19 research outputs found

    Real-time Deformation with Coupled Cages and Skeletons

    Get PDF
    Real-time character deformation is an essential topic in Computer Animation. Deformations can be achieved by using several techniques, but the skeleton-based ones are the most popular. Skeletons allow artists to deform articulated parts of the digital characters by moving their bones. Other techniques, like cage-based ones, are gaining popularity but struggle to be included in animation workflows because they require to change the animation pipeline substantially. This thesis formalizes a technique that allows animators to embed cage-based deformations in standard skeleton-based pipelines. The described skeleton/cage hybrid allows artists to enrich the expressive powers of the skeletons with the degrees of freedom offered by cages. Furthermore, this thesis describes two Graphical User Interfaces dedicated to deformations and animations. The first one, CageLab, allows artists to define cage-based deformations and perform cage editing. The second one, SuperCages GUI, allows artists to author animations and deformations by using the skeleton/cage hybrid described earlier

    Implicit muscle models for interactive character skinning

    Get PDF
    En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale. Son rôle est de déformer la représentation surfacique d'un personnage pour permettre son rendu dans une succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning choisie. Sa rapidité d'exécution et sa simplicité d'utilisation sont également à prendre en compte pour rendre possible son usage interactif lors des sessions de production des artistes 3D. Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques sont rapides et simples d'utilisation, mais leur résultats manquent de plausibilité. Les approches s'appuyant sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données d'exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d'un temps de calcul souvent prohibitif pour une utilisation interactive. Les travaux décrits dans cette thèse s'appuient sur Implicit Skinning, une méthode géométrique corrective utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage interactif. La contribution principale de ces travaux est un modèle d'animation qui prend en compte les effets des muscles des personnages et de leur interactions avec d'autres éléments anatomiques, tout en bénéficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d'extrusion le long d'axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée. Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d'introduire des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter le comportement réel des muscles. Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de l'état de l'art, tout en conservant des performances suffisantes pour permettre son usage dans une session d'édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues se conforment à leur vision artistique.Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform the surface representation of a character to be rendered in the succession of poses specified by an animator. The quality and plausiblity of the displayed results directly depends on the properties of the skinning method. However, speed and simplicity are also important criteria to enable their use in interactive editing sessions. Current skinning methods can be divided in three categories. Geometric methods are fast and simple to use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require a large database of examples while remaining tedious to edit. Finally, physical simulations can model the most complex dynamical phenomena, but at a very high computational cost, making their interactive use impractical. The work presented in this thesis are based on, Implicit Skinning, is a corrective geometric approach using implicit surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for interactive use. The main contribution of this work is an animation model that adds anatomical plausibility to a character by representing muscle deformations and their interactions with other anatomical features, while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles. This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate computational cost, which enables its interactive use. In addition, it offers intuitive shape control to animators, enabling them to match the results with their artistic vision

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Study on the design of DIY social robots

    Get PDF

    DISE : a game technology-based digital interactive storytelling framework

    Get PDF
    This thesis details the design and implementation of an Interactive Storytelling Framework. Using software engineering methodology and framework development methods, we aim to design a full Interactive Storytelling system involving a story manager, a character engine, an action engine, a planner, a 3D game engine and a set of editors for story data, world environment modelling and real-time character animation. The framework is described in detail and specified to meet the requirement of bringing a more dynamic real-time interactive story experience to the medium of computer games. Its core concepts borrow from work done in the fields of narrative theory, software engineering, computer games technology, HCI, 3D character animation and artificial intelligence. The contributions of our research and the novelties lie in the data design of the story which allows a modular approach to building reusable resources such as actions, objects, animated characters and whole story 'levels'; a switchable story planner and re-planning system implementation, allowing many planners, heuristics and schedulers that are compatible with PDDL (the "Planning Domain Definition Language") to be easily integrated with minor changes to the main classes; a 3D game engine and framework for web launched or in browser deployment of the finished product; and a user friendly story and world/environment editor; so story authors do not need advanced knowledge of coding PDDL syntax, games programming or 3D modelling to design and author a basic story. As far as we know our Interactive Storytelling Framework is the only one to include a full 3D cross-platform game engine, procedural and manual modelling tools, a story -editor and customisable planner in one complete integrated solution. The finished interactive storytelling applications are presented as computer games designed to be a real-time 3D first person experience, with the player as a main story character in a world where every context filtered action displayed is executable and the player's choices make a difference to the outcome of the story, whilst still allowing the authors high level constraints to progress the narrative along their desired path(s)

    The 11th Conference of PhD Students in Computer Science

    Get PDF
    corecore