
Studie naar het ontwerp van ‘DIY Social Robots'

Study on the Design of DIY Social Robots

Cesar Vandevelde

Promotoren: prof. dr. ing. J. Saldien, prof. dr. ir. F. wyffels
Proefschrift ingediend tot het behalen van de graad van

Doctor in de industriële wetenschappen: industrieel ontwerpen

Vakgroep Industriële Systemen en Productontwerp
Voorzitter: prof. dr. E.-H. Aghezzaf

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-90-8578-987-1
NUR 964
Wettelijk depot: D/2017/10.500/22

EXAMENCOMMISSIE

Prof. Rik Van de Walle – voorzitter
Vakgroep Elektronica en Informatiesystemen
Universiteit Gent

Prof. Tony Belpaeme – secretaris
Vakgroep Elektronica en Informatiesystemen
Universiteit Gent

Prof. Jelle Saldien – promotor
Vakgroep Industriële Systemen en Productontwerp
Universiteit Gent

Prof. Francis wyffels – promotor
Vakgroep Elektronica en Informatiesystemen
Universiteit Gent

Dr. Ruben Verstraeten
Vakgroep Architectuur en Stedenbouw
Universiteit Gent

Prof. Luc Geurts
Technologiecluster Elektrotechniek
KU Leuven

Prof. Bram Vanderborght
Robotics and Multibody Mechanics
Vrije Universiteit Brussel

1

2

DANKWOORD

Vier jaar geleden kreeg ik de unieke kans om een doctoraat te starten in het Industrial
Design Center. Tijdens deze periode kon ik dingen doen waarvan de meeste startende
ontwerpers alleen maar kunnen dromen: ik kon mij verdiepen in mijn onderwerp, ik
kwam in contact met andere onderzoekers wereldwijd, en ik had de vrijheid om te ex-
perimenteren met de nieuwste technologieën. Het was niet alleen een kans om mij op
technisch-wetenschappelijk vlak te ontplooien, maar ook om mijzelf voor een stuk te ont-
dekken. Deze uitdaging ben ik niet alleen aangegaan, doorheen het volledige proces kon
ik rekenen op de steun van anderen. Daarom wil ik graag iedereen bedanken met wie ik
de afgelopen vier jaar samengewerkt heb.

In de eerste plaats wil ik graag mijn promotoren prof. Jelle Saldien en prof. Francis
wyffels bedanken. Ze gaven me de vrijheid en het vertrouwen om op eigen tempo te
exploreren. Ze reikten mij kansen en opportuniteiten aan. En vooral, ze geloofden in het
potentieel van mijn werk zelfs wanneer ik het zelf niet meer zag. Ook mijn begeleiders
Bram Vanderborght en Maria-Cristina Ciocci wil ik van harte bedanken. Altijd kon ik op
hen rekenen voor een praktische vraag, voor feedback op een tekst, of gewoon voor een
goed gesprek.

De voorbije jaren heb ik altijd het geluk gehad om omringd te zijn door uitstekende col-
lega’s. Mensen die gedreven zijn en fantastisch zijn in wat ze doen. Op de eerste plaats
denk ik aan de collega’s Industrieel Ontwerpen en Industrieel Productontwerpen: jullie
stonden altijd klaar met een gezonde dosis inspiratie, humor, en relativeringsvermogen.
In het bijzonder wil ik Dries Bovijn en Stan Notebaert bedanken voor wat ze tot nu toe
verwezenlijkt hebben voor de Opsoro spin-off. Ook oud-collega Maarten Vanhoucke ben
ik dankbaar voor de leuke momenten in het ProtoLab en voor alle praktische hulp in
drukke tijden. Daarnaast denk ik nog aan prototyping “goeroes” Bart Grimonprez en
Carl Grimmelprez: bedankt om mij continu uit mijn comfort zone te sleuren door te
tonen hoe breed prototyping kan zijn. Aan de mede-doctorandi binnen het IDC: Peter,
Francesca, Bert, Davy, Bram: bedankt voor alles wat ik van jullie geleerd heb, bedankt
voor jullie sublieme meesterschap van humor en zelfspot, en vooral bedankt voor alle fi-
jne discussies tussen pot en pint. Tenslotte bedankt aan alle collega’s van de opleiding
electronica-ICT, met Benjamin Samyn en Xavier Vanhoutte in het bijzonder. Van hen
heb ik enorm veel opgestoken wat betreft electronica-ontwerp. In tijden van nood kon ik
altijd op hen rekenen om een schakeling te debuggen of een board te bestukken.

3

Doorheen het volledige onderzoekstraject van mijn doctoraat werden studentenopdrachten
betrokken in het ontwerpproces. Aan alle studenten die aan één van deze opdrachten
hebben meegewerkt: dank je voor jullie inzet, creativiteit, inspiratie, en enthousiasme!
In het bijzonder wil ik graag IO-alumni Pieter-Jan Mollé en Marie Van den Broeck be-
danken. Zij kozen om binnen hun masterproef verder te werken met Ono, en hebben op
die manier een enorme bijdrage geleverd tot dit doctoraat.

Tenslotte wil ik mijn ouders, vrienden, en familie bedanken voor hun steun doorheen dit
proces. Aan mijn ouders: jullie stonden altijd klaar met raad en daad, jullie hebben voor
rust en vrijheid gezorgd zodat ik mij volledig op mijn doctoraat kon richten. Zonder jullie
steun zou ik ongetwijfeld nooit zo ver geraakt zijn. Aan mijn vrienden: jullie waren altijd
overtuigd dat ik deze uitdaging tot een goed einde zou brengen. Ook wanneer ik het meest
aan mijzelf twijfelde bleven jullie in mij geloven. Het behalen van dit doctoraat is één van
de moeilijkste uitdagingen die ik tot nu toe heb meegemaakt. Het is zonder twijfel ook
een van de meest waardevolle uitdagingen. Aan alle mensen die mij hierbij de afgelopen
jaren geholpen hebben: dank u!

Cesar Vandevelde
Kortrijk, december 2016

4

CONTENTS

LIST OF ACRONYMS 9

SAMENVATTING 13

SUMMARY 17

1 INTRODUCTION 21

1.1 A New Generation of DIY 23
1.1.1 Open Source Software 24
1.1.2 Open Source Hardware 26
1.1.3 Hacking Paradigm 32
1.1.4 Maker Movement 33
1.1.5 DIY in Research 36

1.2 Learning & Creativity 37
1.2.1 STEM Education 37
1.2.2 Robot Kits as Learning Material 42
1.2.3 Creativity 50
1.2.4 Flow 51

1.3 Social Robotics – An Emerging Technology 53
1.3.1 Classification 56
1.3.2 Embodiment and Appearance 60
1.3.3 DIY and Open Source in Robotics Research 62

1.4 Research Question and Design Goals 66
1.5 Outline 68
1.6 List of Publications 71

5

CONTENTS

2 DESIGN METHODOLOGY 73

2.1 User-centered Design 75
2.1.1 Usability & User Experience 79

2.2 Iterative Prototyping 88
2.2.1 Digital Manufacturing techniques 89
2.2.2 Design Strategies 91

2.3 Conclusion 95

3 DESIGN ITERATIONS 97

3.1 Hexapod Robots 98
3.1.1 Stigmergic Ant 98
3.1.2 Locomotion Algorithm 101
3.1.3 Scorpion 105
3.1.4 Summary 107

3.2 Robot Blocks – Toolkit for Simple Educational Robots 108
3.2.1 Robots to Motivate Students into STEM 109
3.2.2 Design of the Building Systems 112
3.2.3 Measuring Usability, Affective Appraisal, and Functionality 118
3.2.4 Results 119
3.2.5 Summary 122

3.3 Ono – Generation 1 124
3.3.1 Conceptual Design of the Embodiment 126
3.3.2 Construction 130
3.3.3 Reproduction of a Robot 132
3.3.4 Robot-Assisted Therapy 136
3.3.5 Summary 141

3.4 Ono – Generation 2 142
3.4.1 Skeleton and Module Improvements 143
3.4.2 Workshop at UNN 146
3.4.3 Workshop at HRI-SS 147
3.4.4 Using Ono in Therapy 152
3.4.5 Summary 154

3.5 Opsoro Platform 155
3.5.1 Design Workshop at TEI 156
3.5.2 The Illusion of Life 161
3.5.3 Classroom of the Future 170
3.5.4 Summary 175

3.6 Conclusion 176

6

CONTENTS

4 OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS 177

4.1 Hardware 178
4.1.1 Modules 179
4.1.2 Workshop Base 188
4.1.3 Embodiment 188

4.2 Electronics 194
4.2.1 First Generation – Microcontroller-based 195
4.2.2 Second Generation – Microcomputer-based 196
4.2.3 Sensing Touch 204
4.2.4 Controlling Servos 206

4.3 Software 208
4.3.1 Facial Expression Algorithm 208
4.3.2 User Interface Precursors 215
4.3.3 App-based Web Interface 216

4.4 Conclusion 230
4.4.1 Future Enhancements 230
4.4.2 New Developments 231

5 CONCLUSION & FUTURE PERSPECTIVES 233

5.1 Open Hardware in Robotics Research 237
5.2 Entrepreneurship and Valorization 239

BIBLIOGRAPHY 243

LIST OF TABLES 261

LIST OF FIGURES 267

7

CONTENTS

8

LIST OF ACRONYMS

ABS Acrylonitrile Butadiene Styrene.

AC Alternating Current.

AI Artificial Intelligence.

AJAX Asynchronous Javascript and XML.

API Application Programming Interface.

ASD Autism Spectrum Disorder.

AU Action Unit.

B-Rep boundary representation.

CAD Computer Aided Design.

CLK clock.

CNC Computer Numeric Control.

CS Chip Select.

CSG Constructive Solid Geometry.

CSI Camera Serial Interface.

CSS Cascading Style Sheets.

DAC Digital to Analog Converter.

DC Direct Current.

DIY Do-It-Yourself.

DOF Degree of Freedom.

EVA Ethylene-Vinyl Acetate.

9

LIST OF ACRONYMS

FACS Facial Action Coding System.

FDM Fused Deposition Modeling.

FET Field-Effect Transistor.

FSR Force-Sensitive Resistor.

GPIO General Purpose Input/Output.

GUI Graphical User Interface.

HAT Hardware Attached on Top.

HCI Human-Computer Interaction.

HRI Human-Robot Interaction.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

I2C Inter-Integrated Circuit.

I2S Inter-IC Sound.

IC Integrated Circuit.

IDE Integrated Development Environment.

IK Inverse Kinematics.

IoT Internet of Things.

IP Internet Protocol.

IR infrared.

ISR Interrupt Service Routine.

LED Light Emitting Diode.

LIDAR Light Detection And Ranging.

MDF Medium-Density Fibreboard.

mDNS multicast Dynamic Name System.

MISO Master-In Slave-Out.

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor.

MOSI Master-Out Slave-In.

NURBS Non-Uniform Rational B-Splines.

10

LIST OF ACRONYMS

OS Operating System.

OSHW open source hardware.

PBL Project-Based Learning.

PCB Printed Circuit Board.

PLA Polylactic Acid.

PS polystyrene.

PU Polyurethane.

PWM Pulse-Width Modulation.

RAT Animal-Assisted Therapy.

RAT Robot-Assisted Therapy.

RC Radio-Controlled.

RFID Radio-frequency identification.

ROS Robot Operating System.

RUI Robotic User Interface.

SBC Single-board Computer.

SMT Surface-Mount Technology.

SoC System-on-Chip.

SPI Serial Peripheral Interface.

STEAM Science, Technology, Engineering, Arts and Math.

STEM Science, Technology, Engineering and Math.

SUS System Usability Scale.

TUI Tangible User Interface.

TVS Transient Voltage Suppression.

UART Universal Asynchronous Receiver/Transmitter.

UCD User-Centered Design.

UI User Interface.

URL Uniform Resource Locator.

USB Universal Serial Bus.

11

LIST OF ACRONYMS

UX User Experience.

YAML YAML Ain’t Markup Language.

ZPD Zone of Proximal Development.

12

SAMENVATTING

De voorbije jaren worden gekenmerkt door een verhoogde interesse in robotica, waar-
bij analisten steevast wijzen naar robotica als één van de volgende grote technologische
trends. Dit is niet verrassend; de technologie werd gestaag verbeterd in de afgelopen de-
cennia en bereikt nu uiteindelijk een kantelpunt waarop robots niet langer beperkt zijn
tot de fabrieksomgevingen. Geleidelijk verschuift de aandacht binnen robotica van robots
die functioneren binnen hun eigen afgebakende ruimtes naar robots die samenleven in de
natuurlijke habitat van mensen. Naar gelang het gebruik van robots in het dagelijkse leven
steeds vaker voorkomt, wordt het belang van intuïtieve communicatie met deze complexe
systemen duidelijk. Simpelweg gezegd: we zouden onze wereld niet moeten aanpassen
aan robots. In plaats daarvan moeten nieuwe robots zo ontworpen worden dat ze om
kunnen gaan met onze wereld op een zinvolle manier. Deze evolutie zorgt niet alleen
voor meer focus op robot veiligheid en conformiteit, het het resulteert ook in stijgende
interesse in sociale robotica en Human-Robot Interaction (HRI), een onderzoeksveld dat
betrekking heeft op de natuurlijke interactie tussen robots en mensen. Sociale robots zijn
robots die kunnen communiceren door middel van intuïtieve sociale vaardigheden, zoals
bijvoorbeeld door middel van emoties, gelaatsexpressies, spraak, en oogcontact. Echter,
onderzoek binnen mens-robot interactie houdt zich momenteel voornamelijk bezig met
het programmeren van gedragingen op standaard robots, en het ontwerp van de belicham-
ing van de robots blijft vaak een onverkende ontwerpdimensie. Het snel kunnen ontwer-
pen van belichamingen voor sociale robots heeft een groot potentieel. Eén van de doelen
van dit werk is om het ontwerp van belichamingen voor sociale robots te vergemakkelijken,
om zo het verborgen potentieel van deze ontwerpdimensie naar voor te brengen.

Momenteel zien we een andere grote trend die de moderne maatschappij zal beïnvloeden:
de heropleving van het do-it-yourself (DIY) paradigma. De vernieuwde focus van DIY
gaat veel verder dan de amateur-radio’s en huis-tuin-en-keuken klusjes van weleer. De
hedendaagse DIY trends, zoals de maker movement en de open source hardware beweging,
omarmen en belichamen technologie in zijn geheel. Deze trends zijn verantwoordelijk
voor het toegankelijk maken van heel wat exclusieve en complexe technologieën, zoals
bijvoorbeeld microcontrollers, 3D printers, CNC machines en robots. Het belang hiervan
is niet de technologie op zich, maar het feit dat deze technologieën toegankelijk gemaakt
worden voor een breed publiek, wat leidt tot nieuwe en onverwachte toepassingen.

Het werk dat beschreven wordt in dit proefschrift bevindt zich op het kruispunt tussen

13

SAMENVATTING

deze twee grote trends. Het proefschrift bespreekt de oorsprong en de ontwikkeling van
Opsoro (open platform for social robots), een DIY platform dat amateurs en non-experts
in staat stelt om zelf sociale robots te ontwerpen en te bouwen. Het platform werd specifiek
ontworpen om open source, goedkoop, en gemakkelijk in gebruik te zijn. De platform-
aanpak wordt gebruikt om sociale robotica technologie toegankelijk te maken voor een
breed publiek. Vaak zijn robot-ontwerpers en robot-gebruikers twee afzonderlijke groepen,
elk met hun eigen kennis en vaardigheden. Het is niet vanzelfsprekend om kennis uit te
wisselen tussen deze partijen. Daarom is het zinvol om gebruikers in staat te stellen om
zelf hun robots te bouwen in plaats van een oplossing voor hen te ontwerpen.

Het ontwerp van een platform is een veel complexer gebeuren dan het ontwerp van een
product. Een product wordt door één persoon ontworpen en wordt door een ander per-
soon gebruikt. Een platform wordt ontworpen door een systeemontwerper, het wordt
gebruikt door een tussenpersoon om een product te ontwerpen, en dat product wordt
uiteindelijk gebruikt door een eindgebruiker. Het ontwerp van een robotica-platform
is niet alleen uitdagend vanuit een technisch standpunt, maar ook vanwege de impact
van menselijke factoren op alle aspecten van het systeem. Bijgevolg schieten traditionele
engineering-methodieken tekort, en moet er een andere aanpak worden gebruikt. In
dit werk wordt daarom een holistische, user-centered ontwerpmethodologie gehanteerd.
Deze aanpak houdt rekening met de rol van verschillende gebruikers doorheen het on-
twerpproces, en steunt op meerdere iteraties om stapsgewijs inzichten te verwerven in
de gebruikseisen en de gebruikscontexten. Binnen dit proces wordt het belang van ge-
bruiksgemak en gebruikservaring benadrukt omdat deze aspecten de sleutel vormen tot
het slagen van complexe, iteratieve systemen. Doorheen dit werk wordt gebruik gemaakt
van digitale productietechnieken zoals 3D printing en laser cutting om het ontwerppro-
ces te ondersteunen. De ontwerpbeslissing om digitale productietechnieken te gebruiken
heeft implicaties op de doelstellingen van dit project. Binnen digitale productietechnieken
wordt de informatie die nodig is om een onderdeel te produceren vervat binnen een dig-
itaal bestand. Computergestuurde machines gebruiken deze informatie om automatisch
fysieke onderdelen te creëren zonder een beroep te doen op de vaardigheid of het vak-
manschap van de operator van de machine. Dit laatste punt is belangrijk voor de repro-
duceerbaarheid van een ontwerp: het vergemakkelijkt delen via het internet, het verlaagt
de barrière om een ontwerp te kopiëren, en het zorgt voor een hoge graad aan herhaal-
baarheid. Dit heeft een belangrijke invloed op de openheid van het systeem, en maakt
het mogelijk om online communities te stichten. Een andere intrinsieke eigenschap van
digitale productietechniek is dat een hoge graad van ontwerpcomplexiteit gebruikt kan
worden, waardoor ontwerpers extra functionaliteiten (bv. instructies) kunnen integreren
in de vormgeving van een onderdeel. Dit aspect wordt gebruikt om het gemakkelijker te
maken om ontwerpen te reproduceren en te assembleren.

De vele ontwerpiteraties hebben uiteindelijk geleid tot de huidige versie van het Opsoro
platform. Iedere iteratie zorgde voor andere inzichten in het slagen of falen van verschil-
lende aanpakken, en binnen de verschillende iteraties werden de ontwerp-, bouw-, en
gebruik-fases van een platform verkend. Het is belangrijk om aan te geven dat het on-
twerpproces niet lineair is. Het is een complex netwerk van ontwerpen die geïnspireerd
zijn op en beïnvloed zijn door andere ontwerpen. Binnen dit proefschrift worden vijf ver-

14

SAMENVATTING

schillende projecten beschreven. Het eerste project gaat over wandelende hexapod robots.
Dit was één van de eerste exploraties binnen DIY robotica, en beïnvloedde de construc-
tietechnieken die gebruikt werden doorheen de rest van dit werk. Ten tweede wordt het
ontwerp van een bouwkit voor kleinschalige educatieve robots beschreven. Het derde
en vierde project gaat over het ontwerp van Ono, een DIY sociale robot gemaakt voor
interactie-experimenten met kinderen. Tenslotte gaat het vijfde project over het Opsoro
platform, wat verder bouwt op de voorgaande projecten. Binnen elk van deze projecten
werd experimenten met amateurgebruikers uitgevoerd waarin de ontwerp-, bouw-, en ge-
bruiksfases van de tools telkens onderzocht werden.

Het Opsoro platform wordt omschreven als het finale project binnen dit werk. Echter,
het ontwerpproces wordt verder gezet en het systeem wordt momenteel verder ontwikkeld
met oog op commercialisatie. Er wordt momenteel gewerkt om tegen 2018 een Opsoro
starter kit te lanceren als product, met een sterke focus op STEAM-educatie. Het nieuwe
platform bouwt verder op de stevige fundamenten van dit proefschrift om te leiden tot een
uitbreidbare set van modulaire maker-kits die kunnen gebruikt worden om eigen sociale
robots te creëren en te bouwen. Verder wordt de software momenteel omgevormd tot een
online ontwikkelingsomgeving en educatieve community. De web-gebaseerde interface
stelt gebruikers in staat om hun creaties te bedienen via een groeiend aantal apps, wat leer-
en speelactiviteiten op maat van iedere gebruiker mogelijk maakt. Hiermee hopen we de
kennis die verzameld werd binnen dit onderzoek toegankelijk te maken voor het brede
publiek, om zo een significante impact te hebben op de manier waarop sociale robots
ontworpen worden door de toekomstige generatie.

15

SAMENVATTING

16

SUMMARY

Recent years have been characterized by a heightened interest in robotics, and analysts
have steadily pointed at robotics as one of the next big trends in technology. This is per-
haps unsurprising; the technology has steadily improved over the past decennia and is now
reaching a tipping point where robots are no longer constrained to factory environments.
Gradually, robotics research has shifted its attention from robots that function within their
own predefined space to robots that coexist with humans in the human’s natural habitats.
As robotic agents become more and more commonplace, the importance of intuitive com-
munication with these complex systems becomes apparent. Simply put: we should not
need to adapt our world to suit robots. Instead, new robots should be designed so that
they can interact with our world in a meaningful way. This evolution has not only driven
interest in robot safety and compliance, it has also resulted in the study of social robotics, a
field that is concerned with natural interaction between robots and humans. Social robots
are robots that can communicate using social affordances that we find intuitive, for ex-
ample through emotions, facial expressions, speech, and gaze. However, research within
Human-Robot Interaction (HRI) is currently mostly concerned with programming robot
behaviors on standard robots, whereas the embodiment design is frequently left as an un-
explored design dimension. The rapid design of new social robotic embodiments holds
great potential. One of the goals of this work is to facilitate the embodiment design of
social robots, unlocking the hidden potential of this design dimension.

At the same time, another big trend is shaping and disrupting modern society: the revival
of the do-it-yourself (DIY) paradigm. This renewed focus on DIY moves beyond ham ra-
dios and home improvement projects of old. Contemporary DIY trends, such as the maker
movement and the open source hardware movement, embrace and embody technology in
its entirety. These trends have been responsible for democratizing previously exclusive and
complex technology, including microcontrollers, 3D printers, CNC machines and robots.
The importance here is not the technology per se, but rather that these technologies have
been made accessible outside of a very small community of experts, leading to novel and
unexpected applications.

The work described in this dissertation is situated at the intersection of these two trends.
This dissertation discusses the inception and development of Opsoro (open platform for
social robots), a DIY platform that enables amateurs and non-experts to design and create
custom social robots. The platform is specifically designed to be open source, low cost, and

17

SUMMARY

easy to use. The platform approach is used in order to make social robotics technology
accessible to a wider audience. Often, robot designers and robot users are two distinct
groups, each with their own skills and knowledge, and it is not always easy to transfer this
knowledge. Therefore, it makes sense to give users the tools to build their own solutions
instead of designing a solution for them.

Designing a platform is much more complex than designing a product. A product is
designed by one person and used by another. A platform is designed by a system de-
signer, it is used by an intermediary to create their own product, and that product is
finally used by an end user. The design of a robot platform is challenging not only from
a technical point of view, but also because of the impact of the human factors on all as-
pects of the system. Accordingly, traditional engineering methodologies fall short and a
different approach must be used. In this work, a holistic user-centered design approach
is used instead. This approach acknowledges the role of different users throughout the
design process, and relies on multiple iterations to gradually gain an understanding of
user requirements and usage contexts. Within this process, the methodology emphasizes
usability and user experience aspects as they hold the key to success for complex, inter-
active systems. Throughout this work, digital manufacturing technologies such as 3D
printing and laser cutting were used to support the design process. The design decision
to use digital fabrication has implications for a number of the projectgoals. With digital
fabrication techniques, the information required to produce a part is contained within a
digital file. Computer-controlled machines use this data to produce physical parts, requir-
ing little skill or artisanship from the operator. This last point is important with respect
to reproducibility: it facilitates online sharing, it lowers the barrier to making copies and
offers a higher degree of repeatability. This directly impacts the openness of the system,
as well as the opportunities for online community building. Another intrinsic property of
digital fabrication is that design complexity is (nearly) free, affording designers the chance
to embed extra functionality (e.g. instructions) in the geometry of a part. This aspect can
be leveraged to make the designs easier to reproduce and easier to build.

The design iterations have finally resulted in the current version of the Opsoro platform.
Each iteration has led to insights into the success and failure of different approaches, and
the different iterations have explored the design, build, and use phases of a platform. More
importantly, the design process is not linear. Instead, it is a complex network of designs
that have inspired and influenced other designs. The design iterations of five different
projects are described in this work. The first project is concerned with the design of walk-
ing hexapod robots. This was one of the earliest forays into DIY robotics and informed
many of the construction techniques used throughout the rest of this work. Secondly, the
design of a construction toolkit for small-scale educational robots is described. The third
and fourth projects detail the design of Ono, a DIY social robot created for interaction ex-
periments with children. The fifth and final project is the Opsoro platform, which builds
upon the knowledge gained from the preceding projects. Each of these projects has been
tested with amateur users in experiments that cover the design, build, and use phases of
the tools.

While this work describes the Opsoro platform as the final project, the design process con-

18

SUMMARY

tinues and is currently being developed with commercialization in mind. With a strong
focus on STEAM learning, the goal is to launch an Opsoro starter kit product by 2018.
The platform builds upon the solid foundations of this dissertation, resulting in an ex-
pandable set of modular maker-kits that can be used to create and build your own custom
social robot. Furthermore, the software is currently being transformed into an online
development environment and educational community. The web-based interface allows
users to control their creations through a growing number of apps, enabling learn and play
activities tailored to each individual user. With this, we hope to transfer the knowledge
gained throughout the research into society at large, significantly impacting the way that
social robots can be designed by the future generation.

19

SUMMARY

20

Chapter 1

INTRODUCTION

Recent years have been characterized by technology permeating into every aspect of our
day-to-day lives. Similarly, we see that the digital world and physical world are converging
more each day. One of these recent developments is the emergence of robotic systems in
the living environment of humans. Many of these technologies are not even new, they
have simply become cheap enough and sophisticated enough for widespread applications.
Nevertheless, by becoming so ubiquitous they impact society tremendously, forcing us to
rethink many well-established concepts.

On the other hand, we see a paradox emerge in that the proliferation of technology goes
hand in hand with technology disappearing from our sight. Indeed, researchers in human-
computer interaction have long since argued that interfaces should move beyond screens
and buttons as our window into the digital world. For instance, Ishii and Ullmer (1997)
have advocated the direct manipulation of digital information through tangible artifacts.
Weiser (1994) posits that “a good tool is an invisible tool”, indicating that technology
should be subjugate to the action; it is simply a means to an end. Finally, in his book,
User Experience (UX) designer Krishna (2015) simply argues that “the best interface is no
interface”.

These perspectives of the future are slowly, yet steadily becoming reality. Cars unlock
themselves when they detect the proximity of a key fob. Nest thermostats observe our
habits over time and learn to adjust the room temperature automatically. On phones,
Google Now presents personalized information, such as airplane boarding passes, or pack-
age tracking, right when the user needs it, without the user requesting it explicitly. What
all these products have in common is that they tend to stay in the background, putting as
few steps as possible between ourselves and our goals.

One of the many ways in which these trends are expressed is the emergence of social
robotics, the domain in which this treatise is situated. Robots have been used in factories
for well over 50 years. Now, more and more applications are starting to emerge outside of

21

1. INTRODUCTION

the manufacturing niche.

As robotic agents become more and more commonplace, the importance of intuitive com-
munication with these complex systems becomes apparent. Robotic agents may also evolve
into the role of a mediator between humans and artificial systems, providing an interface to
these systems through natural and intuitive communication. This is one of many ways in
which human-computer interaction can evolve beyond an unintuitive reliance on screens
and buttons. For us humans, intuitive interaction includes things like verbal communica-
tion, gestures, and facial expressions. After all, it is with these tools that we interact among
ourselves.

Previous work has already proven the effects of embodiment design on how people per-
ceive robots (Wainer et al., 2006), as well as the benefits of embodied agents over virtual
agents (Lee et al., 2006; K. Williams and Breazeal, 2013). However, research within
Human-Robot Interaction (HRI) currently mostly concerned programming robot behav-
ior on standard robots (e.g. Nao), whereas the embodiment design is frequently left as an
unexplored design dimension. The rapid design of new social robotic embodiments holds
great potential. One of the goals of this work is to facilitate the embodiment design of
social robots, unlocking the hidden potential of this design dimension.

The work described in this thesis also plays into a second aspect of technology proliferation,
namely the aspect of the resurgence of Do-It-Yourself (DIY) in the form of the maker
movement, a subculture that is characterized by the democratization of technology in a
creative, hands-on setting. The movement draws attention to the empowering feeling of
making things, noting that we should not restrict ourselves to being just consumers of
technology, but that we should also become creators of technology in order to shape the
world around us.

Characteristic examples of previously exclusive, complex technology that has been made
accessible to a langer public through this movement includes microcontrollers, 3D print-
ers, CNC machines, and robots. Many engineering challenges that were considered ex-
tremely difficult in the past can now be accomplished with the help of open designs and
off-the-shelf parts. For instance, building a quadcopter from scratch used to require in-
depth knowledge of control theory, brushless DC motor control, software engineering,
composite material design, etc. Yet nowadays, these devices can be built by hobbyists
through the creative recombination of existing designs. This shift is largely due to the
work of open source communities. The novelty of these projects is not in the technology
per se, but in the fact that they are made accessible outside of a very small community of
experts, leading to novel and unexpected applications.

There are many different circumstances that have lead to this renaissance of DIY. One
could argue that its emergence was simply the inevitable result of the rapid evolution of
technology, though notable influences include the rise of the internet as a communica-
tion medium, the open source (software) movement, the steadily continuously costs of
electronics, and the rise of FabLabs. Well-known technologies that embody this paradigm
include the Arduino microcontroller platform and the RepRap low-cost 3D printers.

22

1. INTRODUCTION

The evolution of this DIY culture in the past few years has opened exciting new opportu-
nities in many different areas of art and technology, ranging from low-cost prostheses, to
hackable scientific instrumentation, to new kinds of manufacturing machines. With the
work presented in this thesis, we introduce aspects of the DIY culture within the field of
human-robot interaction, illustrating the merits of putting social robot technology in the
hands of amateurs. Our efforts have culminated in the design of a DIY platform, named
Opsoro, that enables amateurs to design custom social robots from scratch. We hope
that this platform will enable and inspire a new generation of human-robot interaction
applications.

1.1 A NEW GENERATION OF DIY

DIY, short for Do-It-Yourself, is an umbrella term for activities where amateurs engage in
the design, modification, or repair of artifacts. The term “amateur” does not necessarily
mean that DIYers are unskilled, but rather that the activities are performed outside of a
professional capacity (Kuznetsov and Paulos, 2010). Wolf and McQuitty (2011) define
DIY as “activities in which individuals engage raw and semi-raw materials and component
parts to produce, transform, or reconstruct material possessions, including those drawn
from the natural environment”. While economic factors do play a part in the motivation
for participating in DIY activities (Wolf and McQuitty, 2011), monetary gains are usually
not the sole motive of DIYers. DIYers also frequently cite reasons such as creative expres-
sion, the desire to learn new skills, and the need for objects that do not exist commercially
(Kuznetsov and Paulos, 2010). Furthermore, DIY projects often give the creator a sense
of accomplishment and fulfillment. This sense of accomplishment forms the basis for the
so-called “IKEA effect”, meaning that consumers place increased value in products that
they (partially) made themselves (Norton et al., 2012).

The act of creating objects is as old as humanity itself. One of the defining traits of our
species is our reliance on tools to survive and thrive. From as early as prehistory, people
have felt the need to create tools and devices to manipulate the environment or to help
them perform certain tasks. Over time however, individuals have adopted increasingly
specialized roles in their communities. Roles in hunter-gatherer societies were much more
generalized, whereas the subsequent agrarian revolution and industrial revolution have
given way to much more specialized roles. Owing to the economies of scale, this special-
ization results in increased productivity, giving individuals more and more time to pursue
activities that are not directly related to survival and leading to advances that otherwise
would not have been possible. However, increased specialization is paired with decreas-
ing self-reliance, as individuals are no longer capable of survival without the aid of others.
DIY culture is reactionary in this regard, and self-sufficiency is a commonly reoccurring
motivation in DIY trends.

DIY is a trend that reoccurs every few decades. Typically, each new incarnation of the DIY
trend is triggered by societal or technological advances, and is characterized by a certain
degree of rebelliousness. Some examples of DIY movements in the 20th century include:

23

1. INTRODUCTION

• The Arts & Crafts movement (ca. 1880 - 1910) – an anti-industrial movement advo-
cating traditional craftsmanship in design and decoration (Naylor, 1980).

• Ham radio (ca. 1920s) – an electronics hobby where amateurs build and operate
radio communications devices. The hobby continued to thrive during WW II, de-
spite a ban on amateur radio communication (Haring, 2003; Massie and Perry,
2002).

• Home improvement (ca. 1970s) – a trend that saw a peak in popularity in the decades
post-WW II, influenced by the social and environmental views of the 1960s. Even
though its popularity has partially subsided, DIY home improvement is still prac-
ticed by many today (Goldstein, 1998).

• Homebrew computing (ca. 1970s) – A movement centered around the Homebrew
Computer Club in Silicon Valley, focused on building computers from scratch. The
homebrew computing movement helped enable the personal computer revolution
with devices such as the Apple I (Ceruzzi, 2003; Dougherty, 2008).

The past ten years have been marked by a renewed interest in DIY culture. This contem-
porary form of DIY is commonly referred to as the maker movement. A key characteris-
tic of modern DIY is that it takes place at the interface between the physical world and
the digital world. To elaborate, the projects typically incorporate significant amounts of
software design as well as hardware design, with both aspects equally crucial to function-
ality. Frequently, these artifacts can be described as mechatronic in nature, incorporating
both mechanics and electronics. To illustrate, the design of a 3D printer – a common
Maker-centric project – requires mechanical engineering for the printer’s frame and mo-
tion systems, electrical engineering for the device’s driver electronics, as well as software
engineering to create the firmware and host software. Without any one of these three, the
artifact would become useless.

The second important characteristic is the significant role that the internet plays in collab-
oration. Online platforms such as Instructables and Github enable design collaboration
and sharing information. Digital design files of physical objects are then transported to the
physical world using digital manufacturing devices, such as laser cutters or 3D printers.

The next sections will further elaborate on contemporary DIY practices, discussing open
source software & hardware, hacking, and the maker movement. One should note that
there is significant overlap between these trends, and that the difference between them is
not always clear-cut. This is compounded by the informal, loose-knit structure of DIY
communities. Consequently, some terminology will be used interchangeably throughout
the rest of this work.

1.1.1 OPEN SOURCE SOFTWARE

The term “open source” refers to the act of making the source files of a certain design
available for anyone to view, modify, and use. This idea originates from the software

24

1. INTRODUCTION

world, where programmers would make the source code of their programs available.

Most software is typically distributed as a binary. Transforming human-readable source
code into a binary is simple, and is done automatically by a compiler. Conversely, turning
a binary back into source code is nearly impossible, and requires extensive reverse engineer-
ing. Depending on the complexity of the software, such a process is prohibitively difficult
and time consuming. Consequently, for practical purposes, access to the source code is
required in order to make meaningful changes to an existing piece of software.

In early computing history, sharing source code was the norm, not the exception. Most
programs were custom created by users to fulfill a specific purpose, and code from others
was often used to bootstrap development of new programs. Most computer users in the
1960s and 1970s were part of academic or corporate research labs, and saw the free ex-
change of source code as a normal part of research culture. Only at a later stage did this
pattern change. With the rise of commercial, general-purpose software, most applications
were distributed as binaries without access to the source code (Hippel and Krogh, 2003).

This mentality change later galvanized the emergence of modern open source software
communities. These communities, comprised of hobbyists as well as professional program-
mers working in their spare time, created some of the world’s most widely used software,
including the Linux operating system and the Apache web server. The internet proved
an important factor in fostering these communities: it enabled collaboration on a much
larger scale than simply through sharing floppy disks with lab colleagues, as was done
before.

In “The cathedral and the bazaar”, Raymond (1999) describes the zeitgeist of open source
communities during the 90’s. The author describes two different development models
of open source communities: the top-down cathedral model and the bottom-up bazaar
model. The author likens the development process of important and complicated software
(such as an Operating System (OS)) to cathedral-building, relying on a very small group of
“wizards” to do the initial development. The opposite approach is dubbed the bazaar model
by the author. It is characterized by many different agendas and approaches, as opposed to
the singular expert-directed focus of the cathedral model. The author then describes how
the bazaar model led to the success of Linux, a complex project where one would expect
that the cathedral model should be used. This bazaar model was intentionally used by the
author during the development of fetchmail, and the paper summarizes lessons learned
from applying the bazaar approach in practice.

Some large software companies, such as Google and Red Hat, have embraced the open
source software movement as part of their business model. Not only do they build their
products upon open source software, they also release parts of their own products under
an open source license. Eastham (2015) discusses this phenomenon, noting that this is
not necessarily pure altruism: an open source strategy can be used to bolster their own
products by making them better, safer, and more widespread. Further analysis on the
motivations for open source software is done by Hippel and Krogh (2003), who purposes
a hybrid form between the “private investment” model and the “collective action” model as
a theoretical framework for the open source phenomenon.

25

1. INTRODUCTION

Over time, open source evolved beyond the domain of software, resulting in a more gen-
eralized open source movement. The core idea behind open source software was adapted
to suit different areas of technology. In most areas, there is an analogous concept to the
source code files of open source software, where form A is easily turned into form B, but
the reverse direction is extremely difficult. Thus, “source” is interpreted in a broader way,
and can encompass things such as recipes, blueprints, models, instructions, etc.

One of the more esoteric examples of this principle is OpenCola1, a soft drink similar
to Coca Cola of which the recipe was released under the GNU General Public License.
Similarly in 2016, the Scottish brewery BrewDog released its recipe collection under an
open source license (Mason, 2016). One final example is Open Design Now (Abel et
al., 2011), a book whose chapters were gradually made available on the internet under a
Creative Commons license.

1.1.2 OPEN SOURCE HARDWARE

The previous section illustrated the evolution of open source software in the late 90s and
early 2000s, concluding with examples of the use of the open source model outside of
software. This section will discuss this point further, elaborating on one of the most in-
fluential trends within the open source community in recent years: open source hardware
(OSHW) (Powell, 2012). As the name implies, open source hardware is a physical artifact
of which the original design files have been made available, and anyone is free to repro-
duce and modify the artifact. There are many different definitions of OSHW, and each
has its own nuances. The TAPR open hardware license, for instance, offers the following
definition (TAPR, 2007):

“Open Hardware is a thing – a physical artifact, either electrical or mechanical –
whose design information is available to, and usable by, the public in a way that
allows anyone to make, modify, distribute, and use that thing.”

While the idea behind OSHW is not entirely new (Gibb, 2014, p. 11), two factors have
been pivotal for the interest and wider adoption of the movement in recent years:

1. Access to advanced manufacturing processes, such as 3D printing, laser cutting,
and Printed Circuit Board (PCB) manufacture has improved drastically. Low-cost
3D printers, FabLabs, and online manufacturing services have opened the door to
personal manufacturing (D. A. Mellis, 2014).

2. The emergence of new sharing mechanisms (e.g. forums, instructions, video, im-
ages), which plays a major role in motivating and sustaining communities of builders,
crafters and makers (Kuznetsov and Paulos, 2010).

1Soft Drink Formula Version 1.1.3 –
http://alfredo.octavio.net/soft_drink_formula.pdf

26

http://alfredo.octavio.net/soft_drink_formula.pdf

1. INTRODUCTION

Open source hardware has a wide and varied audience, including amateurs and hobbyists,
commercial companies, and researchers. Each of these groups has their own motivation
to engage in OSHW activities. Amateurs report reasons such as receiving feedback, edu-
cating others, and showcasing their work (Kuznetsov and Paulos, 2010). For companies,
motivations can include reducing R&D costs, incorporating community developments, as
well as creating a platform around the product (Gibb, 2014, p. 216). Finally, A. Williams
et al. (2012) draw a parallel between the peer review process in research and the process
of open sourcing research hardware, noting that doing so increases the legitimacy of the
work because others can inspect it and contribute to it.

Open-sourcing hardware is not a black-and-white matter, but rather a continuous spec-
trum of varying degrees of openness (Gibb, 2014; Yanamandram and Panchal, 2014).
The effect is also much more noticeable than with open source software. At the most
rudimentary level, it may simply mean that the creators provide a pinout diagram or ba-
sic maintenance instructions. Another nuance is in the design toolchain: many OSHW
projects use proprietary design tools such as EAGLE or SolidWorks to create their de-
sign. Some OSHW practitioners strive for a completely open workflow, opting for open
source design software wherever possible. Gibb (2014, p. 253) notes that open hardware
will probably never completely cover all layers of hardware. In extremis, the process would
have to extend down to the level of the production of raw materials, which seems unlikely.

One of the first large-scale success stories of OSHW is the Arduino microcontroller plat-
form (fig. 1.1) (D. A. Mellis, Igoe, et al., 2007). The platform consists of a physical
hardware PCB, as well as an Integrated Development Environment (IDE) application
and a set of software libraries to program the PCB. Arduino was originally designed to be
used by students at the Interaction Design Institute Ivrea, focusing on enabling artists and
designers to play with electronics.

While the Arduino board itself is admittedly fairly simple, the project itself significantly
influenced contemporary DIY and OSHW culture. Arduino was also one of the first
commercially successful OSHW products (Thompson, 2008). All relevant software and
hardware source files were released as open source, but the name “Arduino” was registered
as a trademark by the company (Thompson, 2008). Consequently, others were free to
copy and modify the board as they please, but they could not call their board an Arduino.
Still, this did not deter others from creating variants (D. Mellis and Buechley, 2012). The
Arduino business model was later copied by a number of other OSHW companies.

Another prominent example is the RepRap project (fig. 1.2) (Jones et al., 2011), a project
with the aim of creating a self-replicating Fused Deposition Modeling (FDM) 3D printer.
The project was influential in making 3D printing available to a wider audience, and the
large majority of the sub 2000 EUR 3D printers currently on the market can trace their
lineage back to the RepRap project. RepRap 3D printers are complex mechatronic ma-
chines, and the hardware goes well beyond the simple PCB of the Arduino project. As
Yanamandram and Panchal (2014, p. 106) illustrates through a product hierarchy dia-
gram, RepRaps have many intricate hardware subsystems, including the control electron-
ics, the 3-axis cartesian motion system, the extruder nozzle assembly and the extruder feed
mechanism. On top of that, they also require a significant body of software to function,

27

1. INTRODUCTION

Fig. 1.1 Arduino Uno3 Fig. 1.2 RepRap Prusa Mendel i34

including firmware, model slicing software, and host software. Despite the complexity, a
RepRap can be built with a completely open stack. This has led to an explosive growth of
RepRap-derivative 3D printers, as evidenced by the RepRap family tree2.

Open source hardware is a very recent phenomenon. While the OSHW approach has
seen some early successes, many obstacles remain. In the remainder of this section, we
will discuss the following challenges:

1. Cost of replication

2. Documentation

3. Design software

4. Licensing & commercialization

One of the ambitions of open source is to allow anyone to build and modify a certain work.
In the past, this has worked very well in software. However, while duplication of digital
data is practically free, there is a measurable cost associated with replicating hardware. In
The cathedral and the bazaar Raymond (1999) lists a number of properties of successful
open source software projects. Releasing code early and often is one of the key points, as
is outsourcing as much work as possible to members of the community.

3Photo by Sparkfun Electronics. Licensed under Creative Commons Attribution 2.0.
4Photo by Josef Prusa. Licensed under GNU Free Documentation License 1.2.
2RepRap Family Tree – http://reprap.org/wiki/RepRap_Family_Tree

28

http://reprap.org/wiki/RepRap_Family_Tree

1. INTRODUCTION

One difference with software is the barrier to simply copy a work, a prerequisite to collab-
oration. This barrier encompasses skill, time, and component costs. While digital manu-
facturing techniques have dramatically lowered the skill barrier to produce components,
other skills are required to come to a meaningful artifact, such as assembling and soldering.
D. Mellis and Buechley (2012) note that while many derivative Arduino boards have been
created, few hardware changes have made their way back to the Arduino project. D. A.
Mellis (2014, p. 154) notes that developers may be inclined to recuperate some of their
costs by selling a derivative instead of contributing changes back to the original author.

Several practitioners identify modularity as a key aspect for the success of open source
hardware. Yanamandram and Panchal (2014) notes the following: “One of the biggest
factors aiding the success of open source software is its capability for modularity and the
adequate focus given to the various modules by programmers thereafter. […] It is neces-
sary to promote particular parts of a system and make them the focus of the development
process so that different people can pursue different parts based on their domain knowl-
edge and skillset. This would shorten the learning curve, improve production time and
quality.” The same sentiment is echoed by Baafi (2014): One should not have to reinvent
the wheel, but rather “pick a tire, pick a spoke, and pick a hub!”. Modularity and inter-
changeability are one of the key aspects that enable collaboration and darwinian evolution
in open hardware. While there certainly are parallels with Raymond’s model of develop-
ment, open source hardware is separate in its own right. The question remains: does the
bazaar model work in open source hardware?

Creating successful open source hardware necessitates more than merely making CAD files
available. Not only is it key to design with replication by others in mind, good documen-
tation is essential in order to stimulate broader use and adaptation. Yanamandram and
Panchal (2014) argues that the documentation needs of open source hardware go beyond
what is normally offered by open source software platforms such as GitHub. Not only
do open hardware projects need to manage design files, but also assembly instructions,
material and tool documentation, and manufacture procedures. The shape of a physical
component can be captured relatively well in a digital file, such as an STL file for 3D
printing. However, Kuznetsov and Paulos (2010) show that capturing physical processes
is much harder. Tseng and Resnick (2014) shows that many open source hardware prac-
titioners experience designing and documenting as two distinct modes. Documenting can
be easily forgotten in the process of designing, and documenting while designing can in-
terrupt the flow of the design process. Tseng and Resnick (2014) note that some choose
to completely disassemble a project at the end of the design process, so that it can be
reassembled and documented step-by-step. However, this method is only possible for
small projects that can be rebuilt easily. For larger and more complex designs, this quickly
becomes infeasible.

The availability of appropriate design tools that are low-cost, free, or even open source is an
important prerequisite for creating open source hardware. Whereas an open source soft-
ware project might require a compiler to go from source code to an executable binary, open
source hardware projects rely on CAD tools to describe a physical object in a digital file.
We see software tools as one of the limiting factors for open hardware projects. The idea of

29

1. INTRODUCTION

open source hinges upon collaboration between volunteers. More often, this collaboration
takes place over the internet. Consequently, tools to modify the design should be easily
accessible in order for a project to be successful. Unfortunately, traditional CAD software
for mechanical design is prohibitively expensive for amateurs, hampering this collabora-
tion. To illustrate, many designs within the RepRap project are created using OpenSCAD.
This open source tool generates polygonal 3D models from a script file describing Con-
structive Solid Geometry (CSG) operations. OpenSCAD allows for parametric designs,
so that changing one variable (e.g. the size of the build volume) would automatically cause
all appropriate components to be regenerated. Though powerful and free, the system is
complex to use.

More recently, new mechanical CAD tools have become available, though mostly freeware
offerings from commercial companies as opposed to open source software. For instance,
Autodesk now offers a number of free-of-charge, easy to use CAD applications under the
123D moniker. These tools include a mesh editor, a photogrammetry tool, and a CSG
tool for mechanical designs. In addition to these maker-centric tools, they also offer a
cloud-based traditional mechanical CAD suite, free for non-commercial use. In addition,
open source software offerings, such as FreeCAD and OpenSCAD, have made great strides
in terms of functionality and stability. This is evidenced by projects such as GummiArm
(Stoelen et al., 2016), a 3D-printed robot arm that was completely designed in FreeCAD.

Still, many open source hardware projects – especially complex ones – are designed in
SolidWorks, a popular commercial CAD package. Examples include OpenHand (Ma
et al., 2013), Poppy (Lapeyre et al., 2014), Oncilla (Sproewitz et al., 2011), OpenPCR,
Ultimaker 2, and WoodenHaptics (Forsslund et al., 2015). We see a number of poten-
tial explanations for this phenomenon. Firstly, it could be due to CAD tool “inertia”,
where current projects will continue to use the software they are using, and simply not
enough time has passed for new projects to be started using new, free software. A sec-
ond explanation would be that many projects originate from universities and companies,
where researchers have access to expensive CAD software. A third reason could be that
free packages that are most in line with traditional mechanical CAD (i.e. Fusion360 and
OnShape) are cloud-based, meaning that files are restricted to a 3rd party server, and can-
not be synchronized to online repositories. Cloud-based tools also have the downside
of making a project dependent on an external company, which could prove problematic
should the company ever decide to change, stop, or charge for their product. In any case,
appropriate design tools for open source hardware projects are rapidly evolving, and will
most likely continue to do so. It will be interesting to see the impact of these new tools
on open source hardware in general.

Open source hardware projects originate from many different sources: from amateurs,
from academia, from commercial companies. Projects that find their origins in academia
typically tend to transition to spinoff companies: it can be difficult to focus on product
development (as opposed to pure research) within the framework of a university. Arduino
(Interaction Design Institute Ivrea, D. A. Mellis, Igoe, et al. 2007), RepRap (University of
Bath, Jones et al. 2011), and Makey Makey (MIT, J. Silver et al. 2012) all originate from
academia and later transitioned to independent companies.

30

1. INTRODUCTION

Thompson (2008) describes some of the reasons why Arduino chose to remain open source
as a company:

• Idealism: open sourcing stimulates copies, thereby spreading the product and lead-
ing to wider adoption.

• An open Arduino inspires more interest and more free publicity than it would have
if it were proprietary.

• It enables enthusiasts to hack the board. Improvements from the community can
be incorporated into the product.

As a company, the challenge is how to be open, but still generate a profit. Intuitively, one
would think that giving all design files away for free would be detrimental to business. Af-
ter all, you have taken the risk to develop a product, and you are inviting other companies
to copy you. Thompson (2008) identifies two strategies for OSHW companies:

1. Don’t worry about selling a product, sell your expertise instead. As the original
creator, the product’s community will naturally develop grow around you, giving
you an edge on knowledge.

2. Stay ahead of the competition by innovating faster and by offering a higher-quality
product. Thompson mentions: “Merely having the specs for a product doesn’t mean
a copycat will make a quality item.”

Still, commercial OSHW is still a very new business model and companies are still exper-
imenting with different methods to stay profitable. For instance, all Arduino designs are
open, but the name Arduino itself is protected. As Zimmermann (2014, p. 213) remarks:
“Brands in open source hardware are as important as they are for businesses with closed
source, or patented, hardware.”. The OSHW approach of Arduino, protecting their brand
name via a trademark – while somewhat controversial at the time (D. A. Mellis, 2014, p.
154) – has proven quite successful, and has been copied by other companies.

Makerbot Industries – one of the poster child companies within the 3D printing world
– originally started as an open hardware company, and enjoyed considerable amounts of
success. In 2012 they opted to transition to a closed, proprietary business model, citing
pressure from Chinese clones (Pettis, 2012). The decision led to considerable criticism
from the community. Since then, the company was bought by industry giant Stratasys,
but faced disappointing sales figures, leading to a layoff of 20% of its staff (Biggs, 2015).
Makerbot’s competitor, Ultimaker, has remained open source. However, the release of
source files is delayed by several months, allowing the company time to recuperate their
investments.

As a final point of nuance, it should be noted that hardware is “open” by default (Gibb,
2014, p. 12). Unlike software, which falls under copyright, inventions can only be pro-
tected using (costly) patents. Unless patented, anyone is free to reverse engineer an existing

31

1. INTRODUCTION

product and bring it to market. The legal framework of open source hardware licenses is
more complex than meets the eye. Open source hardware licenses are built upon copy-
right law. Consequently, such licenses cover only the reference designs, and not the object
itself (Thompson, 2008).

1.1.3 HACKING PARADIGM

To the layperson the word “hacking” usually invokes the mental image of a criminal break-
ing into a computer system with the purpose of stealing data or interrupting service. How-
ever, the term has a much richer meaning and history beyond its cybercriminality conno-
tation. Older definitions of hacking do not have the connotation of malicious intent, and
instead focus on cleverness, playfulness and technical accomplishment. For instance, MIT
has a rich history of students organising innocent pranks with a high degree of technical
challenge, such pranks are called hacks (Peterson, 2011).

In our work, we interpret the word hacking as leveraging existing existing resources and
modifying or appropriating them to serve an unintended purpose, often in an unexpected
or clever fashion (see A. Williams et al. (2012) for a similar definition). Paradiso et al.
(2008) and B. Hartmann et al. (2008) identify three underlying motivations for such a
process:

• Hacking is used to overcome resource limitations and short deadlines: reappropri-
ating an existing design is cheaper than creating a new design from the ground up.

• Hacking allows ideas to be fleshed out before they are advanced enough to merit
formal development.

• Hacking serves as a source of inspiration, and by frequently engaging in hacking
activities, designers build up a mental database of solutions.

Hardware hacking has become increasingly difficult due to continuing efforts of minia-
turization, automation, and robotization in the manufacturing industry (Paradiso et al.,
2008). This is evidenced by the decreasing size of electronic components: resistors of
0.4 mm × 0.2 mm are now routinely used in products. Current trends in consumer prod-
ucts include using glue instead of screws to keep housings closed and repairing broken
products is being actively discouraged by some companies. Still, hardware hacking has
seen a resurgence in recent years due to internet culture and the rise of open source hard-
ware communities (Paradiso et al., 2008).

An interesting example is the phenomenon of IKEA hacking (Rosner, 2009). While hack-
ers work alone, instructions for their hacked furniture is shared online. This is made
possible by the fact that IKEA products are globally available, fulfilling a prerequisite of
a reproducible design. In the article, one of interviewed IKEA hackers also noted the
following: “being inexpensive means IKEA products are not thought of as “precious,” so it’s
psychologically and financially easier to tinker with them.”

32

1. INTRODUCTION

Human-Computer Interaction (HCI) research itself has a rich hacking history. As A.
Williams et al. (2012) notes, most development and implementation activities in inter-
action research can be summarized as hacking. This is unsurprising, as development in
academic research is typically limited to build a working proof of concept, and not to de-
sign a fully-finished product. Here, hacking is a valuable method considering the pressure
to meet deadlines and the budget limits for prototyping.

As a final point, hacking as an activity in itself is also a point of study, both in theory
and in practice. For instance, Von Hippel and Paradiso (2008) link hacking to lead user
innovation from a theoretical perspective. By contrast, Zappi and A. McPherson (2014)
apply hacking in the form of circuit bending as an integral design aspect of a novel musical
instrument.

1.1.4 MAKER MOVEMENT

The maker movement is a name for the contemporary trend of DIY revival. The movement
is closely associated with Make Magazine and their Maker Faires. Dale Dougherty, one of
the key figures of Make Magazine, states that the magazine began “with the observation
that people were hacking physical things again” (Dougherty, 2008). Section 1.1.3 explains
the background of hacking in DIY. Previous sections show that this rise in “physical hack-
ing” is made possible largely due to the emergence of open source hardware. Hacking
commercial products has become much harder due to the ever-increasing complexity and
miniaturization of consumer products.

Based on this insight, Dougherty, an executive at O’Reilly media (a publisher of techni-
cal manuals and programming books) decided to launch a new magazine in 2005. The
magazine would draw inspiration from mid-20th century tinkering magazines of, such as
Popular Mechanics (Dougherty, 2012). The word “maker” was chosen because the term is
broad and very relatable. Not many people identify with words such as inventor or hacker.
On the other hand, as Dougherty (2012) notes, everyone is a maker of something, be it
cooking, gardening, or knitting. A year later, in 2006, Make Magazine organized the first
Maker Faire in San Mateo, California. The Maker Faire was conceived as sort of show-
and-tell event where makers could meet one-another to demonstrate and discuss their
work (Dougherty, 2012). Since then, hundreds of Maker Faires and mini Maker Faires
have been organized worldwide.

The maker movement shares many characteristics with older DIY trends. Most impor-
tantly, these trends emphasize building physical objects. However, the maker movement
also has a number of characteristics that were not prominent in the preceding trends.
Hatch (2013) argues that in addition to making, the movement also celebrates values
such as sharing, collaboration, education, community and entrepreneurialism.

The internet has had a tremendous impact on the maker movement. It offers an acces-
sible medium to share one’s work with the world and it facilitates collaboration without
physically meeting. Many online communities exist, each with their own specific focus.

33

1. INTRODUCTION

Examples include Instructables, an instruction sharing website; Etsy, a marketplace for
homemade items; and Ravelry, a community for knitters and crocheters (Kuznetsov and
Paulos, 2010). Online platforms greatly facilitates collaboration, especially when dealing
with niche projects where one might not find collaborators closeby.

It is notable that sharing and collaboration does not solely take place online. In addi-
tion to the aforementioned Maker Faires, recent years have also been marked by the rise
of FabLabs, makerspaces, and hackerspaces, which serve as local community hubs for
maker culture. FabLabs are publicly accessible spaces where tools such as laser cutters, 3D
printers, and Computer Numeric Control (CNC) machines are made available. FabLabs
usually charge a membership fee, similar to a gym membership, though many are open to
the general public on select moments. The first FabLab was started more than ten years
ago as an offshoot from MIT’s Centre for Bits and Atoms as a way to empower users to
“make almost anything” (N. A. Gershenfeld, 2005; Mostert-Van Der Sar et al., 2013). As
of 2016, the Fab Foundation lists 715 FabLabs worldwide, spread over five continents5.

Many FabLabs serve a role in Science, Technology, Engineering and Math (STEM) ed-
ucation and outreach. Troxler (2013) shows that two out of three FabLabs are linked to
educational institutions such as universities and colleges. Blikstein (2013a) draws paral-
lels between the evolution of programming in education and that of design/engineering
in education: “What Logo did for geometry and programming – bringing complex math-
ematics within the reach of schoolchildren – fabrication labs can do for design and engi-
neering. Digital fabrication is Logo for atoms.” Blikstein also points out that STEM skills
are quickly becoming a new form of literacy due to the evolving needs of society (Blik-
stein, 2013a). Mostert-Van Der Sar et al. (2013) argue for the place of FabLabs in higher
education, with design education in particular. The researchers show that FabLab environ-
ments enable rapid design iterations of physical artifacts, make a comparison to the agile
method in software development, and argue that iterations are essential in user-centered
design. Furthermore, FabLabs enable design students to go beyond purely mechanical
prototypes, creating opportunities for incorporating microelectronics and programming
into product prototypes. Martin (2015) shows that the maker movement is not only
valuable for higher education, but also holds many opportunities within K-12 education:
maker-centric activities mesh well with new curricular goals, and the act of making has an
important transformative and empowering dimension. Finally, many students experience
making as intrinsically pleasurable activity, and this intrinsic motivation for education is
a factor that is lacking in traditional education (Honey and Kanter, 2013).

In The Maker Manifesto, Hatch (2013) recounts many stories of how TechShops – and
the maker movement by extension – have dramatically lowered the barrier of creating and
commercializing a physical product. Hatch summarizes that in the past, one would need
an investor to develop a product due to the large amounts of capital required. With the
rise of the maker movement, small products can be developed for under $1000, disposable
money. Hatch concludes that the maker movement has tremendous economical value
because it allows disposable income, as opposed to investment capital, to be used to create
new businesses.

5http://www.fablabs.io/labs

34

http://www.fablabs.io/labs

1. INTRODUCTION

Fig. 1.3 Model of long tail economics. Adopted from Anderson (2008).

A similar sentiment is echoed by Anderson in his book “Makers: the new industrial revo-
lution” (2012). Anderson frames entrepreneurialism within the maker movement as an
example of long tail economics (fig. 1.3), a model which he previously introduced as an
explanation for the success of internet companies such as the online book retailer Amazon
and the music streaming service Spotify (Anderson, 2008).

The long tail model states that new business models are focusing on serving many different,
small niche markets instead of serving few popular markets (Anderson, 2008). An Amazon
employee summarizes the phenomenon as follows: “We sold more books today that didn’t
sell at all yesterday than we sold today of all the books that did sell yesterday.” In other
words, the majority of Amazon’s revenue did not come from bestsellers, but rather from
their enormous catalog of obscure books. The internet is a major factor here: whereas
traditional book store have only so much shelf space available, the virtual shelf space of an
online retailer is unlimited. In his book, Anderson (2008) gives many more examples of
successful long tail companies. Music services such as iTunes and Spotify can offer a vast
music catalog at negligible cost, whereas a traditional CD store can only offer the most
popular music for sale. Google makes most of its advertising revenue from many small ad
campaigns targeted at specific user groups. Ebay offers its users a marketplace for the most
unusual objects, and most of the goods sold on Ebay cannot be found at big traditional
retailers.

Anderson (2012) and Hatch (2013) point at the maker movement as one of the enablers
of the long tail economics in hardware. When manufacturing one widget is as efficient as
manufacturing a hundred, targeting new niche markets becomes feasible. This is the case
with many digital manufacturing technologies. Because there is no tooling involved, these
technologies are ideally suited for small-scale manufacturing. Anderson (2012) argues that
digital manufacturing is a disruptive technology: whereas long tail economics of digital
goods was enabled by the internet, the long tail of things will be enabled by cheap and

35

1. INTRODUCTION

ubiquitous digital manufacturing technologies.

1.1.5 DIY IN RESEARCH

Do-it-yourself has a rich history of academic investigation. Particularly in the field of
human-computer interaction, DIY is featured prominently. Perhaps, this may be ex-
plained by the field’s ties with hacker culture. Academics have approached the topic both
from a theoretical perspective as well as from a practical side. Previous sections have al-
ready touched upon the interplay of research and hacking, open source hardware, and the
maker movement. This section will expand upon this topic with additional sources that
were influential in our work.

Already in 2001, Von Hippel (Hippel, 2001; Hippel and Katz, 2002) hinted at the in-
novation potential of user toolkits in niche application areas and “markets of one”. Von
Hippel describes the challenge of innovating in terms of “sticky” information; information
that is difficult and costly to transfer from the user to the designer. For example, in the
context of robot-assisted therapy, a therapist (the user) might be well aware of what robot
aspects (embodiment and functionalities) are important to a specific patient. A roboticist
however would not be aware of all these aspects. As Von Hippel explains, toolkits provide
a way to bridge this asymmetry of information: it makes sense to give users the tools to
build their own solutions instead of designing a solution for them.

Within the field of HCI, there already exists a large body of work on toolkits (Bdeir, 2011;
Chung et al., 2013; Dietz et al., 2014; Oh and Gross, 2015; Simon et al., 2014). As
shown by D. A. Mellis, Jacoby, et al. (2013), traditional toolkits do suffer from a number
of drawbacks: users are limited to the set of modules that the designers of the toolkit
have provided. Furthermore, the shape of the modules imposes a constraint on the shape
and aesthetics of the artifacts designed with the toolkit. Instead, (D. A. Mellis, Jacoby,
et al., 2013) propose “untoolkits” as a potential answer: toolkits that are interpreted more
as a design method rather than a fixed set of building blocks. Examples of untoolkits
include (Bouchard et al., 2015; Megaro et al., 2015; D. A. Mellis, Jacoby, et al., 2013;
Thomaszewski et al., 2014). Yet another approach is to design an artifact with the specific
intent of being modified by the end user. Examples of such hackable devices include
(Forsslund et al., 2015; D. A. Mellis and Buechley, 2014; Zappi and A. McPherson, 2014).

Still, modularity in toolkits should be interpreted as a spectrum, with generic, universally-
applicable modules at one extreme, and prescriptive, specialized modules at the other end.
The generic approach allows a toolkit to be used in a wider range of situations, at the cost
of being more difficult and time-consuming to use. Prescriptive modules, on the other
hand, are easy to use, though more limited. It is impossible to identify a single, correct
position in this spectrum, as the answer is ultimately highly dependent on context, user,
and application. Consequently, the appropriate balance should be determined for each
toolkit independently.

Tangible interaction research served as a valuable source of inspiration for our own work.

36

1. INTRODUCTION

One prominent example is the work of J. S. Silver: the Drawdio and the Makey Makey
(2014). Silver’s work bears similarities to Mellis’ concept of untoolkits, though Silver
frames the idea as “improvised interfaces”, as lenses which let you see the world as a toolkit.
The first example – the Drawdio6 – consists of a simple circuit mounted to a pencil that
generates sound based on resistance. Because the graphite inside a pencil is electrically
conductive, a user can create music by drawing. The second device – the Makey Makey7

– lets users turn any conductive object, such as a banana or a blob of Play-Doh, into a
keyboard button, allowing users to rapidly create new computer interfaces. With both of
these examples, simple tools are used to design rich tangible interfaces without the need
for programming. The system’s limitations serve as a source of inspiration for users.

Finally, we remark that there is a deep and rich history of DIY within academia. This is
not surprising, throughout history, scientists have been responsible for constructing their
own tools to further their research. Think of how Galileo used self-built telescopes to
discover the moons of Jupiter, or how Van Leeuwenhoek’s microscope lead to the discovery
of bacteria. The tradition continues to this day, and as A. Williams et al. (2012) note,
researchers are essentially hackers at heart. Even now, the aforementioned trends of DIY,
hacking, and the maker movement are embraced by academics as a mechanism for the
democratization of research and invention. Taking this one step further has lead to the
citizen science movement (Paulos et al., 2009; Phillips et al., 2014), as well as the push
for open source lab equipment (Herrmann et al., 2014; Pearce, 2012; Pearce, 2013).

1.2 LEARNING & CREATIVITY

This section looks at learning in its broader context. The term “learning” is often associated
with schools and other institutions for education, however it is a part of our daily lives.
Moderns society requires us to continually learn. Learning can be formal or informal,
student/teacher or self-paced. Even now, as technology permeates every aspect of our
daily lives, life-long learning becomes an ever-important skill. This section details the
influences of learning and creativity that were important over the course of this project.

1.2.1 STEM EDUCATION

In recent years, western policy has been characterized by an emphasis on transitioning
toward knowledge-based economies. In 2000, the European Union signed a policy plan
called the Lisbon Agenda, aiming to make the EU “the most competitive and dynamic
knowledge-based economy in the world capable of sustainable economic growth with
more and better jobs and greater social cohesion” (EU, 2000). This was followed by the
Europe 2020 strategy in 2010, which lists investing 3% of the gross domestic product in
research and development as one of the main policy targets (EU, 2010).

6http://www.drawdio.com
7http://www.makeymakey.com

37

http://www.drawdio.com
http://www.makeymakey.com

1. INTRODUCTION

However, as western societies orient themselves, the problem of insufficient science and
technology professionals is exacerbated. For instance, in Flanders, there is an enormous
imbalance in the job market for engineers, with demand exceeding the number of engi-
neers by a ratio of approximately four to one (VDAB, 2012). The problem is not limited to
engineering degrees, but extends to a wide spectrum of scientific, technical, and technolog-
ical jobs. The term STEM – an acronym standing for Science, Technology, Engineering,
Math – is often used to summarize these knowledge domains.

In the past ten years, there has been an explicit focus on STEM education in western
countries such as Belgium. However, this policy focus is not just driven by the need for
people with STEM degrees in the job market. The intended reach for this policy change
is much broader. The focus on STEM skills is driven by a society in which technology
takes an increasingly significant role in everyday life (Schmidt and Cohen, 2013). This
does not only result in a high demand for STEM skills on the job market, it also means
that technological literacy is increasingly becoming a necessary life skill for everyone. This
distinction is also reflected in a policy statement from the Royal Flemish Academy of
Belgium for Science and Arts (Veretennicoff et al., 2015).

Stimulating STEM literacy and interest in students from developed countries is not as
straightforward as it seems. The ROSE project (Schreiner and Sjøberg, 2010) revealed a
number of interesting dimensions toward the problem of science and technology educa-
tion. To begin, students from both developed and developing countries typically agree
that science and technology make life better. However, the study revealed an interesting
paradox: the more developed a nation is, the less students are interested in science and
technology class topics and the less interested they are in pursuing STEM careers. The
study also revealed remarkable gender differences. Overall, girls are much less inclined to
show interest in science and technology. Interest in different topics within STEM also
show a strong influence of gender: girls are more interested in topics such as health and
environment, whereas boys are more inclined toward topics such as mechanics and elec-
tricity.

A distinction should be made in current efforts in technology education: there is a dif-
ference between technological literacy (important for everyone) and technological compe-
tence (important to do your job) (Blikstein, 2013a). The first goal, technological literacy,
can be summarized as the basic knowledge of the technological principles that govern
our daily lives. As technology is becoming increasingly ubiquitous and permeates all as-
pects of our lives, it is important for everyone to have basic technical skills (Pearson and
Young, 2002). The second goal, technological competence, refers to the skills of profes-
sionals to manipulate technology to suit a specific purpose. Technological competence
refers to the skills that are required to do one’s job. Not all jobs require technological
competence, though the job market has a large demand for such profiles. One challenge
remains prevalent in engineering and technology education: knowledge evolves so quickly
that the specific domain knowledge one learns in school can become outdated by the time
one graduates. Hence the importance of learning how to learn, and not just memorizing
specific facts.

More recently, educators have begun to argue that the acronym STEM should be replaced

38

1. INTRODUCTION

by STEAM. The A, referring to arts, emphasizes the importance of creativity. Maeda
(2013) argues that true innovation only happens when convergent thinking is combined
with divergent thinking, and that science and arts work better together than they do apart.
Piro (2010) argues that art represents a sizable portion of the United States economy,
and that artistic involvement directly leads to better proficiency in creativity, collabora-
tion, communication, and critical thinking – all touted as hallmark 21st-century skills.
Equally important is that arts instruction emphasizes that problems can have many solu-
tions, a nuance that is often overlooked in conventional education. J. W. Bequette and
M. B. Bequette (2012) argue that art education should be broader than art eo ipso and that
functional art, such as product design and graphic design, could be incorporated in the
curriculum of STEAM education. They also argue for the similarities between arts and
engineering education: both are born from ill-defined, real-world problems, and both
topics lend themselves well to problem-based learning approaches. As evidenced by the
preceding paragraphs, STEAM covers a wide breadth of skills, topics, and disciplines. In
the rest of this work, we focus in particular on incorporating elements of technology (T),
engineering (E), and art (A) education into our work.

1.2.1.1 METHODS

Studies show that certain teaching strategies can be used to foster STEM participation and
achievement. Traditionally, STEM topics are taught in classrooms using an ex-cathedra,
instructionist approach, where the teacher introduces new knowledge and the students lis-
ten and follow. However, Prince (2004) shows that switching from a traditional education
approach to any form of active learning leads to a better learning outcome in engineering
education. Similar effects are demonstrated by Hake (1998), who analyzed the effects
of interactive engagement in physics education leads to an increase of 108% in learning
outcomes.

One of the most prominent pedagogic methodologies within STEM education is construc-
tionism, as introduced by Seymour Papert in his seminal work Mindstorms: Children, Com-
puters, and Powerful Ideas (Papert, 1980). As mentioned earlier, one of the predominant
modes of teaching used in schools are instructionist methods. In this format of teaching,
there is a clear distinction between the teacher, serving as the provider of knowledge, and
students as the recipients. Papert (1980) introduces constructionism as an alternative to
this approach.

Constructionism is based on the constructivist theory that “learners construct mental mod-
els to understand the world around them”. Constructionism is a student-centric approach
where students use knowledge they already possess to acquire new knowledge. The ap-
proach emphasizes that learning happens most effectively when it is connected to making
tangible objects, though the approach is described as much deeper than a simple learn-by-
making formula (Papert and Harel, 1991). In essence, instructionism can be summarized
as the “transfer of knowledge to students”, whereas constructivism and constructionism
entail the “production of knowledge by students”. Though remarking upon the irony of
giving a definition of constructionism (Papert and Harel, 1991), Papert offers the follow-

39

1. INTRODUCTION

ing description (Papert, 1986):

“The word constructionism is a mnemonic for two aspects of the theory of science
education underlying this project. From constructivist theories of psychology we
take a view of learning as a reconstruction rather than as a transmission of knowl-
edge. Then we extend the idea of manipulative materials to the idea that learning
is most effective when part of an activity the learner experiences as constructing a
meaningful product.”

The work of Papert is centered around using computers as a medium for education, though
computers are not a prerequisite to constructionism and they are also not the only viable
medium: “computers figure so prominently only because they provide an especially wide
range of excellent contexts for constructionist learning” (Papert and Harel, 1991). Within
the framework of Papert’s research, Logo (a programming language designed for children)
and Turtle graphics (a tool for using programming to make images) were developed. Papert
likened the process of learning Logo to living in “mathland”; it is as natural to learn math
this way as it is natural to learn French while living in France.

The well-known LEGO Mindstorms robotics kits are also named in reference of Paper’s
book, though the project was originally called LEGO/Logo. Recent years have been
marked by the emergence of new media that is especially appropriate for construction-
istic learning. The work of Blikstein identifies digital fabrication (Blikstein, 2013a) and
robotics and physical computing (Blikstein, 2013b) as especially promising media for ap-
plying constructionist approaches in STEAM education.

Another novel teaching paradigm for STEM education is called Project-Based Learning
(PBL). In this student-centric pedagogy, students learn about a topic by exploring a certain
open-ended problem. Fortus and Krajcik (2005) argue that traditional science education
is built upon well-defined problems, such as predicting the ideal trajectory of a projec-
tile. On the other hand, science in practice is predominantly occupied with ill-defined
problems where “decisions are not clear-cut, where requirements can conflict, where opti-
mization rather than ’proof ’ is needed” (Fortus and Krajcik, 2005).

In STEM fields, in particular, this method is gaining traction: examples include (Fortus
and Krajcik, 2005; Kolodner and Camp, 2003; S. McPherson, 2014; Rockland et al.,
2010; Törnkvist, 1998). As technology is evolving at an ever-increasing pace, it is no
longer sufficient to just be able to memorize and reproduce factual knowledge. Instead, a
deeper understanding of knowledge and the ability to apply knowledge and skills in a real
world context are becoming increasingly important. It is these aspects, in particular, that
the PBL approach excels at (Capraro et al., 2013).

Building robots is a popular project choice for the implementation of PBL in classrooms.
The reason why it is such a popular choice can be explained by the interdisciplinary na-
ture of the topic: robotics requires many different scientific, technical and technological
skills, such as physics, electronics, mathematics and programming. It is an ideal subject be-
cause so many different courses can be linked to it (Johnson, 2003). Additionally, robots

40

1. INTRODUCTION

themselves capture the imagination of children and teenagers, providing inspiration and
motivation (Johnson, 2003).

The PBL approach in general and the use of robotics in education in particular have a
number of other differences with more traditional ways of teaching. Whereas math prob-
lems typically have one, and only one correct answer, PBL emphasizes that most real world
problems have many different solutions. With PBL, students learn to deal with these real
world problems using creative problem solving, an important real-life skill. In addition
to technical skills, PBL also allows the students to learn important social skills, such as
communication, leadership, planning and cooperation (Bell, 2010).

1.2.1.2 CHALLENGES

Though these novel teaching approaches show great promise, they are not without their
challenges. Historically, engineering education has shifted from professional engineer to
the scientific engineer over the years (Tryggvason and Apelian, 2006). Theoretical classes
have won out over the more expensive engineering labs and design classes (Feisel and
Rosa, 2005). However, two influences have begun to reverse this trend: (1) as it turns
out, graduates are not prepared for real engineering work, (2) prototyping equipment
has become dramatically cheaper, creating prototypes can now happen in days instead of
months (Blikstein, 2013a).

Even though active teaching methods are slowly starting to gain a foothold in STEM
education, the underlying issues that have lead to the scientific engineer remain a challenge.
Active teaching approaches are more costly than instructionist approaches: they require
more teacher time and training, they require smaller class groups, and they require more
equipment and infrastructure.

Constructivist and constructionist teaching approaches also have far-reaching effects on
classroom dynamics. When switching from well-defined classroom problems to ill-defined,
open-ended problems, the teacher needs to assume a new role: the role of a mentor or
coach. Many teachers are unaccustomed to this new role. The open-ended nature of
such active teaching approaches mean that there is a very real chance that students will
have questions that a teacher cannot answer. Again, this is not the case with traditional
teaching, where the teacher can reasonably expect to be able to answer all questions from
students.

While using robotics for PBL offers a promising alternative to the traditional teaching
methods, implementing this on a large scale in education poses several challenges. Mataric
et al. (2007) sums up five big challenges:

1. Lack of teacher time.

2. Lack of teacher training.

3. Lack of age-suitable academic materials.

41

1. INTRODUCTION

4. Lack of ready-for-use lesson materials.

5. Lack of a range of affordable robotics platforms.

Especially the cost remains a barrier in the implementation of robotics in education (Gonzalez-
Gomez et al., 2012; Johnson, 2003; Mataric et al., 2007; Mondada et al., 2009; Riojas
et al., 2012). Schelly et al. (2015) argue that as a general rule, STEM education is more
costly than traditional education, and the trend of decreasing budgets for education com-
bined with the rising costs of lab equipment leads to a precarious situation for STEM
education.

Besides these challenges, gender issues remain relevant in the context of technology edu-
cation. Presently, popular STEM topics such as robotics and other technological hobbies
are usually associated with boys, as discussed in the ROSE project (Schreiner and Sjøberg,
2010). Girls are often subtly discouraged and told to pursue other interests (Modi et al.,
2012). As a result, women are underrepresented in STEM-related fields. Studies have
shown that while girls will not always focus on the same aspects of building robots as boys,
they show just as much interest in the topic (Johnson, 2003). Consequently, robotics – if
properly approached – can serve as a way to increase the number of women in technical
and technological fields (S. Hartmann et al., 2007).

1.2.2 ROBOT KITS AS LEARNING MATERIAL

As touched upon in the previous section, the topic of robotics is frequently chosen by
teachers as the subject of STEM-focused PBL. The reason for this is obvious: as Benitti
(2012) and Johnson (2003) show, teaching robotics is a very effective way of motivating
and integrates many different knowledge domains of the curriculum. Furthermore, it
also stimulates students’ social and teamwork skills. As a secondary aspect, robots are
something that captures the imagination of many children, which serves as a motivator
(Johnson, 2003). Examples of robots being used in STEM education are plentiful, and
cover both K-12 and university-level instruction (Benitti, 2012; Carbajal et al., 2011;
wyffels, Hermans, et al., 2010).

Broadly speaking, there are two ways to implement robotics in an educational context:
(1) starting from an existing robotics kit or (2) by building robots from scratch. Building
a robot from scratch tends to be much more difficult. Consequently, kits tend to be
more popular in classrooms, especially when younger students are involved. Robot kits
provide everything needed to make a functional robot, such as building elements, motors,
sensors, instructions, a programmable control unit, and the software to program the robot.
While this is a great way to get up and running quickly, the approach does include several
disadvantages:

• Kit components tend to be more prescriptive and less flexible.

42

1. INTRODUCTION

• It can be hard to interface proprietary kits with components such as standardized
parts, components made by third parties, or off-the-shelf sensors and actuators.

• Finding or buying replacement parts is not always possible.

• Not all components are used or needed in a robot, so you are paying for components
you do not need.

That being said, these systems are a great starting point as they provide a set of compatible
building blocks and electronics, software for easy (graphical) programming, instructions
and a community network.

LEGO Mindstorms (fig. 1.4) is a popular example of a commercial robot kit. Mind-
storms is built around a programmable microcomputer brick that can control up to 3
motors and read up to 4 sensors. LEGO Technic style bricks are used to build the struc-
tural parts of the robot. Because of this, building blocks from other Lego sets can be easily
incorporated, expanding the potential level of intricacy of the robots. Mindstorms is al-
ready being used in many classrooms, both in K-12 (W. Church et al., 2010; K. Williams,
Igel, et al., 2012) and at university level (Brandt and Colton, 2008; Ranganathan et al.,
2008). The popularity of Mindstorms translates to a plethora of resources available for ed-
ucators, including books, robot contests, online communities and workshops that are built
around the Mindstorms ecosystem. Despite these advantages, one of the main downside
of commercial robot kits lies in their closed, proprietary nature.

Fig. 1.4 LEGO Mindstorms EV3 kit Fig. 1.5 Thymio. Adopted from Riedo, Cheva-
lier, et al. (2013).

While commercial kits dramatically accelerate the design process, they also limit the max-
imum potential of the robots. The number of motors in LEGO Mindstorms is limited
because the programmable brick can only drive three motors. While this is enough for
simple differential-drive robots, more complex robots cannot be created. Sometimes, stu-
dents want to use more motors, but run into this system limitation. Users are also limited
to the components offered by the kit, and interfacing with third-party components is hard,

43

1. INTRODUCTION

actively discouraged, or outright impossible. Finally, at a price of around 400 EUR for the
base set, the platform can be quite costly for certain users. Providing enough robot sets for
an entire class can quickly become an expensive affaire. Larger schools can alleviate this by
buying enough sets for one group and then pass them around between the different class
groups, though this is not always feasible, especially for small schools or organizations.

A second category of off-the-shelf educational robots are self-contained driving robots,
such as the Thymio (Riedo, Rétornaz, et al. 2012, fig. 1.5) and the Edison8. This type
of educational robot can be used as-is, without any construction or assembly by the user.
However, some robots – including the Thymio and the Edison – are designed to be ex-
tended using craft materials or LEGO bricks. These robots are affordable and robust, two
important aspects in an educational context. However due to their prescriptive design,
they tend to emphasize programming activities over construction and physical experimen-
tation.

DIY and OSHW variants of this type of robot also exist. For instance, the MiniSky-
Bot(Gonzalez-Gomez et al., 2012) is a small differential-drive mobile robot that can be
built using 3D-printed components and off-the-shelf parts. This approach is interesting
because it offers beginners a working design to start with. The MiniSkyBot can be used
similar educational programming activities, such as programming a line-following behav-
ior. However, because the robot is open source, it can be used as a starting point for
hacking and extending functionalities. Doing so brings students into contact with real
engineering principles and challenges, and represents a more holistic approach to STEM
education.

In recent years, making a robot from scratch has become much easier. As described in
section 1.1, trends such as the open source hardware movement and the maker movement
have had a tremendous influence in democratizing many technologies, including robotics.
Recently, many different products and platforms have emerged that implement elements
of a robotic system. These elements can be categorized into three groups: software, elec-
tronics and hardware components. Historically, software has been the easiest to share as
Open Source because collaboration can be done easily over the internet, because devel-
opment tools are readily available and because there is virtually no cost associated with
replication or adaptation. Online platforms such as GitHub greatly facilitate this process
(Dabbish et al., 2012). However, in recent years the electronics and hardware projects
have flourished under the influence of DIY, open source, and maker trends.

One of the core requirements for a functional robot is a programmable controller that
can read sensors, process information and drive actuators. Many options are available
for robots built from scratch, making it possible to tune the electronics to the specific
functionality needs of a robot. Boards from the Arduino ecosystem (discussed in section
1.1.2) are a popular option for small scratch-built robots. Examples of Arduino-based
robots include Araújo et al. (2014), Gonzalez-Gomez et al. (2012), and Juang and Lurrr
(2013). The combination of a low cost board and the ease of use of the software have

8Meet Edison - A Cheap Programmable Educational Lego Robot Kit –
http://meetedison.com

44

http://meetedison.com

1. INTRODUCTION

made Arduino a very popular platform, especially among hobbyists.

A B C

Fig. 1.6 Examples of programmable controllers: (A) Arduino Uno, (B) Dwengo, (C) Raspberry
Pi.

The Arduino boards are not specifically designed for use in robotics, but their functionality
can be extended through daughter boards called shields. Shields are attached on top of an
Arduino board and provide the board with extra functionality, such as circuitry to control
DC motors. Many of the Arduino and Arduino compatible boards use the same physical
pin layout; because of this the shield form factor has become a de facto standard. Many
different shields exist, providing a plethora of possible functionality, made by either the
Arduino organization or, more often, by third party vendors. The size of the Arduino
ecosystem gives robot designers a large degree of flexibility. On the other hand, educators
face the problem that choice can be overwhelming; the starting point for building robots
with Arduino is not always clear. This corresponds with problems identified by Mataric
et al. (2007), such as the “lack of teacher time” and the “lack of teacher training”.

A more specialized example of a controller board suitable for educational robotics is the
Dwengo. The project aims to provide an easy to use platform for getting started with mi-
crocontrollers, electronics and programming (wyffels, Hermans, et al., 2010). Originally
started in 2009 at Ghent University as a microcontroller experimentation board for inter-
nal use, it was developed further when its potential benefits for education became clear.
Unlike Arduino boards, which typically aim to provide a very low cost bare-bones board,
the Dwengo board includes features to facilitate building robots. The board includes a dis-
play, input buttons, 2 servo connectors and a 2 channel DC motor driver. In addition to
the electronics board, the Dwengo project also offers a set of step-by-step tutorials created
specifically for secondary school education. Like with the Arduino, building robots with
Dwengo is more complicated than using an off-the-shelf kit. On the other hand, this
approach is more flexible and brings students into contact with real-world engineering
principles.

Finally, the Raspberry Pi9 is a low cost single board computer, developed to promote
the teaching of programming and computer science in education (Mitchell, 2012). This
board is different from previous examples in that it runs a full Linux OS. In practice, the
board can do more advanced things that an Arduino can’t, such as running computer

9Raspberry Pi – http://www.raspberrypi.org

45

http://www.raspberrypi.org

1. INTRODUCTION

vision algorithms and communicating with the internet. However, the Raspberry Pi is
not suitable for real-time tasks due to the processing overhead of the OS. Boards such as
the Arduino and the Dwengo are better suited for such tasks. In addition to USB and
Ethernet ports, the board also has a General Purpose Input/Output (GPIO) pin header
that gives access to low-level peripherals. The board’s low cost combined with the access
to low-level peripherals have made the board popular with hobbyists.

The Raspberry Pi lacks many of the features that are required to build a robot, such as
the ability to control DC motors. Luckily, this functionality can be added using daughter
boards, much like Arduino shields. While more complex to use than a simple microcon-
troller, the advanced capabilities of the board allow for experimentation with technologies
such as AI and computer vision.

led = LED(1)
led.on()

pinMode(13, OUTPUT);
digitalWrite(13, HIGH);

DDRB &= (1<<5);
PORTB |= (1<<5);

high-level

low-level

Fig. 1.7 Text-based programming languages. Fig. 1.8 Visual programming language
made with Blockly.

The second aspect of a robot is its software, which the behavior of the controller. Many
different programming languages exist. However, most microcontrollers can only be
programmed in one or two languages. Traditionally, a robot’s microcontroller is pro-
grammed using a low-level, text-based programming language such as C. While pow-
erful and resource-efficient, C is a complex language and is not beginner-friendly. The
Arduino boards are programmed in C, though the programming process is made much
easier through carefully designed libraries. The design of the Arduino Application Pro-
gramming Interface (API) is based on Wiring (Barragán, 2004), which in turn is based
on Processing (Reas and Fry, 2007), a programming for creative coding. The Arduino li-
braries allow cryptic port manipulation commands to be replaced by more intuitive code,
as illustrated in figure 1.7.

The Python programming language is also frequently used in education (Stajano, 2000).
This language can also be used to program educational robots (Blank et al., 2003). Unlike
C, Python is a high-level programming language, meaning that it has a degree of abstrac-
tion over the technical details of the computer. As a result, the language is much easier
to use. The language is designed to run on full scale computers, but also runs natively
on single-board computers such as the Raspberry Pi. Recently, efforts have been made
to port the programming language to low-cost microcontrollers. MicroPython10 imple-
ments a subset of the Python programming language and runs directly on microcontroller
boards such as the ESP8266 and the BBC Micro:bit.

10MicroPython – http://micropython.org

46

http://micropython.org

1. INTRODUCTION

The second group of programming languages used in education are visual programming
languages. These languages let users create programs through a graphical drag-and-drop
editor. Text-based languages can be quite daunting for novices. Not only is it hard to trans-
late human language concepts to algorithms that a computer can understand, one also has
to take care that the syntax of the program is correct. Graphical programming languages
alleviate the second problem, while also providing an interface that is more appealing to
children than a text editor. On the other hand, programming in a graphical languages is
slower and more tedious than using a text-based language. Additionally, graphical pro-
gramming languages are not suitable for large scripts, as they take up a lot of screen space.
Visual programming languages should be seen as a stepping stone, making real-world pro-
gramming accessible to a large audience of users. Professional programmers will most
likely continue to use text-based programming languages because of their efficiency, even
though they are more difficult to learn. Some graphical programming languages offer the
option to generate text-based code output. This can be helpful to transition from visual
to text-based programming.

Scratch is a notable example of a graphical programming language that is designed for
education. Developed at MIT Media Lab in 2006, the language aims to teach children
the principles programming through the creation of simple games and interactive movies
(Resnick et al., 2009). The language was very successful; as of this writing, more than 17
million Scratch scripts have been shared by users11. Scratch features a display area, onto
which different sprites can be placed, and a programming area, onto which puzzle-like
programming blocks can be placed. These puzzle blocks can represent simple commands
(”move 10 steps”), or more complicated control structures, such as loop statements (“re-
peat …until”) or conditional statements (“if …then …”). The blocks can be snapped
together to create a logical sequence of actions, similar to the sequence of statements one
would find in traditional code. Because of the different shapes of the different types of
puzzle-like blocks, they can only be combined in a way that makes sense, eliminating the
possibility of syntax errors.

Scratch is very much oriented at computer-centric use. While some options exist to make
Scratch interact with the outside world, these options are limited and Scratch is better
suited for computer use only. However, the project has inspired a number of derivative
languages that are suitable for creating programs that interact with the physical world.
Google’s Blockly is a library that greatly facilitates the development of Scratch-like pro-
gramming languages. Using the Blockly Application Programming Interface (API), one
can easily define its own set of blocks in order to create a fully customized graphical pro-
gramming language. Blockly cannot be used to program robots directly, but it does pro-
vide a very convenient way to design a language that can be used for that purpose. Exam-
ples include Goud et al. (2015), Pacheco et al. (2015), and Saleiro et al. (2013), as well as
the visual programming interface in this work. Further examples of derivative languages
include ArduBlock12 and ModKit (Millner and Baafi, 2011), two graphical languages to
program microcontroller boards such as the Arduino.

11Scratch – http://scratch.mit.edu
12ArduBlock – http://blog.ardublock.com

47

http://scratch.mit.edu
http://blog.ardublock.com

1. INTRODUCTION

The third and final element is the embodiment of a robot. Hobbyist robot makers tend to
rely on a wide variety of techniques when it comes to building the physical embodiment of
their robots. Some repurpose old toy components, some make their robot out of cardboard
and duct tape, some even build their own metal chassis using advanced CNC machines.
The democratization of digital manufacturing infrastructure in recent years means that
many custom robots are now created using 3D printers and laser cutters. Still, there are
projects that aim to facilitate the embodiment design process by providing a standardized
construction system that is suitable for robotics. Some examples are shown in figure 1.9.

A B C

Fig. 1.9 Examples of construction systems: (A) MakeBlock, (B) OpenBeam, (C) BitBeam.

MakeBlock13 is a commercial building system aimed at building robots and other small-
scale mechatronic toys. The system is built around aluminium beams. These beams can
be connected using standard machine screws. The aluminium beams have a threaded slot,
threaded ends, and two rows of equidistant holes. In addition to these beams, the system
includes accessories such as motor mounts, servo mounts, angle brackets, and joining
plates. The MakeBlock system is a great way to build rigid constructions for robots. The
threaded slots make it easy to incorporate third-party components. The system uses the
same hole spacing as LEGO Technic bricks, further improving compatibility. However,
the system is relatively costly.

Another option is the use of miniature T-slot extrusions. T-slotted aluminium framing
is commonly used in industry to build custom enclosures, test setups, or custom ma-
chines. The T-slot system is flexible and high-quality, though standard profiles are too
large for small-scale educational robots, with 20 mm × 20 mm being the smallest size
available from industrial automation component vendors. However, several companies
have designed miniaturized versions of this industrial framing system, specifically aimed
at makers and hobbyists. The first example is MakerBeam14, a 10 mm × 10 mm version
of the T-slot system. OpenBeam15 is another example, based around 15 mm × 15 mm
cross-section. These systems were not specifically designed with robotics in mind, but

13MakeBlock – http://www.makeblock.com
14MakerBeam – https://www.makerbeam.com
15OpenBeam – http://www.openbeamusa.com

48

http://www.makeblock.com
https://www.makerbeam.com
http://www.openbeamusa.com

1. INTRODUCTION

because other components can be connected so easily, they can be adapted to suit this
task. One downside is the systems focus on static connections, but don’t offer specialized
components for constructing moving mechanisms.

A third and final construction system is GridBeam16 and its variants. These systems use
beams with equidistant holes as the main construction element. GridBeam uses 1.5 in
square beams, a size that suitable for constructing large objects such as furniture. The
BitBeam17 variant of the GridBeam system uses 8 mm square beams with holes spaced at
8 mm intervals, making it much more suited for building small scale robots. The 8 mm
spacing matches that of LEGO Technic bricks, making integration with LEGO bricks
trivial. OpenStructures18 (Abel et al., 2011, p. 229) also falls within this category. The
OpenStructures system is distinct in that it is designed to be scaled, making it appropriate
for anything from small tools and devices, to furniture, to houses. All these systems are
comparatively simple and can easily be replicated. Gridbeam-style components can be
created through many different methods. Beams can be made using hand tools or with
CNC machines, and the design (i.e. the dimensions) can be modified to suit the specific
needs of each project.

Educational robotics have the potential to transform education from student observation
and listening to active engagement through interactive hands-on lessons, guided by in-
structors and augmented by real-world examples and technology. However, the feasibil-
ity of a robotics-enhanced problem-based curriculum depends on the access to versatile
robotics tools and well-organized tutorials. Generally speaking, there are two ways to
build a robot: either by using a complete robotics platform, or by constructing a robot
from scratch. Complete systems are easier to use, allow for quicker results and are better
suited for young students. The downside is that they are generally more expensive and less
flexible. Building a robot from scratch, in contrast, is much harder and is more suited for
older students, but gives much better insight in the technology, is more flexible and can
be much cheaper. In recent years, building a robot from scratch has become much easier
due to numerous projects and products that implement certain aspects of a robot, such
as hardware, software or electronics. These product and projects are linked to the recent
advancements DIY and maker movement trends. We believe that the DIY and Maker sub-
culture can have a valuable impact on education, as it not only encourages young people’s
interest in STEM-related fields, it also fosters creativity and technological fluency.

In our experience, educators frequently choose an all-in-one robotics platform because
they do not know of any alternatives or because they cannot find a clear starting point
for alternative platforms. This choice is often further motivated because their regional
colleagues tend to use the same platform, so there is a certain form of a support network.
In our experience, classes that use a complete robotics platform, such as Mindstorms, tend
to outnumber classes that build their own robots from scratch by a large margin. And while
robots built with an all-in-one kit may perform better, students that build their own robot
either completely from scratch, or by combining elements from the different systems as

16GridBeam – http://www.gridbeam.com
17BitBeam – http://bitbeam.org
18OpenStructures – http://www.openstructures.net

49

http://www.gridbeam.com
http://bitbeam.org
http://www.openstructures.net

1. INTRODUCTION

described above, tend to gain a much deeper understanding of technology, engineering
and creative problem solving.

1.2.3 CREATIVITY

Recent changes in education and in society have placed an emphasis on the importance
of creativity. Simply memorizing and reproducing knowledge is no longer sufficient for a
productive and satisfying life. Simply put, advances in computing and information tech-
nology have greatly diminished the importance of memorization. Computers are much
better than humans at storing and recalling data, they are also much better at calculation,
however they are not (yet) capable of creative thought.

This focus on creativity is prominently present in online culture. Already in 2005, Lenhart
and Madden reported that more than half of american teenagers post their own content
online. Furthermore, in recent years websites centered around user-generated content
have seen a rise to prominence. This includes platforms such as Etsy and Instructables
(Kuznetsov and Paulos, 2010), as well as the emergence and popularity of social media.

Sanders (2006) argues that all people are creative to a certain extent, and that people have
different creativity levels in different domains: “People have different needs for creativity
in different domains of their life”. Furthermore, she discerns four basic levels of creativity,
illustrating the difference between these levels using simple cooking analogies:

1. doing – buying a prepackaged meal

2. adapting – adding an extra ingredient to cake mix

3. making – creating a meal using a recipe

4. creating – improvising a meal using ingredients from the fridge

Fischer (1998) argues that the consumer/designer dichotomy is incorrect, and that reality
is much better modeled as a spectrum (fig. 1.10). Furthermore, he argues that systems
should be able to grow with the user. In other words, as the user’s knowledge of the system
grows, the system should offer new opportunities for the user. The desire to create is linked
with personal meaning. This leads to two problematic situations: (1) a person wants to
be a designer but is forced to be a consumer, (2) a person wants to be a consumer but is
forced to be a designer. Though Fischer’s work originates in the field of human-computer
interaction, he argues that this idea “applies to cultures, mindsets, media, technologies,
and educational systems in general” (Fischer, 1998). The question then becomes: if in the
future, everyone will design their own things, what role will designers take? Within the
field of co-design, some argue that designers will gradually evolve into a role of mediators
stimulating creativity in others (Sanders and Stappers, 2008). Even though everyone has
the potential to be creative, the act of being creative is more difficult than passively con-
suming. However, most people can be motivated by making the creative process easier.
By matching the challenge to their skills, a mental state of flow can be reached.

50

1. INTRODUCTION

consumer designer

passive consumer

active consumer

end-user

user

power users, local developers

domain designer

meta designer

Fig. 1.10 The consumer/designer spectrum. Adapted from Fischer (1998).

1.2.4 FLOW

In positive psychology, the theory of flow (Nakamura and Csikszentmihalyi, 2002) offers
an explanation as to why humans find certain activities intrinsically rewarding or satisfying.
The model compares the skills of a person to the challenges posed by an activity. Different
combinations of these two parameters result in different mental states, as shown in figure
1.11. For instance, an activity that is too challenging for the skills of a person may lead
to a state of anxiety in that person. The theory of flow states that when the challenges are
closely matched to a person’s skills, that they enter a special mental state called flow. This
state is sometimes colloquially referred to as being ‘in the zone”.

Fig. 1.11 Csikszentmihalyi’s model of flow. Adopted from Nakamura and Csikszentmihalyi (2002).

A person can enter flow if two conditions are met:

51

1. INTRODUCTION

1. The perceived challenges match a person’s capabilities

2. There are clear, proximal goals and there is immediate feedback on the progress
toward those goals.

The state of flow is characterized by the following properties:

• There is an intense focus and concentration.

• Awareness is fully focused and devoted to the activity.

• One loses track of oneself as a social actor.

• There is a feeling of being in control.

• Sense of time is lost.

• The activity is perceived by the person as intrinsically rewarding.

The phenomenon of flow has been observed in both play and work contexts. It has also
been observed across a wide range of activities, including art, science, sport, and literary
writing. The experience of the state of flow is reported to be the same irrespective of
boundaries such as age, gender, culture, or activity type. However, the state is based on an
inherently fragile balance, as illustrated by figure 1.11. If a person’s skill exceeds the chal-
lenge, they first relax, and eventually become bored. If, on the other hand, the challenge
exceeds their skill, they first become vigilant and then anxious.

In their work, Nakamura and Csikszentmihalyi (2002) compare the model of flow to
learning processes in pedagogy. The concept of matching challenges to skills bears remark-
able similarities to the Zone of Proximal Development (ZPD) (Chaiklin, 2003; Vygotsky,
1978). This pedagogic model defines three concentric zones of development. The inner-
most zone comprises tasks a student can do completely unaided. The outermost zone
comprises tasks a student cannot do at all. In between these two zones is the ZPD, which
comprises tasks a student can do under the guidance of a more experienced teacher or peer.
Vygotsky argues that learning occurs in this zone, and that given enough practice under
guidance, a student will be able to complete the challenge unassisted. Similar to the state
of flow, tasks located within the ZPD are difficult enough to be challenging, yet simple
enough to be achievable.

From a designer’s perspective, flow is an interesting tool to work with. Figure 1.12 shows
a modified version of Csikszentmihalyi’s model, depicted as a design space. To design
an engaging product, the designer should pay attention to the narrow zone where flow
is possible. The longer a user is engaged with a product, the more proficient they will
become at using that product; a natural consequence of learning and experience. If then,
the challenges remain the same, the user will soon find themselves in a state of boredom
(fig. 1.12 A). On the other hand, if the full gamut of challenges are presented immediately,
it can result in a state of anxiety (fig. 1.12 B). Consequently, in order to avoid boredom

52

1. INTRODUCTION

skills

ch
all

en
ge

s

boredom

anxiety

flow
channel

A

B

C

Fig. 1.12 A designer’s perspective of flow. Adapted from Nakamura and Csikszentmihalyi (2002).

and anxiety, the system should gradually present new challenges as the user becomes more
proficient (fig. 1.12 C).

Note that there are parallels between the theory of flow and the work of Fischer (1998) and
Sanders (2006), despite originating from different fields of study. Flow theory states that
an activity should become increasingly challenging as the user becomes more skilled at said
activity. Fischer (1998) argues that systems should be able to grow with the user, fulfilling
one of the requirements of flow. The same sentiment is echoed by Raymond (1999) when
discussing open source communities: “Human beings generally take pleasure in a task
when it falls in a sort of optimal-challenge zone; not so easy as to be boring, not too hard
to achieve.”. Finally, Draper (1999) argues that the element of fun in interactive systems
as a means to achieve learning and learnability goals. In this work, the concept of flow is
identified as one of the methods to achieve fun.

1.3 SOCIAL ROBOTICS – AN EMERGING
TECHNOLOGY

The word “robot” was first coined by Czech writer Karel Čapek in his 1920 science fiction
play Rossum’s Universal Robots. The word he used for his mechanical automatons is derived
from the word robota, which is Czech for “forced labor”. Of course, the idea of mechan-
ical men is much older than Čapek’s play. The idea however is much, much older than
the technology to actually create such machines. The ancient Greeks had myths about the

53

1. INTRODUCTION

mechanical servants of Hephaestus, the smithing god, Leonardo da Vinci created plans
for mechanical humanoids in 1495 (fig. 1.13), and in the 18th century, the Mechanical
Turk (fig. 1.14), a chess-playing automaton, captured the imagination of people world-
wide, though this turned out to be mechanical illusion controlled by a person inside the
device. To this day, fiction continues to shape the robotics conversation, even though
the capabilities of robots in fiction are still far ahead of current technology. The portrayal
of robots in fiction is diverse; archetypes range anywhere from evil killer robots such as
the Terminator, to sympathetic companions such as Star War’s R2D2 and C3PO, which
continues to shape the cultural perception of robots (Sundar et al., 2016).

Fig. 1.13 Model of da Vinci’s mechanical
knight19 .

Fig. 1.14 The Mechanical Turk. Adopted from
Windisch (1783).

The word robot is a very broad term, and means different things to different people. Con-
sequently, it is difficult to define what properties constitute a robot exactly, and definitions
are quite diverse. The Oxford dictionary describes robots as “A machine capable of car-
rying out a complex series of actions automatically, especially one programmable by a
computer”. On the other hand, the Robot Institute of America offers a more strict defini-
tion: “A reprogrammable, multifunctional manipulator designed to move material, parts,
tools, or specialized devices through various programmed motions for the performance of
a variety of task”.

As evidenced, the word “robot” can be interpreted quite broadly, though for our purposes,
we wish to emphasize two aspects: (1) a robot is a physical thing that interacts with the
real world, (2) a robot be reprogrammed or reconfigured to fulfill different tasks. Such a
definition precludes completely virtual agents, such as search engine web crawlers, which
are sometimes also called robots. It also precludes most machines in everyday life, such as
a household appliance or a vending machine. These electromechanical machines interact
with the physical world to perform a task, but they cannot be reconfigured to perform
anything outside of that one task.

19Photo by Erik Möller. Leonardo da Vinci. Mensch–Erfinder–Genie exhibit, Berlin 2005. Public domain.

54

1. INTRODUCTION

In recent years, robotics technology has begun to attract considerable attention. Already in
2007, computer visionary Bill Gates noted parallels between the rise of personal computers
and the evolution of robotics technology (Gates, 2007):

“As I look at the trends that are now starting to converge, I can envision a future
in which robotic devices will become a nearly ubiquitous part of our day-to-day
lives. I believe that technologies such as distributed computing, voice and visual
recognition, and wireless broadband connectivity will open the door to a new
generation of autonomous devices that enable computers to perform tasks in the
physical world on our behalf. We may be on the verge of a new era, when the PC
will get up off the desktop and allow us to see, hear, touch and manipulate objects
in places where we are not physically present.”

Gates argues that the decreasing costs of hardware, sensors and computer processing power
will make robotics more and more ubiquitous. In the 1970s, no one could have predicted
the far-reaching impact of personal computers on society. Similarly, no one can truly
predict the shape of a society where robots are commonplace.

Fig. 1.15 Examples of commercial Internet of Things (IoT) products. Starting from the top left
and moving clockwise, they are: Nest thermostat, Google Home, Amazon Dash, Nike Fuel, Philips
Hue, Apple watch.

In the past five years, there has been a tremendous push toward ubiquitous technology.
Because of trends such as IoT, smart devices and wearable devices, we are never more than
a few meters removed from computers. Products like the Nest thermostat, Amazon Dash,
and the Apple watch (shown in fig. 1.15) exemplify this. Speech recognition and synthesis

55

1. INTRODUCTION

technology is steadily reaching a point of maturity, as illustrated by voice-driven products
from companies such as Google, Amazon and Apple. Furthermore, the first practical
applications of Artificial Intelligence (AI) and machine learning have started to appear
across a wide range of consumer products and services, including autonomous vehicles
(Google, Tesla), conversational agents (Google Assistant, Amazon Echo), automatic media
curation (Netflix, Spotify), and even artistic expression (Prisma).

As technology evolves, so must our interaction with it. Nowadays, large parts of our lives
are driven by the internet. However, there is still a dichotomy between the digital world
and the physical world; and for the foreseeable time, we will remain denizens of the phys-
ical world. As of yet, screens and keyboards and mice remain the predominant interface
between these two worlds. Surely we can come up with better modes of interaction? Even
with recent developments in speech technologies and conversational AI, one cannot help
but ponder the bizarreness of conversing with a small, inanimate box.

Several scholars advocate a more holistic approach toward bringing the physical and digital
worlds together. Ishii (2008) argues in favor of moving beyond graphical user interfaces
toward tangible user interfaces (TUIs). In what he calls tangible bits, users employ all their
senses and abilities to directly interact with a tangible representation of an underlying data
model. One way of implementing tangible bits is by using a robotic agent as an interface,
leading to the concept of a Robotic User Interface (RUI). This metaphor is especially
useful when there is a strong social or emotional dimension to the interaction. And as
Bartneck, Reichenbach, et al. (2004) remark, one aspect sets robotic agents apart from
virtual ones: they live in the physical world and can interact with it accordingly. As the
authors summarize: “Screen characters simply cannot bring you a cup of tea”.

As of yet, robots are designed by a small and narrow group of people. However, we be-
lieve the field of robotics stands much to gain from a broad group of users that are not
expert roboticists. These users are not burdened by the same preconceptions, and can offer
better insight into context, usage and applications of social robots. Taking into account
the complexity of robots and differing perspectives of each stakeholder, we believe in an
evolution to a continuous spectrum of robot designers, similar to Fischer’s consumer/de-
signer spectrum (section). In such a spectrum, technology experts take up the role of
meta designers, focussing on creating tools for other designers to use. Similar to how the
Arduino platform expanded microcontroller technology beyond the audience of electrical
engineers, we wish to open up social robotics technology to an audience beyond that of
roboticists. Doing so is bound to lead to novel, valuable and unexpected results.

1.3.1 CLASSIFICATION

One of the first large-scale applications of robots was in industrial automation. The first
commercially available industrial robot was the Unimate, which was introduced in the
late 1950s. In 1961, the robot was first put to use in a General Motors factory, where
it performed the task of transferring hot metal castings into a cooling bath (Nof, 1999).
Even today, industrial robots have an unmistakable role in manufacture, and especially in

56

1. INTRODUCTION

the automotive industry.

The automotive industry remains the most important customer of industrial robots; the
International Federation of Robotics estimates that 38% of the 254,000 units sold in 2015
are used in automotive. In terms of units, it is estimated that the number of industrial
robots worldwide will continue to grow: from 1,631,600 operational industrial robots at
the end of 2015 to 2,589,000 units at the end of 2019. (IFR, 2016a)

Traditionally, robots are used for tasks that fulfill the three D’s of robotics: dirty, dangerous,
and dull. They would perform repetitive and dangerous tasks that were unsuitable for
human workers. Nowadays, robots are growing more and more beyond this strict role,
moving closer and closer to human living spaces. As Bill Gates (2007) hints at, there are
remarkable parallels between the historical evolution of computers, and the current trends
in robotics.

The first digital computers took the form of massive, building-size mainframes that only
the largest of companies could afford. These shared computers were accessed through re-
mote terminals. As computer technology advanced, we saw the introduction of personal
computers; computers that were small enough to put on a desk, that were affordable for
regular consumers. Nowadays, technology has begun to move toward ubiquitous comput-
ing, where advanced computers are available nearly anywhere.

Presently, we see that the evolution of robotics has begun to follow a similar course. The
first robots were big, bulky and dangerous machines positioned in assembly lines. Nev-
ertheless, with each new generation of robots, the field of robotics moves further beyond
the factory floor and closer to people. Even within manufacture environments, people
have begun to think differently about the role of robots. For instance, Takayama et al.
(2008) suggest that it may be opportune to let robots work together with humans, instead
of replacing them.

This shift in thinking is made possible by advancements in robotics technology, and can
be summarized as follows: human society should not be adapted to accommodate robots,
rather robotic technology should be adapted to integrate with human society. In the past,
the environments of industrial robots were optimized to suit them: they are put in cages so
they cannot hurt anyone. Nowadays, robots are starting to get introduced in human envi-
ronments, where they are expected to deal with environment variables in a safe, predictable
manner. One commercial robot that embodies this approach is Baxter (fig. 1.17), a safe,
easy-to-program robotic arm designed to work in close proximity with humans (Guizzo
and Ackerman, 2012).

Following this reasoning, we can discern three categories of robots, as shown in figure 1.16.
Each successive group moves closer to the living space of humans. The categories are:

1. Industrial robots – ISO 8373:2012 offers the following definition:

“An industrial robot is an automatically controlled, reprogrammable, mul-
tipurpose manipulator programmable in three or more axes, which may be

57

1. INTRODUCTION

A B C

INDUSTRIAL
ROBOT

SERVICE
ROBOT

SOCIAL
ROBOT

Fig. 1.16 Three types of robots: (A) industrial robots, e.g. KUKA robot arm, (B) service robots,
e.g. Savioke Relay, (C) social robots, e.g. Jibo.

Fig. 1.17 Baxter. Fig. 1.18 Kismet.

either fixed in place or mobile for use in industrial automation applications.”

An example of an industrial robot is a robot arm that welds together car chassis
parts.

2. Service robots – ISO 8373:2012 defines service robots as follows:

“A service robot is a robot that performs useful tasks for humans or equipment
excluding industrial automation application. Note: The classification of a
robot into industrial robot or service robot is done according to its intended
application.”

Within service robots, the norm makes a distinction between professional service
robots and personal service robots. The former serve a commercial task, and is

58

1. INTRODUCTION

usually operated by a professional. For instance, an ROV that is used to inspect
underwater oil fields. The latter fulfill a non-commercial task, and are generally
used by lay persons. An example of a personal service robot is the Roomba vacuum-
cleaning robot.

3. Social robots – Bartneck and Forlizzi (2004) give the following definition:

“A social robot is an autonomous or semi-autonomous robot that interacts
and communicates with humans by following the behavioral norms expected
by the people with whom the robot is intended to interact.”

One of the first social robots was Kismet (fig. 1.18), a robotic head created by
Breazeal (2003a).

The International Federation of Robotics also reported a considerable rise in commercial
service robot sales. Approximately 41,060 professional service robots were sold in 2015
(a 25% increase). The two main markets for professional service robots are logistics and
defense. In the same period, nearly 5.4 million personal service robots were sold (a 16%
increase). Personal service robots sold in 2015 mainly fulfill household tasks (e.g. vacuum
cleaning, lawn mowing) and entertainment purposes. Nevertheless, the report predicts
a strong increase in sales of robotic companions and assistants in the period 2016-2019.
(IFR, 2016b)

Breazeal (2003c) describes four classes of social robots, based on their ability to support
the social model in more complex environment and for more complex scenarios:

1. Socially evocative – Artifacts that encourage users to anthropomorphize the technol-
ogy when interacting with it. Commonly used in toys, such as the Tamagotchi.

2. Social interface – Robots that facilitate interactions with people by leveraging human-
like social cues and communication modalities. Social behavior is superficial, lead-
ing to a shallow and reflexive social model.

3. Socially receptive – Robots that benefit from interaction with humans, for example
by learning through imitation. They are socially passive, responding to social cues
but not pro-actively pursuing social interaction.

4. Sociable – Social “creatures” that actively engage in interaction in order to satisfy in-
ternal goals and motivations. They do not only perceive social cues, but understand
and interpret them on a deeper level.

Fong et al. (2003) complements this classification with three additional categories:

1. Socially situated – “Robots that are surrounded by a social environment that they
perceive and react to. Socially situated robots must be able to distinguish between
other social agents and various objects in the environment.”

59

1. INTRODUCTION

2. Socially embedded – “Robots that are: (a) situated in a social environment and in-
teract with other agents and humans; (b) structurally coupled with their social en-
vironment; and (c) at least partially aware of human interactional structures (e.g.,
turn- taking).”

3. Socially intelligent – “Socially intelligent.Robots that show aspects of human style
social intelligence, based on deep models of human cognition and social compe-
tence.”

With this work, we focus on the basal layers of this classification; aiming to create socially
evocative and social interface robots. Our reasoning for this choice is two-fold. To begin,
higher levels of social interaction are primarily the result of the robot’s behavior, i.e. its
programming. On the other hand, our work is primarily concerned with the embodiment
design of social robots. We wish to create a system that has the affordances to support social
interaction with humans; e.g. facial expressions, gaze, speech…Secondly, as indicated by
the IFR report on service robots (IFR, 2016b), social robots have the potential of being
used in a very wide range of applications. With our work, we wish to offer the low-level
building blocks to address this broad application scope.

1.3.2 EMBODIMENT AND APPEARANCE

Social interaction between humans and robots is at this point the subject of much scien-
tific research. This is perhaps unsurprising, as technology – both software and hardware –
has evolved to the point where practical applications of robots in daily life become more
feasible. One of the core concepts enabling the field of HRI is the idea that we humans
have a tendency to recognize and project emotions onto objects, requiring only the small-
est hints of facial features or human-like behavior. Indeed, social interaction with robots
works because humans recognize a part of themselves in robots, and robots without any
socially expressive features are seen as cold or distant (Bartneck, Reichenbach, et al., 2004).
Duffy states that humans’ propensity to anthropomorphize is not seen as a hindrance to
social robot development, but rather a useful mechanism that requires further examination
and employment in social robot research (Duffy, 2003). In the process of robot-human
communication, the robot’s face plays a vital role (Disalvo et al., 2002), facial expressions
are a natural means of expressing emotions towards humans. Beyond that, a social robot
should possess a character and personality, noticeable by humans (Kedzierski et al., 2013).
Naturally, different target applications for social robots impose a different set of require-
ments on the personality and embodiment of the robot. Research has shown that the
embodiment of a robot has a far-reaching impact on the way that robot is perceived by
humans (Wainer et al., 2006). Goetz et al. (2003) show that a robot’s appearance and de-
meanor can meaningfully impact the user’s willingness to cooperate with a robot. Li et al.
(2010) demonstrate the effect of appearance on the likability of a robot. Generally, it is
also accepted that physical embodiment enhances a robot’s social presence (Leite, Pereira,
et al., 2008; Wainer et al., 2006), and that tactile interaction is a key mode of interaction
in HRI scenarios (Lee et al., 2006). Bartneck, Reichenbach, et al. (2004) argue that while
physical embodiments are not better than virtual agents at expressing emotions, virtual

60

1. INTRODUCTION

agents do not have the same ability to interact with the physical world. For instance, the
robot Travis (Hoffman 2012, fig. 1.19) exploits this property to incorporate a smartphone
in the embodiment design in a way that is meaningful for social interaction.

The perception of a robot by humans is determined by two main factors: (1) the robot’s
appearance and (2) the robot’s behavior (Goetz et al., 2003). A robot’s appearance cre-
ates assumptions about the robot’s capabilities. The robot’s appearance should match its
task and its capabilities (Bartneck and Forlizzi, 2004). For instance, a humanoid robot
is usually expected to have speech capabilities (Bartneck and Forlizzi, 2004). The appear-
ance of a robot is important because it directly influences the user’s expectations about the
robot’s behavior and mental state, and because human-robot interaction is enhanced by
an attractive or interesting appearance (Disalvo et al., 2002; Leite, Martinho, et al., 2013).
According to Bartneck and Forlizzi (2004), the shape, size and material qualities of a social
robot should match the task it is designed for in order to avoid false expectations. Research
also suggests that there is a cultural component to the effects of a robot’s appearance, and
that robot designers should take cultural differences into account (Li et al., 2010).

Fig. 1.19 Travis. Fig. 1.20 Nao.

While some work is being done to explore the effects of embodiment design in human-
robot interaction (e.g. De Beir, H.-l. Cao, et al. 2015; De Beir and Vanderborght 2016;
Hoffman 2012; Westlund et al. 2016), most experiments consider the appearance of the
robot as an external constraint, focusing experimentation on other aspects of interaction.
The current state of the field is that many different studies are done with the same robots
(e.g. Nao; Gouaillier et al. 2008, fig. 1.20). This is understandable considering the
downsides of building custom robots for an experiment, such as the monetary cost, the
time effort, and the robustness and reliability of new prototype robots.

Researchers are often faced with the choice to either design their own social robot from
scratch or to use/buy a commercial robot. The first option affords a large degree of flexi-
bility, allowing researchers to fine-tune the embodiment of the robot to the exact specifi-
cations of their experiment, at the expense of development time and money. The second

61

1. INTRODUCTION

option allows for a much faster, less expensive development cycle and is often preferred in
research contexts. However, this speed comes at another cost: customization is often lim-
ited to software and superficial embodiment changes (e.g. giving a Nao robot eyebrows;
De Beir, H.-l. Cao, et al. 2015). This dichotomy is also reflected by Tilden’s argument
(2013) that the greatest barrier for breakthroughs in personal robotics is cost, in terms of
both money and time. Researchers need better tools to easily and rapidly design different
embodiments for social robots in order to progress the insights in HRI. Already in 2003,
Fong et al. stated that most research in HRI has not yet explicitly focused on design of
embodiments and much research remains to be performed. Unfortunately, few tools are
available to rapidly prototype social robot embodiments, even though evidence shows that
embodiment and appearance are of key importance during the interaction with humans.

With respect to robot morphology, Fong et al. (2003) describes a dichotomy between
biologically inspired vs. functionally designed robots. Yanco and Drury (2004) extends this
classification to three categories of social robot morphologies:

• Anthropomorphic – Robots with a human-like appearance.

• Zoomorphic – Robots with an animal-like appearance.

• Functional – Robots of which the appearance is predominantly determined by its
function.

Similarly, Bartneck and Forlizzi (2004) describes a robot’s form as a spectrum ranging from
abstract, to biomorphic, to anthropomorphic. Finally, Duffy (2003) describes a three-axis
design space for the anthropomorphism of robot heads. This model is based on three
morphology extremes: human-like, abstract, and iconic.

The role of the physical embodiment of a social robot plays a key role within HRI. If we
want to investigate these interactions, we need new tools to be able to change the robot’s
embodiment to the nature of the experiment. With our work, we offer a prototyping
tool to explore different embodiments for social robots, with an emphasis on face-to-face
communication via anthropomorphic robot heads.

1.3.3 DIY AND OPEN SOURCE IN ROBOTICS RESEARCH

As mentioned in section 1.1, the open source paradigm has also had a measurable impact
on robotics research in general. Prominent examples of open source robotics software
include the operating system ROS (Quigley, Conley, et al., 2009) and the simulation tool
Gazebo (Koenig and Howard, 2004). In recent years we have also seen a rise in open source
robot hardware, covering various embodiment archetypes. Examples include humanoids
iCub (Tsagarakis et al., 2007) and Poppy (Lapeyre et al., 2014), the quadruped Oncilla
(Sproewitz et al., 2011), and the OpenArm (Quigley, Asbeck, et al., 2011) robotic arm.
Outside of these complete platforms, some hardware projects implement only one specific

62

1. INTRODUCTION

Fig. 1.21 iCub. Fig. 1.22 Hacked MyKeepon.
Adopted from M. Michalowski et
al. (2013).

element, which is intended to be integrated in a robotic system. Examples include the
OpenHand manipulator (Ma et al., 2013) and TakkTile sensor (Tenzer et al., 2014).

The iCub humanoid robot (Tsagarakis et al. 2007, fig. 1.21) is a prominent example
of an open source social robot. With 53 degrees of freedom, the robot features a fully
articulated body. The iCub also has some facilities for facial expressions: it has physically
actuated eyes and eyelids, as well as eyebrows and a mouth realized using an LED matrix.
Although the robot’s hardware is open source, we argue that the iCub is not necessarily
DIY appropriate. The robot sports expensive components including high-end sensors and
motors. Moreover, the robot contains many CNC-milled as well as moulded plastic parts,
necessitating a very well equipped lab to copy the design. With a retail price of 250,000 €,
the platform is out of reach for all but the largest of research institutes. All in all, these
design aspects make it difficult for amateurs to reproduce or modify the iCub.

The Keepon, shown in figure 1.22, is a small, abstract robotic creature (Kozima, Nakagawa,
et al., 2005). With only four Degree of Freedoms (DOFs), it certainly is less embodied
than the iCub. Nevertheless, the Keepon design accomplishes a large degree of lifelike
behavior and emotional expressiveness with a very limited set of actuators. The original,
research-grade Keepon Pro is sold at a price of $30,000 (H. L. Cao et al., 2014). A sim-
plified toy version called MyKeepon was released in 2010, and costs only $40. This toy
version has enjoyed some attention from both DIYers and HRI practitioners: the toy can
be hacked using an inexpensive Arduino board, enabling manual control of the robot’s sys-
tems (H. L. Cao et al., 2014). Another example of this approach of hacking commercial
systems is given by De Beir, H.-l. Cao, et al. (2015); they increased the expressive range
of a Nao robot by retrofitting actuated eyebrows to the robot’s face.

More recently, new platforms have emerged that place a more explicit emphasis on community-
driven modifications and development. For instance, the Poppy project (Lapeyre et al.,
2014) focuses on robot designs based on 3D printed components in conjunction with

63

1. INTRODUCTION

Fig. 1.23 Poppy Humanoid. Fig. 1.24 InMoov.

Dynamixel-brand smart servos. The use of 3D printing enables quick and accurate repro-
duction of parts, but also allows the designs to be altered quickly. Currently, the project
offers three designs: a 6 DOF arm, a 13 DOF upper torso, and a 25 DOF humanoid robot
(fig. 1.23. Optionally, an LCD screen can be added to the head of the robot, enabling
the robot to display basic facial expressions.

Another example is the InMoov robot20, shown in figure 1.24. InMoov is an open source,
3D printed humanoid torso created by a French sculptor and designer. The robot bears
many similarities Poppy, though the InMoov is life-size whereas the Poppy humanoid is
scaled down. The robots are also built using different technologies: InMoov uses hobby
servos combined with low-cost FDM printed parts, whereas Poppy uses more expensive
Dynamixel servos combined with selective laser sintered parts. This difference is reflected
in the cost: InMoov is estimated to cost around $900 (Fornari and Cangiano, 2015),
whereas the Poppy torso is sold for 5300 €.

Figure 1.25 shows a recently redesigned version of social robot Probo. Originally, Probo
was developed as an advanced research platform for HRI studies with children, with a pri-
mary focus on face-to-face communication. As described by Goris et al. (2011), the robot
is construction from CNC milled aluminium and 3D printed plastic parts. Movement is
accomplished through compliant cable-driven actuators. For the redesigned version, a dif-
ferent approach was used. Doroftei et al. (2016) cite complex construction and expensive
actuators as the primary reasons as to why Probo is difficult to reproduce. Therefore, a new
version of the head was designed based on DIY-appropriate techniques. As illustrated in
figure 1.25, the second version uses low-cost hobby servos mounted to a laser-cut plastic
frame.

Finally, some HRI practitioners are experimenting with affective communication through
robots built using LEGO Mindstorms. One of the earliest examples embodying this ap-
proach is Feelix, a four-DOF robotic face built using the original LEGO Mindstorms kit
(Cañamero and Fredslund, 2000). Since then, two descendants were built Seymour and
Moodles21, shown in figure 1.26. Others have since followed with Mindstorms robots

20InMoov: open-source 3D printed life-size robot – http://inmoov.fr
21Feelix homepage – http://www.cs.au.dk/~chili/feelix/feelix_home.htm

64

http://inmoov.fr
http://www.cs.au.dk/~chili/feelix/feelix_home.htm

1. INTRODUCTION

Fig. 1.25 Redesigned Probo head. Adopted from
Doroftei et al. (2016).

Fig. 1.26 Moodles.

that communicate emotion through facial features (Kipp and Schneider, 2016) or body
motion (Novikova and Watts, 2015). While using Mindstorms is a cheap and easy method
to construct robotic faces, the tool is not designed for this purpose. As a result, the robots
tend to have a mechanical appearance with limited degrees of freedom.

Presently, researchers are often faced with the choice to either design their own social
robot from scratch or to use/buy a commercial robot. The first option affords a large
degree of flexibility, allowing researchers to fine-tune the embodiment of the robot to the
exact specifications of their experiment, at the expense of development time and money.
The second option allows for a much faster, less expensive development cycle and is often
preferred in research contexts. However, this speed comes at another cost: customization
is often limited to software and superficial embodiment changes.

As of yet, little progress has been made toward toolkits for human-robot interaction. Most
existing modular humanoid robots, such as Poppy (Lapeyre et al., 2014) or DARwIn-OP
(Ha et al., 2011), focusing on body motion, with limited room for the exploration of
different embodiments and leaving the face virtual or static. Researchers need better tools
to easily and rapidly design different embodiments for social robots in order to progress
the insights in HRI. To address the current difficulties of designing custom social robots,
we identify an open source, DIY-friendly toolkit approach as one potential solution.

65

1. INTRODUCTION

1.4 RESEARCH QUESTION AND DESIGN GOALS

In the previous sections, we have attempted to sketch an overview of the relevant contem-
porary technology trends. From the various influences, we recognize an opportunity for
an open DIY platform that facilitates the design, construction, and production of new
social robot characters. With the work described in this thesis, we address this need. This
leads to the central research question of this work: “How can we enable non-experts to design,
build, and use custom social robots?”

From the works referenced in the preceding sections, we crystallize a number of design
goals, setting the stage for the rest of this work. The design goals form a starting point
to tackle the central research question. These goals are further explored using a research
through design methodology, where concrete case studies are used to investigate the design
context. This methodology is described in detail in the next chapter. The combination of
these two approaches enables us to investigate the complexities of the research context in
an integrated, holistic manner. In this work, we identify and target the following design
goals:

• Open (G1) – The system should be designed so that users are free to build it, hack it,
and use it in any way they see fit. The open source paradigm offers a good solution
to enable this behavior. However, making source files available is only part of the
answer. The platform should take into account the barriers that stand in the way
of replication and modification. These barriers include aspects such as skill, cost,
and infrastructure. Design decisions should take these aspects into account; certain
components or techniques (e.g. CNC milling) might lead to a better performing
design, but are less accessible to amateurs, thereby hampering reproduction and
adaptation.

• Easy to build (G2) – It is essential that the hardware is designed so that it can be built
and modified by non-expert users. By building the system themselves, users become
more experienced in the design and functioning of the robot. This experience will
also make users more confident in repairing and modifying the robot. By reducing
the knowledge and skill requirements, we ultimately enable a large audience of users
to create their own robots.

• Emotionally expressive (G3) – The toolkit should let users construct robots with affor-
dances for social expression, including facial expressions, speech, and gaze. The soft-
ware should be able to automatically generate appropriate facial expressions from
emotions. Users need to be able to control the emotional expressions through sim-
ple interfaces.

• Facial features (G4) – Within this work, we focus on design of the robots that are
socially expressive through face-to-face communication. Robots that rely on body
gestures rather than facial features to communicate emotion are outside of the scope
of this work.

66

1. INTRODUCTION

• Character (G5) – Robots built using the toolkit must not look like disembodied,
mechanical robot heads. Their embodiments should resemble artificial characters
rather than robots. Using the toolkit, it must be possible to create biologically-
inspired characters with a socially evocative appearance.

• Creativity (G7) – The platform should inspire the user to be creative. Everyone has
the potential to be creative, though not everyone has the same level of creativity
nor the same desire to create. The system should have a low threshold to go from
consuming to creating, and the system should offer multiple ways of expressing
creativity, ranging from quick and easy to deep and fulfilling.

• Flow (G6) – As a way of stimulating creativity, the platform should be designed to
stimulate the user to enter a mental state of flow. This state can be reached when the
challenges of an activity are tuned to the skills of a user. In this state, users have the
feeling of being “in the zone”. Flow is a powerful way to stimulate fun and learning
while using complex interactive systems.

• Diverse knowledge domains (G8) – Robotics is interdisciplinary by nature. However,
as of yet, emphasis is placed on engineering and technology aspects. Our toolkit
needs to incorporate aspects from a wider range of disciplines in order to reach
a wide audience. In addition to the traditional robotics knowledge domains, the
toolkit needs to incorporate elements from crafts, design, and art.

• Low cost (G9) – Cost forms an important barrier in the adoption of robotics tech-
nology. Consequently, attention should be paid to the monetary cost of the sys-
tem. Many social robots are only affordable for large universities and research cen-
ters. Even then, cost often hampers large-scale experimentation and wider adop-
tion. Component cost also poses a barrier for replication and modification, thereby
hampering the evolutionary process that drives open source projects. Additionally,
low-cost social robots provide advantages that current high-end robots do not have:
they are well suited for large-scale studies and they are accessible to a wider audience.

• Community-oriented (G10) – The platform should rely on existing projects from
the DIY community where appropriate. The platform itself should be designed in a
way that allows a community of third-party users to form. We want the platform to
become a true, self-sustaining, open source hardware project. Having a community
around the platform offers many advantages, such as development contributions
from third parties and deeper insights into actual usage scenarios of the platform.

The goals are summarized and numbered in table 1.1. This numbering is used throughout
this work to refer to each specific goal. Consolidating these different goals is not always
straightforward, as the combination of the different goals can sometimes lead to contra-
dictions and paradoxes. Chapter 2 will detail why these contradictions exist, and how
conflicting goals are reconciled through a user-centered design methodology.

67

1. INTRODUCTION

Design goal DIY Social robotics Learning

G1 Open
G2 Easy to build

G3 Emotionally expressive
G4 Facial features
G5 Character

G7 Creativity
G6 Flow
G8 Diverse knowledge domains

G9 Low cost
G10 Community-friendly

Table 1.1 Summary of the design goals

1.5 OUTLINE

This work summarizes our study on the creation of open source robotics in academia with
the social robot Ono and the Opsoro design toolkit for social robots. We detail our design
approach, leveraging DIY-friendly techniques to create systems that, though complex, can
be assembled and modified by novices. And we describe experiments where different types
of users use our work to bring new social robot concepts to life. Throughout this work,
the trends and influences mentioned earlier are integrated step by step, and we detail how
this has led to the creation of the Opsoro design toolkit for social robots. The rest of this
work is organized according to the following structure:

• CHAPTER 2 details the design methodology used during this project. The chapter
begins by illustrating why the design of a robotic toolkit is difficult and complex
from a system’s perspective. We compare the lifecycle phases and the product stake-
holders of conventional products and platform-based toolkit products. This overar-
ching model is used to argue as to why a User-Centered Design (UCD) methodol-
ogy must be used. Our methodology is framed within UCD models and practices,
including design thinking, usability engineering, and user experience design. We
then approach the design methodology from a more practical, zoomed-in perspec-
tive. We justify why iterative prototyping is used, detail how digital manufactur-
ing techniques are used to support iterative prototyping, and conclude with design
strategies that leverage the intrinsic properties of these techniques.

• CHAPTER 3 describes the iterative design process in detail and demonstrates how
the platform was used to create different types of social robots. The chapter begins
with a high-level overview of the design iterations. The chapter distinguishes five
interrelated project branches: hexapod robots, Ono generation 1, Ono generation
2, Robot Blocks, and Opsoro. The chapter’s introduction positions these projects

68

1. INTRODUCTION

with respect to one another, illustrating the historical evolution and the intercon-
nectedness between the different projects. From there on, the chapter discusses
each project in detail, including motivation for the design decisions as well as the
experimental data that substantiates these decisions. The iterations consist of both
technical iterations and user-driven iterations, in accordance with the ISO model
of human-centered design of interactive systems. The experiments cover the design,
build, and use phases of the toolkit with different types of potential users. All the de-
sign requirements discovered through the iterative, human-centered approach were
implemented in the latest version of the Opsoro toolkit, which is discussed in the
next chapter.

• CHAPTER 4 gives in-depth details on the technical implementation of the Opsoro
platform. The chapter discusses the mechanical design of the system, the electrical
design, and the software architecture. The section on the mechanical design of Op-
soro starts with an overview of the various modules for facial expressions, including
the mouth, the eyebrow, the eye, the joint, and the neck. It then describes our
proposed methodology for designing custom embodiments by combining the afore-
mentioned modules with a custom design made using digital manufacturing tech-
niques. The methodology describes the steps to design a laser-cut skeleton frame,
then continues with the steps to create a soft, huggable outer skin, and concludes
with a brief overview of variants on the embodiment methodology.

The second part of the chapter discusses the design of the robot’s electronics. Here,
the technical iterations of the main controller board are described, starting from an
amalgam of off-the-shelf boards, continuing with various PCB prototypes, and con-
cluding with a production-ready add-on board for the Raspberry Pi. This section
ends with background information on the various subsystems of the board, such as
the communications protocol, the servo driver implementation, and the capacitive
touch sensor.

The third and final section of the chapter presents the various software components
of the system. This section starts with a description of the chosen emotional model,
as well as the facial expression algorithm that turns positions in this emotional space
into servo motor actuations. Then, the section continues with a description of the
platform’s web-based user interface, including an explanation of how the various
subsystems work together, as well as an overview of the interface design choices,
and a description of the various apps that are available to end-users.

• CHAPTER 5 concludes this work with a summary of our accomplishments, and
an overview of future work. One of our most important achievements is that we
have a seemingly complex piece of technology accessible to amateurs and enthu-
siasts worldwide. A recurring theme in our workshops is that participants often
doubt their own skills and chances of success at the start, yet they always manage
to successfully create a robot by the end of the day. If the general evolution of
the maker and DIY movements are an indication of the future, this democratiza-
tion of robotics technology will eventually open the door to novel and unexpected
applications of social robots.

While performing this research in the context of industrial design, we have always

69

1. INTRODUCTION

maintained close ties to industrial engineering and industrialization throughout the
project. As part of this project’s valorization, we are currently working on commer-
cializing the research from this project in the form of a spin-off company. As part of
these preparations, we have conducted market studies and business model studies
which revealed that the maker & STEM education audience currently represents
the best target market. Keeping true to the roots of this project, we will continue to
experiment with the open source paradigm, as we remain convinced that the model
opens up many more business opportunities than that it creates threats. Turning
this research project into a proper commercial product will still require a big effort
in development, industrialization, and marketing, but will be an interesting journey
for everyone involved. The prospect of creating a business around this research is
very exciting and holds promise for an interesting future of the Opsoro platform.

70

1. INTRODUCTION

1.6 LIST OF PUBLICATIONS

JOURNAL ARTICLES

C. Vandevelde, F. wyffels, B. Vanderborght, and J. Saldien (in press). “DIY Design for
Social Robots”. In: IEEE Robotics and Automation Magazine

P. D. Conradie, C. Vandevelde, J. De Ville, and J. Saldien (2016). “Prototyping Tangible
User Interfaces: Case Study of the Collaboration between Academia and Industry”. In:
International Journal of Engineering Education 32.2, pp. 1–12

C. Vandevelde, F. wyffels, C. Ciocci, B. Vanderborght, and J. Saldien (2015). “Design
and evaluation of a DIY construction system for educational robot kits”. In: International
Journal of Technology and Design Education 26.4, pp. 521–540

PEER-REVIEWED CONFERENCE PAPERS

C. Vandevelde and J. Saldien (2016a). “An Open Platform for the Design of Social Robot
Embodiments for Face-to-Face Communication”. In: Proceedings of the 11th International
Conference on Human-Robot Interaction. Christchurch, New Zealand, pp. 287–294

C. Vandevelde and J. Saldien (2016b). “Demonstration of OPSORO – an Open Platform
for Social Robots”. In: Proceedings of the 11th ACM/IEEE International Conference on
Human-Robot Interaction. Christchurch, New Zealand

C. Vandevelde, M. Vanhoucke, and J. Saldien (2015). “Prototyping social interactions
with DIY animatronic creatures”. In: Proceedings of the 9th International Conference on
Tangible, Embedded and Embodied Interaction

C. Vandevelde, P. Conradie, J. De Ville, and J. Saldien (2014). “Playful interaction: de-
signing and evaluating a tangible rhythmic musical interface”. In: Proceedings of INTER-
FACE: The Second International Conference on Live Interfaces. Ed. by A. Sa, M. Carvalhais,
and A. McLean. Lisbon, Portugal, pp. 132–141

C. Vandevelde, J. Saldien, C. Ciocci, and B. Vanderborght (2014). “Ono, a DIY open
source platform for social robotics”. In: Proceedings of the 8th International Conference on
Tangible, Embedded and Embodied Interaction. Ed. by A. Butz, S. Greenberg, S. Bakker,
L. Loke, and A. De Luca

M. Vanhoucke, C. Vandevelde, J. Ingels, G. Hamon, and J. Saldien (2014). “Serious
game as educational tool for safety and prevention”. In: Proceedings of the 2014 ACM
SIGCHI Annual Symposium on Computer-Human Interaction in Play – Workshop Partici-
patory Design for Serious Game Design. Toronto, Canada: ACM

C. Vandevelde, J. Saldien, C. Ciocci, and B. Vanderborght (2013c). “The use of social

71

1. INTRODUCTION

robot ono in robot assisted therapy”. In: International Conference on Social Robotics, Pro-
ceedings

C. Vandevelde, J. Saldien, C. Ciocci, and B. Vanderborght (2013a). “Overview of tech-
nologies for building robots in the classroom”. In: Proceedings of the 4th International
Conference on Robotics in Education

PEER-REVIEWED BOOK CHAPTERS

C. Vandevelde, J. Saldien, C. Ciocci, and B. Vanderborght (2013b). “Systems overview of
Ono: a DIY reproducible open source social robot”. In: Lecture Notes in Computer Science.
Ed. by G. Herrmann, M. J. Pearson, A. Lenz, P. Bremner, A. Spiers, and L. U. Vol. 8239.
Springer International Publishing, pp. 311–320

72

Chapter 2

DESIGN METHODOLOGY

The lifecycle of most products can be approximated using a relatively simple lifecycle
model, shown in figure 2.1. In this model, three actions are distinguished: the design
of a product, the manufacture of the product (typically through mass-production), and
finally, the use of the product by a consumer. The lifecycle of such a product is relatively
straightforward, and each action is performed by a different group of people. The product
is designed by a company’s R&D department, it is built by the people in its manufactur-
ing department, and it is used by the company’s customers. Consequently, the company’s
perspective encompasses the entire product lifecycle, and observations about a product’s
usage may influence the next generation of that product. On the other hand, the end
users – consumers – are usually only interested in what value the product can offer them.
How it was designed or how it was produced, is of little concern to them.

design

builduseend user’s
perspective

company’s
perspective

Fig. 2.1 Lifecycle model of conventional products.

By contrast, in recent years more and more platform-based products have begun to appear.
These products are characterized by a complex, double-loop lifecycle model, as illustrated
in figure 2.2. One of the key characteristics is that the roles of designers, producers, and

73

2. DESIGN METHODOLOGY

consumers are no longer clearcut. They are instead diffused over the different product
stakeholders. Toolkits (described in section 1.1.5) form an important subset within this
group of products.

Unlike the first model, the design–build–use process is complicated by a second layer of
hierarchy, as secondary design and build phases are introduced. The model distinguishes
three major perspectives. The largest perspective is that of the system designers; they are
concerned with the design of the toolkit, with the way the toolkit is used by others to
design, and with how artifacts created using the toolkit are used. The second perspective
is that of the intermediaries; the toolkit users in this case. For the intermediary, the toolkit
represents a boundary condition which delimits their design space. Within this design
space, the intermediary relies on their creativity to create an artifact that is relevant for
end users. The intermediary can be the end user, though the end users can also be another
distinct group. The final perspective is that of the end users. As with the first model, the
end users’ perspective is the most narrow perspective, being primarily concerned with the
value of the artifact in their context. Still, characteristic of a platform-based product is
that even end usage can contain elements of open-endedness and creative play.

design

builddesign

builduseend user’s
perspective intermediary’s

perspective

system designer’s
perspective

Fig. 2.2 Lifecycle model of platform-based products.

In this lifecycle model, there are two loops of iteration, represented by the dotted arrows
in figure 2.2. The inner iteration loop happens within the context of the intermediaries.
Based upon testing and feedback from end users, the intermediaries can use the toolkit
to further improve the design of an artifact. The second iteration loop is situated at the
system designers’ level. This iteration loop is more complicated because a system designer
needs to take into account both the direct users of the toolkit (the intermediaries) and the
indirect users (the end users). Consequently, system designers are concerned with both
how the toolkit is used and with how the end product is used. Both these activities shape
the development of the system in an iterative process. Even though this indirect iteration

74

2. DESIGN METHODOLOGY

path is more complex, the toolkit paradigm is valuable because it is a way to bridge the
information gap caused by sticky information (Hippel, 2001; Hippel and Katz, 2002).

In addition to the human aspect, the context of the Opsoro platform has another degree
of complexity, namely that of tangible interactivity. The system not only encompasses
hardware, but also builds upon a large body of electronics and software in order to work.
Our work bears many similarities to the paradigm of tangible bits, as introduced by Ishii
(Ishii, 2008; Ishii and Ullmer, 1997). Ishii argues that as technology advances, it needs to
move beyond screens and keyboards and permeate to all aspects of our lives. Central to
the concept of tangible bits is the physical manipulation of digital data, instead of using
a screen as a window into the digital world. In the form of a finished artifact, the Opsoro
platform offers a different kind of bridge between the digital and physical world: that of
the RUI. In its native toolkit form, components of the system do not only exist in the
physical world; they have a direct counterpart in software, leading to dual citizenship of
the physical and digital worlds.

In this work, we deal with distinct system activities: design–build–use. We deal with mul-
tiple types of designs that need to work in unison: hardware–electronics–software. We deal
with designing a system instead of designing a product. The design of a robotics toolkit
for social robots is a challenging prospect, not only from a technical point of view, but also
due to the extensive influence of human factors on all aspects of the system. Therefore, we
argue that conventional engineering development paradigms, such as the double diamond
model (Design Council, 2005) and the waterfall model (Royce, 1970) are not applicable
here, and other methods need to be used.

2.1 USER-CENTERED DESIGN

The ISO model for human-centered design of interactive systems (ISO (2010), fig. 2.3)
best describes the design process of this project. It is important to note that the ISO model
defines three separate iteration loops: context iteration, user requirement iteration, and
design iteration. This iterative process is essential because the interaction between people
and products is intrinsically hard to predict. It must be tested in situ, it cannot be divided
into components that are to be tested independently in a laboratory context, and it is
essential to continually question all the boundary conditions of a design.

The ISO 9241-210 model is a departure from traditional engineering design models, such
as the well-known waterfall model (Royce, 1970), shown in fig. 2.4. The waterfall model
is suitable for traditional engineering tasks that have fixed, well known requirements and
take place in a very predictable environment. Ultimately, it is sequential in nature, and
does not take into account the possibility of going backward up the cascade chain. How-
ever, being able to move back and forth between design phases is crucial in order to deal
with the design challenges of interactive systems. The ISO standard summarizes the chal-
lenges of designing human-computer interaction as follows (ISO, 2010):

75

2. DESIGN METHODOLOGY

Understand and specify
the context of use

Specify the user
requirements

Produce design solutions
to meet user requirements

Evaluate the designs
against requirements

Designed solution
meets user

requirements

Plan the
human-centred
design process

ite
rate

iterate
iterate

Fig. 2.3 ISO 9241-210 model for human-centered design of interactive systems. Adapted from
ISO (2010).

“The complexity of human–computer interaction means that it is impossible to
specify completely and accurately every detail of every aspect of the interaction at
the beginning of development. Many of the needs and expectations of users and
other stakeholders that will impact on the design of the interaction only emerge in
the course of development, as the designers refine their understanding of the users
and their tasks, and as users are better able to express their needs in response to
potential solutions.”

requirements

analysis

design

development

testing

operations

Fig. 2.4 Waterfall model of development. Adapted from Royce (1970).

76

2. DESIGN METHODOLOGY

In practice, our experiences with the Probo project (Goris et al., 2011; Saldien, 2009)
as well as the body of work described in HRI literature gave us a head start in the first
step of the HCI model: understanding and specifying the context of use. Still, over the
course of the project, all three iterative loops occurred multiple times: rethinking the usage
context, rethinking user requirements, and rethinking the design solutions. The innermost
iteration loop – rethinking the design solutions – was the most frequent iteration cycle in
our case. Testing involved evaluating the appropriateness toward the intended application
(HRI), as well as the appropriateness toward Maker/DIY-centric production techniques.

Our methodology incorporates many elements of design thinking (Brown, 2008; Dorst,
2010). This paradigm gained much traction in recent years, and offers ways to deal with
problems that are common in many professions, but cannot be addressed through tradi-
tional research paradigms. Dorst frames this paradigm in terms of patterns of reasoning
(fig. 2.5). Traditionally, the sciences have been predominantly occupied with deciphering
the laws that govern the natural universe. The predominant reasoning patterns within the
sciences are deduction and induction, leading to the well-known hypothesis-driven research
paradigm:

• Deduction – Using the initial conditions and a working principle to predict the end
result of a phenomenon.

• Induction – Using the initial conditions and the end result to determine the working
principle governing a phenomenon.

By contrast, the predominant pattern of reasoning in design professions is abduction. Ab-
ductive reasoning comes in two forms:

• Abduction-1 – Using a known working principle to design a thing that create value.
The thing can be an object, a service, a system. This form is often associated with
problem-solving.

• Abduction-2 – In this pattern, only the desired value is known, and there is no
known working principle that guarantees value.

It should be noted that all four patterns are used in science and in design, though each
discipline has a different emphasis. However, Dorst argues that design professions are
fundamentally different from fields that emphasize analysis (deduction and induction) or
problem solving (abduction-1), necessitating different methods and practices. Deductive
reasoning guarantees the validity of the result if the premises are true. By way of contrast,
abduction is the logic of “best guess” leaps, and the conclusion may turn out to be false
even if the premises are true (Kolko, 2010).

The process of abductive thinking in design is further detailed by Kolko (2010). He de-
scribes design as fundamentally rooted in synthesis: “synthesis of market needs, technol-
ogy trends, and business needs”. This contrasts with the sciences, where analysis is the

77

2. DESIGN METHODOLOGY

WHAT + HOW leads to ???

WHAT + ??? leads to RESULT

??? + HOW leads to VALUE

??? + ??? leads to VALUE

A

B

C

D

Fig. 2.5 Four patterns of reasoning: (A) deduction, (B) induction, (C) abduction-1, (D) abduction-
2. Adopted from Dorst (2010).

predominant mode of reasoning. Brown (2008) describes the design thinking process
not as a series of orderly steps, but as a spectrum of spaces: inspiration, ideation, and
implementation. Most projects visit these three spaces repeatedly as the design gradually
becomes more defined. Buchanan (1992) states that design problems are indeterminate,
and therefore wicked problems. Wicked problems are problems that are resistant to reso-
lution because of complex, contradictory, changing requirements (C. W. Church, 1967).
These problems cannot be approached without the integrative, interdisciplinary action
that is inherent to design thinking.

Dorst (2010) explains that design challenges are driven by a core paradox; statements that
are true in their own right, but cause conflict when combined. The core paradox leads
to a field of tension; a parameter space that the designer has to explore. This leads to
the importance of reframing: finding novel standpoints from which a problem can be
approached in order to generate new solutions.

In this work, the paradox can be summarized as the desire to create high-functionality
robots using simple, low-tech DIY building blocks. IN essence, our paradox is caused by
the uncertainty and unpredictability of the human aspect, resulting in a facet of wicked-
ness. It is fairly straightforward to define the functionality requirements of a service robot.
A parking robot, for instance, should be able to lift a car, it should be able to navigate
a parking complex, and it should not be able to harm users or damage objects. A social
robot is the opposite, its functionalities cannot be predicted easily because a social robot
is not a task-oriented artifact.

The question remains: where lies balance? At what point can we no longer rationalize
the marginal cost of the system – in its broadest sense – by the marginal improvement.
Because of the complexity of this design space, design requirements cannot be predeter-
mined. The requirements should be discovered through a joint discourse with users. The
integral aspect of human affect is a crucial differentiator between a service robot and a so-
cial robot, which is why usability and user experience are so important as a way to validate
the “functionalities” of a social robot.

78

2. DESIGN METHODOLOGY

2.1.1 USABILITY & USER EXPERIENCE

The concept of usability originally arose from the software world. As computer systems
grew more complex, more full-featured, and more widespread, an increasing demand ap-
peared for these systems to be simple and efficient to operate. One of the most well-known
examples of usability in software is the transition from text-based command line interfaces
to graphical user interfaces. Though the concept of usability engineering was originally
developed for computer applications, the same methodology was later also applied to phys-
ical products, especially those with complex functionality.

At its core, the concept of usability is task-focused. It is concerned with questions such as
“How well can a user complete a task?” and “How fast can a user learn to do a task?”. The
ISO 9241-11 standard defines the following usability aspects of visual display terminals
(ISO, 1998):

• Effectiveness – A measure for the accurateness or completeness with which the user
completes a goal or subgoal.

• Efficiency – A measure for the resources expended to reach a certain goal. Relevant
resourced defined by the standard include “mental or physical effort, time, materials,
or financial cost”.

• Satisfaction – A measure for the extent to which the users are free from discomfort.

While satisfaction is one of the factors of the norm, it should be noted that the term is
interpreted in a very shallow and limited way. The standard only takes satisfaction into
account insofar that it aids or hampers a user in certain task or activity.

In recent years, usability has been superseded by the concept of user experience. User expe-
rience offers an explanation as to why users prefer some products over others, even when
a product offers less functionality at a higher price. With his book The Design of Everyday
Things, Don Norman was one of the first to recognize and identify this shift (Norman,
2013). With the ever-decreasing cost of consumer goods and the rapid evolution of tech-
nology, user experience is one of the few remaining differentiators that can be used to
distinguish a product from its competition. The original iPod, for example, is one of the
first products to truly embody user experience. As Brown notes: “Great design satisfies
both our needs and our desires. (…) The iPod was not the first MP3 player, but it was the
first to be delightful.” (Brown, 2008). The device not only had an attractive shape and an
intuitive interface, the iTunes store offered an entirely new way of buying and consuming
music. The iPod does not focus on the task of playing music; it pays attention to every
facet of experiencing music: discovering, buying, transferring, listening, curating, sharing.

Norman (2009) argues that good user experience design typically transcends the boundary
of a product in its traditional sense. Instead products are part of a larger ecosystem, which
again emphasizes the importance of system thinking and design thinking. Brown (2008)
summarizes this sentiment as follows: “As more of our basic needs are met, we increasingly

79

2. DESIGN METHODOLOGY

expect sophisticated experiences that are emotionally satisfying and meaningful. These
experiences will not be simple products. They will be complex combinations of products,
services, spaces, and information.”

Norman (2002) also remarks that a person’s affective state has a deep effect on cognition.
Negative valence leads to a depth-first, focused mode of thinking. Positive valence, on
the other hand, broadens the thought process and stimulates creativity. Norman offers a
simple analogy to illustrate this concept (Norman, 2002):

“Imagine a plank 10 meters long and one meter wide. Place it on the ground.
Can you walk on it? Of course – no problem. You can jump up and down, dance,
and even walk along with your eyes shut. Now lift the plank three meters in the
air. Can you walk on it? Yes, although more carefully. What if the plank were
200 meters in the air? Most of us wouldn’t dare go near it, even though the act
of walking along it and maintaining balance should be no more difficult than
when on the ground. Why would a simple task suddenly become so difficult –
impossible, even? Tell yourself all you want that if you can walk on the plank
on the ground you can also walk on it in the air. You still won’t walk along it,
let alone jump and dance or, heaven forbid, close your eyes while walking. Fear
dominates.”

For this reason, UX is an important consideration in a successful toolkit. Toolkits should
give end users the tools to explore a certain design space. It is important for them to be
able to reframe the problems in order to create a valuable artifact. Consequently, a positive
valence state of mind is necessary. In our context, a good user experience is prerequisite
to positive valence, which in turn is essential to stimulate a user’s creativity (goal G7). In
a sense, this concept in Norman’s work bears similarities to Csikszentmihalyi’s theory of
flow: low valence leads to anxiety, disrupting the fragile state of flow (see section 1.2.4).

Jordan (2000) argues that usability has transitioned from a marketable feature to some-
thing that users have come to expect in a product. The presence of good usability in a
product used to be a satisfier. Nowadays, the lack of good usability has become a dissat-
isfier. Jordan also argues that while a product that has good usability is not necessarily a
pleasurable product, but that a product with bad usability is unlikely to be a pleasurable
product.

In other words, good usability is a prerequisite component of good user experience. This
concept is mirrored in hierarchy of consumer needs model (fig. 2.6 right). This model is
a consumer-oriented analogy of Maslow’s hierarchy of human needs (1943, fig. 2.6 left),
which models human drive as a hierarchical sequence of needs. In this model, each need
has the previous need as a prerequisite. The hierarchy models user experience as a chain
of preconditions. At the base of the pyramid is functionality; a product which does not
fulfill a function does not have a raison d’être, this is the primary consumer need. The
secondary consumer need, usability, builds upon functionality – how easy is it to use the
function of a product? The tertiary layer is pleasure (UX), a pleasurable product must
always be usable and functional.

80

2. DESIGN METHODOLOGY

physiological needs

safety

belonging and love

esteem

self-
actualization

HIERARCHY OF HUMAN NEEDS

functionality

usability

pleasure

HIERARCHY OF CONSUMER NEEDS

Fig. 2.6 Hierary of human needs (Maslow, 1943) vs. a hierarchy of consumer needs. Adapted
from Jordan (2000).

Nevertheless, Jordan argues that a usability-centric approach is inherently restrictive be-
cause it merely views products as tools to complete tasks, as opposed to objects with which
humans have relations. In his model of UX, Jordan advocates a pleasure-oriented approach
to product design, borrowing the four pleasures model from Tiger (1992) to classify the
pleasurable aspects of products (fig. 2.7). The four pleasures model serves as a framework
to organize people’s characteristics so as to attain a holistic view of their requirements for
a product. It should be noted that people characteristics in one category may influence
requirements that pertain to a different category. For instance, physical disability, a phys-
iological characteristic, can influence the social dimension of a product. Finally, Jordan
argues that not all aspects are measurable per se. Consequently, designers should abandon
the role of a scientist measuring subjects; they should instead adopt the role of a detective
piecing together clues.

physio-pleasure
pleasure of the body
and sensory organs.

socio-pleasure
pleasure derived from
relationships with others.

psycho-pleasure
pleasure that pertains to

cognition and emotion.

ideo-pleasure
pleasure related to

people’s values.

Fig. 2.7 The four pleasures. Adapted from Jordan (2000) and Tiger (1992).

Hassenzahl’s model (2003) identifies two dimensions of user experience: pragmatic and
hedonic qualities. In broad strokes, the pragmatic qualities correspond with what is tra-

81

2. DESIGN METHODOLOGY

ditionally understood as usability. The hedonic qualities, on the other hand, encompass
novel and hard-to-grasp concepts such as attractiveness, coolness, fun; offering an expla-
nation as to why users prefer certain products over others. In Hassenzahl’s model (fig.
2.8), product designers use their tools to convey a certain intended product character.
Conversely, users experience a product in a certain context where the apparent product
character ideally leads to a sense of appeal, pleasure, or satisfaction.

In addition to the pragmatic qualities of a product (which correspond with usability),
Hassenzahl’s model (2003) distinguishes the following three aspects of hedonic quality.
They are:

• stimulation – People have an innate desire for personal development, i.e. improv-
ing one’s knowledge and skills. Stimulating products support this personal devel-
opment.

• identification – People want to be perceived by others in a certain way. Products
support self-expression by communicating a desired identity to others.

• evocation – Products that are evocative can provoke thoughts, memories, or ideas
that are important to a person. Souvenirs, for instance, are products that rely on
this aspect extensively.

Hassenzahl argues that the hedonic qualities and the pragmatic qualities of a product are
independent from one another, leading to four distinct product characters (Hassenzahl,
2003; Hassenzahl et al., 2003). A product with weak pragmatic and weak hedonic qual-
ities is simply unwanted and superfluous. On the other hand, a product with strong
pragmatic and hedonic attributes is desirable. Hassenzahl states that “an uncompromis-
ing combination of both is the ultimate design goal.” Products with strong pragmatic and
weak hedonic attributes are act products, and are strongly linked with a user’s behavioral
goals. Finally, products with weak pragmatic and strong hedonic attributes are dubbed
self products, and are intrinsically linked with a user’s identity.

To conclude, there are clear links between user experience theory and the design goals of
our work. To begin, usability aspects correlate directly to design goal G2, easy to build.
Usability also impacts goal G6, flow. Bad toolkit usability leads to frustration and anxiety,
making it impossible to enter a state of flow. A toolkit that is too easy to use will lead to
boredom, so a toolkit needs the ability to grow with a user, offering new challenges as the
user’s skills progress.

As Jordan argues, good usability is a prerequisite for user experience design. Norman
shows that user experience can directly affect a person’s state of mind, which in turn has far-
reaching influences on their ability to think creatively (goal G7). User experience aspects
also impact the possibility of flow (goal G6). Self-directed challenges, such as elements of
open-endedness and creative play, are also important for stimulating flow. These challenges
are intrinsically and tightly coupled with user experience.

82

2. DESIGN METHODOLOGY

consequences

appeal

satisfaction

pleasure

situation

intended product character

pragmatic attributes
manipulation

hedonic attributes
stimulation

identification

evocation

product features

content

functionality

interaction

presentation

apparent product character

pragmatic attributes
manipulation

hedonic attributes
stimulation

identification

evocation

consequences

appeal

satisfaction

pleasure

a) designer perspective

b) user perspective

product features

content

functionality

interaction

presentation

Fig. 2.8 Hassenzahl’s model of user experience. Adopted from Hassenzahl (2003).

2.1.1.1 MEASURING USER EXPERIENCE

This section summarizes the measurement methods that we used to evaluate usability and
user experience aspects of our prototypes. Our methodology is built upon a number of
standardized UX tools, including the System Usability Scale, AttrakDiff, Pick-A-Mood,
and the UX curve. These standardized tools are rigorous and well-supported in literature.
However, they are generic and mostly oriented toward the user experience of software
products and services, and they usually only lead to superficial insights. Moreover, user
experience design is a relatively new phenomenon. Researchers and practitioners have yet
to reach a consensus as to what user experience exactly entails, and what the best way to
measure it is, especially for physical products (as opposed to software systems).

For these reasons, the questionnaires we use in our experiments are supplemented by cus-
tom questions. These custom questions deal with topics and issues that are specific to
the experiment at hand. While less rigorous than the use of standardized tools, they offer
deeper and more relevant data. In turn, this data has directly impacted the development
of our platform in meaningful ways.

In our experiments, it is essential to have quick and easy-to-understand tools to evaluate
user experience aspects of our prototypes. Experiments often take place in situations where
participants have limited amount of time or motivation to fill in surveys. For this reason,
we emphasize quick, easy to understand survey tools for quantitative data, complemented

83

2. DESIGN METHODOLOGY

by qualitative data from interviews, video recordings, and personal experiences.

The System Usability Scale (Brooke, 1996) uses a short questionnaire to gauge the usability
of a product or system. The scale was originally developed to evaluate the usability of
computer systems, but has since been used to measure products in other domains as well
(Jordan, 2000). The SUS questionnaire, shown in table 2.1, consists of ten questions
with five response options. Using a scoring key, the responses to these questions can be
compiled into a single number between 0 and 100, which corresponds to the usability of
a product or system. Care must be taken not to interpret this number as a percentage,
scores should be normalized to produce a percentile ranking. Bangor et al. (2008) have
produced an empirical analysis of 2324 surveys, revealing a mean SUS score of 70.14. The
study also shows that the type of interface has a statistically significant influence on the
mean SUS score. In summary, the SUS offers a quick way to gauge a system’s usability.
However, the tool does not offer deep insight into usability, and cannot be used to identify
specific issues.

disagree agree
1 2 3 4 5

1. I think that I would like to use this system frequently ⃝ ⃝ ⃝ ⃝ ⃝

2. I found the system unnecessarily complex ⃝ ⃝ ⃝ ⃝ ⃝

3. I thought the system was easy to use ⃝ ⃝ ⃝ ⃝ ⃝

4. I think that I would need the support of a technical person to be able to use this system ⃝ ⃝ ⃝ ⃝ ⃝

5. I found the various functions in this system were well integrated ⃝ ⃝ ⃝ ⃝ ⃝

6. I thought there was too much inconsistency in this system ⃝ ⃝ ⃝ ⃝ ⃝

7. I would imagine that most people would learn to use this system very quickly ⃝ ⃝ ⃝ ⃝ ⃝

8. I found the system very cumbersome to use ⃝ ⃝ ⃝ ⃝ ⃝

9. I felt very confident using the system ⃝ ⃝ ⃝ ⃝ ⃝

10. I needed to learn a lot of things before I could get going with this system ⃝ ⃝ ⃝ ⃝ ⃝

Table 2.1 System Usability Scale questionnaire. Adopted from Brooke (1996).

AttrakDiff (Hassenzahl et al., 2003) is a companion tool that is related to Hassenzahl’s
model of UX (2003). The results from AttrakDiff surveys correspond directly to the di-
mensions of Hassenzahl’s model. The AttrakDiff questionnaire, shown in table 2.2, con-
sists of a list of 28 antonym pairs (e.g. unimaginative –- creative). Respondents are asked
to pick a position on a seven-point scale to indicate where they believe the product is posi-
tioned between the two antonyms. Using these antonym word-pairs, the AttrakDiff tool
calculates four product dimensions:

• pragmatic quality (PQ) – corresponds to usability, how easily can a user complete
their goals with the product?

• hedonic stimulation (HQ-S) – to what extent does the product stimulate the user’s
personal growth?

84

2. DESIGN METHODOLOGY

• hedonic identification (HQ-I) – to what extent do users identify with a product in a
social context?

• attractiveness (ATT) – a global measure of appeal to the user.

Hassenzahl states that pragmatic (PQ) and hedonic qualities (HQ-S and HQ-I) are inde-
pendent from each other, and that they contribute equally to a product’s attractiveness.
He also shows that pragmatic quality is correlated with task difficulty: in a study, more
difficult tasks will lead to a lower percieved pragmatic quality of the product. On the
other hand, the hedonic qualities are independent from task difficulty, as expected. As
mentioned earlier, Hassenzahl’s model (2003) also identifies a third aspect of hedonic
quality: evocation. However, the AttrakDiff tool does not measure evocation as part of
the questionnaire. Hassenzahl remarks that evocation only plays a subordinate role in the
context of interactive products (Hassenzahl et al., 2003).

1 2 3 4 5 6 7

human ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ technical
isolating ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ connective
pleasant ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ unpleasant

inventive ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ conventional
simple ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ complicated

… …

Table 2.2 Excerpt from the AttrakDiff questionnaire. In total, 28 antonym pairs are used. Adopted
from (Hassenzahl et al., 2003).

The Pick-A-Mood (Desmet et al., 2012; Vastenburg et al., 2011) tool is a very short,
cartoon-based instrument that can be used to measure the mood of participants during
a study. The tool comprises a set of nine cartoon drawings of different facial expressions.
Users are asked to choose the drawing that best represents their mood during the course of
a project, session, or workshop. Interesting to note is that the tool focuses on measuring
mood, as opposed to emotion. The distinction that the authors make between the two
is that emotion is momentary snapshot triggered by a single stimulus, whereas mood is
the aggregate result of many different stimuli. As Desmet et al. (2012) notes, mood is a
relevant parameter in design because it has a substantial impact on human behavior and
social interaction, and because it can be influenced through design.

The User Experience Curve (Kujala et al., 2011) is a tool that offers a way to evaluate the
evolution of user experience over time. Users are asked to draw a graph that represents how
their appreciation for a product evolved, with the vertical axis representing positive/nega-
tive experiences and the horizontal axis representing time. Users are also asked to annotate
key moments on the graph. An example UX curve, showing the interaction of a user with
a new mobile phone, is shown in figure 2.10.

Whereas other tools summarize a user’s experience in a single snap-shot measurement, the
UX curve offers insight into its evolution over time. The tool is much more granular in
that respect, and allows specific problem areas to be identified. Downsides of the UX

85

2. DESIGN METHODOLOGY

Fig. 2.9 Pick-A-Mood expressions of eight mood types and neutral. Adopted from Desmet et al.
(2012).

curve include that it has to be filled out on paper and that it takes time to explain the
tool to participants, and for participants to draw and annotate their curves. Analysis of
the results is subjective as the graphs need to be interpreted, though general trends can be
identified by putting all graphs on top of each other digitally. Despite its disadvantages,
the tool provides rich insight into user experience, and results can be further augmented
using open survey questions or follow-up interviews.

Fig. 2.10 Example of a user experience curve. The graph depicts one user’s experience with a
product in function of time. Adopted from Kujala et al. (2011).

In addition to the standardized tools mentioned above, custom instruments were also used
in experiments. This way, insight could be gained into specific aspects of usability and user
experience of a certain prototype. Still, the custom instruments are subject to the same
constraints as the standardized surveys, namely: they should be quick and easy to use.

86

2. DESIGN METHODOLOGY

To begin, most surveys we used in experiments include custom Likert scale questions.
These questions can be filled in quickly by participants, and allow us to gauge very spe-
cific aspects of a prototype. However, they can only be used to measure aspects that were
predicted on beforehand, and are thus biased by the imagination of author. As a comple-
ment, open questions were also frequently used. Open questions take much more time
to fill in, but they are also less suggestive. Unlike Likert scale questions, open questions
can sometimes reveal unexpected UX aspects. This is important as human behavior is
ultimately unpredictable, and one cannot anticipate all potential actions and behaviors in
an experiment.

During experiments, observation and video recording were also frequently used in addi-
tion to questionnaires. These tools have the benefit of capturing the process, and not just
the end result. Additionally, these tools require no user input, and consequently do not
hamper or interrupt the user’s process. However, extensive amounts of data are captured,
and analysis can quickly become unwieldy and time-intensive. Still, they can reveal aspects
of interaction that participants themselves were not consciously aware of.

Finally, we use certain techniques to encourage participants to vocalize their thoughts.
When participants get “in the zone” (i.e. enter a state of flow), they tend to become silent,
totally engrossed by the task at hand. The first technique is the think-aloud protocol (Als
et al., 2005; Fonteyn et al., 1993; Kesteren et al., 2003). Simply put, participants are asked
to vocalize their actions and thought patterns throughout a particular test or interaction.
By doing so, they afford researchers an insight into their thought process, which can help
to identify aspects of interaction that would not otherwise be clear on video. At the start of
an experiment, participants may need an occasional reminder , though eventually they get
used to talking in a stream-of-consciousness type mode. The second technique is called co-
discovery (Kemp and Gelderen, 1996; Kesteren et al., 2003). Here, the idea is to perform
experiments with small groups of participants, ideally in pairs. Because participants are
asked to collaborate, they will naturally vocalize their actions and motivations toward
one another. In contrast with the think-aloud method, vocalization in co-discovery is
perceived as more intuitive and natural.

As a final tool, we also employed follow-up interviews in some experiments. This tech-
nique affords an opportunity to explore interesting results from a questionnaire in a deeper
manner. However, interviews can be very time consuming and take some time to prepare.
Consequently, in experiments where follow-up interviews were used, key participants were
selected. By nature, follow-interviews happen a certain amount of time after an experi-
ment, which can introduce problems of their own. Human memory is inherently flawed,
as there is a difference between experiencing and reflecting upon an experience. This idea
is mirrored by Kahneman (2013, chap. 35) in the model of the two selves: the experienc-
ing self and the remembering self. Kahneman summarizes the concept as follows: “Odd
as it may seem, I am my remembering self, and the experiencing self, who does my living,
is like a stranger to me”.

Table 2.3 summarizes the measurement instruments we used throughout this work. The
numbering of this table will be used throughout the other sections of this work to refer
to specific measurement instruments. Based on our experiences, table 2.3 also includes a

87

2. DESIGN METHODOLOGY

subjective appraisal of the time it takes for participants to complete the survey, as well as
the complexity of the tool.

Measurement tool Type Speed Ease of use

M1 System Usability Scale quantitative standard short medium
M2 AttrakDiff quantitative standard medium hard
M3 Pick-A-Mood quantitative standard short easy
M4 Likert scale questions quantitative custom short easy

M5 UX curve qualitative standard medium hard
M6 Open questions qualitative custom long hard
M7 Interview qualitative custom long medium
M8 Video capture qualitative custom long easy

Table 2.3 Summary of UX measurement tools

2.2 ITERATIVE PROTOTYPING

Designing for user experience is difficult because user experience is an emergent phe-
nomenon that arises from the total sum of all aspects of a product. It is impossible to
partition the design and optimize each of its constituent parts for user experience. As ar-
gued in the previous sections, a holistic approach must be used; a product’s UX cannot
be fully understood as the sum of its parts. Within the design professions, the accepted
method to tackle the challenges posed by user experience design is to use an iterative design
process.

The ISO model for human-centered design (ISO, 2010), discussed earlier in this chap-
ter, approximates the design approach of this project on a macro-level. On a zoomed-in
level, our approach is best represented by Pugh’s model of controlled convergence (1991).
Pugh’s model, and by extension Buxton’s adapted version (2007), approximates the design
process as a series of divergent and convergent phases. During divergent phases, new de-
sign solutions are synthesized, broadening the solution space. During convergent phases,
the best solutions are selected and the rest are discarded. After each divergent-convergent
pair the solution space narrows, and the process is repeated until an appropriate solution is
found. Consequently, each pair of divergent/convergent phases can be labeled as a design
iteration.

Figure 2.11 illustrates this concept with a figurative example. It illustrates how the pro-
totyping chain generally starts with low-effort, low-fidelity techniques and gradually tran-
sitions to more time-consuming techniques that yield higher-fidelity prototypes. For in-
stance, a design process can start with brainstorms and loose words, then transition to
sketches, cardboard mockups, CAD models, and finally a series of 3D-printed or lasercut
prototypes. Each iteration expands and converges the solution space, moving the design
forward.

88

2. DESIGN METHODOLOGY

brainstorm
ideas

doodles
sketches

cardboard
mockup

CAD
model

prototype

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

time
#

of
co

nc
ep

ts

Fig. 2.11 Example illustrating Pugh’s model of controlled convergence. Adapted from Buxton
(2007) and Pugh (1991).

It is important to have many quick iterations because it allows you to identify problems be-
fore too much work is invested into an idea. The iterative process can be repeated infinitely,
though the process experiences diminishing returns and the solution space approaches the
ideal solution asymptotically. In practice, a product version is released when the proposed
solution is deemed good enough to meet or exceed most of the user’s requirements and
wishes.

As argued earlier, iterative prototyping is essential for user-centered design, and digital
manufacturing techniques are well suited to support this process. With the Opsoro plat-
form, we wish to apply a software release cycle model in a hardware product. Models such
as Agile software development have adopted the mantra of “release early, release often”,
eschewing the traditional model of monolithic software released (Beck et al., 2001). Be-
cause digital manufacturing technologies are not tied up in large capital investments such
as molds and tooling, using a continuous release cycle in hardware becomes a possibility.

2.2.1 DIGITAL MANUFACTURING TECHNIQUES

Digital manufacturing technologies, such as 3D printing, are fabrication technologies that
can be used to make physical objects directly from digital files. This is in contrast with
conventional production techniques, where there are intermediary steps between a design
and a physical part. For instance, in manual fabrication, a person will use tools to shape
material in the form of a design, though this necessitates skill and artisanship. Mass pro-
duction technologies, on the other hand, rely on expensive tooling and molds to make
parts through an automated process.

As the name implies, digital manufacturing techniques are computer-controlled, mini-

89

2. DESIGN METHODOLOGY

mizing user involvement and skill requirement. These technologies have enjoyed a lot of
attention recently due to phenomena such as the maker movement and the open source
hardware movement (see section 1.1). However, many of these techniques have been
available in industry for a long time. Especially within research and development envi-
ronments, rapid prototyping techniques are often used to accelerate the development of a
new product. The technology is not new, the first CNC milling machines were created in
the 1950s, and the first 3D printers appeared in the 1980s (N. Gershenfeld, 2012).

What is new, however, is that these technologies have started to become accessible outside
of large R&D departments and research institutes. Various trends work together to make
digital fabrication available to the masses:

• Low cost, open source digital fabrication machines, such as the RepRap (Jones et al.,
2011), have begun to appear.

• Local organizations, such as FabLabs, makerspaces, and Techshops, offer access to
digital manufacturing infrastructure to the general public.

• Rapid prototyping techniques are now also offered through online services. These
companies will produce custom parts and send them to you for a fee. Examples
include Shapeways, i.materialise, Seeed Fusion PCB.

• As technology matures, it becomes more affordable and better performing. This is
especially true for electronics and computer hardware.

Digital manufacturing technology has a number of advantages that place them in a unique
position with respect to conventional manufacturing paradigms. First of all, these ma-
chines do require large part-specific capital invests, such as molds or tooling. Using digital
manufacturing to make one-off parts costs the same as manufacturing parts in a batch,
opening up opportunities for agile product development and low-volume manufacturing.
Secondly, the manufacturing process is driven by digital files. These files can easily be
shared and archived on the internet, greatly facilitating collaboration and sharing through
online platforms such as GitHub and Thingiverse. Finally, an intrinsic property of digital
fabrication is that design complexity is (nearly) free: printing a complex object takes the
same time as printing a simple object of the same volume. This property can be exploited
to incorporate extra functionality in the geometry of a part.

The term “digital manufacturing” covers a very broad spectrum of fabrication techniques,
and not all techniques are appropriate for DIY and maker culture. In broad strokes, the
working principle behind the different techniques is very similar. Most digital fabrication
machines consist of a toolhead attached to a motion platform. The toolhead can either
remove material (subtractive manufacturing) or add material (additive manufacturing, also
called 3D printing). This toolhead is attached to a motion platform, turning it into a CNC
machine. Most machines have a two-axis or three-axis motion platform, though machines
with more axes of motion are also not unheard of.

90

2. DESIGN METHODOLOGY

Table 2.4 details the properties of several digital manufacturing techniques. This table
is not meant to be an exhaustive overview of all techniques, it merely serves to illustrate
the broad landscape of digital manufacturing. The data should also be taken with a grain
of salt; there are large discrepancies even between machines that use the same working
principle, and the properties are merely indicative of typical machines.

Within the spectrum of digital fabrication technologies, we focus on laser cutting and
low-end FDM 3D printing (i.e. RepRap (Jones et al., 2011) and derivatives). These
two technologies are commonly available in FabLabs and through online services. More
importantly, these machines can be operated by novice users, which in contrast with other
techniques, such as CNC milling, where more specialized training is needed. Low-cost
3D printing has enjoyed much attention in the past five years.

Some have even predicted that low-cost 3D printers could very well be the next big trend
in home robotics (Guizzo and Deyle, 2012; Lipson and Kurman, 2013). Still, Anderson
(2012) remarks that while 3D printing enjoys most of the media attention, laser cutters
are the true workhorse of the maker movement. Both laser cutting and low-end FDM 3D
printing techniques are used extensively throughout this work. These two techniques are
complementary in nature: 3D printers are well suited for producing small, complex, three-
dimensional parts, whereas laser cutters are fast and work well to produce larger, stronger
parts than 3D printed parts. However, only flat parts can be made using laser-cutting. In
our designs, the majority of custom parts are produced using laser cutting, supplemented
with 3D printed parts for complex mechanisms and structures.

The design decision to use digital fabrication has implications for a number of the project
goals. With digital fabrication techniques, the information required to produce a part is
contained within a digital file. Computer-controlled machines use this data to produce
physical parts, requiring little skill or artisanship from the operator. This last point is
important with respect to reproducibility: it facilitates online sharing, it lowers the barrier
to making copies (cfr. open source software, section 1.1.1) and offers a higher degree
of repeatability. This directly impacts the openness of the system (G1), as well as the
opportunities for online community building (G10). The choice also influences the cost of
the designs (G9), as the techniques allow anyone to create high-fidelity robot components
at reasonably low cost and in very small batch sizes. Finally, the techniques allow for a high
degree of design complexity, affording designers the chance to embed extra functionality in
the geometry of a part. This aspect can be leveraged to make the designs easier to reproduce
(G1) and easier to build (G2). The next section will detail how design complexity can be
exploited to achieve these goals.

2.2.2 DESIGN STRATEGIES

The scial robot Ono and the Opsoro platform have gone through multiple design itera-
tions, from which we got different insight on the success and failures for non-experts to
design and build robots. Throughout the iterations, our design strategies have been ad-
justed accordingly. The maker/hacker-centric approach lends itself well for quick design

91

2. DESIGN METHODOLOGY

Additive
m

anufacturing
Subtractive

m
anufacturing

Fused
deposition

m
odeling

Stereolithography
C

O
2

laser
Low

-end
C

N
C

m
ill

H
igh-end

C
N

C
m

ill
PC

B
M

anufacture
W

aterjet
C

utting

Partsize
10

-100
m

m
10

-100
m

m
10

-1000
m

m
50

-1000
m

m
50

-250
m

m
10

-100
m

m
50

-2000
m

m
G

eom
etry

3D
3D

2D
3D

3D
2D

2D
Precision

low
low

-m
edium

m
edium

m
edium

very
high

high
high

M
aterials

therm
oplastics

resins
plastics,
w

oods

plastics,
w

oods,
com

posites

plastics,
m

etals
com

posites

m
etals,

plastics,
com

posites,
ceram

ics

D
esign

skill
m

edium
m

edium
low

low
-m

edium
high

m
edium

-high
low

Production
skill

low
low

low
m

edium
high

n/a
m

edium

Speed
slow

slow
fast

m
edium

m
edium

very
slow

fast
Partcost

low
m

edium
-high

low
-m

edium
low

-m
edium

high
low

high
M

achine
cost

low
low

-m
edium

high
m

edium
high

n/a
very

high

Table
2.4

Exam
ples of digital fabrication techniques

92

2. DESIGN METHODOLOGY

iterations due to the use of digital manufacturing techniques. A summary of this approach
is given in this section. In our designs, we (1) use standardized components wherever ap-
propriate and (2) manufacture all custom components using digital fabrication techniques.
These two constraints serve to improve the reproducibility of the designs. We rely on dig-
ital manufacturing to produce the components for our designs, though other potential
solutions are to create designs that can be made using hand tools or designs that use only
off-the-shelf components.

The first point is self evident: using standard components is often cheaper and faster than
creating a custom part for the same purpose. The second point deserves some elabora-
tion. With digital fabrication, computer-controlled machines use digital data to quickly
and accurately produce parts, requiring only limited human involvement in the process.
This facilitates online sharing, lowers the barrier to copying, and offers a high degree of
repeatability. Another intrinsic property of digital fabrication is that design complexity
is (nearly) free, as explained earlier. This property can be exploited to incorporate extra
functionality in the geometry of a part.

Within digital fabrication technologies, we focus on laser cutting and low-end FDM 3D
printing (i.e. RepRap (Jones et al., 2011) and derivatives) as these two technologies are
commonly available through FabLabs or online services. By taking advantage of digital
manufacturing techniques we can incorporate extra functionality in our custom parts. This
can lead to a reduced part count, simpler assembly, improved cable management, etc.
Table 2.5 shows an overview of connections made possible through clever manipulations
of custom component geometry.

Wherever possible, assembly information is embedded into the part geometry. Multiple
methods can be used for this. To begin with, all laser-cut and 3D printed parts are fitted
with engraved annotations, indicating part numbers and orientation. This is useful to
distinguish similar parts and helps when referring to a part in written documentation.
Keeping track of different part of the same design, different versions of the same part, or
even the same parts within alternative designs is an interesting problem, and will certainly
become more relevant as the open source hardware community grows. As of yet, we
manually add the part numbers during the CAD design process. However, we envision
opportunities to automate these steps. Technically speaking, automatically adding part
numbers is a relatively easy process, though these annotations can have a tremendous
effect for the user. Sequential version numbering (e.g. v1, v2, v3) is not always possible
within open source hardware designs, so alternative version numbering schemes should
be considered. One possibility is to use timestamps, another is to use the commit hashes
from a version control system.

Many parts are purposefully made asymmetric, so that they can only be assembled in one
way. Figure 2.12 shows two examples of this. In the left-hand example, correct orientation
is enforced by giving the snap connectors different widths. In the right-hand example, this
is achieved by moving the middle hole out of center. Laser-cut parts are made from ABS
sheet material with one textured and one smooth side. Though not a deliberate choice,
the texture makes it very easy to distinguish between mirror parts. This is especially useful
because laser-cut parts always have at least one plane of symmetry, parallel to the plastic

93

2. DESIGN METHODOLOGY

Figure Description

1. Snap connector (ABS – ABS)

A reversible cantilever snap is used extensively to make 90° T-shaped connec-
tions between two laser-cut parts. Used for connecting the different parts of the
frame together and for connecting modules to the frame.

2. Textile snap (ABS – Textile)

A variant on connection 1 is used to attach the outer textile to the modules. A
small laser-cut receiving part is sewn directly to the textile. This receiving part
mates with its counterpart in the modules.

3. Stitch pattern (Foam – Foam)

The foam padding layer of Ono is made from flat, laser-cut foam parts that are
sewn together to form a three-dimensional shell. This 2D pattern is generated by
flattening the 3D shape in software. The border of the foam parts is punctured
by the laser at 1cm intervals, facilitating the manual sewing process.

4. Zip tie “dog bone” (ABS – Cable)

Feature to attach wiring to the frame using a zip tie. Previously, two parallel
slots were used but this proved troublesome as zip ties needed to be inserted
before assembly. Because of the “dog bone” shape, zip ties can be attached post-
assembly.

5. Nut trap (3D print – Fastener)

Hexagonal pockets are used in 3D printed parts to connect to fasteners. A hex
nut is pressed into the pocket, after which something else can be attached to
the printed part using a screw. This method is much more reliable than cutting
threads directly into the printed part.

6. Servo spline (ABS – Servo)

Hobby servos use a splined output shaft with triangular teeth to transfer torque
to the output lever. While the dimensions of servos are standardized, those of
the horns that come with servos are not. We solve this by cutting a radial pattern
of lines in the circumference of a circular hole. This melts the plastic in such a
way that mates with triangular teeth of the spline. Cutting the triangular teeth
directly does not work, as the geometry is too small.

Table 2.5 Examples of using design complexity of digital manufacturing techniques

94

2. DESIGN METHODOLOGY

sheet. Laser-cut parts of the same sub-assembly are also left connected to each other via
small bridges, similar to a sprue tree of a model kit.

Fig. 2.12 Using asymmetry to improve the assembly process.

Admittedly, there are limitations to this approach. The embedded information is not suffi-
cient to document the assembly process completely. The main documentation is provided
through a wiki, including photos, written instructions, and 3D models. During the work-
shops we organized, we found that one of the best ways to explain the assembly process
is to bring an assembled example that participants can copy. Nevertheless, this is only
possible in specific situations, and does not help to propagate the design via internet.

2.3 CONCLUSION

This chapter has described the methodology used throughout this work. Because of the
complexities of platform-based products, we argue that a human-centered design process
needs to be applied, with an emphasis on usability and user experience aspects. Human-
centered design requires a holistic approach, as different product aspects cannot be ex-
tracted and individually optimized. For this reason, we employ an iterative prototyping
process through the use of digital manufacturing technologies such as laser-cutting and 3D
printing. These technologies afford the designer a large degree of design freedom, which
can be used to facilitate the assembly process (G2). The digital manufacturing techniques
are commonly available in FabLabs and through online services, facilitating reproduction
and modification of the design (G1) and leading to lower part costs (G9). The next chap-
ter will detail the iterative design process, including a description of the design process
and the experiments we have performed.

95

2. DESIGN METHODOLOGY

96

Chapter 3

DESIGN ITERATIONS

Ono and the Opsoro platform have gone through multiple design iterations, from which
we gained different insight into the success and failures of different approaches. The design
iterations explore the different aspects of the design, build, and use phases.

As explained by the previous chapter, the complex nature of platform-based products re-
quires us to use iterative design in order to fully comprehend and address the needs of
the different stakeholders. The challenge is to find a good balance between the conflict-
ing goals of different stakeholders, as well as the technical constraints of the system. Our
maker/hacker-centric approach lends itself well for quick design iterations, especially due
to the use of digital manufacturing techniques. A summary of the major outcomes of this
iterative approach is given in this section.

Figure 3.1 shows a schematic overview of the design iterations of the Opsoro platform. The
main design path is represented by the two generations of the social robot Ono combined
with the Opsoro platform. The figure also depicts two side-tracks: the hexapod robots
and the Robot Blocks toolkit. These tangents are not focused on social robotics per se.
Nevertheless, they served an important role in inspiring and informing the design of the
platform. The figure illustrates the non-linear nature of our design process; the reasoning
behind this is argued in chapter 2. The remainder of this chapter is structured as follows:

• SECTION 3.1 describes the design of walking hexapod robots. The first version
was created at the start of this project, and many of its construction techniques
were used in the design of the initial version of the social robot Ono. The second
hexapod robot was created much more recently, and incorporates improvements
from the Ono and Opsoro design iterations.

• SECTION 3.2 details the design and use of a DIY construction system for making
small-scale mobile robots, intended for use by secondary school students.

• SECTIONS 3.3 AND 3.4 explain the global design decisions behind the social

97

3. DESIGN ITERATIONS

v1.0

v1.1

v1.2

Ono gen. 1

v2.0

v2.1

v2.2

v2.3

Ono gen. 2

v1.0

v1.1

v1.2

Opsoro

A

B

C

Robot Blocks

Ant Scorpion

Hexapod robots

Fig. 3.1 Schematic overview of the design iterations.

robot Ono, as well as the test results that informed these decisions. The description
of Ono is divided into two separate sections, representing the complete redesign of
the robot that took place midway through the project.

• SECTION 3.5 details the shift in research focus from a single social robot design
to a platform for the design of social robots. The toolkit, which is based on the
Ono robot, has gone through multiple iterations, and each iteration was tested in
a robot design context.

3.1 HEXAPOD ROBOTS

3.1.1 STIGMERGIC ANT

The Stigmergic Ant came about in 2012 as a demonstrator for the different types of proto-
typing technologies offered at the department’s industry services division, including CNC
milling, thermoforming, 3D printing, laser cutting, and electronics prototyping. The key
challenge of this project was to integrate these different technologies into one showcase
that would demonstrate the benefits of each technology in an interesting and attractive
format. The demonstrator is designed primarily for use in exhibitions and trade fairs.

98

3. DESIGN ITERATIONS

The demonstrator borrows the concept of “stigmergy” as a metaphor for the department’s
approach to industrial design. The term “stigmergy” was coined by Grassé (1959) as a
name for the process used by eusocial insects, such as ants, to coordinate their actions.
The term is composed of the Greek words stigma (mark, sign) and ergon (work, action),
denoting that agents in social insect colonies leave marks in their environment as a way to
communicate future actions.

The concept of stigmergy is transposed onto the design process. Here, physical prototypes
are the marks that are left in the environment, and the process of prototyping is seen
as a rich and meaningful mode of communication between the stakeholders of a design
process. In our industrial design department, we implement this philosophy by emphasiz-
ing the importance of making physical prototypes early and often, as part of an iterative
communication process between stakeholders.

The Stigmergic Ant is conceived as the literal embodiment of this figurative metaphor for
industrial design, as a sort of mascot. The ant is implemented as a 60 cm long hexapod
robot with three degrees of freedom in each leg. As a tongue-in-cheek interpretation of
the stigmergy paradigm, the Stigmergic Ant leaves traces in its environment in the form
of a candy trail.

Fig. 3.2 Final prototype of the Stigmergic Ant

99

3. DESIGN ITERATIONS

3.1.1.1 EMBODIMENT DESIGN1

The design of the Stigmergic Ant was influenced in a large part by the mechanical design
of the leg. The leg was designed first because (1) it is a large subassembly that is used six
times, (2) the components of the leg represent the majority of the total cost of the robot
and (3) most design constraints, such as overall size, weight, range of motion, and power
supply, are a direct consequence of the leg.

We decided to use three actuators for each leg. While hexapods with two DOF legs are
possible, the extra DOF allows for full six-axis control of the body of the robot and also
allows for more efficient and more natural looking locomotion. Standard-sized Radio-
Controlled (RC) servos are used throughout the design, though the design necessitated
the use of high-torque metal-gear servos. Each servo generates up to 15 kgf · cm of torque.
The relatively high torque output is needed because during certain phases of the gait cycle,
the entire weight of the robot needs to be supported by only three servos. The servos cost
circa 20 € each, totaling up to 360 € for all legs. This represented a significant fraction of
the budget for this project.

The size of the Stigmergic Ant was determined by the legs to keep the overall proportions
in line with those of a biological ant. The leg length is largely defined by the servo actuators,
which are positioned at the joints of the legs. The servos need to be spaced far enough so
as not to collide with one another, yet close enough so that the mechanical advantage of
the leg segments does not cause the servo to exceed its torque rating.

In addition to the 18 DOFs of the legs, the ant also has actuated mandibles, an actuated
neck and a dispensing mechanism in the abdomen for a total of three extra DOFs, bringing
the total to 21 servos. The two extra DOFs allow for more expressiveness and give the ant
some life-like behavior. For instance, while turning, the ant will also turn its head in the
direction it is heading. The mechanism in the abdomen of the robot is used to dispense
a candy trail as a form of stigmergy. The mechanism uses a rotating disk to dispense
M&M’s from an internal reservoir. Each completed back and forth sweep drops one
M&M, allowing for precise control.

Most of the custom parts for this project were made using laser cutting. Nearly all parts for
the frame and the legs of the ant were cut from 6 mm Medium-Density Fibreboard (MDF),
which was painted black afterwards. The laser-cut parts are interconnected using slot-and-
tab joints, which are reinforced using wood glue. Servos are attached to the frame using
machine screws. The thorax is composed of a double-plate design for increased torsional
stiffness, as it is subjected to large loads at the base of each leg.

To improve the robot’s load-bearing capacity, the base of each leg features double bearing
design with a plain bearing at the opposite end of the servo’s output shaft. The tip of each
leg is rubberized in order to reduce slippage, seeing that friction plays a large role in the
efficiency of locomotion. Finally, to accommodate the large amounts of wiring in this

1Significant contributions to the design and construction of the Stigmergic Ant were made by Ivo Six and Laurenz
Tack.

100

3. DESIGN ITERATIONS

robot, mounting holes for zip-ties were integrated in each segment of each leg. This serves
to reduce strain on the servo leads, as well as eliminate the possibility of a cable catching
and breaking.

The hollow abdomen of the Stigmergic Ant is composed of a laser-cut rib structure on the
outside, with a two-part plastic shell on the inside to serve as a candy reservoir. The shell
was modeled as a Non-Uniform Rational B-Splines (NURBS) surface in CAD. Using this
surface, a positive mold was milled in Polyurethane (PU) foam, which was subsequently
used to thermoform the two parts out of ABS plastic. The seam between the two halve is
hidden by the outer ribs.

The electronics of the ant robot are Arduino-based, with an Arduino mega handling com-
munication, gait pattern generation and inverse kinematics. A separate SSC-32 servo
controller2 handles the Pulse-Width Modulation (PWM) waveform generation to control
the 21 RC servo. The SSC-32 itself is controlled by the Arduino Mega over UART.

Initially, the ant was powered through a tether cable, which connected the robot to an
external high-current 5 V power source. The tether was also used for communication
with the computer-based GUI. This setup was eventually upgraded to eliminate the tether.
The external power supply was replaced by an integrated 6 V NiMH battery pack, and the
communication cable was replaced by an XBee wireless link. Besides the obvious benefits,
this upgrade also improved the stance and speed of the robot, as removing the thick-gauge
cable made the robot noticeably less tail-heavy.

3.1.2 LOCOMOTION ALGORITHM

Each leg of the hexapod has a horizontal hinge joint near the base of the body, followed
by two vertical hinge joints (fig. 3.4; α, β, and γ respectively). This configuration enables
three-axis positional control of the leg tip. Gaits and body position/orientation control are
made possible by coordinated movement of the leg tip positions of all six legs. In essence,
the control scheme relies upon looking at motion of the robot as a transformation of the
world relative to a stationary robot body, and transforming leg tip positions to coincide
with the moving world.

To accomplish this, the software needs an method to determine a leg’s joint angles for any
given set of leg tip coordinates. Algorithms that perform such calculations are referred
to as Inverse Kinematics (IK) algorithms. More complicated kinematic chains, like those
found in a six-axis industrial robot arm, rely upon iterative approximation IK algorithms
to find arm solutions. To avoid this, the mechanical design of the ant’s legs was modified
so that the IK problem would have an exact analytical solution. This resulted in a dramatic
simplification of the IK algorithm. Consequently, the Stigmergic Ant needs significantly
less computational power. The algorithm imposes one important requirement on the me-
chanical design of the leg: the leg tip needs to coincide with the plane that is perpendicular

2Lynxmotion - SSC-32 Servo Controller –
http://www.lynxmotion.com/p-395-ssc-32-servo-controller.aspx

101

http://www.lynxmotion.com/p-395-ssc-32-servo-controller.aspx

3. DESIGN ITERATIONS

to the axes of rotation of servos B & C, and contains servo A’s axis of rotation (see fig. 3.4
for servo naming). As a result, the three segments of the kinematic chain of a leg become
coplanar, allowing for a simple, analytical solution using trigonometric functions.

α

O

A

T

X

Y Z

X

Y Z

Fig. 3.3 Top view showing tip position at T , body coordinate system at O, and leg coordinate
system at A

The complete IK algorithm can be summarized in the following steps:

1. The IK algorithm is fed six 3D points in the ant’s body coordinate system. These
points represent the desired leg tip positions. The origin of the body coordinate
system coincides with the center of the robot’s body, as shown in fig. 3.3. Leg tip
positions are determined by a higher-level alternating tripod gait algorithm.

2. For each leg, the tip position T is transformed from the body coordinate system at
point O to the corresponding leg coordinate system, which has its origin at point
A; the center of rotation of servo A.

3. The angle of rotation of servo A, α, can be determined easily. It is the angle between
the leg coordinate system x-axis and the projection of segment AT onto the XY
plane (fig. 3.3).

4. The lengths of segments AB, BC, and CT are known, they are determined by the
geometry of the leg. These lengths are used to construct two circles, the first with
radius ∥BC∥ around point B, the second with radius ∥CT∥ around point T (fig.
3.4).

102

3. DESIGN ITERATIONS

A

B

C

T

α

β

γ

C ′

servo A

servo B

servo C

X

Y

O

Fig. 3.4 Kinematic chain of the leg

5. Next, the position of point C, the knee, is determined. It follows from the leg
geometry that the knee point should be situated at the intersection of the two circles.
For every valid (reachable) tip position, there are two solutions, points C and C ′.
The solution with the smallest z-coordinate, C ′, is discarded. C ′ is situated below
ground level and cannot be used.

6. Once the position of point C is determined, angles β and γ can be calculated using
inverse trigonometric functions.

7. Finally, angles α, β, and γ are mapped from [−π
2 ,+

π
2] to [500 µs, 2500 µs] and a

calibration offset is applied. The resulting pulse width values are sent to the servo
controller.

The locomotion of the Stigmergic Ant is generated using a simple alternating tripod gait
algorithm. In this gait, legs are grouped into two sets of three, the eponymous tripods
(fig. 3.5). The first set is composed of the left front leg (LF), the right middle leg (RM),
and the left back leg (LB). The second set contains the opposing legs. The legs of each set
move simultaneously, and there are always three legs in contact with the ground.

This gait is commonly employed by insects while moving slowly, and was first described by
Wilson (1966). The alternating tripod gait is relatively well understood and is commonly
implemented in hexapod robots using a variety of different techniques (Altendorfer et al.,

103

3. DESIGN ITERATIONS

LF

LM

LB

RF

RM

RB

Tripod a Tripod b

Fig. 3.5 Tripods of the alternating tripod
gait

T ′
a

T ′
b

T
d⃗a

d⃗b
flight

phase

stance
phase

Fig. 3.6 Effect of the displacement vectors on leg tip
positions

2001; Beer et al., 1997; Birkmeyer et al., 2009; Wang et al., 2010). The characteristics of
this gait are that it is statically stable and relatively simple, though slower than other gaits.

The Stigmertic Ant implements this alternating tripod algorithm by superimposing a dis-
placement vector upon the neutral position of each leg tip (fig. 3.6). The displacement
vectors d⃗ are precalculated and describe a semi-circular path with a linear segment for
the stance (push off) phase and an arc segment for the flight (return) phase of the gait.
Displacement vector coordinates are stored in a circular array.

The displacement vectors of the two tripods, d⃗a and d⃗b, are in antiphase, so that whenever
one tripod is in stance phase, the other is in flight phase. At every time step, the indices of
the displacement vector array are incremented, resulting in displacement vector d⃗a for the
legs of tripod a and displacement vector d⃗b for the legs of tripod b. For each of the robot’s
legs, a new tip position T ′ is found by superimposing the displacement vector d⃗ upon
the leg’s neutral position T , so that T ′ = T + d⃗. For the legs of tripod a, this becomes
T ′
a = T + d⃗a. For tripod b, the result is T ′

b = T + d⃗b.

The steps described above are used to implement the ant’s forward locomotion. Turning
is built upon the same principle, but the process is slightly more complicated. Here, the
x-component of the displacement vector is used to drive rotation of the leg tip about the
robot’s body origin O, and the z-component is used to translate the leg tip vertically. As
a result, the two tripods rotate in opposite directions around the body origin, causing
the robot to turn in place. A more generalized approach could incorporate rotation and
translation in the same transformation matrix, enabling simultaneous changes of position

104

3. DESIGN ITERATIONS

and orientation, though this has not yet been implemented.

3.1.3 SCORPION3

In early 2016, the Stigmergic Ant was disassembled and components were reused to create
a second-generation hexapod robot, this time inspired by the design of a scorpion (Ter-
ryn et al., 2016). Improvements of the scorpion over the Stigmergic Ant fall into two
categories:

1. The high-level software of the robot was changed to have a large degree of au-
tonomous, animal-like behavior. This is in contrast with the original Stigmergic
Ant, which functioned much more as a remotely operated robot. This new, semi-
autonomous mode of operation requires much less space to deploy, making it more
useful for expositions and trade shows, where space is at a premium.

2. The mechanical design of the robot is greatly improved, leading to reduced weight,
longer battery life, and overall better performance.

The interaction paradigm of the scorpion was changed with two things in mind. First of all,
the robot should be usable in an area as small as a tabletop. Secondly, interactivity should
be focused on very short interactions with visitors, and when no one is actively playing
with the robot, the robot should display some sort of attention-grabbing behavior.

Toward this end, a number of IR sensors were integrated into the body of the scorpion.
Sensors positioned on the ventral side of the robot function to detect and avoid table edges,
whereas sensors on the dorsal side are used to detect a user’s hand. Toward this end, the
robot has 3 IR detectors along the length of its back, which detect the presence of a hand
above it, as well as one IR distance sensor in front, which is used to measure the distance
between the hand and the robot.

When no one is nearby, the scorpion exhibits a seeking behavior, where it will randomly
turn and look for a victim. When a visitor positions their hand over the head of the
scorpion, it will assume a defensive, threatening stance warning the user to back away.
Should a visitor choose to ignore this warning, the scorpion will sting, marking them with
a felt marker hidden within its stinger. Conversely, the robot may also be calmed down
by stroking its back, in which case, it will exhibit a happy, soothing behavior.

The second group of improvements is related to the mechanical design of the hexapod.
We discern three major factors that triggered the changes:

• Lessons learned from the Stigmergic Ant; especially problems that only arise after
extended use of the device, such as servos overheating and burning out.

3The scorpion was created by Robbe Terryn, Stephan Flamand, and Pieterjan Deconinck. My own involvement
in this project was limited to an advisory role.

105

3. DESIGN ITERATIONS

Fig. 3.7 Final prototype of the scorpion

• The proliferation of digital manufacturing techniques. In the four years since the ant
was designed, the number of digital manufacturing machines at the department has
increased considerably. The capacity for existing techniques, such as laser cutting,
has doubled or tripled, and new techniques, most notably low-cost 3D printing,
have been added.

• Better knowledge of digital manufacturing. Expertise has been built up over the
years, leading to faster design cycles, better use of materials and techniques, and a
better understanding of part performance.

The first major change from the ant is the use of 3 mm ABS instead of 6 mm MDF. Though
less rigid, this new material has a much better strength-to-weight ratio, permitting a more
lightweight design. The scorpion has a similar double-plate chassis design, though the
plates are held at distance by threaded spacers, improving chassis rigidity.

Two big changes were made to the design of the legs to reduce strain on the servos. First of
all, idler bearings were added on the backplate of each servo (the side opposite the output
shaft). This serves to eliminate any misalignment in the leg joints, which in turn reduces
the required amount of torque. The idler design was copied from the Opsoro Joint module
(section 4.1.1.4), integrating 3D printed parts in the design of the legs.

Secondly, gravity compensation springs were added to the B-axis of each leg. The servos

106

3. DESIGN ITERATIONS

on this axis are subject to the highest loads and had a tendency to eventually fail due to
excessive strain. Strong elastic cords were added to the underside of each leg in order to
create a force opposing gravity.

Thermoforming was used more extensively in the scorpion, both for aesthetic parts as well
as for structural components. The third segment of the legs (segment CT) was entirely
replaced by a single thermoformed part made out of 2 mm polystyrene (PS). The doubly
curved shape of this monocoque part gives it the strength it requires while being very
lightweight. Use of thermoforming is repeated in the scorpion’s dorsal and ventral cover
plates, as well as its claws and stinger.

The end result of all these embodiment changes is a high-performance, lightweight robot.
To illustrate, the Stigmergic Ant had an idle current consumption of 3 to 4 A while stand-
ing, while the scorpion only draws 1 A under similar conditions. Even more so, because of
the antagonistic springs that were integrated into the legs, the robot can remain standing
even when power is turned off. All in all, the result is a hexapod with an extended battery
life and a greatly improved gait.

3.1.4 SUMMARY

The two hexapod robots presented in this section demonstrate the benefits of digital manu-
facturing techniques in complex, mechanically demanding applications. The rise of these
techniques has significantly lowered the cost of creating custom parts for robotics (G9),
with the added benefit that designs can be shared easily via online platforms, facilitating
worldwide collaboration (G10). Still, the documentation and communication of a design
remains a difficult and time-consuming challenge. This problem is exacerbated by (1) the
cost of most CAD tools, and (2) the fact that CAD files cannot capture all the design
information. For instance, component wiring, assembly order, and calibration routines
are difficult to document in CAD.

With both hexapods, laser cutting served as the production technique of choice for the
bulk of the components. While laser cutting has some design limitations – e.g. being
limited to flat parts – the technique enables designers to rapidly create large, strong parts
with an excellent finish. While the base techniques of the two robots are the same, the
scorpion demonstrates a much better understanding of the laser cutting technique, as
shown by the use of more durable materials and more complex geometry. This resulted in
a much lighter and better performing robot. In addition, the scorpion uses thermoforming
more extensively in the design, and also incorporates 3D printing for many small, complex
parts, a technique that was not present in the Stigmergic Ant. Though the hexapods were
not explicitly designed as open hardware, the tools and techniques used are well suited for
open DIY reproduction (G1). The use of laser cutting and 3D printing techniques in a
demanding scenario proved useful and inspired future designs in this work.

While not designed with this in mind, aspects of design modularity emerged in both
hexapods. In essence, the leg – a subassembly that is reused six times – can be seen as a

107

3. DESIGN ITERATIONS

“primitive” toolkit module. The modular design of the leg makes it easier to build and to
use (G2). There is a direct parallel between the physical leg module, a reusable hardware
block, and the leg driver class, a reusable software component. In both cases, complex
behavior is abstracted away in an easy-to-use “black box”. A similar strategy also emerged
in the Opsoro platform.

The design of the scorpion’s legs is based on a specialized version of the Opsoro joint
module. It is interesting to note how this module was repurposed as a leg module, for
which it was not originally intended. This is characteristic for the chosen components and
techniques, which place an emphasis on flexibility, adaptation, fast design iterations, and
an open, “hacking” design approach (G1).

3.2 ROBOT BLOCKS – TOOLKIT FOR SIMPLE
EDUCATIONAL ROBOTS

Building a robot from scratch in an educational context can be a challenging prospect.
While a multitude of projects simplify the electronics and software aspects of a robot, the
same cannot be said for construction systems for robotics. This section presents our efforts
to create a low-cost do-it-yourself construction system for small educational robots. Cur-
rently, one of the most common ways of implementing robotics in the school curriculum
is through the use of commercial robot kits, such as LEGO Mindstorms. The alternative
to using a commercial robot kit is building a robot from scratch. In the past, this would
have meant selecting microcontroller and motor driver chips, developing a printed circuit
board, CNC milling a custom chassis for the robot, and finally programming the robot in
low-level languages such as assembly or C. In recent years, however, a number of projects
have come about that greatly simplify this process: they provide flexible, yet user-friendly
solutions to each of the sub-problems presented in robotics. A complete robotics plat-
form can be seen as the combination of three distinct elements: (1) a set of electronics,
(2) a programming environment (software), and (3) construction elements for a physical
embodiment. As discussed in section 1.2.2, multiple projects exist that provide an inter-
mediate solution between building from scratch and using a commercial kit. In doing
so, they provide user-friendly tools for educational robotics that can potentially lead to
a deeper learning experience. While this approach is already successful and widely used
in software and electronics, common construction systems are still lacking. The choices
for robot construction systems are not quite as diverse as those available for software and
electronics. Consequently, the options that remain are either (1) to use one of the few
purpose-built systems (e.g. MakeBlock, BitBeam), (2) to modify toy construction sys-
tems (e.g. LEGO, Meccano), or (3) to build a robot embodiment from scratch using raw
materials. Often, cost and availability of parts are the main obstacles here. In our opinion,
none of the approaches are analogous to what is offered in the other categories: platforms
that allow novices to work with complex technologies in a user-friendly way, but that also
allow advanced users to modify, extend, and hack the platform beyond its original capabil-
ities. More research into the specifications of DIY robot construction systems is important
here. In our work, we emphasize the role of user experience and user-friendliness precisely

108

3. DESIGN ITERATIONS

because we think those are decisive factors in the success of an open construction system.

Our goal is to create an extendable construction system that can be used in conjunction
with electronics and software to build small robots from scratch. Influenced by the ap-
parent flaws of existing approaches, we paid special attention to two key aspects. First
of all, cost is often a barrier in the implementation of robotics in education (Gonzalez-
Gomez et al., 2012; Johnson, 2003; Mataric et al., 2007; Mondada et al., 2009; Riojas
et al., 2012). As such, we have made a conscious effort to reduce cost without limiting
functionality by repurposing standard components and by using affordable low-volume
production methods. Secondly, we aim to make our system open (i.e. ”hackable”, suit-
able for DIY), meaning anyone should be able to modify and expand the system. In order
to meet this requirement, we have restricted manufacturing techniques to those that can
commonly be found in FabLabs (Walter-Herrmann and Büching, 2013), e.g. 3D printers
and laser cutters. While mass production techniques, such as injection moulding, can
produce parts at a much lower cost, they would significantly hinder the ability for anyone
to customize parts due to the costs associated with tooling and moulds.

Even if there are no FabLabs in the vicinity, online services (e.g. Shapeways, Ponoko, 3D
Hubs) offer complete access to digital fabrication techniques. However, creating parts at
a FabLab has the added benefit of bringing students and teachers in contact with a new
environment that offers a plethora of STEM teaching opportunities (Blikstein, 2013a). It
should also be noted that the two aspects mentioned above are, in fact, interrelated. By
designing the system so that students can manufacture their own parts at a local FabLab,
costs can be greatly reduced. Additionally, the students become familiar with the manu-
facturing process, lowering the barrier to modify existing designs into custom components
and introducing them to the DIY culture.

The following sections will detail the design and evaluation of this construction system.
The project has undergone two design iterations, resulting in three distinct construction
systems. The three systems were given to students and teachers to be used in a robotics
contest. Subsequently, the systems were evaluated on three aspects, usability, affective
appraisal, and functionality, through (1) surveys filled out by the participants of the contest
and (2) through an expert evaluation. Based on this information, we have chosen one
system to be used as the basis for the next design iteration, incorporating feedback from
both the user surveys and the expert evaluation.

3.2.1 ROBOTS TO MOTIVATE STUDENTS INTO STEM

In the summer of 2013, Dwengo VZW4 launched the CErrobotics5 project in Argentina.
Within this project, which was co-funded by the Google RISE 2013 program, students
and teachers were trained to build robots. The idea is that by hands-on experience, stu-
dents and teachers evolve from being consumers to technology producers. In total, 86
students (aged 11-18) and 35 teachers participated. The project took place in the Salta

4A non-profit organisation that promotes science and technology. – http://www.dwengo.org
5CErrobotics project documentary. – http://www.youtube.com/watch?v=jP-G1OrR5Ng

109

http://www.dwengo.org
http://www.youtube.com/watch?v=jP-G1OrR5Ng

3. DESIGN ITERATIONS

province in northern Argentina. Due to the geographical location and low budgets, these
students had minimal access to the latest technologies. For these students, robotics and
the combination of electronics, mechanics, and programming was a completely new expe-
rience.

Fig. 3.8 Playfields used during the contest. The left playfield has a light-to-dark gradient on the
floor to guide robots toward the flame. The right playfield has a bright spotlight above the flame
to aid the robots in navigation.

At the end of the hands-on sessions, a robot contest was organized with the challenge of
designing a firefighting robot. Participants were given five days to create a robot that can
autonomously navigate around obstacles towards a fire – represented by a lit candle – and
extinguish it. In order to persuade students to explore different solutions, two different
playfields (fig. 3.8) were provided. The first (fig. 3.8 left) has a gradient floor, so grey
scale sensors can be used to determine the distance of the robot to the candle. The second
(fig. 3.8 right) has a spotlight above the candle pointed towards the robot, which can be
detected using IR sensors.

In total, 86 students and 35 teachers participated in the project. They were divided into
teams of two to three and were given a kit with building materials for their robots. Teams
consisted solely of either teachers or students; there were no mixed teams. The kit (fig.
3.9) consisted of the following items:

• 1× Dwengo Board (wyffels, Bruneel, et al., 2012; wyffels, Hermans, et al., 2010)
(a microcontroller board with provisions to control 2 DC motors and 2 RC servos,
along with multiple sensors).

• 1× programmer with USB cable.

• 1× battery pack.

• 2× geared DC motors with wheels.

110

3. DESIGN ITERATIONS

geared
dc motor

micro
servo

dwengo
board

dwengo
programmer

7.2V li-ion
battery pack wheel

aluminum beams
40 mm, 60 mm, 100 mm
up to 1 m per group

90° corner
connector

dc motor
connector

servo
connector

×20

×1

×1

×1
×2

×2

×1

×2

×1 ×1

1 m

v
a

r
ia

b
le

:
ty

p
e
 o

f
p

la
s
ti
c

c
o

n
n

e
c
to

rs
 d

e
p

e
n

d
s
 o

n
th

e
 c

o
n

s
tr

u
c
ti
o

n
 s

y
s
te

m

Fig. 3.9 The robot kit used in the contest contains a microcontroller board and programmer, a
battery, 2 geared DC motors, 1 RC servo, 2 wheels, 1 m of aluminium extrusions, and a set of
plastic connectors. The type of connectors (shown in red) changes between the three systems.

• 2× IR sensors.

• 1× fan and balloons (either of which can be used to extinguish the candle).

• Aluminium beams: participants were free to select pre-cut pieces of 40 mm, 60 mm,
and 100 mm. A total length of 1m was provided per team. No team opted to cut
beams of custom length.

• Plastic connectors, type depending on the system assigned to the team: 2 motor
connectors, 1 pair of servo connectors and 20 90° corner connectors. More connec-
tors were available, if needed. This part of the kit was the focus of the experiment.

• Miscellaneous items, such as nuts, screws and wires.

To successfully build a firefighting robot, it is important to master the basics of many
STEM disciplines. Knowledge of materials, mechanisms and mechanical engineering
principles are essential skills for building the physical embodiment of the robot, while
the electronics require insight into electricity and physics. Finally, to program the robot,
subjects such as computer science, mathematics, and algorithmic thinking are required.
As such, we believe robotics contests such as this one have great educational value because
they teach the basic principles of engineering, programming and electronics in a fun and
engaging context (Osborne et al., 2010; Pack and Avanzato, 2004; Verner and Ahlgren,
2004; wyffels, Hermans, et al., 2010).

111

3. DESIGN ITERATIONS

3.2.2 DESIGN OF THE BUILDING SYSTEMS

We have created our systems primarily to facilitate the design and construction of small
educational robots. As such, the design decisions we have made resulted in systems that
are much better suited for building small wheeled robots as opposed to flying drones,
or even humanoid robots. At the start of the design process, we decided to build our
construction system around standardized 15x15 mm aluminium T-slot extrusions. We
based this decision on a number of factors:

• By relying on these aluminium extrusions, the only custom components required
are small connector pieces. These can be quickly and easily manufactured using
a laser cutter or a 3D printer. This strategy greatly improves the machine time
required to produce a kit.

• Because of the T-slots, components can be fastened at any arbitrary spot along the
length of the extrusion. Systems that rely on beams with regularly spaced holes (e.g.
LEGO Technic, BitBeam) do not offer this advantage.

• They are compatible with standard M3 fasteners, as opposed to larger size extrusions,
which generally use proprietary nuts and bolts.

• Aluminium is stronger and more robust than common types of plastics (such as
ABS or PP).

• They are inexpensive (8.60 € for a length of 2 m) and can be bought from multiple
suppliers (e.g. Misumi, OpenBeam).

As mentioned earlier, one of the goals of this project is to create a system that is accessible
and easy to (re)produce. As such, we have limited ourselves to tools and machines that are
commonly found in FabLabs.

Our design approach (fig. 3.10) can be approximated by the Pugh’s Design Funnel model
(Pugh, 1991), with two iterations of divergent and convergent ideation. The initial de-
sign requirements can be summarized as; (1) An open DIY construction system for robot
kits (2) producible with common facilities in FabLabs (e.g. hand tools, laser cutters and
basic 3D printers) (3) using the standard 15 × 15 aluminium T-slot extrusions. An ex-
ploratory first iteration was done in conjunction with 2nd year Industrial Design students
at Ghent University. As an assignment for one of the courses, they were required to de-
sign a kit, based on the aluminium beams that could be used to build two different robots.
Altogether, the students designed 13 different robot kits. Figure 3.11 shows some of the
robots they created.

A number of conclusions were drawn from the students’ kits. None of the connection
systems they designed were suitable for a larger scale experiment. Some of the connectors
showed a lack of strength, some required too much manual labour to produce, and some
were simply too limited. At a certain point in their design process, the students needed

112

3. DESIGN ITERATIONS

initial
design

requirements
iteration 1 iteration 2 future

work

13 robotics
kit concepts

3 construction
systems

robot contest

time
co

nc
ep

ts

Fig. 3.10 Design funnel – schematic overview of our design process. Adapted from Buxton (2007,
p. 148), Pugh (1991, p.75).

Fig. 3.11 Student designs from iteration one.

to come up with a type of reversible connector to guarantee the modularity of their kits.
In retrospect, we think this step was the critical moment that determined the quality of
the kits they designed. For this reason, we decided to focus solely on designing modular
connectors in the second iteration. It is from this iteration that we generated the three
systems that were used in the robotics contest. For each system, we designed a 90° corner
connector (which allows for both corner- and T-connections), a servo connector, and a
DC motor connector. The principle behind each system is highly adaptable, and new
connectors, based on the same principle, can be easily designed to accommodate specific

113

3. DESIGN ITERATIONS

sensors, larger motors, etc. The adaptability of the connectors and the continuous mount-
ing positions offered by the aluminium beams together result in a high degree of flexibility
in the three construction systems. Figure 3.12 shows some of the divergent and conver-
gent prototypes created in iteration two. Some of the ”abandoned” prototypes are also
shown in this picture. For instance, one concept relied on a lever mechanism to lock the
connector into place. However, forces generated by the lever caused the printed part to
delaminate, and no effective solution could be found for this problem.

SYSTEM 1

laser-cut screw

connectors

SYSTEM 2

printed friction-fit

connectors

SYSTEM 3

printed hybrid

connectors

ABANDONED

lever connectors

Fig. 3.12 Prototypes from iteration two.

The final design files of the three systems can be found in our GitHub repository6. The
parts for system 1 were laser-cut from 3 mm sheets of ABS plastic. ABS was chosen because
the material is strong, but not brittle and because it can be cut easily and cleanly using a
40 mm laser cutter. Systems 2 and 3, which were designed to be 3D printed, were printed
on an Ultimaker 1 using PLA plastic with a layer height of 0.1 mm and an infill density
of 20%. PLA was chosen because of its ubiquity in low-end 3D printers and because the
material can be printed without a heated bed. However, the pieces can also be printed
in ABS, if desired. Systems 1 and 3 rely on M3 nuts and screws for their functionality.
Either hex socket cap screws or cross-recessed pan screws can be used, though the former
is preferred. Hex socket cap screws offer two advantages: (1) they are more durable (less
prone to stripping), and (2) they can be tightened at an angle using a ball-end hex key.
Since we had difficulty buying this type of screw in Argentina, cross-recessed screws were
used during the contest. They work just as well, but are more cumbersome to work with
in tight spaces.

6https://github.com/cesarvandevelde/RobotBlocks

114

https://github.com/cesarvandevelde/RobotBlocks

3. DESIGN ITERATIONS

3.2.2.1 SYSTEM 1: LASER-CUT SCREW CONNECTORS

System 1 relies on laser cutting as the sole production technique. In this context, the main
advantage of laser cutting is its speed: all the parts required for 10 teams were produced
in two hours, whereas the parts for the other systems took over a week, each using 3D
printing. The main design limitation of laser cutting is that materials can only be cut
from one direction, so only flat shapes can be produced.

The construction system we created using this technique relies on small T-shaped gusset
plates to connect aluminium beams (fig. 3.13). The gusset plates contain four holes each,
which are used to screw the plates to the aluminium extrusions. Two screws are used per
beam to ensure that the beams cannot rotate in respect of one another. The aluminium
extrusions we chose are well suited for this application as the T-slots of the extrusions
can accommodate standard M3 nuts. Alternatively, the corner plates can also be used
in conjunction with the threaded holes at the end of each beam to create a connection
between beams.

90° corner
connector

dc motor
connector

servo
connector

Fig. 3.13 Laser-cut screw connector system.

To make a corner connection between two beams, two nuts need to be inserted into each
beam first. Then, a gusset plate is positioned over the nuts, and screws are inserted in the
four holes. Adjustment is possible by shifting the parts around in their T-slots. Finally,
the connection is secured in place by tightening the screws.

This system relies on nuts and screws to create a rigid connection. While this method is
reliable and low-cost, changing the construction takes some time and, therefore, limits the
scope for rapid iterations of different designs.

115

3. DESIGN ITERATIONS

3.2.2.2 SYSTEM 2: PRINTED FRICTION-FIT CONNECTORS

For the second construction system, we wanted a type of connection that is very quick to
use in order to encourage quick design iterations in the robotics contest. Consequently,
our second connection system relies solely on friction to connect pieces together. The
corner pieces of this system have two sets of grooves that match the profile of the T-slots
in the aluminium beams (fig. 3.14). To create a connection, two beams are simply slotted
into a corner piece with sufficient force. The drawback of this approach is that the friction
force limits the amount of force that each corner can absorb.

90° corner
connector

dc motor
connector

servo
connector

Fig. 3.14 Printed friction-fit connector system.

The plastic pieces of this system were designed to be printable on a low-cost 3D printer
(e.g. a RepRap, or in our case, an Ultimaker). Designing for this category of 3D printers
poses several limitations from which professional 3D printers do not suffer. One of the
main challenges is that low-end 3D printers typically do not have a second print head to
deposit support material. This means that features such as undercuts need to be carefully
designed so that they are self-supporting. Parts of this system can be printed with minimal
overhangs by laying them flat on their side. The only overhangs – the bottom grooves –
can be printed because both edges are supported.

The second challenge we encountered while designing this building system was to find a
good way of reliably creating a friction-fit connection. The tolerances of parts produced
on DIY 3D printers depend on many factors, including the construction and calibration
of the machine, the quality of the plastic filament used, and even the ambient temperature.
As such, a simple groove with correct sub-millimetre dimensions is not a feasible way to
achieve a friction fit. Our solution was to incorporate a spring-like feature in the printed
parts. The purpose of this spring is to create tension between the groove of the printed part
and the surface of the aluminium beam. This design allows for much wider tolerances. The
spring-like feature also takes advantage of the anisotropic nature of 3D printed objects: the
springs flex in the horizontal plane, which is the strongest direction in FDM parts because

116

3. DESIGN ITERATIONS

it does not depend on interlayer adhesion.

3.2.2.3 SYSTEM 3: PRINTED HYBRID CONNECTORS

In the design of third system, we wanted to strike a balance between the strength and
robustness of the laser-cut screw connectors and the ease of assembly of the printed friction-
fit connectors. This hybrid system combines the groove mounting system of system 2 with
the nut and screw connection of system 1. In practice, this means that users can quickly
try out new ideas by sliding connector pieces into the T-slots of the beams. Once they are
securely in place, the connection can be fixed by tightening the two screws.

90° corner
connector

dc motor
connector

servo
connector

Fig. 3.15 Printed ”hybrid” connector system.

The connector itself consists of a printed plastic part, two nuts, and two screws. The basic
shape of the corner connector is similar to the one from the friction-fit system, with grooves
to accommodate the T-slot channels of the aluminium beams (fig. 3.15). Additionally,
each side has a circular hole ending with a hexagonal cut-out, which holds a nut and screw
in place. The nut sits in the hexagonal cut-out and is positioned in line with the ridge that
slides into the T-slot channel of an aluminium beam. This connector can be inserted into
the extrusions with the fasteners already in place, resulting in a substantial speed gain over
the laser-cut screw connectors.

As with the previous building system, a number of properties of low-end 3D printing are
utilized: the parts can be printed without the use of support material, they are designed
with wide tolerances in mind, and they can be oriented so that inter-layer forces are re-
duced to a minimum. Table 1 shows a summary of the properties of the three systems.

117

3. DESIGN ITERATIONS

System 1 System 2 System 3

Production technique Laser cutting 3D printing 3D printing
Material 3mm ABS sheet PLA PLA
Production time per piece <1 min. 15 min. 15 min.
Connection method screw friction friction + screw

Extra hardware per connector
4 M3x6 screws
4 M3 nuts

none
2 M3x10 screws
2 M3 nuts

Table 3.1 Comparison of the three building systems

3.2.3 MEASURING USABILITY, AFFECTIVE APPRAISAL, AND
FUNCTIONALITY

The main objective of our evaluation is twofold. Firstly, we wanted to determine which of
the three systems is most appropriate for use in educational robotics. Secondly, we wanted
to establish the next steps to further improve that system. To this end, we focused on three
key aspects during our evaluation process. These aspects are (1) the usability (i.e. are the
blocks easy to use?), (2) the affective appraisal (i.e. what is the perceived emotional value for
users?), and (3) the functionality (i.e. how versatile are they, how well do they perform?).

The tools we selected to measure the above-mentioned aspects were subject to a number
of constraints. We chose tools that are short and quick to fill out, that are unambiguous,
and that can be completed through an online survey tool. Consequently, we chose the
following three tools: system usability scale (M1), Pick-A-Mood (M3), and AttrakDiff
(M2). More information on these measurement tools is given in section 2.1.1.1.

Additionally, we also asked respondents to indicate their age, gender, and the colour (which
corresponds to the type) of the building blocks they used. Finally, we provided two open
text areas where we asked what they liked, and disliked, about the system (M6).

The questionnaire was given at the end of the event, after the final contest. We asked that
only the persons who actively participated in the mechanical construction process com-
plete the survey, as the survey relates to the robot building blocks. In most teams, one
person was responsible for building the physical embodiment, while the others focused
on the electronics and the programming. Consequently, in those cases, only one ques-
tionnaire was completed per team. In rare cases where multiple participants worked on
the mechanics, they each filled in a separate survey.

118

3. DESIGN ITERATIONS

While our questionnaire certainly measures usability and affective appraisal, functionality
is not measured as explicitly. For that reason, we also conducted an expert evaluation.
We asked six experts – teachers and coaches who are frequently involved in educational
robotics – to participate in a two-part study. The experts were chosen for both their expe-
rience in teaching and their knowledge regarding the design of robotics. In the first part,
they were asked to indicate which aspects they consider when evaluating robots. They
were then shown short (less than 1 minute) video clips of 17 robots built during the CEr-
robotics contest (M8), and were asked to give each of them a score between 1 and 9 (M4).
For the second part, the experts were given the opportunity to experiment with the three
different systems. Subsequently, they were asked to rank the systems in their order of pref-
erence, and to write down any additional comments they had (M6). While evaluation
through video files certainly has its limitations, we feel that this approach, in combina-
tion with the responses from the open questions, do allow us to gain an insight into the
functionality of each robot construction system.

3.2.4 RESULTS

Of the 86 students and 35 teachers (121 participants total), 37 participants indicated they
were actively involved in the mechanical building process and were asked to complete our
questionnaire. This corresponds to a ratio of 30.6%. As mentioned above, one person
per team completed the survey in most cases. At the start of the project, each group was
assigned a building system in order to achieve an approximately even distribution (resp.
12, 12, 13) of the three systems. However, early on in the build process, several of the
groups using the laser-cut screw system expressed their frustration with this system. They
were therefore allowed to switch to a different building system of their choice, which
resulted in a disproportionate distribution, where the laser-cut screw system was severely
underrepresented as compared to the other systems. Four of the questionnaire respondents
used the laser-cut screw system, 15 used the friction-fit system, and 18 used the hybrid
system.

The average age of respondents is 18.5. However, this average is skewed because the groups
consisted of a majority of secondary school students (n = 32) supplemented with a small
group of teachers (n = 5). Average age of students was 16.1 (σ = 1.65); average age of
teachers was 33.0 (σ = 9.19). Gender data show a male majority, with 27 male partic-
ipants and 10 female participants. However, gender ratio skewness is not uncommon in
robotics contests (Johnson, 2003; Milto et al., 2002).

3.2.4.1 SYSTEM USABILITY SCALE

The results of the System Usability Survey showed an average SUS value of 80.8 (σ = 14.6)
for all three systems combined. Bangor et al. (2008) calculated the average SUS value of
206 studies to be 69.69. A one-sided t-test at a significance value alpha of 0.05 indicates
that the average value of 80.8 is statistically significantly different from the baseline value
of 69.69, (t = 4.621, p << 0.05, 95% CI of the difference= [6.24, 16.001]).

119

3. DESIGN ITERATIONS

To investigate differences in SUS scores among the three systems, a one-way ANOVA was
performed. Inspection of the boxplots and the Kolmogorov’s test (p = 0.068 > 0.05)
suggests normality of the data. Moreover, the assumption of homogeneous variance was
confirmed by Levene’s test (p = 0.261 > 0.05). Based on the one-way ANOVA, with
a significance level of 5%, (F = 0.007, p = 0.993 >> 0.05), we can state that there
is not enough statistical evidence of difference in mean value of SUS among the three
systems. We also performed a Kruskal-Wallis test, which confirms the result of the one-
way ANOVA analysis (p = 0.97 >> 0.05). This result is in contrast with our experiences
early on in the project, where several groups switched from the laser-cut screw connector
system to another system. A possible explanation is that only the users who were satisfied
with the system remained, which would explain why no difference in usability is detected.

Indeed, two users of the laser-cut screw connector system indicated in the open questions
that they had difficulty joining beams with this system. We think this is because the system
is particularly sensitive to the order of assembly, because the nuts need to be inserted into
the channels of the beams in advance. The main problems reported by users of the friction-
fit system is that connection pieces require too much force the first time they are used, and
that they are prone to loosening while in use. Users of the hybrid bricks reported only
minor issues, such as the hexagonal openings for nuts being too small. In all three groups,
users remarked that they would like a larger variety of different pieces. We suspect that
the usability of systems 1 and 3 would have been slightly higher if hex socket cap screws
were used instead of cross-recessed pan head screws, as described earlier.

3.2.4.2 PICTORIAL MOOD REPORTING INSTRUMENT

The second part of our survey uses the Pictorial Mood Reporting Instrument (Desmet et
al., 2012; Vastenburg et al., 2011) to measure the overall mood participants experienced
during the construction process of the robot. The facial expressions provided by this tool
can be arranged on two axes, comparable to Russel’s circumplex model of affect (Russel,
1980). These axes are valence (pleasure - displeasure) and arousal (high energy - low en-
ergy). Figure 3.16 shows the moods reported by participants plotted on these two axes.
Fisher’s Exact Test (Fisher, 1922) indicates that there is not enough statistical evidence (p
= 0.59 > 0.05) to claim that there is a relationship between the type of building system
used and the mood reported by the users. We think the low sample size is partially re-
sponsible for this. If we take the laser-cut connector pieces (n = 4) out of the equation,
and cluster the moods in positive, neutral, and negative brackets (cfr. the valence axis in
the circumplex model of affect (Russel, 1980)), we do see a slight correlation (p = 0.047 <
0.05) between the building system and the valence of the reported mood, with the hybrid
connectors performing slightly better.

3.2.4.3 ATTRAKDIFF

The third part of our survey consists of the AttrakDiff questionnaire (Hassenzahl et al.,
2003). The data was processed by means of the AttrakDiff online tool. Figure 3.17 shows

120

3. DESIGN ITERATIONS

VALENCE
A

R
O

U
S

A
L

LASER-CUT SCREW SYSTEM

PRINTED FRICTION-FIT SYSTEM

PRINTED HYBRID SYSTEM

Fig. 3.16 PMRI results, each dot represents
the mood of one respondent.

NEUTRAL

SUPERFLUOUS

DESIRED
SELF-

ORIENTED

TOO

SELF-

ORIENTED

TASK-

ORIENTED

TOO

TASK-

ORIENTED

PRAGMATIC QUALITY (PQ)

H
E

D
O

N
IC

 Q
U

A
L

IT
Y

 (
H

Q
)

LASER-CUT SCREW SYSTEM

PRINTED FRICTION-FIT SYSTEM

PRINTED HYBRID SYSTEM

Fig. 3.17 AttrakDiff results, the hatched area
represents the confidence interval of each sys-
tem.

the position and confidence rectangle of hedonic and pragmatic qualities of the three
systems. Overall, we can say that the hybrid system scored better than the friction-fit
system, which, in turn, scored better than the screw connector system. It should be noted
that the large confidence interval of the laser-cut screw connectors is again a consequence
of the low number of participants compared to the other two systems. The results from
the AttrakDiff evaluation are in line with the feedback from the open questions and with
our own subjective assessment. Although these results indicate that the hybrid system is
the best of the three, there is still room for improvement.

3.2.4.4 EXPERT EVALUATION

As a final part of our study, we performed an expert evaluation with six experts. In the
first part of this evaluation, the experts were asked: “In your opinion, what criteria are
important for grading mechatronics projects such as a robotics contest?” (Q1, fig. 3.18).
The experts were then shown video clips of 17 different robots and were asked the fol-
lowing question: “Using the criteria and their importance you specified in the previous
section (Q1), how would you rate the robots shown below?” Each robot could be rated
individually using a 9-point scale, with 1 being the lowest and 9 being the highest rating.
A 9-point scale was chosen to allow for more granular reporting than 5-point scales, while
still offering a neutral position. Of the 17 robots, four were built using the laser-cut screw
connector system, seven using the printed friction-fit system, and six using the printed
hybrid system. The results of Q2 (table 3.2) show an average score of 6.04 for robots built
with the screw connector system, 4.52 for those built with the friction-fit system, and 6.75
for robots built using the hybrid system. While the sample size of this study is low, data
does suggest that the use of the hybrid system tends to lead to better scoring robots.

121

3. DESIGN ITERATIONS

System 1: laser-cut screw
connectors

2: printed friction-fit connectors 3: printed hybrid connectors

Robot H M O P A B C E F J K D G I L N Q

E1 9 2 9 2 8 2 6 2 2 2 2 6 2 8 6 9 8
E2 9 5 8 1 1 1 8 1 8 1 5 5 1 8 8 8 8
E3 8 5 8 5 2 2 7 3 6 4 6 5 3 7 7 8 8
E4 9 3 8 2 4 3 7 3 8 4 7 6 4 7 8 9 9
E5 8 5 8 3 4 4 6 4 7 5 6 6 6 9 8 8 9
E6 9 6 9 4 4 3 7 3 8 7 7 6 5 7 5 7 9

Avg. 8.67 4.33 8.33 2.83 3.83 2.5 6.83 2.67 6.5 3.83 5.5 5.67 3.5 7.67 7 8.17 8.5

6.04 4.52 6.75

Table 3.2 Q2 – Robot ratings

In the last part of the expert evaluation (Q3), the experts were given samples of the three
systems to experiment with. They were then asked to rank the systems in order of pref-
erence using three drop-down menus. Results of Q3 are shown in table 3.3. The hybrid
system was ranked first the most (three times), followed by the friction-fit system (twice),
and then the laser-cut system (only once). The experts frequently praised the ease of use
of systems 2 and 3, but noted that the friction-fit system will probably loosen over time.
In their comments, the experts also commended the laser-cut system for its simplicity and
strength, remarking that it is a very cheap part to produce.

1 2 3 4 5

not important very important

2.50aesthetics

3.83robustness

4.33performance

3.16novelty

4.83creative problem solving

4.67functionality

Fig. 3.18 Q1 – Experts’ criteria for grading robots.

3.2.5 SUMMARY

The results constitute a first step towards an open, DIY construction kit for small-scale
robotics. We believe such a system has the potential of greatly complementing other ef-
forts in educational robotics by providing a low-cost (G9), “hackable” (G1) platform for
building the physical embodiment of small robots.

We believe that the use of T-slotted aluminium beams helped us greatly toward this goal:

122

3. DESIGN ITERATIONS

System E1 E2 E3 E4 E5 E6

System 1:
Laser-cut screw connectors

2nd 2nd 3rd 2nd 1st 3rd

System 2:
Printed friction-fit connectors

3rd 1st 2nd 3rd 2nd 1st

System 3:
Printed hybrid connectors

1st 3rd 1st 1st 3rd 2nd

Table 3.3 Q3 – Systems ranking by the experts

they are low-cost, strong, and can be used to connect many different types of components.
However, the downsides of this approach include the weight (the aluminium beams are
heavier than their plastic counterparts) and their appearance (robots built with this system
can be bulky and technical looking).

Of the three construction systems presented in this paper, we think the hybrid system is
best suited to the context at hand. This conclusion is also supported by the results of our
questionnaire. While feedback indicates that the friction-fit system is easy and pleasant to
work with in the assembly phase, it does cause problems when the robot is used, due to
failures of the connection under excessive force. On the other hand, the laser-cut screw
system can be manufactured quickly and provides strong, firm connections. However,
these connections are slow and difficult to use, resulting in frustrated users and hindering
the state of flow. The hybrid system strikes a balance between the strength and rigidity
of a bolted connection and the ease-of-use of a friction-fit connection. Users can quickly
try out different configurations by slotting the connectors in and out of the beams, and
once they are happy, connectors can be locked into place by tensioning a single screw per
side. This allows for a better match between skills and challenges, leading to a positive
state of flow (G6) for the user. The hybrid system offers a good balance between technical
performance, ease-of-use (G2), and cost (G9). The insights gained from the hybrid system
were later integrated in the latest version of the Opsoro platform (section 3.5.3).

A common point of criticism that applies to the three systems is that users want a larger
variety of building blocks. We only provided three types of building blocks for this project:
a 90° corner connector, a DC motor connector and a servo connector. While just these
three types are adequate for building a firefighting robot, we recognize that this basic
selection of blocks may have been limited, though it did force the users to use creative
thinking to design solutions with the limited set of building blocks (G7). Our first set of
connectors provides only static connections, although we have every intention of creating
components that allow for moving mechanisms, such as hinges, wheels and gears. Addi-
tionally, because the design files of the three systems were released as open source hardware,
motivated users can extend the systems with custom-designed components (G1, G10).

While on this subject, we would also have liked to involve the students in the manufac-
turing process of the building blocks. As (Blikstein, 2013a) showed, FabLabs and digital
fabrication offer many STEM-related teaching opportunities (G8). However, due to lo-

123

3. DESIGN ITERATIONS

gistical challenges, this was not possible for our robotics contest in Argentina. Instead, all
components were manufactured and kitted beforehand.

As a final point, we would like to continue improving our evaluation method. While we
gained valuable insight through the use of questionnaires, we did still encounter some
problems. We purposefully selected evaluation tools that are quick to fill out and avoided
too many open questions, but we still noticed that some participants found the question-
naire too long. As an alternative, we would like to experiment with periodic evaluation
forms, where we ask participants to fill out a very short survey at the end of each session.

3.3 ONO – GENERATION 1

The Ono project finds its origin in our experiences with conventional social robots, chiefly
the robot Probo (Saldien, 2009). Experiments with the Probo have shown a discrepancy
between what the designers envisioned as important functionality, and what functionality
was actually used by therapists during experiments. The robot had been conceived as an
advanced research platform of which only one copy would be built. As it turns out, many
interaction experiments with children required only basic robot functionality (Pop et al.,
2013; Vanderborght et al., 2012). Experiments were also at times hampered by practical is-
sues such as malfunctions, broken components, setup and calibration, and transportation
difficulties. In this, we recognized an opportunity for a low-cost and low-tech hackable
social robot.

This insight prompted us to design a new, simplified social robot, as we found that others
were also dealing with similar issues. Our goals for the design of the Ono robot were
to create a robot that is inexpensive, reproducible, modular, easily repairable, and easily
transportable. Many of these challenges were met by taking cues from contemporary
DIY paradigms such as the maker movement and the open source hardware movement,
as described in chapter 1. We believe that low-cost open source social robots provide
advantages that current high-end robots do not have: they are well suited for large-scale
studies and they are accessible for students and hobbyists.

The design of Ono is aimed primarily at children, with a focus on therapeutic applications
such as the treatment of autism spectrum disorder. The reason we chose this target group is
twofold: (1) there is a large demand for this type of robot for treatments of developmental
disorders such as autism (Cabibihan et al., 2013) and (2) other social robots (e.g. Kozima,
M. P. Michalowski, et al. (2009), Dautenhahn et al. (2009), Saldien et al. (2010), Metta
et al. (2008)) exist within this segment of therapeutic robots for children, providing us
with a point of reference. By narrowing our focus to this application area, we gain more
specific information about the usage context of the robot, which is helpful in the design
process.

The use of digital manufacturing techniques is ideally suited for an iterative design pro-
cess. Consequently, Ono’s version history is much more a continuous spectrum of small
changes (just like “commits” in software version control systems), rather than large, dis-

124

3. DESIGN ITERATIONS

Fig. 3.19 Children interacting with Ono v1.1 through the control box

crete product releases. Nevertheless, we distinguish the following versions within the first
generation of Ono:

• ONO V1.0 – The first functional version of Ono. This milestone is preceded
by experimentation with materials and production techniques, multiple iterations
of mechanisms for facial animation, as well as character design and modeling. The
design was split into two different prototypes: the first being a fully working “naked”
robot and the second a static proof-of-concept demonstrating the materials and
techniques to be used for the robot’s skin.

• ONO V1.1 – The most important change in this version is that it combined the
two previous prototypes into one fully integrated robot. While the two prototypes
of v1.0 were designed with integration in mind, many small tweaks were needed
to achieve this goal. The order of operations to attach the skin over the skeleton
proved especially challenging.

In addition to the design changes made to enable integration, we also transitioned
from using PS to using ABS for all laser-cut parts. ABS plastic is stronger and a lot
less brittle than PS. The material also cuts much better, eliminating burrs, reducing
post-processing steps, and leading to a better part finish.

• ONO V1.2 – The first change of this version relates to the construction of the
robot’s laser-cut frame. Whereas the previous version relied upon friction to hold
slot-and-tab connections in place, v1.2 replaced the plain tabs with cantilevered

125

3. DESIGN ITERATIONS

snaps, providing a positive locking force. Figure 3.20 shows the difference between
old-style and new-style connectors.
In this version, we also experimented with a new Arduino-based controller inte-
grated into the robot’s body. This is a break from the previous setup, where pro-
cessing happens in a separate control unit. More detail on this controller will be
described in section 4.2.1.

Fig. 3.20 Changes in the slot-and-tab construction system between v1.1 (left) and v1.2 (right)

The first generation of design iterations did not yet embody all aspects of toolkits, as
described in section 1.1.5. Still, primitive elements, such as the snap connectors and the
modular elements, have been part of the design since the first version.

The robots in this generation are characterized by a focus on mechanical design aspects.
The scope of the electronics and software implementation is limited to the bare necessities
required for basic animation of facial expressions. The main contributions of the first
generation prototypes is that they served as a test bed for experimenting with materials and
techniques, and allowed for a preliminary validation of functionality scope and character
design decisions.

3.3.1 CONCEPTUAL DESIGN OF THE EMBODIMENT

The embodiment design of the Ono is the result of three categories of constraints: (1)
requirements related to the target audience of the robot, (2) technical requirements, and
(3) practical requirements related to the usage in a therapeutic context. This section gives
an overview of the rationale behind each of these constraints, and briefly explains how
these constraints have shaped the visual appearance of the robot.

We decided to limit actuation to the face of the robot and keep the rest of the body non-
moving. Actuation of facial features can be achieved with comparatively small, inexpensive

126

3. DESIGN ITERATIONS

Fig. 3.21 Exploration sketches for the embodiment design

actuators, whereas full body motion necessitates the use of high-performance motors and
drive systems, driving the cost up considerably. Multiple studies and applications in HRI
make use of facial expressions since people rely on face-to-face communication in daily
life. The face plays a very important role in the expression of character, emotion and/or
identity (Cole, 1998). Mehrabian (2008) showed that only 7% of affective information
is transferred by spoken language, that 38% is transferred by paralanguage and 55% of
transfer is due to facial expressions. Facial expressions are therefore a major modality in
human face-to-face communication, especially in fields such as Robot-Assisted Therapy
(RAT), where emotions play a crucial role in the communication process.

The entire robot is covered in a soft foam and textile skin in order to attain a soft and invit-
ing appearance for children, as well as to protect the internal components from damage.
We wanted to move away from the image of robots as mechanical devices made of hard
plastics and metals, and instead aim for a non-threatening image reminiscent of stuffed
animals and teddy bears. The rationale behind this choice is in line with that of similar
robots such as Paro (Kidd et al., 2006), Probo (Goris et al., 2011) and the Huggable (Stiehl
et al., 2009).

Because of the process we chose for the production of Ono’s soft foam skin layer, the types
of geometry we could produce was limited to simple, smooth shapes. This is reflected in
the final design of the robot, which could be described as a “blobject”; an object composed

127

3. DESIGN ITERATIONS

smooth curves and lacking sharp edges. This is necessary because the three-dimensional
foam layer is composed solely out of many flat pieces of foam, and more detailed forms
would require more foam parts.

The unrealistic, icon-like appearance is not only the result of technical limitations. It is
also a conscious decision made to avoid the effects of the Uncanny Valley (fig. 3.22),
as described by Mori (1970). The hypothesis of the Uncanny Valley is that the affinity
between a human being and an object increases in proportion to the human likeness of
that object. This effect continues up to the point where the object (e.g. a robot) is almost,
but not quite human. In this region, named the Uncanny Valley, the eeriness results in a
strong, negative response. In our case, we deliberately chose to stay on the left side of the
Uncanny Valley, opting for a character-like appearance over a near-human likeness.

Fig. 3.22 The Uncanny Valley. Adopted from MacDorman (2005).

The size of the Ono is a direct consequence of one of the most important practical concerns,
namely that the robot should be easy to travel with. The robot is sized so that it fits
inside the maximum dimensions for an airline carry-on bag, 22 cm × 35 cm × 56 cm.
This is important for demonstrations at conferences, workshops, and collaboration with
international partners.

The robot has a disproportionally large head to draw attention to its face, making its facial
expressions more noticeable. Ono is also posed in a sitting position to improve stability.
As a consequence of its size and pose, children can interact with the robot at eye height
when the robot is placed on a table.

The color yellow was chosen because of the association between yellow and positive emo-
tions, as described by Kaya and Epps (2004). The yellow skin color also provides sufficient

128

3. DESIGN ITERATIONS

contrast to the facial features, making them easily distinguishable.

Finally, we chose for a generic, non-descriptive appearance for robot instead of opting
for a more fleshed-out character with distinct features. The reasoning behind this is that
embodiment serves as a sort of blank canvas onto which a character can be built through
the use of attributes, a bit like the Mr. Potato Head toy. One idea here was to embed RFID
tags in the attributes, allowing the robot to automatically change the behavior based on
its attributes.

The design requirements for the conceptual design of the robot are summarized in table
3.4. Figure 3.21 shows some of the doodles and sketches from the concept design phase.
Figure 3.23 shows how the elements from the sketches were combined and incorporated
into a 3D model. This model served as a basis from which the detailed CAD drawings of
Ono were created.

Fig. 3.23 Rendered image of the Ono outer skin surface model

Target audience
(children)

Technical
requirements

Practical
requirements

Face only
Soft & huggable

Simple shape
Unrealistic appearance

Fits in hand luggage
Large head

Seated position
Yellow

Generic appearance

Table 3.4 Summary of concept design requirements

129

3. DESIGN ITERATIONS

3.3.2 CONSTRUCTION

Fig. 3.24 The Ono v1.0 prototype with control unit

Different from many other robots in HRI research, Ono was designed with low-cost mate-
rials and DIY techniques in mind, with the goal of creating a low-cost social robot that can
be produced using equipment that is commonly found in FabLabs. The cost of materials
required to build one robot is around 310 EUR. This cost may vary depending on location
and on what components the user already owns. Table 3.5 provides a rough breakdown
of the costs.

The design of the robot relies upon laser cutting as the main production technique. The
main advantages of laser cutting are that (1) it is fast, (2) the files can be edited easily, (3)
it is well suited for larger components and (4) the machine is reasonably easy to operate,
requiring no artisanship. As a self-imposed constraint, we restricted the design to using
only laser-cutting and off-the-shelf parts in generation one. because we did not want to
introduce more machinery/equipment requirements. This proved to be a challenge for
the design of the eyes, which require many small and intricate components.

Both the hard, mechanical parts and the soft, protective foam covering are cut using a laser
cutter. The structural parts are made from 3 mm thick plastic sheet material. Initially, we
used white PS plastic, though from v1.1 onward, we switched to black ABS plastic due to
its superior mechanical properties and better part finish at a similar price point. The soft
foam covering is made from flat sheets of flexible PU foam.

130

3. DESIGN ITERATIONS

Figure 3.24 shows a picture of the v1.0 prototype of the robot. The left side shows the
inner workings of the robot, a proof-of-concept of the outer skin is shown to the right,
and the control interface box is shown in the middle. We distinguish four key elements
in the design of the robot:

• The frame – The frame of the robot is made from laser-cut interlocking cross-
sections, which slot together to form a sturdy structure. The pieces of the frame
are attached to one another using slot and tab connections. The frame has open-
ings to accommodate the different modules and has slots and holes to secure the
wiring to the frame using zip-ties.
A 3D model of the desired appearance of the robot was used as the starting point
for the frame. After accounting for the thickness of the foam covering, this model
was sliced into multiple cross-sections. These sections were then used as the basis
for the skeletal structure of the robot. The frame design was finished by adding
features such as connectors, slots and holes to the cross-sections. Currently, we
generate these slices manually, however, future work includes programming a CAD
tool or plugin to automate this process.

• The modules – The facial features of Ono are divided into modules. Each mod-
ule consists of a set of related actuators and structural parts, forming a higher-level
building block. Modules are connected to the frame using cantilever snap connec-
tors. We chose to group components into modules because it facilitates repairs,
because they can be reused in new robots and because they allow us to improve
facial feature mechanisms independently from the rest of the robot.
Figure 3.25 shows the modules (highlighted in color) embedded in the skeletal
frame. The arrows indicate the degrees of freedom of the Ono’s face. The generation
one prototypes have three types of modules: two eye modules (blue), two eyebrow
modules (green), and one mouth module (red).

• The skin – The frame and the modules are wrapped in a protective cover made from
polyurethane foam. This gives the robot a soft exterior for interaction with children
and protects the inner components from potential damage. This soft foam covering
is in turn covered by a sewn suit made out of elastic fabric, covering up the inner
components and providing a visually attractive appearance.
The manufacture of the soft foam padding proved difficult. Initially, we experi-
mented with molding techniques to produce this flexible foam cover. This proved
to be unsuitable: creating large molds is labor-intensive and the flexible PU resins
are very sensitive to temperature and humidity conditions. Our solution was to
recreate the three-dimensional foam cover out of many flat laser-cut pieces of foam.
The 3D model of the intended appearance was divided it into regions. These regions
were then flattened in software in a way that minimizes total amount of distortion.
The resulting shapes were then laser-cut out of foam and then sewn together over
the frame, resulting in a 3D foam shape. The technique requires that the shape of
the model is smooth and continuous, so that the body can easily be split in two-
dimensional patterns. The same 3D flattening process was also used to create the
patterns for the textile skin.

131

3. DESIGN ITERATIONS

• The control unit – The first generation prototypes are controlled from a separate
control box. In addition to the interface, this control unit also contains the power
supply and the microcontroller driving the robot. As these prototypes were designed
primarily as technical benchmarks for the mechanical design, much less attention
was paid to the software side of the robot. Consequently, these robot contained
only the bare minimum of interactivity, offering just enough to be able to test the
mechanical engineering.
The front of the control box has a joystick positioned in the center of an emotion
chart, allowing the user to select the desired emotion directly. This chart is based
upon the circumplex model of affect (Russel, 1980), a continous two-dimensional
emotion space. The X and Y positions of the joystick are mapped directly to the
dimensions of this model, and are used to drive facial expressions. The internal
microcontroller of the control unit reads the joystick position and calculates servo
positions. The position data is sent through a cable to the servo controller inside
the robot. This cable is also used to provide power to the robot.

Fig. 3.25 CAD model showing construction and DOFs of Ono. The servo actuators are shown
in a darker color.

3.3.3 REPRODUCTION OF A ROBOT

One of the project goals is that Ono can be built without the aid of paid experts or pro-
fessionals, using common materials and using easy accessible production techniques. The
process of replicating the robot is made up out of two parts. The first phase consists of
gathering the necessary off-the-shelf parts as well as manufacturing all custom parts. The
second phase entails assembling these parts into a meaningful artifact.

132

3. DESIGN ITERATIONS

Description Cost

3mm polystyrene sheets 20 €
20mm polyurethane foam 5 € �
Arduino Uno microcontroller 25 € �
SSC-32 servo controller 40 € �
PC power supply 25 € �
RC servos 80 € �
Nuts, bolts, cable ties 10 € �
Connectors and electric components 30 € �
Textile supplies 30 € �
Laser cutting cost 45 € �

Total 310 € �

Table 3.5 Cost breakdown of the v1.0 prototype

The focus of our investigation is on the second phase. In our opinion, the usage of dig-
ital manufacturing techniques by novices, especially 3D printing and laser cutting, has
already been sufficiently explored in literature (Blikstein, 2013a; Gibb, 2014; Martin,
2015; Mueller and Baudisch, 2015). Additionally, locations that offer access to digital
manufacturing facilities to the general public usually have a system in place to instruct
novices on how to use the machines. For instance, many FabLabs employ a system of
mandatory instruction workshops before a machine can be used.

Fig. 3.26 Assembly instructions for the Ono v1.0 eye module

On the other hand, communicating assembly instructions to non-experts can often be a
difficult prospect, especially when the subject matter is complex and when face-to-face
instruction is not feasible. The assembly of IKEA furniture is a classic example of this
problem; though in this case, the components are not created by the user and the design is
optimized to minimize the number of assembly steps. The dissemination of open hardware
build instructions is especially problematic because the artifacts tend to be much more
complex, and capturing all the required assembly instruction in digital files can be difficult
and time-consuming.

133

3. DESIGN ITERATIONS

Assembled frame

Fig. 3.27 Line drawing of the assembled frame

Irwin et al. (2015) illustrate some of the difficulties encountered in replication of open
source hardware by novices. In the experiment, participants assembled a RepRap 3D
printer (Jones et al., 2011) over the course of a three-day workshop. Here, a wiki-based
instruction manual served as the primary source of documentation. Though the workshop
was self-paced, experts were also present to aid participants when help was needed.

Fig. 3.28 Participant assembling the eye module.

To investigate the potential difficulties in the assembly process of the Ono, we conducted
a short pilot study. Our experiment was much more limited in scope than that of Irwin
et al. (2015), however we opted to ask our participants the assembly steps without the aid
of an expert. The experiment was divided into two tasks:

134

3. DESIGN ITERATIONS

• For the first task, participants were asked to assemble the frame of the robot. They
were given printed copy of a line drawing representing the intended result, they
were not given step-by-step instructions. The line drawing is shown in figure 3.27.

• The second task comprised assembling one eye module. Toward this end, partici-
pants were given the required parts, simple tools, and a four-page instruction man-
ual, shown in figure 3.26.

The pilot study was performed with five participants, aged 18-50 years old. Video record-
ing was used as the primary means of data capture (M8), as shown in figure 3.28. The
think-aloud protocol (Fonteyn et al., 1993) was employed during the assembly process,
meaning that participants were asked to verbalize their thought process while they were
assembling components. Immediately after completing the two tasks, A short follow-up
interview (M7) was performed, consisting of the following questions:

• How would you describe the overall difficulty of the two tasks?

• What were the most difficult steps?

• How should the documentation be improved?

The tests showed that the visual instructions work reasonably well to guide inexperienced
users through the assembly process. Users noted that while the drawing of the completed
eye module looks very complex, the actual assembly process is greatly simplified by the
step-by-step instructions. One user compared the module kit to a set of LEGO bricks and
that completing the assembly of the eye module gave him a sense of satisfaction, potentially
hinting at the IKEA effect (Norton et al., 2012).

The experiment also revealed a number of problems for both the instructions and the
parts themselves. The instructions should include more color to identify new or dissimilar
components. Each component should also be labeled with an identifying number and
required tools – if applicable – should be shown in each step. At times, problems arose
when similar-looking laser-cut parts were interchanged, or when parts were assembled in
a mirrored position.

From generation 2 onward, a number of changes were enacted to combat the problems
encountered during this experiment. To start, the instruction format was switched from
an IKEA/LEGO-like line drawing format to an online wiki-based instruction manual
with each step documented with a photograph and a short text descriptions. The line
drawings proved too time-intensive to create and did not convey all the information that
a good picture could convey. The wiki allows users to improve the documentation, and
also keeps track of the document’s version history.

In later generations, each laser-cut part was given a unique part number, engraved into
the surface of the part. The part number also identifies the subassembly to which the
part belongs, as well as the robot version number. The part numbers are used in the

135

3. DESIGN ITERATIONS

documentation to unambiguously identify the parts that are required during each step.
The part numbers also allow us to unambiguate the orientation of a part: part should
always be assembled so that the engraved text is facing outward. This way, mirror assembly
situations are avoided.

3.3.4 ROBOT-ASSISTED THERAPY

As described at the start of section 3.3, the Ono platform was originally conceived as a
research tool aimed at robot-assisted therapy for children with Autism Spectrum Disorder
(ASD). The term ASD encompasses a group of mental conditions characterized by social
and communication deficits, fixated or repetitive behaviors, and sensory issues (American
Psychiatric Association, 2013). The word “spectrum” is used to indicate that the disorder
covers a wide range of severity, spanning from high functioning individuals that integrate
well into society to severely autistic individuals requiring constant care. Studies suggest
the frequency of ASD to be at 1 per 110 individuals (Baird et al., 2006).

Early intervention is a key component of treatment, and can greatly improve the sociabil-
ity, functional independence, and quality of life of individuals affected by ASD (Rogers,
1996). Tools such as toys and stuffed animals are often used in the therapy of young
children with autism as a way to increase motivation and attention. The use of animals
in therapy is also a recurring theme (Nimer and Lundahl, 2007), though Animal-Assisted
Therapy (RAT) suffers from a number of drawbacks. These drawbacks include the expense
of training and caring for animals, their safety (both behavior as well as diseases and al-
lergies), and their unpredictability. For these reasons, social robots have been suggested
as an alternative means to conduct this type of therapy, leading to the concept of RAT.
Prior work has already investigated the effects of robots in the socialization of children
with ASD (Cabibihan et al., 2013; Kozima, Nakagawa, et al., 2005; Robins et al., 2005;
Vanderborght et al., 2012).

In this domain, we identify a number of reasons why the use of a low-cost, open source
social robot could be advantageous:

• Current studies in RAT specifically, and HRI in general are often limited by the
availability of robots, leading to experiments with a limited number of participants.
Access to small, inexpensive, and user-friendly robots would enable researchers to
perform large-scale quantitative studies.

• Current ASD treatment therapy is time-consuming and expensive, and this problem
is compounded by the limited availability of qualified therapists. While we believe it
to be ill-advised to try to replace therapists with robots, we do think the technology
has much to offer as a tool for therapists to use during sessions, and would help
to streamline the therapy process. However, the availability of low-cost robotic
platforms is a prerequisite to this.

• Continuing this thought, inexpensive social robots could also serve as a homework
tool for children with autism. Children could learn new materials during therapy

136

3. DESIGN ITERATIONS

sessions, and subsequently practice these lessons at home with aid of the robot. As
an additional advantage, a scenario where parents help with the “homework” of their
child can also serve to strengthen the bond between parent and child. Presently, a
reoccurring problem is that severely autistic children can be much more sociable
toward their therapist than toward their parents because child and therapist spend
much more time together practicing social interactions.

• ASD covers a wide spectrum of conditions, and patients often require therapy that
is personalized to their specific needs and to the extent of their ability. The open
source paradigm can serve to address this need of adaptation and customization
of the robotic platform toward the needs of a specific patient or subcategory of
patients.

Continuing toward the exploration of this theme, we have performed two experiments
within the context of RAT for the treatment of ASD. The setup and results of these exper-
iments are detailed in the two subsections below.

3.3.4.1 PILOT STUDY IN ROMANIA7

Fig. 3.29 Child interacting with Ono during the pilot study

7This study was performed in collaboration with Cristina Costescu and Mihaela Vornicu from the Babes-Bolyai
University, department of Clinical Psychology and Psychotherapy

137

3. DESIGN ITERATIONS

A pilot study was performed to investigate the emotional response of children with autism
toward Ono. The study was performed in Romania, where the robot was tested with five
children diagnosed with ASD, aged 3 to 10 years old. Ono v1.2 was used during the study.
The robot was controlled directly by the therapist performing the experiment. The robot
functioned as an output device only, there were no integrated sensors in this prototype.
In this “Wizard of Oz” setup, the therapist controlled the robot’s emotions directly via a
joystick interface, thus emulating autonomous robot behavior. The test consisted of three
phases:

1. The study began with an exploration phase. The children were given time to freely
interact with Ono. Various aspects of interaction, such as facial expression mimick-
ing, were observed.

2. In the second phase, the children were asked to identify the emotion expressed
by the robot. The emotions happiness, anger, sadness and surprise were shown in
random order, and each emotion was shown four times. The children were asked
to pick the right emotion from the list of four possible answers.

3. Finally, the sessions concluded with the opportunity for additional play time.

Interactions were captured on video (M8) and were analysed post-hoc. The results of this
pilot study are summarized in the tables below. Table 3.6 shows the interaction rates dur-
ing the study. Table 3.7 shows the recognition rates of the four selected emotions. For
each of the emotions, the table indicates the number of times the emotion was correctly
identified, the number of times an incorrect answer was given, and the number of times
children indicated they did not know the answer. For the recognition rates, only 16 mea-
surements were obtained (as opposed to 20), as one child refused to participate in this part
of the study.

Overall, these tests suggest that Ono has an overall inviting appearance that elicits inter-
action, though there are still several issues that need to be addressed. The participating
children could easily identify happiness and sadness, but anger was frequently confused
with being scared or sad, and surprise was often confused with happiness or sadness. We
believe that major improvements can be made in this area simply by adjusting the DOF
values for these emotions in software. On the other hand, the low recognition rates for
these emotions may also be explained by the fact that these tests were performed with chil-
dren with ASD, as opposed to normally developing children. A limitation of this study is
the fact that there was no control group of normally developing children. Consequently,
it is difficult discern whether incorrect responses were due to limitations of the robot, due
to the emotional development of the children, or due to a combination of both factors.

On the technical side, we found the simplicity of the control setup to be beneficial. The
robot could be used immediately by the therapists, without explicit training of the operator
and without the aid of technical support personnel. This was essential, as we could not
travel abroad to be present at the experiments.

However, many aspects of the control box interface proved to be suboptimal. Usage of the

138

3. DESIGN ITERATIONS

joystick can be distracting for the children, and the short cable means that the whole setup
can be unwieldy at times. In addition, the joystick control has an important downside.
While it offers a quick method to change the robot’s emotions, it does not offer precise
control, making it difficult to repeatedly select the exact same emotion. Finally, the addi-
tion of idle animations would be helpful to make the robot seem more lifelike when the
operator is not actively controlling it.

During the free play phase of the study, most children continued to show interest in the
robot. One child played a musical instrument to the robot, and another child tried to feed
Ono. A third child asked to play with Ono after the study ended; and even controlled the
robot himself using the joystick interface. The idea of making the robot controllable by
children was unexpected. We found the idea interesting and chose to further explore this
concept.

Imitationa Touchingb Verbal Initiationc Engagementd

Child I 11 70 25 3:08 / 4:16 (73 %)
Child II 0 4 15 2:10 / 3:46 (58 %)
Child III 0 9 5 2:43 / 2:50 (96 %)
Child IV 7 13 3 2:09 / 3:29 (62 %)
Child V 0 0 40 0:23 / 2:32 (13 %)

a Number of times that the child had the same facial expression as Ono
b Number of times that the child touched the robot
c Number of times the child talks to the robot.
d Time spent being attentive vs. total engagement time. (m:ss)

Table 3.6 Interaction rates

Correctly
identified

Incorrectly
identified

Don’t know

Happiness 15 1 0
Anger 3 10 3
Sadness 15 1 0
Surprise 6 7 3

Table 3.7 Emotion recognition rates

3.3.4.2 CHILD CONTROLLER8

The pilot study in Romania revealed an unexpected mode of interaction where the chil-
dren control the robot directly, in conjunction with the therapist. This is in contrast to
the Wizard of Oz-style RAT scenarios we had originally envisioned, where the controller
would only be used by the therapist, and would be somewhat hidden from child’s view.

8The work described in this section was done by Pieterjan Mollé as part of his master’s thesis.

139

3. DESIGN ITERATIONS

Fig. 3.30 Wizard of Oz setup to test the child controller concept.

The concept of an emotion controller for children is an interesting idea, as it allows chil-
dren to go one step further in interacting with the robot’s emotions, allowing the child to
experiment with emotions on a higher level of abstraction. For instance, starting with a
negative or incorrect roleplay scenario, the child could iteratively tweak the social interac-
tion scenario until a desirable result is achieved, learning more about that type of social
interaction in the process. Another potential application of the child controller is to use
it as a tool to help a child express their own emotions.

Some of the early concepts for the child controller included devices shaped like game
console controllers, tablet-based interfaces, and even interfaces based on hand gestures.
Eventually, it was decided to base the interface around a set of interactive playing cards,
which could be used to change the robot’s emotions or play back certain animations.

The concept is inspired by “een doos vol gevoelens” (translated: a box full of emotions), a
therapy tool currently in use at the therapy center where the tests were done. The card-
tool is aimed at children between ages 4-7, and deals with the basic emotions happiness,
sadness, angriness and fear.

In our scenario, we have created new emotion cards that can be detected by the robot
through computer vision. When a child shows the robot a specific card, the robot would
subsequently portray the emotion that is associated with that card. Eight different cards
were designed, covering four emotions (happy, sad, angry, fear) and two degrees of inten-
sity (mild and intense).

The concept was evaluated through a Wizard of Oz experiment involving four children
with autism, with ages ranging from 5 to 10 years old. The setup of the experiment
is shown in figure 3.30. The children were tested individually, and each session lasted

140

3. DESIGN ITERATIONS

approximately one hour. The sessions were captured on video (M8). The sessions were
structured similarly to the regular sessions, though with the presence of the robot as an
extension to the “doos vol gevoelens” tool.

The sessions were done individually, and were mediated by a therapist. Four therapists
were involved in the study, as each child has their own therapist. The robot was put on a
table, with the emotion cards placed in front of it. A backdrop decor was placed behind
the robot. This backdrop serves two purposes: (1) the backdrop hides the robot operator,
who is seated behind the it, (2) the backdrop contains a camera through which the operator
can see. The operator is responsible for manually changing the emotion of the robot in
response of the child showing an emotion card. The entire session is captured through
two cameras, one hidden in the backdrop and a second one positioned behind the child.

The concept was met by positive reactions from both the therapists as well as the children.
Preliminary results suggest the system is intuitive, the users were comfortable with the
system after experimenting with it for a short amount of time. In a follow-up interview,
the therapists indicated that they thought that the presence of the robot enhanced the mo-
tivation and attention of the children during the session. They also liked the background
decor, even though it was originally intended as a solution to hide the operator in the
Wizard of Oz setup.

A number of shortcomings were also identified during the study. To begin, the cards
should have a better graphical design and should be made from a more durable material.
In addition to the emotion cards, the system should also incorporate situation cards that
cause the robot to play a short scenario. Finally, a number of animations should be added
in order to attain a better illusion of life. These animations should include a wake-up/sleep
behavior, as well as simple idle animations, such as blinking and sleeping.

3.3.5 SUMMARY

This section discussed the first generation iterations of the Ono social DIY robot. We
described the original inception of the project, building upon previous work with the
social robot Probo and state of the art in social robots for use in therapy. New insights
and the combination with the maker movement paradigm defined the first concept. With
digital fabrication and the social context in mind, this first generation created a believable
social character named Ono (G5) that has a strong focus on emotions via facial expressions
(G3, G4). The experiments evaluated these emotional expressions of the robot by the end-
users in the context of RAT for children with ASD. While the digital fabrication and
DIY design allowed for an open (G1), easy to build (G2) and low-cost (G9) solution, the
experiments gave new insights to improve instructions and parts in order to better guide
the flow (G6) of the assembly process for the second generation.

141

3. DESIGN ITERATIONS

3.4 ONO – GENERATION 2

The second generation of the Ono robot is marked by a complete redesign of the entire
robot. The visual appearance of the robot is the only constant between the two gener-
ations, as all internal aspects were changed. The experiments done with the first gener-
ation prototypes yielded valuable insight into aspects such as manufacturing techniques,
reproduction, and robot usage. However, the prototypes did not incorporate all elements
required for a true robotic system. Consequently, the first generation Onos functioned
more or less as high-tech hand puppets.

In late 2014, the Ono robot was completely redesigned. The second version incorporates
lessons learned from our experiments, and expands the robot’s functionality resulting in
a more capable robotic platform that is viable for use in HRI experiments. There are
a number of factors that influenced our decision to to a near-complete redesign of the
robot’s internals, as opposed to carrying out incremental improvements to the existing
design. First of all, we decided to include low-cost FDM 3D printing (i.e. RepRap and
derivatives) as a second production technique. As a manufacturing technique, 3D printing
allows us to simplify many small and intricate parts within the design of certain modules,
leading to mechanisms that perform better and are easier to assemble. As a second factor,
we decided to use a new interface standard for the modules based on redesigned snap
connectors. Consequently, all modules were changed in one way or another, though the
new eye module functions on a fundamentally different principle, necessitating a complete
module redesign.

The changes to the module interface standard meant that changes to the skeletal frame
structure were inevitable. We took this as an opportunity to employ a new design strategy,
which leads to a stronger, more rigid frame. Additionally, the second generation frame has
recesses to accommodate the robot’s power supply and control electronics, meaning that
the first generation control box can be eliminated.

In the redesign process, we decided to migrate our design from Siemens NX to Solidworks,
a different parametric CAD software suite. In our experience, there are a number of small
differences between the two that make Solidworks better suited for designs that involve
large amounts of laser-cut components. For instance, the new software allows us to save
certain sketch geometry, such as the geometry of a snap connector, as a reusable sketch
block. We rely extensively on this functionality because it speeds up the skeleton design
process immensely. As an added benefit, Solidworks is also much less expensive and more
popular than NX, lowering the barrier to modification a bit. It is also frequently used as
a design tool in complex open source hardware projects, especially those that originated
from an academic environment. Some examples include OpenHand (Ma et al., 2013)
and WoodenHaptics (Forsslund et al., 2015).

Finally, in the redesign, the electronics and software stack were updated to lay the foun-
dations for a system that is suited for human-robot interaction scenarios. The electronics
and software stack of generation one can be described as minimal, it was intended pri-
marily to test the mechanical design and was not well suited for interactive scenarios, as

142

3. DESIGN ITERATIONS

illustrated by the RAT experiments. The upgraded setup is built around the Raspberry
Pi Single-board Computer (SBC), and allows the operator to control the robot over WiFi
through a web browser-based interface that offers multiple, task-specific applications.

Within the second generation of the Ono robot, we distinguish the following versions:

• ONO V2.0 – The initial prototype of this generation, designed for use during
the assembly workshop at UNN (section 3.4.2). Key differences include an up-
dated module interface standard, a redesigned eye mechanism, an updated skeleton
design, and a new SBC-based electronics architecture.

• ONO V2.1 – The biggest improvements though, are in the software and electron-
ics of the robot. After using a perfboard-based circuit board in v2.0, we designed
a custom PCB to interface the Raspberry Pi with the robot’s sensors and actuators.
The first version of the app-based web interface was also introduced in Ono v2.1.

• ONO V2.2 – This version comprises the changes and improvements made ahead
of the workshop at the HRI summer school (section 3.4.3). The most important
change is the redesigned electronics board, leading to better reliability, new sensor
inputs, and an audio speaker output. On the mechanical side, this version includes
minor tweaks to the eye design, making the eye module more durable and easier
to assemble. A second mechanical improvement includes a redesigned bracket for
the robot’s logic power supply and ethernet connector. Finally, the new foam parts
have precut stitch holes, making the foam skin assembly easier and quicker.

• ONO V2.3 – The main changes in this version are software improvements. This
includes changes to the core software architecture, as well as the addition of new
apps, such as the Social Script app. Additionally, capacitive touch sensors were
integrated into the hands, feet, and head of the robot.

3.4.1 SKELETON AND MODULE IMPROVEMENTS

From generation two onward, a new mechanical interface standard was chosen to connect
the modules to the frame of the Ono. Figure 3.31 shows a comparison between the old
and new module standards. The first generation system relies on a single lever arm to lock
a module in place. To remove the module, this lever needs to be depressed by the user.
However, this proved suboptimal as the levers tend to be hard to reach once the modules
are installed in the frame. Because only a single cantilever snap is responsible for holding
the module in place, the system does experience some play in the vertical direction. The
third problem with the old module interface is that the geometry is relatively large, taking
up valuable space inside the volume of the robot.

The module interface of generation two is inspired by the updated skeleton snaps, de-
scribed in section 3.3 and shown in figure 3.20. The interface consists of two double-sided
cantilever snaps, resulting in a higher retention force. The lever system from the first gen-
eration was eliminated. Additionally, the geometry of the snap itself was adjusted so that

143

3. DESIGN ITERATIONS

Fig. 3.31 Comparison of the first generation module interface (left) vs. second generation module
interface (right)

the connection can be undone. The mating geometry was standardized to two parallel
slots of 3 × 30 mm, spaced 18 mm apart.

Fig. 3.32 Comparison of the first generation frame (left) vs. second generation frame (right)
construction

144

3. DESIGN ITERATIONS

The updated module standards necessitated modifications to the design of the skeleton to
make the new modules fit. Instead of only updating the mounting locations, we chose to
use as an opportunity to completely upgrade the design of the skeletal frame. Figure 3.32
shows a comparison between the old (left) and the new (right) skeleton designs. Both
frames are partially exploded in order to highlight the differences in the design approach.

In the old design, the shape of the robot was sliced vertically in two orthogonal directions,
parallel to the front plane and parallel to the side plane. In each slice, slots are added to
allow the slices to intersect. However, because of the size of the slices and the length of
the slots, the laser-cut parts lose a fair amount of rigidity.

Even though the same material and the same production technique are used in the re-
designed frame, the new design approach leads to a stronger, more rigid frame. The new
frame is composed of smaller interlocking sub-units. These sub-units flex less because they
snap together, leading to better rigidity. Additionally, the laser-cut parts are smaller and
can be nested more efficiently, leading to less waste and better material use. This way, the
amount of sheet material used was reduced by a third.

pivot beam

arm

Fig. 3.33 Mechanism of the eye module. Old direct-drive mechanism (left) vs. new linkage-driven
mechanism (right).

The third major change in the second generation of Ono is an upgrade of the mechanism
responsible for the motion of the eyeball, shown in figure 3.33. The first-generation of
eye modules were built using solely laser-cut parts and standard parts. Movement of the
eyeball was achieved using a simple serial kinematic chain: the eyeball itself is attached to
a first servo, which is responsible for the horizontal (pan) motion. This servo is in turn
connected via an arm to a second servo, responsible for the vertical (tilt) motion. The
small components inside the eye, such as those of the connecting arm, are not very well
suited to be made with a laser cutter. Furthermore, the centers of rotation of the two
DOFs do not intersect, meaning that the movement is not entirely concentric.

The second-generation eye module design relies on a different principle, made possible

145

3. DESIGN ITERATIONS

by including DIY 3D printing as the second production technique. The eyeball itself
is suspended in a two-axis gimbal system, suspended by a single 3D printed component
dubbed the pivot beam. The eyeball is actuated by two ball-joint linkages, with each linkage
responsible for the motion of one principal axis of rotation. The resulting system is more
robust, rotates concentrically, and exhibits less jitter and backlash.

3.4.2 WORKSHOP AT UNN

Fig. 3.34 Participants of the workshop posing around the robot they built in one day

The design of the second generation of Ono started in the summer of 2014, with the goal
of using the new design for our workshop at the Lobachevsky State University of Nizhny
Novgorod. The workshop was part of a summer school organized by UNN’s department
of social sciences. Consequently, the workshop served as the first experiment of our newly
redesigned robot. During this one-day workshop, 15 participants worked to assemble
one Ono robot from parts we brought. Participants were university-level students coming
from various disciplines within social sciences. The participants had little or no experience
in constructing physical objects.

As part of the workshop preparations, we brought basic tools (e.g. screwdrivers and pliers),
components bundled per subassembly, an assembled set of electronics, and a preassembled
robot. The preassembled robot served as a reference during the build process. Participants
were also provided with detailed handouts with assembly notes and figures, though we
found the most effective technique to teach the assembly process was to let participants
copy the robot based on the example. The one-day workshop was divided into the follow-
ing phases:

1. The workshop started with a short introductory presentation to give an overview

146

3. DESIGN ITERATIONS

of the planning, to give some background information on the Ono project, and to
pass along general practical assembly tips.

2. In the first phase of the workshop, the five required modules were assembled. The
participants organized themselves into smaller groups, with each group in charge of
one particular module. This is possible because the modules serve as independent
subassemblies, which can be assembled separate from the rest of the robot.

3. In the second phase, the skeletal frame was assembled. This was done by the partic-
ipants that assembled the “simpler” modules. The groups building the eye modules
required more time due to the higher number of components.

4. After finishing the modules and the skeleton, the modules and electronics were
mounted onto the frame. This step also included some light soldering work in
order to attach the power supply to the power cord.

5. In the final phase, the foam and textile skin was attached to the robot. The robot
was then started, the servos were calibrated, and a demo script was run to test the
completed system.

As an exploratory study, this workshop yielded a number of helpful insights. The modular
design of the robot proved advantageous during the workshop because it stimulates paral-
lelization: participants could easily organize themselves into groups focused on building
one specific sub-assembly. Naturally, there are limits to this approach: at a certain point
in time, subassemblies need to be joined together, at which point the groups are forced to
converge.

Participants also expressed a sense of fulfillment at the end of the workshop. Most of
them had little or no experience in making things, and found that during the workshop,
they were exposed to many different techniques for making. One participant in particular
described the workshop as an eye-opening introduction into Maker culture, and decided
to do his master’s thesis on DIY social robots for therapy.

The workshop also revealed a number of minor shortcomings in the design of the robot.
Generally speaking, these shortcomings mainly relate to parts that are too fragile or too
difficult to assemble. One participant regretted that the workshop was primarily about as-
sembling the robot, and would have preferred that a portion of the workshop be dedicated
to summarizing the major aspects of the software of the robot.

As a final remark, we also found that the participants – students and faculty members –
were very much open to the idea of building/modifying their own tools for use in therapy.
In our experience, this is not always the case with practicing therapists.

3.4.3 WORKSHOP AT HRI-SS

The second assembly workshop was organized during the 2015 summer school on human-
robot interaction in Aland, Finland. This workshop was larger in scope and scale than the

147

3. DESIGN ITERATIONS

workshop at UNN, and builds upon improvements prompted by the previous workshop.
The workshop took place in three consecutive afternoon sessions of four hours. Roughly
20 HRI researchers participated in the workshop, and together they built six Ono robots.
We asked participants to come only if they could attend all three sessions, as each session
builds upon the previous one. Sadly, some participants could only attended one or two
sessions due to reasons such as travel arrangements or overlapping workshops. The three
workshop sessions were organized as follows:

• Session 1 – In the first session, the modules and the skeleton of the robot were
assembled.

• Session 2 – In the second session, the modules and the electronics are connected to
the skeleton frame, electrical wiring is done, and the skin is attached.

• Session 3 – In the last session, the skinning is completed and small scenarios are
programmed using the API.

Fig. 3.35 Workshop participants assembling an Ono.

Documentation for the workshop was provided through a wiki with step-by-step assembly
instructions with photos. We had intended to give participants direct access to the wiki so
that they could edit and improve instructions if necessary. This approach was inspired by
work of Schelly et al. (2015). Unfortunately, because of the unstable internet connection
at the venue, we were forced to fall back on printed handouts of the wiki.

148

3. DESIGN ITERATIONS

This workshop expands upon the scope of the previous workshop (section 3.4.2) by in-
cluding programming and soldering activities. For the third session, we also brought extra
sensors and materials in order to enhance the programmed robot scenarios with custom
tangible interfaces.

At the end of the workshop, participants were asked to fill in a survey. The survey consisted
of the following questions:

• General personalia questions: name, age, gender.

• 7-point Likert scale statements (M4), with a value of one indicating complete dis-
agreement, and seven indicating complete agreement:

– “The workshop has given me more insights in the design of social robots.”
– “The workshop has given me more insights in the construction of social robots.”
– “I am interested in using the Opsoro system to develop my own robot..”
– “I am interested in using the Opsoro system to conduct new HRI experi-

ments.”
– “I am interested in using Opsoro robots such as Ono to develop new software

applications.”

• The AttrakDiff questionnaire (M2).

• Open questions (M6):

– “What aspects did you really like during the workshop?”
– “What was the most annoying aspect, or where did you experience the most

problems?”
– “What did you learn from the workshop?”
– “How could we make the workshop better in the future?”
– “What is still missing in the Opsoro system?”
– “What is still missing in the Ono robot?”

• The UX Curve (M5).

Overall, the workshop was a success in our opinion. All groups were successful in building
the robot, and feedback from participants shows a generally positive trend. In general, par-
ticipants noted that they liked how the workshop taught a variety of practical skills, such
as soldering, in a short amount of time and applied to a realistic project. As with previous
workshops, most problems reported by participants were related to technical issues and
software bugs. For instance, one robot did not work because there was a problem with
one of the custom PCBs. Another problem that was frequently reported by participants
was the lack of tools. As the workshop took place on at a remote location, we were limited
in the amount of tools and materials we could bring. During the workshop, this caused
a bottleneck as people were taking turns using a specific tool. Finally, we note that the

149

3. DESIGN ITERATIONS

software API is still too complex for casual use. Most groups used their time in session
three to finish assembling and configuring their robot. Only one group created a custom
scenario and interface using a Makey Makey board.

In total, 14 participants completed the survey. The average age of respondents was 27.6,
with a spread of σ = 2.65. Ages ranged from 24 to 34. Gender distribution was roughly
equal, with eight male and six female respondents. Results from the AttrakDiff ques-
tionnaire are shown in figure 3.36. The overall product attractiveness (ATT) is rated at
1.65. The results position the system just outside the quadrant of desired products. The
AttrakDiff score could be improved in part by addressing the technical issues we expe-
rienced. Doing so would improve the system’s pragmatic quality (PQ). The word pairs
technical – human and cheap – premium scored the lowest, indicating that these product
aspects should also be improved.

NEUTRAL

SUPERFLUOUS

DESIRED
SELF-

ORIENTED

TOO

SELF-

ORIENTED

TASK-

ORIENTED

TOO

TASK-

ORIENTED

PRAGMATIC QUALITY (PQ)

H
E

D
O

N
IC

 Q
U

A
L

IT
Y

 (
H

Q
)

Fig. 3.36 Results of the AttrakDiff questionnaire. The hatched area represents the confidence
rectangle. n = 14, PQ = 0.84± 0.29, HQ = 1.09± 0.32

Results from the Likert scale questions, summarized in figure 3.37, show a generally pos-
itive trend. The results hint that respondents were more interested in the techniques and
methods shown in the workshop rather than the Opsoro system itself. This sentiment is
mirrored in the responses to the open questions. When asked what they learned from the
this workshop, one respondent answered: “I had many insights on technologies available to
build a social robot, and I really appreciated the hand work part.” Another participant sum-
marized the learning experiences as: “Concepts of modular robotics. Aspects of robot design.
A lot about assembling laser-cut + 3D printed parts.”

Finally, results of the UX curve tool are shown in figure 3.38. Again, the curves show an
overall positive trend. Still, the tool revealed several points of difficulty or frustration. One
respondent remarked that time was short for the amount of work that needed to be done,
and that time pressure was a cause of stress near the end of each session. Rightfully, they
remarked that it would have been better to construct a less complex robot (i.e. less DOFs)

150

3. DESIGN ITERATIONS

0%-25% 25% 50% 75% 100%

disagree agree

11 4 4 4
The workshop has given me more insight
in the design of social robots.

1 2 3 8The workshop has given me more insight
in the construction of social robots.

21 1 4 6I am interested in using the Opsoro
system to develop my own robot.

12 2 4 5I am interested in using the Opsoro
system to conduct new HRI experiments.

212 3 3 3I am interested in using Opsoro robots such
as Ono to develop new software applications.

Fig. 3.37 Results from the Likert scale questions. n = 14.

during the workshop. Another respondent remarked that sewing the foam together is a
difficult and time-consuming part of the assembly process. Finally, a respondent remarked
that they started the workshop with a neutral disposition as they did not know what to
expect. They note that their excitement grew as time progressed, and that seeing the robot
work for the first time was a very satisfying moment.

P
O

S
IT

IV
E

 E
X

P
E

R
IE

N
C

E

N
E

G
A

T
IV

E
 E

X
P

E
R

IE
N

C
E

TIME

19:00 15:30 19:00 15:30
WORKSHOP

DAY 1

WORKSHOP

DAY 2

Fig. 3.38 UX curves drawn by the the participants of the workshop. n = 10.

151

3. DESIGN ITERATIONS

3.4.4 USING ONO IN THERAPY9

As a continuation of the work described in section 3.3.4.2, the newest version of the Ono
robot was re-evaluated for use in therapeutic applications. During these tests, two separate
therapeutic contexts were explored:

• Context 1 – An independent psychotherapist located in Kortrijk, Belgium. The
experiments done within this context involved one specific patient. The patient is
15 years old and is diagnosed with attention deficit hyperactivity disorder (ADHD).

• Context 2 – A therapy and day care center in Deinze, Belgium. The center is pri-
marily focused on children aged 4-12 years old with less severe forms of ASD.

Initial interviews (M7) with therapists from both locations affirmed the importance of
being able to create custom social scenarios for therapeutic robots. This context is an-
other example of a situation where von Hippel’s idea of sticky information comes into play
(Hippel and Katz, 2002). The therapists know perfectly well what is important for a so-
cial scenario, and how a scenario should be shaped for specific patients. Roboticists have
only limited access to this tacit knowledge, hence why it makes sense to create tools for
therapists instead of creating scenarios directly.

The interviews, as well as tests with children confirmed that the size and shape of the
robot was appropriate for various types of therapies. Additionally, the therapists of context
2 revealed an unexpected benefit of the current embodiment design of the robot. The
robot has a fairly generic, nondescript shape. However, the visual character of the robot
can easily be customized using old children’s clothes and costumes. This is an important
benefit for use in social scenarios: different archetypes – such as hero or villain – can be
created quickly.

As suspected, the interviews with therapists confirmed the importance of allowing thera-
pists to program custom scenarios for the robot. As such, the co-design process described
in this section was primarily focused on designing a new software interface to create cus-
tom scenarios for therapy. As a first step, the existing Blockly-based visual programming
interface was evaluated. This is the same programming interface that was used during our
workshop at the HRI summer school (section 3.4.3).

To evaluate the Blockly interface, a small scenario was designed and programmed for the
patient of context 1 in conjunction with his therapist. The scenario consists of a short
introduction of the robot character, followed by a quiz with questions on moral topics
such as bullying and drug use. Because Ono currently does not have voice recognition
software, a custom controller was created as a quiz interface. The quiz controller, shown
in figure 3.39, has two physical buttons that allow the user to answer questions.

The test with the patient was very successful, more so than expected. Initially, we feared

9The work described in this section was done by Marie Van den Broeck as part of her master’s thesis (2016).

152

3. DESIGN ITERATIONS

Fig. 3.39 Quiz control interface Fig. 3.40 Blockly API issues

that the patient would not be receptive to the concept and the character of the robot be-
cause its appearance was designed for a different user group (see section 3.3.1). In contrast
with our expectations, the patient indicated he enjoyed the experience, and wanted to try
the scenario multiple times. The robot also introduced a roleplaying element into the
session, which functioned as starting point for deeper conversations.

The technical aspect of the experiment was less successful, as the test revealed that the
Blockly API is much too complex and verbose for casual use, reaffirming one of the con-
clusions of section 3.4.3. The scenario was comparatively simple; the quiz was comprised
of only five questions. However, the corresponding script was very large and unwieldy,
encompassing multiple screens. For this usage scenario, the design of the Blockly API is
too verbose and low-level. This problem is illustrated in figure 3.40, showing how even
simple scripts require superfluous commands to function.

Further interviews and brainstorming sessions with the therapists from both contexts re-
vealed a number of insights. The interviews revealed that the therapy app should offer
a simple way to create Wizard-of-Oz dialogs. The use of actual programming constructs
(e.g. variables, functions) is not required nor desired. The scenario interface should be easy
to learn, favoring simplicity over functionality. The final concept of the app is essentially
a remote control interface that allows therapists to prepare and play back lines of dialog.
Each line of dialog is comprised of a facial expression combined with a line of text or a
sound file. Dialogs can be prepared on beforehand and saved to a file, allowing therapists
to create different sets of dialog lines for different scenarios or different patients.

After the concept requirements were finalized in dialogue with the therapists, an initial
mockup of the interface was created. The mockup is made up of images of the most
important interface screens (fig. 3.41). A tablet was chosen as the primary device to test
the mockup because tablets are already used in therapy sessions. The mockup images
were brought to life using InVision, an application that lets interface designers quickly
prototype new interfaces by adding basic interactivity to mockup images.

The InVision mockups were tested with the therapists, which led us to discover two im-
portant shortcomings. First of all, the therapists emphasized the importance of file man-

153

3. DESIGN ITERATIONS

Fig. 3.41 Interface mockup Fig. 3.42 Social Script app in use

agement tools, as they have to deal with multiple patients and many different scenarios.
The second insight is that there needs to be a direct mode; a way to create and play a new
line of dialog while a therapy session is in progress. This is important in order to reply to
unexpected responses from the patient. These improvements were included in the imple-
mentation of the Social Script app, shown in figure 3.42. As a final remark, we notice a
parallel between the design of this software interface, and the design of a modular toolkit.
As it turns out, a very flexible interface paradigm was not ideal, as it is much harder to
learn than the more prescriptive interface of the Social Script app. A similar design dimen-
sion is found in the design of the hardware modules. As argued in section 1.1.5, a toolkit
designer must strike a balance between flexibility and ease of use.

3.4.5 SUMMARY

The second version of Ono represents a complete redesign, based upon the lessons learned
from the first generation of Ono designs. The first point of difference is that the new
version incorporates a second production technique: low-end FDM 3D printing. This
change affects the reproducibility (G1) of the system, as the design now requires extra ma-
chines to manufacture. In our opinion, this change is justified because it makes the design
much easier to assemble (G2) and the increased performance of the modules improves the
emotional expressiveness of the robot (G3, G4). Furthermore, low-end 3D printing is
one of the staples of contemporary DIY culture, and the technique is readily available in
FabLabs, through online services, or through homemade machines.

The experiments described in this section delved much deeper into the assembly process,
exploring the difficulty level (G2) and investigating problems that hamper the state of flow
(G6). The second version of Ono was also tested in a therapeutic context, affirming the
appropriateness of the Ono character (G5) outside of the context of ASD therapy.

But the biggest change in this generation is the new electronics architecture, based upon
the open Raspberry Pi platform that made the web-based user interface possible (G10).

154

3. DESIGN ITERATIONS

Whereas the first version of Ono could be described as an animatronic puppet, the re-
designed version is a fully functional robotic system, capable of (semi-)autonomous be-
havior. In contrast to other social robots, the robot now serves as a web-platform offering
different applications to the users from very easy Social Scripts (1), over to visual program-
ming with Blockly (2), to basic scripting with Lua (3), and to full programming with
Python (4). Already with these four steps a wide range of programming skill-sets can be
addressed from novices to real software developers. This approach fits with the concept
of positive flow (G6) matching skills with challenges and draws similarities with the DIY
hardware, although the hardware still lacks easy customizability of user’s own character
design. This is further addressed in the next section in which the Ono technology is trans-
formed into the Opsoro platform, focusing on the need to design custom social robots.

3.5 OPSORO PLATFORM

One of the premises in this project is that DIY adaptability can be advantageous in many
applications of social robotics, and the merit of this idea was confirmed during our ex-
periments and during interviews with therapists. Following the experiment at UNN, we
decided to take this idea one step further by repurposing the components of Ono as craft
materials for the construction DIY social robots.

The workshop at the TEI conference marked the first time we used the Ono modules as
part of a design toolkit to build new social robots. Based on the success of this workshop,
we chose to focus our efforts on expanding the functionality of our technology to support
and facilitate the design of custom social robots. To this end, we coined the term Opsoro –
Open Platform for Social Robots – as the name for the underlying technologies upon which
Ono is built. The focus of the Opsoro platform is to enable non-experts to go from a
character concept to a functional social robot, emphasizing low-cost and DIY aspects and
aiming primarily at characters with animated facial expressions and limited body/limb
motion.

Following the conference workshop, we implemented the workshop’s concept as a full-
semester course assignment with industrial design students from our university. We have
organized a course assignment on this subject, which took place in spring 2015. Internally,
we adopted the term “The illusion of life” as an unofficial moniker for the course. The
title references the seminal work on cartoon animation of the same name, written by two
Disney master animators (Johnston and Thomas, 1995). The philosophy of the book is
a good analogy for the goals of our work. We do not aim to build robots, we wish to
create physically embodied characters. Just as animators use pen and paper to suggest
that a drawing is alive, we aim to use robotic components as a creative medium to design
characters.

Results from the workshops and interviews with potential end users prompted us to fur-
ther simplify the toolkit. This simplified version is designed with a focus on applications
in STEAM, as market research indicated that this target audience offers the best oppor-

155

3. DESIGN ITERATIONS

tunities for commercialization. Consequently, our efforts were directed toward reducing
cost and complexity of the system while safe-guarding the DIY and hackable nature of the
preceding designs. In addition to the simplified modules, this version also incorporates a
new connection principle to attach modules to the embodiment. Finally, the redesigned
toolkit was tested with 48 secondary school students in late 2016.

• OPSORO V1.0 – The initial version of the toolkit. Components from the toolkit
were extracted from the design of the Ono robot, and were used during a one-
day workshop at the TEI conference. Cardboard and craft materials were used to
construct the embodiment.

• OPSORO V1.1 – The version of the toolkit that was used during the Illusion
of Life course assignment. It incorporates module improvement from Ono v2.1.
Embodiments were constructed using digital manufacturing techniques, such as
laser cutting and CNC milling.

• OPSORO V1.2 – A simplified version of the toolkit aimed at secondary school
STEM education. This version of the toolkit uses simplified modules and incorpo-
rates a new connection system: the Opsoro Grid.

3.5.1 DESIGN WORKSHOP AT TEI

Fig. 3.43 Participants working on the “Michael Jackson” robot.

156

3. DESIGN ITERATIONS

To investigate the concept of using Ono components as the basis for a toolkit, we organized
a one-day workshop during the 2015 conference on Tangible, Embodied and embedded
Interaction (TEI) at the d.school in Stanford. During this workshop, participants were
invited to create new animatronic creatures using modules from Ono in conjunction with
traditional craft materials such as cardboard and foamcore.

The main aim of our workshop was to introduce participants to social robotics through
a hands-on approach. We believe that the audience of the TEI conference is appropriate
because there there is a large overlap between social robotics and tangible interaction, and
as such the topics covered in this studio should be of interest to the participants. On
the other hand, the background of participants is sufficiently distinct so that it offers us
new perspectives from outside the field of HRI. Furthermore, participants from the TEI
audience are usually already familiar with some of the techniques and technologies that
we use during the workshop. This is important due to the time constraint inherent to the
workshop format.

The workshop’s goal is to allow participants to design and prototype their own robotic
creature. To this end, we provided a number of preassembled modules, a stand-alone
electronics unit, and craft materials to build with. Four different kinds of modules were
provided: mouths, eyebrows, eyes and joint modules. Craft materials included cardboard,
glues, fabrics, and foam. We also provided custom plastic connectors to interface the
modules with cardboard structures. Simple, low-threshold prototyping techniques, such
as cardboard prototyping, were used throughout the session. This choice was made due
to time and infrastructure constraints, though it also helped to underline the idea that
an iterative process is important in the design of interactive systems. The workshop was
divided into four phases:

1. Concept Generation – The workshop was started with a brief introduction into the
field of social robotics, including a short discussion on its history as well as inspi-
rational examples of HRI. This was followed by a demonstration of Ono and ex-
planation of the design philosophy behind it. Finally, participants were introduced
to our social robotics toolkit, going over the possibilities and limitations of the kit.
The phase ended with a brainstorm. Participants were given time to come up with
a concept and scenario for a new social robot.

2. Embodiment – In the second phase, participants were given the tools and materials
to turn their chosen concept into a working prototype. We provided the toolkit,
which contains modules for eyes, eyebrows, mouth and joints, as well as craft ma-
terials to create the embodiment of the robot. The craft materials we chose were
selected because they allow quick design iterations with minimal effort.

3. Creating Interaction – After completing the embodiment of the robot, all modules
are connected to the electronics in order to bring the creatures to life. The electron-
ics consists of a Raspberry Pi with a custom daughterboard to control the servos.
The electronics and the power supply were preassembled into stand-alone units so
that participants did not have to do any electronics work outside of plugging in the

157

3. DESIGN ITERATIONS

servos. In addition to the modules, which function as output devices, we also pro-
vided a number of Makey Makey boards (J. Silver et al., 2012). These boards can be
used to turn any conductive surface into a touch sensor, giving the robot basic sens-
ing capabilities. The robots can then be controlled via a web interface running on
the Raspberry Pi. We created a visual programming language based on Blockly10 to
allow participants to program behaviors. Simple interactive scenarios can be created
using this language by dragging and connecting puzzle-shaped blocks.

4. Demos and Reflections – After every team completed their animatronic prototype,
the groups demonstrated their robot to their peers. A short movie of each human-
robot interaction scenario was recorded. A short discussion was conducted to see
what participants thought of during the design process and to see if this lo-fi proto-
typing approach could be useful in other researchers’ work. Afterwards, participants
were also asked to fill in a short survey.

In total, 6 people took part in the workshop. Participants teamed up in two groups of three,
building two new robots. The first was a pirate character that would throw a tantrum when
his rum bottle is taken away. The second character, shown in figure 3.43, was inspired by
persona of Michael Jackson. It would perform a rendition of “Billy Jean” whilst moving its
fedora hat. Unfortunately, two participants had to leave halfway through the workshop
due to an overlapping session. This posed some difficulty as they were members of the
same team, though the situation was addressed through help from the organisers.

At the end of the day, the participants were asked to fill in a short questionnaire. The
questionnaire consisted of the following parts:

• General personalia questions.

• A user experience curve (M5).

• The AttrakDiff questionnaire (M2).

• Open questions (M6):

– “What did you like about the workshop and the robot platform?”
– “What did you dislike about it?”
– “Are there any other suggestions or remarks?

Figure 3.44 shows all the UX curves drawn by the participants and figure 3.45 summarizes
the results of the AttrakDiff questionnaire. The responses to the open questions, as well as
general information on the background of the participants are summarized in table 3.8.

Both teams were successful in designing and building a custom robot, though the work-
shop helped identify a number of weaknesses in the toolkit. Feedback from the question-
naire as well as personal observations during the workshop show that most problems are

10Blockly – https://developers.google.com/blockly/

158

https://developers.google.com/blockly/

3. DESIGN ITERATIONS

G
en

de
r

Ag
e

U
X

cu
rv

e
no

te
s

Li
ke

d
D

isl
ik

ed
O

th
er

re
m

ar
ks

SM
F

27
G

re
at

,e
xa

m
pl

es
on

th
e

sli
de

s.
In

te
re

sti
ng

re
se

ar
ch

pr
oj

ec
ts

yo
u

do
.

I’m
m

or
e

a,”
co

m
pa

ct
in

fo
in

sli
de

s”
ty

pe
so

Ie
sp

ec
ia

lly
lik

ed
th

e
be

gi
nn

in
g.

G
re

at
,p

la
tfo

rm
,g

oo
d

in
sig

ht
s:

).
Ip

er
so

na
lly

lik
e

to
le

ar
n

m
or

e
vi

a
sli

de
s.

(=
,m

or
e

in
fo

in
le

ss
tim

e)
.

SK
F

26
W

he
n

I,s
aw

th
e

m
ov

em
en

tm
ak

in
g

ex
pr

es
sio

n,
it

w
as

th
e

m
os

te
xc

iti
ng

!!
I’m

,n
ow

w
or

ki
ng

on
a

ta
ng

ib
le

an
d

in
te

ra
ct

iv
e

pr
od

uc
tf

or
th

e
th

es
is

pr
oj

ec
ta

nd
,i

fo
un

d
on

e
of

m
y

in
sig

ht
sa

nd
re

se
ar

ch
st

ha
te

m
ot

io
n

m
ak

es
fu

n
so

m
ew

ha
ti

s,i
n

co
m

m
on

in
de

sig
n

fie
ld

.A
nd

it’
si

m
pr

es
siv

e
th

at
th

e
ro

bo
tm

ak
es

m
an

y,e
xp

re
ss

io
n

th
an

Ie
xp

ec
te

d.

Ih
op

e,
th

e
ro

bo
tw

ou
ld

be
pr

et
tie

r.
If

yo
u

tr
y

to
te

st
it

an
d

to
gi

ve
fo

ry
ou

ng
,c

hi
ld

re
n,

it
sh

ou
ld

ha
ve

m
or

e
fri

en
dl

y
lo

ok
in

g.
W

he
n

Ig
la

nc
ed

at
it

it
w

as
a,

lit
tle

sc
ar

y.

N
op

!,I
t’s

ex
ce

lle
nt

!Th
an

k
yo

u
:)

H
F

F
25

C
oo

l,d
em

o.
Su

ss
in

g
ou

td
et

ai
ls.

Lu
nc

h/
Pa

rt
ne

rs
le

av
e.

Pa
rt

ne
rs

le
ft

so
Ih

ad
to

,tr
y

to
do

it
on

m
y

ow
n

(ti
m

e
lim

it
str

es
s)

.H
el

p
fro

m
or

ga
ni

ze
rs

Fa
irl

y,e
as

y
to

us
e

w
ith

so
m

e
ex

pe
rie

nc
e.

O
pe

n
to

do
w

ha
te

ve
rs

o
Id

id
n’t

fe
el

af
ra

id
,to

m
es

s
up

,w
hi

ch
ha

sh
el

d
m

e
ba

ck
in

th
e

pa
st.

Sm
al

l,b
ug

s–
m

in
or

co
m

pl
ai

nt
,

un
de

rs
ta

nd
ab

le
gi

ve
n

sta
ge

of
de

ve
lo

pm
en

t

O
bv

io
us

,th
in

gs
lik

e
su

ss
in

g
ou

tt
he

bu
gs

/a
dd

in
g

sa
ve

fe
at

ur
e.

SB
M

25
Le

ar
ne

d,
a

lo
ta

bo
ut

O
no

.I
t

w
ou

ld
’ve

be
en

ni
ce

if
w

e
pr

og
ra

m
m

ed
m

or
e.

It
is

a
gr

ea
t,p

la
tfo

rm
to

sta
rt

ro
bo

t
pr

ot
ot

yp
in

g.

It
is

a,
ve

ry
ea

sy
to

us
e

pl
at

fo
rm

.O
th

er
th

an
th

e
bu

gs
,e

ve
ry

th
in

g
w

as
fu

n
to

pl
ay

,w
ith

.
Bu

gs
,w

ith
th

e
vi

su
al

pr
og

ra
m

m
er

.
It

w
as

,v
er

y
op

en
en

de
d

w
hi

ch
m

ad
e

it
fu

n.
Th

e
co

nt
ex

ty
ou

la
id

ou
ta

tt
he

be
gi

nn
in

g,
of

th
e

w
or

ks
ho

p
m

ad
e

it
fu

n.

X
Z

F
21

Br
ai

ns
to

rm
in

g„
pr

ot
o!

,t
ea

m
dy

na
m

ic
,v

er
y

am
az

in
g

vi
sio

n!
!,

pr
es

en
tin

g/
de

m
oi

ng
it,

so
un

d!

Bu
gs

„f
el

tl
ik

e
a

gu
in

ea
pi

g

K
G

M
no

da
ta

Ta
bl

e
3.

8
Re

su
lts

 o
f t

he
 q

ue
sti

on
na

ire
’s

op
en

 q
ue

sti
on

s

159

3. DESIGN ITERATIONS

P
O

S
IT

IV
E

 E
X

P
E

R
IE

N
C

E

N
E

G
A

T
IV

E
 E

X
P

E
R

IE
N

C
E

TIME

12:30 09:00 17:00

Fig. 3.44 UX curves drawn by the the participants of the workshop. n = 5.

NEUTRAL

SUPERFLUOUS

DESIRED
SELF-

ORIENTED

TOO

SELF-

ORIENTED

TASK-

ORIENTED

TOO

TASK-

ORIENTED

PRAGMATIC QUALITY (PQ)

H
E

D
O

N
IC

 Q
U

A
L

IT
Y

 (
H

Q
)

Fig. 3.45 Results of the AttrakDiff questionnaire. The hatched area represents the confidence
rectangle. n = 5, PQ = 0.77± 0.60, HQ = 1.21± 0.54

related to the visual programming software. Minor bugs, software quirks, and usability
issues (for instance, a save button had not yet been implemented) resulted in a frustrat-
ing experience at times. This is reflected in the lower score for pragmatic quality of the
AttrakDiff questionnaire.

The visual programming software was implemented so that the script’s logic is executed

160

3. DESIGN ITERATIONS

in the browser, which then periodically sends movement commands to the robot. This
proved troublesome due to issues with connection stability and latency. Since then, the
software was rewritten so that scripts are compiled and executed directly on the robot,
leading to better responsiveness and stability.

Through the experiment, we identified a number of problems with the architecture of
the Blockly API. The API commands, implemented as Blockly blocks, were too verbose,
leading to large amounts of repetitive boilerplate code. In future versions, low-level blocks
should be grouped into constructs with a higher level of abstraction. This would make for
a simpler and more expressive language.

On the mechanical side of the toolkit, we found that high-torque motion, such as moving
limbs, proved hard to realize using our system. This is to be expected due to the inher-
ent low torque of the RC servos as well as due to the limited holding force of the snap
connectors. This proved to be an issue for the pirate robot, which included an actuated
arm, though the problem was mitigated using a liberal amount of hot-melt adhesive. Still,
the issues with actuated limbs were expected. The issues could be solved by using better
actuators. However, the use of high-end actuators would lead to a dramatic cost increase,
and conflicts with the goal of creating an accessible, DIY-friendly platform.

In general, we think the workshop was successful. In the end, all participants succeeded
in building a functional animatronic creature in a very short amount of time. Participants
praised the format of the workshop in their comments, particularly the open-endedness of
the assignment as well as the quick and instinctive prototyping approach. One participant
in particular reported that they felt that “failure is ok”, an important prerequisite to the
concept of a sandbox culture, as popularized by MIT Media Lab. Norman (2002) shows
that removing the stress associated with failure can have a tremendous impact on creativity.
It causes the brain to switch to a different cognitive state, causing the thought process to
broaden.

The results of the workshop show that the toolkit works well as a quick, low-fidelity
method for prototyping new social robots. In previous work, our focus was mainly di-
rected toward higher-end, time-intensive prototyping involving CAD modeling and laser-
cut embodiment parts. From this, a new challenge arises: designing a prototyping method
that fits in-between these two extremes. This “medium-fi” prototyping approach should
preserve the spontaneity of cardboard as a prototyping material, yet offer a way to create
robots that are more durable and aesthetically more attractive.

3.5.2 THE ILLUSION OF LIFE

Expanding upon results of the one-day workshop at TEI (section 3.5.1), we organized a
semester-long course assignment based upon the same idea. Twenty 2nd-year Industrial
Design students were tasked with the design of new social robots using the Opsoro system.
This took place over the course of a 12-week semester, as part of one of their Design Studio
courses. Students were grouped into pairs, resulting in a total of ten different robots. The

161

3. DESIGN ITERATIONS

longer time span afforded us the chance to devote more time to the concept, the character
design, and the materialization of the embodiment. This was not possible in a one-day
workshop.

While these students are not considered design novices, it should also be noted that these
students have no expertise in the design of robots. The Industrial Design program is
oriented toward general design and engineering. There is no special focus on human-
computer interaction or mechatronics design. Considering the students’ background, as
well as practical constraints, we decided to limit the scope of our experiment to the physical
design of social robots. Behavior programming was not part of the course, although this
is something we want to include in future experiments.

To aid the students in their design process we imposed a fixed planning that corresponds
to the different steps in our platform’s methodology. In the first part of the course (week
1-4), all students worked individually. During this time, students worked towards a top-
three of robot concepts that could be created with the platform. At this point, we selected
the best concept per student, and grouped the students into pairs, with each pair having
similar or complementary concepts. From week 5 on, students worked in teams to realize
their concept using the platform. To encourage collaboration between teams during the
assignment, students were explicitly told that they were allowed to share their own module
designs with other teams. This served two purposes: (1) it reduces student workload, (2)
it encourages the students to make their custom modules more flexible (i.e. “How can I
design my module so that it is not only useful for me, but for other people as well?”). The
sections below describe the planning used during the assignment. Figure 3.46 shows one
team’s process in various steps along this process.

• Week 1-2: Introduction & inspiration – Students are given background information
on the HRI field, along with examples of existing social robots. During the in-
troduction lesson, students were also given a presentation on the design process of
Probo and Ono.

• Week 3-4: Concept generation – During this phase, students worked individually
toward a concept for a social robot. This process entails the design of an identity
and personality that is linked to the functionality and appearance of the robot. After
selection of the concepts, the students continued to work in teams of two.

• Week 5: Quick & dirty mockups – Starting from sketches, students created rough 1:1
scale foam models for the appearance of the robot. These foam mockups served a
number of purposes: they allowed the students to quickly fine-tune the appearance,
they provide an indication of the stability and the shape, they can be used to test-fit
the modules, and they can be used as a basis for the skeleton design and skinning
of the robot.

• Week 6-7: Modules and skeleton design – Once the general appearance of the robot is
established, a rigid frame needs to be designed to affix the modules, electronics and
skin to. To create the design of the skeleton, students were first instructed to create

162

3. DESIGN ITERATIONS

a digital 3D model of their physical mockup. We recommended the use of sculpt-
ing software (e.g. MeshMixer11), though some students created their model with
NURBS surface modeling tools. For the first design iteration of the frame, the 3D
model was converted into slices using Autodesk’s 123D Make12 and then cut out
of 3 mm cardboard using a laser cutter. After test fitting the components, the slices
were transferred to a dedicated mechanical CAD software package, which was used
to further detail the skeleton. This detailing includes adding snap connectors for
interconnecting the different parts of the skeleton and for connecting the modules
to the skeleton, adding openings for cable routing, and adding reinforcement parts.
This second iteration was then again cut from 3 mm cardboard, assembled, and
tested by the students. Cardboard was chosen for the first two iterations because it
is inexpensive (both in terms of material cost and machine time) and because the
cut pieces can be easily modified afterwards using simple hand tools (e.g. scissors,
knives, glue, tape). Once the frame designs were finalized, the designs were cut from
3 mm ABS plastic. Nearly all skeletons could be cut from three sheets sized 600x450
mm, which was the number of sheets we provided per team. Any additional sheets
had to be provided by the students themselves. This encouraged students to design
their frames with efficient material use in mind. During this phase, students also
started work on any custom modules they might require for their robot. Most cus-
tom modules were simple modifications of existing modules, though some groups
also designed modules from scratch. As mentioned earlier, teams were explicitly
permitted to share their modules with each other. This resulted in an interesting
dynamic where modules were traded between groups (e.g. “We will design module
A if you design module B, then we both can use the modules in our robot.”).

• Week 8-9: Skinning and facial features – Once the frame and modules of each robot
are finalized, an outer, aesthetic layer needs to be created. Techniques used by the
students during this phase varied greatly. One method we suggested was to make
a soft padding layer using sheets of soft PU foam, and to then cover this padding
layer with an outer, visible layer made from stretchable fabric, such as Lycra. This
approach was also used in the design of Ono and works well for soft robots that are
created to interact with children. However, seeing that the students’ concepts are
quite diverse, most teams deviated from this approach quite significantly. While
most teams continued to rely on fabrics and textiles, some experimented with radi-
cally different techniques, which was especially interesting to us. During this phase,
the foam mockups again proved to be very useful, as they allowed the students that
used fabrics to easily create patterns for the textile by pinning cut pieces of paper
onto the foam mockup. These paper patterns could then be transferred to the textile
to cut out.

• Week 10-12: Skinning, module integration, final adjustments – During the last weeks
of the course, students were mostly working on finishing their designs. Most still
required some time to integrate the modules into the skin of their robot.

11Autodesk MeshMixer – http://www.meshmixer.com
12Autodesk 123D Make – http://www.123dapp.com/make

163

http://www.meshmixer.com
http://www.123dapp.com/make

3. DESIGN ITERATIONS

• Week 13: Deadline – Students presented their work in the first week after the end
of the course. Deliverables included (1) a presentation showing the concept, de-
sign process and intended interaction scenario, (2) 3D design files, and (3) a set of
pictures of the robot depicting each of Ekman’s basic emotions (1992).

In addition to the deliverables, students were required to hand in their robots at the end of
the course (which was ultimately used to grade the students). We also asked the students to
fill in a questionnaire to evaluate the process of the course assignment. This questionnaire
comprised questions regarding the use of modules and skinning techniques, (2) questions
concerning the difficulty of each phase, and (3) questions regarding subjective appreciation
of the platform. After the final presentation, all students completed the questionnaire,
resulting in two responses per robot. The questionnaire was not anonymized, so that data
of team members could also be compared to each other. The questionnaire was taken in
Dutch and the results were translated to English by the authors.

A B C

D E F

Fig. 3.46 Design process overview of one robot. (A) Concept sketches, (B) foam mockup, (C)
Module test fitting, (D) 1st and 3rd skeleton iterations, (E) skinning – foam padding, (F) skinning –
outer textile layer.

164

3. DESIGN ITERATIONS

A B C D E

F G H I J

Fig. 3.47 The ten robots designed during the student course.

3.5.2.1 RESULTS

The results of the course assignment are shown in figure 3.47, showing the ten robot
embodiments designed by the student teams. Table 3.9 gives a summary of the intended
functionality of each robot, the modules they used, and the materials used to make the
outer skin.

In general, nearly all module modifications had one goal in common: they aimed to make
the module smaller in order to be able to integrate that specific facial feature into their
robot. This tends to be a trade-off between size and functionality. The standard modules
are usually bigger than their modified counterparts, but offer more DOFs. However, these
extra DOFs are not always required to enable the intended interactions.

Many groups modified the length of the levers on the eyebrow and mouth modules to
accommodate the outer shape of their robot. This is a very minimal modification and
is therefore not included in table 3.9 under “modified modules”. Groups B, G, and H
used a modified eyebrow module as a mouth due to space restrictions in their design.
These modules only have two DOFs. Consequently, they do not allow the mouth to open
and close. Groups A, D, and G all use two eye-eyebrow modules. This module is an
amalgamation of the standard eye and eyebrow modules, and is much more compact than
the two separate modules together. The eye-eyebrow module has 3 DOFs, as opposed to
the 3+2 DOFs of the standard modules. The eyeball is static; only the eyebrow and eyelid
are actuated. Group J used two modified eyebrow modules – each with one servo removed
– to actuate the bunny ears.

165

3. DESIGN ITERATIONS

N
am

e a
C

onceptdescription
Standard

m
odules b

E
EB

M
J

M
odified

m
odules b

E
EB

M
J

C
ustom

m
odules

D
O

Fs
Skin

m
aterials

Tw
inW

in
(A)

Telepresence
system

to
com

m
unicate

em
otions

betw
een

tw
o

friends,fam
ily

m
em

bers,orlovers.
–

–
1

–
2

2
–

–
N

eck
10

Stretchable
fabric,softfoam

,stuffi
ng

ProfessorK
now

all(B)
Teaching

(hom
ew

ork)system
,to

be
used

in
conjunction

w
ith

tabletforinteractive
quizzes.

2
2

–
–

–
1

–
–

–
12

Softfoam
,EVA

foam
,hard

plastic,stuffi
ng

Rem
inderBot(C

)
Planning

and
tim

ekeeping
aid

forpeople
w

ith
dem

entia,autism
,orotherm

em
ory-affecting

disorders.
2

2
–

2
–

–
–

–
–

12
Stretchable

fabric,softfoam

K
anga

(D
)

M
otivator/coach

to
stim

ulate
m

otorfunction
exercisesin

children
w

ith
D

ow
n

syndrom
e

–
–

–
–

2
2

1
–

N
eck

10
N

on-stretchable
fabric,softfoam

,stuffi
ng

M
um

ble
(E)

Encouragestolerantbehaviorin
children.

G
radually

clim
bsoutofitsbox

aschildren
getto

know
the

robot.
2

2
–

–
–

–
–

–
Lift

11
N

on-stretchable
fabric,softfoam

D
riveM

e
(F)

C
o-pilotforpeople

thatspend
a

lotoftim
e

driving.Aidsin
navigation,com

m
unication,

and
generalcarfunctionality.

–
–

–
–

–
–

–
–

Turntable,
2
×

LED
eye,

2
×

Ear,
3

Stretchable
fabric,hard

plastic

Pillo
(G

)
Physicalaffection

robotforadults.Inspired
by

phenom
enon

oflonely
adultm

en
in

Japan.
–

–
–

–
2

3
–

–
–

8
Stretchable

fabric,non-stretchable
fabric,

softfoam
,EVA

foam
,hard

plastic,stuffi
ng

Poco
(H

)
M

usicalcoach
to

encourage
children

to
do

their
daily

m
usicalinstrum

entexercises
2

2
–

2
–

–
1

–
–

13
Stretchable

fabric,softfoam
,EVA

foam

W
alu

(I)
Replacem

entforpreschoolclasspets.Supports
classactivitiesand

teacheschildren
to

care
for

anim
alsw

ithoutrisk
to

anim
alw

ellbeing.
2

2
–

2
–

1
–

–
6
×

LED
dom

e
12

N
on-stretchable

fabric,softfoam
,stuffi

ng

AntiH
ero

(J)
C

lum
sy

hero
w

ith
good

intentionsthattriesto
encourage

children
to

help
w

ith
sm

allhousehold
tasks.

–
2

1
–

2
2

–
–

–
15

Stretchable
fabric

aTh
e

lettersin
parenthesesreferthe

the
robotpicturesin

figure
3.47

.
b

Th
e

lettersindicate
the

m
odule

type:eye
(E),eyebrow

(EB),m
outh

(M
),joint(J).

Table
3.9

O
verview

 of robot concepts,m
odule use,and skinning techniques

166

3. DESIGN ITERATIONS

In addition to the module modifications, some groups also designed custom modules to
be used in their robots. Groups A and D created a neck module to tilt the head of their
robots. The module is based on a two DOF neck prototype that was designed as part of
a master thesis (discussed in section 4.1.1.5). The pan mechanism was eliminated and
the overall design was refined to correspond to the rest of the system. The mechanism
uses the same type of servo as the rest of the platform, but relies on a 3D-printed lead
screw for mechanical advantage. Group F created a turntable module to be able to turn
their robot horizontally. This one DOF module is comparable to the neck module, except
that it enables panning instead of tilting. The module is based on a Lazy Suzan bearing,
with the servo transmitting motion via an internal gear. The course assignment yielded a
number of cases where existing modules fell short, and thus had to be modified or replaced.
The work done by students on the modules is a valuable source of inspiration for future
elements of the platform and proves the easy adaptability of the platform.

As mentioned earlier, students experimented with completely new techniques and materi-
als to create a skin for their robot embodiment. During the orientation presentations, we
proposed a skinning method to the students, which involves covering the skeleton with a
soft foam-padding layer, which is then covered with an outer layer made of stretchable fab-
ric. However, big differences in the intended modes of interaction of the students’ robots
lead to different priorities for the skin design. To elaborate: Ono was originally intended
as a huggable robot for children, much like Probo. A soft, huggable embodiment was
therefore essential. On the opposite side of the spectrum are robots such as DriveMe (fig.
3.47 F). They are not intended to be touched, so a hard plastic exterior is a valid solution.
A third example is Professor Knowall (fig. 3.47 B), which falls somewhere in between the
two. The robot is intended for interaction with young children, thus a cold, hard exterior
would not be appropriate. On the other hand, the robot does borrow the connotation of
a professor to create a sense of distance between the child and the robot, so a soft foam
exterior would also not have been an appropriate choice.

Within the class group, team H pioneered the use of Ethylene-Vinyl Acetate (EVA) foam.
This thermoplastic foam can be formed into three-dimensional shapes through thermo-
forming, a technique where thermoplastic sheet material is heated and pulled over a mold
with the aid of a vacuum. This results in semi-flexible, thin parts that are soft to the touch.
A number of groups also thermoformed PS sheets, most of these groups combined the
rigid PS parts with an outer layer of EVA foam. One notable exception is group G, which
relied solely on thermoformed PS for the majority of the exterior. Group I experimented
with the use of felt. This material can be formed into three-dimensional shapes with the
aid of steam, but has a tendency to fray, resulting in a messy look.

The goal of our questionnaire was to gain insight as to how the platform and the design
process were perceived by the students. Whereas data on the modules and skinning tech-
niques are represented in the robots themselves, it does not allow us to gauge the potential
difficulties in the process. The first part of this questionnaire attempts to measure the
general sentiment of the students toward the platform. This part comprises four 7-point
Likert scale statement questions (M4):

167

3. DESIGN ITERATIONS

• ”The modules accelerate the design of new social robots...” disagree / agree.

• ”The modules are...” not useful at all / extremely useful.

• The module system is...” not adaptable / very adaptable.

• ”The snap connectors are...” hard to use / easy to use.

Results of these questions are show in figure 3.48. The nature of the experiment and of
the platform itself makes it difficult to compare data to any baseline. However, in our
opinion the data does show a generally positive trend, with the averages of each question
being in the desirable end of each scale. For the second part of the questionnaire, we
asked students to rate the level of difficulty of each phase of the design process. 7-point
Likert scales were used (M4), with a rating of 1 indicating that the phase was easy, and
a 7 indicating that the phase was hard. Results are shown in figure 3.49. As expected,
the students perceive later phases as more difficult than the phases in the beginning of
the design process. There is a twofold explanation for this phenomenon. Firstly, as part
of their other courses, students are intimately familiar with general design phases such
as concept generation, foam modeling, and cardboard prototyping. On the other hand,
later phases of the design process simply pertain more engineering work and involve more
specific knowledge.

0%-25%-50% 25% 50% 75% 100%

disagree agree
21 5 9 3Q1 The modules accelerate the

design of new social robots...

not useful at all extremely useful
21 7 7 3Q2 The modules are...

not adaptable very adaptable
741 5 3Q3 The module system is...

hard to use easy to use
12 2 6 9Q4 The snap connectors are...

Fig. 3.48 Results from the Likert scale questions. n = 20.

3.5.2.2 DISCUSSION

One of the most noticeable shortcomings of our platform in this experiment is the adapt-
ability of the modules themselves. Whereas the results indicate that the platform is flexible
on a toolkit-level, this flexibility does not translate to the module-level. This observation is
also supported by the result of Q3 of the questionnaire (fig. 3.48). We note a trend in the
modifications that the students made to the modules: typically, these modifications were
made to make the modules more compact at the expense of reduced functionality (e.g.
eye-eyebrow module, eyebrow module as mouth). Consequently, future versions of the

168

3. DESIGN ITERATIONS

1 2 3 4 5 6 7

easy hard

3.05P1 – concept

2.55P2 – quick & dirty mockup

3.40P3 – cardboard skeleton

4.25P4 – ABS skeleton

4.60P5 – skinning

4.15P6 – module design

Fig. 3.49 Relative difficulty of each phase. n = 20.

platform should include multiple alternatives for the same facial feature. Students also fre-
quently changed the length of the levers of the mouth and eyebrow modules. It is evident
why this modification is so common: the geometry of the robot’s face directly influences
how far the levers need to reach. Within this study, the lever design files were modified
manually. However, future versions of the platform should anticipate this change. In gen-
eral, future module versions should be less prescriptive in their intended use and should
be easier to modify and hack.

Two groups (fig. 3.47 F & I) incorporated LEDs in the design of their robot. In previ-
ous experiments, we worked with children with ASD. In this context, displays and LEDs
are a hindrance to social interaction, hence why they were avoided in the design of the
platform. However, the two student designs did show the merits of using LEDs to in-
crease the expressive range of robots in their respective contexts. Consequently, support
for addressable RGB LEDs (i.e. NeoPixels) has been added to the latest iteration of the
platform’s electronics.

The actuation of very large or very strong mechanisms (e.g. arm, neck) proved to be a third
point of friction during the experiment. As discussed in section II, the Opsoro platform
is built around low-cost hobby RC servos. While these servos are more than sufficient for
the actuation of facial features, they are much less suitable for large or strong movements.
Students used multiple strategies to work around this problem. Some groups (fig. 3.47
A, D, E) employed a 3D printed screw mechanism to gain enough mechanical advantage
to move their neck. Others (fig. 3.47 C, H, I) attached lightweight, flexible arms to the
end of joint modules. This way, if a user pushes down on an arm, the arm itself bends,
and the servo is protected from excessive torque. A final case of note is Pillo (fig. 3.47
G). Originally, the robot was intended to have arms so it could embrace the user. In the
end, the arms proved to be too troublesome, so instead the team opted to eliminate arms
and instead focus on adapting the shape of the torso in order to insinuate and stimulate
hugging behavior.

The experiment also revealed a number of noteworthy aspects concerning the methodology

169

3. DESIGN ITERATIONS

used in class. First of all, using a limited number of shared modules yielded interesting
effects, both positive and negative. On the plus side, by limiting the available modules to
two “full” toolkits, we forced the different student groups to collaborate. The result of this
approach was that the students’ module designs tend to be generic and much less bound
to a single specific robot. Most of these new modules were used for multiple robots. A
second advantage is that students had to take the (dis)assembly into account, seeing that
they would have to add/remove the modules many times over the duration of the course.
The main downside of this approach is that the limited number of modules ended up being
a bottleneck in the design process, seeing that much time was lost by disassembling and
reassembling robots. A better balance needs to be found between the number of groups
and the number of available sets of modules; two complete sets for ten groups is simply
too little.

We also noticed that our approach to alternate between low-fi (foam and cardboard mock-
ups) and high-fi (laser cutting) prototyping worked out well. Our impression is that this
encourages students to fail early and often. Potentially fatal problems are thus caught
much sooner in the design process. The way students used their foam mockups to test the
size and position of modules is an example of this. While the benefits of iterative design
are well known within HCI, the complexity of robotics design makes it tempting to use a
waterfall design approach, where a robot is designed, built, and tested in a single iteration,
meaning that mistakes are only discovered at the end. We have observed that our method
avoids this pitfall.

Thirdly, the questionnaire results indicate that the ABS skeleton phase, the skinning phase,
and the module design phase are experienced as the most difficult parts of the design
process (fig. 3.49). As mentioned earlier, the students’ designs pointed out a number
of shortcomings in the current selection of modules in the platform. We hope that an
expanded set of modules will eliminate the need for custom designed modules in most
cases. With respect to phases 4 and 5, we believe that a software tool, in the form of a
specialized CAD program or plugin, could simplify these phases significantly. The design
of a skeletal frame involves a large amount of work to draw up in CAD, but much of this
work is completely formulaic in nature, requiring very little creativity, and would be an
ideal candidate for automation. We envision this software as a more advanced version of
123D Make, where the user could load a 3D model of the outer shape, and then input
the position of each required module. The software could then generate a skeleton for
that specific embodiment, automatically adding features such as snap connectors, part
numbering, and module mounting locations. Finally, dividing and flattening the outer
shell, similar to UV mapping used in computer graphics, could easily generate skin and
foam patterns.

3.5.3 CLASSROOM OF THE FUTURE

The experiment described in this section took place during the “Classroom of the Future”
event at the 2016 Frankfurt Book Faire. The purpose of the experiment was to evalu-
ate a simplified version of the Opsoro system with secondary school students. Over the

170

3. DESIGN ITERATIONS

course of a two-hour workshop, students created and programmed custom robots using
cardboard, craft materials, and Opsoro modules, as depicted in figure 3.50.

Fig. 3.50 Participants building custom robots using the Opsoro modules and craft materials.

In the experiment, a different connection system for the modules was used. This system –
dubbed the Opsoro Grid (fig. 3.51) – does not rely upon snap connectors, unlike previous
versions. Instead, modules can be connected to a grid plate using a single screw. The
holes of the grid plates are spaced 8 mm apart, making the system compatible with LEGO
Technic bricks. The modules contain two locating pins in addition to a single threaded
hole. The locating pins are used to position the module on the grid, preventing rotation.
A screw is then used to fasten the module to the grid, locking the connection. The single-
screw connection bears resemblance to the hybrid connector system of the Robot Blocks
experiment (section 3.2.2.3), although this connection system is designed for a different
type of application and uses a different fabrication process.

During the experiment, participants worked together in small groups (2-5 person teams)
to design and program their robots. To this end, we provided four kits, so that four groups
could work in parallel. The experiment ran over the course of a day, with each team taking
approximately 2 hours to complete a robot. The kit consists of a set of electronics, five
modules, and a large grid plate. Keeping in line with the efforts to simplify and reduce
costs of the Opsoro system, we chose to use smaller, simplified modules, as informed by the
results of previous experiments. The modules used during this experiment were smaller,
had less DOFs, and were built using micro-sized servos (as opposed to standard-sized

171

3. DESIGN ITERATIONS

Fig. 3.51 Grid connection system used in the Frankfurt experiment

servos).

To design robots, participants first positioned and affixed the modules on the grid plate.
Then, they created cardboard “skins” to go over the modules and backplate. The grid
system afforded participants the ability to position modules wherever they wanted. The
less prescriptive design of the modules in combination with the low weight of the mate-
rials enabled functionality such as moving arms and ears. Figure 3.52 shows some of the
embodiments that were created during the experiment.

The robots were programmed using the Blockly-based Visual Programming app. The
Opsoro Blockly API was updated to address some of the problems that we encountered
in previous experiments. Additionally, an early version of the online community platform
was tested. The online platform is similar to the robot’s web interface, and allows scripts
to be created and tested in the browser using a virtual robot simulator.

As part of the evaluation, participants were asked to fill in a survey. The large number of
participants, the limited amount of time, as well as the language barrier meant that a paper
survey was the best evaluation tool for the experiment. The questionnaire, translated in
German, consisted of the following questions:

• General personalia questions: name, age, gender.

• 7-point Likert scale statements (M4), with a value of one indicating complete dis-
agreement, and seven indicating complete agreement:

– “I could build what I wanted to build.”

– “The connection system is easy to use.”

– “The modules are adaptable.”

– “I like the aesthetics of the Opsoro system.”

– “I like the functionality of the Opsoro system.”

172

3. DESIGN ITERATIONS

Fig. 3.52 Cardboard embodiments designed by the participants.

– “I like the novelty of the Opsoro system.”

• The AttrakDiff-Short questionnaire (M2). This variant of the AttrakDiff question-
naire consists of only ten antonym-pairs, as opposed to 28 antonym-pairs in the
full AttrakDiff questionnaire.

• Open questions (M6):

– “Which workshop aspects did you like?”

– “What was the most annoying aspect, or where did you experience the most
problems?”

– “What did you learn from the workshop?”

In total, 48 workshop participants filled in the survey. The average age of respondents
was 17.35, with a spread of σ = 1.86. The youngest respondent was 14, the oldest 23.
Respondents were predominantly female (66%), with 32 girls versus 16 boys. Figure 3.53
shows the result of the AttrakDiff-Short survey. Two incomplete surveys were discarded,
resulting in a sample size of n = 46. The latest iteration of the Opsoro system is situ-
ated firmly in the category of desirable products, a notable improvement over previous
experiments. With a value of 1.84, the overall attractiveness of the system (ATT) was also
rated fairly highly. The large number of participants resulted in a narrower, more precise
confidence interval, as indicated by the hatched area. Figure 3.54 shows the results of the
six Likert scale questions.

The results of the AttrakDiff-Short questionnaire position the Opsoro Grid system firmly
within the quadrant of desirable products, a direct improvement over previous experiments
where the AttrakDiff tool was used (e.g. section 3.2, 3.4.3 and 3.5.1). The results of this
experiment also show a tighter confidence rectangle than previous experiments, owing to

173

3. DESIGN ITERATIONS

NEUTRAL

SUPERFLUOUS

DESIRED
SELF-

ORIENTED

TOO

SELF-

ORIENTED

TASK-

ORIENTED

TOO

TASK-

ORIENTED

PRAGMATIC QUALITY (PQ)

H
E

D
O

N
IC

 Q
U

A
L

IT
Y

 (
H

Q
)

Fig. 3.53 Results of the AttrakDiff-Short questionnaire. The hatched area represents the confi-
dence rectangle. n = 46, PQ = 1.52± 0.26, HQ = 1.64± 0.24

0%-25% 25% 50% 75% 100%

disagree agree

1 4 12 31I could build what I wanted to build.

21 6 9 28The connection system is easy to use.

411 15 10 14The modules are adaptable.

113 5 15 11I like the aesthetics of the Opsoro system.

52 6 18 17I like the functionality of the Opsoro system.

82 6 14 16I like the novelty of the Opsoro system.

Fig. 3.54 Results from the Likert scale questions. n = 48.

the larger number of participants. Still, one should be careful with direct comparisons
to previous test results. Previous tests had different workshop objectives, different user
groups, and different durations. Another point of nuance is that respondents only had a
limited timespan to interact with the system, and novelty and limited scope of the experi-
ment may have been factors in the favorable results of the test.

In the feedback from the open questions, we noticed that “creativity” is frequently men-
tioned as a positive aspect of the Opsoro system. Of the 41 respondents that filled in
the open questions, 20 mentioned “creativity” in their responses (48.8%), 10 mentioned
fun (24.4%), and 7 mentioned technology (17.1%). Multiple respondents also said that
building robots is not as hard as it appears, and that it is fun to combine technology with
creativity. As expected, negative feedback was mostly related to technical problems, such

174

3. DESIGN ITERATIONS

as defective servos and problems with the audio quality and the volume of the speaker.
Comments from the open questions also hint at the potential of Opsoro for STEM educa-
tion, as indicated by remarks such as “Technology does not have to be boring” and “You can
do many cool things with technology”. With the predominantly female sample, we think
the reported positive experiences also hint at opportunities to inspire girls to engage with
technology and STEM education.

Overall, results from the Likert scale questions (3.54) were also generally positive. The
adaptability of the modules is rated remarkably higher than in the previous experiment
(fig. 3.48). Results also hint that the grid system is preferred over the snap connector
system. From personal experience, we found that the grid system is much more rigid
and secure than the snap connectors. One point of improvement is the aesthetics of the
system, which is ranked the lowest in the Likert scale questions. Cardboard is a relatively
low-fidelity prototyping material. Even though the material can be manipulated easily and
quickly, it is difficult to create detailed, high-quality embodiments. Alternatives should
be explored in the future, perhaps with pre-made laser-cut shapes or with thermoformed
plastic shells.

3.5.4 SUMMARY

The Opsoro toolkit integrates insights from previous iterations into a real platform that
provides DIY tools and a design method (G1) enabling users to create custom social robots.
In addition to the physical and virtual tools, the design flow for the users is also evaluated.
The results show that easy-to-use building blocks can foster creativity by addressing the
right skills and by matching them to the right challenges. We have investigated low-fi pro-
totyping techniques that deliver fast results (section 3.5.1), as well as high-fi prototyping
techniques that lead to better, more durable creations (section 3.5.2). The last iteration
(section 3.5.3) shows great potential with respect to “medium-fi” prototyping, maximiz-
ing creativity with technological building blocks that can bring custom social characters
to life.

With these iterations we gained new insights into finding the perfect balance between the
ease of use (G2) of the system and the potential for creating emotionally expressive (G3)
characters (G5) with facial features (G4). The building blocks are not prescriptive and
offer the potential for custom creative interpretations (G7) while maintaining a positive
flow experience (G6) by matching different skills and challenges. Within the last iteration,
an early version of the online platform (G10) was also tested. Preliminary tests with the
online platform show promise, allowing scripts to be tested virtually before running them
on robot hardware. Furthermore, the last iteration in particular (section 3.5.3) has shown
that the creation of social characters was described as a positive experience by girls, enabling
better gender balance in future STEAM workshops (G8).

175

3. DESIGN ITERATIONS

3.6 CONCLUSION

In this chapter, we discussed the iterative design process that ultimately led to the Opsoro
platform. We have substantiated our design decisions with results from experiments as well
as references to literature. This chapter has described five distinct yet interrelated design
tracks, illustrating the non-linear nature of a human-centered design process. Table 3.10
gives an overview the iterative design process. We note that a very large variety of designs
can be created with a small set of maker-centric tools and techniques. Each of the designs
described in this chapter could be built at any reasonably equipped FabLab.

We also note that in each of our experiments, the participants succeeded in building robots
from scratch, despite a lack of knowledge and experience. A recurring theme is that they
achieved these goals despite initial reservations. Finally, we also found that the participants
quickly developed a bond with their creation, similar to the IKEA effect (Norton et al.,
2012). This phenomenon occurred when participants built a “standard” Ono, but its
presence was even stronger when they designed their own embodiments from scratch.
This chapter has focussed on discussing the iterative design process, mentioning technical
aspects of the system in passing. The next chapter continues with an in-depth description
of the technical implementation of the Opsoro platform.

Design goal Hexapods
Robot
Blocks

Ono
gen. 1

Ono
gen. 2

Opsoro

G1 Open
G2 Easy to build

G3 Emotional expressiveness
G4 Facial features
G5 Character
G7 Creativity
G6 Flow
G8 Diverse knowledge domains
G9 Low cost
G10 Community-friendly

Table 3.10 Overview of the iterative design process

176

Chapter 4

OPSORO: OPEN PLATFORM
FOR SOCIAL ROBOTICS

The previous chapter has shown how the Opsoro system makes it possible to build a wide
variety of social robot embodiments by combining standardized modules with a custom
skeleton and appearance. Digital manufacturing technologies are used to facilitate this
process by providing a fast, accessible method for producing a high-fidelity skeleton. In
addition, because the modules are built using the same techniques, users are free to make
their own modifications to the modules as they see fit.

Typically, modular robots are comprised of stackable, tilable or otherwise repeatable units.
Examples include the Distributed Flight Array (Oung and D’Andrea, 2011) and roBlock-
s/Cubelets (Schweikardt, 2011). In the Opsoro system, modularity is approached in a
different way. The complex subsystems of a social robot are encapsulated in reusable mod-
ules. These modules are not attached directly to one-another. Instead, they rely upon a
custom frame and skin in order to form a functional whole. This way, the flexibility of
custom designs is combined with the time-saving benefits of standardized modules. One
can draw a comparison between our approach toward modularity, and the reality of the
natural world. Animals (and humans) can have wildly varying appearances, though cer-
tain facial structures look very similar across many species. For example, the size, position,
and orientation of eyes varies across species, though the basic spherical shape, the iris, and
the eyelid remains similar.

Our approach toward modularity also incorporates aspects of an “untoolkit” (detailed in
section 1.1.5). D. A. Mellis, Jacoby, et al. (2013) posit that the design of traditional
toolkits often has a tremendous impact on the form and aesthetics of artifacts. Instead
of packaging all functionalities in high-level building blocks, untoolkits provide tools and
techniques leverage existing components in new ways. While our approach uses high-level
modules, they are combined together through a design method that relies upon digital

177

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

manufacturing techniques. In this sense, the Opsoro toolkit is more than a set of blocks,
it also incorporates techniques to leverage these blocks in novel ways.

This chapter gives an in-depth overview of the platform’s technical implementation: in-
cluding the mechanical hardware design, the electronics implementation, and the software
architecture. The chapter is structured as follows:

• SECTION 4.1 details the mechanical aspects of the platform, including the design
of the modules and a description of the embodiment design methodology.

• SECTION 4.2 discusses the architecture of the Opsoro electronics. The section
elaborates upon the different iterations of the robot controller board, discussing
the reasoning behind the technical decisions. This section also has background
information on the use of sensing human touch.

• SECTION 4.3 talks about the software implementation of the Opsoro platform.
This includes the model and algorithms used for synthesizing facial expressions, web
application design, and the app ecosystem.

4.1 HARDWARE

The facial expressions of the human face are the result of a complex interaction between
various muscles, bone structures, and different layers of soft tissue. The Facial Action
Coding System (FACS) (Ekman et al., 1978) defines over 40 different Action Units (AUs)
in the face. In the FACS system, each AU represents a fundamental action of a muscle or
group of muscles. Replicating all the possible motions of the human face in a robotic agent
is a daunting task made difficult by the sheer number of actuators in a small area, as well as
the challenge of simulating human tissue with synthetic materials. The work of Ishiguro
(Nishio et al., 2007; Ogawa et al., 2012) represents one of the most comprehensive efforts
toward the goal of replicating human facial expressions. Still, even in these robots, there
are fewer facial “muscles” compared to the human counterpart. In this work, a different
approach is used. Instead of aiming to replicate human-like facial expressions, we opt for
an abstract, iconic approach, inspired by the works of fiction from companies such as Pixar
and Disney (Johnston and Thomas, 1995).

In essence, the system needs to strike a good balance between the level of social expres-
siveness (G3) and the cost (G9) and complexity (G2) of the mechanisms enabling that
expressiveness. We opted to forego exact imitation of human expressiveness for two rea-
sons. First of all, such complexity has a prohibitively expensive cost associated with it,
counteracting the goal of making social robotics research and applications more accessible
(G1). Secondly, such an endeavor has a high risk of ending up in the Uncanny Valley
(Mori, 1970), ultimately impeding the interaction between humans and robotic agents.
Instead, we focus on iconic, rather than realistic representation of emotion.

178

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

4.1.1 MODULES

In the system, the various components are grouped into subunits of related actuators and
mechanisms, called modules. Doing so has a number of important advantages. To begin,
this approach simplifies assembly; modules can be put together outside of the body of
the robot, where there is more room to manipulate components and perform assembly
steps. Secondly, in case of damage, modules can be removed and replaced or repaired
quickly. Thirdly, the modular architecture makes the system ideally suited for accelerating
the design of new robots, as complex functionality is packaged in easy-to-use building
blocks. And finally, the modules allow for upgrades and customization, enhancing the
lifespan and potential usefulness of robots built using the system.

The modules of the Opsoro system use snap connectors as a common interface. Each
module encapsulates the functionality of one specific facial/body feature, such as an eye
or a mouth. As of yet, the modules focus on actuation only, though it is also possible to
incorporate sensors. The next sections give an overview of the modules that are currently
available within the system.

4.1.1.1 MOUTH MODULE

The mouth module implements mouth motion with three degrees of freedom. The struc-
ture of the module is formed out of a laser-cut ABS box frame. The box frame has two
30 mm snap connectors to interface with the frame of a robot, as is standard for all Op-
soro modules. Motion is provided by three standard-size RC servos. Two servos are used
for the left and right mouth corners. The third servo actuates the middle of the bottom
lip. The middle of the upper lip is fixed, though both upper and lower lip can be shaped
through the relative motion of the three servos.

Fig. 4.1 CAD model of the mouth module Fig. 4.2 Mouth module prototype

The levers attached to the servos are connected to the skin of the robot through removable
snap connectors, shown in yellow in figure 4.1 and figure 4.3. Four snap connectors are
sewn on the inside of the skin at the appropriate points: the two mouth corners, the
middle of the upper lip and the middle of the lower lip. The length and the range of

179

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.3 Exploded view of the module

motion of the levers is dependent on the embodiment design of the robot. The length
may be customized by generating a new lever design using the parametric CAD model.
The range of motion can be customized in software by modifying the DOF configuration,
as explained in section 4.3.1.1.

4.1.1.2 EYEBROW MODULE

The eyebrow module provides a functional eyebrow with two degrees of freedom. Motion
is achieved through two standard size RC servos connected to the inner and the outer
endpoint of the eyebrow. The servos are attached to a laser-cut ABS frame with two 30 mm
snap connectors that mate with the robot’s frame. As with the Mouth module, the module
is connected to the actual eyebrow through a removable snap connector which is sewn onto
the eyebrow.

The two standard-sized are stacked on top of each other, with the output shafts pointing at
opposite directions. Servo levers with a bent shape are used so that the levers are horizontal
and at the same position when the servos are in neutral position. This solution was chosen
in order to create a compact, powerful module design with a correct distance between the
output levers. As with the Mouth module, output lever length and range of motion can
be customized to suit the needs of a specific robot embodiment design. A typical robot
would use two eyebrow modules. The module has two variants, a standard (right) version
and a mirrored (left) version. This is done to accommodate facial symmetry. Both variants
use the same components, but assembly is mirrored.

180

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.4 CAD model of the eyebrow module Fig. 4.5 Eyebrow module prototype

4.1.1.3 EYE MODULE

The eye module, shown in figure 4.6, implements a two DOF eyeball with a one DOF
eyelid in a single module. Achieving realistic eye movement requires many different mov-
ing mechanisms in a compact and limited space. Difficulty is compounded by the fact
that the eyeball itself needs to rotate in two different directions around the same point.
These reasons make the Eye module the most complex module of the Opsoro platform.
As with other modules, many of the structural parts are laser-cut from ABS sheet material,
though because of the intricacy of the required mechanisms, the module also incorporates
a large number of FDM 3D printed parts.

Fig. 4.6 Eye module prototype

The first major challenge was the implementation of the eyeball that rotates both hori-
zontally (left/right) and vertically (up/down) over a sufficiently large range. These two
motions need to be controllable independently from one another. Early versions of the
module achieved this through a kinematic chain of two micro-size servos connected in se-
ries. Because of space constraints, the centers of rotation of the two servos were not exactly
the same. Though minimal, this resulted in a non-negligible amount of translation of the
eyeball when it was made to rotate. Additionally, the component linking both servos to-

181

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

gether proved to be a weak-point, and the resulting system had a considerable amount of
slop.

The second iteration of the eyeball movement relied upon a different mechanism, as shown
in figure 4.8. Here, two linkages are used to rotate the eyeball indirectly. Though more
complex, the mechanism results in a higher resolution and the centers of rotation coincide.
The core component of the mechanism – the pivot beam – has two rotational axes around
which the eyeball hinges. The first axis, which enables the eyeball to rotate up and down,
is controlled by a linkage connecting the pivot beam to a micro-size servo toward the back
of the module. The second axis of rotation allows the eyeball shell to rotate horizontally
with respect to the pivot beam, and is controlled by a linkage connecting the eye shell to
a second micro servo.

Fig. 4.7 Ball joint linkages

pivot beam

vertical
linkage

module
frame

eyeball
shell

vertical
linkage

Fig. 4.8 Eyeball pivot mechanism

The linkages consist of two RC-grade ball joints that are connected together via a 3D-
printed beam. The ball joints are needed in order to avoid binding caused by joint mis-
alignment as a side effect of eyeball movement. Figure 4.7 shows examples of these link-
ages. The left linkage shows how the ball joints are intended to be used in RC craft, using
a piece of threaded rod to connect the two together. The middle and right linkages show
how they are used in the eye module. By using a 3D-printed connector piece, curves
can be incorporated into the design of the linkage, which is important in the design of
the module for avoiding collisions and keeping the size of the module compact. In addi-
tion, this approach has the benefit of constraining the distance between ball joint centers,
improving assembly repeatability.

In addition to the two DOFs of the eyeball, the module also has an actuated eyelid. This
third degree of freedom is powered by a standard size RC servo. The mechanism of the
eyelid requires more torque than the eyeball mechanism because the eyelid needs to be
able to stretch and deform the foam and textile of the robot’s skin. For simplicity’s sake,
only the upper eyelid is implemented, even though in human anatomy both the upper
and lower eyelid move. The module’s eyelid is implemented as a rigid arc-like component,
as shown on the right-hand side of figure 4.9. This beam is connected to an eyelid flap in
the textile skin of the robot, resulting in a completed eyelid that covers the eyeball when
closed. The eyelid arch is made to be removable using snap connectors. This way, the arch
may first be attached to the skin and then connected to the eye module once the skin is

182

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.9 Exploded view of the module

in place.

The axis of rotation of the eyelid does not coincide with the vertical axis of rotation of the
eyeball. The eyelid’s axis of rotation is shifted more toward the back of the module so as
not to interfere with the horizontal eyeball rotation. The eyelid arch is supported on both
sides of the module by a flanged miniature ball bearing. One side of the arch is actuated
by the servo, the opposite side is an idler.

A one-to-one gear transmission is used for the eyelid, as shown in the bottom left of figure
4.9. Again, the gear train is needed to avoid collisions and to keep the module compact.
The drive gear of the eyelid mechanism is made using the laser cutter. The main challenge
here is interfacing the laser-cut gear with the servo’s toothed spline. Due to the spline’s
small and detailed tooth profile, one cannot simply cut out the shape of the spline. Instead,
a radial pattern of lines was used to create a surface that meshes well with the profile of the
spline, as shown in figure 4.10. The laser beam has the effect of melting the ABS plastic
and as a result, the lines of the 2D drawing turn into triangular incisions in the inner
surface of the hole. The gear can then be press-fit onto the servo spline, and the elasticity
of the ABS plastic compensates for the negative clearance.

The driven gear of the mechanism is 3D-printed. The part is a gear segment, as only 60°
of motion is needed for the functionality of the eyelid. The driven gear is supported by a
miniature flange ball bearing, which is press-fit into the part. The part has a rectangular slot
which mates with the snap connector of the eyelid, allowing the eyelid arc to be attached
or detached easily.

183

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.10 Connection between servo spline and laser-cut gear.

4.1.1.4 JOINT MODULE

The joint module packages a standard-size servo into a one-DOF module to facilitate the
use of RC servos with the rest of the system. This module is currently not used in the Ono
robot, but was created to support creative usage scenarios in workshops and courses. The
ABS-plastic frame of the module has two 30 mm snap connectors, conforming with the
rest of the system. The end effector of the module contains the corresponding module
mounting pattern, allowing other modules or attributes to be attached. The mounting
pattern is designed so that objects can be attached either normally or at a 90° angle, im-
proving the versatility of the module. The module has a male connector on one end and a
female connector on the other end, consequently multiple joints can be chained together
to form a larger structure.

Fig. 4.11 CAD model of the joint module Fig. 4.12 Joint module prototype

The end effector of the module is supported at both ends. A common problem with RC
servos in small-scale robotics applications is the torque load perpendicular to the servo’s
axis of rotation, “peeling” the horn away from the splined shaft of the servo. This problem
was particularly noticeable in the Stigmergic Ant (section 3.1), where the large forces re-

184

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

quired to move the robot resulted in misalignment, vibrations, and excessive servo torque
loads. The joints of the ant were supported solely by the servo horn, there was no idler on
the opposite end to improve stiffness of the joints. Consequently, a significant portion of
torque was lost because of lack of rigidity.

Fig. 4.13 Exploded view of the module

This problem was avoided by incorporating an idler in the design of the joint module. The
idler is shown on the right-hand side of figure 4.13. The implementation of the idler uses
a 3D printed ball bearing hinge, which is supported by a bracket that is mounted over the
end cap of the servo, resulting in a rotational joint that is in line with the axis of rotation
of the servo. Some off-the-shelf servos have a threaded hole in the end cap intended for
this purpose, though these are hard to find as this feature is often not advertised. For this
reason, we opted to use an extra part to support the idler.

4.1.1.5 NECK MODULE

The final module of the system is an experimental neck module. As implied by the name,
the purpose of this module is to actuate the head of a social robot. Two different iterations
of the module were created in the context of students assignments, based upon our input.
The design of a low-cost neck mechanism is challenging due to the mechanism complexity
and the forces needed to support a head. Consequently, the module is considered to be
experimental.

The first version of the neck module, shown in figure 4.14, was created by Pieterjan Mollé
as part of his master’s thesis. The module consists of consists of two degrees of freedom,
enabling pan (horizontal) and tilt (vertical) motion of the head. Both DOFs are realized
using RC servos, facilitating the process of interfacing the module with the platform’s
electronics. A combination of laser cutting and 3D printing is used for the manufacture
of the module’s components. The module is attached to the frame of the robot using
screws; we opted to forego snap connectors in this instance because the large forces would
overcome the tension of the snap connectors.

185

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

The large loads caused by the weight of the head necessitate the use of metal bearings and
reduction gearing on both axes. The tilt joint is supported by an M8 threaded rod with
a ball bearing at each end. Tilt actuation is accomplished through a 3D printed screw
mechanism. A four-start, large pitch trapezoidal screw is attached to the horn of the tilt
servo. The screw is connected to the tilt mechanism through a 3D printed nut that mates
with the threads of the screw. The servo mount and the nut are both supported by a
revolute joint so as not to overconstrain the mechanism. The dimensions of the screw are
carefully chosen so that the full range of motion of the servo (180°) results in ±25° of tilt.

Fig. 4.14 CAD model of 1st neck module Fig. 4.15 Prototype of 1st neck module

The panning motion of this prototype is achieved by rotating the entire tilt mechanism.
An M8 threaded rod runs along the length of the tilt mechanism frame and is supported
at the opposite end by two ball bearings that are attached to the lower end of the frame
of the robot. Pan motion is accomplished through a toothed belt transmission, which
connects a 3D printed pulley on the shaft of the servo to a pulley on the threaded rod.

The second version of the neck mechanism was designed by 2nd year students during
the Illusion of Life course assignment, as described in section 3.5.2. During the course
assignment, two groups required a moving head as part of their robot concepts. Version
1 of the neck module was used as a basis, though the module was redesigned due to a
number of shortcomings. For the students, the main problem with the first neck module
was its large size, making it hard to integrate the module into their embodiment design.

186

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

The redesign eliminates the panning motion, and focuses solely on tilting the head. The
students had decided that this single degree of freedom would offer sufficient social expres-
siveness for their robot concepts, while simultaneously reducing size and complexity of the
module dramatically. The screw mechanism was kept, though the surrounding structures
were modified to increase rigidity, reduce the volume and number of 3D printed parts,
and to reduce the total size of the module.

Fig. 4.16 Prototype of 2nd neck module

Some important issues remain unsolved with this version of the neck module. The biggest
problem is the direct result of the way RC servos work. The feedback mechanism is en-
tirely contained within the housing of the servo. Position data is unidirectional, and is
transferred from the servo controller to the servo, but not the other way around. More
detail on the inner workings of RC servos can be found in section 4.2.4.

This control scheme works well for simple applications, such as those found in the RC
hobby. In our situation, problems arise when the servo is first powered on. At startup,
the controller has no knowledge of the current position of the neck, only the servo itself
can measure this position. When the controller signals the servo to rotate the neck, the
servo – having no knowledge of the mechanism it is attached to – attempts to move to
this position as fast as possible. This results in large current spikes, shocking motion, and
can potentially cause the robot to fall over due to angular momentum.

Potential solutions to this problem would require the actuator to be modified or replaced.
For example, a standard servo can be modified to include a fourth wire connected directly
to the wiper of the feedback potentiometer. This would allow the controller to measure
the servo’s position, and thus limit acceleration accordingly. Alternatively, one could re-
place the servo with a DC motor coupled to a rotary encoder. This approach requires
additional circuitry, but would allow advanced features such as PID control and trape-
zoidal speed control. More complicated control schemes are also possible, such as series
elastic actuation, though one would have to wonder whether this is worth the added cost

187

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

and complexity.

4.1.2 WORKSHOP BASE

The workshop base is not a core part of the system per se. As implied by the name, it is
designed as a base unit for situations such as workshops, courses, and co-creation sessions,
where it is important to get up-and-running quickly. The workshop base packages nearly
all electric and electronic parts that are required for a robot into one unit. This includes
two AC/DC power supplies, an AC plug, a Raspberry Pi with custom daughterboard, and
a WiFi dongle. The unit lets the user focus on the physical embodiment design. The only
wires that need to be connected are the leads of the servo motors.

Two versions of the workshop base were designed. The initial version, shown in figure 4.17,
was created for use during our workshop at the TEI conference (section 3.5.1), and was
also used during the first Illusion of Life course (section 3.5.2). The housing is comprised
of a single plate of ABS plastic onto which all components are mounted. The components
are protected by an acrylic cover plate mounted on top of them using threaded hexagonal
standoffs.

The design worked well, though the elongated shape made the unit hard to integrate in
some robot embodiments. A second version, shown in 4.18, was created for the second
Illusion of Life course. The layout of the unit was changed to form a more dense, cuboid
shape. In addition, a 5 W speaker was also integrated into the unit.

Fig. 4.17 1st workshop base Fig. 4.18 2nd workshop base

4.1.3 EMBODIMENT

This section describes the process through which the standard components of the plat-
form are combined with a custom skeletal frame and skin in order to form a functional
social robot. As argued earlier, our design approach shares similarities with the concept
of “untoolkits” (D. A. Mellis, Jacoby, et al., 2013) in the sense that our toolkit is not just
a collection of modules, but that we see the step of creating a custom embodiment as an

188

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

intrinsic part of the kit. Thus, digital manufacturing techniques such as laser-cutting can
be seen as intangible components of the Opsoro toolkit. A large degree of design freedom
is afforded through this approach, as the design of the modules does not have a large influ-
ence on the aesthetics and design of the robotic character (G5). On the other hand, the
step-by-step methodology offers guidelines for novices, stimulating them to be creative
(G7)

The technical side of this process relies upon laser cutting. The design method encom-
passes both digital and analog, both high-fidelity and low-fidelity techniques. The next
two sections detail the technical process of translating an embodiment concept into man-
ufacturable designs, starting from a 3D model of the embodiment, and focusing on the
design of the skeletal frame and the design of the skin. These two sections describe the
standard process, which was applied for the implementation of the Ono robot. The third
section describes a number of ways this standard process can be tweaked or extended, such
as those used for the Illusion of Life course assignment (detailed description in section
3.5.2).

4.1.3.1 FRAME

The frames are designed to be made from ABS plastic through use of a laser cutter. The flat
laser-cut pieces interlock to form a rigid, three-dimensional structure. The design of the
laser-cut parts incorporates various types of functionality through clever manipulation of
the shape of the parts. For instance, the parts are designed so that they can be connected
together without relying on adhesives, fasteners, or other external components.

The parts that make up the skeletal frame are connected using snap connectors, as shown
in figure 4.19. The male part of the connection consists of two cantilevered hooks that
rely on the elasticity of the material to restrain the mating part. Cutouts in the body of the
connector extend the effective length of the cantilever, allowing the snap force to be fine-
tuned. The female part of the connection (fig. 4.19 right) consists of a simple rectangular
cutout.

3 mm thick ABS plastic sheet is used for the skeletal frames. The advantages of this ma-
terial are its toughness, impact resistance, and relative inexpensiveness. In addition, it
cuts very well on a laser cutter, with no burrs and very little discoloration. Unlike acrylic,
which is commonly used for laser cutting, the material is not brittle, allowing the snap
connectors to function without breaking. Delrin plastic would be another good candidate
material for the frames due to its excellent toughness and wear characteristics. However,
at approximately five times the price, the material is much more expensive than ABS.

The process starts with a 3D CAD model of the outer shape of the robot. The approach
works for both polygonal 3D models as well as 3D surface models composed out of
NURBS objects. However, we have always used surface models because they offer a higher
precision and because they interact well with modern mechanical CAD software, which
uses NURBS surfaces for the boundary representation (B-Rep) of solid objects.

189

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.19 Example of the snap connectors used in the frame design

The first step is to offset the surface of the 3D model to the inside. The distance is depen-
dent on the thickness of the foam that will be used to cover the skeletal frame at a later
stage. 20 mm is a typical value for this. This new surface in imported into a mechanical
CAD package as a reference object. Then, the various modules are imported and posi-
tioned within the 3D model. At this point, the location of the various “slices” is chosen.
Section planes are then defined and intersection curves are calculated, which serve as a
basis for the contours of the various parts of the skeleton.

The structure of the frame is divided into a number of sub-units that can be stacked on top
of one another (fig. 4.20). Each sub-unit consists of a horizontal plate onto which a grid
of interlocking vertical plates are attached. The intersection curves are used as a starting
point to draw the individual parts that make up a sub-unit. The snap connectors, stored
in a reusable sketch library, are added at this point. The width of the snap connectors
can be changed. This can be used to introduce asymmetry into the parts of the skeleton,
simplifying assembly by ensuring parts fit in only one specific orientation.

Once the basis of the skeletal frame is completed, final details can be added. First, the
female connectors for the modules are added. Then, accommodations for the electrical
systems are added, including holes for cable routing, zip-tie anchors for securing wires,
and mounting holes for the Raspberry Pi and the power supplies. Finally, a part number
annotation is added to each part, which will be etched into the part during laser cutting.
This serves to let users to identify each unique part during assembly.

The process of designing a custom skeleton involves a large amount of CAD drawing work.
However, the work is not difficult and consists of few steps that are repeated throughout
the design. For this reason, we think that these steps are an ideal candidate to be automated
through a specialized CAD system plugin.

190

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.20 Architecture of the frame of Ono, showing four sub-units

4.1.3.2 SKIN

The robot’s skin is typically made up of two layers: the inner layer is a layer of soft foam
padding, the outer layer is a textile layer that gives the robot its visual appearance. Produc-
ing these two layers in a repeatable fashion can be challenging, especially since traditional
techniques tend to involve a lot of manual labour. While our approach is not a radical
departure from established techniques, we have incorporated a number of changes to sim-
plify the process.

We found the established technique for the production of three-dimensional soft foam
shapes, such as those required for the foam padding layer, to be a very difficult and involved
process. Usually, these types of parts are created via molding and resin casting, especially
when the geometry of the part is complex. The molding and casting process is a craft,
requiring skill, time, and sometimes special equipment, such as a vacuum chamber. These
aspects are worsened by the properties of soft PU foam resins, as they cure rapidly and
are highly sensitive to temperature and air humidity. Casting can also be quite costly for
one-offs, as one needs to invest materials such as silicone to build a mold. Casting resins
also need to be bought in large volumes and tend to have a limited shelf life (a couple of
months).

191

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Our solution to this problem was to make the hollow 3D foam shape for the padding
layer out of a patchwork of 2D pieces of foam. As with the design of the skeletal frame,
software tools are used to facilitate this process of translating the 3D model to a pattern
of 2D shapes. The 2D shapes are then cut out of a piece of flat foam sheet with the aid of
a laser cutter. Finally, the 2D pieces are sewn together to form a three-dimensional object
that approximates the shape of the original 3D model.

Fig. 4.21 Developable surface (left) vs. doubly curved surface (right)

The biggest technical hurdle is transforming the doubly curved parts of the model into
flat shapes. Doubly curved surfaces are surfaces that are curved in two distinct directions,
such as the face of a sphere. As a result of this property, these surfaces cannot be flattened
without distortion. This is in contrast with developable surfaces, such as the face of a
cylinder, which can be flattened without distortion. Organic shapes, such as those found
in character designs, have a lot of zones that are doubly curved.

To generate the flat patterns for the foam, the model is first manually divided into separate
regions. The designer should choose these regions so that they are large enough to limit the
total number of pieces, yet small enough so that the 3D shape is within the limits of the
foam’s elasticity. These regions are then flattened using the squish command in Rhino3D1.
This command flattens the doubly curved regions while minimizing the total amount of
deformation.

Depending on the material, this process may be fine-tuned. The command can be given
a bias to prefer stretching or compressing the material. The centerline of the deformation
may be modified by offsetting the surface. We found that using the centerline surface (i.e.
10 mm offset for 20 mm foam) and a preference for compression gives the best results for
the foam material we used. To finalize the patterns, artifacts on 2D contours are removed
and a part number is added. Then, a pattern of equidistant holes is drawn along the edge
of the parts. This stitching pattern makes it easier to manually sew the foam around the
robot at a later stage.

The design process for the fabric skin layer is very similar to that of the foam padding layer.
The same squish tool is used, though the surfaces are not offset, and the tool’s bias is set

1Rhinoceros 3D is a CAD application focused on NURBS modeling. –
http://www.rhino3d.com

192

http://www.rhino3d.com

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.22 Foam flattening process. The colored dots indicate material deformation. Note the
artifacts at the top corner of the generated contour.

to prefer stretch deformation over compression. We used Lycra fabric for the skin of the
Ono robot. The high elasticity of the fabric is particularly useful because it smooths out
any irregularities of the foam layer underneath.

4.1.3.3 VARIANTS

The paragraphs above describe in broad strokes the embodiment design process as we had
originally envisioned it. One advantage of the approach lies in its flexibility. The steps of
the process can be changed whenever changes are needed or desired. Adaptations can be
made to accommodate for different skill levels (G6), longer or shorter timescales, available
resources and infrastructure, etc. Below are some examples we have encountered over the
course of this research project:

193

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

• During our workshop on DIY animatronic creatures at the TEI conference (section
3.5.1), we had a very limited timeframe to build new robots with participants. The
duration workshop was limited to roughly six hours, during which participants
would go from a rough concept to a working animatronic creature. Consequently,
we eschewed the use of computer-based design tools in favor of manual, hands-on
techniques. We provided pre-assembled modules, which were brought to life using
the custom cardboard embodiments that the participants built. Plastic connector
plates (fig. 4.23) were used to interface the modules with the cardboard. These were
glued to the cardboard, allowing the modules to snap in place afterwards.

• For the Illusion of Life course assignment (section 3.5.2), we recommended the
students to use Autodesk’s maker-friendly apps for the frame design of their robots.
These tools are easier to use and produce results more quickly than traditional CAD.
More specifically, they used MeshMixer2 to digitally sculpt the outer shape of the
embodiment. The resulting triangle mesh was then imported into 123D Make3,
which was used to slice the model into interlocking laser-cut pieces. The resulting
skeleton was used as the first design iteration, after which the files were imported
into a “real” CAD package to make any modification required for the final design.

• In the same course assignment, students experimented with very different materials
and techniques to create a skin for their robots. Originally, we had focused on
creating soft, huggable robots that children could safely touch, resulting in a method
that relies on textiles, foams, and other soft materials. However, during the course,
many different modes of interaction were conceptualized. For instance, in one
concept, the robot serves as a tutor for children. Consequently, a more distant mode
of interaction is appropriate because the robot and the child are not social peers,
and this has consequences for the design language of the embodiment. Examples
of novel skinning techniques include hard-shell covers made from thermoformed
PS and semi-rigid foam skins made from thermoformed EVA foam, giving way to
different sensory experiences.

4.2 ELECTRONICS

Keeping in line with the overarching philosophy of this work, the electronics used during
this project initially relied heavily on off-the-shelf modules and boards. As the platform
matured and as our views on what functionality we deemed essential evolved, so did our
implementation of the platform’s electronics. As time progressed, we have gone from
breadboard circuits, to custom etched PCBs carrying off-the-shelf modules, to fully inte-
grated boards. Still, throughout this process, we have made a conscious effort to build
upon existing platforms, maintaining a close link with contemporary DIY, hacking, and
making paradigms (G10). As such, the latest incarnation of the electronics is conceived as

2Autodesk MeshMixer – http://www.meshmixer.com
3Autodesk 123D Make – http://www.123dapp.com/make

194

http://www.meshmixer.com
http://www.123dapp.com/make

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.23 Laser-cut snap sockets. These consumables were glued into cardboard skeletons to
provide module mounting locations.

a daughter board for the Raspberry Pi SBC, containing (among others) a microcontroller
that can be programmed using tools from the Arduino ecosystem.

4.2.1 FIRST GENERATION – MICROCONTROLLER-BASED

The first generation of electronics was originally designed to be used as a test-bed for
the platform’s modules. For that reason, functionality was mostly limited to providing
sufficient PWM outputs in order to allow for enough servo actuators to animate a full face.
The system’s only input is a joystick interface, the x/y position of which is directly mapped
to valence and arousal parameters. These two parameters are then used to determine the
position of each degree of freedom.

Considering the straightforwardness of these requirements, the first generation of elec-
tronics was implemented directly using a microcontroller. The facial expression algorithm
itself is not very taxing for the processor, the only challenging facet is generating a PWM
signal for each Degree of Freedom, 13 in total. As such, the joystick input processing and
the facial expression algorithm were implemented on an Arduino Uno, with the PWM
signal generation being handled by an external module.

The first iteration used a SSC-32 board4 to drive the servos, which was integrated into the
body of the robot. The power supply, the microcontroller board, and the joystick interface
were housed in a separate, tethered control box. A picture of the control box is shown in
figure 4.39.

4Lynxmotion - SSC-32 Servo Controller –
http://www.lynxmotion.com/p-395-ssc-32-servo-controller.aspx

195

http://www.lynxmotion.com/p-395-ssc-32-servo-controller.aspx

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

From the second version onward, a dedicated Integrated Circuit (IC) was used instead of
the SSC-32 to generate the PWM signals. The IC – a PCA9685 – is intended to be used
as a LED driver by the manufacturer. However, the chip’s 12-bit PWM resolution and
programmable frequency mean that the IC can be repurposed to generate servo control
signals. Technical details on the implementation of this idea can be found in subsection
4.2.4.

Fig. 4.24 Picture of the Arduino shield

This iteration, shown in fig. 4.24, was conceived as a shield (daughterboard for Arduino
boards), with both Arduino and shield intended to be integrated into the body of the robot.
The rationale of this approach is twofold. First of all, Arduino boards are readily available
worldwide, it makes little sense to duplicate this functionality in a new board. Secondly,
the success of Arduino ecosystem meant that the board’s pinout has become a pseudo-
standard; many different microcontroller and microcomputer boards with an Arduino-
compatible pinout are available. With this in mind, we envisioned a system where a
user could choose the logic board that is best suited for their application. By attaching
the shield, the logic board would be capable of controlling the robot. For instance, for
most basic applications, a low-cost Arduino Uno board would suffice. However, more
demanding users could switch to Arduino-compatible microcomputer boards, such as the
Arduino Yun or the Intel Edison.

4.2.2 SECOND GENERATION – MICROCOMPUTER-BASED

In retrospect, the approach described in section 4.2.1 showed a number of shortcomings.
First of all, different processor architectures ensues that duplicate versions of the same
software need to be written, as each platform has its own APIs and its own methods of

196

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

solving problems. At this stage of the project, the size of the software codebase was still
limited. However, this approach is not sustainable as the scope and functionality of the
software grows. As a second factor, we found that the things we wanted to add nearly al-
ways required functionality that exceeds the capabilities of most simple microcontrollers,
for example audio playback or communication over Wi-Fi. As such, using a SBC started
to make much more sense. Another alternative is to use an off-the-shelf smartphone as the
brains of a robot. Smartphones have an abundance of computing power and already offer
many features that are useful for social robots, including camera, microphone, speaker,
and wireless communication. Indeed, multiple social robots, including Tega (Westlund
et al., 2016) and Travis (Hoffman, 2012), use this approach. However, we decided again
smartphones in favor of using a Raspberry Pi SBC for a number of reasons: (1) by integrat-
ing a smartphone inside a robot, the device loses most of its affordances as a user interface,
(2) factoring in the required additional power, actuator and sensor circuitry, both solu-
tions have a very similar cost, and (3) there is a large degree of variation in smartphones
due to different models, different OSs and different software versions.

4.2.2.1 HAT REV. 0 & 1 – DIRECT I2C

In light of above-mentioned factors, we opted to move forward with the Raspberry Pi as
underlying electronics platform. For us, the Raspberry Pi offered a number of advantages
over alternative SBCs, with the BeagleBone in particular. At the point in time where we
started developing this generation of electronics, there was a significant price difference
between the platforms, with the original BeagleBone costing nearly twice as much as the
Raspberry Pi model B. As reducing the monetary cost of social robotics is one of the main
design challenges of this project (G9), this influenced our decision.

A second benefit of the Raspberry Pi ecosystem is the availability of a dedicated Camera
Serial Interface (CSI) port. With this port, a camera can be added to the system, for
example for computer vision or for remote monitoring purposes. While one could also
use a USB webcam, a performance penalty would be incurred. In the case of the Raspberry
Pi, the processor’s only USB bus is connected via an internal USB hub/ethernet controller
to the ethernet connector and the four USB connectors. In practice, the sum of data
through these connectors is limited to the bandwidth of a single USB bus, with the USB
camera taking up a significant portion of available bandwidth. In comparison with the
Raspberry Pi, the BeagleBone only offers a single USB host port, and while one could use
an external hub to connect more devices, this approach would suffer from similar problems
to the Raspberry Pi’s.

A daughterboard for the Raspberry Pi, called a Hardware Attached on Top (HAT) board
in Pi jargon, was designed. The board contained circuitry to support 16 servo channels
and 12 capacitive touch channels, along with the necessary power regulation. The board,
shown in 4.25 was designed as a single layer photo-etched PCB, onto which off-the-shelf
modules are soldered. The PWM controller for the servos and the capacitive touch con-
troller communicate with the Raspberry Pi over the Inter-Integrated Circuit (I2C) bus.
This low-level bus allows up to 112 distinct devices to share the same bus, with each de-

197

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.25 Picture of HAT rev. 0

vice having a unique 7-bit address. The bandwidth offered by the I2C bus is fairly low,
typically around 400 kbit/s in fast-mode, though still more than adequate for this appli-
cation. The main advantage of this approach is that timing-critical tasks (e.g. generating
accurate PWM signals) are executed by the I2C devices, and not by the main processor.
The Broadcom System-on-Chip (SoC) on the Raspberry Pi runs a full linux OS, and is
consequently not suitable for real-time tasks.

The system is powered by two independent power supplies, one for logic and another
one for the actuators. The power to the actuators can be switched on/off using an N-
channel MOSFET. High-current, inductive loads can cause many problems in digital
systems. The sudden current draw that occurs when the servos are turned on can cause
the power supply’s voltage to momentarily drop below the processor’s minimum operating
voltage, causing it to reset. This condition is called a brownout reset. In contrast, when
servos are disabled, high-voltage transients occur that can damage sensitive devices such
as Field-Effect Transistors (FETs). A third problem is that motors and other high-current
devices cause electrical noise, which can be especially problematic for analog circuitry.
These problems can be mitigated through adequate filtering, e.g. using a Schottky diode
combined with large electrolytic and ceramic capacitors. However, the simplest solution
to all these issues is to use separate power supplies for logic and motors, which is how the
system is implemented in the Opsoro platform. As an aside, the cost of both solutions is
approximately the same, though the filter solution involves more assembly steps.

198

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.26 Picture of HAT rev. 1

Broadcom SoC
BCM2835

class-D amp
TPA2016

device tree
EEPROM

level shifter
PCA9306

capacitive touch
MPR121

PWM controller
PCA9685

MOSFET switch
Servo power

connector
I2C port

connector
16× RC servo

connector
12× touchpad connector

2.8W speaker

Raspberry Pi

HAT

Br
ea

ko
ut

 b
oa

rd

ID I2C
3.3V

I2C
3.3V

I2C
5V

lef
t

ch
.

rig
ht

ch
.

Fig. 4.27 System diagram of HAT rev. 1

199

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

The second version of the platform was designed as a proper, integrated PCB. A block
diagram of the system is given in fig. 4.27. Little changed in way of functionality in
this revision, however the form factor was completely redesigned in order to conform
to the then newly-released HAT specification, which coincided with the release of the
Raspberry Pi B+. The main difference is that this version was designed for Surface-Mount
Technology (SMT) instead of relying on through-hole components combined with off-the-
shelf modules. The resulting board is much more compact and could be manufactured
using automated pick-and-place machines. Another point of difference is the protection
circuitry: this board was made more rugged by adding features such as Transient Voltage
Suppression (TVS) diodes, series gate resistors, and reverse-polarity protection using FETs.

While revision 1 of the HAT worked well at first, continuous use revealed a problem where
the I2C bus would eventually hang. This problem was erratic and proved hard to track
down. As it turns out, the problem is caused by the implementation of the I2C protocol
in the Raspberry Pi’s Broadcom SoC. I2C standards dictate that a slave device may hold
down the bus’s clock line if it needs more time to process a request. This action is called
clock stretching. Due to the SoC’s implementation, a very short clock pulse can occur
immediately after clock stretching, which may be too short to be detected by the slave
device. In turn, this causes a bit order mismatch between master and slave, causing the
bus to hang. It should be noted that this bug is caused by the SoC’s silicon design, it
is unfortunately not a software problem. While there are software workarounds for this
problem, such as lowering the bus clock speed or periodically resetting the bus, none of
them were deemed to be suitable solutions for long-term use.

4.2.2.2 HAT REV. 2 – SPI COMMUNICATION

A second revision of the HAT was created in order to solve this problem. Our approach
involved switching the communication between the Raspberry Pi and the HAT from the
I2C bus to the Serial Peripheral Interface (SPI) bus. This bus uses a separate signal for
clock (CLK), Chip Select (CS) (used for addressing), Master-Out Slave-In (MOSI) data,
and Master-In Slave-Out (MISO) data. Consequently, the SPI bus offers a much higher
potential throughput than I2C. More importantly, it uses a different device addressing
scheme and does not suffer from the same problems as the I2C bus.

The ICs that provide PWM and capacitive touch functionality can only be interfaced using
I2C, with no immediate replacement devices that offer the same functionality through a
SPI interface. We chose to solve this issue by using a microcontroller (an ATmega328;
the microcontroller used in the Arduino Uno) to control peripheral devices. An updated
system diagram is given in fig. 4.29 (note the differences to fig. 4.27). The flexibility of
this approach means that new functionality can be implemented which does not exist as
off-the-shelf SPI or I2C devices, e.g. driving addressable RGB LEDs. On the other hand,
this approach is not without downsides. The microcontroller itself is an added cost and
takes up valuable board space on the PCB. This device also needs to be programmed with
a firmware, adding an extra step and increasing system complexity.

200

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.28 Picture of HAT rev. 2

Broadcom SoC
BCM2835

microcontroller
ATmega328P

audio DAC
PCM5102A

class-D amp
TPA3111D1

device tree
EEPROM

level shifter
PCA9306

capacitive touch
MPR121

PWM controller
PCA9685

MOSFET switch
Servo power

connector
I2C port

connector
4×ADC input

connector
NeoPixel

connector
16× RC servo

connector
12× touchpad

connector
5W speaker

Raspberry Pi

HAT
SPI
3.3V

ID I2C
3.3V

I2S
3.3V

I2C
3.3V

I2C
5V

lef
t

ch
.

rig
ht

ch
.

Fig. 4.29 System diagram of HAT rev. 2

201

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

For the implementation of this system, a protocol had to be designed on top of SPI to
transfer commands and data between master and slave. The Broadcom SoC is capable of
SPI clock speeds up to 125 MHz, several orders of magnitude faster than what the 8-bit
microcontroller would be able to handle. Instead the bus clock speed was set to a more
manageable frequency of 122 kHz. A typical transaction between master and slave hap-
pens in two phases. The first step (fig. 4.30) is to transfer a command plus its parameters,
if any to the slave. Whenever the CS pin is pulled low by the master, the slave will interpret
the next MOSI byte as a command byte, with each consecutive byte stored in buffer as
parameter data. When the CS pin is driven to a logic high, the microcontroller processes
and executes the command, during which the master waits. Results of commands, if any,
are stored in an outgoing buffer. The second step (fig. 4.31) is to read the output of the
command. This step is optional and only occurs if the master is expecting return data.
The CS pin is pulled to logic low and a special CMD_READ byte is transferred to the slave.
Each subsequent byte sent by the master causes the slave to return the next byte of the
outgoing buffer.

CLK

CS

MOSI cmd in 1 in 2 in 3 ... in n

MISO

Fig. 4.30 SPI write protocol

CLK

CS

MOSI read

MISO out 1 out 2 out 3 ... out n

Fig. 4.31 SPI read protocol

The protocol is implemented in firmware using two Interrupt Service Routines (ISRs),
one to handle incoming SPI data, and second one to handle state changes of the CS signal.
When the CS pin goes low (meaning that the slave is being activated), the pin-change ISR
sets a isCmd flag indicating that the next SPI byte will be a command byte. Conversely,
when CS goes high, a processCmd flag is set indicating that data transfer is finished and
that command processing can begin. The main loop continuously polls the processCmd
flag and executes the commands. The SPI ISR functions to move parameter data to an
incoming buffer and to move result data from an outgoing buffer to the bus.

In addition to the system architecture change, revision 2 of the HAT also offers a number
of new features. The first of which is the redesigned audio subsystem. Sound and speech
is an important aspect in many social interaction contexts. As such, this functionality was
given extra attention. From an implementation perspective, sound output typically has

202

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

two distinct steps. As a first step, sound is manipulated digitally (e.g. decoding an MP3
file or synthesizing speech) and is output as an analog signal through a Digital to Analog
Converter (DAC) circuit. In a second step, this signal is sufficiently amplified so that it
can be used drive a speaker.

By default, the Raspberry Pi outputs sound through a PWM output that is filtered through
a resistor-capacitor network. This output is connected to a 3.5mm headphone connector.
While this signal, which comes directly from the SoC, is sufficiently powerful to drive
headphones, it cannot be used directly to power a larger speaker. In prior revisions of
the platform, the headphone signal is amplified through a small class-D audio amplifier
breakout board, which in turn is connected to a speaker. This approach has a number of
limitations. The PWM-based DAC circuit – while simple and inexpensive – introduces
a considerable amount of harmonic distortion into the audio signal. This results in noise,
even when the system is not playing any sound. The audio output is also only available
through the 3.5mm connector, and not through the 40-pin HAT connector. Thus a sepa-
rate cable needs to be used, a bulky and more expensive solution. Finally, the commercial
amplifier board we used was limited in power output, resulting in a lower volume than
desired.

Our solution was to include a high-quality Inter-IC Sound (I2S) DAC, along with a better-
suited class-D amplifier in the HAT board design. The I2S bus is a digital bus designed to
transfer sound data between ICs. The signals of this bus are available on the Raspberry Pi’s
40-pin connector, thus eliminating the need for an external cable between the two PCBs.
In addition to this, the external DAC – a PCM5102A – has a very low total harmonic
distortion, resulting in an audio signal of much higher quality than the Raspberry Pi’s
onboard audio circuitry. Finally, this custom solution allowed us to choose a class-D
amplifier suited to drive the speaker at optimal levels, increasing maximum power output
from 2.8 W to 5 W. To achieve this, a boost converter was needed to step the 5 V system
voltage up to 8 V, which is fed into the amplifier.

Finally, the necessity to include a microcontroller into the design in order to work around
the I2C issues afforded an opportunity to offer additional board functionality without
adding significant component costs. The microcontroller has four unused 10-bit analog
input pins. These pins – along with two power pins – were broken out to a connector,
allowing users to easily interface with analog sensors, such as Force-Sensitive Resistors
(FSRs), flex sensors, or potentiometers. Another feature which was implemented this
way is the ability to drive NeoPixels directly from the HAT. NeoPixels are a brand of
addressable RGB LEDs, available in a number of different form factors, such as rings,
matrices, strips, and single LEDs. They require only a single data pin to transfer RGB
data and the LEDs can be daisy-chained together to allow for a large number of LEDs
to be driven from a single pin. However, the serial protocol’s strict timing requirements
can pose a problem for embedded linux systems. The hardware required to implement
this feature is fairly minimal, comprising a connector and a transistor-based level-shifting
circuit to step the data signal up to a logic level of 5 V.

203

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

4.2.3 SENSING TOUCH

The design of the HAT PCB includes support for capacitive touch sensing, enabling users
to design robots that respond to human touch. The technology is based around the idea
that human tissue is slightly electrically conductive. When a hand comes near an electrical
conductor, the two form a very small capacitor. The capacitance of this system depends
(among other factors) on the distance between the hand and the electrode. Consequently,
a circuit can detect human touch by measuring the change in capacitance of the electrode.

The capacitive touch sensor functionality offers a simple and low-cost method for adding
basic sensing to a robot. The complete system is made up out of two parts: the capac-
itance measurement circuitry, which is incorporated into the HAT, and the electrodes,
conductive areas that are positioned under the skin. The circuitry costs less than 10 €, and
supports up to twelve electrodes. In contrast, FSR touch sensors cost approximately 8 €
each, and TakkTile sensors (Tenzer et al., 2014) cost $149 each.

The electrodes consist of nothing more than a connector, a shielded cable, and a con-
ductive pad. We have successfully built sensors using many different materials, including
aluminium foil, copper-clad laminates, copper foil tape, conductive ink, and conductive
textiles. The biggest challenge is usually attaching a cable to the conductive pad. Soldering
can be used for copper-based materials. Other materials are usually attached mechanically;
using staples, clamps, crimps, or sewing.

Because sensors are so easy to construct, the technology is well-suited for DIY sensor de-
sign, allowing customized sensors for each robot. The technology has previously already
been used as an expressive medium in the domain of human-computer interaction toolkits.
One of the most prominent examples is the Makey Makey (J. Silver et al., 2012), a USB
device that lets users attach conductive objects to their computer to act as keyboard keys,
opening the door to new interfaces such as the banana piano and the Play-Doh PacMan
controller. Another example is given by D. A. Mellis, Jacoby, et al. (2013). Here, paper,
conductive inks, and inexpensive components are combined to form an untoolkit for pa-
percraft circuits. One of the default firmwares of their tool uses capacitive touch sensing
to control LEDs. Finally, Touché (Sato et al., 2012) uses a swept frequency measurement
technique to detect gestures and grasps, allowing objects respond differently depending
on the way they are touched.

One of the challenges of letting the toolkit users design their own electrodes is that mini-
mum and maximum capacitance range can vary greatly, depending on design parameters
such as the shape, size, and material of the electrode. Equation 4.1 shows the formula
for the capacitance C of a parallel plate capacitor, which approximates the behavior of
capacitive touch electrodes. The formula shows that the capacitance of an electrode is pro-
portionate to its areaA and inversely related to the distance d between electrode and hand.
Consequently, larger electrodes need a larger measurement range, and electrodes that are
embedded under different materials need a smaller, more precise measurement range.

204

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

C = ε
A

d
(4.1)

The capacitive touch IC that was chosen for the design of the HAT, the MPR121, handles
this issue by offering a per-channel programmable charge current to account for both
small and large electrodes. The IC also offers an auto-configuration mode to automatically
determine the appropriate charge current and charge time for each electrode. This process
is transparent to the users of the platform. At the start of an app that uses touch sensing,
the IC spends a fraction of a second in auto-calibration mode, after which all electrodes
can be used without further configuration by the user.

A

B C

D

Fig. 4.32 Capacitive touch sensor data. The signal shows (A) proximity, (B) soft touching, (C)
hitting, and (D) squeezing.

In many applications of capacitive touch sensing – for instance, the interface of a kitchen
appliance – electrodes are used as simple on/off buttons. However, in reality, the system is
capable of much more granular measurements. For instance, with the sensors integrated
into the skin of Ono, we can discern the difference between no touch, proximity (a couple
of centimetres), soft touch, and different gradations in pressure. An example of sensor data
is given in fig. 4.32. More so, by incorporating time and by combining data from multiple
sensors, it should be possible to perform even more advanced sensing techniques, allowing
the robot to detect different grasps and be able to distinguish between petting and hitting.

205

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

4.2.4 CONTROLLING SERVOS

As glanced at in earlier sections, all but the earliest iteration of the platform electronics use
the same method for generating the control signals for hobby servos. As these servos are a
key component in the design of the platform, this aspect deserves some elaboration.

The servos used throughout this work are off-the-shelf servos originally designed for use in
RC models. They contain a DC motor, a gearbox, a feedback potentiometer attached to
the gearbox output, and a control PCB in a small, self-contained package. In this scheme,
the control PCB will drive the DC motor so that it moves toward the desired position,
using the potentiometer to determine the current position. Generally, these servos are
limited to 180° range of motion.

±20 ms

500 µs

1500 µs

2500 µs

m
in.

po
s.

ne
ut

ra
l

m
ax

.p
os

.

Fig. 4.33 Servo PWM timing

Hobby servos are connected using a three-wire cable. Two pins provide power, typically
at 5 V, though servos with a higher operating voltage exist. The third pin is a control
signal to set the servo’s position. PWM is used to encode the desired shaft position. The
width of the pulse determines the output position, as shown in fig. 4.33. Pulse widths
vary between 500 µs and 2500 µs, with a value of 1500 µs representing the servo’s neutral
(middle) position. These pulses need to be sent at an update rate of roughly 50 Hz, which
corresponds to a period of 20 ms. However, unlike the pulse width, the signal’s frequency
is not critical. The signal’s period can be as short as 10 ms (100 Hz) or as long as 30 ms
(33.3 Hz), with little bearing on the functioning of the servo.

To control a robot, many of such PWM signals are necessary, one for each DOF. Gener-
ally, microcontrollers do not have enough PWM-capable pins to drive a full robot. As a
solution, we chose to use a PCA9685 IC, a 16-channel, 12-bit PWM LED driver. While
this device is not designed for the purpose of controlling hobby servo’s, it possesses a num-
ber of characteristics which make it suitable for this purpose. First of, the IC’s frequency
can be programmed from 24 Hz to 1526 Hz. Secondly, the 12-bit PWM resolution offers

206

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

enough intermediate steps between pulse widths of 500 µs and 2500 µs. A final benefit is
that the device is free-running, meaning that once it is configured, the microcontroller is
free to do other things.

The PCA9685’s 12-bit PWM resolution results in 4096 distinct pulse width positions.
However, this pertains to the complete length of the period. Suppose the device’s fre-
quency is set to 50 Hz. The corresponding period would be 1000 ms/50 Hz = 20 ms.
Yet, as we are generating servo signals, we only care about pulse widths between 500 µs =
0.5 ms and 2500 µs = 2.5 ms. The minimum servo position results in 0.5 ms

20 ms · 4096 =

102.4 ≈ 102, the maximum position results in 2.5 ms
20 ms · 4096 = 512. This results in 410

valid servo positions, much less than the device’s 12-bit PWM resolution.

For the actual implementation, the PCA9685’s frequency is chosen more deliberate than
described above. The frequency of the device is set using a clock prescaler, which limits the
frequency to discrete steps. The formula for calculating the prescale value P for a given
frequency f is given in equation 4.25.

P = round
(

25 MHz
4096 · f

)
− 1 (4.2)

To simplify software computation, we choose 1 PWM step to represent 4 µs. Conveniently,
the intended range of motion is 2500 µs − 500 µs = 2000 µs, which is divisible by 4. A
benefit of this is that the pulse width to PWM calculation can be implemented using a bit
shift operation instead of division (which is a slower operation). Working backward from
this step size gives us a frequency of 61.04 Hz, as shown in equation 4.3. This frequency
is well within the range of acceptable update rates for servos, as described earlier.

f =
1

T
=

1

4096 · 4 µs
≈ 61.04 Hz (4.3)

Entering this value into equation 4.2 results in a prescaler value of 99. With a resolution
of 4 µs per step, a theoretical angular resolution of 4 µs

2000 µs · 180° = 0.36° can be achieved,
which is sufficient for this application. As an aside, the system’s total accuracy is influenced
by many other electrical and mechanical factors, including signal noise, type of servo
(digital servos tend to be more accurate than the analog type), servo range, and gearbox
backlash. In conclusion, the servo positioning will be less accurate than this theoretical
prediction, and is the result of many different environmental parameters.

5PCA9685: 16-channel, 12-bit PWM Fm+ I2C-bus LED controller. –
http://cache.nxp.com/documents/data_sheet/PCA9685.pdf

207

http://cache.nxp.com/documents/data_sheet/ PCA9685.pdf

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

4.3 SOFTWARE

4.3.1 FACIAL EXPRESSION ALGORITHM

One of the requirement for a facial expression algorithm is a way to represent emotion
(G3) in a way that computers can deal with (i.e. numbers). Many models of affect find
their origin in the field of psychology. Of course, psychologists and roboticists have dif-
ferent goals in mind for affective models. In psychology, a model is chosen to attempt to
understand and explain human behavior. In social robotics, affective models are used in
the reverse direction: they are used to synthesize rather than analyze emotion.

Fong et al. (2003) discern three main groups of affective models. The first group describes
emotion in terms of discrete categories. The work of Ekman (1992; 1999), which discerns
happiness, sadness, anger, fear, surprise and disgust as basic emotions, falls within this group.

Fig. 4.34 Circumplex model of affect. Adopted from Russel (1980).

The second group describes emotion as the result of a number of continuous dimensions.
Russel’s circumplex model of affect (Russel 1980, shown in fig. 4.34) discerns two dimen-
sions in emotion, termed valence and arousal. The valence axis corresponds to pleasant
versus unpleasant emotions. To illustrate, happiness would have a high value for valence,
whereas sadness would have a low value. The second dimension, arousal, correlates with
the level of activation of the emotion. For example, surprise would score high on this axis,
whereas tiredness would score low. Other models, such as the PAD model (Mehrabian,
1995) or the arousal-valence-stance model used in the robot Kismet (Breazeal, 2003b)
expand upon this model by adding a third dimension. In Mehrabian’s PAD model, this
third dimension – the dominance axis – indicates a measure of control (or lack thereof)

208

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

over others or situations. The stance dimension is used by Breazeal to indicate willingness
to interact, from withdrawn (low stance) to approaching (high stance).

Finally, the third group of models uses a hybrid approach, employing both discrete cate-
gories and continuous dimensions to describe emotion. For example, Plutchik’s wheel of
emotions (1980) divides emotion into eight, primary, bipolar emotions, analogous to a
color wheel.

The algorithm that the Opsoro system uses to generate facial expressions is based on the
circumplex model of affect (Russel, 1980). Being a two-dimensional model, it is easy to
manipulate and interact with in software. Secondly, as an advantage of using continuous
dimensions, an emotion – and thus a facial expression – is defined for every 2D coordinate
within the unit circle, facilitating smooth transitions between different facial expressions.
Finally, this approach builds upon experience from within our research group, such as the
work done on the affective system of Probo (Saldien, 2009; Saldien et al., 2010).

4.3.1.1 BASIC ALGORITHM

Our algorithm is based on Russel’s circumplex model (1980). It is advanced enough to
accurately portray a wide range of emotions, though simple enough to be easily imple-
mented in an software. In addition, it offers a continuous spectrum of emotion, enabling
smooth transitions from one emotional state to another. In essence, our algorithm takes a
number of pre-defined key frame facial expressions and mixes them together using a two-
step linear interpolation process. This way, a facial expression can be generated for every
point contained within the unit circle.

r

ϕa
ϕxϕb

a

b

c

x

n

(1, 0)

(0, 1)

valence

ar
ou

sa
l

1st interpolation

2nd interpolation

Fig. 4.35 Two-step interpolation of the circumplex model

The algorithm takes two input parameters, numerical values for valence and arousal rang-
ing from −1.0 to +1.0, and outputs a servo pulse width value for one DOF. This process

209

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

is repeated for each DOF in the system, with different mapping data for every actuator,
leading to a fully posed face. In practice, the process involves a number of steps. To start,
the input parameters are translated from cartesian coordinates x equal to valence and y

equal to arousal, to polar coordinates r =
√
x2 + y2, ϕ = atan2(y, x). These polar co-

ordinates can be intuitively interpreted as follows: ϕ is a measure for the type of emotion,
and r represents the emotion’s intensity, from neutral (0.0) to maximum intensity (1.0).

In the next phase, the algorithm uses a two-step interpolation to determine the DOF
position value of each DOF. The DOF position value ranges from −1.0 (minimum po-
sition of the actuator) to +1.0 (maximum position of the actuator). To do this, each
DOF has a DOF map associated with it. This map contains a neutral DOF position (e.g.
pn = −0.2), plus a number of DOF values at the edge of the unit circle (e.g. p30° = 0.6,
p45° = 0.8, …).

For a given value of ϕx, the algorithm looks up the two closest ϕ values in the DOF map
– with ϕa < ϕx, and ϕb > ϕx – to calculate pc. In the first interpolation step, a value pc
is calculated using equation 4.4.

pc = pa + (pb − pa) ·
ϕx − ϕa

ϕb − ϕa
(4.4)

Once a value has been calculated for pc, r is used as a scaling factor in order to perform a
second interpolation step between pn and pc. As r is already a value ranging from 0.0 to
1.0, it can be used directly. Equation 4.5 shows how the final value of px is determined.

px = pn + (pc − pn) · r (4.5)

It should be noted that this two-step interpolation process is performed for every DOF of
the robot, resulting in as many DOF positions. Figure 4.36 shows the main steps of the
facial expression algorithm applied to a simplified example. The example shows the two
DOFs of an eyebrow module. The left-hand side shows the algorithm’s input, namely a
vector representing the desired emotion. In the middle of the figure, a graphical repre-
sentation of the DOF maps is given. Each DOF of the system has one specific mapping
function associated with it. In this case, the red line is associated with the inner eyebrow
servo and the blue line is associated with the outer eyebrow servo. The input emotion vec-
tor is converted to polar coordinates, and the ϕ value is used to look up the DOF positions
in the DOF maps. These values are then used to drive the position each servo.

The final phase of the algorithm takes the DOF position value of each DOF and maps it
to a pulse width value, which is then sent to the PWM controller. Because the neutral
position for every servo is slightly different, and because not every servo or mechanism
supports the same range of motion, three configuration values are used per DOF, indicat-
ing pulse widths corresponding to the neutral position, the maximum range of motion,
and the minimum range of motion. These three values are used in the final translation

210

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

ϕ

input output

+0.25

-0.50

DOF maps

0° 90° 180° 270° 360°

ϕ

input output

-0.42 +0.50

DOF maps

0° 90° 180° 270° 360°

Fig. 4.36 Example of the algorithm applied to a 2-DOF eyebrow module

step from DOF position p to pulse width w. Equation 4.6 shows how this is done. Figure
4.37 shows a graphical representation of the equation.

w(p) =

{
wneutral + p · wmax range if p ≥ 0.0

wneutral − p · wmin range if p < 0.0
(4.6)

−1.0 +1.0

DOF position

pu
lse

 w
id

th

w
m

in
ra

ng
e

w
m

ax
ra

ng
e

w
ne

ut
ra

l

w(p)

p

Fig. 4.37 Mapping DOF positions to pulse widths

Note that the values for wmax range and wmin range do not necessarily have to be positive. By

211

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

defining wmax range < 0 and wmin range > 0, one can make it so that the minimum DOF
position corresponds to a longer pulse width than the maximum DOF position. This is
useful if one wants to reverse the direction of rotation of a servo in software.

4.3.1.2 C++ IMPLEMENTATION

The first iteration of the algorithm – intended to be run on a microcontroller, as explained
in section 4.2.1 – was implemented in C++. Due to the constraints of the embedded en-
vironment, the DOF maps are stored at fixed steps of 18°, resulting in 20 circumference
DOF positions plus one neutral position. All DOF maps are stored in a fixed-size 2D
array. The algorithm was run on an early version of Ono, which contains 13 servos. Con-
sequently, the DOF maps are stored in a 21 × 13 array. DOF positions are also scaled
from [−1.0,+1.0] to [−100,+100]. A sample of this 2D array is given in snippet 4.1.

Snippet 4.1 2D array containing DOF maps
1 const int Faces[21][13] = {
2 // L_BROW_OUTER L_BROW_INNER R_BROW_OUTER ...
3 /* 0: neutral */ {0, 0, 0, /* ... */},
4 /* 1: valence */ {0, 25, 0, /* ... */},
5 /* 2: happy */ {0, 50, 0, /* ... */},
6 /* */
7 /* 18: relaxed */ {0, 25, 0, /* ... */},
8 /* 19: serene */ {25, 25, 25, /* ... */},
9 /* 20: contented */ {25, 50, 25, /* ... */}

10 };

To interface the DOF maps with their respective servos, a helper class – appropriately
named DOF – was created. Objects of this class store the pin number and minimum/maxi-
mum/neutral pulse width positions. The DOF class has a DOF::SendPos()method, which
can be called in order to convert DOF positions to pulse width values, and to send these
values to the correct servo. During the program initialization, an array of DOF objects is
created an initialized with servo data, as shown in snippet 4.2. Note that the indices of
the DOF object array correspond to the indices of the array containing the DOF maps.

Snippet 4.2 DOF object array
1 DOF DOFs[13] = {
2 // PIN MIN MID MAX
3 DOF(0, 1800, 1500, 1200), // L_BROW_OUTER
4 DOF(1, 1300, 1600, 1900), // L_BROW_INNER
5 DOF(3, 1200, 1500, 1800), // R_BROW_OUTER
6 DOF(4, 1800, 1500, 1200), // R_BROW_INNER
7 DOF(6, 1800, 1500, 1200), // L_EYE_LID
8 DOF(7, 1150, 1500, 1750), // L_EYE_HOR
9 DOF(8, 1900, 1600, 1300), // L_EYE_VER

10 DOF(9, 1200, 1500, 1800), // R_EYE_LID
11 DOF(10, 1250, 1500, 1850), // R_EYE_HOR
12 DOF(11, 1300, 1600, 1900), // R_EYE_VER
13 DOF(12, 2100, 1500, 900), // MOUTH_L
14 DOF(13, 900, 1500, 2100), // MOUTH_R
15 DOF(14, 1800, 1500, 1100) // MOUTH_MID
16 };

212

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

At regular intervals, the program will determine the index associated with the current value
of ϕ, so that equation 4.7 is satisfied.

(idx− 1/2) · 360°
20 < ϕ < (idx+ 1/2) · 360°

20 (4.7)

The program will then perform the two-step interpolation algorithm – as described earlier
– by first interpolating between Faces[idx+1][] and Faces[idx+2][], using

(
ϕ
/

360°
20

)
mod 1.0 as interpolation factor. The second step interpolates between the previous result
and Faces[0][] (the neutral facial expression) using r as the interpolation factor in order
to calculate the final DOF position for that DOF. Finally, DOF::SendPos() is called in
order to actually command the servo to move. Naturally, above steps are executed for each
of the 13 DOFs.

4.3.1.3 PYTHON IMPLEMENTATION

The second iteration of the facial expression algorithm – designed to run on the Raspberry
Pi – was implemented in Python, a high-level, dynamic programming language. This
language has a number of advantages from a programming perspective – such as dynamic
typing and automatic memory management – but requires more processing power than
low-level languages such as C++. Hence why a microcomputer running a full OS is needed,
and a microcontroller is no longer adequate.

Switching to a more powerful platform afforded us the opportunity to make a number
of improvements to the implementation. One of the notable changes is the way DOF
maps are defined and stored in memory. Previously, DOF maps were restricted to 21 fixed
points – one neutral value plus 20 values evenly spaced on the unit circle – due to the use of
fixed-size arrays. Dynamic memory allocation and thus variably sized arrays is possible in
C++. However, this is inadvisable because of the severe memory restrictions of embedded
platforms, potentially resulting in unstable behavior of which the cause can be very hard
to track down. In Python however, the basic array data type, a List, resizes automatically
to accommodate more items. Consequently, the maximum number of points defining a
DOF map is no longer fixed, allowing more or less data points to be added as needed. The
size of different DOF maps is also no longer required to be equal to one another. A simple
DOF may require a DOF map with only few data points, whereas a more complex DOF
in the same robot can have many more points.

The Python implementation of the algorithm relies upon the NumPy and SciPy modules,
which provide efficient numerical algorithms for tasks such as interpolation. Among other
things, SciPy offers the interpolate.interp1d() function, enabling efficient linear in-
terpolation using two sorted arrays (i.e. one for x data, another for y data). This function,
though very useful and efficient, requires the DOF map data to be pre-processed, though
this happens during program initialization and does not impact runtime efficiency. The
first step is to constrain all x coordinates to [−180°,+180°], this is done by taking the
modulo of each phi value, and subtracting 360° from the result if the result is larger than

213

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

valence
ar

ou
sa

l
ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6
ϕ7

ϕ8

D
O

F
po

s

ϕ

−
1
8
0
°

+
1
8
0
°

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6 ϕ7

ϕ8

ϕ1′

ϕ8′

Fig. 4.38 Interpolation using the NumPy module

180°. To go from periodic data (fig. 4.38, left) to a non-periodic interpolation function
(fig. 4.38, right), two ghost points need to be added just outside of the [−180°,+180°].
The first ghost point, labeled ϕ8′ in fig. 4.38, is a duplicate of the point with the largest ϕ
value. It is positioned at ϕa− 360°. The second ghost point (ϕ1′ in fig. 4.38), conversely,
is a duplicate of the lowest ϕ value point, positioned at ϕb+360°. The net result is that the
interpolation function effectively wraps around over the [−180°,+180°] range. Then, all
ϕ coordinates are converted to radians, so as to facilitate manipulation of emotion using
complex numbers. Finally, all points are sorted using ϕ as a key, and the results are fed
into interpolate.interp1d().

A second point of change is the addition of overlay functions. These functions are optional
callback functions that can be attached to one or more DOFs. They take a calculated DOF
position and the associated DOF object as arguments, and can choose to return a modified
DOF position. Excerpt 4.3 shows an example overlay function that periodically modifies
the eyelid position in order to enable blinking. This approach preserves the circumplex
model algorithm as a basis for the animation of facial expressions, but enables the option
to move beyond that, should a certain application require it.

Snippet 4.3 Example overlay function
1 def blink_overlay(dof_pos, dof):
2 # Overwrite eyelid position to enable blinking
3 if blink_anim() > 0 then
4 return -0.8
5 else:
6 return dof_pos
7

8 Expression.dofs[’L_E_LID’].add_overlay(blink_overlay)
9 Expression.dofs[’R_E_LID’].add_overlay(blink_overlay)

Finally, a minor point of change, robot-specific data (e.g. servo pins, range of motion,
DOF maps) is stored in separate configuration files instead of being included during pro-
gram compilation. YAML is used for these configuration files. This was chosen as a file
format because it is light-weight, plain-text, and human-readable. As of right now, robot

214

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

configuration is split over three separate files. The first, “pinmap.yaml”, contains an as-
sociative array linking DOF names to pin numbers on the servo controller. The second
configuration file, “limits.yaml”, contains the pulse width data describing the range of
motion of each DOF. Finally, “functions.yaml”, contains the DOF maps of each DOF.
Optionally, this file can also contain arbitrary additional data, which is loaded into the
DOF class objects. This data is also accessible from within overlay functions, which could
be used to specify overlay parameters.

4.3.2 USER INTERFACE PRECURSORS

The first versions of the platform’s user interface were designed with the sole goal of allow-
ing the hardware side of the platform to be tested, as mentioned earlier in section 4.2.1.
Consequently, These interfaces can be seen as rudimentary at best. Nevertheless, for sake
of comprehensiveness, a brief description is included in this section.

Two versions of this rudimentary interface were made, corresponding to the first genera-
tion of electronics (section 4.2.1) and the first iteration of the second generation (section
4.2.2.1) respectively. They were based around the concept of direct manipulation of the
emotion vector (valence-arousal coordinates) by the user, allowing them to select an emo-
tion, which the robot then conveys through facial expressions. This user interface is very
primitive and offers little intelligence or interactivity, though it suffices for testing pur-
poses.

Fig. 4.39 Hardware interface Fig. 4.40 Web interface

The first version, shown in fig. 4.39, features a physical interface, built around a joy-
stick. The joystick is positioned in the center of a diagram representing Russel’s circum-
plex model (Russel, 1980). The positions of Ekman’s six basic emotions (Ekman, 1992)
are also indicated on the diagram.

The second version, shown in fig. 4.40, is a software implementation of the same interface.
This version served as a proof-of-concept for the software architecture of the SBC-based
electronics. The interface is implemented as a web page, and is served directly from the
Raspberry Pi over a local WiFi network. The client side (i.e. the web page running on
a user’s computer) communicates with the server side (i.e. the Python-based web server

215

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

running on the Raspberry Pi) using Asynchronous Javascript and XML (AJAX) calls. This
method allows for communication between the two sides without reloading the web page
every time data is transmitted. The architecture of the SBC-based software is described in
more detail in section 4.3.3.2 and onwards.

4.3.3 APP-BASED WEB INTERFACE

The following sections describe the final iteration of the software platform. Influenced by
prior experiences, we have made an effort to create an environment that is robust, easy
to use (especially by non-experts), suitable for many kinds of social robots, and easily
extensible to allow for new functionality (G1, G10).

4.3.3.1 DESIGN PHILOSOPHY

The initial Ono prototypes were very simple to operate, which proved beneficial for demon-
strations and exhibitions, though it did not offer adequate functionality for practical use
in experiments. For this reason, an extensible software framework was created to accom-
modate the various real-world use cases. Previous experience has made us keenly aware of
the importance of the usability of the robot’s software. Very often, the robots will need to
be operated by users without a technical background, such as a therapist or an educator.
Users need to be able to turn on and use the robot, and the software should “just work”.
With Probo, technical support staff was often required during use, a situation we wanted
to avoid.

For this reason, we created a custom web-based interface running locally on a Raspberry
Pi inside the robot. The operating system is configured so that a WiFi access point is
created when the robot is turned on. Users can connect to the web interface through this
network to control the robot. In addition to laptops, the robot can also be controlled
using tablets and smart phones. Users do not need to install software on their system,
avoiding potential practical problems.

Fig. 4.41 Main page of the Opsoro interface,
showing all apps

Fig. 4.42 Example showing the interface of the
“Social Script” app

216

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

In recent years, modern web standards have advanced to a state where they support the
creation of rich user interfaces. Contemporary web-based applications that rival the func-
tionality of offline programs, such as Google Docs, is proof of this. Our web-based inter-
face borrows the “app” metaphor of tablet and smart phone interfaces. Opening the main
page of the interface, users are presented with a grid of apps (see figure 4.41), where each
app is related to performing one specific task or scenario (see figure 4.42).

New apps can be created through a Python-based API. Our reasoning for this is twofold.
Firstly, we cannot hope to anticipate all potential uses of the platform. Many potential
applications for social robots are situated firmly in niche areas. These niche areas are also
characterized by marge amounts of tacit knowledge. Knowledge that is difficult to transfer
from robot user to robot designer. Hippel (2001) coined the term “sticky information” to
describe this problem, and proposes the design of toolkits as one solution. In this context,
the software API is part of our toolkit for social robots.

The second reason is related to the first. Potential applications are very diverse, and ranges
from therapy, to entertainment, to education and more. Simply put, we do not have
the resources to fully support all these target groups. We chose the app-based software
architecture as a workaround for this problem, allowing users to easily modify and extend
the platform as they see fit (G1). The app-based system allows end-users to enhance the
functionality of their robot simply by downloading a file. Because facial expressions are
generated from valence and arousal parameters instead of being hard-coded, apps are inde-
pendent from the robot’s embodiment. Consequently, the same software, the same apps
and the same content can be used for many different kinds of robots, facilitating sharing
and reuse (G10).

Figure 4.43 shows an overview of the platform software architecture. The following sec-
tions describe each of the elements in detail, starting from the OS level and building up
from there.

4.3.3.2 OS CONFIGURATION

On the most basic level, the software architecture relies upon the Linux operating system.
The OS handles functionality such as task scheduling, file management, networking and
peripheral control. Raspbian is used, which is the standard Linux distribution for the
Raspberry Pi. Two changes have been made from the default OS configuration.

The network configuration has been changed so that the WiFi dongle starts in access point
mode, creating a local network over which the user can operate the robot. Additionally,
an mDNS service is configured so that the Raspberry Pi can be accessed through the
“ono.local” URL, instead of requiring the end user to enter the device’s IP address manually.
As a result of this configuration, the Raspberry Pi can function headlessly, and can be
controlled without keyboard and screen attached.

The second set of modifications relate to the kernel module configuration. Modules are
loaded that enable all the functionality of the Raspberry Pi’s 40-pin expansion header,

217

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

apps
Active app determines control logic of the robot.

Only one app is activated at a time.

Opsoro API
e.g. facial expressions,

animation, text-to-speech,
hardware interface.

web server
Handles communication
between apps and the

user’s browser.

python + flask

linux OS
Handles hardware communication, audio and WiFi.

firmware
Realtime tasks such as

sensor and motor control.

web browser
HTTP

WebSocket

SPI

I2S

Raspberry Pi

RPi HAT

Robot Electronics

User’s computer

Fig. 4.43 High-level overview of the Opsoro software architecture

allowing access to the I2C, I2S, and SPI buses, as well as GPIO pins. The I2S bus is used
to communicate with the audio circuitry on the daughter board. The SPI, I2C, and GPIO
modules are used to communicate with the daughter board’s microcontroller. The SPI bus
is the main channel through which board functionality is controlled, including servo and
sensor control.

4.3.3.3 WEB SERVER

The bulk of the software is written in Python, a high-level interpreted programming lan-
guage. The main script is configured as a Linux daemon, a service that runs automatically
at startup. This makes the interface accessible whenever the robot is turned on. The web
server responsible for generating and transmitting the interface’s Hypertext Markup Lan-
guage (HTML) pages to the user’s device is also part of the Python application. The Flask
web framework6 is used, along with the Tornado networking library7 to handle the un-
derlying communication. Tornado is used instead of Flask’s built-in server in order to
support WebSockets in addition to HTTP. WebSockets are used to provide a low-latency
communication channel between client and server. This is needed for cases where the
robot should immediately respond to interface input, or where sensor data needs to be
continuously streamed from the robot to the user’s device. HTTP is used mainly for the
transmission of bulk data, such as the interface’s HTML pages and assets.

6Flask (A Python Microframework) – http://flask.pocoo.org
7Tornado Web Server – http://www.tornadoweb.org

218

http://flask.pocoo.org
http://www.tornadoweb.org

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

4.3.3.4 USER AUTHENTICATION

To simplify the logic of the application, as well as to reduce the strain on the limited
resources of the Raspberry Pi, the Opsoro interface is limited to one active user at a time.
Having multiple users connected to the interface at the same time could result in situations
where they send conflicting commands to the robot, leading to unexpected behavior. The
programming overhead to deal with issues such as the arbitration of conflicting commands
and interface state mirroring between connected clients was deemed to great, especially
considering that we have never felt the need to control the robot from multiple devices in
previous experiments.

password

authentication token

request login

generate auth. token
save auth. token

authentication token

web page

save auth. token
request webpage

verify auth. token

authentication token

websocket token

request websocket token

verify auth. token
generate websocket token

websocket token

connection established

save websocket token
start websocket connection

verify websocket token
set verified flag

command parameters

command return data

send API command

check verified flag
execute command

…

HTTP connection

AJAX connection

WebSocket connection

H
T
T
P
co
ok

ie
s H

T
T
P
co
ok

ie
s

Py
th
on

va
ri
ab
le
s

Ja
va
sc
ri
pt

va
ri
ab
le
s

client
(user’s browser)

server
(Raspberry Pi)

Fig. 4.44 Authentication scheme

Consequently, an authentication scheme (fig. 4.44) was devised to enforce single-user
use. When a user first connects to the interface web server, they are redirected to a login
page. Upon successful login, the server generates a string of 24 random bytes that serves as
authentication token. This token is kept in memory on the web server, but is also stored
on the client side as a session cookie. Every time a HTTP request is issued by the client,
the server compares the client’s session cookie to the token in memory. If they do not
match, the user’s session is destroyed and the request is redirected to the login page. In
practice, this means that the most recently logged in user always has priority, as the value
of the token on the server-side is overwritten each time a login occurs, invalidating any
previously connected clients.

219

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

The algorithm to authenticate WebSocket connections builds on top of this. The session
cookie token approach cannot be used directly because session cookies are not available
from within the WebSocket context. Consequently, a work-around method was devised.
First, the client requests a WebSocket authentication token from the server using an asyn-
chronous HTTP request. The server uses the session cookie token to validate the authen-
ticity of the request, and generates and returns a new token for WebSocket authentication.
In the second phase, the client opens a WebSocket connection to the server and transmits
the token it received in the HTTP request, at which point the WebSocket connection is
authenticated.

It should be noted that the authentication methods described in the above paragraphs
are not waterproof by any stretch of the imagination. They serve primarily to deal with
situations where multiple users are simultaneously connected by accident. A sufficiently
motivated malicious user could probably find exploits in these systems, though in our
context this scenario seems unlikely, and the impact of such a hack would remain limited
to the robot.

4.3.3.5 APP MANAGER

For similar reasons as to why only one user can control the robot, we chose to make it
so only one app can be activated at a time. Having multiple apps active simultaneously
would require all apps be programmed in such a way that they negotiate for control of
the hardware among themselves. Seeing that we want the software to be extensible using
third-party apps, we cannot predict all inter-app interactions. Consequently, the software
imposes a constraint that only one app can be activated at a time.

The app manager of the software performs a number of different tasks. Firstly, it han-
dles the discovery of installed apps. Apps are self-contained within their own folder, and
containing one or more Python scripts, plus all client-side files required for the app’s user
interface, such as HTML templates, CSS files, images, and Javascript files. These folders
are automatically loaded as modules by the app manager and relevant information, such
as the app’s name and icon, is extracted automatically for use in the interface.

Secondly, the app manager lets apps define web pages within their own /apps/<appname>/
URL path. The app manager automatically injects the glue logic required to check the
user’s authentication and to redirect the user to the main page if the web page belongs to
an inactive app.

The final function of the app manager is to handle activation and deactivation of each app,
ensuring that the app’s start() and stop()methods are called at appropriate times. App
authors can choose to overwrite these methods to handle whatever activation/deactivation
logic they require, such as turning servos on/off or starting/stopping a separate program
thread.

Figures 4.45, 4.46, and 4.47 illustrate the functionality of the app manager in various
situations. Figure 4.45 shows the initialization of the system. During this phase, the app

220

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

web server

App Manager Web pages
WebSockets

app 1 app 2 app 3

Opsoro API

setup() setup() setup()

on system start

Fig. 4.45 App manager – setup

web server

App Manager Web pages
WebSockets

app 1 app 2
app 3

Opsoro API

stop() start()

user activates app

Fig. 4.46 App manager – activation

web server

App Manager Web pages
WebSockets

active app

Opsoro API

on_page() bg_thread()

user interacts with app

Fig. 4.47 App manager – interaction

manager auto-detects the installed apps and sequentially runs their setup() functions,
allowing the apps to register webpages, register WebSocket handlers, and perform any
necessary initialization steps. Figure 4.46 shows how app switching is handled. First,
the currently running app’s stop() method is called, allowing it to release control to the
hardware. Then, the new app’s start() method is called, signaling the start of that app.
Finally, figure 4.47 shows the general workflow of an active app. Here, the app manager
is responsible for redirecting web events to the appropriate handler inside the active app.
In addition to generating a web page, this handler can also interact with the API, for
instance to change the facial expression of the robot. The figure also shows an optional
background thread. This thread can be used for behaviors that are not the direct result of
operator input, for example eye blinking or responding to touch sensor events.

221

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

4.3.3.6 HARDWARE AND EXPRESSION

The software also provides a number of modules that are intended to be used by apps. The
most important ones are the Hardware module and the Expression module. These mod-
ules provide simplified access to raw hardware control and the facial expression algorithm
respectively.

The Hardware module provides access to the servos (e.g. turn on, turn off, set position),
to the capacitive touch sensors (e.g. initialize channels, get raw/filtered data, detect touch),
and to various utilities (e.g. reset microcontroller, get board version, turn LED on). This
all happens over the SPI bus, using the protocol described in section 4.2.2.2, which is also
implemented by the module.

The Expression module encapsulates the facial expression algorithm described in section
4.3.1. It handles the loading of robot-specific DOF and DOF-map data from configura-
tion files, and uses the Hardware module to output facial expressions based upon input
from apps. Apps can control facial expressions using either valence and arousal coordi-
nates or r and ϕ coordinates. Apps can also choose to overwrite certain DOFs using
overlay functions.

4.3.3.7 UTILITY MODULES

In addition to the Hardware and Expression modules, the software also provides a num-
ber of utility modules for apps to use. The Sound module provides simplified access to
audio file playback, speech synthesis, and volume control. The Console Message module
provides various methods for outputting debug messages. The Animate module provides
helper classes to simplify programming animations. The classes provide time-based linear
interpolation of scalar values based on keyframes, though it is left up to the app author to
link the animation to an output, such as a DOF position. Finally, the Stoppable Thread
module provides a way to let a function run indefinitely in a thread independent from
the web server, though the thread can be stopped at request from the main application.
This is useful for making certain actions happen continuously and independently from
user input, for instance a periodic eye blink animation.

4.3.3.8 OVERVIEW OF APPS

Over the course of software development, a number of first-party apps were created. This
includes both apps that are more testing-oriented as well as apps that are designed for user
interaction. This section aims to give an overview of all currently existing apps and their
functionality.

222

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.48 Circumplex Interface App

The Circumplex Interface app (fig. 4.48) allows the user to manually control the facial ex-
pression of the robot using an interactive circumplex model figure, as described in section
4.3.2. Valence, arousal, r, and ϕ values are shown so that they can be copied for use in
other apps or scripts. Basic animation is used so that facial expressions transition smoothly
from one emotion to the next.

Fig. 4.49 Sounds App

The Sounds app (fig. 4.49) can be used to manage and test the audio-related features of the
robot. Text can be entered directly to test the text-to-speech functionality of the software.
The user can also upload and play back audio files from the interface. Audio files uploaded
in this app are made available to other apps, such as the Visual Programming app and the
Social Script app.

223

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.50 Config Editor App

The Config Editor app (fig. 4.50) allows the user to edit the system configuration YAML
files directly from their browser. These files include the pin mapping, which correlates
DOF names to the physical I/O pins for servos, the servo limits, which define the range
of motion for each DOF, and the DOF mapping, which defines how valence and arousal
parameters are transformed into DOF positions. This app was used for testing. Seeing
that the text-based configuration language is not particularly user-friendly, a GUI-based
version will need to be developed in the future.

Fig. 4.51 Touch Graph App

The Touch Graph app (fig. 4.51) is used to test and debug various electrode configurations
of the capacitive touch sensor IC. The app continuously plots the sensor values of 1 to 12
electrodes, allowing users to iteratively test the robustness and sensitivity of home-made
capacitive touch pads. A stoppable thread is used to read sensor data at a frequency of
10 Hz. Sensor data is streamed from the robot to the browser using a WebSocket.

224

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.52 Sliders App

The Sliders app (fig. 4.52) lets users manually control servos using a set of sliders. The
sliders drive the DOF position of each servo, ranging from −1.0 to +1.0, and are conse-
quently restricted to stay within a safe range. This app is useful for debugging problems
with servos, as well as for fine-tuning the neutral position for each servo. Initially, AJAX
requests were used to transfer DOF position from the browser to the server, though this
approach suffered from problems as messages could be received by the server in a different
order. The issue was solved by changing the communication method to a WebSocket,
which guarantees that messages will be received in the correct order.

Fig. 4.53 Lua Scripting App

The Lua Scripting app (fig. 4.53) allows users to write and execute scripts from within
their browser. The interface offers a text editor field with syntax highlighting, as well
as buttons to save, load, and run files. The scripting environment itself uses the Lua
programming language, and code is executed in a sandbox environment in order to protect

225

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

the main application from script bugs. The structure of scripts is simpler than that of a full
app, requiring only a setup(), a quit(), and a loop() function, where users can insert
initialization commands, deinitialization commands, and main program code respectively.
Scripts have full access to the Hardware and Expression modules, as well as a separate UI
module that lets script authors add buttons to the script interface, which can then be
linked to the script code.

Fig. 4.54 Visual Programming App

The Visual Programming app (fig. 4.54) lets users author custom scripts by dragging
and connecting visual blocks that represent various commands. The goal of this app was
to offer a way for non-programmers to create complex custom scenarios. The visual pro-
gramming language relies upon Blockly, a javascript library offering a visual programming
environment derived from Scratch (Resnick et al., 2009). Blockly offers a standard set of
programming blocks, such as an if block and a print() block. This set of blocks was
extended to include Opsoro-specific blocks, such as a set_emotion() block and a say_-
tts() block. The environment translates block-based programs to Lua code, which is
then transmitted from the browser to the robot and is executed using the script host of
the Lua Scripting app.

226

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Fig. 4.55 Social Script App

The Social Script app (fig. 4.55) allows for an even simpler way of preparing dialogs, and
is intended to be used in Wizard of Oz interaction scenarios. In authoring mode, a user
can specify a number of voice lines. Each voice line consists of a facial expression coupled
to either a sound file or a line of text intended for text to speech. In play mode, each of
these lines becomes available as a clickable button that makes the robot change its facial
expression and say the appropriate line of text.

4.3.3.9 IMPLEMENTATION OF SCRIPTING ENVIRONMENTS IN APPS

Because user extensibility (G1, G10) is one of the core ideas behind the Opsoro platform,
we have created a number of apps that focus on enabling novices to create complex behav-
iors using various scripting interfaces. The different incarnations of the various “scripting”
apps taught us many valuable lessons, on both a technical level, as well as from the perspec-
tive of the various types of users. By supporting different degrees of scripting difficulty,
skill development and flow is stimulated (G6).

The first attempt at creating a scripting environment app was the initial version of the
Visual programming app, shown in figure 4.54. The app was created as part of the prepa-
rations of a one-day workshop where participants constructed new social robots by com-
bining the platform’s modules with craft materials such as cardboard and foamcore. More
details on the setup of the workshop can be found in section 3.5.1.

As is the case with the current version of the app, the initial version built upon the Blockly
Javascript library8 to implement the scripting environment, resulting in a very similar
UI as the present version of the app. Architecture-wise, the differences are substantial
however. The Blockly environment was configured to generate Javascript code from the

8Blockly – https://developers.google.com/blockly/

227

https://developers.google.com/blockly/

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

Blockly script. The generated Javascript code was executed in the browser, with the various
platform-specific API calls linked to the server using AJAX requests.

There were a number of technical problems with this approach. To begin with, implement-
ing a sleep() function was non-trivial, owing to the fact that the Javascript language has
no simple way of suspending code execution. Instead, programs are expected to handle
timing functionality using the setTimeout() function, allowing the programmer to spec-
ify a callback function to be run at a certain point in the future. We found the callback
paradigm too complex for casual users, the sleep() model is much easier to compre-
hend and use in own programs. The issue was solved by using JS-Interpreter9, a Javascript
interpreter written in Javascript. The interpreter lets users specify an arbitrary delay be-
tween program execution steps. This was exploited by creating a sleep() function that
temporarily overwrites the step delay for one execution step.

The second problem was related to the AJAX API calls. At this point in time, WebSocket
infrastructure had not yet been implemented. Consequently, all communication between
the user’s browser and the robot happened over AJAX calls. Outside of latency, the biggest
issue with AJAX calls is they are not guaranteed to be received by the server in the same
order as they were transmitted, as is implied by the asynchronous part of the technology’s
moniker. This poses problems for certain programs, for example when a set_emotion()
call is followed by update_emotion(). Reversing the order of these two calls would result
in the desired facial expression not being shown by the robot.

Finally, because the generated script runs in the browser and all API calls need to be trans-
mitted over the network, an visible amount of latency is introduced. Facial expression
animations became choppy due to the limited amount of “frames per second”. Sensor
inputs also proved less responsive, as the browser first had to request sensor data from the
server, then process it, and then request the server to perform a certain action.

The second step forward was the creation of the Lua Scripting app, shown in figure 4.53.
With respect to performance, the key difference with this app is that it runs scripts directly
on the server, and any feedback is transmitted to the browser over a low-latency WebSocket
connection. App users can design new behaviors for the robot by writing simple scripts
in their browser. The browser-based editor offers syntax highlighting as an aid. Owing to
the fact that a traditional programming language is used, this app is not so much suited
for complete novices as it is for users who already know how to program. Still, the script
structure and API are chosen so as to mirror the philosophy of “sketches”, as understood by
Processing (Reas and Fry, 2007) and Arduino (D. A. Mellis, Igoe, et al., 2007). Users do
not program full-blown applications, but rather sketch out their ideas using a text-based
language.

To execute the script, the browser transmits the script’s source code to the server, where it
is executed in a sandbox environment. The Lua programming language (Ierusalimschy et
al., 2007) was chosen for this environment, bindings to the main python code are created

9JS-Interpreter: A sandboxed JavaScript interpreter in JavaScript. –
https://github.com/NeilFraser/JS-Interpreter

228

https://github.com/NeilFraser/JS-Interpreter

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

using Lupa10. Lua was chosen for a number of reasons. It is lightweight, very fast, and
designed to be embedded in larger applications. However, the biggest advantage is that
Lua can be sandboxed easily, whereas the flexible nature of the Python language makes it
very difficult to secure against malicious code.

In the case of the Lua Scripting app, a new ScriptHost class was created. The ScriptHost
class exposes hardware and facial expression APIs functionality to the script while blocking
access to potentially malicious functionality, such as file manipulation and shell access. The
ScriptHost class is also responsible for running the script’s setup(), loop(), and quit()
functions, as well as stopping scripts by force, if necessary.

This Lua-based implementation of a scripting environment was later back-ported to the
Visual Programming app. The design of the Blockly library is language-agnostic. Conse-
quently, the code generation logic of the app was changed to output Lua code instead of
Javascript code. Currently, the Visual Programming app runs scripts on the server, and
communication between browser and server takes place over a WebSocket. This solved
the technical problems of the previous version of the app.

User testing with therapists revealed a number of shortcomings of the Visual Programming
app. During these tests, we helped therapists to implement simple interactive scenarios in
the app. It became apparent that many of the blocks were too low-level, resulting in user
confusion and excessively long scripts. For instance, to change the facial expression, one
would first have to initialize the servo controller, then set the emotion, then update the
emotion, and then turn the servos on. This makes sense from a programming perspective
and allows for granular control of functionality, but is unintuitive for third-party users, as
we discovered. Future versions of the app should encapsulate more commands in a single
block so as to provide a higher-level interface for users to use. For example, initializa-
tion commands should simply be included in the setup() block without requiring user
intervention, and the set_emotion() block should also immediately update the facial
expression.

Analysis of the scripts revealed a frequently reoccurring pattern where a facial expression
is linked together with a line of dialog or a sound file. From further interaction with the
therapists we learned that a simple interface with buttons that change the facial expression
and play some audio would be sufficient for most Wizard-of-Oz use cases. During a paper
prototyping exercise, we arrived at an app concept where the therapists could prepare a
list of dialog lines, consisting of an emotion together with either a line of text or a sound
file. This way, relevant lines around a specific theme (e.g. bullying) could be prepared in
advance, and then be played back by the therapist in real-time based upon the actions of
the child. The concept was implemented in the Social Script app, shown in figure 4.55.
The advantage of this app is that it is much simple to understand than the other scripting
apps, and that new scenarios can be prepared rapidly. However, the other scripting apps
allow for much more complex behavior at the cost of a steeper learning curve.

10Lupa: Python wrapper around Lua and LuaJIT – https://pypi.python.org/pypi/lupa

229

https://pypi.python.org/pypi/lupa

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

4.4 CONCLUSION

This chapter has discussed the the technical implementation of the Opsoro platform, in-
cluding the mechanical design of the modules and the embodiment, the electronics design
of the driver board, and the software architecture. The design goals described in section
1.4 have impacted many of the technical design decisions. The components used in the
Opsoro platform were specifically chosen to be inexpensive (G9) and readily available
worldwide (G1), avoiding specialized high-performance components. Similarly, custom
components can be built using production technologies that are appropriate for the mod-
ern DIY’er, such as lasercutting and 3D printing (G1). Efforts were made to make it easy
to get the parts, but also to simplify the assembly process (G2). The platform builds upon
the work of established open source software and hardware communities, such as those of
Arduino and Flask (G10). Furthermore, the platform is designed to be extended by third
parties; both in software through the app system and in hardware through the module
system, further stimulating community involvement (G10).

The current prototype serves as a good basis to expand upon and allows us to quickly
try out new ideas. Having working prototypes also greatly facilitates communication with
different stakeholders, such as therapists, educators, and researchers, which helps to inform
the next steps in development. Still, much development work remains in preparation of
commercialization of the platform.

4.4.1 FUTURE ENHANCEMENTS

The experiment with the Opsoro Grid system (section 3.5.3) showed promising results.
In the experiment, the mechanical interface of the Opsoro Grid proved more reliable than
the snap connectors. This construction system will be further be further developed, taking
building affordances and toolkit aesthetics into account. Current module designs will be
updated to conform with this new mechanical interface. Furthermore, the system will be
extended with new modules, such as LED eyes, touch sensor pads, and a neck module.

The Opsoro HAT board will be redesigned and optimized for manufacture. A small batch
of 24 boards of the current HAT design has already been produced, and through this
process we discovered a number of shortcomings. Currently, the design has too many
components, driving up assembly cost and introducing more points of failure. A more
integrated solution with less components can be achieved by moving to a better micro-
controller, e.g. a 32-bit ARM device. Furthermore, during manufacture we discovered
that the capacitive touch IC had reached end-of-life, meaning that this chip will have to
be replaced. Finally, the power architecture of the system needs to be improved. For
safety reasons, the new version should use a separate “power brick” adapter instead of an
integrated metal-enclosure power supply.

By using the Opsoro API ourselves and by seeing others use it, we have discovered a
number of improvement points. Over the past year, we have seen a number of recurring

230

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

program patterns. These patterns occur in many different apps and scripts, but currently
need to be reimplemented on a per-app basis. Examples include file management (sav-
ing, loading, executing), autonomous behaviors such as blinking, and lip synchronization
for speech. This functionality should be generalized and made available through libraries.
Similarly, the visual programming environment should be redesigned so that related com-
mands are grouped into higher-level constructs. For instance, the say_tts() command is
almost always followed by a sleep() command. These commands should be integrated
so that the text-to-speech functionality automatically waits until the audio has stopped
playing.

Finally, one of the major remaining tasks is improving the documentation for building,
modifying, and using Opsoro robots. In order to encourage an active community of
users, better documentation should be offered. Current assembly documentation consists
of step-by-step photos with short written instructions. We found that this is not always the
most appropriate format, especially for complex steps. Assembly documentation should
be enhanced with rich media such as video, exploded views, and embedded 3D model
viewers. Software documentation should also be improved, and should include a tutorial
series on designing a custom app.

4.4.2 NEW DEVELOPMENTS

As of yet, the software stack is offline, running locally off of a Raspberry Pi. We want
to extend the software to include an optional online platform. The intent of the online
platform is to fulfill two major functions. First of all, it would enable users to easily share
content, such as interaction scenarios, scripts and apps. Secondly, it would allow users
to simulate the behavior of a robot using a virtual model, allowing them to experiment
with the system without direct access to a robot. The online platform would thus allow
them to prepare content in advance, and synchronize the data to the robot at a later stage.
Work on developing this online platform is already underway. Because the software in-
terface was originally designed using web technologies, this process has been relatively
straightforward.

Furthermore, we wish to incorporate more advanced behaviors into the system, includ-
ing more sophisticated animation, autonomous behaviors such as blinking and looking
around, and basic artificial intelligence features. Some of these improvements will neces-
sitate us to incorporate a camera, allowing us to use computer vision to things like face
tracking, emotion mimicking and tag detection.

Currently, the software does not rely on; or expose an interface to ROS (Quigley, Conley,
et al., 2009), a popular open source framework for robots control. The main reason for
this choice is because the two projects have very different goals. Opsoro focuses on rela-
tively simple, stationary robots with a limited number of DOFs and no advanced sensors
(e.g. LIDAR). On the other hand, ROS was created for large-scale service robots, typically
with multiple onboard computers, offloading intensive computations to a stationary server.
ROS emphasizes autonomous behavior, whereas we focus on semi-autonomous scenarios

231

4. OPSORO: OPEN PLATFORM FOR SOCIAL ROBOTICS

and Wizard-of-Oz scenarios. While there is some overlap between the two systems, dif-
ferent goals lead to very different points of attention. In our work, the majority of the
code is related the user interface. Conversely, while ROS offers tools to create GUIs, these
tools are primarily intended for debugging purposes, focusing on sensor graphs, console
messages and environment data visualization.

Still, we do plan on introducing some degree of interoperability with ROS. The reason
for this is twofold. Firstly, ROS is a well-known standard within robotics research. Many
users are already familiar with it, and by providing a ROS interface, we facilitate the pro-
cess of integrating an Opsoro robot as part of larger experiments. Secondly, integration
would allow some of ROS’s advanced functionality, for instance emotion recognition al-
gorithms, to be used within an Opsoro robot. Lastly, we expect that integrating the ROS
API will be fairly straightforward. ROS already includes bindings to the Python program-
ming language. Furthermore, one of the third-party Ono users has already put together a
preliminary ROS binding.

This chapter has summarized the technical details of the Opsoro platform, as well as future
steps in technical development. The next chapter concludes this work with final reflections
and a discussion of future prospects.

232

Chapter 5

CONCLUSION & FUTURE
PERSPECTIVES

This dissertation has detailed the inception and development of Opsoro, a platform for
DIY social robots. The platform enables amateurs and non-experts to design, build, and
use custom social robots for face-to-face communication. With this work, we have made
social robotics technology accessible to a wide audience of users by building upon con-
temporary DIY principles and practices, such as the open source hardware movement and
the maker movement. Designing a platform is different than designing a single system,
not only from a technical standpoint, but also because of the way they are used. For
this reason, traditional engineering paradigms were eschewed in favor of an iterative, user-
centered design process that emphasizes user experience aspects. Each iteration has led to
a better understanding of different DIY approaches in the design, build, and use phases of
the platform. The result is an inexpensive, open source, DIY-friendly platform that can be
used to design, build and use custom emotionally expressive robotic characters, fulfilling
all goals set forth in chapter one (section 1.4):

• Open (G1) – The platform is designed so it can be manufactured using maker-
friendly production techniques (i.e. laser cutting and FDM 3D printing) and com-
mon, inexpensive components. This design choice makes it easy to copy, hack, and
extend the platform.

• Easy to build (G2) – During the design of Opsoro, special attention was given to
the assembly process; by using the characteristics of digital manufacturing to our
advantage, we managed to create designs that are easy for novices to assemble and
replicate.

• Emotionally expressive (G3) – The platform enables users to create custom social
robots that support facial expressions, speech, and gaze as the main ways for emo-

233

5. CONCLUSION & FUTURE PERSPECTIVES

tional expression. The software is designed so that users can control the emotional
expressions of their robot through simple and intuitive interfaces.

• Facial features (G4) – Through our iterative, user-centered approach, we have found
a good balance cost and ease of use on the one hand, and advanced facial features
on the other hand. To this end, we have designed flexible, low-cost modules that
implement the different elements of a face.

• Character (G5) – In our platform, we focus on realizing iconic emotionally expres-
sive characters instead of realistic, human-like robots. Drawing inspiration from
cartoons and animation, we provide the tools to create artificial creatures rather
than mechanical robots.

• Creativity (G7) – We emphasizes the importance of open-endedness and creative
play in our platform. We offer users an easy-to-use, extensible set of building blocks
to experiment with, as well as a methodology to guide them through the creative
process. Creativity is stimulated throughout the design of the toolkit, enabling a
spectrum from minimal customization to fully custom-created designs.

• Flow (G6) – A state of flow is stimulated by offering an open-ended system that
addresses users of all skill levels, offering multiple paths for hardware and software.
The platform is designed so that it grows with the user. Opsoro is easy for novices
to use, and the system gradually offers new possibilities as the user becomes more
experienced.

• Diverse knowledge domains (G8) – The platform introduces STEAM-related skills
and knowledge in a novel and unexpected format. In addition to the traditional
robotics elements, the platform also integrates practices from crafts, design, and
art.

• Low cost (G9) – By using low-cost digital manufacturing techniques such as laser
cutting and FDM 3D printing, combined with inexpensive standardized compo-
nents, we have created an affordable platform for social robotics. This way, social
robotics technology is made accessible to a larger audience of users.

• Community-oriented (G10) – Our work builds upon existing technology from the
open source community and our platform is also released under an open source
license to further stimulate community involvement. Additionally, we are currently
working on an online service as a companion to the Opsoro software. First steps
have already been undertaken; an alpha version of the online community platform
was tested in the last iteration of the Opsoro.

In our experiments, the platform was used by non-experts to design and build new social
robot embodiments from scratch. The experiments encompassed many different types of
users, representative of the different stakeholders in human-robot interaction, and human-
computer interaction in a broader sense. The experiments also varied in time scale, ranging
from only a couple of hours to over three months. The experiments cover the creation of
new designs, the reproduction (copying) of existing designs, and the actual use of robots

234

5. CONCLUSION & FUTURE PERSPECTIVES

in interaction scenarios. One of the most remarkable result of the experiments is that
participants always successfully completed their task. At the start of experiments, partic-
ipants frequently voiced their concerns that the challenge would be too difficult, that it
was outside of their skill set. Nevertheless, they always succeeded, noting the process was
much easier than it appeared. The robots built by participants during the experiments are
very diverse, and participants often came up with novel and unexpected designs. We also
note that participants quickly formed a bond with their creations, similar to the IKEA
effect (Norton et al., 2012). They would always refer to the robot as him or her and not
it, and they would frequently take pictures and selfies with the robot. We observed this
phenomenon when they assembled a “standard” Ono, but the effect was even more pro-
nounced when they were building their own designs. The Opsoro platform forms a bridge
between robot designers and robot users by making a complex technology accessible for
a wider audience. In summary, this project lays new foundations toward democratizing
social robotics technology through a DIY, open source platform.

Technical development encompasses modular hardware building blocks, an embodiment
design methodology, a specialized circuit board for the Raspberry Pi, and a web-based soft-
ware interface to control the robots. All elements of the platform are published as open
source software and hardware so that others can use and build upon our work. Through-
out this work, we have shown how the DIY paradigm can impact social robotics research.
We have shown how digital manufacturing technologies can drastically lower the barri-
ers toward custom social robot designs, making it easy to quickly design a wide variety
of different social robots. Within this dissertation, we focused on incorporating DIY ap-
proaches in social robotics research. However, these methods and techniques hold poten-
tial for many different domains, offering new ways to make complex technology accessible
to a large audience of users.

Fig. 5.1 Map of current users of the social robot Ono (yellow) and the Opsoro Starter Kit (green).1

On a personal level, I am proud to say that our work did not stay confined to our lab, but is

1 Blank map of Europe by “maix”.
Licensed under Creative Commons Attribution-Share Alike 2.5 Generic.
World map blank without borders by “Crates”.
Licensed under GNU Free Documentation License 1.2.

235

5. CONCLUSION & FUTURE PERSPECTIVES

Ono robot users Opsoro Starter Kit users

2014 Russia University of Nizhny Novgorod 2016 Denmark Aalborg University (3 kits)
2015 Poland Lodz Polytechnic University 2017 Belgium Rhizo School
2015 Colombia Colombian School of Engineering 2017 Belgium VIVES University College (4 kits)
2015 USA University of Michigan 2017 Netherlands M.S. (private individual)
2015 UK Plymouth University
2015 Belgium Vrije Universiteit Brussel
2015 Sweden University of Skövde
2016 Belgium University College of West-Flanders
2016 Belgium De Lift Education
2016 Netherlands Rotterdam University of Applied Sciences

Table 5.1 Overview of current users

Fig. 5.2 OTO – a mobile extension for the Opsoro platform

being used by researchers and practitioners worldwide. Seeing the enthusiasm of children,
therapists, and fellow researchers is one of the greatest rewards. As of yet, we have sold ten
Onos to other universities and research institutes, spread over three continents (fig. 5.1,
table 5.1). These robots are actively being used in a wide range of research, development
and educational applications. For instance, Ono is used as a tool for speech therapy and
behavior therapy experiments with children. Additionally, one of the Ono’s is currently
being used as a development platform in computer science courses, which has resulted
in the development of novel third-party apps for the Opsoro platform. Finally, one of
the HRI studies performed using the Ono robot has already been published (Zubrycki

236

5. CONCLUSION & FUTURE PERSPECTIVES

and Granosik, 2016), and one of the users is planning on building a second Ono from
scratch, using the source files on GitHub. Currently, the Opsoro Starter Kits are used in
secondary schools for STEM education purposes. The Opsoro platform is currently also
used as a co-creation toolkit in a research project investigating novel social interfaces for
people suffering from dementia. Within our own university, students have developed an
extension for the Starter Kit allowing users to construct mobile, car-like social robots (fig.
5.2).

As of yet, HRI studies primarily investigate robot behaviors, ignoring the role of embod-
iment as part of the design space. We hope others will build upon our work, leading
to better a understanding of the role of embodiment in social interaction with robots.
Within this dissertation, the scope of the study was focused on the design of DIY robotic
characters with actuated facial features. Others have focused on designing open source
social robots that emphasize body motion (e.g. Poppy). An open question is how these
two aspects can be united through a DIY approach within the same platform. Undoubt-
edly, combining both approaches will lead to new questions and challenges, both on the
technical side as well as on a human level. Within this work, the social behavior of the
robots was restricted to a superficial level. On the software side, it will be interesting to see
how social interaction algorithms can be made accessible to non-experts, so that a wide
audience of users can create deep social behaviors for their robotic creations.

The DIY toolkit approach that was used during this research project holds much potential
for a broad range of scientific disciplines. We found this paradigm especially valuable for
many reasons. To begin, the approach has a leverage effect: a lot more ground can be
covered by enabling motivated lead users to help. Related to this is that toolkits offer new
pathways of knowledge dissemination. It enabling the public to experiment with cutting
edge technology, and helps new developments to “escape” the lab. Finally, we found that
constraints imposed by the DIY mindset stimulated creativity not only in users but also
in ourselves, stimulating us to explore paths we otherwise would not have considered.

5.1 OPEN HARDWARE IN ROBOTICS RESEARCH

Implementing the open source hardware paradigm in robotics research involves a number
of ethical and practical considerations. From a moral standpoint, it stands to reason that
the results of government-funded research – not only publications, but also research plat-
forms – should be made publicly available. After all, the government, the employer of most
researchers, represents the public at large. Doing so fits within the scope of knowledge dis-
semination, one of the core tasks of a university. Furthermore, releasing the mechanical
designs involved in a publication as open source hardware can be likened to releasing an
experiment’s dataset, and serves to improve third-party verification of the research.

There are also practical reasons to release research hardware as an open source work. If
others can freely use and modify the work, they may also be inclined to improve upon it
and release their changes in a similar manner. This collaborative process has much poten-

237

5. CONCLUSION & FUTURE PERSPECTIVES

tial, though in our experience this can be hit-or-miss. The source files of the robot Ono,
the precursor to the Opsoro platform, have been made available for a number of years
now, though we failed to attract outside collaborators. A successful open source hardware
project requires more than merely making source files available. Documentation, training,
and community management also take considerable effort, for which there is not always
time in a research context. Other contributing factors are that hardware is naturally harder
to replicate than software, and that hardware created for research tends to be very specific,
resulting in a niche of potential users. More recently, we have had some success in attract-
ing outside collaborators for the Opsoro platform. This is mainly the result of addressing
community-related factors, including organizing workshops, improving documentation,
offering better software, and improving communication through social media. However,
researchers often face the challenge to find time for activities that do not directly lead to
publishable results. To go from an experimental setup to a viable open source hardware
project requires a significant efforts in development and documentation work.

In recent years, ready-to-use platforms (such as Nao, Gouaillier et al., 2008) have had a
large impact on HRI research. On the other hand, developing custom robotic platforms,
though costly, remains a common approach as well. However, both approaches are often
technology-driven and difficult to modify, and little exists in between these extremes. With
our work toward the Opsoro platform, we address this gap by combining elements of
off-the-shelf robots and custom-designed robots. Using the platform is easier, faster and
cheaper than building costly custom robots. And because the platform is open, users are
free to modify any and every aspect as they see fit, which is often the case in scientific
experiments. While the open source hardware could drive down the costs of robotics, we
find that many existing open source robotics platforms are still expensive primarily because
of component costs. This cost poses a barrier for replication and modification, hampering
the evolutionary process behind open source projects. Our work explicitly takes this into
account by relying on low-cost components and techniques. Instead of offering advanced
capabilities, we rely on a bottom-up approach, focused on offering a strong basis of basic
functionality for others to build upon.

The field of robotics is very challenging and reliant on many different disciplines. An ad-
vantage of the open source approach is that users are free to cherry-pick the best tools and
components in order to create a larger, functional device. Designers do not need to know
all the intricate details of every component, they just need to know how to “glue” every-
thing together. This is in itself a very powerful method for technology democratization.
The open source hardware movement is very young, but has already made a measurable
impact on society. Still, challenges remain; DIY researchers and practitioners stand much
to gain from better tools for collaboration, for documentation, for manufacturing, and
for design. It will be interesting to see what happens when the DIY world and the world
of academia move closer together, as they both have much to gain from each other.

238

5. CONCLUSION & FUTURE PERSPECTIVES

5.2 ENTREPRENEURSHIP AND VALORIZATION

Owing to our background in industrial design engineering, we have employed a practical
approach during this project, paying attention to aspects of industrialization, production,
and entrepreneurship. As a study within the industrial sciences, relevance to industry is
an important factor of the finality of this work. As discussed in the previous section, the
success of the Opsoro platform requires both research and development work. However,
pure development and implementation is often difficult in a university environment. To
enable the success of the platform, we are moving forward with Opsoro in the form of a
start-up company. Pioneering companies, such as Arduino and Ultimaker, have demon-
strated that it is possible be both open source and profitable. However, a key challenge
is to figure out a viable open source business model, which tends to be unique to each
individual case. Still, we remain convinced that the open source approach offers many
more opportunities for Opsoro than risks.

Over the course of this research project, we often went one step further than bare mini-
mum proof-of-concept prototypes, employing an integral product design philosophy that
is uncharacteristic for robotics research. More often than not, this worked out to save time
overall, as the extra time spent on a robust implementation was usually made up by the
fact that future developments could be implemented more quickly. For instance, the time
we spent to design a custom PCB was ultimately justified because of the increased reliabil-
ity and better scalability. It let us replicate prototypes faster, enabling larger experiments
and ultimately also robot sales.

The attention for production is also true for the 3D printed parts. They were designed and
printed on low-cost machines, even though our department has access to much better high-
end machines. Doing so, we could better optimize the designs for low-end 3D printers,
and ultimately enabled us to do a small “production” run on our eight DIY-grade machines
(fig. 5.3). In some respects, the Opsoro toolkit leans more toward product prototype
rather than research prototype, illustrating the point that this doctoral research project
originated in industrial design.

Entrepreneurship and valorization is also shown in our participation in outreach events,
where we communicate our work outside of the traditional academic channels. Ono was
presented at Maker Faire Rome in 2013, where it won the Maker of Merit award. We have
also been present at every edition of Maker Faire Mechelen since the first edition in 2014.
Since then, Ono and Opsoro have been appeared multiple times in Belgian popular media,
including national television, radio, and newspapers. Response to these outreach events,
feedback at conferences, sales of prototype robots to other universities made it clear that
the Opsoro platform has potential for commercialization as a spin-off company. In late
2015, we submitted a proposal for funding to valorize our research in the form of a start-
up company. Our proposal was granted, giving us the opportunity to make the necessary
preparations for a spin-off company.

Three potential markets for Opsoro were identified: (1) products for robot-assisted ther-
apy and care, (2) tools for human-robot interaction research, and (3) kits for STEAM

239

5. CONCLUSION & FUTURE PERSPECTIVES

Fig. 5.3 Opsoro components produced by a farm of eight low-cost 3D printers.

education. Through interviews and further market analysis it became apparent that the
first two markets were not (yet) feasible for us. Major issues in the therapeutic market
include device robustness, customer support, medical certification. The largest problem
with the research market is simply the limited size of this market, making it difficult to off-
set the costs of research, development, tooling and manufacture. Consequently, primary
focus for the Opsoro product will be on the hobbyist market, emphasizing STEAM learn-
ing. As of yet, this market is dominated by male-oriented products, such as the popular
LEGO Mindstorms toy series. Within this market, we are in a unique position because we
can offer a robot building kit that emphasizes aspects that are often overlooked by other
products in favor of cool, mechanical, technical, aggressive product aesthetics, which tend
to resonate much more with boys than with girls. With Opsoro as a basis, we can offer
a product that plays into aspects such as storytelling, social interaction, creature design,
and creative expression, thus creating a product that frames STEAM skills in the fantasy
world of Disney and Pixar.

This change in direction has repercussions for the development of the product. Most
importantly, the cost needs to be much lower in order to have a viable customer value
proposition. The price of a Mindstorms kit – roughly 400 € – seems to be the maximum
the market can bear. One proposed change is to eliminate textiles from the design of the kit
in favor of other materials. The production of a textile skin involves a lot of manual labor,
which is expensive. Furthermore, by offering the product as a kit, some of the assembly

240

5. CONCLUSION & FUTURE PERSPECTIVES

costs are eliminated. Design-wise, one of the challenges will be to bridge the differences
between mass-production manufacturing and DIY-centric manufacturing. We want to
design our components so that they can be manufactured at home by end-users, but can
also be produced efficiently in large volumes. We think it is important to emphasize
Maker & DIY skills as part of the design process. Instead of designing a system that is
restricted to components specific to that system, the system should be extensible. The
challenge here is to find different ways of combining craft techniques with standardized
toolkit components, allowing users to build their own embodiments with a high degree
of flexibility.

Creating a business around an open source product has deep implications for the product
and the company. Most importantly, an open source product should benefit the users,
allowing them to easily hack functionality outside of the scope of the original product.
On the other hand, there should clear advantages for buying an Opsoro kit versus making
or buying a knock-off copy. Here, multiple strategies can be used to create value. For
instance, a commercial Opsoro kit can be faster and of better quality than a home-made
kit. Still, one of the greatest assets of an open source company is its community, and this
community cannot be copied by third-party manufacturers. For this reason, the online
community platform will be one of the next big steps toward commercialization.

The platform approach ties in well with our broader vision on advances within technology.
Toolkits and platforms make it possible for end users to develop their own robotics appli-
cations, and this approach is completely different from the technology push approach of
many contemporary robotics companies. This approach offers a better way to disseminate
research knowledge and to enhance the impact of the work. The link between the research
community and makers and DIYers offers a great way to put research into practice. The
approach also offers advantages from a business perspective. If we succeed in fostering a
community around the online platform and the physical toolkit, we will be in a unique
position to identify new trends within HRI applications. As a first step, the spin-off com-
pany will offer an open-ended platform for DIY social robots. At a later stage, we can take
advantage of insights gained through the platform by offering more specialized products
and services.

As technology continues to permeate throughout all aspects of our daily lives, being able
to use technology as a creative medium becomes an increasingly important life skill. DIY
paradigms offer a promising solution to bridge the gap between the research world and
society. Social robotics is but one example of advances in technology, though it is currently
the subject of much attention and the technology will surely affect the shape of future
societies. Throughout the past four years, we have realized much in terms of democratizing
social robotics technology. With the prospect of starting a spin-off company2, it is safe to
say the future will hold many more exciting challenges and opportunities.

2More information on the spin-off company can be found on the website http://www.opsoro.be.

241

http://www.opsoro.be

5. CONCLUSION & FUTURE PERSPECTIVES

242

BIBLIOGRAPHY

Abel, B. van, L. Evers, P. Troxler, and R. Klaassen, eds. (2011). Open Design Now: Why
Design Cannot Remain Exclusive. Amsterdam: BIS publishers, p. 256.

Als, B. S., J. J. Jensen, and M. B. Skov (2005). “Comparison of think-aloud and construc-
tive interaction in usability testing with children”. In: Proceedings of the 2005 conference
on Interaction design and children. New York: ACM Press, pp. 9–16.

Altendorfer, R., N. Moore, H. Komsuoglu, M. Buehler, H. B. Brown, D. Mcmordie, U.
Saranli, R. Full, and D. E. Koditschek (2001). “RHex: A biologically inspired hexapod
runner”. In: Autonomous Robots 11.3, pp. 207–213.

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental
Disorders (DSM-5). 5th editio, p. 947.

Anderson, C. (2008). The Long Tail: How Endless Choice Is Creating Unlimited Demand.
Revised ed. Hyperion, p. 256.

– (2012). Makers: The new industrial revolution. Crown Business.
Araújo, A., D. Portugal, M. S. Couceiro, and R. P. Rocha (2014). “Integrating Arduino-

Based Educational Mobile Robots in ROS”. In: Journal of Intelligent and Robotic Systems:
Theory and Applications 77.2, pp. 281–298.

Baafi, E. (2014). “Standardization of Open Source Hardware”. In: Building Open Source
Hardware: DIY Manufacturing for Hackers and Makers.

Baird, G., E. Simonoff, A. Pickles, S. Chandler, T. Loucas, D. Meldrum, and T. Charman
(2006). “Prevalence of disorders of the autism spectrum in a population cohort of
children in South Thames: the Special Needs and Autism Project (SNAP)”. In: Lancet
368.9531, pp. 210–215.

Bangor, A., P. T. Kortum, and J. T. Miller (2008). “An Empirical Evaluation of the Sys-
tem Usability Scale”. In: International Journal of Human-Computer Interaction 24.6,
pp. 574–594.

Barragán, H. (2004). “Wiring: Prototyping physical interaction design.” PhD thesis.
Interaction Design Institute Ivrea.

Bartneck, C. and J. Forlizzi (2004). “A design-centred framework for social human-robot
interaction”. In: Proceedings of the 13th IEEE International Workshop on Robot and Hu-
man Interactive Communication. IEEE, pp. 591–594.

Bartneck, C., J. Reichenbach, and A. Breemen (2004). “In your face, robot! The influ-
ence of a character’s embodiment on how users perceive its emotional expressions”. In:
Proceedings of the 4th Design and Emotion Conference. Ankara.

243

BIBLIOGRAPHY

Bdeir, A. (2011). “Electronics as Material : littleBits”. In: Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction, pp. 3–6.

Beck, K., M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, and R. Jeffries (2001). Manifesto for agile software
development.

Beer, R. D., R. D. Quinn, H. J. Chiel, and R. E. Ritzmann (1997). “Biologically Inspired
Approaches to Robotics”. In: Communications of the ACM 40.3, pp. 31–38.

Bell, S. (2010). “Project-based learning for the 21st century: Skills for the future”. In: The
Clearing House: A Journal of Educational Strategies, Issues and Ideas 83.2, pp. 39–43.

Benitti, F. B. V. (2012). “Exploring the educational potential of robotics in schools: A
systematic review”. In: Computers & Education 58.3, pp. 978–988.

Bequette, J. W. and M. B. Bequette (2012). “A Place for ART and DESIGN Education
in the STEM Conversation”. In: Art Education March, pp. 40–47.

Biggs, J. (2015). Makerbot’s Saddest Hour. url: https://techcrunch.com/2015/04/
22/makerbots-saddest-hour/.

Birkmeyer, P., K. Peterson, and R. S. Fearing (2009). “DASH: A dynamic 16g hexapedal
robot”. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2683–2689.

Blank, D., D. Kumar, L. Meeden, and H. Yanco (2003). “Pyro: A python-based versatile
programming environment for teaching robotics”. In: ACM Journal of Educational
Resources in Computing 3.4, pp. 1–27.

Blikstein, P. (2013a). “Digital Fabrication and ”Making” in Education: The Democra-
tization of Invention”. In: FabLabs: Of Machines, Makers and Inventors. Ed. by J.
Walter-Herrmann and C. Büching. Bielefeld: Transcript-Verlag.

Blikstein, P. (2013b). “Gears of our childhood: constructionist toolkits, robotics, and
physical computing, past and future”. In: Proceedings of the 12th International Conference
on Interaction Design and Children, pp. 173–182.

Bouchard, D., V. St, S. Daniels, and V. St (2015). “Tiles that Talk : Tangible Templates
for Networked Objects”. In: Proceedings of the 9th International Conference on Tangible,
Embedded and Embodied Interaction, pp. 197–200.

Brandt, A. M. and M. B. Colton (2008). “Toys in the classroom: LEGO MindStorms
as an educational haptics platform”. In: ¨Proceedings of the 2008 Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems. IEEE, pp. 389–395.

Breazeal, C. (2003a). Designing sociable robots. Vol. 45. MIT Press, p. 1774.
– (2003b). “Emotion and sociable humanoid robots”. In: International Journal of Human

Computer Studies 59.1-2, pp. 119–155.
– (2003c). “Toward sociable robots”. In: Robotics and Autonomous Systems 42.3-4, pp. 167–

175.
Brooke, J. (1996). “SUS-A quick and dirty usability scale”. In: Usability evaluation in

industry. Ed. by P. W. Jordan, B. Thomas, B. Weerdmeester, and I. L. McClelland.
London: CRC Press. Chap. 21, pp. 189–194.

Brown, T. (2008). “Design thinking”. In: Harvard Business Review 86.6, pp. 84–92.
Buchanan, R. (1992). “Wicked problems in design thinking”. In: Design Issues 8.2, pp. 5–

21.

244

https://techcrunch.com/2015/04/22/makerbots-saddest-hour/
https://techcrunch.com/2015/04/22/makerbots-saddest-hour/

BIBLIOGRAPHY

Buxton, B. (2007). Sketching User Experiences: Getting the Design Right and the Right
Design: Getting the Design Right and the Right Design. Amsterdam: Morgan Kaufmann,
p. 443.

Cabibihan, J.-J., H. Javed, M. J. Ang, and S. M. Aljunied (2013). “Why robots? A survey
on the roles and benefits of social robots in the therapy of children with autism”. In:
International Journal of Social Robotics 5.4, pp. 593–618.

Cañamero, L. D. and J. Fredslund (2000). “How Does It Feel? Emotional Interaction with
a Humanoid LEGO Robot”. In: Proceedings of the 2000 Association for the Advancement
of Artificial Intelligence Fall Symposium, pp. 23–28.

Cao, H. L., G. Van De Perre, R. Simut, C. Pop, A. Peca, D. Lefeber, and B. Vanderborght
(2014). “Enhancing My Keepon robot: A simple and low-cost solution for robot plat-
form in Human-Robot Interaction studies”. In: Proceedings of the The 23rd IEEE Inter-
national Symposium on Robot and Human Interactive Communication. Edinburgh, UK,
pp. 555–560.

Capraro, R. M., M. M. Capraro, and J. R. Morgan (2013). STEM Project-Based Learning.
Rotterdam: Sense Publishers.

Carbajal, J. P., D. Assaf, and E. Benker (2011). “Promoting scientific thinking with robots”.
In: Proceedings of the 2nd International Conference on Robotics in Education, pp. 59–61.

Ceruzzi, P. E. (2003). A History of Modern Computing. Second edi. MIT Press, p. 459.
Chaiklin, S. (2003). “The Zone of Proximal Development in Vygotsky’s Analysis of Learn-

ing and Instruction”. In: Vygotsky’s Educational Theory in Cultural Context. Ed. by
A. Kozulin, B. Gindis, V. S. Ageyev, and S. M. Miller. Cambridge University Press,
pp. 39–64.

Chung, J., K. Min, and W. Lee (2013). “CUBEMENT: Democratizing Mechanical
Movement Design”. In: Proceedings of the 8th International Conference on Tangible Em-
bedded and Embodied Interaction, pp. 81–84.

Church, C. W. (1967). “Wicked Problems”. In: Management Science 14.4.
Church, W., T. Ford, N. Perova, and C. Rogers (2010). “Physics With Robotics-Using

LEGO MINDSTORMS In High School Education.” In: Proceedings of the 2010 Asso-
ciation for the Advancement of Artificial Intelligence Spring Symposium.

Cole, J. (1998). About Face. Cambridge, Massachusetts: MIT Press, p. 237.
Conradie, P. D., C. Vandevelde, J. De Ville, and J. Saldien (2016). “Prototyping Tangible

User Interfaces: Case Study of the Collaboration between Academia and Industry”. In:
International Journal of Engineering Education 32.2, pp. 1–12.

Dabbish, L., C. Stuart, J. Tsay, and J. Herbsleb (2012). “Social Coding in GitHub: Trans-
parency and Collaboration in an Open Software Repository”. In: Proceedings of the
2012 ACM Conference on Computer Supported Cooperative Work, pp. 1277–1286.

Dautenhahn, K., C. L. Nehaniv, M. L. Walters, B. Robins, H. Kose-Bagci, N. A. Mirza,
and M. Blow (2009). “KASPAR – a minimally expressive humanoid robot for human–
robot interaction research”. In: Applied Bionics and Biomechanics 6.3-4, pp. 369–397.

De Beir, A., H.-l. Cao, P. Gomez, G. Van De Perre, and B. Vanderborght (2015). “En-
hancing Nao Expression of Emotions Using Pluggable Eyebrows”. In: Proceedings of the
1st International Conference on Social Robots in Therapy and Education. Almere, pp. 36–
38.

245

BIBLIOGRAPHY

De Beir, A. and B. Vanderborght (2016). “Evolutionary Method for Robot Morphology :
Case Study of Social Robot Probo”. In: Proceedings of the 11th ACM/IEEE International
Conference on Human Robot Interation. Christchurch, New Zealand, pp. 609–610.

Design Council (2005). A Study of the Design Process. Tech. rep., p. 144.
Desmet, P., M. Vastenburg, D. Van Bel, and N. Romero (2012). “Pick-A-Mood - Devel-

opment and Application of a Pictorial Mood Reporting Instrument”. In: Proceedings of
the 8th International Design and Emotion Conference.

Dietz, P. H., G. Reyes, and D. Kim (2014). “The PumpSpark fountain development kit”.
In: Proceedings of the 2014 International Conference on Designing Interactive Systems. New
York, New York, USA: ACM Press, pp. 259–266.

Disalvo, C. F., F. Gemperle, J. Forlizzi, and S. Kiesler (2002). “All Robots Are Not Created
Equal: The Design and Perception of Humanoid Robot Heads”. In: Proceedings of the
4th conference on designing interactive systems: processes, practices, methods, and techniques,
pp. 321–326.

Doroftei, I., F. Adascalitei, D. Lefeber, B. Vanderborght, and I. A. Doroftei (2016). “Facial
expressions recognition with an emotion expressive robotic head”. In: Proceedings of the
7th International Conference on Advanced Concepts in Mechanical Engineering, p. 147.

Dorst, K. (2010). “The Nature of Design Thinking”. In: Proceedings of the 8th Design
Thinking Research Symposium, pp. 131–139.

Dougherty, D. (2008). “The Joy of Making”. In: Proceedings of the 2nd IEEE International
Conference on Digital Game and Intelligent Toy Enhanced Learning. IEEE, pp. 8–12.

– (2012). “The maker movement”. In: Innovations 7.3, pp. 11–14.
Draper, S. W. (1999). “Analysing fun as a candidate software requirement”. In: Personal

Technologies 3.3, pp. 117–122.
Duffy, B. (2003). “Anthropomorphism and the social robot”. In: Robotics and autonomous

systems 42.3-4, pp. 177–190.
Eastham, B. (2015). “Panasonic and the OpenDOF Project : Open-source vision in a

large company”. In: Crossroads 22.2, pp. 58–61.
Ekman, P. (1992). “Are there basic emotions?” In: Psychological Review 99.3, pp. 550–553.
– (1999). “Basic emotions”. In: Handbook of cognition and emotion. Ed. by T. Dalgleish

and M. Power. Vol. 98. 1992. New York: Wiley, pp. 45–60.
Ekman, P., W. Friesen, and J. Hager (1978). Facial Action Coding System: A technique for

the measurement of facial action. Consulting Psychologists Press.
EU (2000). Presidency conclusions - Lisbon European Council 23 and 24 march 2000. url:

http://www.consilium.europa.eu/en/uedocs/cms_data/docs/pressdata/
en/ec/00100-r1.en0.htm.

– (2010). Europe 2020: A strategy for smart, sustainable and inclusive growth. Tech. rep.
Brussels.

Feisel, L. D. and A. J. Rosa (2005). “The role of the laboratory in staff development.” In:
Journal of Engineering Education 94.1, pp. 121–130.

Fischer, G. (1998). “Beyond ”Couch Potatoes”: From Consumers to Designers and Active
Contributors”. In: Proceedings of the 3rd Asia Pacific Conference on Computer Human
Interaction, pp. 1–30.

Fisher, R. (1922). “On the interpretation of χ2 from contingency tables, and the calcula-
tion of P”. In: Journal of the Royal Statistical Society 85.1, pp. 87–94.

246

http://www.consilium.europa.eu/en/uedocs/cms_data/docs/pressdata/en/ec/00100-r1.en0.htm
http://www.consilium.europa.eu/en/uedocs/cms_data/docs/pressdata/en/ec/00100-r1.en0.htm

BIBLIOGRAPHY

Fong, T., I. Nourbakhsh, and K. Dautenhahn (2003). “A survey of socially interactive
robots”. In: Robotics and Autonomous Systems 42.3-4, pp. 143–166.

Fonteyn, M., B. Kuipers, and S. Grobe (1993). “A description of think aloud method and
protocol analysis”. In: Qualitative Health Research 3.4, pp. 430–441.

Fornari, D. and S. Cangiano (2015). “Open Sourcing Social Robotics: Humanoid Ar-
tifacts from the Viewpoint of Designers”. In: Social Robots from a Human Perspective.
Ed. by J. Vincent, S. Taipale, B. Sapio, G. Lugano, and L. Fortunati, pp. 98–102.

Forsslund, J., M. C. Yip, and E.-L. Sallnas (2015). “WoodenHaptics : A Starting Kit for
Crafting Force-Reflecting Spatial Haptic Devices”. In: Proceedings of the 9th Interna-
tional Conference on Tangible, Embedded and Embodied Interaction, pp. 133–140.

Fortus, D. and J. Krajcik (2005). “Design‐based science and real‐world problem‐solving”.
In: International Journal of Science Education 27.7, pp. 855–879.

Gates, B. (2007). “A robot in every home.” In: Scientific American 296.1, pp. 58–65.
Gershenfeld, N. (2012). “How to Make Almost Anything: The Digital Fabrication Revo-

lution”. In: Foreign Affairs 91.6, pp. 43–57.
Gershenfeld, N. A. (2005). Fab: the coming revolution on your desktop - from personal

computers to personal fabrication. Basic Books.
Gibb, A. (2014). Building Open Source Hardware: DIY Manufacturing for Hackers and

Makers. Addison-Wesley Professional, p. 368.
Goetz, J., S. Kiesler, and A. Powers (2003). “Matching robot appearance and behavior to

tasks to improve human-robot cooperation”. In: Proceedings of the 2003 IEEE Interna-
tional Workshop on Robot and Human Interactive Communication, pp. 55–60.

Goldstein, C. (1998). Do It Yourself: Home Improvement in 20th-Century America. Ed. by
S. E. Stemen. First edit. New York: Princeton Architectural Press, p. 120.

Gonzalez-Gomez, J., A. Valero-Gomez, A. Prieto-Moreno, and M. Abderrahim (2012). “A
New Open Source 3D-Printable Mobile Robotic Platform for Education”. In: Advances
in Autonomous Mini Robots. Ed. by U. Rückert, S. Joaquin, and W. Felix. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 49–62.

Goris, K., J. Saldien, B. Vanderborght, and D. Lefeber (2011). “How to achieve the hug-
gable behavior of the social robot Probo? A reflection on the actuators”. In: Mechatronics
21.3, pp. 490–500.

Gouaillier, D., V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B. Marnier, J.
Serre, and B. Maisonnier (2008). “The NAO humanoid: a combination of performance
and affordability”. In: Proceedings of the 2009 IEEE International Conference on Robotics
and Automation, pp. 1–10.

Goud, R., S. P. Krishnamoorthy, and V. Kapila (2015). “A Blocks-based Visual Envi-
ronment to Teach Robot-Programming to K-12 Students”. In: 122nd ASEE Annual
Conference & Exposition, pp. 1–12.

Grassé, P.-P. (1959). “La reconstruction du nid et les coordinations interindividuelles
chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs”. In: Insectes Sociaux 6.1,
pp. 41–80.

Guizzo, E. and E. Ackerman (2012). “The rise of the robot worker”. In: IEEE Spectrum
49.10, pp. 34–41.

Guizzo, E. and T. Deyle (2012). “Robotics trends for 2012”. In: IEEE Robotics and
Automation Magazine 19.1, pp. 119–123.

247

BIBLIOGRAPHY

Ha, I., Y. Tamura, H. Asama, J. Han, and D. W. Hong (2011). “Development of open
humanoid platform DARwIn-OP”. In: Proceedings of the 2011 Annual Conference of
the Society of Instrument and Control Engineers, pp. 2178–2181.

Hake, R. (1998). “Interactive-engagement versus traditional methods: A six-thousand-
student survey of mechanics test data for introductory physics courses”. In: American
journal of Physics 66.1, pp. 64–74.

Haring, K. (2003). “The ”Freer Men” of Ham Radio”. In: Technology and Culture 44.4,
pp. 734–761.

Hartmann, B., S. Doorley, and S. R. Klemmer (2008). “Hacking, mashing, gluing: Un-
derstanding opportunistic design”. In: IEEE Pervasive Computing 7.3, pp. 46–54.

Hartmann, S., H. Wiesner, and A. Wiesner-Steiner (2007). “Robotics and gender: The
use of robotics for the empowerment of girls in the classroom”. In: Gender Designs IT,
pp. 175–188.

Hassenzahl, M. (2003). “The Thing and I: Understanding the Relationship Between User
and Product”. In: Funology: From Usability to Enjoyment. Ed. by M. A. Blythe, K.
Overbeeke, A. F. Monk, and P. C. Wright. Springer Netherlands, pp. 31–42.

Hassenzahl, M., M. Burmester, and F. Koller (2003). “AttrakDiff: Ein Fragebogen zur
Messung wahrgenommener hedonischer und pragmatischer Qualität”. In: Mensch &
Computer. Ed. by G. Szwillus and J. Ziegler. Vol. 57. Berichte des German Chapter of
the ACM. Wiesbaden: Vieweg+Teubner Verlag, pp. 187–196.

Hatch, M. (2013). The Maker Movement Manifesto: Rules for Innovation in the New World
of Crafters, Hackers, and Tinkerers: McGraw-Hill Professional, p. 256.

Herrmann, K. H., C. Gärtner, D. Güllmar, M. Krämer, and J. R. Reichenbach (2014).
“3D printing of MRI compatible components: Why every MRI research group should
have a low-budget 3D printer”. In: Medical Engineering and Physics 36.10, pp. 1373–
1380.

Hippel, E. von (2001). “PERSPECTIVE: User toolkits for innovation”. In: Journal of
Product Innovation Management 18.4, pp. 247–257.

Hippel, E. von and R. Katz (2002). “Shifting Innovation to Users via Toolkits”. In:
Management Science 48.7, pp. 821–833.

Hippel, E. von and G. von Krogh (2003). “Open Source Software and the “Private-
Collective” Innovation Model: Issues for Organization Science”. In: Organization Sci-
ence 14.2, pp. 209–223.

Hoffman, G. (2012). “Dumb robots, smart phones: A case study of music listening com-
panionship”. In: Proceedings of the 2012 IEEE International Workshop on Robot and
Human Interactive Communication, pp. 358–363.

Honey, M. and D. E. Kanter (2013). Design, Make, Play: Growing the next generation of
STEM innovators. Routledge, p. 256.

Ierusalimschy, R., L. H. de Figueiredo, and W. Celes (2007). “The Evolution of Lua”. In:
Proceedings of the 3rd ACM SIGPLAN conference on History of programming languages.
San Diego, California: ACM, pp. 2–1–2–26.

IFR (2016a). Executive Summary of World Robotics 2016 Industrial Robots. Tech. rep.
International Federation of Robotics, p. 8.

– (2016b). Executive Summary of World Robotics 2016 Service Robots. Tech. rep. Interna-
tional Federation of Robotics, p. 8.

248

BIBLIOGRAPHY

Irwin, J. L., D. E. Oppliger, J. M. Pearce, and G. Anzalone (2015). “Evaluation of RepRap
3D Printer Workshops in K-12 STEM”. In: Proceedings of the 2015 ASEE Annual
Conference and Exposition, pp. 26.696.1–26.696.18.

Ishii, H. (2008). “Tangible bits: beyond pixels”. In: Proceedings of the 2nd international
conference on Tangible and Embedded Intreaction, pp. xv–xxv.

Ishii, H. and B. Ullmer (1997). “Tangible Bits: Towards Seamless Interfaces between
People , Bits and Atoms”. In: Proceedings of the ACM SIGCHI Conference on Human
factors in computing systems, pp. 234–241.

ISO (1998). ISO 9241-11: Ergonomic requirements for office work with visual display ter-
minals (VDTs): guidance on usability. Geneva.

– (2010). ISO 9241-210:2010: Human-centred design for interactive systems. Geneva.
– (2012). ISO 8373:2012: Robots and robotic devices - Vocabulary. Geneva.
Johnson, J. (2003). “Children, robotics, and education”. In: Artificial Life and Robotics

7.1-2, pp. 16–21.
Johnston, O. and F. Thomas (1995). The Illusion of Life: Disney Animation. 2nd editio.

New York: Hyperion, p. 576.
Jones, R., P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer (2011).

“RepRap – the replicating rapid prototyper”. In: Robotica 29.Special Issue 01, pp. 177–
191.

Jordan, P. W. (2000). Designing pleasurable products: an introduction to the new human
factors. CRC Press, p. 224.

Juang, H. S. and K. Y. Lurrr (2013). “Design and control of a two-wheel self-balancing
robot using the arduino microcontroller board”. In: Proceedings of the IEEE Interna-
tional Conference on Control and Automation, pp. 634–639.

Kahneman, D. (2013). Thinking Fast and Slow. Farrar, Straus and Giroux, p. 499.
Kaya, N. and H. H. Epps (2004). “Relationship between color and emotion: a study of

college students”. In: College Student Journal 38.3, pp. 396–405.
Kedzierski, J., R. Muszyński, C. Zoll, A. Oleksy, and M. Frontkiewicz (2013). “EMYS-

Emotive Head of a Social Robot”. In: International Journal of Social Robotics 5.2,
pp. 237–249.

Kemp, J. and T. van Gelderen (1996). “Co-discovery exploration: an informal method for
the iterative design of consumer products”. In: Usability Evaluation In Industry. Ed. by
P. W. Jordan, B. Thomas, I. L. McClelland, and B. Weerdmeester. CRC Press. Chap. 16,
p. 252.

Kesteren, I. E. H. van, M. M. Bekker, A. P. O. S. Vermeeren, and P. A. Lloyd (2003).
“Assessing usability evaluation methods on their effectiveness to elicit verbal comments
from children subjects”. In: Proceedings of the 2003 Conference on Interaction Design and
Children. New York: ACM Press, p. 41.

Kidd, C. D., W. Taggart, and S. Turkle (2006). “A sociable robot to encourage social
interaction among the elderly”. In: Proceedings of the 2006 IEEE International Conference
on Robotics and Automation, pp. 3972–3976.

Kipp, A. and S. Schneider (2016). “Applied Social Robotics – Building Interactive Robots
with LEGO Mindstorms”. In: Robotics in Education: Research and Practices for Robotics
in STEM Education. Ed. by M. Merdan, W. Lepuschitz, G. Koppensteiner, and R.
Balogh. Springer International Publishing, pp. 29–40.

249

BIBLIOGRAPHY

Koenig, N. and A. Howard (2004). “Design and use paradigms for Gazebo, an open-
source multi-robot simulator”. In: Proceedings of the 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Sendai, Japan, pp. 2149–2154.

Kolko, J. (2010). “Abductive Thinking and Sensemaking: The Drivers of Design Synthe-
sis”. In: Design Issues 26.1, pp. 15–28.

Kolodner, J. and P. Camp (2003). “Problem-based learning meets case-based reasoning
in the middle-school science classroom: Putting learning by design (tm) into practice”.
In: Journal of the Learning Sciences 12.4.

Kozima, H., M. P. Michalowski, and C. Nakagawa (2009). “Keepon: A Playful Robot for
Research, Therapy, and Entertainment”. In: International Journal of Social Robotics 1.1,
pp. 3–18.

Kozima, H., C. Nakagawa, and Y. Yasuda (2005). “Interactive robots for communication-
care: A case-study in autism therapy”. In: Proceedings of the 2005 IEEE International
Workshop on Robot and Human Interactive Communication, pp. 341–346.

Krishna, G. (2015). The Best Interface Is No Interface: The simple path to brilliant technology.
Ed. by M. Nolan, N. Peterson, B. Lindstrom, and D. Meiss. New Riders, p. 256.

Kujala, S., V. Roto, K. Vaananen-Vainio-Mattila, E. Karapanos, and A. Sinnela (2011).
“UX Curve: A method for evaluating long-term user experience”. In: Interacting with
Computers 23.5, pp. 473–483.

Kuznetsov, S. and E. Paulos (2010). “Rise of the expert amateur: DIY projects, commu-
nities, and cultures”. In: Proceedings of the 6th Nordic Conference on Human-Computer
Interaction, pp. 295–304.

Lapeyre, M., P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Falher, and P.-y.
Oudeyer (2014). “Poppy Project: Open-Source Fabrication of 3D Printed Humanoid
Robot for Science, Education and Art”. In: Proceedings of the Digital Intelligence Con-
ference 2014. Nantes, p. 6.

Lee, K. M., Y. Jung, J. Kim, and S. R. Kim (2006). “Are physically embodied social agents
better than disembodied social agents?: The effects of physical embodiment, tactile in-
teraction, and people’s loneliness in human-robot interaction”. In: International Journal
of Human Computer Studies 64.10, pp. 962–973.

Leite, I., C. Martinho, and A. Paiva (2013). “Social Robots for Long-Term Interaction: A
Survey”. In: International Journal of Social Robotics 5.2, pp. 291–308.

Leite, I., A. A. Pereira, C. Martinho, and A. Paiva (2008). “Are emotional robots more
fun to play with?” In: Proceedings of the 17th IEEE International Symposium on Robot
and Human Interactive Communication, pp. 77–82.

Lenhart, A. and M. Madden (2005). Teen Content Creators and Consumers. Tech. rep.,
p. 29.

Li, D., P. L. P. Rau, and Y. Li (2010). “A cross-cultural study: Effect of robot appearance
and task”. In: International Journal of Social Robotics 2.2, pp. 175–186.

Lipson, H. and M. Kurman (2013). Fabricated: The New World of 3D Printing. Wiley.
Ma, R. R., L. U. Odhner, and A. M. Dollar (2013). “A modular, open-source 3D printed

underactuated hand”. In: Proceedings of the 2013 IEEE International Conference on
Robotics and Automation, pp. 2737–2743.

MacDorman, K. F. (2005). “Androids as an experimental apparatus: Why is there an
uncanny valley and can we exploit it”. In: Proceedings of the 2005 Cognitive Science
Society - Workshop: Toward Social Mechanisms of Android Science, pp. 106–118.

250

BIBLIOGRAPHY

Maeda, J. (2013). “STEM + Art = STEAM”. In: The STEAM Journal 1.1, pp. 1–3.
Martin, L. (2015). “The Promise of the Maker Movement for Education”. In: Journal of

Pre-College Engineering Education Research 5.1, pp. 1–30.
Maslow, A. (1943). “A theory of human motivation”. In: Psychological Review 50, pp. 370–

396.
Mason, P. (2016). BrewDog’s open-source revolution is at the vanguard of postcapitalism.

url: https://www.theguardian.com/commentisfree/2016/feb/29/brewdogs-
open-source-revolution-is-at-the-vanguard-of-postcapitalism (visited
on 12/05/2016).

Massie, K. and S. D. Perry (2002). “Hugo Gernsback and radio magazines: An influential
intersection in broadcast history”. In: Journal of Radio Studies 9.2, pp. 264–281.

Mataric, M. J., N. P. Koenig, and D. Feil-Seifer (2007). “Materials for Enabling Hands-
On Robotics and STEM Education.” In: Proceedings of the 2007 Association for the
Advancement of Artificial Intelligence Spring Symposium, pp. 99–102.

McPherson, S. (2014). “Strategies and Resources for Preparing Teachers for STEM Teach-
ing and Learning”. In: Proceedings of the 2014 International Conference of the Society for
Information Technology & Teacher Education, pp. 1927–1939.

Megaro, V., B. Thomaszewski, and M. Nitti (2015). “Interactive design of 3D-printable
robotic creatures”. In: ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH
Asia 2015 34.6.

Mehrabian, A. (1995). “Framework for a comprehensive description and measurement
of emotional states.” In: Genetic, social, and general psychology monographs 121.1978,
pp. 339–361.

Mehrabian, A. (2008). “Communication without words.” In: Communication Theory. Ed.
by C. D. Mortensen. Second edi. New Brunswick: Transaction Publishers, pp. 193–
200.

Mellis, D. A. (2014). “Personal Manufacturing in the Digital Age”. In: Building Open
Source Hardware: DIY Manufacturing for Hackers and Makers, pp. 149–160.

Mellis, D. A. and L. Buechley (2014). “Do-it-yourself Cellphones: An Investigation into
the Possibilities and Limits of High-tech Diy”. In: Proceedings of the 2014 SIGCHI
Conference on Human Factors in Computing Systems, pp. 1723–1732.

Mellis, D. A., T. Igoe, M. Banzi, and D. Cuartielles (2007). “Arduino: An open electronic
prototyping platform”. In: Proceedings of the 2007 SIGCHI Conference on Human Factors
in Computing Systems. San Jose, USA: ACM Press.

Mellis, D. A., S. Jacoby, L. Buechley, H. Perner-wilson, and J. Qi (2013). “Microcon-
trollers as material: crafting circuits with paper, conductive ink, electronic components,
and an untoolkit”. In: Proceedings of the 7th International Conference on Tangible, Em-
bedded and Embodied Interaction, pp. 83–90.

Mellis, D. and L. Buechley (2012). “Collaboration in open-source hardware: third-party
variations on the arduino duemilanove”. In: Proceedings of the 2012 ACM Conference
on Computer Supported Cooperative Work, p. 1175.

Metta, G., G. Sandini, D. Vernon, L. Natale, and F. Nori (2008). “The iCub humanoid
robot: an open platform for research in embodied cognition.” In: Proceedings of the 8th

Workshop on Performance Metrics for Intelligent Systems. New York, New York, USA:
ACM Press, p. 50.

251

https://www.theguardian.com/commentisfree/2016/feb/29/brewdogs-open-source-revolution-is-at-the-vanguard-of-postcapitalism
https://www.theguardian.com/commentisfree/2016/feb/29/brewdogs-open-source-revolution-is-at-the-vanguard-of-postcapitalism

BIBLIOGRAPHY

Michalowski, M., K. Machulis, M. Gasson, and T. Hersan (2013). Hack ”My Keepon”
With an Arduino Brain. url: http://makezine.com/projects/make- 35/my-
franken-keepon/.

Millner, A. and E. Baafi (2011). “Modkit: blending and extending approachable platforms
for creating computer programs and interactive objects”. In: Proceedings of the 10th

International Conference on Interaction Design and Children, pp. 250–253.
Milto, E., C. Rogers, and M. Portsmore (2002). “Gender differences in confidence levels,

group interactions, and feelings about competition in an introductory robotics course”.
In: Proceedings of the 32nd Annual Frontiers in Education Conference. Vol. 2. IEEE,
F4C–7–F4C–14.

Mitchell, G. (2012). “The Raspberry Pi single-board computer will revolutionise com-
puter science teaching”. In: Engineering & Technology 7, p. 26.

Modi, K., J. Schoenberg, and K. Salmond (2012). Generation STEM: What Girls Say
about Science, Technology, Engineering, and Math. Tech. rep., pp. 1–44.

Mondada, F., M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C.
Zufferey, D. Floreano, and A. Martinoli (2009). “The e-puck, a Robot Designed for
Education in Engineering”. In: Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions. Vol. 1. 1, pp. 59–65.

Mori, M. (1970). “The Uncanny Valley”. In: Energy 7.4, pp. 33–35.
Mostert-Van Der Sar, M., I. Mulder, L. Remijn, and P. Troxler (2013). “FabLabs in de-

sign education”. In: Proceedings of the 15th International Conference on Engineering and
Product Design Education. September, pp. 629–634.

Mueller, S. and P. Baudisch (2015). “Laser Cutters: A New Class of 2D Output Devices”.
In: ACM Interactions 22.5, pp. 72–74.

Nakamura, J. and M. Csikszentmihalyi (2002). “The Concept of Flow”. In: The Handbook
of Positive Psychology. Oxford University Press, pp. 89–92.

Naylor, G. (1980). The Arts and Crafts Movement: A Study of Its Sources, Ideals, and Influence
on Design Theory. MIT Press, p. 208.

Nimer, J. and B. Lundahl (2007). “Animal-assisted therapy: A meta-analysis”. In: Anthro-
zoos 20.3, pp. 225–238.

Nishio, S., H. Ishiguro, and N. Hagita (2007). “Geminoid: Teleoperated android of an
existing person”. In: Humanoid Robots: New Developments. Ed. by A. C. d. P. Filho.
June. I-Tech Education and Publishing, pp. 343–352.

Nof, S. Y., ed. (1999). Handbook of Industrial Robots. Second edi. John Wiley & Sons.
Norman, D. A. (2002). “Emotion & design: attractive things work better”. In: Interactions

9.4, pp. 36–42.
– (2009). “Systems Thinking: A Product Is More Than the Product”. In: Interactions

16.5, pp. 52–54.
– (2013). The Design of Everyday Things. Revised an. Vol. 16. 4. Basic Books, p. 272.
Norton, M., D. Mochon, and D. Ariely (2012). “The IKEA effect: When labor leads to

love”. In: Journal of Consumer Psychology 22.3, pp. 453–460.
Novikova, J. and L. Watts (2015). “Towards Artificial Emotions to Assist Social Coordi-

nation in HRI”. In: International Journal of Social Robotics 7.1, pp. 77–88.
Ogawa, K., S. Nishio, T. Minato, and H. Ishiguro (2012). “Android Robots as Tele-

presence Media”. In: Biomedical Engineering and Cognitive Neuroscience for Healthcare:

252

http://makezine.com/projects/make-35/my-franken-keepon/
http://makezine.com/projects/make-35/my-franken-keepon/

BIBLIOGRAPHY

Interdisciplinary Applications. Ed. by J. Wu. Medical Information Science Reference,
pp. 54–63.

Oh, H. and M. D. Gross (2015). “Cube-in: A Learning Kit for Physical Computing
Basics”. In: Proceedings of the 9th International Conference on Tangible, Embedded, and
Embodied Interaction. Stanford, pp. 383–386.

Osborne, R. B., A. J. Thomas, and J. R. N. Forbes (2010). “Teaching with robots: a
service-learning approach to mentor training”. In: Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, pp. 172–176.

Oung, R. and R. D’Andrea (2011). “The Distributed Flight Array”. In: Mechatronics 21.6,
pp. 908–917.

Pacheco, M., R. Fogh, H. H. Lund, and D. J. Christensen (2015). “Fable II: Design of
a modular robot for creative learning”. In: Proceedings of the 2015 IEEE International
Conference on Robotics and Automation, pp. 6134–6139.

Pack, D. and R. Avanzato (2004). “Fire-fighting mobile robotics and interdisciplinary
design-comparative perspectives”. In: IEEE Transactions on Education 47.3, pp. 369–
376.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
– (1986). Constructionism: A New Opportunity for Elementary Science Education. Tech. rep.

Massachusetts Institute of Technology, Media Laboratory, Epistemology and Learning
Group.

Papert, S. and I. Harel (1991). “Situating Constructionism”. In: Constructionism. Ablex
Publishing, pp. 1–12.

Paradiso, J. A., J. Heidemann, and T. G. Zimmerman (2008). “Hacking Is Pervasive”. In:
IEEE Pervasive Computing 7.3, pp. 13–15.

Paulos, E., R. Honicky, and B. Hooker (2009). “Citizen Science: Enabling Participatory
Urbanism”. In: Handbook of Research on Urban Informatics: The Practice and Promise of
the Real-Time City, pp. 414–436.

Pearce, J. M. (2012). “Building Research Equipment with Free, Open-Source Hardware”.
In: Science 337.6100, pp. 1303–1304.

Pearce, J. M. (2013). Open-Source Lab: How to Build Your Own Hardware and Reduce
Research Costs. Elsevier, p. 240.

Pearson, G. and A. T. Young, eds. (2002). Technically Speaking: Why All Americans Need
to Know More About Technology. National Academies Press, p. 170.

Peterson, T. F. (2011). Nightwork: A History of Hacks and Pranks at MIT, p. 232.
Pettis, B. (2012). Let’s try that again. url: http : / / www . makerbot . com / media -

center/2012/09/24/lets-try-that-again.
Phillips, R., S. Baurley, and S. Silve (2014). “Citizen Science and Open Design: Workshop

Findings”. In: Design Issues 30.4, pp. 52–66.
Piro, J. (2010). “Going From STEM to STEAM”. In: Education Week 29.24, pp. 28–29.
Plutchik, R. (1980). “A general psychoevolutionary theory of emotion”. In: Emotion:

Theory, Research, and Experience 1.3, pp. 3–33.
Pop, C. A., R. Simut, S. Pintea, J. Saldien, A. Rusu, D. David, J. Vanderfaeillie, D. Lefeber,

and B. Vanderborght (2013). “Can the Social Robot Probo Help Children With Autism
To Identify Situation-Based Emotions? a Series of Single Case Experiments”. In: Inter-
national Journal of Humanoid Robotics 10.3, p. 1350025.

253

http://www.makerbot.com/media-center/2012/09/24/lets-try-that-again
http://www.makerbot.com/media-center/2012/09/24/lets-try-that-again

BIBLIOGRAPHY

Powell, A. (2012). “Democratizing production through open source knowledge: from
open software to open hardware”. In: Media, Culture & Society 34.6, pp. 691–708.

Prince, M. (2004). “Does Active Learning Work? A Review of the Research”. In: Journal
of Engineering Education 93.July, pp. 223–231.

Pugh, S. (1991). Total design: integrated methods for successful product engineering. Wok-
ingham: Addison-Wesley.

Quigley, M., A. Asbeck, and A. Ng (2011). “A low-cost compliant 7-DOF robotic ma-
nipulator”. In: Proceedings of the 2011 IEEE International Conference on Robotics and
Automation, pp. 6051–6058.

Quigley, M., K. Conley, B. Gerkey, J. FAust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Mg (2009). “ROS: an open-source Robot Operating System”. In: Proceedings
of the 2009 International Conference on Robotics and Automation - Open-source software
workshop. Kobe, Japan.

Ranganathan, P., R. Schultz, and M. Mardani (2008). “Use of LEGO NXT Mindstorms
brick in engineering education”. In: Proceedings of the 2008 ASEE North Midwest Sec-
tional Conference, pp. 17–19.

Raymond, E. (1999). “The cathedral and the bazaar”. In: Knowledge, Technology & Policy
12.3, pp. 23–49.

Reas, C. and B. Fry (2007). Processing: A Programming Handbook for Visual Designers and
Artists. The MIT Press, p. 736.

Resnick, M., J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A.
Millner, E. Rosenbaum, J. a. Y. Silver, B. Silverman, and Y. Kafai (2009). “Scratch:
Programming for All.” In: Communications of the ACM 52, pp. 60–67.

Riedo, F., M. Chevalier, S. Magnenat, and F. Mondada (2013). “Thymio II, a robot that
grows wiser with children”. In: Proceedings of the 2013 IEEE Workshop on Advanced
Robotics and its Social Impacts, pp. 187–193.

Riedo, F., P. Rétornaz, L. Bergeron, N. Nyffeler, and F. Mondada (2012). “A two years
informal learning experience using the Thymio robot”. In: Advances in Autonomous
Mini Robots. Springer, pp. 37–48.

Riojas, M., S. Lysecky, and J. Rozenblit (2012). “Educational Technologies for Precollege
Engineering Education”. In: IEEE Transactions on Learning Technologies 5.1.

Robins, B., K. Dautenhahn, R. T. Boekhorst, and A. Billard (2005). “Robotic assistants
in therapy and education of children with autism: Can a small humanoid robot help
encourage social interaction skills?” In: Universal Access in the Information Society 4.2,
pp. 105–120.

Rockland, R., D. Bloom, and J. Carpinelli (2010). “Advancing the “E” in K-12 STEM
education”. In: Journal of Technology Studies 36.1, pp. 53–65.

Rogers, S. J. (1996). “Brief report: early intervention in autism.” In: Journal of autism and
developmental disorders 26.2, pp. 243–246.

Rosner, D. K. (2009). “Learning from IKEA Hacking: ”I’m Not One to Decoupage a
Tabletop and Call It a Day”. In: Proceedings of the 2009 SIGCHI Conference on Human
Factors in Computing Systems, pp. 419–422.

Royce, W. W. (1970). “Managing the Development of Large Software Systems”. In:
Proceedings of IEEE WESCON, pp. 328–338.

Russel, J. (1980). “A circumplex model of affect”. In: Journal of Personality and Social
Psychology.

254

BIBLIOGRAPHY

Saldien, J. (2009). “The Development of the Huggable Social Robot Probo. On the Con-
ceptual Design and the Software Architecture.” PhD thesis. Vrije Universiteit Brussel,
p. 163.

Saldien, J., K. Goris, B. Vanderborght, J. Vanderfaeillie, and D. Lefeber (2010). “Express-
ing emotions with the social robot Probo”. In: International Journal of Social Robotics
2.4, pp. 377–389.

Saleiro, M., B. Carmo, J. M. F. Rodrigues, and J. M. H. Du Buf (2013). “A low-cost
classroom-oriented educational robotics system”. In: Lecture Notes in Computer Science.
Vol. 8239 LNAI, pp. 74–83.

Sanders, E. B.-N. (2006). “Design Serving People”. In: Cumulus Working Papers 15.5,
pp. 28–33.

Sanders, E. B.-N. and P. J. Stappers (2008). “Co-creation and the new landscapes of
design”. In: CoDesign 4.1, pp. 5–18.

Sato, M., I. Poupyrev, and C. Harrison (2012). “Touché: enhancing touch interaction on
humans, screens, liquids, and everyday objects”. In: Proceedings of the 2012 SIGCHI
Conference on Human Factors in Computing Systems. c, pp. 483–492.

Schelly, C., G. Anzalone, B. Wijnen, and J. M. Pearce (2015). “Open-source 3-D printing
technologies for education: Bringing additive manufacturing to the classroom”. In:
Journal of Visual Languages & Computing 28, pp. 226–237.

Schmidt, E. and J. Cohen (2013). The New Digital Age: Transforming Nations, Businesses,
and Our Lives. Knopf Doubleday Publishing Group.

Schreiner, C. and S. Sjøberg (2010). The ROSE project An overview and key findings. Tech.
rep. University of Oslo, pp. 1–31.

Schweikardt, E. (2011). “Modular robotics studio”. In: Proceedings of the 5th International
Conference on Tangible, Embedded, and Embodied Interaction. New York, New York,
USA: ACM Press, p. 353.

Silver, J. S. (2014). “Block x Lens - World as Construction Kit”. PhD thesis. MIT.
Silver, J., E. Rosenbaum, and D. Shaw (2012). “Makey Makey: Improvising Tangible

and Nature-Based User Interfaces”. In: Proceedings of the 6th International Conference
on Tangible, Embedded and Embodied Interaction. Ontario: ACM, p. 367.

Simon, T. M., B. H. Thomas, R. T. Smith, and M. Smith (2014). “Adding input controls
and sensors to RFID tags to support dynamic tangible user interfaces”. In: Proceed-
ings of the 8th International Conference on Tangible Embedded and Embodied Interaction,
pp. 165–172.

Sproewitz, A., L. Kuechler, A. Tuleu, M. Ajallooeian, M. D’Haene, R. Moeckel, and A. J.
Ijspeert (2011). “Oncilla Robot, A Light-weight Bio-inspired Quadruped Robot for
Fast Locomotion in Rough Terrain”. In: Proceedings of the 2011 Symposium on Adaptive
Motion of Animals and Machines, pp. 63–64.

Stajano, F. (2000). “Python in education: Raising a generation of native speakers”. In:
Proceedings of the 8th International Python Conference.

Stiehl, W. D., J. K. Lee, C. Breazeal, M. Nalin, A. Morandi, and A. Sanna (2009). “The
Huggable: A Platform for Research in Robotic Companions for Pediatric Care”. In: Pro-
ceedings of the 8th International Conference on Interaction Design and Children, pp. 317–
320.

255

BIBLIOGRAPHY

Stoelen, M., F. Bonsignorio, and A. Cangelosi (2016). “Co-exploring actuator antagonism
and bio-inspired control in a printable robot arm”. In: From Animals to Animats 14. Ed.
by E. Tuci, A. Giagkos, M. Wilson, and J. Hallam. Springer, pp. 244–255.

Sundar, S. S., T. F. Waddell, and E. H. Jung (2016). “The Hollywood robot syndrome:
Media effects on older adults’ attitudes toward robots and adoption intentions”. In:
Proceedings of the 11th ACM/IEEE International Conference on Human-Robot Interaction,
pp. 343–350.

Takayama, L., W. Ju, and C. Nass (2008). “Beyond dirty, dangerous and dull: what every-
day people think robots should do”. In: Proceedings of the 3rd International Conference
on Human-Robot Interaction. Amsterdam, pp. 25–32.

TAPR (2007). The TAPR Open Hardware License Version 1.0 (May 25, 2007). url: https:
//www.tapr.org/TAPR_Open_Hardware_License_v1.0.txt.

Tenzer, Y., L. P. Jentoft, and R. D. Howe (2014). “The feel of MEMS barometers: Inex-
pensive and easily customized tactile array sensors”. In: IEEE Robotics and Automation
Magazine 21.3, pp. 89–95.

Terryn, R., S. Flamand, J. Saldien, P. Deconinck, F. wyffels, and S. Verstockt (2016). “In-
novative Design of a Hexapod Scorpion Through Digital Production Techniques”. In:
Proceedings of the 19th International Conference on Climbing and Walking Robots. Lon-
don: World Scientific Publishing Company, pp. 1–8.

Thomaszewski, B., S. Coros, D. Gauge, V. Megaro, E. Grinspun, and M. Gross (2014).
“Computational Design of Linkage-based Characters”. In: ACM Transactions on Graph-
ics 33.4, 64:1–64:9.

Thompson, C. (2008). “Build It. Share It. Profit. Can Open Source Hardware Work?” In:
WIRED.

Tiger, L. (1992). The Pursuit of Pleasure. Transaction Publishers, p. 330.
Tilden, M. (2013). Mark Tilden on “What is the single biggest obstacle preventing robotics

from going mainstream?” url: http://robohub.org/mark- tilden- on- what-
is- the- single- biggest- obstacle- preventing- robotics- from- going-
mainstream/ (visited on 10/02/2015).

Törnkvist, S. (1998). “Creativity: can it be taught? The case of Engineering Education”.
In: European Journal of Engineering Education 23.1, pp. 5–12.

Troxler, P. (2013). “Making the Third Industrial Revolution. The Struggle for Polycentric
Structures and New Peer-Production Commons in the FabLab Community.” In: Fa-
bLab – Of Machines, Makers and Inventors. Ed. by J. Walter-Herrmann and C. Büching,
pp. 181–195.

Tryggvason, G. and D. Apelian (2006). “Re-engineering engineering education for the
challenges of the 21st century.” In: Journal of the Minerals, Metals and Materials Society
58.10, pp. 14–17.

Tsagarakis, N. G., G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi, L. Righetti, A. J.
Ijspeert, M. C. Carrozza, and D. G. Caldwell (2007). “iCub: the design and realization
of an open humanoid platform for cognitive and neuroscience research”. In: Journal of
Advanced Robotics 21.10, pp. 1151–1175.

Tseng, T. and M. Resnick (2014). “Product versus process”. In: Proceedings of the 2014
Conference on Designing Interactive Systems. New York, New York, USA: ACM Press,
pp. 425–428.

256

https://www.tapr.org/TAPR_Open_Hardware_License_v1.0.txt
https://www.tapr.org/TAPR_Open_Hardware_License_v1.0.txt
http://robohub.org/mark-tilden-on-what-is-the-single-biggest-obstacle-preventing-robotics-from-going-mainstream/
http://robohub.org/mark-tilden-on-what-is-the-single-biggest-obstacle-preventing-robotics-from-going-mainstream/
http://robohub.org/mark-tilden-on-what-is-the-single-biggest-obstacle-preventing-robotics-from-going-mainstream/

BIBLIOGRAPHY

Van den Broeck, M. (2016). “Het ontwerpen van nieuwe functionaliteiten voor een sociale
robot in de context van de zorg en therapie”. Master’s thesis. Ghent University, p. 162.

Vanderborght, B., R. Simut, J. Saldien, C. Pop, A. S. Rusu, S. Pintea, D. Lefeber, and
D. O. David (2012). “Using the social robot Probo as a social story telling agent for
children with ASD”. In: Interaction Studies 13.3, pp. 348–372.

Vandevelde, C., P. Conradie, J. De Ville, and J. Saldien (2014). “Playful interaction:
designing and evaluating a tangible rhythmic musical interface”. In: Proceedings of
INTER-FACE: The Second International Conference on Live Interfaces. Ed. by A. Sa,
M. Carvalhais, and A. McLean. Lisbon, Portugal, pp. 132–141.

Vandevelde, C. and J. Saldien (2016a). “An Open Platform for the Design of Social Robot
Embodiments for Face-to-Face Communication”. In: Proceedings of the 11th Interna-
tional Conference on Human-Robot Interaction. Christchurch, New Zealand, pp. 287–
294.

– (2016b). “Demonstration of OPSORO – an Open Platform for Social Robots”. In:
Proceedings of the 11th ACM/IEEE International Conference on Human-Robot Interaction.
Christchurch, New Zealand.

Vandevelde, C., J. Saldien, C. Ciocci, and B. Vanderborght (2013a). “Overview of tech-
nologies for building robots in the classroom”. In: Proceedings of the 4th International
Conference on Robotics in Education.

– (2013b). “Systems overview of Ono: a DIY reproducible open source social robot”.
In: Lecture Notes in Computer Science. Ed. by G. Herrmann, M. J. Pearson, A. Lenz, P.
Bremner, A. Spiers, and L. U. Vol. 8239. Springer International Publishing, pp. 311–
320.

– (2013c). “The use of social robot ono in robot assisted therapy”. In: International
Conference on Social Robotics, Proceedings.

– (2014). “Ono, a DIY open source platform for social robotics”. In: Proceedings of the
8th International Conference on Tangible, Embedded and Embodied Interaction. Ed. by
A. Butz, S. Greenberg, S. Bakker, L. Loke, and A. De Luca.

Vandevelde, C., M. Vanhoucke, and J. Saldien (2015). “Prototyping social interactions
with DIY animatronic creatures”. In: Proceedings of the 9th International Conference on
Tangible, Embedded and Embodied Interaction.

Vandevelde, C., F. wyffels, C. Ciocci, B. Vanderborght, and J. Saldien (2015). “Design and
evaluation of a DIY construction system for educational robot kits”. In: International
Journal of Technology and Design Education 26.4, pp. 521–540.

Vandevelde, C., F. wyffels, B. Vanderborght, and J. Saldien (in press). “DIY Design for
Social Robots”. In: IEEE Robotics and Automation Magazine.

Vanhoucke, M., C. Vandevelde, J. Ingels, G. Hamon, and J. Saldien (2014). “Serious game
as educational tool for safety and prevention”. In: Proceedings of the 2014 ACM SIGCHI
Annual Symposium on Computer-Human Interaction in Play – Workshop Participatory
Design for Serious Game Design. Toronto, Canada: ACM.

Vastenburg, M., N. Romero Herrera, D. Van Bel, and P. Desmet (2011). “PMRI”. In:
Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems -
Extended Abstracts. New York, New York, USA: ACM Press, p. 2155.

VDAB (2012). VDAB ontcijfert nr 28. Tech. rep. VDAB Brussels.
Veretennicoff, I., J. Vandewalle, B. Seghers, C. Aerts, Y. Bruynseraede, P. Cara, W. De-

haene, B. Hendrickx, C. Hirsch, R. Hostyn, C. Malcorps, N. Schamp, A. Sevrin, K.

257

BIBLIOGRAPHY

Strubbe, D. V. Dyck, P. V. Houtte, V. V. Speybroeck, and J. Willems (2015). De
STEM-leerkracht. 38, p. 56.

Verner, I. M. and D. J. Ahlgren (2004). “Robot contest as a laboratory for experiential
engineering education”. In: Journal on Educational Resources in Computing 4.2.

Von Hippel, E. and J. A. Paradiso (2008). “User innovation and hacking”. In: IEEE
Pervasive Computing 7.3, pp. 66–69.

Vygotsky, L. S. (1978). “Development of Higher Psychological Processes”. In: Mind
in Society. Ed. by M. Cole, J. V. Steiner, S. Scribner, and E. Souberman. Harvard
University Press.

Wainer, J., D. J. Feil-Seifer, D. a. Shell, and M. J. Matarić (2006). “The role of physical em-
bodiment in human-robot interaction”. In: Proceedings of the 2006 IEEE International
Workshop on Robot and Human Interactive Communication, pp. 117–122.

Walter-Herrmann, J. and C. Büching (2013). FabLab: Of Machines, Makers and Inventors.
Bielefeld: Transcript Verlag.

Wang, Z.-Y., X.-L. Ding, and A. Rovetta (2010). “Analysis of typical locomotion of a
symmetric hexapod robot”. In: Robotica 28.6, pp. 893–907.

Weiser, M. (1994). “The world is not a desktop”. In: Interactions 1.1, pp. 7–8.
Westlund, J. K., J. J. Lee, L. Plummer, F. Faridi, J. Gray, M. Berlin, H. Quintus-bosz,

R. Hartmann, M. Hess, S. Dyer, and K. Santos (2016). “Tega: A Social Robot”. In:
Proceedings of the 11th International Conference on Human-Robot Interaction, p. 8370.

Williams, A., A. Gibb, and D. Weekly (2012). “Research with a Hacker Ethos: What DIY
Means for Tangible Interaction Research”. In: Interactions 19.2, pp. 14–19.

Williams, K., I. Igel, R. Poveda, V. Kapila, and M. Iskander (2012). “Enriching K-12 sci-
ence and mathematics education using LEGOs”. In: Advances in Engineering Education
3.2.

Williams, K. and C. Breazeal (2013). “Reducing driver task load and promoting sociability
through an Affective Intelligent Driving Agent (AIDA)”. In: Lecture Notes in Computer
Science. Ed. by P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, and M. Winckler.
Vol. 8120, pp. 619–626.

Wilson, D. M. (1966). “Insect Walking”. In: Annual Review of Entomology 11, pp. 103–
122.

Windisch, K. G. von (1783). Briefe über den Schachspieler des Hrn. von Kempelen, nebst
drei Kupferstichen die diese berühmte Maschine vorstellen.

Wolf, M. and S. McQuitty (2011). “Understanding the do-it-yourself consumer: DIY
motivations and outcomes”. In: Academy of Marketing Science Review 1, pp. 154–170.

wyffels, F., K. Bruneel, P. Bertels, M. D’Haene, W. Heirman, and T. Waegeman (2012).
“A human-friendly way of programming robots”. In: Proceedings of the 5th International
Workshop on Human-Friendly Robotics.

wyffels, F., M. Hermans, and B. Schrauwen (2010). “Building robots as a tool to motivate
students into an engineering education”. In: AT&P Journal Plus 2010.2, pp. 113–116.

Yanamandram, V. M. K. and J. H. Panchal (2014). “Evaluating the Level of Openness in
Open Source Hardware”. In: Product Development in the Socio-sphere: Game Changing
Paradigms for 21st Century Breakthrough Product Development and Innovation, pp. 99–
120.

258

BIBLIOGRAPHY

Yanco, H. A. and J. L. Drury (2004). “Classifying human-robot interaction: an updated
taxonomy.” In: Proceedings of the 2004 IEEE International Conference on Systems, Man
and Cybernetics.

Zappi, V. and A. McPherson (2014). “Design and Use of a Hackable Digital Instrument”.
In: Proceedings of the 2nd International Conference on Live Interfaces. Lisbon, pp. 208–
219.

Zimmermann, L. (2014). “Business”. In: Building Open Source Hardware: DIY Manufac-
turing for Hackers and Makers. Addison-Wesley Professional.

Zubrycki, I. and G. Granosik (2016). “Understanding Therapists’ Needs and Attitudes
Towards Robotic Support. The Roboterapia Project”. In: International Journal of Social
Robotics.

259

BIBLIOGRAPHY

260

LIST OF TABLES

1.1 Summary of the design goals 68

2.1 System Usability Scale questionnaire. 84
2.2 Excerpt from the AttrakDiff questionnaire. 85
2.3 Summary of UX measurement tools 88
2.4 Examples of digital fabrication techniques 92
2.5 Examples of using design complexity of digital manufacturing techniques 94

3.1 Comparison of the three building systems 118
3.2 Q2 – Robot ratings 122
3.3 Q3 – Systems ranking by the experts 123
3.4 Summary of concept design requirements 129
3.5 Cost breakdown of the v1.0 prototype 133
3.6 Interaction rates 139
3.7 Emotion recognition rates 139
3.8 Results of the questionnaire’s open questions 159
3.9 Overview of robot concepts, module use, and skinning techniques 166
3.10 Overview of the iterative design process 176

5.1 Overview of current users 236

261

LIST OF TABLES

262

LIST OF FIGURES

1.1 Arduino Uno 28
1.2 RepRap Prusa Mendel i3 28
1.3 Model of long tail economics. 35
1.4 LEGO Mindstorms EV3 kit 43
1.5 Thymio. Adopted from Riedo, Chevalier, et al. (2013). 43
1.6 Examples of programmable controllers. 45
1.7 Text-based programming languages. 46
1.8 Visual programming language made with Blockly. 46
1.9 Examples of construction systems. 48
1.10 The consumer/designer spectrum. 51
1.11 Csikszentmihalyi’s model of flow. 51
1.12 A designer’s perspective of flow. 53
1.13 Model of da Vinci’s mechanical knight3. 54
1.14 The Mechanical Turk. 54
1.15 Examples of commercial IoT products. 55
1.16 Three types of robots 58
1.17 Baxter. 58
1.18 Kismet. 58
1.19 Travis. 61
1.20 Nao. 61
1.21 iCub. 63
1.22 Hacked MyKeepon 63
1.23 Poppy Humanoid. 64
1.24 InMoov. 64
1.25 Redesigned Probo head. 65
1.26 Moodles. 65

2.1 Lifecycle model of conventional products. 73

263

LIST OF FIGURES

2.2 Lifecycle model of platform-based products. 74
2.3 ISO 9241-210 model for human-centered design of interactive systems. 76
2.4 Waterfall model of development. 76
2.5 Four patterns of reasoning. 78
2.6 Hierary of human needs vs. a hierarchy of consumer needs. 81
2.7 The four pleasures. 81
2.8 Hassenzahl’s model of user experience. 83
2.9 Pick-A-Mood expressions of eight mood types and neutral. 86
2.10 Example of a user experience curve. 86
2.11 Example illustrating Pugh’s model of controlled convergence. 89
2.12 Using asymmetry to improve the assembly process. 95

3.1 Schematic overview of the design iterations. 98
3.2 Final prototype of the Stigmergic Ant 99
3.3 Top view showing tip position at T , body coordinate system at O, and

leg coordinate system at A 102
3.4 Kinematic chain of the leg 103
3.5 Tripods of the alternating tripod gait 104
3.6 Effect of the displacement vectors on leg tip positions 104
3.7 Final prototype of the scorpion 106
3.8 Playfields used during the contest. 110
3.9 The robot kit used in the contest. 111
3.10 Design funnel – schematic overview of our design process. 113
3.11 Student designs from iteration one. 113
3.12 Prototypes from iteration two. 114
3.13 Laser-cut screw connector system. 115
3.14 Printed friction-fit connector system. 116
3.15 Printed ”hybrid” connector system. 117
3.16 PMRI results. 121
3.17 AttrakDiff results. 121
3.18 Q1 – Experts’ criteria for grading robots. 122
3.19 Children interacting with Ono v1.1 through the control box 125
3.20 Changes in the slot-and-tab construction system between v1.1 (left) and

v1.2 (right) 126
3.21 Exploration sketches for the embodiment design 127
3.22 The Uncanny Valley. 128
3.23 Rendered image of the Ono outer skin surface model 129
3.24 The Ono v1.0 prototype with control unit 130
3.25 CAD model showing construction and DOFs of Ono. The servo actua-

tors are shown in a darker color. 132

264

LIST OF FIGURES

3.26 Assembly instructions for the Ono v1.0 eye module 133
3.27 Line drawing of the assembled frame 134
3.28 Participant assembling the eye module. 134
3.29 Child interacting with Ono during the pilot study 137
3.30 Wizard of Oz setup to test the child controller concept. 140
3.31 Comparison of the first generation module interface (left) vs. second

generation module interface (right) 144
3.32 Comparison of the first generation frame (left) vs. second generation

frame (right) construction 144
3.33 Mechanism of the eye module. Old direct-drive mechanism (left) vs. new

linkage-driven mechanism (right). 145
3.34 Participants of the workshop posing around the robot they built in one

day 146
3.35 Workshop participants assembling an Ono. 148
3.36 Results of the AttrakDiff questionnaire. 150
3.37 Results from the Likert scale questions. 151
3.38 UX curves drawn by the the participants of the workshop. 151
3.39 Quiz control interface 153
3.40 Blockly API issues 153
3.41 Interface mockup 154
3.42 Social Script app in use 154
3.43 Participants working on the “Michael Jackson” robot. 156
3.44 UX curves drawn by the the participants of the workshop. 160
3.45 Results of the AttrakDiff questionnaire. 160
3.46 Design process overview of one robot. 164
3.47 The ten robots designed during the student course. 165
3.48 Results from the Likert scale questions. 168
3.49 Relative difficulty of each phase. 169
3.50 Participants building custom robots using the Opsoro modules and craft

materials. 171
3.51 Grid connection system used in the Frankfurt experiment 172
3.52 Cardboard embodiments designed by the participants. 173
3.53 Results of the AttrakDiff-Short questionnaire. 174
3.54 Results from the Likert scale questions. 174

4.1 CAD model of the mouth module 179
4.2 Mouth module prototype 179
4.3 Exploded view of the module 180
4.4 CAD model of the eyebrow module 181
4.5 Eyebrow module prototype 181

265

LIST OF FIGURES

4.6 Eye module prototype 181
4.7 Ball joint linkages 182
4.8 Eyeball pivot mechanism 182
4.9 Exploded view of the module 183
4.10 Connection between servo spline and laser-cut gear. 184
4.11 CAD model of the joint module 184
4.12 Joint module prototype 184
4.13 Exploded view of the module 185
4.14 CAD model of 1st neck module 186
4.15 Prototype of 1st neck module 186
4.16 Prototype of 2nd neck module 187
4.17 1st workshop base 188
4.18 2nd workshop base 188
4.19 Example of the snap connectors used in the frame design 190
4.20 Architecture of the frame of Ono, showing four sub-units 191
4.21 Developable surface (left) vs. doubly curved surface (right) 192
4.22 Foam flattening process. 193
4.23 Laser-cut snap sockets. 195
4.24 Picture of the Arduino shield 196
4.25 Picture of HAT rev. 0 198
4.26 Picture of HAT rev. 1 199
4.27 System diagram of HAT rev. 1 199
4.28 Picture of HAT rev. 2 201
4.29 System diagram of HAT rev. 2 201
4.30 SPI write protocol 202
4.31 SPI read protocol 202
4.32 Capacitive touch sensor data. 205
4.33 Servo PWM timing 206
4.34 Circumplex model of affect. 208
4.35 Two-step interpolation of the circumplex model 209
4.36 Example of the algorithm applied to a 2-DOF eyebrow module 211
4.37 Mapping DOF positions to pulse widths 211
4.38 Interpolation using the NumPy module 214
4.39 Hardware interface 215
4.40 Web interface 215
4.41 Main page of the Opsoro interface, showing all apps 216
4.42 Example showing the interface of the “Social Script” app 216
4.43 High-level overview of the Opsoro software architecture 218
4.44 Authentication scheme 219

266

LIST OF FIGURES

4.45 App manager – setup 221
4.46 App manager – activation 221
4.47 App manager – interaction 221
4.48 Circumplex Interface App 223
4.49 Sounds App 223
4.50 Config Editor App 224
4.51 Touch Graph App 224
4.52 Sliders App 225
4.53 Lua Scripting App 225
4.54 Visual Programming App 226
4.55 Social Script App 227

5.1 Map of current users of the social robot Ono and the Opsoro Starter Kit. 235
5.2 OTO – a mobile extension for the Opsoro platform 236
5.3 Opsoro components produced by a farm of eight low-cost 3D printers. 240

267

	LIST OF ACRONYMS
	Samenvatting
	Summary
	Introduction
	A New Generation of DIY
	Open Source Software
	Open Source Hardware
	Hacking Paradigm
	Maker Movement
	DIY in Research

	Learning & Creativity
	STEM Education
	Robot Kits as Learning Material
	Creativity
	Flow

	Social Robotics – An Emerging Technology
	Classification
	Embodiment and Appearance
	DIY and Open Source in Robotics Research

	Research Question and Design Goals
	Outline
	List of Publications

	Design Methodology
	User-centered Design
	Usability & User Experience

	Iterative Prototyping
	Digital Manufacturing techniques
	Design Strategies

	Conclusion

	Design Iterations
	Hexapod Robots
	Stigmergic Ant
	Locomotion Algorithm
	Scorpion
	Summary

	Robot Blocks – Toolkit for Simple Educational Robots
	Robots to Motivate Students into STEM
	Design of the Building Systems
	Measuring Usability, Affective Appraisal, and Functionality
	Results
	Summary

	Ono – Generation 1
	Conceptual Design of the Embodiment
	Construction
	Reproduction of a Robot
	Robot-Assisted Therapy
	Summary

	Ono – Generation 2
	Skeleton and Module Improvements
	Workshop at UNN
	Workshop at HRI-SS
	Using Ono in Therapy
	Summary

	Opsoro Platform
	Design Workshop at TEI
	The Illusion of Life
	Classroom of the Future
	Summary

	Conclusion

	Opsoro: Open Platform for Social Robotics
	Hardware
	Modules
	Workshop Base
	Embodiment

	Electronics
	First Generation – Microcontroller-based
	Second Generation – Microcomputer-based
	Sensing Touch
	Controlling Servos

	Software
	Facial Expression Algorithm
	User Interface Precursors
	App-based Web Interface

	Conclusion
	Future Enhancements
	New Developments

	Conclusion & Future Perspectives
	Open Hardware in Robotics Research
	Entrepreneurship and Valorization

	Bibliography
	List of Tables
	List of Figures

