𝑡(𝑀𝐴)𝑎 =  ∑(𝐹𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒𝑖𝑎 × 𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑎 × 𝑇𝐴)

𝑃𝐹

𝑖=1

 (10) 

- Commercial Aircraft (CA) 

Total cost for given aircraft type 𝑎  is calculated as a sum of all paths flown (𝑃𝑁) 

and the total number of pallets shipped through the path 𝑖.  

𝐶𝑜𝑠𝑡(𝐶𝐴)𝑎 =  ∑(𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑎𝑙𝑙𝑒𝑡𝑖 × 𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑖)

𝑃𝑁

𝑖=1

 (11) 

- Commercial truck (CT) 

Total cost for commercial truck is calculated as a sum of all paths driven (𝑃𝑁)  and 

the total number of trucks used on the path  𝑖. 

 

𝐶𝑜𝑠𝑡(𝐶𝑇) =  ∑(𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑇𝑟𝑢𝑐𝑘𝑖 × 𝑛𝑇𝑟𝑢𝑐𝑘𝑠𝑖)

𝑃𝑁

𝑖=1

 (12) 

Total cost for the solution is a sum of total military aircraft cost, total commercial 

aircraft cost and total commercial truck cost. Expressed in the equation below, where  

𝑁𝑀𝐴 is the total number of types of military aircraft,  𝑁𝐶𝐴 is the total number of types of 

commercial aircraft. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ 𝐶𝑜𝑠𝑡(𝑀𝐴)𝑎

  𝑁𝑀𝐴

𝑎=1

+ ∑ 𝐶𝑜𝑠𝑡(𝐶𝐴)𝑎

  𝑁𝐶𝐴

𝑎=1

+ 𝐶𝑜𝑠𝑡(𝐶𝑇) 

 

(13) 

 

The two above objectives are subject to the following constraints: 

1. The total number of cargo pallets shipped 𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠 on aircraft 𝑎 cannot exceed 

the maximum carry capacity of the aircraft 𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠. 

𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑎 ≤ 𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑎 (14) 
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2. For any in-flight refuelling incapable aircraft 𝑎, aircraft can only fly to paths 𝑖 that 

are in 𝑟𝑎𝑛𝑔𝑒 on one full fuel tank. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 ≤ 𝑟𝑎𝑛𝑔𝑒𝑎 (15) 

3. Furthermore, no ground refuels are allowed at Humanitarian destinations. And 

all military aeroplanes need to terminate their route at one of the military bases.  

4. All commercial trucks 𝑡 also need to comply with maximum carry capacity 

𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠 of the truck. 

𝑛𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑡 ≤ 𝑚𝑎𝑥𝑃𝑎𝑙𝑙𝑒𝑡𝑠𝑡 (16) 

5. Moreover, one can only transfer as many pallets as available at 

base/commercial partner location 𝑏 at any given time.  

𝑝𝑎𝑙𝑙𝑒𝑡𝑠𝑆ℎ𝑖𝑝𝑝𝑒𝑑𝑏 ≤ 𝑝𝑎𝑙𝑙𝑒𝑡𝑠𝑏 (17) 

6. Demand at destination 𝑑𝑒𝑠𝑡 can be supplied from multiple sources/routes; 

however, the total quantity of pallets shipped to the destination must be equal 

to 𝑑𝑒𝑚𝑎𝑛𝑑 once the search is terminated.  

𝑝𝑎𝑙𝑙𝑒𝑡𝑠𝑑𝑒𝑠𝑡 = 𝑑𝑒𝑚𝑎𝑛𝑑𝑑𝑒𝑠𝑡 (18) 

7. Total number of aircraft 𝑎(𝑑) departing from base 𝑏 must be less or equal to the 

total number of available aircraft of such type in base/commercial partner 

location  𝑏. 

𝑎(𝑑)𝑏 ≤ ∑ 𝑎
𝑏
 (19) 

In this model, there is no such constraint on the commercial trucks leaving any of 

the bases. Furthermore, not all aircraft are supported on all bases; the dependencies 

are defined in Aircraft Compatibility table. Also, deadhead17 links between commercial 

partner locations (CPs) and military bases are allowed only in the direction from an 

army base to CP using commercial aircraft. Aircraft flying to the humanitarian 

destination must always carry onboard less or equal quantity of pallets than the 

demand at said destination.  

The Transcom problem must both, route the cargo from source to destination and 

schedule the aircrafts such that they are positioned in the right locations before the 

cargo is delivered to the base. Furthermore, as the base can be both the supplier and 

the demand, some of the routes are re-used recursively, further increasing the model's 

 
17 Deadhead - One leg of a move without a paying cargo load. 
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complexity. The Transcom problem is the most complex model implemented and 

optimized in this thesis.   

2.4. Summary 

This chapter presented a general description of the most common metaheuristics 

and metaheuristic optimization frameworks (MOFs). In particular, this chapter 

focussed on Ant Colony Optimisation, Evolutionary Strategy and Imperialist 

Competitive Algorithm. Next, two benchmark and three real-world problems were 

introduced and formalised. Finally, sixteen MOFs were analysed and limitations of 

each compared.    The following section will briefly explain how this thesis addresses 

the limitations of current MOFs. 

Under a more fundamental level, most MOFs are limited to evolutionary computing 

type of algorithms and their encodings, where a solution is built on top of an existing 

solution; however, only few MOFs support algorithms building solutions from scratch 

in the ACO algorithm. Thus, a more generic optimization platform called OptPlatform 

is presented in Chapter 3. Furthermore, a new, improved algorithm based on ICA is 

developed in Chapter 4 within the platform.  

With the majority of computers supporting multi-core processing, parallelism is 

another vital aspect of MOF development. As discussed, current MOFs are mainly 

developed for academic research and for solving benchmark problems. The 

parallelism dynamics of these benchmark problems does not necessarily apply to 

more complex real-life problems. Thus, Chapter 5 is an in-depth investigation of ACO 

scaling across different hardware types using the developed OptPlatform. 

Another limitation discussed is the lack of supporting tools needed for these 

frameworks to be effectively used outside academia. In particular, tools such as 

automatic algorithm and hyperparameter selection are essential for adaption and the 

ease of use. Chapter 6 proposes and analyses algorithms to solve this problem. 

Furthermore, the solution visualization and recommender systems are implemented 

as part of OptPlatform in Chapter 3, which helps users to implement the theoretical 

solution into a real-life solution in the most optimum way.   
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3. OPTIMIZATION PLATFORM 

(OPTPLATFORM) 

The current chapter describes the design and implementation of a metaheuristic 

optimization framework, called OptPlatform, which overcomes most of the current 

MOFs' limitations, analysed in the previous chapter. First, the motivation and 

requirements are formulated in section 3.1. Next, the OptPlatform’s architecture and 

technology stack is explained in sections 3.2-3.4. Furthermore, section 3.5 lays out 

step by step process for implementing optimization problems in OptPlatform. 

Metaheuristic algorithm implementations and parallelism is described in section 3.6. A 

brief overview of supported visualization tools is provided in section 3.7, while an in-

depth explanation of solution transition optimisation in section 3.8. Finally, multiple 

existing optimization platforms are compared against OptPlatform in section 3.9 and 

chapter summarized in section 3.10. 

3.1. Target users and requirements 

Creating a generic software that accommodates all possible users is difficult if not 

impossible task. It is especially true when complex systems such as metaheuristics 

are involved, where hundreds of optimization methods can be applied to infinite 

variations of application domains. Furthermore, the users also range in their skillset 

and demands – some users have little to no knowledge of the heuristic optimization, 

while others might have years of experience. Therefore, it is essential to understand 

the target user requirements.   

Both [131] and [151] classified possible metaheuristic optimization software users 

into three overlapping categories: practitioners that are using the software for real-

world applications; researchers - heuristic optimization experts analyse, hybridize and 

develop new algorithms and finally, students that are just starting out and still learning 

about heuristics and optimization. This work focuses on the arguably largest and most 

impactful group – practitioners, though most of the features and requirements also 

apply to researchers, less so to students' teaching.  
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Practitioners are people with a challenging optimization problem to solve (usually 

NP-hard), that have a problem domain knowledge but are not necessarily experts in 

optimization methods. Almost all domains such as engineering, medicine, economics, 

logistics and computer science have such challenging optimization problems, that 

would not be feasible to solve by hand, without automated strategies. This presents 

an infinite amount of problems to solve; therefore, the optimization software must be 

generic enough to accommodate all of them. Furthermore, most practitioners work in 

a domain unrelated to heuristic optimization or even software engineering in general. 

However, they have a deep understanding of the problem itself, its domain, restrictions 

and objectives and therefore, the optimization tools are purely black-box solvers to 

obtain the solution.  

Moreover, in business, time is money, and a quick near-optimal solution is often 

valued versus an optimal solution that takes ten times as long to compute. Thus, every 

second spent in a sub-optimal state in an ever-changing environment is an 

unnecessary cost that can be avoided. Fast turnaround to solution also allows more 

sophisticated modelling of what-if scenarios essential in business planning. As the 

world gets more and more connected, the responsiveness to the ever-changing 

geopolitical environment is an edge, examples of such events include Brexit and 

Covid-19.  

Efficient use of computing resources is another aspect valued by practitioners, as 

company computing resources are usually shared and in high demand. Computing 

resources that are not utilized are a lousy return on investment. Furthermore, it is 

expected that more computing power should either improve the results, solve larger 

problems, or consider more what-if scenarios. 

Another essential factor of any software is the ease of use. Rarely if ever black-box 

optimization is used as a standalone tool, more commonly it needs to be integrated 

into existing systems and IT infrastructure. Consequently, the optimization software 

needs to be modular and portable, with clearly defined inputs and outputs. Similarly, 

the practitioners should only be focusing on the problem and not require an 

understanding of the internal algorithms or their parameters. Moreover, examples are 

usually an excellent starting point for any software system and therefore, a variety of 

easy to understand optimization problem examples are essential.  

Therefore, optimization platform requirements for the practitioners can be 

summarized by the following (in alphabetic order, based on [131] and [151]): 
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◼ Applicability – the output of the software should be easy to understand and 

applicable to the real world. The platform should produce detailed suggestions on 

how a user can implement the new solution with the least distruptions to the 

existing real-world solution. 

◼ Genericity – platform needs to be able to support a variety of optimization 

problems, their constraints and application domains. It should not be limited to any 

specific metaheuristic algorithm or solution representation. 

◼ Interoperability – the software should be modular and easily integrable into 

existing systems and IT infrastructure. A generic communication protocol is 

required for supplying the software with new data and getting the resulting 

solution.  

◼ Multi-algorithm support – it should be possible to use already implemented 

metaheuristic algorithms seamlessly and switch between them, while requiring no 

prior user knowledge. 

◼ Learning effort – users should start using the platform for their optimization 

problems quickly with little programming or software development knowledge. The 

interface and user workflow, therefore, should be intuitive and easy to understand. 

The problem domain should be clearly decoupled and abstracted away from the 

underlying algorithms. 

◼ Parallelism – the platform should be scalable and efficient at utilizing computing 

resources. Additionally, parallelism and scaling should be effortless, without the 

user's need to understand how the underlying parallelism is implemented. The 

user should control the computing resource utilization through parallelism level 

(number of workers/threads).   

◼ Parameter Management – metaheuristic algorithms are subject to multiple 

parameters that influence their performance for a given problem. Furthermore, as 

metaheuristics are probabilistic and can produce different results for the same 

data inputs, tuning and evaluation tools are necessary. The parameter selection 

should be either automatic or guided by the user.  

◼ Performance – most real-world problems are computationally intensive, and in 

time-critical applications, the turnaround to a solution is essential. Thus, the 

optimization platform should offer computationally efficient implementations of the 

underlying algorithms.  
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◼ Problem examples – examples of optimization problems are essential to guide 

and familiarize the user with the platform. They can also be used as building blocks 

for custom optimization problems. 

 

3.2. Technologies used 

When designing any software system, programming languages, tools, and target 

platforms need to be considered. Each programming language has its advantages and 

disadvantages, some claim to improve on existing languages, but lack the developer 

mind share. There are two main strategies used for existing metaheuristic frameworks 

– C++ for performance-oriented MOFs ([137], [133], [140], [135]) and Java for user-

focused, interface-driven MOFs ([144], [141], [146], [138], [139], [142], [143]).  

Use of low-level C/C++ has been associated with high-performance computing, as 

the computing resources can be accessed at a much lower level than any of the high-

level interpreter languages. However, things such as interfacing, and GUIs are not 

trivial in C++ and usually a high-level language such as Java, C# or Python is 

preferred. Java is a modern programming language, as it is cross-platform and easy 

to learn. Furthermore, open-source nature and rich-set of APIs attracts a lot of 

researchers and practitioners to Java. Although modern Java implementations and 

compilation offers highly efficient code, low-level C/C++ code is preferred for high-

performance applications. Thus, practitioners selecting existing MOFs must 

compromise between performance or ease of use/integration.  

This work tries to bridge the gap between high-performance metaheuristics and 

their accessibility, the ease of use. For low-level search algorithms - C arrays and 

pointers are used for memory management, while C++ is abstracted for problem 

definition. Search algorithms are designed to be parallel (via OpenMP18) ground up 

and not as an after-the-fact. Moreover, this high-performance part of the platform is 

compiled as a dynamic link library (DLL) to be accessed by any high-level interface. 

Although in theory, the majority of programming languages can invoke and use the 

compiled DLL, OptPlatform uses C# for its high-level interfaces.  

Compared to Java, C# is mainly focused on .NET framework or more recently, .NET 

Core and is targeted to Windows, though cross-platform adaptations such as Mono19 

 
18 OpenMP parallel API website. https://www.openmp.org/ 
19 Mono project. https://www.mono-project.com/ 

https://www.openmp.org/
https://www.mono-project.com/
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exists. This, however, is not an issue for the user-focused platform as more than 76%20 

of desktop computer users use Windows as their operating system. Just like Java, C# 

has a rich set of existing libraries, APIs and tools. Additionally, both C++ and C# can 

be compiled, debugged and run under the same toolchain in Visual Studio IDE, making 

development more straightforward. 

3.3. Fundamental concepts 

The following section introduces the concepts of optimization problems and intends 

to explain the building blocks of the OptPlatform implementation. 

• Problem – user defined inputs and supporting logic that clearly defines 

parameters and constraints for problem to be solved. The implementation is 

structured based on the concepts of Orders and Elements. An Order has a 

demand that needs to be satisfied with one or multiple Elements. 

• Solution – a solution to a problem is defined as a vector of soliton pairs 

(SolutionPair). Solution pair is derived from both the order index and the element 

index. Additionally, the pair can also contain a quantity of the satisfied demand by 

choosing the SolutionPair.  In most cases, the solution needs to be decoded back 

into problem-specific data before further processing. 

• Search space – solution space, candidate set or feasible region - is a set of 

possible element and order indices (PossibleElement) that satisfies given problem 

constraints. Only valid solutions that meet all problem constraints are evaluated 

for performance score. Additionally, PossibleElement can also contain heuristic 

information about the element.  

• Algorithm – search algorithm, search core - a methodological approach or 

procedure that solves a challenging problem. It is usually resource-intensive and 

has its own set of parameters and memory, independent of the problem.  

• Seed – a seed is usually an integer value used as a starting point for Pseudo-

Random Number Generator (PRNG). As OptPlatform focuses on probabilistic 

metaheuristic algorithms, some form of randomness is needed. PRNGs are good 

for this purpose as it offers both pre-defined randomness and reproducible results.  

 
20 Desktop Operating System Market Share Worldwide Desktop Operating System Market Share 

Worldwide - April 2020. Accessible https://gs.statcounter.com/os-market-share/desktop/worldwide 

https://gs.statcounter.com/os-market-share/desktop/worldwide
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• Config – is a set of parameters that defines a configuration of the search algorithm 

and the problem. Search parameters such as termination criteria, logging level 

and computation resource utilization are common across all search algorithms. 

• Fitness – a solution score (such as cost, time or profit), that is assigned to a full 

valid solution. Fitness scores are compared to obtain the best out of two or more 

solutions. 

3.4. Architecture 

Like many other existing MOFs, in OptPlatform problem-specific logic is separated 

from problem independent logic – such as search algorithms and supporting tools. 

Majority of existing MOFs focuses on the ease of new algorithm development and 

hybridization, aimed at researchers with expert knowledge. OptPlatform main aim is 

to target the practitioners with little to no understanding of metaheuristics and allow a 

more black-box approach for solving their industry problems. Although prior 

knowledge of underlying algorithms is beneficial, it is not necessary.  

The high-level architecture of OptPlatform is demonstrated in Figure 11. It contains 

a User domain and a Platform, that is abstracted away from the user. Moreover, 

architecture is structured as a form of building blocks – modules. Modules are 

implemented in either C++ or C#. As the OptPlatform uses both C++ and C#, the data 

sharing and transfer between modules can be both via P-invoke of DLL or via the flat 

file system. C++ and C# communication is also abstracted away from the user in the 

Search Wrapper module.  

User starts by specifying the problem-specific data structures in Problem Manager 

and implementing problem-specific functions (such as restrictions and fitness 

evolution) in Opt Problem module (section 3.5). Problem specific logic is then compiled 

with the search cores (ACO, ES or ICA) into a DLL (section 3.6). From Problem 

Manager, user can analyse the search process such as iteration performance and/or 

algorithmic specific data in Search Visualizer module (section 3.7). Similarly, the user 

can choose to auto-select and tune the search algorithms config for the implemented 

problem (Chapter 5). For real-world problems, where the transition between current 

existing state and the newly optimized state is unclear, Transition Opt module can help 

generate a step-by-step report (section 3.8). Finally, for optimization problems 

represented as geographical locations and/or links, the Global Grid module can both 
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generate paths between any two points in the map and create animated visualization 

(section 3.7).  

 

Figure 11. A high-level overview of modules in OptPlatform. Optimization platform uses two 
languages – C++ for low-level high-performance search and C# for user interfacing and other 
accessory tools. Split into user domain, where only problem details are specified and the 
abstracted backend - platform. 

3.5. User workflow 

This section covers the user workflow for implementing a new optimization problem. 

The high-level overview is shown in Figure 12. The icons next to each of the steps 

represent the OptPlatform module used in the corresponding action, based on Figure 

11. User is only required to interact with two modules – Problem Manager and Opt 

Problem; all other modules are optional and/or abstracted away from the user.  

 

Figure 12. User workflow for implementing an optimization problem. Icons represent the 
modules used (in Figure 11) during the process, some of them can be optional.  
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• Step 1: Solution encoding 

The first step of implementation is to structure the problem such that it can be used 

within the platform – the search space definition. User needs to list all possible solution 

elements of size 𝐸𝑚𝑎𝑥 for any given order 𝑜 in the list of orders of size 𝑂𝑚𝑎𝑥. This is 

then encoded as a two-dimensional matrix, with each of the cells corresponding to the 

possible element-order combination that can be added to the final solution. The user 

needs to map the problems search space to the two-dimensional order-solution matrix. 

There need to be at least two elements for each order and at least one order in total. 

Furthermore, each of the orders has an integer value of demand, that needs to be 

satisfied during the solution creation. Figure 13 shows a search space representation 

with how the solution is mapped from the 2D encoded matrix. For each corresponding 

order, some elements are selected to create a SolutionPair, in the example of Figure 

13, order 𝑜0 get assigned two elements - 𝑒2 and 𝑒6, thus generating two solution pairs  

– (𝑜0, 𝑒2) and (𝑜0, 𝑒6). Similarly, order 𝑜1 gets assigned element 𝑒5, generating a 

SolutionPair (𝑜1, 𝑒5). The combination of all solution pairs creates the final encoded 

solution - (𝑜0, 𝑒2); (𝑜0, 𝑒6); (𝑜1, 𝑒5). 

 

Figure 13. Search space representation and solution element encoding. Constructed as a 2D 
matrix with sizes 𝐸𝑚𝑎𝑥 and 𝑂𝑚𝑎𝑥. Search algorithm selects one or multiple cells to be added 
to the final solution. 

To illustrate the flexible mapping process between encoded solution and real-life 

model, two simple example problems are considered in both Figure 14 and Figure 

16. In Figure 14, a simple bin packing problem is considered, where the goal is to fit 

all the items in the bins without exceeding their capacity. The encoded solution is 

presented as an array of order-element pairs. Suppose one considers each of the bins 

as order and each of the items as elements. In that case, the solution can be easily 
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decoded by grouping all elements per order and mapping them to their corresponding 

bins. 

 

Figure 14. Simple bin packing problem encoding and decoding with five identical bins 
(represented as orders) and eight items (elements). 

• Step 2: Data type definition and assignment  

The next step in the process is to define any problem-specific data required for the 

problem. The problem-specific data is represented as a list of ProblemAttribute, where 

each ProblemAttribute represents the data with the corresponding name, data type 

and size. Problem-specific data, such as item weights and profits in Knapsack 

problem, travel distances between two cities in TSP, can either be read-only or 

dynamic. As the name suggests, read-only data are static data expected to not change 

during the search process. In contrast, dynamic data can be read and written during 

the search process. In Knapsack, for example, item profits are static and can be 

thought as read-only; however, the total weight usage in knapsack is changing as 

items get added and therefore – dynamic. At the start of each iteration, all dynamic 

data is reset to the initially defined value. The list of ProblemAttribute is then used and 

compiled as part of the search and problem logic definition.  

• Step 3: Generation of Opt Problem template 

Based on Step 2, all pre-defined problem-specific data types are used to compile a 

C++ template project for implementing the problem logic (the Opt Problem module). 

The problem-specific data access is abstracted and simplified using C++ definitions. 

The automatically created project has two files – OptProblem.h and OptProblem.cpp 

with all the necessary headers and pre-defined function implementations, and 
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examples of the problem-specific data access. Furthermore, the VS++ project is pre-

configured with all the other modules in OptPlatform automatically.  

• Step 4: Problem logic implementation 

Based on the automatically generated project in the previous step, a user needs to 

implement at least three of the pre-defined logic methods based on the problem 

domain: 

• canElementBeAdded(Element, data) – a required method that returns either 

true or false for the provided method. If the method returns true, the element 

will be added as part of the solution and not, if false. The user is expected to 

use only static data.  

• addElementToSolution(Element, data) – a required method that returns the 

quantity of demand satisfied by adding this element to the solution. 

Furthermore, before the element gets added to the solution, the user can 

update any of the constraints and problem-specific data. The user is expected 

to write to dynamic data, if applicable.  

• getSolutionPerformance(Solution, data) – a required method that evaluates 

the provided solution quality and returns a performance value. The solution is 

provided as a list of SolutionPair, built from the previously added elements. 

Therefore, the solution is expected to be within constraints, does not require 

additional checks, nor a penalty cost.  

• isBetterPerformance(double, double) – an optional method that returns true 

if the first provided double is a better performance value that the second double. 

By default, all problems in OptPlatform are minimization problems, and 

therefore, it returns true if the first double is lower than the second double.  

• userSyncAfterIteration(data) – an optional method that returns true if the 

search needs to be terminated and false otherwise (for problem-specific 

termination criteria). In this method, a lot of problem-specific data is exposed to 

the user after each iteration and allows for further customization. Customization 

such as problem-specific local search, statistical analysis between iterations 

and other, are possible.  

All implemented search algorithms as part of Search Cores module follow the 

iterative process of solution construction and evaluation. The interface between the 

user and the platform can be seen in Figure 15.  
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Figure 15. The interface between the search algorithms in the Search Core module and user-
defined problem in Opt Problem. Flowchart on the left is a generic model that all search 
algorithms in the Search Cores follow. Methods isBetterPerformance and 
userSyncAfterIteration are optional and therefore greyed out. 

• Step 5: Search algorithm selection 

At this step, all problem-specific definitions and logic are already implemented, and 

the user just needs to pick one of the algorithms available in Search Cores module, 

such ACO, ES or ICA and define the search configuration. Some of the configurations 

are shared across all search algorithms, such as the termination criteria, the seed, 

degree of parallelism, number of parallel instances in the search and logging 

information. Furthermore, some problem-specific configurations, like the maximum 

number of solution pairs in the solution and whether incomplete solutions should be 

accepted for evaluation, can also be defined. Alternatively, user can run algorithmic 

parameter tuning in Hyper Tuner module to obtain the best configuration automatically. 
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• Step 6: Run the search and analyse the solution performance 

Once the optimization algorithm is selected and configured, a search process can 

be started, and the performance evaluated. To make this process simpler and more 

user-friendly, a GUI interface allows users to start, pause and stop the search and 

adjust the level of parallelism dynamically during the search process. Furthermore, 

analysis tools are implemented in the GUI that allows to perform simple statistical 

analysis and graphically plot the convergence of the search across multiple 

experiments.  

• Step 7: Decode and implement the solution 

Once the search process is finished and the final solution exported, the user needs 

to decode the encoded solution back to a real-life representation. A simple Travelling 

Salesman Problem with five cities (A-E) is considered in Figure 16. There are two 

ways that TSP can be represented as part of the solution, either as a sequence of 

cities visited (Sequence encoding) or as a graph where the 2D order-element matrix, 

where the nodes (cities) are represented as orders and their interconnections (links) 

as elements (Graph encoding). In sequence encoding, it is assumed that there is just 

a single order; the sequence that elements are added to the solution to determine the 

chronology of the visited cities. In contrast, in the graph encoding, each city is an order, 

and the corresponding element is the next city to be visited. Thus, SolutionPair with 

order index 0 and element index 2, moves from city A to city C.  

For problems that represent geographical locations, the Global Grid module can be 

used to animate the links in the map across the globe graphically. Furthermore, 

Transition Opt module is designed for models representing a real-life system with long-

term contracts, facilities, and employees and cannot migrate to the new optimized 

solution overnight. The Transition Opt generates a step by step suggestions on 

transitioning from any given existing model to the newly optimized model with the least 

distruptions.   
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Figure 16. Two example encodings for Travelling Salesman Problem (TSP). In Sequence 
encoding, only the selected element sequence in the solution is needed for encoding. Graph 
encoding represents nodes as a 2D graph, where the nodes themselves are represented as 
orders and the inter-connections as elements. Therefore, cells 𝑜0𝑒0 and 𝑜1𝑒1 would be invalid 
in TSP as it is a connection to itself.  

3.6. Search cores module 

As discussed in the requirement analysis in section 3.1, the underlying algorithms 

in any MOF have to be very generic to accommodate a wide range of problems. Users 

must be able to implement their problem-specific logic without the need of previous 

knowledge of metaheuristics. Moreover, with ever-increasing computation power, 

many of the problems that were infeasible to be solved just a decade ago are now in 

the reach of practitioners. Most of the advances in computing have been derived from 

multi-core processor architectures, and thus any MOF must utilise these resources 

effectively. In fact, optimization software systems should be designed with parallelism 

and concurrent computing in mind.  Compared to other optimization frameworks that 

offer parallelism as a plugin and an afterthought, OptPlatform is designed for 

performance ground up. All metaheuristic algorithms in OptPlatform follows the 

parallel master-slave model, where the master process manages the global 

information across iterations, while each of the slave processes builds and evaluates 

solution, as demonstrated in Figure 17.  
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Figure 17. Memory allocation and parallelism in Search Cores architecture. Areas of the 
process, where problem-specific methods are called, are in orange. Iterations are executed in 
sequence, however, in each iteration, multiple solutions are constructed and evaluated up to 
the maximum number of parallel instances - 𝑃𝐼𝑚𝑎𝑥.  

In Figure 17, each of the OptPlatform search algorithms starts by allocating 

memory for 𝑃𝐼𝑚𝑎𝑥 Parallel Instances. Then, the master process starts every iteration 

by launching several slave processes (OpenMP threads, pre-defined in search config). 

Each of the slave process ƥ resets memory to their pre-set default values, builds and 

evaluates solution, as shown in Figure 15. After each iteration, the master process 

saves the best solution across all slaves and performs logging, as well as performs 

checks for search termination. The process is repeated iteratively till termination 

criteria is reached, at which point all the allocated memory is freed. This architecture 

minimizes memory allocation, as no new memory is allocated during the search, only 

once - at the start. Furthermore, to reduce the thread overhead, all OpenMP threads 

are re-used across iterations.  

Furthermore, MOF needs to support a wide variety of metaheuristics that can be 

applied to the same user problem without adaptations or customizations. Although 

there are dozens of different kinds of metaheuristics, as shown in section 2.1.2, three 
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were selected to be implemented in OptPlatform. Ant Colony Optimization algorithm 

(in section 2.1.2.4) was chosen due to a long history of efficiency for solving routing 

and scheduling problems. Furthermore, the Evolutionary Strategy algorithm (in 

2.1.2.5) was selected as it is the simplest algorithm from Evolutionary algorithm family. 

Finally, a more recent metaheuristic called Imperialist Competitive Algorithm was 

chosen for its promising performance for broad application areas, as examined in 

section 2.1.2.6). All three algorithm definitions and formulations are presented in more 

detail in the following subsections.   

3.6.1. Ant Colony Optimization (ACO) 

Ant Colony System was initially implemented for solving graph routing problem, 

where pheromone is deposited on the links between two nodes [106]. In OptPlatform, 

ACS nodes can be considered as Orders and the routes between the nodes – 

Elements.  Graph encoding in Figure 16 demonstrates the relationship. Furthermore, 

ACS differs from the other two metaheuristic algorithms because it relies on heuristic 

information for efficient search. Heuristic information is problem-specific data 

associated with each Element. For example, in TSP case, the distance between two 

nodes can be considered heuristic, allowing ACS to prioritize shorter routes between 

two nodes. OptPlatform’s ACO implementation (Figure 18) differs from standard ACS 

[104]. First, it is designed to be parallel. Therefore, in each iteration, multiple ants are 

constructing and evaluating the solution in parallel. Secondly, ACO within OptPlatform 

introduces the concept of heuristic priority. The purpose of heuristic priority is to 

prioritize orders that have the highest impact if they were to be solved first. The 

process has been implemented as follows and is calculated at runtime: 

1) All elements associated with an order are sorted based on numeric heuristic 

information, ascending. 

2) The difference between the best and second-best heuristic across all order’s 

elements is evaluated for each order. 

3) Orders with the highest heuristic gap (largest difference) are given priority over 

other orders. 

And finally, OptPlatform’s ACO also implements the idea of cunning ants, based on 

[187]. In cunning ant ACO, each ant generates a solution by borrowing part of a 

solution from the best solution in the previous iteration, instead of building a solution 
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based on the pheromone. This approach has proven to increase the efficiency and 

convergence speed of the search.  

Furthermore, the solution creation, evaluation and pheromone update is 

implemented based on the standard ACS formulated in [106]: 

• The state transition rule is used to drive the search of the ants 

• The global pheromone update rule is used to focus the search on the solution 

space's most promising areas. 

• The local pheromone update rule is used to force ants to explore a more 

extensive solution space area. 

In short, in every iteration, a colony creates a number of sub-colonies for each of 

the Parallel Instances (𝑃𝐼𝑚𝑎𝑥), where each of the sub-colonies releases several Local 

Ants (𝐿𝐴𝑚𝑎𝑥). Each ant ɐ builds a complete solution, if feasible. The ants are guided 

in the search by both the pheromone and heuristic information at each Element cell. 

The use of pheromone helps ants to choose lucrative routes (Elements). With the use 

of state transition rule, the ant can either exploit the best-known route or explore a new 

route by random. 

Furthermore, the local pheromone update ensures that ants do not keep visiting the 

same routes repeatedly. Once all ants within the sub-colony have finished creating the 

search, each sub-colony's best solution is compared against all other sub-colonies. 

The best solution in the iteration is then used to update the global pheromone. The 

process continues till the termination condition is met. 

From the probability distribution given in equation (20) [106], the state transition rule 

𝑠𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡 is: 

 

𝑠𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡 =

 {

arg max
𝑢∈𝐽𝑘(𝑒)

{[𝜏(𝑒, o)]α ∙ [𝜂(𝑒, o)]𝛽}             𝑖𝑓 𝑞 ≤  𝑞0 
 
 

   𝑆                                                 𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

, 
(20) 

where 𝑞 is a random number uniformly distributed in [0…1], 𝑞0 is a parameter 

(0 ≤ 𝑞0 ≤ 1) indicating the relative weighting of exploitation versus exploration, and 

𝑆 is a random variable selected according to the probability distribution given in 

equation (20). 
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Figure 18. High-level pseudo code for Ant Colony Optimization algorithm in OptPlatform. 

Only the ant with the best solution across all parallel instances ƥ deposits global 

pheromone. Let 𝐹(ɐ) be a measure of ant ɐ's solution performance based on the 

objective function. Let 𝜌 be the pheromone decay parameter in the range: 0 < 𝜌 < 1. 

Given the best solution found so far 𝐹∗, the global pheromone updating rule is defined 

as follow [106]: 

 𝜏(𝑒, 𝑜) = (1 − 𝜌) ∙ 𝜏(𝑒, 𝑜) + 𝜌 ∙ Δ𝜏(𝑒, 𝑜), (21) 

where 𝛥𝜏ɐ(𝑒, 𝑜) is defined as [106]: 

 𝛥𝜏ɐ(𝑒, 𝑜) = {
𝐹(ɐ) 𝑖𝑓 (𝑒, 𝑜) ∈ 𝐹∗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (22) 

As the ant constructs the tour, the pheromone level on visited PossibleElements is 

changed by applying the local pheromone updating rule [106]: 

 𝜏(𝑒, 𝑜) = (1 − 𝜌) ∙ 𝜏(𝑒, 𝑜) + 𝜌 ∙ 𝜏0, (23) 

where 𝜌 is the pheromone decay parameter in the range: 0 < 𝜌 < 1 and 𝜏0 is the 

initial pheromone level. The local pheromone update rule is designed to decrease the 

pheromone level on the visited PossibleElements such that they become less 

desirable for the next local ant. The effect of the local update is to decrease the 

pheromone level on visited edges which make them less desirable to subsequent ants. 

initialize ACO parameters 
calculate heuristic priority 
allocate memory for PImax instances 
do 
     for ƥ= 0 to PImax parallel do 
        local pheromone = global pheromone 
        for ɐ= 0 to 𝐿𝐴𝑚𝑎𝑥 do 
            construct solution 
            evaluate solution 
            local pheromone update 
         end for 
      end for 
      keep best solution  
      update global pheromone based on the best solution 
while stopping condition not met 
de-allocate memory 
return solution 
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This subsequently allows ants to explore more search space within the same iteration 

[106].  

3.6.2. Evolutionary Strategy (ES) 

Evolutionary Strategy (ES) is one of the simplest metaheuristics in terms of 

implementation, as it relies only on selection and mutation, as discussed in section 

2.1.2.5. OptPlatform implements a simple (µ+1)-ES, where the parents µ is equal to 

the number of parallel instances 𝑃𝐼𝑚𝑎𝑥. Furthermore, compared to standard (µ+1)-ES, 

ES in OptPlatform also implements a local search, where the mutation and evaluation 

is repeated for 𝐿𝐼𝑚𝑎𝑥 local iterations. The high-level pseudo-code is presented in 

Figure 19. 

 

Figure 19. High-level pseudo-code for Evolutionary Strategy algorithm in OptPlatform 

 The algorithm starts by creating a random population of size 𝑃𝐼𝑚𝑎𝑥, by selecting an 

Order and associated Element at random, while satisfying the problem constraints. 

Next, the random population's best solution is chosen as a starting point for the search 

process. Each of the chromosome in the population is mutated and evaluated 

iteratively. In OptPlatform, a chromosome is represented as an encoded solution (see 

example in Figure 20). The mutation is performed by first removing order-element 

pairs from the solution, then adding new ones.  

initialize ES parameters 
allocate memory for PImax instances 

for ƥ = 0 to PImax parallel do 
     create a random solution 
     evaluate solution 
end for 
keep best 
do 
     for ƥ = 0 to PImax parallel do 

        for ɾ = 0 to LImax do 
mutate 

 evaluate solution 
keep best 

         end for 
      end for 
      keep best 
while stopping condition not met 
de-allocate memory 
return solution 
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Figure 20. Example of the mutation process of Evolutionary Strategy in OptPlatform. 
PossibleElement pairs with red are removed and replaced with PossibleElement pairs in blue. 

The number of elements to be removed is derived from mutation rate ʍ, expressed 

as a percentage. In the example of Figure 20, mutation rate ʍ is 0.25 or 25%; 

therefore, out of the 12 cells, three are removed. In the next step, the mutation process 

iterates over all PossibleElement pairs and adds the feasible ones to the solution. It is 

worth noting that the parent and child chromosome sizes can differ, depending on the 

problem constraints. In knapsack example, once some of the heavier items get 

removed, more smaller items can fit and vice versa.  

The best chromosome in the iteration is kept as a parent for the next iteration. This 

process continues till a termination condition is reached.  The variable size 

chromosome representation allows accommodating multiple problem encodings while 

maintaining the dynamics of the mutation. However, one of the drawbacks of this 

approach is that the mutation rate is dependent on the encoding. For example, 

problem encodings with small chromosome sizes (below 100 elements) would need 

proportionally larger mutation rate than the encoding with 1000 elements, to be able 

to maintain diversity in the population.  

3.6.3. Imperialist Competitive Algorithm (ICA) 

Although initially Imperialist Competitive Algorithm was introduced for continuous 

optimization problems, as discussed previously in section 2.1.2.6, in OptPlatform ICA 

is implemented for discrete optimization problems. Just like ES, ICA starts with the 

creation of a random population of size 𝑃𝐼𝑚𝑎𝑥. Once the population is created, it 

proceeds with an empire initialization. Empire is a group of imperialist and at least one 

colony. In contrast to classic ICA, ICA in OptPlatform also implements a local search, 

where the solution creation via assimilation operator is repeated 𝐿𝑆𝑚𝑎𝑥 times. If at any 

point any of the colonies have a better cost than its imperialist, the imperialist and 

colony positions are swapped. Finally, iteration concludes with empire competition, 
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where the weakest empires are eliminated, while the strongest gain more power. The 

high-level process is shown in Figure 21. The following section formalises the ICA 

based on [124].  

 

Figure 21. High-level pseudo code for Imperialist Competitive Algorithm in OptPlatform 

• Empire initialization 

The ICA algorithm in OptPlatform starts by creating a random population and 

dividing them into colonies and imperialists based on the country's cost function. 

Furthermore, a country's cost is calculated in the same way as the provided solution's 

objective function. Therefore, 

 𝐶𝑜𝑠𝑡 = 𝑓(𝑐𝑜𝑢𝑛𝑡𝑟𝑦) = 𝑓(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (24) 

At country initialisation, a random population of size 𝑁𝑝𝑜𝑝 is created and evaluated. 

The best countries of size 𝑁𝑖𝑚𝑝 are selected from the population and set as 

imperialists.  Rest of the countries are set to be colonies 𝑁𝑐𝑜𝑙. In OptPlatform, ICA 

population 𝑁𝑝𝑜𝑝 is equal to the number of parallel instances 𝑃𝐼𝑚𝑎𝑥. 

 𝑁𝑐𝑜𝑙 =  𝑁𝑝𝑜𝑝 − 𝑁𝑖𝑚𝑝 =  𝑃𝐼𝑚𝑎𝑥 −   𝑁𝑖𝑚𝑝 (25) 

Next, colonies are split amongst imperialists countries according to the power of the 

imperialists. The normalized cost of each imperialist country is determined by, 

 𝐶𝑛 =  max
𝑖

{𝑐𝑖} − 𝑐𝑜𝑠𝑡𝑛 (26) 

initialize ICA parameters 
allocate memory for PImax instances 
for ƥ = 0 to PImax parallel do 
     create a random solution 
     evaluate solution 
end for 
empire initialization 
do 
     for ƥ = 0 to PImax parallel do 
        for Ỽ = 0 to LSmax do 
             assimilate 
             evaluate solution 
             keep best 
         end for 
      end for 
      keep best       
      empire competition  
while stopping condition not met 
de-allocate memory 
return solution 
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where, 𝑐𝑜𝑠𝑡𝑛 is the 𝑛th imperialist’s cost, 𝐶𝑛 is the normalized cost of 𝑛th imperialist. 

Weaker imperialist country (i.e. imperialist with higher cost) has a smaller normalized 

cost. Thus, the power of 𝑛th imperialist 𝑃𝑂𝑛 is calculated based on the normalized 

cost: 

 𝑃𝑂𝑛 =  |
𝑐𝑜𝑠𝑡𝑛

∑ 𝑐𝑜𝑠𝑡𝑖
𝑖=1
𝑁𝑖𝑚𝑝

| (27) 

The normalized power of 𝑛th imperialist is the number of colonies that are 

possessed by that imperialist, calculated by: 

 𝑁𝐶𝑛 =  𝑟𝑜𝑢𝑛𝑑(𝑃𝑂𝑛 ∙ 𝑁𝑐𝑜𝑙) (28) 

where 𝑁𝐶𝑛 is the number of initial colonies possessed by 𝑛th imperialist and 𝑟𝑜𝑢𝑛𝑑 

is a function that gives the nearest integer of a fractional number.  

• Assimilation 

The classic ICA assimilation process is modified to accommodate discrete 

problems in OptPlatform. Each colony builds a new solution (country) by assimilating 

closer to its imperialist, based on assimilation rate θ (0 ≤   θ  ≤ 1). Assimilation rate 

determines how many entries in the solution is modified (assimilated) to create the 

new country. In the example of Figure 22, θ is set to 0.25, therefore 25% of all colony’s 

solution is replaced by the imperialist’s.  

 

Figure 22. Example of Imperialist Competitive Algorithm assimilation process in OptPlatform. 
PossibleElements in red indicating the cells that are merged to create a new country.  

In the example, three cells out of twelve are replaced (marked in red) to create a 

new country that combines both colony and the imperialist, like combination operator 

in GA. The newly generated country must satisfy all problem constraints.   
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• Empire competition 

Once each colony has finished building and evaluating solutions, empires compete 

amongst themselves to colonize each other’s colonies. The empire competition is 

based on probabilistic empire power, where the strongest empires have the highest 

likelihood of possessing the weakest colonies. Total power of an empire is computed 

based on its imperialist power and a proportion of the power of its colonies [124].  

 
𝑇𝐶𝑛 =  𝐶𝑜𝑠𝑡(𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡) +  𝜁

∙ 𝑚𝑒𝑎𝑛(𝐶𝑜𝑠𝑡(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒𝑛)) 
(29) 

where 𝑇𝐶𝑛 is the total cost of 𝑛th empire, 𝜁  is an empire influence coefficient (0 ≤

 𝜁 ≤ 1). Smaller values of 𝜁 indicate a larger influence of the imperialist cost versus 

the mean of empire cost.  

During the empire competition, weaker empires gradually collapse as they are left 

with no single colony. This means that the weaker imperialists lose their colonies and 

therefore the power to more powerful empires and consequently, increasing the power 

of the strongest imperialists. The competition process is modelled by computing the 

normalized cost of 𝑛th empire 𝑁𝑇𝐶𝑛 [124]: 

 𝑁𝑇𝐶𝑛 =  max
𝑖

{𝑇𝐶𝑖} − 𝑇𝐶𝑛 (30) 

Then, the probability to possess a colony is computed by [124], 

 𝑝𝑛 =  | 𝑁𝑇𝐶𝑛

∑ 𝑁𝑇𝐶𝑖
𝑖=1
𝑁𝑖𝑚𝑝

|, where ∑ 𝑝𝑖
𝑁𝑖𝑚𝑝

𝑖=1
= 1 (31) 

Let vector 𝑃 of size 𝑁𝑖𝑚𝑝 contain the possession probabilities of a colony by empires 

as follows: 

 𝑃 = [𝑝1, 𝑝2, … , 𝑝𝑁𝑖𝑚𝑝
] (32) 

Then, vector R with the same size is generated based on uniform distribution 

between 0 and 1. 

 𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑁𝑖𝑚𝑝
], where 𝑟𝑖 ~ 𝑈(0,1) (33) 

Next, vector 𝐾 is calculated by subtracting 𝑃 from 𝑅.   

 
𝐾 = 𝑃 − 𝑅 = [𝐾1, 𝐾2, … , 𝐾𝑁𝑖𝑚𝑝

]

= [𝑝1 − 𝑟1, 𝑝2 − 𝑟2, … , 𝑝𝑁𝑖𝑚𝑝
− 𝑟𝑁𝑖𝑚𝑝

]    
(34) 

Once the vector K is calculated, the weakest colony is assigned to the empire with 

the largest index. 
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3.7. Visualisation tools 

Visualization tools are very important for understanding the produced outputs of the 

black-box optimizers. Thus, multiple visualization tools are developed in OptPlatform 

that help the users understand how the search process progresses and how to 

implement the produced output into an existing real-life system. This section gives a 

brief description of the tools and gives some examples.  

• Metaheuristic inner-state visualization  

A large proportion of metaheuristic algorithms have memory, that is being used to 

guide the search. To easier debug and understand how the search works, it is 

beneficial to look at the inner states of the memory and how it progresses.  

 

Figure 23. The output of the global pheromone visualization tool. Each pixel represents a 
pheromone change for given element across multiple iterations. With red pixels indicating 
when evaporation happens, green – pheromone deposit, white – no pheromone left for the 
specific element and in black – no change between the iterations. 

Figure 23 gives an example of ant colony global pheromone matrix and how it 

evolves during the search process – in this case, MKP gk01 instance. On the 

horizontal axis are all the different possible elements (items) that are in the search 
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space plotted as transitions between iterations. In this case, each pixel represents a 

pheromone deposit or evaporation (green and red respectably). Once the pheromone 

is fully evaporated, it is coloured in white, while if there is no change between the 

iterations – pixel is coloured in black.  

An inner-state visualization is a useful tool as it may quickly highlight problems with 

the search, such as insufficient diversification in the population or over intensification 

that leads to being stuck to a local optimum. 

• Search convergence and statistics 

Another essential property for any MOF is the ability to visualize and analyse 

different algorithm search performances quickly.  For that reason, little utility is 

developed that allows user to import any simulation results and then compare the 

convergence graphs and averages across multiple strategies. As metaheuristics are 

non-deterministic, usually several runs with the same configuration but different seed 

are performed, also referred as simulation. Figure 24 gives the GUI example, where 

various methods of ES are compared.  

 

Figure 24. OptPlatform’s search visualization tool. 

Similarly, the user may want to investigate a specific result, and thus, double-

clicking on any simulation opens a simulation summary, where minimum, maximum 

and average fitness across iterations are charted and additional statistical data 

provided about the simulation (GUI example in Figure 25). 
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Figure 25. Simulation summary graphical interface. 

• Global grid 

Any routing optimization problem modelled based on real locations in the map 

requires a visualization tool to understand how the locations are linked and interact 

with each other. For that reason, Global grid has been developed, where a simple 

animation is generated automatically with the provided edge coordinates. If applicable, 

animation considers how fast the given route is executed and assigns an icon for the 

mode of transport – a truck, plane, or a ship. 

Output visualization example of the Transcom problem (section 2.3.2.3) is shown 

in Figure 26. 
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Figure 26. Automatically generated solution animation of Transcom problem using Google 
Earth. 

3.8. Solution transition optimisation 

In many complex real-world optimisation models, getting optimum or close to the 

optimum solution is only part of the problem. It is often impossible to adopt the optimum 

solution overnight, as it would cause too much distribution and negate any savings. A 

good example of such dilemma is often seen in the global supply chain, where the 

contracts are signed for months and years in advance and just changing the courier 

might add additional costs, such as penalties and legal costs. Similarly, in 

manufacturing plant, migrating to entirely different equipment or workflow all at once 

may cause a disruption in itself. For that reason, a more gradual transition from the 

sub-optimal current state to the optimized state is required. The question then 

becomes which changes take priority over the others; they might be specified by 

expert knowledge, or by an automated greedy search. This section looks at transition 

optimisation problem – how to transition from the current sub-optimal solution to the 

optimal solution, within a limited number of steps (Stages). 
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Figure 27. A high-level overview of transition optimisation, where two solutions (sub-optimal 
and optimized) are used as inputs to generate a transition plan based on the provided goal. 
In this example, seven stages are generated starting from the sub-optimal solution at Stage 0 
to optimized solution at Stage 7.  

The transition optimisation problem can be structured as a combinatorial problem, 

where the goal is to minimize the sum of solution scores (fitness’s) 𝑓 across all stages 

𝑆𝑇𝑖 ,where 𝑆𝑇𝑚𝑎𝑥 is the target number of stages: 

𝑚𝑖𝑛 ∑ 𝑓

𝑆𝑇𝑚𝑎𝑥

𝑖=1

(𝑆𝑇𝑖) (35) 

Each stage represents a valid solution with fitness 𝑓(𝑆𝑇) that is a combination of 

the two inputs – the current suboptimal solution and the optimized solution. A high-

level overview is shown in Figure 27, where the current sub-optimal solution is 

represented in orange and optimized solution in blue. 

In order to construct transition optimisation as a combinatorial problem, the in-

between stage solutions need to be created, such that they both are valid and 

encompass the required number of stages 𝑆𝑇𝑚𝑎𝑥. For this, a simple state generation 

algorithm is implemented. The algorithm starts by first, calculating the total number of 

non-overlapping element-order pairs 𝑁𝑆𝐿. Each order-element pair that differ between 

the two solutions are put on the swap list, with the size of 𝑁𝑆𝐿. The swap list represents 

the differences between the two solutions. Next, the target number of swaps per stage 

𝑇𝑁  is calculated as: 

𝑇𝑁 =
𝑁𝑆𝐿

𝑆𝑇𝑚𝑎𝑥 − 1
 (36) 

Then an exhaustive bucket 𝑆𝑆𝑇  containing all potential swaps of the size 𝑇𝑁 is 

generated. This set is used as an input for the optimization algorithm. 
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Optimization algorithm uses the exhaustive bucket 𝑆𝑆𝑇  to select entries one by one 

to assemble a transition plan, where each addition to the solution represents a Stage 

in the transition plan. If the order-element pair already exists in the previous Stage, it 

is not added again. If there is no feasible transition that can be achieved by single 

addition, two or more additions are used per Stage. This is now structured as a 

combinatorial problem, where elements from a set are selected to assemble the 

solution – the final transition plan. Furthermore, OptPlatform’s search cores are re-

used for the optimization of large models (with 𝑁𝑆𝐿 above 50), though for smaller 

models search is done exhaustively. Moreover, the algorithm also reuses the 

optimisation problem constraints and fitness calculation specified by the user; thus, 

only the current state (sub-optimal) solution is needed as the input to generate 

suggestive transition plan automatically.  

3.8.1. Numerical examples 

To demonstrate this technique, first the transition optimization is applied to simple 

benchmark MKP gk01 [188] instance with 100 items, see section 2.3.1.1 for problem 

definition. Each selected item in the MKP represents an element in the solution. An 

exhaustive search was used for optimisation, and the summary of the best transition 

plan with five stages between the sub-optimal solution of 3553 to the optimal solution 

of 3766 is shown in Table 3.  

Table 3. Solution transition plan for MKP gk01 with maximizing profit as objective 𝑓(𝑆𝑇). 
𝑁𝑆𝐿  represents the number of element-order pairs that differ from the final solution.  

Stage 𝒇(𝑺𝑻) 𝑵𝑺𝑳 
0 3553 43 
1 3636 32 
2 3712 21 
3 3752 8 
4 3766 0 

 

The initial sub-optimal solution at Stage 0 differ by 43 items in the knapsack; thus, 

the target number of swaps 𝑇𝑁 is 11. It is worth noting that it was impossible to 

transition between Stage 2 and Stage 3 by using exactly 11 swaps; thus, constraints 

were relaxed up until 13 swaps, when feasible solution state for the Stage 3 was 

generated with state fitness of 3752.    
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Next, practical, real-world model based on Transcom optimisation problem (section 

2.3.2.3) was used to optimize the transition plan for the lowest total cost objective. The 

network's current state costs $2543 million in total, while the optimized network costs 

only $929 million (reduction of 63%).  Similar to above MKP example, transition plan 

targets five stages with four transitions. Initial Stage differs by 66 swap pairs from the 

final Stage (𝑁𝑆𝐿 = 66), thus the target number of swaps 𝑇𝑁 is 17. As this is a large 

model, three metaheuristics were used as optimization algorithms for the transition 

plan generation, the best results are summarized and compared in Table 4. 

Table 4. Solution transition plan for Transcom scheduling and routing problem with minimizing 
total cost (in million $) as objective 𝑓(𝑆𝑇).  𝑁𝑆𝐿  represents the number of element-order pairs 
that differ from the final solution.  

 𝒇(𝑺𝑻), cost in million $ 𝑵𝑺𝑳 
Stage ACO ES ICA ACO ES ICA 

0 2543 2543 2543 66 66 66 
1 1796 1732 1774 49 49 49 
2 1421 1618 1355 32 30 31 
3 1032 1132 1012 15 13 10 
4 929 929 929 0 0 0 

Total 7721 7954 7613    

 

Out of the three transition plans in Table 4, the most cost-effective solution is the 

transition plan generated by ICA, where the total fitness across all stages 𝑓 is lower 

than both ACO and ES. Furthermore, if we assume each stage represents a calendar 

month, ICA proposed transition plan costs more than ES ($1774 million vs $1732 

million) in the first month. It still offers significant cost reduction in the second and third 

month before the final optimum solution is reached in the fourth month. These 

examples clearly illustrate the importance of transition planning problem and the 

corresponding optimisation for cost savings.  

3.9. MOF comparisons 

This section compares the implemented OptPlatform discussed in this chapter with 

other metaheuristic optimization frameworks available in the literature (discussed in 

section 2.2). 

Nine out of sixteen frameworks containing knapsack problem example code were 

considered for comparison with OptPlatform, however, due to the combination of lack 

of documentation, missing source code or broken dependencies, only three MOFs 
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could be compiled and run successfully. The provided example code of knapsack 

problem was extended to Multiple Knapsack Problem (MKP, specified in section 

2.3.1.1) for three MOFs - HeuristicLab, JAMES and JCOP. Furthermore, commercial 

tools based on Google OR-tools library21 are included for reference.  

All platforms considered were using default parameters available in the knapsack 

examples provided and the number of iterations for each run closely matched to similar 

algorithms. For example, all GA instances were run with 25,000 generations; similarly, 

ES generations were set to 50,000. The algorithm was terminated either by reaching 

the optimum solution, the maximum number of iterations or maximum computation 

time of 180 seconds. The configurations used are summarized in Table 5.  

Table 5. Parameters used for an experiment on a various algorithm on different MOFs 

Platform Algorithm Comment 

Google  
OR-tools 

B&B Branch and Bound solver, termination set to 180 seconds 

CBC Integer Programming Solver CBC 

HeuristicLab 
GA MultiBinaryVectorCrossover, 25,000 iterations, 5% mutation rate 

ES SomePositionsBitflipManipulator, 50,000 iterations, 5% mutation rate 

JAMES 
RD Random Descent, termination set to 180 seconds 

PT Parallel Tempering, 64 nReplicas, termination set to 180 seconds 

JCOP GA 25,000 iterations, 5% mutation, termination set to 180 seconds 

OptPlatform 
(this work) 

ACO 10,000 iterations 

ES 50,000 iterations, 5% mutation rate 

ICA Termination set to 20 stagnant iterations 

 

One small MKP instance from OR benchmark library (OR5x100-0.25_01) [189] and 

three medium-hard MKP instances of GK benchmark library (gk01, gk02 and gk03) 

[188] were selected for the comparison. Each algorithm was run ten times to establish 

best and average error percentage from the optimum solution, as well as standard 

deviation and average computation time, in seconds. Where applicable, parallelism 

was enabled in the MOF. Results are summarized in Table 6. All experiments were 

conducted on Windows 10 pro workstation with AMD Ryzen Threadripper 3970X 32c-

64t processor and 64GB of RAM.  

It is worth noting that PSO failed to run on HeuristicLab using the MKP – indicating 

the shortcomings of the platform's generalizability. Furthermore, JAMES 

documentation claim to support tabu search, however, could not be applied to MKP. 

Similarly, JCOP failed to run OR-100 example, even though had no problems with 

more complex MKP instances, demonstrating some stability issues with the platform.  

 
21 Google OR-tools library: https://developers.google.com/optimization  

https://developers.google.com/optimization
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Table 6. Metaheuristic Optimization Framework comparisons. Best and average expressed 
as error per cent from an optimal solution, colour coded from the best error (in green) to the 
worse (in red). Google OR-tools is added for reference only and is not considered a MOF. 

 

Results in Table 6 demonstrate the wide range of performance of optimization 

methods. On the one hand, you have a simple Branch and Bound (B&B) algorithm 

that cannot find even adequate solution within 180 seconds. On the other hand, you 

have a linear solver (CBC) that is guaranteed to find an optimal solution, but on 

complex MKP instances take exponentially more time. For example, gk03 took on 

average 9777 seconds or 2.7 hours to produce a solution. In comparison, most 

metaheuristic algorithms were completed within three minutes, with few reaching near-

optimal solutions before that.  

It is hard to draw impartial comparisons between structurally different MOFs and 

their corresponding algorithms. However, when MOFs are compared to similar family 

algorithms, like ES, GA and ICA, it can be clearly seen that OptPlatform 

implementations outperform all other MOFs in terms of solution quality and 

computation time.  Out of the four compared MOFs, ICA on OptPlatform performed 

the best, followed by PT on JAMES. Furthermore, a third-place shared by ACO/ES on 

OptPlatform and GA on JCOP.  

Results demonstrate that OptPlatform is generic and supports a wide range of 

metaheuristic implementations. It also benefits from the hybrid C++/C# architecture, 

where the high-performance low-level search cores produce a good quality solution in 

a fraction of the time compared to competing MOFs.  

  Best error Average error Standard deviation Computation time (s) 

  OR-100 gk01 gk02 gk03 OR-100 gk01 gk02 gk03 OR-100 gk01 gk02 gk03 OR-100 gk01 gk02 gk03 

Google  

OR-tools 

B&B 29.10% 44.40% 51.69% 66.99% 29.10% 44.40% 51.69% 66.99% 0.0 0.0 0.0 0.0 180.0 180.0 180.0 180.0 

CBC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.0 0.0 0.0 0.0 1.1 8.5 74.3 9777.3 

HeuristicLab GA 1.40% 1.78% 1.89% 1.93% 2.75% 2.37% 2.24% 2.52% 236.0 16.3 10.1 21.1 107.7 111.6 113.6 114.0 

ES 7.51% 1.96% 2.12% 2.32% 8.45% 2.22% 2.13% 2.37% 326.2 4.9 1.2 2.8 118.6 128.3 133.4 138.8 

JAMES RD 13.10% 5.76% 1.82% 5.50% 10.03% 6.57% 3.96% 5.52% 534.4 32.9 42.4 1.2 180.0 180.0 180.0 180.0 

PT 0.00% 0.19% 0.03% 0.28% 0.00% 0.20% 0.11% 0.40% 0.0 0.5 2.2 3.4 51.2 180.0 180.0 180.0 

JCOP GA - 0.29% 0.25% 0.34% - 0.35% 0.36% 0.38% - 2.5 2.7 1.9 - 180.0 180.0 180.0 

OptPlatform 

(this work) 

ACO 0.00% 0.00% 0.18% 0.25% 0.22% 0.41% 0.36% 0.43% 48.3 8.6 3.5 8.0 20.0 50.6 66.3 144.2 

ES 0.00% 0.19% 0.08% 0.32% 0.16% 0.36% 0.31% 0.46% 34.8 4.0 5.2 6.4 36.4 52.2 54.2 90.4 

ICA 0.00% 0.00% 0.03% 0.11% 0.00% 0.00% 0.04% 0.11% 0.0 0.0 0.9 0.9 4.6 12.5 56.0 106.1 

Optimum 24381 3766 3958 5656             
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3.10. Summary 

In this chapter, the requirements, essential for adaptation of MOFs by practitioners 

in the industry, have been set out and fulfilled. Furthermore, the chapter lays out the 

reasoning and implementation of the architecture in OptPlatform. This section 

summarises how the OptPlatform satisfies and improves on all the requirements laid 

out in section 3.1. 

In terms of applicability, the optimization problem implementation is well 

documented with examples. Furthermore, to further assist the user, program code 

templates are automatically generated, such that the problem constraints and fitness 

metrics can be easily implemented without prior knowledge of the underlying 

metaheuristics. Finally, the solution transition optimisation automatically generates a 

step by step guide on applying the optimal solution in real-world.  

Another critical requirement was the platform's genericity, which OptPlatform 

achieves by separating the problem-specific user domain from the underlying 

platform’s search algorithms. The solution encoding is generic so that multiple different 

kinds of problems can be implemented and successfully optimized for. The 

OptPlatform is capable enough to optimize five problems with different complexity and 

application domains, discussed as part of section 2.3. The three benchmark problems 

can also be used as problem code examples to familiarize the user with the platform. 

An interoperability is essential for the platform to be integrated into the existing 

infrastructure. OptPlatform deploys hybrid C++/C# architecture, where the low-level 

high-performance search cores are compiled as C++ DLL library and thus can be used 

by any existing software. A higher-level language such as C# allows the whole 

platform to be interfaced with existing APIs, databases or data streams easily without 

losing the performance.  

The OptPlatform was designed with parallelism as its core feature. The 

concurrency is abstracted away from the user with efficient use of static and dynamic 

memory in the problem definitions. This leads to very efficient and high-performance 

search algorithm implementations, that allows for reasonable quality solutions to be 

generated quickly. OptPlatform shows better and faster results than competing MOFs, 

as shown in section 3.9. Furthermore, as the platform is intended mainly for industry, 

the parallelism dynamics of real-world problems are studied in detail in Chapter 5.  
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Parameter management that allows an unsophisticated user to get most of the 

metaheuristics algorithms is one of the major improvements of OptPlatform that are 

missing on the existing MOFs. Thus, this feature is covered separately in Chapter 6. 

Furthermore, OptPlatform improves on most existing MOFs, which can only support 

evolutionary algorithm-like encoding, where a solution is built on top of an existing 

solution. In OptPlatform, there is no such limitation, and metaheuristic algorithms that 

build the solution from scratch (like ant colony optimization) are also supported. Thus, 

OptPlatform supports multiple algorithms and even a new metaheuristic algorithm 

design. Moreover, the separation between the problem domain and the search domain 

allows a carefree implementation of the user problem. This, in return, lowers the 

learning effort required to start using the software.  

Although the OptPlatform is not designed for new metaheuristic algorithm research, 

it can be successfully used also for that purpose, as shown in the next chapter, 

Chapter 4. The framework is flexible enough that new metaheuristic algorithms can be 

developed independently while maintaining existing operational models and 

algorithms intact.  
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4. THE IMPERIALIST COMPETITIVE 

ALGORITHM WITH INDEPENDENCE AND 

CONSTRAINED ASSIMILATION (ICAWICA) 

This chapter is based on the results published in [3]. 

 

Any metaheuristic optimisation framework search results are limited to the 

underlying metaheuristic algorithms. Although metaheuristics are not problem-

specific, some are better at solving the problem at hand than others. As discussed in 

section 3.6, the Imperialist Competitive Algorithm was chosen for OptPlatform due to 

the wide range of applications and improved search convergence compared to the 

genetic algorithm.  

This chapter develops methods to improve existing ICA for combinatorial problems, 

called ICA with Independence and Constrained Assimilation (ICAwICA). The proposed 

algorithm introduces the concept of colony independence – a free will to choose 

between classic ICA assimilation to the empire’s imperialist or any other imperialist in 

the population. Furthermore, a constrained assimilation process has been 

implemented that combines classical ICA assimilation and revolution operators, while 

maintaining population diversity. In order to evaluate the performance and 

generalisation aspects of the proposed approach, two different kinds of combinatorial 

benchmark problems were selected – subset selection and routing, Multiple Knapsack 

Problem (section 2.3.1.1) and Multiple Depot Vehicle Routing Problem (section 

2.3.1.2), respectively. The performance is evaluated against competing metaheuristics 

in the literature using the implementation within OptPlatform (described in Chapter 3). 

4.1. Motivation and related work 

Imperialist Competitive Algorithm (ICA), described in detail in both sections 2.1.2.6 

and 3.6.3, was first developed for solving continuous math equations. Since then, 

there have been various attempts on improving the standard ICA search performance. 

For example, authors in [190] proposed an adaptive ICA (AICA) that uses a 
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probabilistic model based on colony positions to escape local optimum. Similarly, [191] 

improved the convergence speed of the algorithm by adding additional value to an 

unfeasible solution, based on its distance from the relative imperialist. Both [192] and 

[193] enhanced ICA by implementing an attraction and repulsion concept during the 

search for better solutions. The less researched area is the use of local search in ICA. 

Local search has been used to improve convergence on other metaheuristics, such 

as in Ant Colony System [106] by local pheromone update rules, or small swarm 

division in PSO [194]. The standard ICA does not implement any form of local search 

and therefore, may get stuck in local optima before converging to the global best 

solution [195]. Only a few approaches for solving this problem have been proposed in 

the literature, such as simulated annealing-like processes in [196], where the local 

search process is applied for machine-selection part and the operation-sequence part 

in Flexible Job-Shop Problem (FJSP). The 2-opt is another popular local-search 

operator for routing problems, such as Travelling Salesman Problem (TSP). For 

example, work in [197] uses 2-opt with ICA to improve the imperialists. For continuous 

optimization problems, local search operator such as random line search has been 

explored in [198], where authors applied the problem-specific local search for the 

imperialist solutions. 

However, many of these local search implementations rely on problem-specific 

operators or assimilation. These operators exploit the underlying problem dynamics 

and are an effective way to improve the convergence. Although some can be 

transferrable across similar class problems, they are rarely generic enough to be 

applied for a wide range of problems. For example, a 2-opt local search would be of 

no use for a knapsack problem. In attempt to overcome this issue, this chapter 

proposes a modified ICA, where the local search process is performed in terms of both 

an Independence operator and a Constrained Assimilation (ICAwICA). Compared to 

existing ICA local search approaches, ICAwICA proposes a more generic 

implementation that does not require problem-specific operators. 

Thus, in this chapter, a more generic algorithm with a local search is presented. It 

expands on the classic ICA, with the use of novel Independence operator and 

Constrained Assimilation, called ICAwICA. The contributions can be summarized into 

the following to aspects: 
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• A novel generic ICA is proposed, where the standard assimilation and 

revolution process is replaced with constrained assimilation and the novel 

independence operator used for local search.  

• The performance of the ICAwICA algorithm is comprehensively evaluated via 

well-known Multiple Knapsack Problem (MKP) and Multi Depot Vehicle Routing 

Problem (MDVRP) benchmark instances. The experimental results 

demonstrate the superiority over classic ICA and universality of the local 

search.  

4.2. Methods and implementation 

The following section introduces the classic ICA and the novel ICA with 

Independence and Constrained Assimilation (ICAwICA) algorithm. It discusses the 

changes and advantages of constrained assimilation. Finally, ICAwICA application to 

two different example problems is considered. 

4.2.1. Classic ICA 

Like many other population algorithms, ICA starts its search by generating a random 

initial population where each individual of the population represents a country. 

Countries within ICA can be thought of as chromosomes in a genetic algorithm. The 

initial population is separated into multiple groups (so-called empires). Most influential 

countries become imperialist within the empire and weakest - their colonies.  Each 

colony within empire moves closer to their imperialist in the form of assimilation 

operator. In order to provide diversity amongst countries, a revolution operator 

(mutation in GA) is implemented. If at any point a colony becomes stronger than its 

imperialist, then the two countries are swapped, such that imperialist is the strongest 

country in the empire. The search follows an iterative process, where after each 

iteration, the weakest colony within the weakest empire is assigned to one of the 

stronger empires – following the imperialist competition process. An empire is 

eliminated once it contains no more colonies. The search usually continues until the 

termination criteria are met. Ideally, the search is terminated once all empires are 

eliminated and only one, the best, empire remaining.  
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4.2.2. ICAwICA 

The proposed ICAwICA follows the classic ICA [125] principles for both empire 

initialisation and empire competition; however, assimilation and revolution operators 

are replaced with a constrained assimilation and repair mechanism. Furthermore, in 

the classic ICA, each colony within an empire is moving closer to the imperialist within 

that empire. In contrast, in ICAwICA all colonies are given a free choice to move closer 

to any of the imperialists of other empires (independence), as long as it improves the 

country’s well-being (associated cost). Therefore, at each iteration, a colony 𝑘 has a 

probability based on a uniform distribution (𝑟𝑎𝑛𝑑) of either move closer to their own 

empire’s imperialist or to move closer to any other imperialist 𝑗, determined by 𝑖𝑅𝑎𝑡𝑒 

(0-1.0). Moreover, this process is repeated Ỽ times for each colony to explore more 

search space around its position in the form of local search. Pseudocode of the 

ICAwICA is shown in Figure 29. The flowchart for both classic ICA and ICAwICA is 

shown in Figure 28, with red indicating the changes. 

4.2.3. Constrained assimilation 

Classic ICA was first developed for continuous math’s problem with simple 

assimilation processes [125], ICA has since been applied to multiple binary problems, 

such as feature selection [199][200], content-based-image retrieval (CBIR) [201] and 

single-dimensional 0-1 knapsack problems [202]. However, binary assimilation 

approaches cannot always be extended to other discrete, non-binary problems.  

Furthermore, most ICA discrete assimilation implementations follow simple genetic-

algorithm-like crossover operations, where the chromosomes are expected to be of 

equal size [203] [204]. The proposed Constrained Assimilation (CA) process does not 

require equal chromosome/solution size and is extendable to other constrained 

discrete problems. CA exploits the fact that two solutions cannot always be merged 

without violating constraints. Therefore, CA builds a new incomplete solution from the 

two donor solutions/countries (colony and imperialist) according to the assimilation 

rate and finishes the solution by a repair mechanism.  
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Figure 28. Flowchart of classic ICA [125] (to the left) and the proposed ICAwICA (on the right), 
with red indicating the changes. 

There are multiple ways to implement the solution repair mechanism - based on 

heuristics, existing solution population, sequence-based [205] etc. The most 

straightforward repair mechanism is - scanning through all possible entries and trying 

to add them to the solution without violating constraints (used in the OptPlatform’s ICA 

implementation). Furthermore, this incomplete solution repair enables diversity without 

an explicit revolution operator like classic ICA. Although more computationally 

expensive than simple assimilation, this approach has potential for broad applications 

and generalisation. It does not depend on two solutions having the same size or 

problem-specific assimilation or repair mechanism. Furthermore, CA's generated 

solutions are always within constraints and do not require any penalty cost definition 

at evaluation. 
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Figure 29. The pseudocode for new assimilation and local search method for ICAwICA 

A CA example is provided in Figure 30. Both colony and imperialist are assimilated, 

with bold integer values corresponding to solution entries (item indices in MKP case, 

or depo indices in MDVRP case) are passed to the new country, determined by 

assimilation rate. In this simple example, a 50% assimilation rate of 𝑁𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 is used 

to build the new country. Due to constraints, not all solution entries can be added to 

the new country and hence the solution is in an incomplete state. The repair process 

iterates over all possible solution entries and fills the gaps while complying with 

constraints. Let us consider in detail the assimilation process shown in Figure 30. The 

colony solution is shown in blue and the imperialist in yellow, with the newly generated 

1. Initialize ICA parameters.  
2. Create the population randomly. 
3. Initialize empires: 
     for 𝑖 = 1 to 𝑁𝑝𝑜𝑝  

Compute the cost function 𝐶𝑖;  

Sort the computed cost 𝐶𝑖 in descending order for the entire population; 

Select 𝑁𝑖𝑚𝑝 out of 𝑁𝑝𝑜𝑝; 

Normalize the cost of each imperialist 𝐶𝑛; 

Calculate the normalized power of each imperialist 𝑃𝑂𝑛; 

Assign remaining countries 𝑁𝑐𝑜𝑙 to the imperialists; 
    end loop 
do  
     4. Assimilation and local search process for ICAwICA: 

        for k = 1 to 𝑁𝑐𝑜𝑙 

            for 𝑙 = 1 to Ỽ 
                if 𝑟𝑎𝑛𝑑 <  𝑖𝑅𝑎𝑡𝑒 

     for 𝑗 = 1 to 𝑁𝑖𝑚𝑝 

           assimilate colony 𝑘 closer to 𝑗 
           if cost for new position is less than original position 
 keep assimilated position 

             else 
  discard and move back to original position 

           endif  
      end loop  
               else 
 assimilate colony 𝑘 closer to empire’s Imperialist 
               endif 
          end loop 
       end loop 
       for 𝑗 = 1 to 𝑁𝑖𝑚𝑝 

if the cost of any colony is less than cost of imperialist 
         exchange the position of the colony and imperialist; 
endif 

      end loop 
     Pick the weakest colony (colonies) from the weakest empire and assign it to the  
     empire with highest probability to possess it; 
   5. Elimination process: 
         If there is imperialist with no colonies 

eliminate the imperialist; 
         endif 
while stopping condition not met; 
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country 𝑛𝑐, new entries (index 1 and index 3) were introduced to the solution after 

repair that were not in any of the donor countries 

 

Figure 30. Imperialist and colony constrained assimilation process with solution repair. With 
integer values corresponding to solution entries (item indices in MKP case or depo indices in 
MDVRP case). 

4.2.4. ICAwICA solution encoding for MKP and MDVRP 

The ICAwICA is generic and does not rely on any specific solution structure or 

problem-specific assimilation operators and, therefore, can be applied to various kinds 

of discrete optimisation problems. Two different types of combinatorial problems have 

been explored – a subset selection problem in MKP and a routing problem in MDVRP. 

In the MKP case, each element in the solution represents an item index that has been 

added in the knapsacks. Thus, the performance of the solution is evaluated by iterating 

over all entries and matching indices to the item profits.    

For the MDVRP, first, customer-depot relationships are encoded as a country. Each 

country is represented as a vector of the size of the number of customers, where each 

customer is assigned a depot index. An example of new country creation via 

assimilation for the MDVRP is shown in Figure 31, where the initial colony has 

encoded the following grouping: Customer 2 and 8 will be routed from Depot 1; 

Customers 1, 3 and 6 will be routed from Depot 2; Customers 5,7,9 and 10 will be 

routed from Depot 3, and finally, Customer 4 will be routed from Depot 4. Each time a 

new country is created as part of the ICAwICA assimilation process, capacity 

constraints are considered such that the total demand for all customers assigned to 

the depot does not exceed the maximum capacity available across all vehicles to the 

given depot. 
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Figure 31. Customer assignment to depots in MDVRP using ICAwICA assimilation. Where 
C1-C10 are customer indices and the encoded integers are depot indices that are assigned 
to a given customer, with bold representing assimilated changes.   

Furthermore, the example in Figure 31 also shows an assimilation process for the 

colony and imperialist; considers ten customers that are grouped into four depots. Bold 

type represents assimilated changes. For example, Customer 2 (C2) demand was 

previously supplied by Depot 1 but now is supplied by Depot 4. Similarly, Customer 6 

(C6) demand was previously supplied by Depot 2 but now is supplied by Depot 3.  

Finally, solution performance is evaluated by first grouping all depot indices in the 

solution, then constructing routes based on the sequence it was added to the solution 

(from left to right). Thus, in the example in Figure 31, the new country solution would 

be Depot 1 supplying customer 8, Depot 2 supplying customers 1 and 3, Depot 3 

supplying customer sequence 5-6-7-9-10, and finally, Depot 4 supplying customers 2 

and 4.  

4.3. Experiments 

In this section, the proposed ICAwICA algorithm performance is compared to 

classic ICA. Next, the dynamics of independence operator are analysed. Finally, 

extensive computational experiments on classical MKP and MDVRP benchmark 

instances are conducted and compared to the current state-of-the-art algorithms. 

4.3.1. Benchmark instances 

Multidimensional knapsack problem instances were chosen because of their 

availability, ease of implementation and the frequent use as benchmarks across the 

research community. ICAwICA was tested across 41 accessible benchmark 

instances, all available from the compiled library in [189]. 

The simplest benchmarks are derived from the WEISH dataset, containing 30 

problems with the number of items ranging from 30 to 90 and with five knapsacks 
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each. Furthermore, to explore the performance of the proposed algorithm across a 

range of datasets, large MKP instances, generated by Glover and Kochenberger (GK) 

[188], were also selected. The GK dataset contains 11 instances with the number of 

items ranging from 100 to 2500 with 15 to 100 knapsacks each and provides a broad 

spectrum of complexity. 

Moreover, the ICAwICA was also tested on the 23 Cordeau’s MDVRP benchmark 

instances obtained from [206]. The benchmark dataset offers a wide range of 

complexity, from the number of customers ranging from 50 to 360 and the number of 

depots from 2 to 9; and specifies the current Best-Known Solution (BKS). 

4.3.2. Experimental setup 

The proposed ICAwICA algorithm was implemented in C++ using the Visual Studio 

2019 (v142) compiler. The computation was performed on a workstation with AMD 

Threadripper 2990WX processor (3.0 GHz, 64GB RAM), running Windows 10 Pro 

operating system.  

Like classic ICA, ICAwICA also has multiple algorithmic hyper-parameters that were 

empirically set and are as follows for all tested instances unless specified otherwise: 

MKP - total number of countries 𝑁𝑝𝑜𝑝 is set to 4096 for all instances with the number 

of items 𝑛 < 500 and value of 512 for all instances with 𝑛 ≥ 500. Out of all countries, 

40% are initialised as imperialists 𝑁𝑖𝑚𝑝. Local iterations Ỽ are set to 3.  Assimilation 

rate θ set to 0.5; the coefficient associated with an average power of the empire’s 

colonies 𝜁  set to 0.05; 𝑖𝑅𝑎𝑡𝑒 set to 0.7 (70% probability of independence). Due to 

constrained computing resources, limited time and a large problem set, termination 

criteria of stagnation were implemented, where the search terminates if no 

improvement has been made to the best solution for ε number of iterations. For 

problem instances with 𝑛 < 500, ε is set to 0.1𝑛, and for MKP instances with  𝑛 ≥ 500, 

𝜀  =  𝑛.   

MDVRP - the total number of countries 𝑁𝑝𝑜𝑝 is set to 4096 for all instances. Out of 

all countries, 40% are initialised as imperialists 𝑁𝑖𝑚𝑝. Local iterations Ỽ are set to 16.  

Assimilation rate θ set to 0.05; coefficient associated with an average power of 

empire’s colonies 𝜁  set to 0.05; 𝑖 set to 0.7 (70% probability of independence). Finally, 

stagnation iterations ε set to 10.  
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Due to the stochastic nature of the algorithm, 30 independent runs were computed 

for each problem instance. Best and average solution performance, as well as the 

average time in seconds 𝑡𝑎𝑣𝑔(𝑠) (average time in minutes 𝑡𝑎𝑣𝑔(𝑚)) required to reach 

such performance value, were recorded for all problem instances. 

4.3.3. Comparison to classic ICA  

Novel ICAwICA was first compared to classic ICA based on [125]. Three problem 

instances from both MKP (gk01, gk03, gk06) and MDVRP (p01, p03, p06) were 

selected for comparison, and the results are summarised in Table 7.  

Table 7. Comparison of best and average scores between Classic ICA and ICAwICA across 
six test problem instances. Average and best out of 10 runs with standard deviation (std), BKS 
– Best Known Solution. 

Dataset 
  Classic ICA ICAwICA 

Goal 
BKS 

Averag
e 

Best Std 
Averag

e 
Best Std 

MKP-gk01 Max 3766 3753.8 3766 8.11 3766.0 3766 0.00 
MKP-gk03 Max 5656 5631.5 5638 5.12 5649.2 5650 0.90 
MKP-gk06 Max 7680 7629.7 7639 8.16 7669.7 7671 1.19 

MDVRP-p01 Min 576.87 587.20 580.70 8.92 576.87 576.87 0.00 
MDVRP-p03 Min 641.19 658.10 645.16 7.55 655.29 641.19 3.25 
MDVRP-p06 Min 876.5 893.80 885.84 10.83 887.71 876.50 3.93 

 

Results show a significant improvement in the best scores obtained - ICAwICA 

reaching best-known solution (BKS) in four out of six instances, while classic ICA only 

once. Furthermore, average scores are consistently higher, and the standard deviation 

suggests that ICAwICA results are also more consistent.  It is worth noting that MKP 

objective is to maximise profit, while MDVRP is to minimise the total route cost. 

Therefore, the average error gap (see equation (37)) against the best-known solution 

is used for easier comparisons and are summarised in Figure 32. The average error 

for ICAwICA is consistently smaller than classic ICA across all six test instances. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 𝑔𝑎𝑝 (%) =  
1

𝑛
∑

𝑜𝑖 −  𝑝𝑖

𝑜𝑖

𝑛

𝑖=1

∗ 100%  (37) 

where 𝑜𝑖 is the optimal score for the instance 𝑖, and 𝑝𝑖 – achieved best or average 

score on the instance. 
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Figure 32. Comparison between Classic ICA [125] and ICAwICA for six test problem 
instances. Expressed as average error percentage to the best know solution. The graph 
demonstrates ICAwICA achieves average error of 0.62% while Classic ICA achieves 1.3%, 
relative improvement of over two times.  

4.3.4. Sensitivity analysis of independence rate 

The newly implemented mechanism of colony independence was tested by altering 

the 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑒 parameter from 0 to 1, with 0.2 increments and the average 

error gap (see equation (37)) as well as execution time 𝑡𝑎𝑣𝑔(𝑠)  recorded. The 

experimental results are summarised in Table 8.  

Table 8. Sensitivity analysis of Independence rate as an average error per cent gap for six 
test problem instances. With 0 representing ICA with no independence operator,  𝑡𝑎𝑣𝑔(𝑠)  

representing the average time in seconds to converge to the best solution, BKS – Best Known 
Solution 

Dataset 
 

BKS 
Independence rate 

Goal 0 0.2 0.4 0.6 0.8 1 

MKP-gk01 Max 3766 3.02% 0.00% 0.00% 0.00% 0.00% 0.00% 
MKP-gk03 Max 5656 2.75% 0.13% 0.12% 0.12% 0.12% 0.12% 
MKP-gk06 Max 7680 2.36% 0.34% 0.20% 0.14% 0.12% 0.13% 

MDVRP-p01 Min 576.87 4.79% 0.61% 0.04% 0.00% 0.00% 0.00% 
MDVRP-p03 Min 641.19 10.98% 3.07% 2.67% 2.12% 2.12% 2.17% 
MDVRP-p06 Min 876.5 7.79% 2.72% 1.53% 1.25% 1.36% 1.46% 

 Average error 5.28% 1.14% 0.76% 0.61% 0.62% 0.65% 
 𝑡𝑎𝑣𝑔(𝑠) 40 570 836 1033 1315 1524 

 

Results in Table 8 show a definite improvement in the introduction of the 

Independence operator within ICA. Compared to ICA with no independence 

(independence rate of 0) and ICA with independence rate higher than 0, the average 

error across all test instances reduced by a factor of 4.6 (5.28% and 1.14% 

respectively). However, there is also a time penalty associated with doing the extra 
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work of assimilating to all imperialists compared to a single imperialist, with an average 

time to reach the final solution increasing from seconds to minutes. The best average 

error was achieved with the Independence rate between 0.6 and 0.8, and therefore 

independence rate at 0.7 was adopted for use throughout all further experiments.  

4.3.5. Comparison to the state-of-the-art metaheuristics for MKP 

To evaluate the proposed ICAwICA algorithm's performance, 12 state-of-the-art 

population-based/heuristic algorithms were compared across 41 common MKP 

instances.  

First, a comparison was performed on simple WEISH instances, where most 

algorithms in the literature can achieve the optimum solution. Therefore, performance 

is measured in terms of the success rate (how many times the algorithm was able to 

achieve optimum) or in terms of the average error percentage error (see equation (37)) 

across all instances. For the comparison, the six best-performing algorithms were 

selected from the literature, which includes Ant Colony Optimization with Dynamic 

impact (ACOwD) described in [207], Improved Whale Optimization Algorithm (IWOA) 

[208], two variations of binary differential search TE-BDS and TR-BDS proposed in 

[209], and two implementations of Particle Swarm Optimization (PSO) with self-

adaptive check and repair - SACRO-CBPSOTVAC and SACRO-BPSOTVAC [210].  

 

 

Figure 33. The average error of the mean profit across all WEISH (1-30) instances. Average 
of 30 independent runs. 

Results in Figure 33 show that all compared algorithms can reach the optimal 

solution in most cases. However, only 2 of them ICAwICA and ACOwD can do it 

0.007

0.005

0.023

0.07

0.002

0

0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

SACRO-BPSOTVAC

SACRO-CBPSOTVAC

TR-BDS

TE-BDS

IWOA

ACOwD

ICAwICA (this work)

Average error of mean profit on WEISH1-30 instances



95 
 

consistently across 30 runs with 100% success rate. ICAwICA achieved the optimal 

solution every time (100% success rate), at the first iteration, and on average took 1.5 

seconds. 

Next, large Glover and Kochenberger (GK) instances were solved and compared 

to eight heuristic algorithms from the literature in terms of average error per cent (see 

equation (37))  gap against best-known profit (BKS) from the literature. Compared 

algorithms include ACOwD, IWOA, Two-phase tabu-evolutionary algorithm (TPTEA) 

[211], harmony search based algorithm NBHS2 proposed in [212], an evolutionary 

algorithm with logic gates LGEA [213], shuffled complex evolution algorithm SCEcr 

[214], hyper-heuristic inspired CF-LAS [215] and BCSA – binary cuckoo search 

algorithm [216].  

Table 9. Algorithm comparison across large Glover and Kochenberger (GK) knapsack 
instances. Results are expressed as average error percentage gap % against best-known 
profit. Colour coded from the best gap (green) to worst gap (red) for any given dataset. With 
dash (-) representing results that are not available. BKS – Best Known Solution, Std – 
Standard Deviation of the absolute value. 

Data 
set 

Problem 
size  

(n x m) BKS 

ACOwD 
[207] 

NBHS2 
[212] 

IWOA 
[208] 

LGEA 
[213] 

TPTEA 
[211] 

SCEcr 
[214] 

CF-
LAS 

[215] 

BCSA 
[216] 

ICAwICA (this work)  

Average Best Std 𝒕𝒂𝒗𝒈(𝒔) 

gk01 100x15 3766 0.14% 0.29% 0.68% 0.66% 0.00% 0.76% 0.31% 0.23% 0.00% 0.00% 0.00 16.8 
gk02 100x25 3958 0.05% 0.30% - 0.55% 0.00% 1.06% 0.36% 0.27% 0.05% 0.03% 0.99 19.4 
gk03 150x25 5656 0.26% 0.55% 0.85% 0.97% 0.06% 0.91% 0.37% 0.17% 0.12% 0.11% 0.90 62.5 
gk04 150x50 5767 0.17% 0.45% 0.89% 1.02% 0.01% 1.48% 0.45% 0.15% 0.07% 0.05% 0.93 84.4 
gk05 200x25 7561 0.21% 0.44% 0.94% 1.32% 0.01% 0.73% 0.24% 0.18% 0.09% 0.04% 1.54 145.7 
gk06 200x50 7680 0.26% 0.52% 0.77% 1.05% 0.08% 1.14% 0.46% 3.54% 0.13% 0.12% 1.19 247.7 
gk07 500x25 19221 0.20% 0.26% 1.09% 1.08% 0.04% 0.46% 0.13% 0.70% 0.11% 0.07% 5.89 280.3 
gk08 500x50 18806 0.22% 0.56% 0.85% - 0.06% 0.67% 0.20% 0.77% 0.12% 0.08% 2.98 357.8 
gk09 1500x25 58091 0.18% 0.27% 1.54% 1.08% 0.02% 1.78% 1.77% 0.98% 0.14% 0.09% 14.61 1611.0 
gk10 1500x50 57295 0.20% 0.54% 0.80% 1.01% 0.04% 0.36% 0.10% - 0.18% 0.12% 13.67 2219.1 
gk11 2500x100 95238 0.32% 0.64% 1.07% 1.13% 0.07% 0.30% 0.09% - 0.31% 0.24% 61.54 7200.6 

 

Table 9 is colour coded from red (worst average error %) to the best average error 

per cent, in green, for each problem instance with dashes (-) representing scores that 

were not available. Compared to 8 other algorithms in the literature, ICAwICA shows 

competitive results, coming in second place for gk01-gk09 and in top three for gk10 

and in fourth place for the largest gk11 instance. The best achieved error percentage 

along with the average time  𝑡𝑎𝑣𝑔(𝑠) and standard deviation (Std) have been included 

for reference. The proposed algorithm performs well on medium to large MKP 

instances, however, struggles on very large instances (gk11). Further investigation 

needs to be conducted to improve performance on the most complex benchmarks.  
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4.3.6. Comparison to the state-of-the-art metaheuristics for 

MDVRP 

The ICAwICA algorithm was next evaluated for the MDVRP compared to other 

state-of-the-art approaches. Although many algorithms have been applied to the 

MDVRP, the most recent literature techniques were selected and summarised in 

Table 10. A cooperative coevolutionary algorithm called CoES [217], Improved Ant 

Colony Optimization (IACO) [180], Tabu Search Heuristic (TSH) in [218], as well as 

hybrid Ant Colony with simulated annealing and local search algorithm called ACO+ 

[172] were selected for the comparison. The ICAwICA algorithm was also compared 

to the best-known solutions (BKS) in [206]; it is worth mentioning that these solutions 

are outdated as better results are reported in the literature. Nevertheless, the best-

known solutions of [206] are included for reference. 

Compared with other algorithms in Table 10, ICAwICA obtained the same best 

score in 11 out of 23 instances and outperformed the four rival algorithms on p08 

instance. On average error percentage in respect to BKS, ICAwICA fell short 

compared to ACO+ (0.13% vs 0.28% error), however, outperformed other compared 

approaches.  
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Table 10. Best solution obtained by ICAwICA compared to other algorithms in the literature 
across Cordeau’s MDVRP benchmark instances and the best-known solution (BKS). The best 
scores represented in bold, N representing the number of customers, M – the number of 
depots. Average error percentage calculated using BKS as a reference, 𝑡𝑎𝑣𝑔(𝑚) – average 

time to converge to a solution, in minutes, Std – Standard Deviation 

Data 
set N M BKS  

CoES, 
2016 
[217] 

IACO, 
2017 
[180] 

TSH, 
2019  
[218] 

ACO+, 
2020  
[172]  

ICAwICA (this work) 

Best Average Std 𝒕𝒂𝒗𝒈(𝒎) 

p01 50 4 576.87 576.87 576.87 576.87 576.87 576.87 576.87 0.00 4.2 
p02 50 4 473.53 473.87 473.53 473.53 473.53 473.53 481.24 3.00 6.2 
p03 75 5 641.19 641.19 641.19 641.19 641.19 641.19 655.29 3.25 7.9 
p04 100 2 1001.59 1007.40 1001.49 1008.47 1003.52 1006.66 1015.11 3.97 12.4 
p05 100 2 750.03 750.11 750.26 758.87 751.90 753.40 789.15 4.39 20.3 
p06 100 3 876.50 876.50 876.50 881.76 881.60 876.50 887.71 3.93 14.7 
p07 100 4 885.80 888.41 885.69 896.96 884.66 895.53 916.79 8.12 11.5 
p08 249 2 4420.94 4445.37 4482.44 4430.36 4428.00 4420.94 4493.66 17.87 65.2 
p09 249 3 3900.22 3895.70 3912.23 3971.59 3897.33 3900.22 3975.29 23.52 67.6 
p10 249 4 3663.02 3666.35 3663.00 3779.10 3657.03 3666.35 3696.71 10.88 82.2 
p11 249 5 3554.18 3569.68 3648.95 3652.01 3549.99 3554.18 3604.88 22.75 71.0 
p12 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1359.49 4.88 10.0 
p13 80 2 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1320.79 0.82 8.9 
p14 80 2 1360.12 1360.12 1365.68 1365.69 1360.12 1365.68 1394.01 6.71 6.7 
p15 160 4 2505.42 2526.06 2505.29 2552.79 2505.42 2565.67 2644.14 6.13 25.5 
p16 160 4 2572.23 2572.23 2587.87 2572.23 2572.23 2572.23 2577.66 1.6 16.0 
p17 160 4 2709.09 2709.09 2708.99 2731.37 2709.09 2709.09 2742.93 5.51 12.3 
p18 240 6 3702.85 3771.35 3781.04 3802.29 3710.49 3710.49 3756.70 20.83 73.2 
p19 240 6 3827.06 3827.06 3827.06 3831.71 3827.06 3827.06 3857.36 5.21 42.3 
p20 240 6 4058.07 4058.07 4058.07 4097.06 4091.78 4058.07 4134.88 21.06 73.6 
p21 360 9 5474.84 5608.26 5474.84 5617.53 5505.39 5495.54 5564.61 24.90 81.9 
p22 360 9 5702.16 5702.16 5702.06 5706.81 5702.16 5702.16 5753.71 25.14 86.0 
p23 360 9 6095.46 6129.99 6095.46 6145.58 6140.53 6145.58 6205.46 24.05 83.7 

Average error gap 0.33% 0.33% 0.96% 0.13% 0.28%    

 

4.4. Summary 

This chapter proposed a novel generic Imperialist Competitive Algorithm (ICA) 

based algorithm for solving constrained combinatorial problems called ICA with 

Independence and Constrained Assimilation (ICAwICA). The algorithm implements a 

new Independence operator for ICA, where each of the colonies has a free will to 

choose between assimilating to its imperialist or any other imperialist in the population. 

Additionally, a generic constrained assimilation process is proposed as part of the local 

search. The constrained assimilation exploits the fact that two solutions cannot be 

merged without violating constraints. Furthermore, it combines the classic ICA 

assimilation and revolution operators in one, in a generic manner.   

To evaluate the performance and versatility of the ICAwICA algorithm, two different 

kinds of combinatorial benchmark problems were selected – subset selection and 

routing, Multiple Knapsack Problem (MKP) and Multiple Depot Vehicle Routing 
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Problem (MDVRP), respectively. First, the ICAwICA was compared to classic ICA, and 

results showed a definite improvement in all benchmark test instances. Next, the 

sensitivity of the Independence operator was (evaluated?). Analysis shows that 

independence probability of greater than zero improves the results at the expense of 

computing time.  Finally, the ICAwICA was compared to the current state-of-the-art 

population-based algorithms for both MKP and MDVRP.  The proposed algorithm 

outperformed the majority of the competition on both types of problems across multiple 

instances, indicating the generic, universal nature of the ICAwICA within the 

OptPlatform.  

Generic metaheuristic support is an important aspect of any MOF, as it allows the 

user to focus on the problem specifics and modelling and avoid spending time 

understanding the suitability of the underlying metaheuristics algorithms. Instead, the 

most suitable and efficient algorithm selection is performed in the background 

automatically. An essential aspect of metaheuristic efficiency is how well they are 

utilising the available computing resources. This is the focus of  the next chapter, 

where the efficiency of ACO is evaluated across multiple hardware platforms.    
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5. ACCELERATING SUPPLY CHAINS WITH 

ANT COLONY OPTIMIZATION ACROSS A 

RANGE OF HARDWARE SOLUTIONS 

This chapter is based on the results published in [4]. 

 

As discussed in section 2.2.1, parallelism and scaling of metaheuristics are 

important aspects of any MOF. This is especially true for large real-world models that 

are computationally intensive. This chapter explores how Ant Colony Algorithm scales 

within the platform for solving global supply chain (described in section 2.3.2.2) and 

compares the dynamics to a simpler benchmark problem. 

Ant Colony algorithm has been applied to various optimisation problems; however, 

most of the previous work on scaling and parallelism focuses on Travelling Salesman 

Problems (TSPs). Although useful for benchmarks and new idea comparison, the 

algorithmic dynamics do not always transfer to complex real-life problems, where 

additional meta-data is required during solution construction. This chapter explores 

how the benchmark performance differs from real-world problems in the context of Ant 

Colony Optimization (ACO) and demonstrates that in order to generalise the findings, 

the algorithms have to be tested on both standard benchmarks and real-world 

applications.  

The chapter starts by analysis of the various hardware architectures and the related 

work in the domain of ACO scaling. Next, a brief overview of the technology used is 

provided in section 5.2. The two parallel ACO architectures – Independent Ant 

Colonies (IAC) and Parallel Ants (PA) are described in section 5.3 and an in-depth 

empirical study provided in section 5.4.  

5.1. Motivation and related work 

Supply chain optimisation has become an integral part of any global company with 

a complex manufacturing and distribution network. For many companies, inefficient 

distribution plan can make a significant difference to the bottom line. Modelling a 
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complete distribution network from the initial materials to the delivery to the customer 

is very computationally intensive. With increasing supply chain modelling complexity 

in ever-changing global geo-political environment, fast adaptability is an edge. A 

company can model the impact of currency exchange rate changes, import tax policy 

reforms, oil price fluctuations and political events such as Brexit, Covid-19 before they 

happen. Such modelling requires fast optimisation algorithms. 

Mixed Integer Linear Programming (MILP) tools such as Cplex are commonly used 

to optimise various supply chain networks [219]. Although MILP tools can obtain an 

optimum solution for many linear models, not all real-world supply chain models are 

linear. Furthermore, MILP is computationally expensive and on large instances can 

fail to produce an optimal solution. For that reason, many alternative algorithmic 

approaches (heuristics, meta-heuristics, fuzzy methods) have been explored to solve 

large-complex SC models [219]. One of these algorithms is the Ant Colony 

Optimization (ACO), which can be well mapped to real-world problems such as routing 

[220] and scheduling [221]. Supply Chain Optimization Problem (SCOP) includes both, 

finding the best route to ship a specific order and finding the most optimal time to ship 

it, such that it reaches expected customer satisfaction while minimising the total cost 

occurred. Although other metaheuristics algorithms exist in the literature for solving 

SCOPs, such as Genetic Algorithm (GA) [222][223] and Simulated Annealing (SA) 

[224][225], ACO was chosen due to the long history of the algorithm applied to various 

vehicle routing [226][227] and supply chain [228][229] problems with great solution 

quality and speed. Also, a recent study in [230] concluded that compared to GA and 

SA, the ACO performs the best for routing problems such as the Travelling Salesman 

Problem (TSP).   

Researchers in [231] compared an industrial optimisation-based tool – IBM ILOG 

Cplex with their proposed ACO algorithm. It was concluded that the proposed 

algorithm covered 94% of optimal solutions on small problems and 88% for large-size 

problems while consuming significantly less computation time. Similarly, [232] 

compared ACO and Cplex performance on multi-product and multi-period Inventory 

Routing Problem. On small instances, ACO reached 95% of the optimal solution while 

on large instances performed better than time-constrained Cplex solver. Furthermore, 

ACO implementations of Closed-Loop Supply Chain (CLSC) have been proposed; 

CLSC contains two parts of the supply chain – forward supply and reverse/return. [233] 

solved CLSC models, where the ACO implementation outperformed commercial MILP 
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(Cplex) on nonlinear instances and obtained 98% optimal solution with 40% less 

computation time on linear instances.  

Academic literature suggests that Graphical Processing Units (GPUs) are very 

suitable for solving benchmark routing problems such as Travelling Salesman Problem 

(TSP), with speedups of up to 60x [234] and even 172x [235] when compared to the 

sequential CPU implementation. This chapter aims to explore if the same ACO 

architectures that are so well suited for TSP can be applied for a real-world supply 

chain optimisation problem. Furthermore, investigate what hardware architectures are 

the best suited for the supply chain problem solved.  

5.1.1. Parallel Ant Colony Optimization 

Since the introduction of ACO in 1992, numerous ACO algorithms have been 

applied to many different problems, and many different parallel architectures have 

been explored previously. [236] specifies 5 of such architectures:  

• Parallel Independent Ant Colonies – each ant colony develop their solutions in 

parallel without any communication in-between; 

• Parallel Interacting Ant Colonies – each colony creates a solution in parallel 

and some information is shared between the colonies; 

• Parallel Ants – each ant builds solution independently, then all the resulting 

pheromones are shared for the next iteration; 

• Parallel Evaluation of Solution Elements – for problems where fitness function 

calculations take considerably more time than the solution creation; 

• Parallel Combination of Ants and Evaluation of Solution Elements – a 

combination of any of the above.  

Researchers have tried to exploit the parallelism offered from recent multi-core 

CPUs [237], along with clusters of CPUs ([238][239]) and most recently GPUs [240] 

and Intel’s many-core architectures such as Xeon Phi [241]. Breakdown of the 

strategies and problems solved are shown in Table 11.  
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Table 11. ACO architecture and hardware configurations explored. LAC - Longest Common 
Subsequence Problem, MKP - Multidimensional Knapsack Problem, TSP - Travelling 
Salesman problem. IAC – Independent Ant Colonies, IntAC – Interactive Ant Colonies, PA – 
Parallel Ants. 

Platform 
Task 

parallelism, 
IAC 

Task  
parallelism, 

IntAC 

Task  
parallelism,  

PA 

Data  
parallelism,  

PA 

CPU Scheduling 
[242] 

Scheduling [242] TSP [243] [244] 
Scheduling [242] 

Supply chain  
[this work] 

TSP [245] 
Supply chain 
[this work] 

GPU n/a n/a Protein folding [246] 
TSP [243] 
MKP [247] 
LAC [248] 

TSP [245][249][250] 
Edge detection [251] 

Supply chain 
[this work] 

CPU cluster Scheduling 
[252] 

TSP [236] TSP [239] n/a 

Xeon Phi n/a n/a Supply chain 
[this work] 

TSP [253] [254] [255] 
Supply chain 
[this work] 

 

During the search, an Ant has to keep track of the existing state meta-data, for instance 

Travelling Salesman Problem only need to keep the record of what cities have been 

visited as part of problem constraint. However, real-life problems have many more 

constraints and therefore require a lot of meta-data storage during solution creation. 

This chapter explores such a problem in the supply chain domain. Table 12 shows the 

most common problems solved by ACO and their corresponding associated 

constraints / meta-data required during solution creation. 

Table 12. Meta-data required during solution creation based on problem type 

Problem 

Meta-data 
required during 

solution 
creation Comment 

Scheduling 2 Resource and precedence constraints 

TSP 1 Has the city been visited 

Protein Folding 1 Has the sequence been visited 

MKP 1 Total weight per knapsack 

LAC 1 Tracking of the current position in a string 

Edge detection 1 Has edge already been visited 

Supply chain 
(this work) 

3 
Capacity, daily order, freight weight 
constraints 
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5.1.2. CPU  

Parallel ACO CPU architectures have been applied to various tasks – for example, 

[242] applied ACO for supply chain scheduling problem in mining domain. Authors 

managed to reduce the execution time from one hour (serial) to around 7 minutes. 

Both [256] and [257] used ACO for image edge detection with varying results, [256] 

achieved a speedup of 3-5 times while [257] managed to reduce sequential runtime 

by 30%. Most commonly, ACO has been applied to the Travelling Salesman Problem 

(TSP) benchmarks. For instance, [244] proposed an ACO approach with randomly 

synchronised ants; the strategy showed a faster convergence than other TSP 

approaches. Moreover, authors in [245] proposed a new multi-core Single Instruction 

Multiple Data (SIMD) model for solving TSPs. Similarly, both [258] and [259] tries to 

solve large instances of TSP (up to 200k and 20k cities, respectively) where the 

architectures are limited to the size of the pheromone matrix. [259] discusses such 

limitations and proposes a new pheromone sharing for local search – effective 

heuristics ACO (ESACO), which was able to compute TSP instances of 20k. In 

contrast, authors in [258] eliminate the need for pheromone matrix and store only the 

best solutions similar to the Population ACO. Furthermore, researchers implement a 

Partial Ant, also known as the cunning ant, where ant takes an existing partial solution 

and builds on top of it. Speedups of as much as 1200x are achieved compared to 

sequential Population ACO. 

Generally, CPU parallel architecture implementations come down to three 

programming approaches - Message Passing Interface (MPI) parallelism, OpenMP 

parallelism [260] and data parallelism with the vectorisation of SIMD. For instance, 

[261] explored both master-slave and coarse-grained strategies for ACO 

parallelisation using MPI. It was concluded that fine-grained master-slave policy 

performed the best. [262] used MPI with ACO to accelerate Maximum Weight Clique 

Problem (MWCP). The proposed algorithm was comparable to the ones in literature 

and outperformed Cplex solver in both – time and performance. Moreover, authors in 

[252] implemented parallel ACO for solving Flow shop scheduling problem with 

restrictions using MPI. Compared to the sequential version of the algorithm, 93 node 

cluster achieved a speedup of 16x. [263] compared ACO parallel implementation on 

MPI and OpenMP on small vector estimation problem. It was found that maximum 

speedup of OpenMP was 24x while MPI – 16x. Furthermore, [245] explored the multi-
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core SIMD CPU with OpenCL and compared it to the performance of the GPU. It was 

found that optimised parallel CPU-SIMD version can achieve similar solution quality 

and computation time than the state of art GPU implementation solving TSP.  

5.1.3. Xeon Phi 

Intel’s Xeon Phi Many Integrated Core (MIC) architecture offers many cores on the 

CPU (60-72 cores per node) while offering lower clock frequency. Few researchers 

have had the opportunity to research ACO on the Xeon Phi architecture. For instance, 

[253] showed how utilising L1 and L2 cache on Xeon Phi coprocessor allowed a 

speedup of 42x solving TSP compared to sequential execution. Due to the nature of 

SIMD features such as AVX-512 on Xeon Phi, researchers in both [254] and [255] 

proposed a vectorisation model for roulette wheel selection in TSP. In the case of 

[255], a 16.6x speedup was achieved compared to sequential execution. To the best 

of the author's knowledge, Xeon Phi and ACO parallelism have not been explored to 

any other problem except TSP.  

5.1.4. GPUs 

General Purpose GPU (GPGPU) programming is a growing field in computer 

science and machine learning. Many researchers have tried exploiting latest GPU 

architectures to speed optimise the convergence of ACO. ACO GPU implementation 

expands to many fields, such as edge detection ([251][264]), protein folding [246], 

solving Multidimensional Knapsack Problems (MKPs) [247] and Vertex colouring 

problems [265]. Moreover, researchers have used GPU implementations of ACO for 

classification ([266] [267]) and scheduling ([268][269]) with various speedups 

compared to the sequential execution.  

However, the majority of publications are solving Travelling Salesman Problems 

[270], although useful for benchmarking and comparison, little characteristics transfer 

to other application areas. For instance, highly optimised local memory on GPU 

(Compute Unified Device Architecture - CUDA) can significantly speed up TSP's 

execution. However, when applied to real-life problems where additional restrictions 

and metadata is required to build a solution, most of the data needs to be stored on 

much slower global memory. In [244], the authors did extensive research comparing 

server, desktop and laptop hardware solving TSP instances on both CUDA and 
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OpenCL. Although there are a couple of ACO OpenCL implementations on GPU 

([248][271]), the majority of studies use CUDA. For instance, [272] implemented a 

GPU-based ACO and achieved a speedup of 40x compared to sequential ACS. 

Similarly, a 22x speedup was obtained in [273] solving pr1002 TSP and 44x on fnl4461 

TSP instance in [274]. However, there are also various hybrid approaches for solving 

TSP - [275] uses parallel Cultural ACO (pCACO) (a hybrid of genetic algorithm and 

ACO). Research showed that pCACO outperformed sequential and parallel ACO 

implementations in terms of solution quality. Furthermore, [276] solved TSP instances 

using ACO-PSO hybrid and authors in [277] explored heterogeneous computing with 

multiple GPU architectures for TSP. Finally, authors in [250] explored six different min-

max ACO architectures on GPU and their TSP performance.  

Although task parallelism has potential for a speedup, [278] showed how data 

parallelism (vectorisation) on GPU could achieve better performance by proposed 

Independent Roulette wheel (I-Roulette). Same authors then expanded the I-Roulette 

implementation in [249], where SS-Roulette wheel was introduced. SS-Roulette 

stands for Scan and Stencil Roulette wheel. It mimics a sequential roulette wheel while 

allowing higher throughput due to parallelism. First, the Tabu list is multiplied by the 

probabilities and the results stored in a choice vector (scan). A stencil pattern is then 

applied to the choice vector based on a random number to select an individual 

(stencil). Further, [235] implements a G-Roulette – a grouped roulette wheel selection 

based on I-Roulette, where cities in TSP selection are grouped in CUDA warps22. An 

impressive speedup of 172x was achieved compared to the sequential counterpart. 

 

5.1.5. Comparing hardware performances 

Fairly comparing parallel performances of different hardware architectures is by no 

means trivial. Most research compares a sequential CPU ACO implementation to one 

of the parallel GPUs, which is hardly fair [279]. Also, unoptimized sequential code is 

compared to highly optimised GPU code. Such comparisons result in misleading and 

inflated speedups [240]. Furthermore, [248] argues that the parameter settings chosen 

for the sequential implementation are often biased in favour of GPU. [240] proposes 

criteria to calculate the real-world efficiency of two different hardware architectures by 

 
22 Groups of 32 threads, are known as CUDA warps. For information refer to: 

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/ 

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
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comparing the theoretical peak performances of GPU and CPU. While the proposed 

method is more appropriate, it still does not account for real-life scenarios where 

memory latency/speed, cache size, compilers and operating systems all play a role of 

the final execution time. Therefore, two different systems with similar theoretical 

floating-point operations per second running the same executable can have 

significantly different execution times.  

Furthermore, in some instances, only execution time or solution quality is 

compared, rarely both are considered when analysing results.  

5.2. Background 

This section briefly covers the tools and hardware-specific languages used in the 

implementation.  

5.2.1.  Parallel processing with OpenMP 

OpenMP23 is a set of directives to a compiler that allows a programmer to create 

parallel tasks as well as vectorisation (Single Instruction Multiple Data - SIMD) to 

speed up execution of a program. A program containing parallel OpenMP directives 

starts as a single thread. Once directive such as #pragma omp parallel is reached, the 

main thread will create a thread pool and all methods within the #pragma region will 

be executed in parallel by each thread in the thread group. Moreover, once the thread 

reaches the end of the region, it will wait for all other threads to finish before dissolving 

the thread group and only the main thread will continue.  

Furthermore, OpenMP also supports nesting, meaning a thread in a thread-group 

can create its own individual thread-group and become the master thread for the newly 

created thread-group. However, thread-group creation and elimination can have 

significant overhead and therefore, thread-group re-use is highly recommended [280].  

Both omp parallel and omp simd directives are used in this study.  

 

5.2.2.  CUDA programming model 

Compute Unified Device Architecture (CUDA) is a General-purpose computing 

model on GPU developed by Nvidia in 2006. Since then, this proprietary framework 

 
23 OpenMP API website and documentation https://www.openmp.org/ 

https://www.openmp.org/
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has been utilised in the high-performance computing space via multiple Artificial 

Intelligence (AI) and Machine Learning (ML) interfaces and libraries/APIs. CUDA 

allows writing C programs that take advantage of any recent Nvidia GPU found in 

laptops, workstations and data centres.  

Each GPU contains multiple Streaming Multiprocessors (SM) that are designed to 

execute hundreds of threads concurrently. To achieve that, CUDA implements SIMT 

(Single Instruction Multiple-Threads) architecture, where instructions are pipelined for 

instruction-level parallelism. Threads are grouped in sets of 32 – called warps. Each 

warp executes one instruction at a time on each thread. Furthermore, CUDA threads 

can access multiple memory spaces – global memory (large size, slower), texture 

memory (read only), shared memory (shared across threads in the same SM, lower 

latency) and local memory (limited set of registers within each thread, fastest)24. 

A batch of threads is grouped into a thread-block. Multiple thread-blocks create a 

grid of thread blocks.  The programmer specifies the grid dimensionality at kernel 

launch time, by providing the number of thread-blocks and the number of threads per 

thread-block. Kernel launch fails if the program exceeds the hardware resource 

boundaries. 

5.2.3.  Xeon Phi Knights Landing architecture 

Knights Landing is a product code name for Intel’s second-generation Intel Xeon 

Phi processors. First-generation of Xeon Phi, named Knights Corner, was a PCI-e 

coprocessor card based on many Intel Atom processor cores and support for Vector 

Processing Units (VPUs). The main advancement over Knights Corner was the 

standalone processor that can boot stock operating systems, along with improved 

power efficiency and vector performance. Furthermore, it also introduced a new high 

bandwidth Multi-Channel DRAM (MCDRAM) memory. Xeon phi support for standard 

x86 and x86-64 instructions, allows majority CPU compiled binaries to run without any 

modification. Moreover, support for 512-bit Advanced Vector Extensions (AVX-512) 

allows high throughput vector manipulations.  

 
24 CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.  

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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Figure 34. Knights Landing tile with a larger processor die [281] 

The Knights Landing cores are divided into tiles (typically between 32 and 36 tiles 

in total). Each tile contains two processor cores and each core is connected to two 

vector processing units (VPUs). Utilising AVX-512 and two VPUs, each core can 

deliver 32 dual-precision (DP) or 64 single-precision (SP) operations each cycle [281]. 

Furthermore, each core supports up to four threads of execution – hyper threads 

where instructions are pipelined.  

Another introduction with the Knights Landing is the cluster modes and 

MCDRAM/DRAM management. The processor offers three primary cluster modes25 – 

All to all mode, Quadrant mode and Sub-Numa Cluster (SNC) mode and three memory 

modes – cache mode, flat mode and hybrid mode. For a detailed description of the 

Knights Landing Xeon Phi architecture refer to [281]. 

5.3. Methods and implementation 

To solve the transportation network optimisation problem, an Ant Colony System 

algorithm (first proposed by [106]) has been implemented. Because ACO is an iterative 

algorithm, it does require sequential execution. Therefore,  the most naïve approach 

for parallel ACO is running multiple Independent Ant Colonies (IAC) with a unique seed 

for the pseudo-random number generator for each colony (high-level pseudocode in 

 
25 Detailed description of Xeon Phi memory and cache modes available at: 

https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-
modes-configuration-and-use-cases 

https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases
https://software.intel.com/en-us/articles/intel-xeon-phi-x200-processor-memory-modes-and-cluster-modes-configuration-and-use-cases
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Figure 35). Due to the stochastic nature of solution creation, it is, therefore, more 

probabilistic to reach a better solution than a single colony. This approach has the 

advantage of low overhead as it requires no synchronisation between the parallel 

instances during the search. At the very end of the search, the best solution of all 

parallel colonies is chosen as the final solution. The main disadvantage of IAC is that 

if one of the colonies finds a better solution, there is no way to improve all the other 

colony’s fitness values.  

Independent Ant Colonies (IAC) 

1. for all parallel instances m parallel do 

2.     for all iterations iter do 

3.          for all local ants a do 

4.               local pheromone = global pheromone 

5.               construct solution 

6.               local pheromone update 

7.          end for 

8.          update global pheromone update based on the best solution 

9.      end for 

10.  end for 

11. find the best solution across parallel instances 

Figure 35. High-level pseudocode for Independent Ant Colonies (IAC) search algorithm 

Alternatively, the ACO search algorithm could also be letting the artificial ant 

colonies synchronise after every iteration. Therefore, all parallel instances are aware 

of the best solution and can share pheromones accordingly. High-level pseudocode 

of such Parallel Ant (PA) implementation is shown in Figure 36. The main advantage 

of this architecture is that it allows efficient pheromone sharing, therefore converging 

faster. However, there is a high risk of getting stuck into local optima as all ants start 

iteration with the same pheromone matrix. Furthermore, synchronisation of all parallel 

instances after every iteration is costly. 
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Parallel Ants (PA) 

1. for all iterations iter do 

2.      for all parallel instances m parallel do 

3.            for all local ants a do 

4.               local pheromone = global pheromone 

5.               construct solution 

6.               local pheromone update 

7.            end for 

8.      end for 

9.      find the best solution across parallel instances 

10.      update global pheromone update based on the best solution 

11. end for 

Figure 36. High-level pseudocode Parallel Ants (PA) search algorithm 

Both IAC and PA implementations are exploiting task parallelism – each parallel 

instance (thread) gets a set of tasks to complete. An alternative approach would be to 

look at data parallelism and vectorisation. In such a strategy, each thread processes 

a specific section of the data and cooperatively complete the given task. Due to the 

highly sequential parts of ACO, it would not be practical to only use vectorisation alone. 

A more desirable path would be to implement vectorisation in conjugate to the task 

parallelism. In case of CPU, task parallelism can be done by the threads, while 

vectorisation is done by Vector Processing Units (VPUs) based on Advanced Vector 

Extensions 2 (AVX2) or AVX512. Moreover, in the case of GPU and CUDA – task 

parallelism would be done at a thread-block level while data parallelism would exploit 

WARP structures. Parallel Ants with Vectorisation (PAwV) expands on the Parallel 

Ants architecture by introducing data-parallelism of solution creation and an alternative 

roulette wheel implementation – SS-Roulette, first proposed in [282]. Local search in 

Figure 37 expands on the implementation in Figure 36 (lines 3-7). First, the 

choiceMatrix is calculated by multiplying the probability of the route to be chosen with 

the tabuList – a list of still available routes (where 0 represents not available and 1 – 

route still can be selected). A random number between 0 and 1 is generated to 

determine if a given route will be chosen based on exploitation or exploration. In the 

case of exploitation, the choiceMatrix is reduced to obtain the maximum and the 

corresponding route index. Furthermore, in the case of exploration, the route is chosen 

based on the SS-Roulette wheel described by [282]. 
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Parallel Ants with Vectorization (PAwV) 

1. for all local ants a do 

2.      local pheromone = global pheromone 

3.      for all orders o do 

4.           for all routes r for order do SIMD 

5.                choiceMatrix[r] = probability[r] * tabuList[r] 

6.            end for   

7.           if rand() <= q0 then  

8.               SIMD reduce max (choiceMatrix) 

9.           else 

10.               SS-Roulette wheel [282] 

11.           end if 

12.      end for 

13.      local pheromone update 

14.  end for 

Figure 37. High-level pseudocode for Parallel Ants with Vectorization (PAwV) search 
algorithm. Expanding on Figure 36’ lines 3-7. 

The main advantage of IAC is that it requires to synchronise between threads only 

at the start of the search and at the very end of the search, therefore keeping 

synchronisation overhead low. However, as there is no pheromone sharing, new better 

solutions cannot be shared across the parallel instances. In contrast, both PA and 

PAwV offers sharing of the best performing ants’ pheromone before the next iteration 

begins. The potential drawback is that search might get stuck in local optimum as all 

parallel instances share the same pheromone starting point. Furthermore, pheromone 

sharing and therefore, synchronisation between threads is costly overhead, especially 

if performed after each iteration. The PAwV architecture exploits the use of SIMD 

instructions for further data parallelism inside the Ant’s solution construction. Table 13 

summarises these architectural features.   

Table 13. Comparison of Independent Ant Colonies (IAC), Parallel Ants (PA) and parallel Ants 
with Vectorisation (PAwV) architectures. 

 IAC PA PAwV 
Synchronisation between threads during search No Yes Yes 
Pheromone sharing between parallel instances No Yes Yes 

Data parallelism No No Yes 
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5.4. Experiments 

A sequential implementation of ACO described in [106] is adapted from [283] by 

altering the heuristic information calculation for a given route – defined as a proportion 

of order’s weight and the maximum weight gap (see equation (5)). Furthermore, the 

ACO set of parameters were obtained from both work in [283] and empirical 

experimentation. Table 14 summarises these algorithm hyperparameters. Moreover, 

three different Parallel ACO architectures were implemented – Independent Ant 

Colonies (IAC), Parallel Ants (PA) and Parallel Ants with Vectorisation (PAwV) in C++ 

and CUDA C.  

Experiments were conducted on three different hardware configurations – CPU, 

GPU and Xeon Phi.  

Table 14. Ant Colony System set of parameters for all configurations and architectures 

Parameter Value 
Pheromone evaporation rate (rho) 0.1 
Weight on pheromone information (α) 1 
Weight on heuristic information (β) 8 
Exploitation to exploration ratio (q0) 0.9 

 

Hardware A - CPU 

• CPU: AMD Ryzen™ Threadripper™ 1950X (16 cores, 32 threads), running at 3.85GHz.  

• RAM: 64GB 2400MHz DDR4, 4 channels. 

• OS: Windows 10 Pro, version 1703 

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64 

Hardware B - Xeon Phi 

• CPU: Intel® Xeon Phi™ Processor 7250F (68 cores, 272 hyper-threads), running at 

1.4GHz. Clustering mode set to Quadrant and memory mode set to Cache mode.  

• RAM: 16GB on-chip MCDRAM and 96GB 2400MHz DDR4 ECC.  

• OS: Windows Server 2016, version 1607 

• Toolchain: Intel C++ 18.0 toolset, Windows SDK version 8.1, x64, 

KMP_AFFINITY=scatter 

Hardware C - GPU 

• CPU/RAM/OS – see host Hardware A. 

• GPUs: 4x Nvidia GTX1070, 8GB GDDR5 per GPU, 1.9GHz core, 4.1GHz memory. PCIe 

with 16x/8x/16x/8x.  
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• Toolchain: Visual Studio v140 toolset, Windows SDK version 8.1, x64, CUDA 9.0, 

compute_35, sm_35 

Hardware architecture C shares the same host CPU as Hardware A. 

5.4.1.  Benchmarks 

It is crucial to consider both elapsed time and solution quality when referring to 

speed optimisation of optimisation algorithms. One could get superior convergence 

within iteration but, take twice as long to compute. Similarly, one could claim that the 

algorithm is much faster at completing a defined number of iterations but sacrifice 

solution quality. Furthermore, there is little point comparing sequential execution of 

one hardware platform to parallel implementation of another. A comparison should 

take into consideration all platform strengths and weaknesses and set up the most 

suitable configuration for a given platform.  

To obtain a baseline fitness convergence rate at a various number of parallel 

instances, a matrix of Iterations vs Parallel Instances are created for all architectures. 

An example of such matrix for Parallel Ants is shown in Table 15. The matrix is derived 

by averaging the resulting fitness obtained from 10 independent simulations with a 

unique seed value for each given Parallel Instances configuration.  All configurations 

are run for x number of iterations, where x is based on the total number of solutions 

explored and is a function of the number of Parallel Instances. The total number of 

solutions explored is set to 768k.  The number of Parallel Instances is varied by 2𝑛−1 

with maximum n of 11, i.e. 1024 parallel instances. The best value after every 5 

iterations is also recorded.  

The number of iterations required to reach a specific solution quality for different 

ACO architectures are computed in Table 16, expressed as proximity to the best-

known optimal solution. For the particular problem and dataset, the best solution is the 

total cost of 2,701,367.58. There are six checkpoints of solution quality ranging from 

99% to 99.9%. Although at first 1% gain might not seem significant, one must 

remember that global supply chain costs are measured in hundreds of millions, and 

even 1% savings do affect the bottom line. Empty fields (-) represent instances where 

the ACO was not able to converge to given solution quality.  

On all experiments, IAC was able to obtain solution quality only below 99.6%. In 

contrast, PA and PA with 5 ant local search were able to achieve above 99.9% solution 
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quality with 512 and 1024 parallel instances. Furthermore, IAC did not see any 

significant benefit of adding more parallel instances for 99% and 99.25% checkpoints.  

Table 15. Parallel Ants fitness value baseline for different configurations of the number of 
parallel instances and the number of iterations. Each Parallel Instance data point is an average 
of 10 individual runs (table derived from 11*10 =110 runs). Expressed as a percentage of the 
proximity of the best-known solution (2,701,367.58). Colour-coded from worse – in red, to the 
best – in green. 

  

In contrast, PA does benefit from the increase in the number of parallel instances. 

For instance, PA can obtain the same solution quality in half the number of iterations 

at 99% checkpoint (scaling of 2x for sequential vs 1024 parallel instances). Scaling of 

633.7x in case of 99.5% checkpoint for sequential counterpart. Similarly, PA with 5 ant 

sequential local search has the same dynamics, with scaling of 4x at 99% checkpoint 

compared to sequential and 140x at 99.6% checkpoint compared to 2 and 1024 

parallel instances. One can also note that at increased solution quality and a little 

number of parallel instances, PA with 5 ant local search also offers improved efficiency 

in terms of total solutions explored. For example, at the 99.5% checkpoint with 2 

parallel instances, PA takes 2590 iterations, while PA with 5 ant local search only 
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requires 65 (decrease of 40x iterations or 8x total solutions explored). However, in 

most instances, PA without any local search is more efficient.  

Table 16. The number of iterations required to reach a specific solution quality. Each data 
point in the table is an average of 10 individual runs. Empty fields (-) represent instances 
where ACO did not obtain specified solution quality in 768k solutions explored. The solution 
quality is expressed as a percentage of the proximity of the best-know solution (2,701,367.58). 

The number of iterations required to reach specific solution quality 

  
Architecture 

Checkpoint 
of optimal 
solution 

The number of parallel instances 

1 2 4 8 16 32 64 128 256 512 1024 

Independent 
Ant Colonies 

99.00% 30 30 35 30 30 35 30 30 25 25 25 

99.25% 45 45 40 40 45 40 40 35 35 35 35 

99.50% 31685 31055 29550 28895 29075 15910 10950 - - - - 

99.60% - - - - - - - - - - - 

99.75% - - - - - - - - - - - 

99.90% - - - - - - - - - - - 

Parallel Ants 

99.00% 30 25 25 25 25 25 20 15 15 15 15 

99.25% 45 40 40 35 35 35 35 35 30 30 30 

99.50% 31685 2590 65 60 60 55 55 55 55 50 50 

99.60% - - 9190 2640 195 170 230 70 70 65 65 

99.75% - - - - - - - 685 310 140 135 

99.90% - - - - - - - - - 800 675 

Parallel Ants 
with 5 

sequential 
ant local 
search 

99.00% 20 15 15 15 15 10 10 10 10 10 5 

99.25% 30 30 30 30 30 25 30 25 20 25 20 

99.50% 400 65 55 55 50 50 50 50 45 45 45 

99.60% - 7715 160 135 90 65 60 65 60 55 55 

99.75% - - - - 6630 205 150 155 130 125 125 

99.90% - - - - - - - - 460 255 160 

5.4.2.  Speed performance 

To evaluate speed performance, each given configuration and parallel architecture 

were ran for 500 iterations or 10 minutes wall-clock time (whichever happens first) and 

recorded the total number of iterations and wall-clock time for three independent runs. 

Then, average wall-clock time per iteration was calculated. It is essential to measure 

the execution time correctly, just purely comparing computation per kernel/method 

may not show the real-life impact. For that reason, total time is measured from the 

start of the memory allocation to the freeing of the allocated memory, however it does 

not include the time required to load the dataset into memory. This allows us to 

estimate, with reasonable accuracy, what is the wall-clock time needed to run a 

specific architecture and configuration to converge to a given fitness quality. Although 

running each given architecture and configuration 10 times would produce more 

accurate convergence rate estimates, it would also require significantly more 

computation time. Furthermore, all vectorised implementations went through iterative 

profiling and optimisation process to obtain the fastest execution time. To the best of 



116 
 

the author’s knowledge, all vectorised implementations have been fully optimised for 

the given hardware.   

 

• CPU 

ACO implementation of IAC, PA and PAwV was implemented in C++ and multiple 

experiments of the configurations are shown in Table 17. Intel C++ 18.0 with OpenMP 

4.0 was used to compile the implementation. KMP26 (an extension of OpenMP) config 

was varied based on total hardware core and logical core count (16c,2t = 32 OpenMP 

threads).  

Very similar results were obtained for both IAC double precision and PA double 

precision, with PA having around 5% overhead compared to IAC. In both instances, 

running 32 OpenMP threads offered around 24% speed reduction compared to 16 

threads. Furthermore, PAwV with double precision vectorisation using AVX2 offered 

speed reduction of 26%, while scaling from 16 OpenMP threads to 32 offered almost 

no scaling at 256 parallel instances upwards.  

The nature of ACO pheromone sharing and probability calculations does not require 

double precision and therefore can be substituted with single-precision calculations.  

AVX2 offers 256-bit manipulations, therefore increasing theoretical throughput by a 

factor of 2, compared to double precision. 36% decrease in execution time was 

obtained, as not all parts of the code can take advantage of SIMD.  

Furthermore, doing 5 ant sequential local search within each parallel instance 

increases time linearly and produces little time savings in terms of solutions explored. 

The overall scaling factor at 1024 parallel instances compared to sequential execution 

at PAwV (single precision with AVX2 and 16c2t) is therefore 25.4x. 

  

 
26 OpenMP Thread Affinity Control https://software.intel.com/en-us/articles/openmp-thread-affinity-

control 

https://software.intel.com/en-us/articles/openmp-thread-affinity-control
https://software.intel.com/en-us/articles/openmp-thread-affinity-control
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Table 17. Hardware A wall-clock time per iteration, in seconds. KMP config is environment 
variable set as part of KMP_PLACE_THREADS, for all instances KMP_AFFINITY=scatter, 
optimisation level /O3, favour speed /Ot. 

Hardware A - CPU computation time per iteration (in seconds) 
Configuration The number of Parallel Instances 

  KMP config 1 2 4 8 16 32 64 128 256 512 1024 

IAC, double precision 
16c,1t 

0.078 0.081 0.083 0.085 0.112 
0.196 0.372 0.691 1.368 2.661 5.263 

16c,2t 0.148 0.277 0.517 1.002 2.014 4.093 

PA, double precision 
16c,1t 

0.082 0.084 0.085 0.090 0.115 
0.205 0.383 0.705 1.411 2.743 5.483 

16c,2t 0.153 0.288 0.539 1.044 2.088 4.220 

PAwV, double precision, AVX2 
16c,1t 

0.050 0.053 0.057 0.058 0.075 
0.131 0.233 0.426 0.805 1.547 3.101 

16c,2t 0.107 0.189 0.351 0.749 1.536 3.095 

PAwV, single precision, AVX2 
16c,1t 

0.049 0.050 0.052 0.055 0.066 
0.111 0.206 0.367 0.699 1.355 2.664 

16c,2t 0.088 0.152 0.275 0.501 1.006 1.975 

PAwV, single precision, AVX2, with 
5 sequential ant local search 

16c,1t 
0.212 0.218 0.227 0.241 0.264 

0.484 0.918 1.722 3.380 6.759 13.461 

16c,2t 0.347 0.645 1.222 2.369 4.659 9.704 

• Xeon Phi 

Similar experiments were also conducted on the Xeon Phi hardware, Table 18.  Due 

to the poor convergence rate and search capability, the execution time for IAC was 

not measured. Xeon Phi differs from Hardware A with the ability to utilise up to 4 hyper-

threads per core and AVX512 instruction set. Although Hardware B has 68 physical 

cores, for more straightforward comparison on base 2, only 64 were used in 

experiments. At 1024 parallel instances on double-precision PA, having 2 threads and 

4 threads per core does offer speedup of 30% and 42% respectively, compared to 1 

thread per core. Moving to the vectorised implementation of 256-bit AVX2, gains 

additional speedup of around 37% across all parallel instances, however, did not 

benefit from 4 hyper-threads. Furthermore, exploiting the AVX512 instruction set offers 

a further 24% speedup compared to AVX2. In this configuration having 4 hyper threads 

per core worsens the speed performance (3.644 seconds vs 3 seconds). Like 

Hardware A, PAwV was explored with single precision and offered near-perfect scaling 

on 1024 parallel instances with 4 hyper-threads per core, or 40% overall speed 

improvement compared to PAwV with double precision (3 seconds vs 1.804 seconds). 

Alike Hardware A, having 5 sequential local ants does not provide any time savings 

and time increases linearly. The overall scaling factor at 1024 parallel instances 

compared to sequential execution at PAwV (single precision with AVX512 and 64c4t) 

is therefore 148x.  
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Table 18. Hardware B wall-clock time per iteration, in seconds. KMP config is environment 
variable set as part of KM_PLACE_THREADS, for all instances KMP_AFFINITY=scatter, 
optimisation level /O3, favour speed /Ot. 

Hardware B - Xeon Phi computation time per iteration (in seconds) 
Configuration The number of Parallel Instances 

  
KMP 
config 1 2 4 8 16 32 64 128 256 512 1024 

PA, double precision 

64c,1t 

0.687 0.687 0.725 0.726 0.726 0.729 0.734 

1.417 2.787 5.941 11.089 

64c,2t 1.014 1.974 3.845 7.669 

64c,4t 1.087 1.606 3.226 6.438 

PAwV, double 
precision, AVX2 

64c,1t 

0.408 0.411 0.430 0.431 0.433 0.434 0.438 

0.818 1.578 3.094 6.114 

64c,2t 0.563 1.047 2.022 3.964 

64c,4t 0.625 1.101 2.072 4.082 

PAwV, double 
precision, AVX512 

64c,1t 

0.304 0.309 0.326 0.326 0.327 0.332 0.335 

0.608 1.152 2.242 4.404 

64c,2t 0.446 0.809 1.535 3.000 

64c,4t 0.494 0.982 1.913 3.644 

PAwV, single 
precision, AVX512 

64c,1t 

0.261 0.266 0.282 0.284 0.284 0.287 0.288 

0.521 0.970 1.900 3.806 

64c,2t 0.359 0.646 1.210 2.361 

64c,4t 0.412 0.542 0.957 1.804 

PAwV, single 
precision, AVX512, 
with 5 sequential 
ant local search 

64c,1t 

1.105 1.123 1.195 1.200 1.205 1.205 1.215 

2.342 4.601 9.136 18.844 

64c,2t 1.489 2.915 5.743 11.815 

64c,4t 1.553 2.225 4.428 9.054 

• GPUs 

A further set of experiments were also conducted for GPU, Table 19. The 

implementation with no vectorisation (Blocks x1), uses 1 thread per CUDA block to 

compute one solution, therefore 1024 parallel instances require 1024 blocks. Similarly, 

for (Blocks x32), 32 threads are used per block, each thread computing its own solution 

independently. For parallel instances of 32, only 1 block would be used with 32 

threads. The implementation of no vectorisation utilises no shared memory; however, 

all static problem metadata is stored as textures. A single kernel is launched, and the 

best solution across all parallel instances is returned.  

Vectorized version implements architecture described in [282], storing the route 

choice matrix in shared memory and utilising local warp reduction for sum and max 

operations. Each thread-block builds its solution, while the extra 32 threads assist with 

the reduction operations, memory copies and fitness evaluation. Table 19 shows a 

comparison between the two implementations. Implementation without vectorisation 

performs on average two times slower compared to the vectorised version. 

Furthermore, 64 threads per block (Blocks x64) performs slower than 32 threads per 

block (Block x32).  

Next, scaling across multiple GPUs were explored. Each device takes a proportion 

of 1024 instances with unique seed values and after each iteration, the best overall 

solution is reduced. In the case of 2 GPUs and 1024 parallel instances, each device 
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will compute 512 parallel instances concurrently. Scaling across 2 (2x) and 4 GPUs 

(4x) did not provide any significant speedup (only 10%). This is due to the fact that 

each iteration consumes at least 50 seconds and scaling across multiple GPUs adds 

almost no overhead. The maximum number of parallel instances might need to be 

increased to fully utilise all 4 GPUs to the point where all Streaming Multiprocessors 

(SMs) are saturated and increasing block count increases the computation time 

linearly.   

GPU implementation is, therefore, one magnitude of order slower than that of CPU. 

However, this could be explained by the nature of the problem and not be specific to 

ACO architecture, as there have been a lot of success on GPUs solving simple, low 

memory footprint TSP instances [273][282][284]. However, the supply chain problem 

requires a lot of random global memory access to check for all restrictions such as 

order limits, capacity constraints and weight limits, which are too big to be stored on 

the shared memory.  

Table 19. Hardware C wall-clock time per iteration, in seconds. The total number of parallel 
instances are adjusted for the thread-block dimensions. Compiled with CUDA 9.0. 1x, 2x and 
4x correspond to the number of devices used to compute. 

Hardware C - GPU computation time per iteration (in seconds) 

Configuration 

The number of Parallel Instances 

1 2 4 8 16 32 64 128 256 512 1024 

1x GPU no vectorisation (Blocks x 1) 46.7 47.6 47.6 47.4 47.4 48.9 50.8 53.4 60.8 126.8 229.0 

1x GPU no vectorisation (Blocks x 32) - - - - - 108.3 110.5 112.5 113.2 114.5 115.2 

1x GPU with vectorisation (Blocks x32) - - - - - 49.8 52.4 54.1 55.4 58.8 64.5 

1x GPU with vectorisation (Blocks x64) - - - - - - 57.1 58.5 59.6 61.0 65.8 

2x GPU with vectorisation (Blocks x32) - - - - - - 50.0 52.6 55.4 55.5 60.8 

4x GPU with vectorisation (Blocks x32) - - - - - - - 50.0 52.7 54.4 55.8 

 

5.4.3. Hardware Comparison and speed of convergence 

If both convergence rate of the architecture and the speed of the hardware is 

considered, an estimate can be made on what would be the average wall-clock time 

to converge to specific solution quality. The fastest configuration for both Hardware A 

(Table 17) and Hardware B (Table 18) was chosen and then multiplied by the number 

of iterations required to reach a specific solution quality (Table 16) to obtain an 

estimate of the compute time required (Table 20). Therefore, a fairer real-life impact 

can be derived.  

If one only considers the best time to converge to 99% solution quality, Hardware 

A can do that in 1.24 seconds on average while Hardware B would take 6.66 seconds. 
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Furthermore, if we look at 99.5% solution quality, Hardware A would take 3.33 seconds 

while Hardware B - 17.01 seconds. Faster clock speed for Hardware A gives an 

advantage over Hardware B at lower solution quality checkpoints. In contrast, at 

99.75% and 99.9% solution quality, Hardware B outperforms. More experimentation 

is required to determine if exploring more than 768k solutions at lower Parallel 

Instance count affects the dynamics at the 99.75-99.9% range. In addition, best 

computation time to achieve specific solution quality was also compared in Figure 38, 

where the estimated best computation time required (in logarithmic) is plotted against 

three tested architectures across various solution quality checkpoints. Figure 38 

clearly shows that GPU results (Hardware C) were considerably slower and therefore, 

author conclude that GPUs are not suitable for the supply chain problem solved. 

Table 20. Estimated time (in seconds) required to converge to specific solution quality. 
Calculated by multiplying the number of iterations by the time taken for iteration for individual 
best performing hardware configuration. Solution quality is expressed as a percentage of the 
proximity of the best-know solution (2,701,367.58). 

Estimated time required (in seconds) to reach specific solution quality 

Architecture 
Checkpoint 
of optimal 
solution 

The number of parallel instances 

1 2 4 8 16 32 64 128 256 512 1024 

Hardware A 
- TR1950x 

99.00% 1.46 1.24 1.30 1.39 1.64 2.19 3.04 4.13 7.52 15.10 29.63 

99.25% 2.19 1.99 2.07 1.94 2.29 3.06 5.31 9.64 15.03 30.19 59.25 

99.50% 1539.02 128.82 3.37 3.33 3.93 4.81 8.35 15.14 27.56 50.32 98.75 

99.60%   476.40 146.33 12.78 14.88 34.92 19.27 35.07 65.42 128.38 

99.75%               188.60 155.33 140.91 266.63 

99.90%                   805.20 1333.13 

Hardware B 
- Xeon Phi 

7250F 

99.00% 7.84 6.66 7.04 7.09 7.10 7.18 5.76 6.18 8.13 14.36 27.06 

99.25% 11.76 10.65 11.27 9.92 9.94 10.05 10.08 14.42 16.26 28.71 54.12 

99.50% 8282.30 689.67 18.31 17.01 17.04 15.79 15.84 22.66 29.81 47.85 90.20 

99.60%   2588.73 748.49 55.39 48.80 66.26 28.84 37.94 62.21 117.26 

99.75%               282.22 168.02 133.98 243.54 

99.90%                   765.60 1217.70 

Hardware C 
- GPU 

99.00% 1404 1191 1190 1187 1186 1223 1001 751 791 816 838 

99.25% 2106 1905 1904 1662 1661 1712 1752 1752 1581 1632 1676 

99.50% 1482595 123373 3095 2850 2847 2690 2753 2753 2899 2720 2794 

99.60%   437536 125398 9254 8315 11511 3504 3689 3536 3632 

99.75%                 16338 7617 7544 

99.90%                   43525 37719 
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Figure 38. Parallel Ants best estimated computation time per solution quality for supply chain 
problem to converge to specific solution quality. Solution quality is expressed as a percentage 
of the proximity of the best-know solution (2,701,367.58). 

5.4.4. Comparisons using the Travelling Salesman Problem 

In addition to the real-world supply chain problem, a single TSP instance with 318 

cities (lin318) is selected for comparison. The lin318 instance is small enough such 

that all experiments can be computed quickly but large enough to see measurable 

differences between hardware architectures explored. Like in the supply chain 

problem, solution quality checkpoints against optimal fitness value of 42029 were 

recorded during the convergence process. Moreover, just like in supply chain problem, 

PA outperformed IAC architecture for solving lin318. The lin318 computation time was 

plotted against various hardware solutions and solution quality checkpoints in Figure 

39. 
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Figure 39. Parallel Ants computation time per solution quality for lin318 TSP to converge to 
specific solution quality. Solution quality is expressed as a percentage of the proximity of the 
best-know solution (a distance of 42029). 

When solving the lin318 TSP instance, Hardware A performs faster than Hardware 

B for solution quality between 99.0% and 99.6% and slower for higher solution quality, 

similar to the supply chain problem results in Figure 38. Although Hardware C - GPU 

performed magnitudes slower in supply chain problem, for the TSP instance it was 

able to converge faster than Hardware A and Hardware B. Therefore, author can 

confirm the findings of [273][282][284], that suggest that GPUs offer speedup over 

CPU counterpart when routing simple TSPs. However, author also acknowledge that 

these dynamics do not apply for a more complex real-world routing problem where 

GPU is magnitudes slower than CPU counterparts (Hardware A or Hardware B) due 

to the additional meta-data required to be stored during solution creation.  

5.5. Summary 

Nature-inspired meta-heuristic algorithms such as Ant Colony Optimization (ACO) 

have been successfully applied to multiple different optimisation problems. Most work 

focuses on the Travelling Salesman Problem (TSP). While TSPs are a good 

benchmark for new idea comparison, the dynamics of the proposed algorithms for 

benchmarks do not always match real-world performance where the problem has 

more constraints (more meta-data during solution creation). Furthermore, speed and 
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fitness performance comparisons are not always completely fair when compared to a 

sequential implementation.  

As the OptPlatform is designed for industry problem optimisation, this chapter 

explored the dynamics of different ACO architectures applied to benchmark and real-

world problems. The experimental results demonstrate that the TSP benchmarks' 

results cannot be generalised to real-world applications, especially in terms of 

hardware performance and usage. Therefore, the findings demonstrate that in order 

to achieve the generalisable conclusions, the experimental work has to be completed 

on both: standard benchmarks and real-world applications. 

Furthermore, the work solves a real-world outbound supply chain network 

optimisation problem and compares two different ACO architectures – Independent 

Ant Colonies (IAC) and Parallel Ants (PA). It was concluded that PA outperformed IAC 

in all instances, as IAC failed to find any better solution than 99.5% of optimal. In 

comparison, PA was able to find a near-optimal solution (99.9%) in fewer iterations 

due to effective pheromone sharing across ants after each iteration. Furthermore, PA 

shows that it consistently finds a better solution with the same number of iterations as 

the number of parallel instances increase.  

Moreover, a detailed speed performance was measured for three different 

hardware architectures – 16 core 32 thread workstation CPU, 68 core server-grade 

Xeon Phi and general-purpose Nvidia GPUs. Results showed that although GPUs can 

scale when solving simple TSP (as confirmed by multiple other studies), those scaling 

dynamics do not transfer to more complex real-world problems. The memory access 

footprint required to check capacity limits and weight constraints did not fit on the small 

shared memory on GPU. Thus, it performed 29 times slower than the other two 

hardware solutions even when running 4 GPUs in parallel. Therefore, this finding is 

considered to be a new knowledge with surprise value.  

When compared to a real-life impact on the time required to reach a specific solution 

quality, both CPU and Xeon Phi optimised-vectorised implementations showed 

comparable speed performance; with CPU taking the lead with lower Parallel 

Instances count due to the much higher clock frequency.  At near-optimal solution 

(99.75%+) and 1024 parallel instances, Xeon Phi was able to take full advantage of 

AVX512 instruction set and outperformed CPU in terms of speed.  Therefore, 

compared to an equivalent sequential implementation at 1024 parallel instances, CPU 

was able to scale 25.4x while Xeon Phi achieved a speedup of 148x.  
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Due to the findings of this study, OptPlatform targets mainly CPU architecture for 

the metaheuristic algorithm implementation. This has multiple benefits; first – all 

computers contain a CPU, though not all are guaranteed to contain a GPU. 

Furthermore, Xeon Phi is specialised hardware that has now been discontinued, thus 

not future proof. Next, CPU implementations are less complex and are not suspect to 

specific hardware vendor (CUDA is Nvidia proprietary software, for example).   

Moreover, fast and efficient optimisation algorithms on CPU have multiple 

advantages. First, the limited computing cycles are utilised efficiently and not wasted; 

second, faster optimization allows to compute more what-if scenarios or optimize more 

networks/models. Finally, a quicker turnaround allows more agile problem modelling 

with quick feedback.  The rapid feedback is critical when decisions need to be made 

quickly in case of disruptions, such as a global pandemic closing shipping ports and 

borders. Although computing is a considerable part of the optimisation process, the 

problem with implementation and metaheuristic tuning are usually the more time and 

labour intensive parts of optimisation. Fortunately, at least one part of that process can 

be further automated – the next chapter investigates automated ways to both select 

the best metaheuristic for the problem and fine-tune it for the best performance.    
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6. SIMPLE GENERATE-EVALUATE STRATEGY 

FOR TIGHT-BUDGET PARAMETER TUNING 

PROBLEMS 

This chapter is based on the results published in [6]. 

 

Good hyperparameter selection is essential for metaheuristic algorithm 

performance. Tuning is usually a time-consuming and tedious task that requires user 

expertise for the best results. Automated tuning algorithms can help speed up this 

process and even lead to better parameter configurations; however, it requires vast 

computing resources. This is especially true for complex real-world problems where a 

single evaluation of a configuration can take minutes, hours or even days.  

To overcome the problem, the eTuner and eTunerAlgo have been proposed as part 

of the OptPlatform. The distinctive feature of eTunerAlgo is that both algorithm 

selection and parameter tuning is performed automatically. Proposed algorithms were 

evaluated using three metaheuristics introduced in section 3.6 – ACO, ES, ICA and 

two NP-hard problems – Aerial Surveying Problem (ASP) and Multiple Knapsack 

Problem (MKP), section 2.3.2.1 and section 2.3.1.1 respectively. Furthermore, a 

metaheuristic tuning benchmark containing 18,760 configurations is generated for 

efficient method evaluation and published in [5] to encourage further research in this 

area.    

6.1. Motivation 

Most of the metaheuristics contain stochastic components and often have settings 

– set of hyperparameters – that can be defined by the user to solve the problem at 

hand. The metaheuristic setting (parameter setting) has a direct impact on the 

performance and efficiency of the metaheuristic [285]. Although, most metaheuristic 

algorithm implementations provide a default set of parameters (also referred to as 

configuration), tuning the algorithm’s parameters for the problem at hand can lead to 

significant performance improvement. This is due to the fact that the default settings 
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are usually tuned for a different class of problems and may not be suitable for the 

problem at hand. Moreover, the process of parameter tuning up until the end of last 

century was done “by hand”, i.e. typical workflow would include running multiple 

experiments with a different set of parameters or using expertise knowledge [285] for 

both algorithm selection and parameter tuning. The rise of ease of access and reduced 

cost of computing has provided the means for a more systematic and automated 

approach for parameter setting problem, see Figure 40 for a workflow comparison.  

 

Figure 40. Comparison between typical user workflow and automated workflow. Yellow boxes 
are indicating areas where user expertise is necessary for optimal results. In the automated 
workflow, algorithm selection and tuning are performed automatically.  

Parameter setting problems can be divided into two categories [286]: a) parameter 

tuning (also referred as off-line tuning), where all parameter settings are defined before 

applying an algorithm to solve problems at hand; b) parameter control (also referred 

as on-line tuning); where algorithmic parameters are managed and tuned during the 

execution of the algorithm. In this chapter, the focus is on the area of off-line parameter 

tuning problem.  

There are clear benefits of parameter tuning; however, the process can be very time 

consuming and require user expertise and hence the algorithm parameter settings in 

most research is still performed by hand or the default settings used. Automated tuning 

methods have the advantage of not requiring users to know how parameters of the 

algorithm impact the performance. Furthermore, they can offer time savings and 

potentially result in better algorithm configuration than manual methods. However, for 

some real-world complex optimisation problems, where one algorithm parameter 

evaluation can take minutes, hours or days, a sophisticated tuning method may not be 

viable due to how many evaluations of configurations are required for a good 
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performance. In such cases, to obtain a quality configuration in a constrained tuning 

budget, a more straightforward method might be beneficial.  

Motivated by such complex problems, a simple generate-evaluate method has been 

develop for both algorithm selection and parameter tuning. The contributions can be 

summarised as follows: a) a simple generate-evaluate tuning method is proposed 

based on elitism strategy for problems with low compute budget; b) novel algorithm 

selection method is described; c) metaheuristic benchmark of three optimisation 

algorithms with combined 18,760 configurations (with 10 evaluations each) for solving 

Aerial Surveying Problem (ASP) is generated and made available in [5].   

6.1.1. Parameter tuning problem 

In the parameter tuning problem, the main goal is to find a configuration that 

maximises the performance of an algorithm over the given problem instance(s), 

formally stated by [287]: 

Given: 

1) A parameterised algorithm 𝐴 with free parameters that affect its behaviour. 

2) A configuration space (or parameter space) 𝐶, which defines possible 

configurations (i.e., parameter settings). 

3) A set of problem instances 𝐼. 

4) A performance metric 𝑚 that measures the performance of 𝐴 across 𝐼 for a 

given configuration 𝑐 (𝑐 ∈  𝐶) 

Find: A configuration 𝑐∗  ∈  𝐶 that optimises the performance of 𝐴 on 𝐼 according to 

metric 𝑚. 

The following glossary is introduced to facilitate ease of reading: 

• Configuration – parameter values, parameter setting, hyperparameter setting, 

that are defined before applying the algorithm to solve problems at hand.  

• Tuner – tuning algorithm, the automatic parameter tuning method used for finding 

optimal configuration. 

• Evaluation – also referred to as an algorithm run, is a single compute using a 

metaheuristic algorithm with a configuration to solve the optimisation problem. The 

result is a solution for the optimisation problem with a given metric.  
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• Simulation – simulation refers to the compute of the tuner to obtain the best 

parameter configuration for the metaheuristic. The result is an average metric 

score of the metaheuristic evaluations using the best configuration.   

 

Figure 41. A high-level overview of the process flow. The underlying problem is optimised by 
one or several metaheuristic algorithms. The metaheuristic algorithm(s)’ parameters are 
optimised by the hyperparameter tuner. 

The high-level overview of parameter tuning is shown in Figure 41. The 

hyperparameter tuner is used for optimising the metaheuristic algorithm(s), while the 

metaheuristic algorithm(s) are optimising the problem at hand.  

6.2. Related work 

Multiple different tuning methods have been proposed over the last two decades to 

determine the best configuration of algorithms when solving the problem at hand. A 

recent survey in [285] discusses the full range of tuning algorithms deployed so far in 

great detail and classifies the approaches into three categories: simple generate-

evaluate methods, Iterative generate-evaluate methods and high-level generate-

evaluate methods.  This section only reviews the most popular and relevant tuning 

approaches found in the literature. 

The simple generate-evaluate methods are noniterative tuners that first generates 

a set of candidate configurations and only then evaluates them to find the best 

performing configuration. Techniques such as naïve brute force method as well as F-

race algorithm fits this category. F-race is inspired from the Hoeffding race [288] 

initially used for machine learning model selection, later adopted for tuning 

metaheuristics in [289]. The basic idea of F-race is to sequentially evaluate candidate 

configurations and eliminate bad configurations as soon as sufficient statistical 
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evidence is present. F-race uses the compute power more efficiency compared to 

repeated evaluations in brute force, however, if the target algorithm has an ample 

parameter space, a large number of configurations needs to be evaluated before a 

good-performing result is found [290]. 

To overcome the drawbacks of F-race, authors in [291] proposed iterative 

application of F-race, called iterated F-Race (I/F-Race). Its promise was successfully 

demonstrated in tuning the MAX-MIN ant system and Simulated Annealing (SA) 

algorithm. Iterative F-Race, as the name suggests, follows an iterative tuning process, 

where at each iteration, a set of candidate configurations are generated based on the 

probabilistic model, then standard F-Race is performed. The survived candidate 

configurations are then used to update the probabilistic model for the next iteration 

[292]. Iterated F-Race is one of the more popular tuning approaches to date, used for 

automatic parameter tuning in [293] and [294]. One of the limitations of Iterative F-race 

is that it requires a sufficient number of iterations to be performed to obtain acceptable 

results. If the tuning budget is too small, the resulting configuration might be bad 

performing [285].  

Another attractive iterative generate-evaluate approach is ParamILS [295], which 

uses a well-established stochastic local search method [296] as its core. It starts the 

search by variation of the default configuration and several randomly generated 

configurations. It then iteratively creates a new candidate which differs by an exactly 

single parameter – only one parameter value is changed at the time. Once the local 

best configuration is found, it performs stochastic local search procedure to determine 

which of the two candidate configurations is better. Other variations of the tuners are 

examined in ParamILS framework, most notably, tuning with the variable 

neighbourhood search [297]. Although ParamILS can support both categorical and 

numeric parameters, it requires for them to be discretised, such that each 

neighbouring candidate can be defined. Furthermore, this approach also relies on the 

default configuration to be accurately identified and be somewhat suitable for the 

problem at hand for best results.   

Both, the Iterative F-Race and ParamILS are proven to be good tuners for small 

benchmark instances, where each configuration evaluation takes 

milliseconds/seconds. For such problems, a good configuration out of hundreds of 

thousands of evaluations can be found within a reasonable time frame. However, 

many real-world problems are more complex and require minutes, hours or even days 
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to evaluate. In such instances, hundreds of thousands of configuration evaluations are 

just not feasible, and the simpler generate-evaluate methods can help. For example, 

with a computing budget of one day, a problem that takes 1 minute to optimise would 

only offer 1440 evaluations within a 24h period. Although with the rise of modern 

computers, many of these tasks can be parallelised on clusters, efficient ways of 

parameter tuning for such large-scale problems are needed. Furthermore, with the 

ever-increasing speed of information, the latency of model creation and deployment is 

shrinking – thus time to market is more critical than ever. And because parameter 

tuning is an important aspect of increasing efficiency of metaheuristics, the tuning time 

should not be the bottleneck delaying the deployment.  

6.3.  Proposed methods 

The purpose of a tuning algorithm is to determine both – the most suitable 

metaheuristic algorithm to be used for the problem, as well as to offer insides of the 

best hyperparameter configurations for the chosen metaheuristic. As discussed in the 

previous section, many approaches can be deployed for parameter tuning problem. 

One method is a naïve brute-force strategy, where an adequate number of 

configurations are evaluated over a sufficient number of evaluations, and the best 

overall average score is the final configuration. However, this approach requires some 

expert knowledge to determine the right size of configurations – a too small sample 

size leads to missed useful configurations. At the same time, too many configurations 

lead to wasted computation time. 

Furthermore, it is also up to the user to determine how many evaluations for each 

configuration are necessary to cope with the stochastic nature of the metaheuristics. 

These drawbacks lead brute-force strategy in rigorously evaluating both good and bad 

configuration equally, further wasting computation resources. In some complex real-

world optimisation problems, brute force method for tuning hyperparameters is 

prohibitively expensive as each configuration evaluation can take minutes, hours or 

even days. Thus, this section describes two strategies that overcome these 

drawbacks. The first approach, called eTuner tries to find good configurations across 

all metaheuristic algorithm configurations. The second method, called eTunerAlgo, 

starts by estimating the best metaheuristic first, and only then focus on metaheuristic 

parameters within the reduced set.  
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6.3.1. Elitist Tuner - eTuner 

Elitist Tuner, eTuner for short, conceptually follows the elitism strategy found in 

genetic algorithms – best candidates in the population survive and reproduce. The 

eTuner starts with a random sample of candidate configurations and iteratively 

reduces the candidate configuration set based on the accumulated best averages 

achieved. The number of configurations remaining for the next iteration is determined 

by elitism rate ER. Furthermore, the number of iterations 𝑛 in the eTuner is determined 

by maximising equation in (38): 

max: 𝑇𝐶𝑇 =  𝑅𝑇 ∗ ∑ ⌊ʍ ∗ (
1

𝐸𝑅
)

𝑛−1

⌉

∞

𝑛=1

 

(38) 
subject 

to: 

𝑇𝐶𝑇 ≤  𝑇𝐵 

𝐸𝑅 ∈ (0,1)   

∀ʍ ∈ {1, … ,10} 

where 𝑇𝐶𝑇 is total compute time, 𝑅𝑇 is the average time in seconds to compute a 

single configuration, 𝐸𝑅 is the elitism rate, and 𝑇𝐵 is the total tuning budget, in 

seconds. Finally,  ʍ is an integer starting value.  

Once the number of iterations 𝑛 and the integer starting value ʍ is determined, the 

starting number of random candidate configurations 𝑆𝑁𝐶 is calculated by (39): 

𝑆𝑁𝐶 =  ʍ ∗ (
1

𝐸𝑅
)

𝑛−1

 (39) 

At every iteration, first, each individual configuration performances in the 

configuration set 𝐶𝑆 are averaged, and the averages sorted to determine the elitists. 

Next, the candidate configuration set is reduced by eliminating the worst performing 

configurations, based on the individual configuration performance so far. The number 

of elitists 𝑁𝐸 are kept for the next iteration 𝑖, based on (40): 

𝑁𝐸𝑖 =  ʍ ∗ (
1

𝐸𝑅
)

𝑛−𝑖

 (40) 

Figure 42 visualises the different ways computing resources can be allocated, 

where the compute budget 𝑇𝐵 is set to 100 hours and each configuration evaluation 

𝑅𝑇 is assumed to be 60 seconds, see section 6.1.1 for terminology. After maximising 

equation (38) for three levels of elitism rate 𝐸𝑅, we can obtain the number of iterations 

𝑛 and the integer starting value ʍ. ({𝐸𝑅=0.25, ʍ=1, 𝑛=7}; {𝐸𝑅=0.50, ʍ=5, 𝑛=10}; 

{𝐸𝑅=0.75, ʍ=2, 𝑛=24}). Then, the starting number of configurations 𝑆𝑁𝐶 is derived by 

equation (39) and are 4096 for 𝐸𝑅=0.25, 2560 for 𝐸𝑅=0.50, 1495 for 𝐸𝑅=0.75. 
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Figure 42. Graphical representation of the allocation of configuration evaluations by variations 
of Elitism Rate and a brute force method for reference. All approaches are allowed to perform 
the same number of total experiments (100-hour tuning budget, with 60 second compute time 
for each configuration); thus, all three figures cover the same surface area. 

The above-described procedure discards weak configurations quickly while 

thoroughly evaluating more promising configurations. The Elitism Rate 𝐸𝑅 controls the 

trade-off between exploration of configurations against the repeated evaluations of 

configurations for more reliable estimates of their behaviour, pseudocode shown in 

Figure 43. 

 

Figure 43. Pseudocode of the proposed Etilist Tuner - eTuner algorithm 

6.3.2. Elitist tuning with pre algorithm selection – eTunerAlgo 

One of the great features of metaheuristics is that they are generic and not problem-

specific. This attribute allows the same metaheuristic algorithm to be applied to 

multiple different problem domains. Similarly, the same problem can be solved by 

numerous metaheuristic algorithms. The metaheuristic selection is usually done 
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manually based on some prior expert knowledge. Alternatively, the algorithm selection 

can be formulated as another categorical parameter and solved automatically by a 

hyperparameter tuner – approach discussed in the previous section, eTuner. 

However, this results in even higher parameter space to be tuned. If one of the 

metaheuristic X is more suited for the problem than metaheuristic Y, it would make 

sense to only focus on tuning metaheuristic X and discard the metaheuristic Y. The 

following section describes a simple method used to estimate the most suitable 

metaheuristic algorithm within a given set, called eTunerAlgo. 

Given a set of metaheuristic algorithms A = {𝐴1, 𝐴2, … 𝐴𝑀}, every metaheuristic 

algorithm has a set of hyperparameters associated with it – 𝑃 =  {𝑃1, 𝑃2, … 𝑃𝐾}. 

Algorithm selection is performed as follows: 1) the average point between upper and 

lower bounds is calculated for each parameter in the set (required parameter to be a 

numerical value) to obtain overall “average” configuration across all parameters for 

given metaheuristic; 2) for each parameter in the list 𝑃, the “average” configuration is 

modified with upper and lower bounds value of the parameter, to create two new 

candidate configurations; 3) the “average” as well as two candidate configurations for 

each parameter is evaluated once, and the scores averaged; 4) The best overall 

averaged score is used to select the best metaheuristic algorithm from the list 𝐴.  

Example of this procedure is demonstrated in Figure 44.  

 

Figure 44. Example of new candidate configuration generation for metaheuristic algorithm 
selection. Where given three parameters P, one “average” configuration is generated and six 
other candidate configurations. 

The described metaheuristic selection approach aims to quickly estimate if one 

metaheuristic is better than other, on average. The downside of this approach is that 

it requires all hyperparameters to be a numeric value. This approach can also be 

adopted for categorical parameters with low dimensions.  
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Once the metaheuristic algorithm is selected, it follows the same elitism strategy as 

eTuner. The only additions are the extra configurations computed for the metaheuristic 

selection (𝐴𝑆𝑇), calculated in equation (41): 

𝐴𝑆𝑇 = ∑(1 + 2𝐾𝑎)

𝑀

𝑎=1

  (41) 

where 𝑀 is the total number of metaheuristic algorithms in the list and 𝐾 is the total 

number of parameters for the metaheuristic 𝑎.   

Thus, the total number of iterations in eTunerAlgo are determined by maximising 

equation (42) and following the same iterative elimination process as described in the 

previous section – eTuner. 

max: 
𝑇𝐶𝑇 =  𝑅𝑇 ∗ (𝐴𝑆𝑇 + ∑ ⌊ʍ ∗ (

1

𝐸𝑅
)

𝑛−1

⌉

∞

𝑛=1

) 

(42) subject 

to: 

𝑇𝐶𝑇 ≤  𝑇𝐵 

𝐸𝑅 ∈ (0,1)   

∀ʍ ∈ {1, … ,10} 

where 𝑇𝐶𝑇 is total compute time, 𝑅𝑇 is the average time in seconds to compute a 

single configuration, 𝐸𝑅 is the elitism rate, and 𝑇𝐵 is the total tuning budget, in 

seconds. Finally,  ʍ is an integer starting value.  

6.4. Experiments 

In this study, first, a metaheuristic benchmark dataset for Aerial Surveying Problem 

(ASP) (section 2.3.2.1) was created to effectively evaluate the dynamics of various 

tuning approaches. Then, to validate and remove any biases, the best method is used 

to tune metaheuristics for Multi Knapsack Problem (section 2.3.1.1). Both problems 

are hard to solve, have practical applications and are fundamentally different from one 

another.  

6.4.1. Experimental setup 

• Metaheuristics benchmark 

Three metaheuristic algorithms were selected for solving the optimisation problems 

– Ant Colony Optimization (ACO) based on the implementation in section Ant Colony 

Optimization 3.6.1, Evolutionary Strategy (ES) based on (µ+1)-ES section 3.6.2 and 

Imperialist Competitive Algorithm (ICA) based on section 4.2.2. All three metaheuristic 
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algorithms contain multiple numerical parameters, that can be tuned to increase the 

efficiency of the search. These parameters are summarised in Table 21. Candidate 

configurations are generated by dividing each parameter into discrete sets - Full 

Fractional Design (FFD) approach. This creates a total of 12,000 candidate 

configurations for ACO, 1000 for ES and 5,760 for ICA, a total of 18,760 across all 

algorithms. Although FDD is used for benchmark creation, the proposed tuning 

methods are not limited to a discrete set of parameters. 

Table 21. The algorithms and hyperparameters used for tuning. Each of the parameters has 
a discrete set of values that can be used for the candidate. The total number of candidate 
configurations for Ant Colony Optimization is 12,000, for Evolutionary Strategy – 1000 and 
Imperialist Competitive Algorithm – 5760. Thus, the total number of candidate configurations 
is 18,760. 

Parameter Discrete Set 
Size of 
the set 

Ant Colony Optimisation 

Parallel instances, 𝑃𝐼𝑚𝑎𝑥  {32, 128, 512, 2048, 8192} 5 
Number of ants, 𝑛𝑎 {1, 5, 9, 13} 4 
Relative pheromone strength, α {0, 2, 4, 8, 16} 5 
Relative heuristic information strength, β  {0, 2, 4, 8, 16} 5 
Exploitation to exploration ration, 𝑞0 {0, 0.3, 0.6, 0.9} 4 
Cunning rate, 𝐶𝑅 {0, 0.2, 0.4, 0.6, 0.8. 1} 6 

Evolutionary Strategy 

Population size, 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 {32, 128, 512, 2048, 8192} 5 

Mutation rate, 𝑀 {0.01, 0.06, 0.11, 0.16, 0.26, 0.31, 0.36, 0.4} 8 
Local iterations, 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟  {1, 3, 5, 7, 9} 5 
Swap ratio, Ϩ {0.1, 0.3, 0.5, 0.7, 0.9} 5 

Imperialist Competitive Algorithm 

Number of countries, 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 {32, 128, 512, 2048, 8192} 5 

Imperialist ratio, 𝑁𝑖𝑚𝑝 {0.1, 0.4, 0.7} 3 

Local iterations, 𝑁𝑙𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟  {1, 4, 7, 10} 4 
Assimilation rate, θ {0.1, 0.3, 0.5, 0.7} 4 
Average power of empire’s colonies, 𝜉   {0.05, 0.15, 0.25, 0.35} 4 
Independence rate, 𝑖𝑅𝑎𝑡𝑒 {0, 0.2, 0.4, 0.6, 0.8, 1} 6 

 

Considering that a single candidate configuration on Aircraft Surveying Problem 

takes around one minute to complete, it would be impractical to test and efficiently 

compare tuning algorithms. For that reason, a baseline was created by running all 

18,760 configurations 10 times in a computer cluster, using 60 seconds elapsed 

compute time per configuration as the termination condition. This allows the creation 

of a benchmark dataset for all further tuning algorithm evaluations, as results can be 

sampled from memory at random (following uniform distribution), instead of requiring 

to be computed every time. The dataset have been made public in [5] to encourage 
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further research in this area. The dataset contains a list of all configurations with 

associated finesses for individual evaluations.  

• Implementation platform 

All metaheuristic algorithms were implemented in C++ using the Visual Studio 2019 

(v142) compiler. Tuning algorithms, as well as metaheuristic benchmark queries, were 

deployed in C# using .NET framework 4.6.1. The computation was performed on a 

workstation cluster containing five AMD Threadripper 2990WX processors (3.0GHz, 

64GB RAM), running Windows 10 Pro operating system. 

6.4.2. Experimental results 

As mentioned in the previous section, it would be impractical to compare and 

evaluate tuning methods efficiently on the Aerial Surveying Problem. For that reason, 

a tuning benchmark was created and made available in [5]. The benchmark creation 

totalled in around 130 days of computing time. After benchmark generation, a naïve 

brute force approach was simulated by altering the number of evaluations to establish 

a baseline for further experiments and results are shown in Figure 45. A simulation is 

referred to as a complete run of the tuner algorithm that produces a single best 

parameter configuration. The average cost of 10 evaluations of the best configuration 

in simulation is then retrieved from the memory.  

 

Figure 45. The baseline for Aerial Surveying Problem (ASP) with a simple exhaustive search 
(brute force) approach, where each evaluation represents a single run for each of the 18,760 
configurations. Error bars represent the minimum and maximum values achieved during 10 
simulations—average total cost, in a million dollars (minimisation problem, lower costs are 
better). 
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Results in Figure 45 demonstrate that it requires at least two evaluations per 

configuration to achieve a reliable final configuration. Increasing evaluation count 

further just incrementally improves and stabilises the final result. Unfortunately, even 

two evaluations of exhaustive search across all configurations require 625 compute 

hours (26 days) to complete, which is one of the reasons brute force methods are to 

be avoided in large configuration space. Finding a good configuration in a reasonable 

computing time budget is one of the main goals of a hyperparameter tuner. What 

accounts as a reasonable computing time is very much at the discretion of the 

researcher or practitioner and depends on the underlying problem, metaheuristics and 

compute resources available. Seven levels of tuning budget are defined, ranging from 

2 to 100 hours for the ASP.  

Next, the dynamics of Elitism Rate (ER) impact on the proposed tuning algorithms 

were analysed, by setting ER at three levels – 0.25, 0.5 and 0.75. Each tuner was then 

simulated 10 times for seven tuning budgets to evaluate how the stochastic nature of 

metaheuristics impact the tuner performance and consistency. 
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Figure 46. Comparison of eTuner and eTunerAlgo approaches for Aerial Surveying Problem. 
Error bars represent the minimum and maximum values achieved during 10 simulations—
average total cost, in a million dollars (minimisation problem, lower costs are better). 

Results are summarised in Figure 46, with the eTuner in blue and eTunerAlgo in 

yellow. There is a definite improvement in both tuner consistency when the tuning 

budget is increased from 2 hours to 5 hours; however, from 5 hours to 100 hours, the 

gain is less explicit. Results also suggest that higher Elitism Rate (ER) of 0.75 is 

beneficial for both tuners, however only marginally.  Finally, both eTuner and 

eTunerAlgo results are comparable, though eTunerAlgo on average performs better.   

For the next experiment, both proposed tuners were compared to a simple random 

approach, where the configurations are sampled at random and the best scores used 

for final configuration; as well as popular tuning algorithm called Iterative F-Race [292]. 

The irace package in R [298] was used for the I/R-Race implementation, where each 

metaheuristic parameter was set as a category, with conditions filtrating the 
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appropriate parameters for each metaheuristic. The default settings were used, and 

the compute budget enforced with the “--max-time” attribute.  

 

Figure 47. Tuning algorithm comparison for Aerial Surveying Problem. Error bars represent 
the minimum and maximum values achieved during 10 simulations—average total cost, in a 
million dollars (minimisation problem, lower costs are better). eTuner and eTunerAlgo are the 
proposed methods, Iterative F-Race is the implementation of [298]. 

Although trivial to implement, Random sampling approach alone is not suitable for 

finding an acceptable metaheuristic configuration reliably, as shown from the wide 

variance in found configuration scores across all time budgets in Figure 47. 

Furthermore, Iterative F-Race also has a high variation between 2- and 25-hour tuning 

budget, settling down to more stable solutions only from 50 hours onwards. As 

suggested in [285], Iterative F-race requires a sufficient number of candidate 

configurations to be sample and evaluated, otherwise if the tuning budget is too small, 

resulting configuration might be weak. This can be seen in both Figure 47 and Figure 

48, where with limited timing budget, Iterative F-Race does not have sufficient 

statistical evidence to pick the best configurations, but becomes stable and well-

performing once at least 75-hour tuning budget is allowed. Moreover, both eTuner 

methods outperform the other approaches for tuning budgets up to 50h in both 

average scores and the consistency of the resulting configurations.   
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Figure 48. Tuning algorithm comparison for Aerial Surveying Problem. Average total cost in 
a million dollars of 10 simulations (minimisation problem, lower costs are better). eTuner and 
eTunerAlgo are the proposed methods, Iterative F-Race is the implementation of [298]. 

To remove any potential biases created by the generated metaheuristics 

benchmark for ASP, eTunerAlgo was also evaluated the for an entirely different NP-

hard problem – Multiple Knapsack Problem using a complex gk10 instance. The same 

metaheuristics and parameter configuration sets in Table 21 were used. Both Iterative 

F-Race and eTunerAlgo was simulated 10 times, and for every resulting configuration, 

the average of 10 evaluations computed. Tuning budget was set to 2, 5, 10 and 25 

hours, with each configuration evaluation limited to 60 seconds.  

Results in Figure 49 show the improved configuration scores for the proposed 

method compared to the popular Iterative F-Race tuning algorithm. The average 

scores are not only better for eTunerAlgo, but also the resulting configurations are 

more consistent across all tuning budgets. Thus, the proposed method shows a high 

potential for tuning metaheuristics with a high dimensionality of parameters within a 

very tight tuning budget.  
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Figure 49. Tuner performance comparison for MKP-gk10 instance. Error bars represent the 
minimum and maximum values achieved during 10 simulations—average profit (maximisation 
problem, higher profits are better). eTunerAlgo is the proposed method, Iterative F-Race is 
the implementation of [298]. 

6.5. Summary  

In this chapter, two new simple generate-evaluate tuning methods based on elitism 

strategy are presented. One of the methods, called eTuner uses the elitism strategy 

to select the best configuration out of a pool of metaheuristic algorithm’ configurations. 

Furthermore, the second strategy – eTunerAlgo, first estimates the best and most 

suitable algorithm out of all available algorithms, before starting the tuning process on 

the reduced set of configurations.  

The novel strategy is evaluated by first, generating a metaheuristic tuning 

benchmark containing three metaheuristics – ACO, ES, ICA and 18,760 configurations 

for easier method evaluation and comparison. Then, the popular Iterative F-Race 

strategy is used as a baseline. Results show that on a limited tuning budget, the 

developed approach can find better configurations with more consistency compared 

to the competition. Finally, to remove any potential biases, both eTunerAlgo and the 

baseline Iterative F-Race are used for other NP-hard problem. Similarly, eTunerAlgo 

outperforms the competition, indicating the superiority over the rival tuner on tight 

tuning budgets. 

The tight tuning budgets are significant for the targeted user base of OptPlatform, 

where the real-world models take minutes to hours to compute. Therefore, both 
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proposed tuning methods have been implemented as part of an optional module in 

OptPlatform and seamlessly integrated into user workflow, as all fitness evaluations 

and problem specifics are already defined in previous steps of the optimisation.  

Furthermore, tuning methods' coherent integration allows further abstraction away 

from the user, thus lowering the expert knowledge required to produce close to 

optimum results within the platform.   
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7. CONCLUSIONS AND FUTURE WORK 

7.1. Conclusions 

This thesis's first and foremost contribution focuses on creating a new metaheuristic 

optimisation framework (MOF) called OptPlatform that improves on the limitations of 

existing MOFs laid out in section 2.2.1. One of the main limiting factors of existing 

MOFs is the lack of genericity of the supported metaheuristics algorithms. The majority 

of MOFs only support evolutionary computing based encodings and are thus limited 

in their applications. The proposed and implemented architecture in Chapter 3 

overcomes this, by flexible solution encoding and static-dynamic memory model. 

Compared to other MOFs, OptPlatform outperforms the competition in both solution 

performance and the time required to achieve the solution. Furthermore, this work also 

implemented supporting tools lacking on the other MOFs, such as transition 

optimisation. Transition optimisation is beneficial when the new solution integration 

into real-world is not trivial and a multi-step process is necessary. 

As the implemented OptPlatform mainly targets practitioners, the dynamic of 

scaling Ant Colony Optimization (ACO) algorithm across various hardware solutions 

was studied in-depth using a complex real-world problem, forming the contribution as 

part of Chapter 5. Unlike existing literature that only focuses on simple travelling 

salesman instances (TSP), this study analysed parallel ACO scaling on a real-world 

supply. Results showed that although these ACO architectures can scale for small 

benchmark problems such as TSP when applied to complex real-world problems with 

extra meta-data, platforms such as GPUs are not suited and get outperformed by 

CPUs.  

The next contribution proposes a new, improved metaheuristic based on Imperialist 

Competitive Algorithm (ICA) called ICA with Independence and Constrained 

Assimilation (ICAwICA). The ICAwICA was implemented within OptPlatform and was 

used to solve multiple benchmark problems to demonstrate the algorithm's generic 

nature; this work formed Chapter 4. The Constrained Assimilation combines classical 

ICA assimilation and revolution operator while independence operator works as a local 

search to accelerate the convergence. Compared to other, problem-tuned algorithms 
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in the literature, the proposed ICAwICA showed very competitive results for both MKP 

and MDVRP instances.  

In Chapter 6, the final contribution implements automatic algorithm selection and 

tuning to ease the development and improve metaheuristics performance within 

OptPlatform. Automated algorithm selection and tuning are significant to OptPlatform’s 

target users – practitioners, as they are not expected to have an in-depth knowledge 

of metaheuristics or their hyperparameters. This feature is unique to OptPlatform, as 

no other analysed MOF offered automated algorithm or parameter selection. 

Furthermore, existing tuning methods are again, targeted to small benchmark 

problems, where results can be obtained in fractions of the second. When these 

existing tuning methods are applied to more complex real-world problems, they can 

be sub-optimal. For that reason, two alternative automatic tuning methods are 

proposed – eTuner and eTunerAlgo. Results show that within low tuning budget, both 

eTuner and eTunerAlgo outperform the more established tuning method in the 

literature. 

7.2. Future work 

Although the implemented OptPlatform provides multiple advancements on existing 

metaheuristic optimisation frameworks, numerous improvements would be beneficial. 

First, currently, OptPlatform implements only three metaheuristics. Although the 

selected three algorithms are a good representation of overall metaheuristics, some 

are sufficiently different and thus might be better performing for some problems. 

Therefore, one of the areas of future focus would be implementing additional 

metaheuristics to improve further the benefits of using OptPlatform.  

Although after an in-depth analysis in Chapter 5 it was concluded that CPU is the 

more suitable hardware platform for solving real-world supply chain; it would be 

beneficial to offer a GPU accelerated metaheuristics alongside the CPU option in the 

hyperparameter tuning module. That way, the computing hardware platform could be 

automatically selected as part of automated algorithm selection and tuning. Thus, 

accelerating the smaller benchmark instances on GPU, while the more complex 

problems would be assigned to the CPU-based implementations.  

The automated tuning methods proposed could be further improved by assigning 

each parameter configuration to its own CPU in a cluster, thus clustered 
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implementation of OptPlatform is part of future research. Furthermore, the proposed 

tuning methods were only compared to the most established generate-evaluate 

method called iterative F-Race due to the time constraints. More throughout 

comparison between the dozen other tuning methods found in literature would be 

insightful and is part of future work. 

Finally, the current implementation of OptPlatform is intended to be used as a stand-

alone application that integrates into a larger existing IT infrastructure. As the 

OptPlatform is structured as an input-output black box, this could be further abstracted 

as part of a cloud service API that can be easier integrated into any system. A simple 

block diagram interface could be created for encoding and decoding of the problem. 

Such a cloud service could become an independent commercial product that can be 

used by multiple companies across the globe with little maintenance.    
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9. APPENDIX 

The following section describes the Transcom problem in section 2.3.2.3. in more 

details and give numerical examples. 

Dataset tables  

• Available Aircraft – table containing the number of aircraft of given type at each 

of the military bases/airports at time zero.  

• Aircraft to Base Compatibility – matrix representation of given aircraft type 

access to any of the military bases or commercial airport. For example, none of 

the military aircraft can land at commercial airports, however, some of the 

military bases share runway and allow commercial aircraft.   

• Aircraft data – table of attributes of any given aircraft type. Some of the aircraft 

support in-air refuel, where the range of aircraft is reset. As military aircraft costs 

are calculated per hour, it is assumed that refuel costs are included as part of 

the refuel time delay. All ground refuel time is assumed to be 1 hour. 

Furthermore, table also contains Cost per flight hour, cruise speed (mph) for 

each aircraft type as well as the maximum number of pallets it can carry. Table 

also contains the crew required to fly the plane (Flight Crew Required), as well 

as the number of crew required for fuelling up and safety checks (Ground Staff 

Required). Moreover, both flight crew and ground staff must arrive defined 

number of hours before the flight (Prefetch time) and stay longer after the flight 

(Post mission time). 

• Material Sources – table of locations and quantity of the pallets of material 

needed to fill the demand.   

• Material Demand Destinations – table of locations that require the quantity of 

pallets to be delivered. There are two kind of destinations – Humanitarian and 

Resupply. Furthermore, table also lists the aircraft constraints for given 

destination. For example, none of the commercial aircraft can land at 

Humanitarian destination, however, some commercial aircraft can supply 

military bases.  



166 
 

• Base to Base Edges – table provides the starting point and end point 

coordinates for each of the base to base connections as well as the straight-

line distance (in miles).  

• Base to Destination Edges – table provides starting point and end point 

coordinates for each of the base to destination connections as well as the 

straight-line distance (in miles). 

• Destination to Destination Edges – table provides starting point and end point 

coordinates for each of the destination to destination connections as the 

straight-line distance (in miles). 

• CP to CP Edges – table provides starting point and end point coordinates for 

each of the commercial partner destinations as well as the straight-line distance 

(in miles). Furthermore, cost per pallet is also provided for each of the paths. 

• Base to CP Land Edges – table provides ground links between military bases 

and commercial partner locations. Includes start and end point coordinates as 

well as straight-line distance in miles, total time on path (hours) and cost per 

truck. Furthermore, maximum number of pallets per truck is also provided.  

• CP to Base Air Edges – table provides air links between commercial partner 

locations and military bases that share common runway. Provides start and end 

point coordinates, as well as the straight-line distance (in miles) and total cost 

per pallet.  

 

Example scenario A: 

In the given scenario A shown in Figure 50, military plane without in-air refuel 

capability is supplying 6 pallets of cargo to Base B that is 1000 miles away.  

 

Figure 50. Scenario A – Simplified Transcom supply chain example 
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Plane costs $10,000 per hour to fly and it takes 1 hour to fully refuel. The total 

distance between the two bases is 1000 miles and airplane cruise speed is 200 miles 

per hour. Because range of the airplane is not enough to fly both directions, it needs 

to refuel at the destination base (Base B).  Total timespan to satisfy Base B demand 

of 6 pallets of cargo therefore is 13 hours: 

𝑇𝑖𝑚𝑒𝑠𝑝𝑎𝑛 = 

= 𝑜𝑛𝑙𝑜𝑎𝑑𝑇𝑖𝑚𝑒 + 𝑓𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 + 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑇𝑖𝑚𝑒 + 𝑟𝑒𝑓𝑢𝑒𝑙𝑇𝑖𝑚𝑒 + 𝑓𝑙𝑖𝑔ℎ𝑡𝑇𝑖𝑚𝑒 = 

=
6

6
+

1000

200
+

6

6
+  1 +

1000

200
= 13 ℎ𝑜𝑢𝑟𝑠 

And the total cost for the given route: 

𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡(𝑀𝐴) ∗ 2 = (10 ∗ $10,000) ∗ 2 = $200,000  

  

Example scenario B: 

Although scenario A is easy to follow example, the supply chain solved in Transcom 

problem is not as simple. Figure 52 and Figure 52 shows more representative 

example of the Transcom supply chain complexity. It involves 5 military bases, 2 

commercial partner (CP) locations, 2 military planes, 1 commercial plane and 4 trucks.  

 

Figure 51. Scenario B pallet flow between military bases and Commercial Partners (CPs). 
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Figure 52. Scenario B: Realistic Transcom supply chain example 

In this example, the demand for Base E is 8 pallets. At Time zero, Base A has 2 

pallets, Base B and C have 3 pallets each. Plane1 flight time between Base A and 

Base C is 4 hours and Plane2 flight time between Base B and Base C is 5 hours. 

Plane1 has to wait for Plane2 to offload its pallets before it can continue flight to Base 

D. Furthermore, Plane1 also need to refuel at Base C as the distance between Base 

A – Base B – Base C exceeds its range. Plane1 then continues its path to Base D for 

6 hours, where it needs to offload 8 pallets. From there, pallets are shipped to CP 

location CP1. Due to capacity constraints each truck can only transfer 4 pallets at a 

time, hence 2 trucks drive to CP1 in parallel and takes 1 hour each. From CP1 8 pallets 

are onloaded to commercial plane Plane3 and transferred to CP2, which takes another 

1 hour. Two trucks are again needed to transfer the 8 pallets to their final destination 

– Base E (1 hour).  
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Figure 53. Transcom Scenario B timeline 

In Transcom problem supply chain algorithm must work with multiple parallel 

timelines in order to model all demand accurately. Figure 53 shows the Scenario B 

timeline, where there are two parallel military aircraft flying to the same destination 

from different starting points. Plane2 starts its journey by onloading 3 pallets (30 

minutes) and flying to Base C (5 hours), once arrived at Base C, offloading the 3 pallets 

(30 minutes), totalling of 6 hours. Meantime, Plane1 starts its journey by onloading 2 

pallets (20 minutes), flying to Base C (4 hours), but as it is still waiting for Plane2 to 

land, it refuels (1 hour) and onloads the 3 pallets located at Base C (30 minutes). 

Which leaves 10 minutes of idle time for Plane1 till Plane2 offloads its load.  

Only at 6-hour mark can Plane1 start its next leg of the journey, by onloading the 3 

pallets delivered from Plane2 (30 minutes) and flying to Base D (6 hours), where it 

needs to offload aircraft completely, which takes 80 minutes for 8 pallets. Total of 8 

hours. 

Once pallets are offloaded from airplane at Base D, two commercial trucks (Truck1 

and Truck2) are onloaded in parallel taking 4 pallets each (40 minutes). Transferring 

cargo to Commercial Partner facility at CP1 (1h) where pallets are offloaded again (40 

minutes). Total of 2 hours and 20 minutes. 

From CP1 commercial Plane3 takes all 8 pallets onboard (80 minutes) and fly them 

to CP2 (1h flight time), where they are again offloaded (80 minutes). Total of 3 hours 

and 40 minutes.  

At the last stage, at CP2 are again onloaded onto two trucks (Truck3 and Truck4) 

in parallel (40 minutes each) and transferred to their final destination BaseE (1 hour), 

where they are offloaded (40 minutes each). Total of 2 hours and 20 minutes.  
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Therefore, the total timespan required to satisfy demand of 8 pallets at Base E is 

22 hours and 20 minutes.  

Assuming cost per hour of Plane1 is $10,000 and $1,500 for Plane2, the total cost 

for military aircraft 𝐶𝑜𝑠𝑡(𝑀𝐴) can be calculated 

𝐶𝑜𝑠𝑡(𝑀𝐴) = $10,000 ∗ (4 + 6) + $1,500 ∗ 5 = $107,500  

Assuming cost per pallet for Plane3 between CP1 and CP2 is $15,000, the total 

cost for commercial aircraft 𝐶𝑜𝑠𝑡(𝐶𝐴) can be calculated  

𝐶𝑜𝑠𝑡(𝐶𝐴) = $15,000 ∗ 8 = $120,000 

Assuming cost per truck for path between Base D and CP1 is $4,000 and between 

CP2 and Base E is $5,000, the total cost for commercial trucks 𝐶𝑜𝑠𝑡(𝐶𝑇) can be 

calculated 

𝐶𝑜𝑠𝑡(𝐶𝑇) = $4,000 ∗ 2 + $5,000 ∗ 2 = $18,000 

Therefore, the total cost of given solution is  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $107,500 + $120,000 + $18,000 = $245,500 

 


