
DISE:AGame
Technology-based
Digital Interactive
Storytelling
Framework
SIMON COOPER
A THESIS SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS OF

LIVERPOOL JOHN
~ MOORES UNIVERSITY

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
August 2011

Supervisors:
Prof. Abdennour El Rhalibi
Prof. Madjid Merabti

The copyright in th;s thesis is owned by the author. Any quotation from the
thesis or use of any of the information contained in it must acknowledge
this thesis as the source of the quotation or information.

THE FOLLOWING HAVE NOT
BEEN COPIED ON

INSTRUCTION FROM THE
UNIVERSITY

Figure 1 page 30 Figure 17 page 59

Figure 2 page 37 Figure 18 page 60

Figure 3 page 38 Figure 19 page 61

Figure 4 page 39 Figure 22 page 69

Figure 5 page 40 Figure 23 page 70

Figure 6 page 42 Figure 24 page 77

Figure 7 page 43 Figure 25 page 78

Figure 8 page 45 Figure 58 page 160

Figure 10 page 51 Figure 68 page 179

Figure 11 page 52 Figure 96 page 226

Figure 12 page 53 Figure 97 page 232

Figure 13 page 54

Figure 14 page 55

Figure 15 page 57

Figure 16 page 58

ABSTRACT

This thesis details the design and implementation of an Interactive Storytelling
Framework. Using software engineering methodology and framework development
methods, we aim to design a full Interactive Storytelling system involving a story manager,
a character engine, an action engine, a planner, a 3D game engine and a set of editors for
story data, world environment modelling and real-time character animation. The
framework is described in detail and specified to meet the requirement of bringing a more
dynamic real-time interactive story experience to the medium of computer games. Its core
concepts borrow from work done in the fields of narrative theory, software engineering,
computer games technology, HCI, 3D character animation and artificial intelligence.

The contributions of our research and the novelties lie in the data design of the story
which allows a modular approach to building reusable resources such as actions, objects,
animated characters and whole story 'levels'; a switchable story planner and re-planning
system implementation, allowing many planners, heuristics and schedulers that are
compatible with PDDL (the "Planning Domain Definition Language") to be easily
integrated with minor changes to the main classes; a 3D game engine and framework for
web launched or in browser deployment of the finished product; and a user friendly story
and world/environment editor; so story authors do not need advanced knowledge of
coding PDDL syntax, games programming or 3D modelling to design and author a basic
story. As far as we know our Interactive Storytelling Framework is the only one to include
a full 3D cross-platform game engine, procedural and manual modelling tools, a story
editor and customisable planner in one complete integrated solution.

The finished interactive storytelling applications are presented as computer games
designed to be a real-time 3D first person experience, with the player as a main story
character in a world where every context filtered action displayed is executable and the
player's choices make a difference to the outcome of the story, whilst still allowing the
authors high level constraints to progress the narrative along their desired path(s).

2

ACKNOWLEDGEMENTS

Special Thanks to:

Prof. Abdennour El Rhalibi - Primary Supervisor

Prof. Madjid Merabti - Secondary Supervisor

Chris Carter, Chris Dennett, Hakim Sabri - LJMU Games Lab

Ricardo Duarte - LJMU Research Student

Marc Price - BBC R&D

Jon Wetherall- Onteca, http://onteca.coID /

...and to all of my family and friends for their support.

3

http://onteca.coID

DECLARATION

All material contained within and presented for examination is my own work and no
part has been written for me by any other person(s). Where text and images have been
quoted or paraphrased from other work(s) published or unpublished, there is due
acknowledgement and a fitting citation to the referenced work.

4

TABLE OF CONTENTS

AB~Alcr :t~A~ •••

1 INTR.ODUCflON ••17

CONTEXT 171.1 •••.••••••••.••••••••••••••••••••

GOALS & OBJECTIVES 171.2 •..••.•••...•...••...•.•...•....•.••••••••....•..•••.••••.•••.••••..•

1.3 RESEARCH ME'fHODOLOGY · 19

1.4 CONTRIBUTIONS ro KNOWLEDGE 20

141 P'Rl··I"DYCOIN7"R.IBr.nJONS •••.•••.••..•.•..•...•.••.••••..••...•..•••••...••••••..••••••••••..••••.••••••••••.••••••••20.. ~

1 4... SIr;tI"V\ ..."nDyOON7'RlB'UTl.ONS •••••••••••.•••••••••••••••••.••••.••••.••••••..••••••.•.•••.•••••.••••••••••••••.••••22• ",", ~J~u.n.n.

1.5 TH'E'.SISS'I'RUcruRE 24

:l 1S~~~~1Rl()~ ••:l«)

2.1 RESEARCH AREA. •••••••••••••••....•••.••••..•••••••••••••.•.•••.•...•.•••...•••.•••••••••.••••••••...•.••••••.•...•.26

2.1.1 S'lURYJ"BLUNG AN'D 17"S .MANY FORMS •.•.•••.•••..•••...••••.••.....•.•••.....•..••......•.•.••••••.....•.•26

2.1.2 COMPARING GAM.BS lie WRl7TEN' sroRYIEWNG ..••.....27

2.J-3 COMPARING GAM.BS 8t CINEMA •....•.••.•••.••••••.•.•..••.••••.•..•.•..••...............••........••••......••••.28

2.1.4 S70RYIELUNG IN G.AMES•.•..•..........•...............•...................................•.....•.....•.•.29

2.J-5 W.ElATIS 1~C'I7'VE SIURITELUNG? .••..•....•..........................•........••....•...•.......····31

2.J.6 POPUI.A.R17Y OFGAM.BS \'SOTllER MEDIA ..••..•......•..•••••.•.•..•.•••••.•••••••..••.•••...•••••••••.•32

2.2AlM.AN"DO&JECI'~ ···33

3 RElATEDW()RK •••35

3.1 EXISTING INTERAcrIVE STORYl'ELLING SYSTEMS Br RESEARCH ·35

3.J.J ALTERNAtE REAI..l7Y S1'URY GAM'BS •••..•................••....••........•..•.•••.•..•........•••.•••.•••••.••·37

3.1.2AcrAWAcr•.•........•••••......•.•..•......•..•.......................•.....•...•.....•.•.......•..•.•..•.•.•••...•...•.••38

3.1-3 BOVARY ••••••••••••.•••••.•••••••••••••••••••••••••••••.•••••.••••••••••••••••••••••••••.••••.•••••••••••••••••••••••••••••••••••····39

5

CA.ROSA.: A '1OOL FOR A'UTllORING NPCS •..•••••••••...•..••.•...•••••••....•••..••••.•••••.•.•••••.••······40

D,17 A 'r'HKITC'HEN ~3.1.5 :&::At'1.~.1 ••

3.1.6 DI7I7ACTO ••••••••••••••••••••••••••••••••••••43~n •••.•••.••

D,UA 1IIAC'H·l'1Ir.r.. ••••••••••••••••••••••••••••••••• 44:t\.l'1..lY".Ln .Jl~n ••3·1·7

3.1.8 DUNGEONS &DRAGONS AND THE GAMES MASTER 46

17" DU·r A7UR ••••..••.••.•••.•••••••••••••4B3.1.9 I'n.u ~ .••

1:'A I""'A nl:' ••••••••••••••••••••••••••••503·1.10r.L"l~lJt •••

3.1.11 FEARNOT•.•......•..................••....••.......•.....•....•.•.................•.•...•.•....•.......••..•..•••..••••·········52
3.1.12 GADIN•........•..•••••••.••....•...••••..•.•.•••...•..•..•.•..•...•.......•..•.••.•..•..•••.•..•.••.•.••••••••.••.••••••.••54-

3.1.J3 HEFI"l •••••.••••..•••••.••.••••••••••..••...•••••••••.•....•.•..•.••••••.••••••.•••.•••.••••••••••.•..•••.•.•••.•••••.•••.•••••··········55

3.1.14IDTEN'SION •••.....•..•.••..•..........•...•.•........••..•.........•.••••.•.•...•.....•••..••...••••••.....•....••..••..........•••56

3.1.1Sl'NTERA.CI'IVE S7URY mGINE 56

3.1.16 I.nGTELL ..•..........58

3·1.17 SIJf1'ABLES •.•.••••••••••••••••••.•••••.•••••••.•.•••...••.•••••••••...••••.•.•...••••••..••••••••.•••.•••••••••.••••.•••••..•.•.•••••59

3.1.18 SLEEP IS D.EA.1H ••••••.••••••••••••••.•••••.••••••••.•••••.•••••..•••.•••••.•••.••.•••.•••..••.••.••••••••.•••..••••••.••.•••••60

3·1.19S-MADE •.••••.•••••••••.•••••.•••••••••••••••••••••••••••••.•••••••••.•.••••••••••..••.•••••.•••••.••.••••••••••••••••.•••••••••.•••••62

3.1.20S7URY"1"RON..•..•.••..•......................•..••............•.........••.••...•...64

3·1.:21 RIDDLE MASTER •..•...........•..•...........•..•.. 65

3.2 NARRATIVE THEORY &: MODEI..S•.............................•.•..................•.••.•..... 66

3·2.1 ARIS7UTLE'S DEFINITION OFDRAMATIC AmONS 67

3.~.2FJVE-ACI' MODBL ••....••.•..••••...•........•.••..•.•.....••..•....•.....•••.•..•..•...............•....•••..••••..••..•.....69

3·2·3 THREE-ACI' PARADIGM•.••.......•.•..............•...•.....•.••..............•.••••••.••.• '7CJ

3.2·4 PROPP'S MORPHOLOGY OF THE FOLK TALE '71

3.2-5 ROLES lit PROCESSES •.•.......•...•••.••...•...•.•.......•....•...••••..•.•.•...............•....•.•...••••..•..•••.•••••.••72

3·2.6 ACI'ANCIAL MODEL ...••••....•.....••....••.•••......•••••.....•..•..••.........••...••...••••.....•.•....••••.••••••••••••.i'3

3·2·7 NARRATIVE G.RAMMARS •.••.••.••••.••.••..•.•..•.•••...••••.•....••.••.•••••••.••••••....••••••••....•.••.••..•••.•...•73

3.2.8 roOOROV-S THEORY OF EQUIUBRIUM •.••.••••.•••..••••.•.•••••••.••.•.•••••••.••••••••••••••••••.•••••.•••74

3.2·9 NARRATIVE 'UNl7'S •••••••••..•.•..••.•..••..•.•.•••••.•••••.••••.•••?S'

3·2.JOFlVE OODES OFANAL'YSIS •..•.......•..••.......•.•.•.........•......•...•.......•......•...•••.•.•.••.••.•••..•••••..•.75'

6

3.2.11 THEORY OF POSSIBLE WORL.DS •......•...........•...•..•....•..........•...•..••.....••...•.....•••..••......•..•. ,cs

3.2.J2~ICAL DIMENSJON•.•.........•....•.. ,cs

3.2.13DISroURSE/S'IORY REIA770N •..........••....•.................•............•.•.......•....•••....•...........•..•.'7'7

3.2.J4 HERO'S JOURNEY•..............•.......•...............••......•...••..•......•.....•....•.....•..•.........'18

3.3 COMPUTATIONAL MODEI.8 ..•...............•.....•............• 79

3-3.J Auro.MA.TED Pl.AN'NlNG AND SCHBDUUNG •.........••......•...•.................•.......•..... ········19

3.4 CRITICAL ANALYSISOF INTERACfIVE STORYfELLING TECHNIQUES 80

3.5 CHAP'fER SUMMARY••...................................••.................................•......••... 99

4 DISE: AN INTERACTIVE STORYTELLING FRAMEWORK
•••1()()

4.1 INTRODUcrION 100

4.2 S'I'ORYI'ELLING GAME TECHNOwo.IES 102

4.2.1 RENDERER ••.••..•....••.......••..•.••..•.••.••.•.•.•••.....•.....•.•••••..•••..••...•.••••••••.•••••••••••••.•.••.•.......••..•.103

4.2.2 SCEN"E GRAPH •....•••••.•....•.........•........•..............•.......•...••.•..........•........••......•..•••.••.•....•..•.• J04

4.2-3 IN'Pln" SYS'I'EM ••..•.•••...•..••.•..•••••.•••••.•.••.•.••.•..••••.•..•..••••..••..•.•••...•.•••..••••••.••••.••..••..•....•...••J04

4.24 ART PIPEUNE •.••.•••••.•.••.•.•.•..••..•.••..••..•..•••.•...•.....•.•...•••...•.••....••••.•••••....•.•.••.•.......••..•••.••..1OS

4.3 REQUIREMEN1'S &: SPECIFICATIONS 105

4-3.J GBN'ERA.L SPECIFlCA..T10NS •.••••••••••.•••••••••••••••••••••••.•.••••.•••••.•.••••••.•••.•.•••••••••••....•••...••••.106

4-3.:l IS FRAME'WORK DESIGN ~RATEGIES .•" ..••.••••••.•••.••....•••••.•.••••••••••.•••••.•••..•••••••••.•••••107

4-3.3 S70RY DATA El.EMBN7S .•.••...•..••••..•••....•..•..••..•••.••...••.......••......•••••...••....•••••.•••••.••••.•••••JJ2

4-3.4 USER ClASSES 8£ CHARA.C1ERl'rnc:8 •...•..............•..•.••••....••••••••.•••••.•.•...•••••••••..•••.••••••J13

4-3-5 POINI'OFV1'EW••••........•........•..•.....•........•..•...•..•..•.......••••..•...........•.•••...•••..•••••••......••.•117

4.4 DISE ARCHITECrURE OVERVIEW ..•...................... 118

GA.MEEN'GIN'E................................. 119...
WORW FACI' DATA.BASE ..•..............••.•.............................•..............•..•..•..•.....•......•.••••..J22

4.4-3 S70RYDATA •..•.••.••......•.•....••.•...• 100.. ~

44-4 PIAI'BRACI'ION EN'GINB •••••••••.••••.•••...••.....••.••••••••.•••••.••••••••••••••.••.••••••••.•••••.••••••••••••••••J24

4·4-5 CHA.RAC'IER ENGINE .•.••••••.•.••••.•••••••••.•••...••....••..••••...••.••••.••••••••••••••.•••••..•••••••••..•.•••••••.•125

1

PDDL PLANNER IN'IERFACE J26

S1't)RY M.ANAGBR ••.••.•••••..••••.•.••••••••••••••••••••••.•.••••••••••••••••.•••.•••••.••••..•••••.•••••.••.••••.••••..•••.lll?

PROCEDURAL CONTEN!' CREATION J:28

4·4-9 ED17URS J:28

4.5 CHAYI'ER SUMMARY 130

5 DISE IMPLEMENTATION •••131

5.1 DISE ARCHITECrURE OVERVIEW 131

5.2 GAME ENGINE 134

5.:2.J HOMURA GAME ENGINE J34

5.:2.:2 OPERATING ENVIRONMENf · J36

5.3WORLD FACI' DATAB.ASE ..••.........•...........• 137

5.3.J. PREDICATES•....................•..............•..•..........•.........•.. J37

5.3.2 PREDICATE EDIroR PAN'EL ••..•...........•....................••....•.....••.•....••....••.....•.................•.J37

5.4 S'rQRY DATA ••••••••..•.••••••••••.••••...••••.•.••....•••••••••.••.•••.••••.•••...•...•••.••••••••.••••...........••.••139

5.4.J TAXONOMY OF THE STORY WORLD USING 7YPES • J39

5.4.2 VE.RB DIC'J"lONARY....•.•... 140

5.4.3 INITIA.L STA'1'ES •.•.•••..•.••.••.•••.•.••.•••••••.•••.••.••••••••.••.•..••.•.•••••..••••••..•..••••••.••••••••.•.•••••..•••••••140

5.4.4 INIT EDIroR PANEL ·..··..J40

5.4-5 AmONS 141

5.4.6 AmON GRAMMAR 141

5.4.7 PARAM~RS, PRECONDITIONS AND EFFECI'S ••.......•...•.••.••.•...•.....•....•...•••...•....••..142

5.4.8 AmONS EDJroR PANEL ···J44

5.4.9 O'B.J'EC1'S& PROPS ••.••••••••••••••.•••••.••••.•••.••••..•••••.••.•.•••••.•...•••••.•..•••••.•••••••.••..•••.•••••.••••••••••145

5.4.J00B.1EC1" EDI70R PANEL•..............•...•......•.•..•.•...•.•.•••..•.••••......•..•.••••...••.••...••.•...••.••••.146

5.4.JJ PROP FREE DROP EDIroR ••.•........•...........•....................•...••......................•......•..•.•.••..•.147

5.4.12 ~TlONS•..•.•....•.....•.....•••....•.............•........•...........•....................•..............•...•.....149

5.4.13NA W'GATION MESHES ••••..•••.....•..••...•...•..•.••.....•.....•..••....••••.•...•..••.••.•....••••...••..•...•..•••.••1.50

5.4.J4 WORLD EDJroR •••.....•....•....••.....................................•...•...•••.••........•.....•.........................153

8

5-4.15 PROCEDURAL CXJNrENI' GENE.RA. nON •..••••.••••••••••••.••..•••••••.•••••••••••.••••••••••••••••••••·····155

5.5~RY M.ANAGER.................•.•.....•.......•.......••............•••.....•••...•.•.....•..•....•........•...•165

5.5.1 SCEN'ES •.•....•••.••....•....•....•....•.••.........•.•...•......•••••..•.........•.•..•..•••....•.•..•.•••.......................•..J65

5.5.2 S70RY MODS •....•.•...•.•••.•.•..•..•..••..•.••.••.•..•...•.•..••••••.•••••••.••.•.••••...••••••••••••••••••••••••••••••••.••••169

5-5-3 S70RY7R.lOOERS ••.•••••.••••••••••••••.••••••••••••••••••••.•••••..•••••••••••••.••••••••••••••••••..••••••.••••••••••••••••171.

5.5.4 S70RY M.ANAGER OONCLUSION•....••.....••••.•.••••..•.•••...••••.••....•..••....•......•...••.....•..l~

5.6 PI..AN'NING ••••.•••.....•••.••••.......••••.•.•....•.•••..••.•••...••••..••.•••...••.••••••••••.•••••.••••••.•••.••.•.•••.173

5.6.J PDDL ••...•.•.....•..•.•••...•.•.•......•.••.•..•.•......••....•...•••...••••.••....•...•.....•.•.•......•.•.•.•.•...•...•..•••.•.•.•••173

5.6.2 PIANNING.AND INTERAC'I'l'VE S'I'()RITELLING •••..........••...•..•..•...•.....••........•....••.•.•J'77

5.6-3 PIAN'N"ING FOR INDIVIDUAL CHARACl"ERS •••.•..•••.......•....••.......•..••.•............•.•.•..••..•J81

5.6.4 PIAN'NING INNONDETERMINIS'I'lC OOMAINS•.............••...•.••.•..•.....•...•........•182

5.7 PI..A.YERAC'I'ION ENGINE••.......................•••...•••..•..........•............ 182

5.7.1 PlA.l'ER-AC'I'ION INTERF'ACE.AND UI DESIGN •..•.......••...•••.•..•.••....•••.•..•..•........•..•....182

5.7.R 1'NVERSEPARSER ••••.•••••.•••••.•••••••••.••.••••••.••••.••••••••••...•••..••.•.•••.••••.•••..••••••••••..•.•.•.••..•.•..••J87

5.8 CHARA.crER ENGINE ••...•....•.•••..••••..•••.•.•.••..•....••..••.•.•••••••••.••......••.•.•.••.•.•...•...••.••190

5.8.1 CHARACI'ER ENGINE OVERVIEW ...•........................•......... 191

5.8.2 GOAL,ACI'ION AND EXECl.JTION US7"S •...........•..•......•..................................•..•......... 192

5·8.3 TURN'S Br. SEQUENCING ..•.•........•....•................•..•...........•..•..........................•................. 195

5·8·4 PER.SONAU7Y MODELUNG •...•.....••.•....••.....••....••...•...•..............•.....•..............•.............196

5·8·5 NEW GOAL GENERA.170N•..............•.................•.•......•...•.•........................•.•...•.....• J99

5.8.6 CHARAC1'ER EDIroR PANEL •.•.•....•...•....•.........•..............•.. 202

5.8.7 CHARISMA CHARAcrER ANIMATION SYS'I'EM •..•....•.•.•.••••........••.•..••.•..•.••..••.•..•.....flOfl

5·9 CRAnER SUMMARY ••••...•••......•••..•.•..•..•..•.•.••...•..••..••..•••.••..•••..•....••••......•..••.....••205

6 DISE FRAMEWORK EVALUATION ••••••••••••••••••••••••••••••206

6.1 ~RYTELLING ENGINE EVALUATION 207

6.1.1 BENCHMARKING FIC'f10N•.....•...................•.....•••..••..••.•.••••.•••.••....••.........••••..••......•207

6.1.2 T&S'r 1CH.A.RAC1'ER••.••....................••.•.•.......••....••••..••.•••..•••...•••.••......•.••.....•..•••....•••••..••.210

6.J-3 T&S'r:l CElA.RACI"ERS •••••••••••••••••••••••••••••••.••••••.•••••••.••••••••••••.•••••••.•••••••••••.••••••••.•••••••••••••212

9

6.1.4 ~ 4 CHA.RAcrERS •.....•.............................•..........................•.....•.••..•........•.•...•.....•.•••.2J4

6.1.5 EXTR.A.POI.ATION OF R.ESUL7S •.••.•.••........•..•.••.••........•.•..•...•..•..••.......•.....•.••..•.....•.•..••.215

6.2 EVALUATION OF DISK EDITO'RS ..•................... 217

6.2.1 DISE ED17UR EVALUATION•...........................•.••..............•.•..•.........•......•............. 2J7

6.2.2 PROCEDURA.L ED17UR EVALUATlON••.........•••..•...•.••...•..••.•.•••....•.............•.•.•.217

6.2.3 CHARISMA CHA.RACTER ANIMATION TOOL EVALUATION :118

6.3 CHAP'I'ER SUMMARY •.........................•.......•...•.•......••.............••....................••.....•. 221

7 CONCLUSIONS & FUTURE WORK •••••••••••••••••••••••••••••••222

7.1 THESIS SUMMARY 223

7.2 CONTRIBUTION 224

7.3 COMPARISON TO REI..A.TEDWORK •••..•••...••.•.•.•...••••.•••.•••••••••.••.•..••.•.••.••.....••..••224

7.4 LIMITATIONS•••.•.....•....••.•.......•..•..•..•••....•..................•.•.•••.•....•............ 229

7·5 F'UTU'REWORK ..•.•..•••••••.•••••.•..••••.••..••......•..•...••..••.••••..•••.•............••••.••••••...••....•.•.230

7-5·J PIANN'lNG•.........•....•...•.•.................•.....•..•..................230

7-5·2 CH.A.RACTERS ..•...............•............••.......•.......................................•...........•.................•••• 232

7-5·3 EDIroRS ...•..•............•..•.•..•...•...........233

7-5·4 IMPROVING ANALYSIS•................•..•..•.•.........•••...............•.•.........•..•...•........•.•...•..•..•234

BIBLIOGRAPHY •••235

~J»~~ ••2~~

APPENDIX 1- Test 1Console Output 249

APPENDIX 2 - DISE Editor Tutorial 260

10

RESEARCH PUBLICATIONS

Here is a list of papers I have published during my time as a research student.

Cooper, So, El Rhalibi, A., Merabti, M., & Price, M. (2008). Dynamic Interactive

Storytelling for Computer Games Using AI Techniques. 6th International Conference in

Computer Game Design and Technology (GD'lW). liverpool: LIMU.

El Rhalibi, A, Dennett, C., Merabti, M., Fergus, P., Cooper, So, Ariff Sabri, M. &
Price, M., 2008. Homura: A Step Further Toward 3D Java Game Development Support. In

ACMACE 2008., 2008.

Dennett, C., El Rhalibi, A., Fergus, P., Merabti, M., Cooper, So, Sabri, M.A., Carter,

C. & Price, M., 2008. 3D Java Game Development with Homura. In 6th International
Co7iference GD7W 2008. Liverpool, 2008.

El Rhalibi, A., Dennett, C., Merabti, M., Fergus, P., Cooper, So, Ariff Sabri, M. &

Price, M., 2009. 3D Java Web-Based Games Development and Deployment. In IEEE
International Conference on Multimedia Computing and Systems 2009. Ouarzazate,

Morocco, 2009.

El Rhalibi, A., Dennett, C., Merabti, M., Fergus, P., Cooper, So, Ariff Sabri, M., et aI.

(2009). 3D Java Web-Based Games Development and Deployment. IEEE International
Conference on Multimedia Computing and Systems 2009, Volume: 2, Issue: 3-4, pp. 553
- 559. Ouarzazate, Morocco.

Fergus, P., Kifayat, K., Cooper, S., Merabti, M., El Rhalibi, A. "A Framework for

Physical Health Improvement using Wireless Sensor Networks and Gaming", ICST/IEEE

International Workshop on Technologies to Counter Cognitive Decline (TCCD), in

conjunction with the 3rd International Conference on Pervasive Computing Technologies

for Healthcare (Pervasive Health), 2009, City University London, UK, 31st March 2009.

Fergus, P., Kifayat, K., Cooper, So, Merabti, M., El RhaIibi, A. -A Body Sensor

Network and Gaming Platform for Dynamically Adapting Physiotherapy Treatments" at

The Fifth lASTED European Conference on Internet and Multimedia Systems and
Applications, Euro IMSA 2009, July 13-15, 2009, Cambridge, United Kingdom.

El Rhalibi, A., Carter, C., Cooper, S., Merabti, M., Price, M. "Charisma: High

Performance Web Based MPEG-4 Compliant Animation Framework", Journal ACM
Computers in Entertainment, Vol. 8, Iss. 2.,Article 8. Nov. 2010.

11

Cooper, So, El Rhalibi, A., Merabti, M., &Wetherall, J. (2010). Procedural Content

Generation and Level Design for Computer Games. AISB 2010. Leicester.

Cooper, So, El Rhalibi, A., Merabti, M. & Price, M., 2010. DISE: The Digital
Interactive Storytelling Engine. In The utn Annual Post Graduate Symposium in the
Convergence of Telecommunications, Networking and Broadcasting (PGNEI' 2010).
Liverpool, 2010.

Carter, C., Cooper, So, El Rhalibi, A., Merabti, M., & Price, M. (2010). The

Application of an MPEG-4 Compliant Animation to a Modem Games Engine and
Animation Framework. Lecture Notes in Computer Science 2010, 6459/2010, pp. 326-

338.

Cooper, So, El Rhalibi, A. & Merabti, M., 2011. DISE: A Game Technology-based

Interactive Storytelling Framework. In The 12thAnnual Post Graduate Symposium on the
Convergence of Telecommunications, Networking and Broadcasting (PGNET 2011).
Liverpool, 2011.

Duarte, R., El Rhalibi, A., Merabti, M., Carter, C. & Cooper, So, 2011. An MPEG-4

Compliant Quadric-Based Surface Adaptative LOO. In The 12th Annual Post Graduate
Symposium on the Convergence of Telecommunications, Networking and Broadcasting
(PGNET2011).Liverpool, UK, 2011.

12

TABLE OF FIGURES

Figure 1:Story vs. Game (Murray, 2004) ...•.......•....•••..•••...•.••.•......•••••.••.•..•.•••.•.•..•......•·····30

Figure 2:We Tell Stories Google Maps Example (Penguin Books Ltd, 2009)·············..··..·37

Figure a:Act:AffActStory Viewer Screenshot (Rank, ActAffAct, 2004) 38

Figure 4: Bovary Architecture (Pizzi &Cavazza, 2007) 39

Figure 5: CAROSA System Diagram (Allbeck, 2010) 40

Figure 6: DeathKitchen System Overview (Lugrin & Cavazza, 2006) 42

Figure 7: Defacto Plot Manager Architecture (Sgouros, 1999)··· · · ··· ··..··43

Figure 8: DraMachina UI Showing Object Hierarchy (Donikian & Portugal, 2004) ·..···45

Figure 9: Communications Flowchart of a GM-Controlled Multi-player CRPG ..·..·······.... ·47

Figure 10: Facade Interactive Drama Architecture (Mateas & Stem, 2003) ·51

Figure 11:FearNot! Victim Interaction (ecirweb, 2006) ··.···..·· ·.52

Figure 12: FearNott Agent Architecture Diagram (Louchart, Aylett, Dias, & Paiva, 2006) 53

Figure la: GADIN Architecture (Barber & Kudenko, Generation of Dilemma-based
Interactive Narratives with a Changeable Story Goal, 2008) 54

Figure 14:Encoding and Decoding of Story Components (Ong & Leggett, 2004) 55

Figure 1$ System Architecture for Multiplayer Stories (Fairclough & Cunningham, 2003)

.. ···········.·.······57
Figure 16:LOGTELL's Architecture (Ciarlini, Pozzer, Furtado, & Feij6, 2005) 58

Figure 17:The Siftables Hardware (Merrill & Kalanithi, 2008) 59

Figure 18: Sleep Is Death Editor View (Rohrer, 2010) 60

Figure 19: Shannon vs. Jason: Are We Home? (Rohrer, 2010) 61

Figure 20: Storyt,ron SCreenshot•.. 64

Figure 21: Aristotle's Dramatic Arc •.•...•.•....•.•....•.•....•.•...•••...•.....••....•......••..••••.......•••.•.•..••.68

Figure 22: Freytag's Pyramid (Wheeler, 2004) 69

Figure 2$ Field's Three-Act Paradigm (Field, 1979) (Christopher, 2010) ··70

Figure 24: Input and Output of Prevoyant (Bae &Young, 2008) 77

Figure 2$ Outline of the Hero's Journey (Campbell, 1949) 78

Figure 26: Homura Art. Pipeline 105

Figure 27: Branched, Converging and Kill on Stray Tree Based Narratives l09

Figure 28: DISE Story Database 113

Figure 29: DISE Use-case Diagram 114

Figure 30: Create Story 'Ex.panded.View 115

Figure 31: Play Story- Expanded View •...•................. 116

Figure 32: DISE Architecture 118

Figure 33=Logical Architecture of a Homura-based Game 119

Figure 34: Game Engine Base Class Diagram 121

Figure 35: Fact Database Class Diagram 122

Figure 36: Story Data Package Class Diagram 123

Figure 37: Player Action Engine Class Diagram 124

Figure 38: Character Engine Class Diagram 125

Figure 39: Planner Interface Class Diagram 126

Figure 40: Story Manager Class Diagra.m 127

Figure 41: DISE Architecture 131

Figure 42: DISH Class Diagram 133

Figure 43: Predicate Edit Panel 138

F' Type H' rarch'igure 44: le ies 139

Figure 45: Breakdown of an Action Verb 143

Figure 46: DISE Action Editor UI Panel 144

Figure 47: ()\)ject F.clitPanel 146

Figure 48: DISE World Bditor Free Drop Mode 147

Figure 49: Editor Move/Delete Menu 148

14

Figure 50: Navmesh Floor plan•...............•.. 151

Figure 51: The Vertex Labels for Each Box and Transform Face Tool UI with Vertex
Numbers 153

Figure 52: DISE World Editor Vertex Mod.e 154

Figure 53: DISE World Editor Room Mode 154

Figure !)4-: Midpoint Displacement Algorithm 155

Figure 5S: Original L-System for modelling the growth of Algae 158

Figure 56: L-system for grid block system roads 159

Figure 57 Labelled Rule Example 1 (Knight, 2002) 160

Figure 58 Labelled Rule Example 2 (Knight, 2002) 160

Figure 59: Example House COnfigurations 161

Figure 60: Procedural Window Textures 162

Figure 61: Swing User Interface Layouts 163

Figure 62: Procedural Buildings 163

Figure 63: Procedural Terrain Generator 164

Figure 64: Scene Editor Diagram 168

Figure 65: Story Editor and Scene Trigger Manager 172

Figure 66: Planning Data Requirements 174

Figure 67: Concurrent planning using durative actions (Fox & Long, 2003) 179

Figure 68: Planning Benchmarks (Barros &Musse, 2007) 180

Figure 69: Action Menu Prototypei - Circle Menu 184

Figure 70: Action Menu Prototype 2 - Cloud Menu 185

Figure 71: DISE UI Action Sequence 186

Figure 72: Inventory screens from Diablo 3 and Deus Ex 187

Figure 73: Object/V'erb linkage Table 190

Figure 74: Detailed Character Engine Class Diagram 192

Figure 75=Plan to Enter a Locked Room ...193

15

Figure 76: Character, World and Planner Interactions 194

Figure 77: Character Planning '!'urns ·· ·196

Figure 78: Effect of NPC Roles, Modifications and Reactions 200

Figure 79: Character Role Sequence•..•......... 201

Figure 80: MPEG-4 Feature Points 202

Figure 81: A Charisma Compliant Virtual Character Model 203

Figure 82: FAPU Definition Areas in Charisma 204

Figure 83: Example of Scene Structure in Cloak of Darkness DISE Implementation 209

Figure 84: A Graph Showing the DISE CoD Test 1Tum Times 210

Figure 85: A Graph Showing the DISE CoD Test 1Memory Usage 211

Figure 86: A graph to Show the Variation in Test 1Tum Times over 5Runs 211

Figure 87: A Graph Showing the DISE CoD Test 2 Tum Times 212

Figure 88: A Graph Showing the DISE CoD Test 2 Memory Usages 213

Figure 89: A graph to Show the Variation in Test z Turn Time over 5 Runs 213

Figure 90: A Graph Showing the DISE CoD Test 4 Tum Times 214

Figure 91: A Graph Showing the DISE CoD Test 4 Memory Usages 215

Figure 92: Linear Predicted '!'urn Time with Increased Character Numbers 216

Figure 93=Exponential Predicted '!'urn Time with Increased Character Numbers 216

Figure 94: Models of Gabrielle used in the evaluations 218

Figure 95: Charisma Prototype Application•....... I •••••••••••••••••••••••••••••• 1•••• I ••••••••••••••••• 220

Figure 96: Architecture of an Interactive Fiction (Donikian & Portugal, 2004) 226

Figure 97: ace Model of emotion (Ortony, 2003) 232

16

" I11 computer games characters aren't presented,
they are experienced (Noy/e, 2006).

1 INTRODUCTION

1.1 CONTEXT

As games become more complex their use as a storytelling medium is growing in
importance and popularity. The interactive nature of games means that stories and
characters can become more personal and involving.

Stories can be implemented in different ways: either linear, branching, parallel, or
threaded. Games typically follow a linear storyline, where the events of the story are
presented in a predefined sequence. Itcan be argued that making a player follow a defined
story can diminish the interactivity level of a game; the player is, after all, following a pre-
set path already laid out for him by the author. In order to still convey a story and allow
the player to feel a high degree of interactivity, the concept of interactive or non-linear
storytelling has to be introduced. Simply put, Interactive Storytelling presents the
opportunity for players to have an input on what is happening in the game world they are
placed in, to be the ones who dictate how certain events may come to pass.

1.2 GOALS & OBJECTIVES

Our goal is to design and evaluate a more complete Interactive Storytelling engine
and frameworkJmiddleware, called 'The Digital Interactive Storytelling Engine' (DISE);
which will consist of separate player and editor components for the creation and
deployment of new story modules.

DISE will dynamically create interactive narratives which are focused on user's
actions to create alternative storylines and points of dramatic tension. The engine is
provided with knowledge of generic story actions met in many storytelling domains. The
story designer is required to provide domain specific information, for example regarding
characters and their: relationships, locations, actions and the key scenes and events that
link them together. A planner creates sequences of actions that allow a non-player
character to pursue high level goals. These goals can be defined at the start of a story,
triggered as a response to certain events or 'injected' by the story manager that is pre-
programmed by the story author. The user interacts with the story-world by moving

17

around in a first person viewpoint and making decisions on relevant actions by choosing

the object to interact with and constructing action sentences from a set of available verbs

by linking them with nouns or other verbs. Using this action the engine chooses and

adapts new story lines according to the user's past behaviour, surrounding character's

moods, environment, pre-determined event triggers and other variable factors.

Our research goals and objectives are as follows:

• Design and evaluate a more complete/comprehensive Interactive Storytelling
(IS) engine/framework.

• Evaluate current approaches used in IS literature, consolidating the
knowledge we have of these approaches and analyse the advantages and

drawbacks of each system.

• Research suitable narrative theories and models to deconstruct reoccurring
universal story elements.

• Research and create novel suitable computational models and their

generality and usefulness in creating Interactive Storytelling systems and
agent Artificial intelligence.

• Define and develop a novel interactive storytelling framework providing a
novel approach to story design and play.

• Create user friendly editors so story authoring and level design can be done

by someone with relatively little programming or graphics experience.

• Include animated characters to add a level of realism and immersion.

• Include procedurally generated content to speed up story world creation.

• Create a framework that allows a whole story to be saved in a pluggable
package.

• Implement technical demos for each aspect of the framework.

• Develop suitable approaches to evaluate the framework.

• Disseminate the outcomes of our research.

18

1.3 RESEARCH METHODOLOGY
In order to achieve the research objectives outlined above, we intend to address the

following questions:

• Which techniques and structures can be used in games to progress a
narrative further, without breaking player immersion? What are the
advantages and drawbacks of these techniques, and the related technological

limitations and what improvements could be made to these techniques?

• How can a story be broken down into smaller subplots that can be
experienced at the player's discretion, whilst keeping a strong plot structure
and maintaining a consistent point-of-view, or create smooth transitions

between them? What theoretical model should be used to link these small

subplots together?

• Which AI planning methods used in current research are the most relevant

or need to be revisited to fit in the framework and will these methods be

suited to controlling and adapting the story in accordance to the player's

actions? Can a novel AI approach or heuristic be applied?

• What Interactive Storytelling scenarios could be used to show flexibility and

generality on dynamic and interesting story plots with multiple genres?

• What game technologies will be required for an Interactive Storytelling

engine and what drawbacks will the game engine face when dealing with

complex stories with large worlds and multiple characters?

• Can game assets/environments also be generated procedurally?

• Can characters be realistically animated and display their emotions?

In response to these questions the following research methodology was carried out

for this project. The project consists of five stages applied through the following iterations:

1. Uterature Review and Critical Analysis Review and consolidation of

knowledge of existing Interactive Storytelling systems.

2. Problem Analysis Bc Design Evaluate narrative and computational

models to build a comprehensive Interactive Storytelling framework.

3· Framework Implementation Implement the components of DISE using
a fast prototyping approach

4· Tedmieal Demos Implement a series of prototypes to show eertain aspects

of the framework as a proof of concept and evaluate its viability.

s· Critical Assessment Review the framework comparing it to the related

work and stating its contn'hutions and limitations.

19

1.4 CONTRIBUTIONS TO KNOWLEDGE

Previous Interactive Storytelling systems have architectures which are not capable of

maintaining the change in dramatic tension of the narrative over a long time period or

have a more limited branching narrative with a set number of endings. Other examples
have little to no user interaction and can disembody players from an involving story

experience by treating them as an omnipotent god like entity or by baving limited
graphical representations of the player and surrounding world.

This thesis makes the following contributions to knowledge. These are listed below
categorised as either primary contributions or secondary contributions in respect
to their importance in the field of Interactive Storytelling:

1.4.1 PRIMARY CONTRIBUTIONS

1. Provide an up to date literature survey of existing Interactive
StorytelliDl systems, both in research and commercial games.

Consolidating the knowledge of previous work in the field of Interactive

Storytelling can help to identify techniques that provide good results and also to

see the areas in Interactive Storytelling that have not be thoroughly explored yet

and in which we could provide a novel perspective. Some of this literature survey

was published in the following papers: (Cooper S. , El Rhalibi, Merabti, & Price,

2008), (Cooper S. , El Rhalibi, Merabti, & Price, DISE: The Digital Interactive

Storytelling Engine, 2010) (Cooper, El Rhailbi, Merabti, & Price, 2010) and

(Cooper, El Rhalibi, & Merabti, DISE: A Game Technology-based Interactive
Storytelling Framework, 2011).

2. Identify and create the key design features, most suitable narrative
theories and computational models for use in an Interactive
Storytellina framework.

By reviewing both the theory of how stories are formulated and computer science

together, stories can be broken down into a formal language, represented on a

computer and created procedurally using changing variables (Cooper, El Rhalibi, &
Merabti, DISK: A Game Technology-based Interactive Storytelling Framework,
2011).

3· Make a novel storyte1Jing framework with full real-time interaction in a
dynamic 3d world with the player t:aldna the role of a main character in
the story and looking through their eyes in a first-person perspective.

Examples of other Interactive Storytelling systems are provided in Chapter 3

20

'Related Work', but only a small portion of these include the player as a main

character in the narrative, whilst running in real-time. In some systems the player

is not actively involved in the narrative and is an omnipresent entity limited to

passive indirect interactions with the storyworld (Cooper S. , El Rhalibi, Merabti, &
Wetherall, Procedural Content Generation and Level Design for Computer Games,
2010) (Cooper, El Rhalibi, Br Merabti, DISE: A Game Technology-based Interactive

Storytelling Framework, 2011). Context filtering has been used in modem remakes
of classic adventure games to improve the user's flow of interaction. By only

showing possible actions to the player DISE will also remove the jarring experience
of choosing or inputting an action only to find it can't be done or provides no

response in the system.

4. Create useable editors to mllll88e story data and describe characters.

New stories are complicated to design without an editor and would require a huge

alteration to the systems code base. Using a separate file format to hold story data

independently from the engine and including GUI based editing tool will lower the

barrier to entry for new story authors and means the source code of the main

system does not need to be distributed.

5. Create useable editors for 3d word/level design/editing and game
assets.

An easy to use editor is needed to allow Story Authors to build their environments

quickly and also load in and position ad model files to represent complicated
object such as props and scenery.

6. Development of integrated solution for DISE Framework.

The aforementioned systems for storytelling, games, planning and editing need to

be integrated into a comprehensive framework, which provides a supportive

pipeline for creating and experiencing interactive stories, using the Homura Game
Engine (Dennett, et al., 2008).

7. Evaluation ofDISE Framework

The DISE framework has to be evaluated with experiments that provide evidence

in support of our thesis and emphasise either the proof-of-concept (demonstrating

the viability of a method/technique) or efficiency (demonstrating that a

method/technique provides better performance than those that exist), depending
on the systems role in the overall framework.

8. Dissemination of the findinp

21

The outcomes of DISE have been disseminated via a number of papers and our

work has been presented at international conferences. These include (Cooper S. ,

El Rhalibi, Merabti, Br Price, 2008), (Cooper, El Rhailbi, Merabti, Br Price, 2010),

(Cooper, El Rhalibi, Br Merabti, DISE: A Game Technology-based Interactive

Storytelling Framework, 2011) and (Cooper S. , El Rhalibi, Merabti, Br Price, DISE:
The Digital Interactive Storytelling Engine, 2010).

1.4.2 SECONDARYCONTRIBUTIONS

1. Create a real-time facial ammation system for storyte1lins with
characters.

The Charisma system, we have developed, can be integrated into DISE to allow

key-frame editing and real-time play back of MPEG-4 compliant facial animation

synced with audio dialogue. This can be used to introduce a story or convey a

particular message in a scene. Our work on the Charisma System is described in

full in the publications "The Application of an MPEG-4 Compliant Animation to a

Modem Games Engine and Animation Framework" (Carter, Cooper, El Rhalibi,

Merabti, Br Price, 2010) and "An MPEG-4 Compliant Quadric-Based Surface

Adaptive LOD" (Duarte, El Rhalibi, Merabti, Carter, & Cooper, 2011).

2. Procedurally create content, including art assets and level design from
high level constraints controlled by the story author.

Procedural methods show great potential but are an underused solution to manual

content creation. Limitations to these methods include the lack of control of the

output due to its random nature and the absence of integrated solutions, although

more recent publications increasingly address these issues, they are not usually

incorporated into Interactive Storytelling Systems. Our research on procedural

content was presented at the AISB in the following paper (Cooper S. , El Rhalibi,

Merabti, & Wethera11, Procedural Content Generation and Level Design for
Computer Games, 2010).

3. Possibility for multiplatform and web deployment of the
pmes/edltora.

Using the Net Homura platform (Carter, Cooper, Dennett, Br Sabri, 2008) we have

created, it is possible to deploy DISE online from a Java WebStart or Applet
directly from the most popular web browsers.

22

4. Provides a pluggable planning system for further research and
expandability.

By designing the planner to be self-contained with a Java class linking it to DISE,

any new planners using the PDDL (Planning Domain Definition Language) format

that support the correct requirements functions can be switched with the default
planner. This means that comparison tests can be made and the speed and
functionality of DISE can be increased in the future.

1.5 THESIS STRUCTURE

The rest of the thesis is structured in the followingway:

Chapter 2 - Background: covering our research area, problem and motivation.
In this section we present the background of our research area, which is Interactive
Storytelling,demonstrate a wider appreciation of the subject (to givecontext), and provide
our problem statement and motivations for this thesis.

Chapter 3 - Related works a literature review of relevant work in the field. In
this section we will survey and critically assess projects and publications related to the
field of Interactive Storytelling,planning, and computer games technology and state their
relation to our ownwork, alongwith their positive and negative aspects.

Chapter 4 - Interactive Storytellins Framework Analysis and Desip: the
analysis and design of our Digital Interactive Storytelling Engine (DISE) and its
encompassing framework. The main focus of this section is to determine how Interactive
Storytelling (IS) systems can be improved and look at what makes a story interesting and
immersive. We will break down the problem, the deliverables and create a philosophy of
our approach in picking the important ideas to build our Framework. It also contains our
plan of attack to show we approached the problem systematically, whilst raising any
design issues that could occur.

Chapter 5 - DISE Implementation: how the DISEframework designwas finally
implemented and made into prototype applications. In this section we will explain the
inner systems and their data models in more detail and will also include some code
examples.

Chapter 6 - DISE Framework Evaluation: what information we have gained
from the benchmark and comparison tests. This section explains how we got our results
and evaluates what they mean. We will describe the results of experiments that provide
evidence in support of our thesis. We chose experiments that will emphasise either the
proof-of-concept (demonstrating the viability of a method/technique) or efficiency
(demonstrating that a method/technique provides better performance than those that
exist).

Chapter 7 - Summary Conclusions: assessment of our hypothesis; and
demonstration of its precision, thoroughness, contribution to knowledge and comparison
with the closest rival; and also its limitations. 'Ibis section is a summary of our thesis, what
we learnt and how it was applied.

Chapter 8 - Further Worlu the work can be carried out in the future to further
enhance this project. This section contains information on missing functionality,

descriptions of variations, extensions, or other applications of our central idea along with
the possibilities for future research.

" Read you a story? lVhatfull would that be? I've got Q better
idea: let's tell a story toqether (Adam Cadre, Photopia, 1998).

2 BACKGROUND

In this section we present the background of our research area, which is Interactive
Storytelling, demonstrate a wider appreciation of the subject, and provide our problem
statement and motivations for this thesis.

2.1 RESEARCH AREA

The research background contains a descriptive account of storytelling through

history and compares its different forms and media of conveyance along with their

popularity, reception and the importance of storytelling as a social and learning tool in

human society. We examine the inclusion of stories in computer games over the last forty

years and the new opportunities for story interaction presented by this relatively new

format, whilst comparing techniques to more classically established media to evaluate the

main similarities and differences to see what can be adapted to better suit the needs of an

interactive medium. The following chapters focus on general storytelling in various media;

then written storytelling and cinematic storytelling, with their similarities and differences

to computer games; and finally how storytelling is currently used in games today.

2.1.1 STORYTELLING AND ITS MANY FORMS

Storytelling has been around as long as humanity has had language, maybe even

earlier as primitive drawings found on cave walls suggest. "Our idea of self and our

understanding of culture and the world is not only guided by the stories we hear, but

shaped by the stories we tell" (Elrod, 2007). Children use storytelling in the act of play, to

learn about the world and develop social skills. MalIan states "From a very early age their

[children's] play takes the form of story; sometimes they term their story play 'pretend' ...

storytelling functions as a social, political, and educative activity" (MalIan, 2003).

Stories can be conveyed in different ways that use different techniques, styles and
formality. Some most commonly used media are:

• Oral often combined with expression and gestures - can be
someone's account of a real or fictional event or a radio drama, etc.

26

• Theatre - live oral & visual conveyance of a story by one or more
actors/actresses.

• Written - can be a novel, play, script, journal, poem, choose-your-own
adventure book, etc.

• mustrative - paintings can tell a story, more recent forms are
comics/graphic novels which are sometimes combined with written dialogue.

• Cinema - stems from theatre, pre-recorded film can combine audio, visual,
and written storytelling.

Interactive Storytelling - much younger than the other forms, only developed
over the last 40 years. This was originally in the form of branched written narrative with
limited choices, but now implementing techniques from the aforementioned media -
especially the visual aspect of cinema and the first-person narrative of written literature.
Now unique in the aspect of interactivity where your actions can change the outcome of
the story, with more depth and less limitations than interactive fiction/choose-your-own
adventure books (Berlyn & Blank).

We will leave Interactive Storytelling for now and focus the next chapters on the
written and cinema storytelling media mentioned above and how these have been adapted
to the world of games.

2.1.2 COMPARING GAMES& WRITTEN STORYTELLING

Originally some early games borrowed heavily from written storytelling media such
as novels. In 1973 Text Adventure/ Interactive Fiction (IF) games such as ·Colossal Cave"
were released and the genre gained huge popularity. "IF is a unique form of computer-
based storytelling which places the player in the role of a character in a simulated world,
and which is characterized by its reliance upon text as its primary means of output and by
its use of a flexible natural-language parser for input" (Maher, 2006). These games were
fully text based with no graphics and were similar in design to the choose-your-own
adventure books. Since then as games grew richer in scope they still looked for guidance
in written storytelling as it has been around for centuries and focuses on a first person
viewpoint (or what's called a tight third-person written account), which is hi&hly relevant
and well suited to games where the player takes on the role of the lead character (Noyle,
2006). Interactive Fiction pmes eventually spawned Graphic Adventure pIlles, which
replaced some of the text with a point-and-click user interface input method and animated
2D (and later 3D) graphics. Some of the most popular Adventure games in the late 80'S

and early 90'Swere from the Lucas Arts Entertainment team and used a custom seriptilll
language called SCUMM. Some popular SCUMM titles include Maniac Mansion, Day of
the Tentacle, Sam & Max Hit the Road, the Indiana Jones Series, and the Monkey Island

27

Series.

2.1.3 COMPARINGGAMES& CINEMA

Cinema has now been around for over 100 years and is said by Nelmes (Nelmes,
2003) to fall into three categories:

• Classical DalTative - Evolved and sustained since 1920'S Hollywood
movement.

• Anti-classical - European model (also known as counter-cinema or art
Cinema).

• Avant-garde - deliberately experimenting with many forms and
construction of cinema to evolvea new style.

"Classicalnarrative is based on a set of simple principles. There is usually a central
protagonist - the hero - who has a particular goal" (Nelmes, 2003). The story's hero
engages with romantic, problematic or antagonistic encounters which prevent them from
reaching their goal in a recognisable structure of causes and effects. The 'beginning',
'middle' and 'end' structure is used to establish the narrative, extend and complicate the
story and lastly to resolve an outcome (usually a happy ending variation with goals
completed and lessons or moral values learnt). This structure is similar to the
Monomyth/Hero's Story mentioned in '2.1.1 STORYTEWNG AND ITSMANYFORMS'.
Cinema can create a powerful suspension of disbelief and evoke a wide variety of emotions
in its viewers. Computer games have been compared to films in many respects as they
have matured in graphical capabilities over recent years, now using three dimensional
perspectives and cinematographic techniques to portray long narratives and
characterisation.

The key difference is that classic cinema is a passive experience with the viewer
taken along a static path consisting of a linear or clearly sequential and predetermined
beginning, middle and end set out by a writer/director. The interesting comparison comes
when looking at anti-classical or avant-garde cinema vs. computer games where "our role
in this process is not merely a passive one" (Nelmes, 2003), but participants are asked to
have a more active involvement, making sense of the individual scenes or trying to predict
the path of the story. A more challenging narrative is portrayed using techniques that
break the structure of classical cinema, such as: non-linear storylines; multiple
protagonists; different realties (dreams, hallucinations, fantasies); mismatched sounds,
edits, jump-cuts; and alternative endings, such as a sudden tragedy or plot twist. The
problem lies that even these challenges can be overcome after multiple viewings as these
twists will always play out in the same way and the characters will become predictable,
which is one advantage of the deeper level of interactivity and direct involvement in

28

computer games, "In computer games characters aren't presented, they are experienced"
(Noyle, 2006).

Although the level of interaction is superior, the genre of computer games is still in
its infancy. Many modem lames borrow techniques from classical and anti-classica1
cinema, but due to the different nature of the media story authors must use caution. Noyle
talks about the errors in modem games that neglect "point-of-view", which can transpose
emotional impact onto a characters action by drawina on their past experiences and
current feelings towards what is happening. Another common error is when the point-of-
view is suddenly changed too often and without transitional warning, for example from
first to third person, or from one character to another, which can be a jarriDl experience
for a player.

These errors can be avoided in cinema using traditional techniques, which were also
previously used for a long time in theatre (where several characters may be played by the
same actor), or even techniques used in novel writing. Games on the other hand require
more thought as the player also does not want to be led by the hand, but to control their
own experience.

This means the elements of storytelling that will be presented to the player must be
discreet and follow a fairly consistent point-of-view, mainly the first person narrative.
Instead of being told, "he climbed the fort wall", players want to live out the action first-
hand ("I climbed the fort wall"), Emotion can also be drawn from the details surrounding
the experience, for example: What was the wall like? How difficult was it to climb? What
lies at the top?

Games such as The Legend of Zelda and Half-Life implement this first person
narrative by keeping the lead character silent, allowing the player to project their own
personality onto the protagonist and assume his/her identity (Bassos, 2004) (Bicknell).

2.1.4 STORYTELLINGIN GAMES

Initially stories and games have different demands and constrains. Figure 1below, as
detailed in Murray's book (Murray, 2004), plots "game" against "story" as the X and Y
axes of a graph respectively. The top right comer shows the area where these two meet and
gives the game Myst as an example of a game with a story, whereas the bottom right
contains the 'IV quiz show Mastennind which is purely a game show. In the past games
have focused mainly on one of the story and game goals, falling closer to one axis than the
other, with classic games like Super Mario Bros. only having the most basic story and
focusilll purely on skill and action pmeplay, and text adventure games with a more
detailed story, but limited game elements. The main difference between stories and games

29

according to Costikyan are "Stories are linear, though they can leap about temporally; they
are experienced the same way every time. Games are non-linear, though they are
experienced over time; game sessions are different each time" (Costikyan, 2005)·

FlKUJ"e UStoryvs. Game (Murray, .004)

Murray states, "The stories we tell reflect and determine how we think about
ourselves and one another. A new medium of expression allows us to tell stories we could
not tell before, to retell the age-old stories in new ways, to imagine ourselves as creatures
of a parameterized world of multiple possibilities, to understand ourselves as authors of
rules systems which drive behaviour and shape our possibilities" (Murray,2004).

The new medium referred to is that of computer games. Since 2004 when this
statement was written, that medium has advanced technologically allowing rule based
systems to be more complicated than ever, with the latest computers and games consoles
having multiple threads and processors running in parallel. With this extra power and
greater storage capacity games are becoming bigger and more epic projects with sprawling
worlds, an array of characters and a more complex narrative.

Fairclough believes that "The opinion that stories and games are fundamentally
incompatible is out of date, after the success of many games that blend the two to create
something that is different to both concepts. Half Life 2, Fable, Doom 3, and more games
are coming out that win set new standards in story-based lame A.I." (Fairclough C. ,
2004)

According to Spector (Spector, 2007) the features common to allaood stories are
change, pacing, compelling charaetel'l and subtext,

30

• Player's actions "must change" themselves, the game world and the
characters they meet.

• The pacing must vary to hold interest, with build-ups at the beginning and
the end.

• Characters have to be interesting with their own personalities, goals, beliefs,
needs and desires.

• The story should have a main plot subtext (content understood by the
observer but not announced explicitly by the characters) as well as the
smaller obvious sub-plots that make up the game.

Spector continues further by explaining five ways to approach storytelling in games:
rollercoaster, retold, sandbox, shared-authorship and procedurally generated
(Spector.aooz).

• Ilollereoaster storytelling uses a pre-determined narrative, which players
traverse in a linear manner with no significant options or unique
experiences.

• Retold stories are abstract games with no story at all other than individual
accounts of the game experience.

• Sandbox storytelling allows the player to interact with toys and create their
own story through the choices that they make.

• Shared Authorship gives the player some freedom in a similar way to
sandbox storytelling, but also has pre-determined goals as in rollercoaster. It
is up to the player to decide the order they achieve the goals or to ignore
them altogether.

• Procedural/Interactive Storytellin&.

The last one, procedural (or interactive) storytelling, is the most interesting and is
the focus of this research. It aims to give players more freedom to explore and develop
relationships with the game characters and world through their choices. We will explain
this technique in much more depth throughout the thesis, starting with the next chapter.

2.1.5 WHAT IS INTERACTIVE STORYTELLING?

According to Crawford Interactive Storytelling is "A form of interactive
entertainment inwhich the player plays the role of the protagonist in a dramatically rich
environment" (Crawford, Chris Crawford on Interactive Storytelling, 2004).

It aims to give players more freedom to explore and develop relationships with the
game characters and world through their choices. Barber writes "An interactive narrative
is a game world in which the user-controlled character(s) can physically and mentally

31

interact with (perceived) total freedom while experiencing a dramatically interesting story

which is fundamentally different on every play - dependent on the user's actions. The user

will be able to act as and when they desire, in ways which will have a perceivable long and

short term effect on the story. They will be emotionally involved in this world, and will
thus greater appreciate the compelling storyline which results" (Barber, Interactive
narrative, 2008).

The main difference between passive and interactive stories is this level of user
participation and involvement with the lead character.

'The IGDA article on the "Foundations of Interactive Storytelling" (IGDA, 2001)

defines Interactive Storytelling as "Any game featuring both characters and a story in

which one or more narrative aspects changes interactively". They write that the possible
narrative aspects that could be made interactive include:

• Plot - 'The most obvious route to Interactive Storytelling is by creating a plot

that varies in response to the player's actions. Perfect Entertainment's

'Discworld Noir' and, to a much lesser extent, Konami's 'Metal Gear Solid'
are examples of this.

• Character Attitudes Bc Personality - Amore satisfying way to approach
interactive stories is to look at ways that the player's actions might affect the

attitudes of characters in the game world. We will look at several ways of
approaching this later in this thesis.

• Theme - Although strictly hypothetical at this time, it is possible to

conceive of a game in which the theme varies interactively. For example,
imagine a game in which the story elements are mediated by the game's story
engine in relation to that which the player has paid the most attention. If the
player spent considerable time talking to a romantic interest, the theme of

the story becomes biased towards a romantic element; if they focused on
violent activity, the thematic details might evolve around an exploration of

violence. Mastering dynamic plots and character attitudes will almost

certainly be a prerequisite to exploring interactive themes.

2.1.6 POPULARITY OF GAMESVSOTHER MEDIA

We mentioned above that although computer games allow greater interactivity due

to the nature of the medium, in the past they were not seen as a mainstream

entertainment format; so would itbe wise to choose this method of story delivery?

Computer lames have pown in popularity in the last twenty years and are now

reaching the mainstream market and even outperforming other more traditional media.

32

Mike Griffith, chief of Activision talked about US market statistics which showed that
between 2003 and 2007 sales of movie tickets fell by 6"; the number of hours of 1V
watched dropped by 6", sales of recorded music slumped 12" and purchases of DVDs
remained flat, whilst over the same four-year period the video game industry grew by
40%. He stated "Video games are poised to eclipse all other forms of entertainment in the
decade ahead" (BBCNews, 20(9).

2.2 AIM AND OBJECTIVES
Storytelling is an important part of human society, it is a social, political, and

educative activity that broadens our idea of self and our understanding of the world and is

also a popular fonn of entertainment and escapism.

The art of storytelling has been developed over many years and spans every form of
media. Computer games are a relatively new format only gaining popularity in the last 20
years and sometimes said to be in their infancy and not showing as much depth and
maturity as books and films. We will borrow some of the techniques mentioned previously
from more firmly established media for both the narrative and visual aspects of games, but
as they are unique in their level of interactivity we need to investigate new ways to
generate stories procedurally that react to a players actions. To create a dynamic plot and
interesting characters we will look at what has already been achieved in the field of
Interactive Storytelling and evaluate some techniques used in computer science and AI
research that could help us create complex interactions and dramatic events.

The objectives of this research thesis are to investigate the exciting field of
Interactive Storytelling and its application to computer games. We will examine the
techniques used in computer games to progress a narrative further, such IS surroundings,
events/interactions, point of view, music, characters, and evidential or personal items
such as diaries or recordings, plot pacing and subtext.

Many approaches have been developed recently, as presented in '3 RElATED
WORK'. These approaches are mostly based on rules, and planning techniques. Many
others that use AI techniques based on heuristics, meta-heuristics, emotional models,
norms group dynamic and agent systems are available and could be interesting areas to
develop and contribute to in the perspective of Storytelling. Some of these techniques have
been explored and used in similar context by our research team (El Rhalibi, Baker, &
Merabti, Emotional agent model and architecture for NPCs group control and interaction
to facilitate leadership roles in computer entertainment, 2005) (Carter, Cooper, El Rhalibi,
Merabti, & Price, 2010). The most relevant of these will be further developed to provide a
new narrative framework for emergent digital storytelling. Once the techniques have been

33

investigated and evaluated with appropriate games scenarios, a Storytelling game engine

will be developed and evaluated in terms of flexibility, usability, and genericity in

providing dynamic search approach in the development of a story.

Despite the growing interest in Interactive Storytelling, there have been only a small

number of implemented demonstrators and few have attempted at developing a re-usable
Interactive Storytelling technology. In this research we will propose such an Interactive
Storytelling engine, which will be the result of a wide investigation on AI techniques not
used in previous research. The system will be based on the Homura game engine for its

visualisation component, while the narrative generation component will implement
different model based AI, using a combination of rules, constraints, objectives, triggers,

states, communication architectures and emotions.

The engine will use suitable AI techniques such as Planning and include systems

based on heuristics to provide a new narrative framework for emergent digital storytelling.

It will deal with interaction, non-player-character groups, dialogue and notes/messages
found in the game world.

In the next chapter we propose to review and consolidate the related work.

34

" The player also does not want to be led by the
hand, but to control their own experience.

3 RELATED WORK

In this section we will survey and critically assess projects and publications related
to the field of Interactive Storytelling, planning, and computer games technology and state
their relation to our own work, along with their positive and negative aspects.

The goals of these research projects are to demonstrate the feasibility of certain

theoretical and computational models and formalisms, "accordingly these efforts must be

appraised not as working technologies but as speculative exploration of interesting
concepts" (Crawford, Chris Crawford on Interactive Storytelling, 2004).

In the last two sections we analysed the importance of narrative theories and

computational models for planning and scheduling. In the design of our Interactive

Storytelling strategy, the former contains the most popular narrative theories and

examines how a story can be formalised and deconstructed into its core components and

the latter will look at computational planning models that can be used to control the story

elements or characters and their AI to systematically generate narrative elements.

3.1 EXISTING INTERACTIVE STORYTELLING SYSTEMS &
RESEARCH

This section surveys existing storytelling engines and popular algorithms or
techniques, listed alphabetically, that may be useful for the development of our framework

using a novel approach. We also highlight the key features and technologies that defme the

system or technique in each case, for example: Games Master, Directors, Goal Net, Fuzzy

Cognitive Maps, Heuristic Planning, Hierarchical Task Network (HTN) Planning,

Dilemma Based Logic, Case Based Reasoning, Genetic Algorithms, A Behaviour Language

(ABL), User Interfaces, Alternate Reality, etc. For each project we have also included cited
references to the appropriate papers and an easy to follow link to download the software,

view a video, or find further information if these resources are currently available. Each

sub-section is presented in the following format: Title: the name of the system or popular

Interactive Storytelling technique being surveyed, Key Features: the system's key design

characteristics, Web/Download Link: the full software download, video only or general

35

project infonnation page, Technical Synopsis: includes the relevant figures, supporting
theories and computational algorithms and finally the Review: the benefits and

drawbacks of the system in relation to what we are aiming to achieve. After the review we

will compare and cross-reference the following features and aspects of each system:

• Narrative theory - does it follow a specific narrative theory e.g. five-act
model or Aristotle's definition of dramatic actions?

• Computational Models - what computational model is used e.g. HTN
planning.

• Graphics - how is the story displayed to the user, e.g. ad, 3d, text or menu
based GUI?

• Audience - who is the target audience for this system and what is their level
of programming knowledge?

• Scope - what is the scope/aim/goal of the system and does it fulfil it?

• Genre - are stories told with this system limited to a specific genre, e.g. fairy
tales/soap operas/etc.?

• User Roles - what part does the user play and what level of interactivity do
they have?

• Extenm"bllity - can any parts of the system be reused or expanded on and
how easy is it to create new stories?

3.1.1 ALTERNATE REALITY STORY GAMES
Key Features:

cI* Characters controlled by actors & story designers, mainstream media makes stories feel
real, players can interact directly with characters and each other.

cI* DL:http://wetellstories.co.uk/

The publisher Penguin UK and alternate reality game (ARG) designers Six to Start

have recently launched a di&italwriting project called "'We Tell Stories", challenging some
of its top authors to create new fonns of short story designed especially for the internet
using games, blogs and web tools, such as Google Maps (FilUfe 2) (Penguin Books tid,
2009). "The first of the six stories is Charles Cumming's The 21 Steps, based on John
Buchan's classic thriller The 39 Steps. It uses Google Maps and Google Earth to follow the
trail of a bewildered young Londoner who witnesses a murder and is forced to smuggle a
mysterious liquid on to a plane" (Rickett, 2009).

Other ARG examples can use a combination of online social tools and communities
in addition to general mainstream media that's encountered every day and real world
locations/meetings to tell a story that the community can interact with, for example:

• TV, Radio, Billboard, Viral BrGuerrilla Marketing Campaigns.

• Social Networks - Facebook, MySpace, Twitter, etc.
• Web Apps - Google Maps/Earth, YouTube, Flickr, etc.

• Websites, Blogs, Forums, Wild's, Automated Text Messages, Recorded
Answer phone Messages & Actors.

• Retail Starter Kits, Trading Cards, Physical Puzzles.

• Physical Events, Meetings and Markers.
Review:

Some create fictional characters using actors that have real profiles on the above
community websites Br media, which tell a story through their life actions and recordings.
ARGs have been used to promote TV series and films as part of a viral marketing
campaign. Although a good example of Interactive Storytelling it is difficult to generate
procedurally or using hots.

Jllaure a, We Tell Storie. Goosle Mapa ltxample (PenpIn Boob Ltd, 2009)

37

http://wetellstories.co.uk/

3.1.2 ACTAFFACT
Key Features:

~ BOI (belief-desire-intention) type plan-based practical reasoning agent framework, based
on ace Model and JAM BOIarchitecture, Java, 20 graphical display using the Batik
Toolkit.

~ DL: http://bit.lvLdYwxRK

ActAffAct (Affective Acting: An Appraisal-Based Architecture for Agents As Actors)

(Rank, Affective Acting: An Appraisal-based Architecture for Agents as Actors, 20(4)

(Rank Br Petta, From ActAtIAct to BehBehBeh: Increasing Affective Detail in a Story-

World, 2007) is an appraisal-based research tool that programs characters using Ortony's

later revision of the Ortony, Clore Br Collins (OCC) Model of Emotion (Ortony, 2003). The
acc Model is represented in code using the JAM framework, a "BDI-theoretic (Belief-

Desire-Intention) lIent architecture based upon the Procedural Reasoning System (PRS)"

(Huber, 2001). Emergent narrative is created by the synthetic actor's responses to their

environment in resolution of conflict 'The conflicts between the characters in a play and

the emotions involved in resolving them are the constituents of a dramatic structure, a

plot" (Rank, ActAffAct, 2004)· The graphics engine is 2D using the Batik Toolkit to render

simple SVGcharacters and scenery.

Review:

ActAffAct has some limitations as a story engine, as explained by Axelrad and Szilas

"Since the system is intended neither as an authorilll tool nor as a presentation system,

the options to interact: and alter behaviour are limited and quickly require direct

modification of the programme base" (Axelrad Ie Szilas, 2010).

FIpre 3tAdAIfAd Story Viewer Sereenahot (Rank, ActAft'Act, -004)

38

http://bit.lvLdYwxRK

3.1.3 BOVARY
Key Features:

cl' 3D graphics using UT2003 Engine, STRIPSHeuristic Search-based Planning (HSP) System,
based on Madame Bovary Novel, uses characters feelings & desires to generate narrative,
natural language text input.

cl' DL(Video Only): http://bit.ly!fyUfSI

Bovary (Pizzi & Cavazza, 2007) is an interactive storytelling system based on the
novel Madame Bovary and generates a narrative driven by the desires and feelings of

characters rather than focusing mainly on their actions. Bovary draws inspiration from

Bremond's narrative model described in 3.2.5 ROLES & PROCESSES. It uses a STRIPS
based real-time RTA* Heuristic Search Planner (HSP) along with the UT2003 Engine to
create a 3D scene with animated characters that execute a specific feeling from a

precompiled database as their story actions (Figure 4). The characters can also have a

general overall feeling 'state' (for example content, sad, etc.) generated by the search cost

values. The user can interact with the characters in the scene by typing instructions in

natural language text to direct their next actions or change an emotional state, but the user

is not a direct character in the story.

FIpre 41 Bovary Arehlteeture (Plzzl "Cavazza, ao07)

Review:

The Bovary prototype seems useful for dramatising scenes where characters discuss

their feelings or make decisions based on emotions and can create content that would be
difficult to express with purely action based planners. On the other hand planning based

systems can have a range in the quality of their output and the many dialogue options have

to be created by the story programmer/author (Axelrad & Szilas, 2010). A further

prototype system was also made in 2009 which extends Bovary by adding EmoVoiee

emotional speech input (Cavuza, Pizzi, Charles, Vogt, & Andre, 20(9), but was Dot
available for testing.

39

http://bit.ly!fyUfSI

3.1.4 CAROSA: A TOOL FOR AUTHORING NPCS
Key Fe.tures:

cl' Scheduler, Action/Object Dictionary, backwards chaining, HiDAC + MACES Crowd
Simulation, Ogre Game Engine.

cl' Dl: http://bit.lvlgFtrlR

In (Allbeck, 2010), Allbeck introduces CAROSA (Crowds with Aleatoric, Reactive,
Opportunistic, and Scheduled Actions), a framework that allows "functional crowds" of
NPCs to be more easily authored by storytellers rather than demanding that authors have
a high level of programming knowled&e to meticulously band script NPC behaviour. The
framework uses a system of goals related to locations, objects and activities to give the
NPCs an active purpose. Allbeck notes that virtual characters can belp to drive a storyline
and provide emotional elements, but need to behave appropriately.

FIpre 5: CAR.OSA SyBtem Dlqram (AIIbeS, aOlo)

Figure 5 shows the components that make up the CAROSA framework and includes
a PAR (Parameterized Action Representation) system, a crowd simulator (via HiDAC +
MACES), the visualizer/game engine (Ogre), an action and object repository (the
Actionary), a Resource Manager, Alent Processor and a Scheduler. The Actionary contains
a list of actions that can be carried out by an NPC with their definitions and preparatory
specification parameters that are used with backward chaining.

40

http://bit.lvlgFtrlR

Review:

CAROSA features some ideas that would transfer well into an Interactive
Storytellingengine, such as: an action dictionarywhich creates story independent reusable
building blocks, an action queue for each NPC, an authoring GUI and a Scheduler; but
lacks scalability (the simulation can run up to 30 characters simultaneously), character
personalities, character animation using inverse kinematics and object site labelling (for
specific interaction animations) and a planning system to manage resources more
efficientlyusing heuristic search.

41

3.1.5 DEATHKITCHEN
Key Feltures:

cl' Depth-bound planner, 3d visualisation using UT2003 Engine, 3rd person point and click
interface.

cl' DL (Video Only): http://bit.ly/h2cpJT

DeathKitchen (Lu&rin Ie Cavazza, 2006) is an Interactive Storytelling prototype
made using the lIT2oo3 Engine that uses a depth-bound planning system to allow
inanimate environmental objects to make decisions on how to react to a player's actions.
This allows the surrounding environment to act as a character in the story. The player

interacts by clicking objects in the scene and selecting an available action for their 3M

person avatar to carry out.

Review:

In the Death Kitchen urban horror story demo the kitchen is a character trying to

harm the player by creating various accidents. The user input method is direct and easy to
use and the interactions with objects and their responses are generated by the planner

which allows events to be tied together, but there is no authoring tool so programming all

of the objects behaviours could be complex.

FIaure 6: DeatbIatrhen Sydem Overview <1Aqpin "Cavazza, 8006)

42

http://bit.ly/h2cpJT

3.1.6 DEFACTO
Key Features:

d* Java & VRML based, 3d world, Aristotelian arc model with increased suspense, first order
logic.

d* DL: http://bit.lvLhgifH7

Defaeto (Sgouros, 1999) is an IS system that uses an Aristotelian arc structure to
unfold a Greek tragedy. The user moves about in a 3D-VRML scene and at key moments
chooses from a set of multiple choice text options. Defaeto's algorithm runs in two main

stages, the first one generating the sequence of actions for the characters depending on

their goals and the choices made by the user; and the second one evaluating interesting
situations and story outcome according to a set of dramatic rules.

Review:

The system was fully implemented and "is highly generative, thus providing a

potential solution to the core algorithmic issue of interactive storytelling (narrative

paradox)" (Axelrad & Szilas, 2010), but its graphics and gameplay are now very dated; also

the complicated algorithms and lack of authoring tools make it very hard for researchers

to expand on.

43

http://bit.lvLhgifH7

3.1.7 DRAMACHINA
Key Fe.urn:

cl" Text-based interactive fiction editor independent of a specific IF architecture, XML
Output.

cl" DL: http://www.irisa.fr/Drive/donikian/Research/index.html

DraMachina is an interactive fiction narrative authorin&tool. The editor is mainly
text based, so that authors of classic fiction can write an interactive story along with
character descriptions. Donikian and Portucal structure their data using a file directory
model based on film and drama morphologies and is defined as follows (Donikian &

Portugal, 2004):

• "Authors-direetory: each author canenter his own reference."
• "Narration-directory: this directory includes acts, periods, dramatic

actions and unit's description."

• "Objects-directory: description of objects important in the course of the
story."

• "Areas-directory: description of locations of the story."
• "Aetors-direetory: this directory includes elements related to the

description of characters, which is composed of their characteristics,
psychology,actions they can perform, roles they can play and relationships
between actors."

• "Scena-directory: detailed description of scenes."

• "Dialop-diredory: dialog edition based on protodialog patterns. ,.

Actors are assigned default values for their characteristics such as walk speed,
talking/listening focus, available actions and roles. Their moods are determined by
'strokes', which have an impact value (positive/negative emotion strength relating to
happiness or trauma) and the duration time that the emotion will last for.

Donikian and Portugal use multiple narrative theories in their structural design
including Bremond's Roles and Processes! for the overarching concept, the Three-Act
Paradigm's definition of acts and scenes; and the Ethical Dimension system of character
morals/values.

1More information can be found insection 3.2.5 ROLES ItPROCESSES.

http://www.irisa.fr/Drive/donikian/Research/index.html

F'Ipre 8: DraM.ehIn. UI Showlns Object Hierarchy (Donlldan le Portupl, a004)

Review:

DraMachina is a valuable tool for writers to author narrative concepts in structured

XML, which can be interpreted by programmers, but is only in prototype form and would

take time to extend and develop further; although some of the structural concepts (such as
the definition of scenes, areas, actors and objects) could be borrowed and used in

conjunction with other narrative theories and computational models.

45

3.1.8 DUNGEONS & DRAGONS AND THE GAMES MASTER
Key Features:

rI' Games Master controls & adapts story.
rI' Dl: http://www.wizards.com/dnd/

One of the earliest games to use Interactive Storytelling was in fact a table top game
Dungeons & Dragons, which was released in 1974 (lGDA, 2001). A player is appointed the
role of games master (GM), whose job is to direct the players through the dungeon, whilst
reacting to their actions, using the original story as a guide and filling in the blanks using
their imagination and reasoning for a more entertaining experience. In computer games
the computers rule systems, which have to decide how to respond to player actions,
replace the GM. The rules aren't capable of responding to any action in the same way a
human can, so the freedom in the number of actions that can be performed at a given time
is significantly less (IGDA, 2001).

Tychsen, et al. (Tychsen, Hitchens, Brolund, & Kavaldi, 2005) list five areas, for
which the GM is responsible, regardless of the game platform; which the automated
storytelling engine must cover as:

• Narrative flow: Creating the scenario; either the pre-planned plot or
environment that the game takes place in, or creating the scenario on the fly
changing the narrative by interacting with the players.

• Rules: Making sure players know and follow the game rules Br mechanics,
such as how the world operates and what interactions can take place between
players and the environment.

• Engagement: Keep players motivated and interested, by providing a fun
experience with a good difficulty curve.

• Environment: Providing a fictional setting for the game with interesting
surroundings and engaging characters.

• Virtual world: unique to computer games, the GM must also act as the
game engine providing on-the-fly updates of the game world and the active
agents, as required by the actions of the players and the narrative
development.

Review:

A classic problem with computer role play games (CRPGs) compared to the table top
games like Dungeons & Dragons is that the communication between the players and the
GM is limited through computer input and output, whereas in person players can use
Speech, Emotion and Body Language to interact (Figure 9).

http://www.wizards.com/dnd/

Figure 9: Communications Flowcbart of a GM-Controlled Multi-player CRPO

47

3.1.9 FABULATOR
Key Feltures:

~ STRIPS style planning, classical 'three act' narrative structure.
~ Dl: not available.

Barros and Musse (Barros & Musse, 2005) sngest an approach that employs this
mechanism and two other narrative practices into a storytelling generator based on the
usage of planning algorithms and STRIPS domains. The architecture they propose is
divided into 3 modules:

• A module dedicated to defining the actions that can be performed by the
NPCs.

• A module in charge of executing the available actions for the NPCs and
keeping the state of the world.

• A module responsible of resolving conflicts that may appear whenever a new
plan of actions is generated.

In order to progress the story, a plan of actions should be created for the characters
to follow; each action is described in a language similar to STRIPS and is composed of a
prerequisite, used to decide if the action is coherent given the current state of the world;
and an effect, which indicates the repercussions of performing the action. For example, the
action of giving a present to someone may have the prerequisites of having the present and
being at the same location as the receiver, while the effects would be the receiver pining
an increased affection towards the gift giver. The implementation made by Barros and
Musse "treats the planning problem as a state space search problem, and uses the A*
algorithm to solve it" (Barros Se Musse, 2005).

Barros and Musse incorporate into their model the following three narrative
principles for creating interactive storylines:

• View story as a whole: By considering the overall storyline as a set of
sequential plans, which in turn are sets of sequential actions, one can make
sure that each plan will try to include the best actions to take in order to
continue with the main plot; this kind of control will yield more coherent and
believable stories.

• Three act storylines: Being the most common format for stories, it presents
the opportunity to &roup together events that help develop the story: the first
act introduces the overall problem, the second one helps increase tension
and develop solutions and the third one presents the resolution of the Itory
(Rollinp &Adams, 2003) (Barros IeMusse, 2005).

• Avoid narrative stalls: BeiDa the focal point of the story, the player may
sometimes decide to not follow the plan set in order to continue the story. To

avoid this, the actions of the NPCs can be prioritized, so that they can act and
accomplish goals before the player. This will allow the story to be fluent even

when the player lets stuck.

Review:

By combining the narrative techniques and the described architecture, Barros
and Musse (Barros &Musse, 2005) were able to create interactive storylines that
would adapt to the player's actions, even if those actions were not doing well in

keeping the story fluent. One possible drawback might be the use of "predicate

logic to represent the world state" (Barros & Musse, 2005) due the fact that it
does not belp us whilst dealing with the more complex aspects such as the

"subtleties and nuances necessary for compelling stories" (Crawford, Chris

Crawford on Interactive Storytelling, 2004); however, it can help us understand

the problems and their solutions in an easier manner. Fabulator was extended by

the authors to create a riddle based system using tension arcs and is explained

further in 3.1.21 RIDDLE MASTER.

49

Key Features:
cl" ABL (A Behaviour Language), NLU (Natural Language Understanding), Jess, real-time 3D

(C++OpenGL), Drama Manager, Story Beats.
cl" DL: http://www.interactivestorv.net/

Mateas and Stem created an experiment in interactive drama called Fa~de (Mateas
Bc Stem, 2003), where the player has to interact with two NPCs that are having marriage
problems in their upscale apartment. The characters are programmed using A Behaviour
Language (ABL). •ABL is a reactive planning language, based on the Oz Project language

Hap, designed specifically for authoring believable agents - characters which express rich
personality, and which, in [this] case, play roles in an interactive, dramatic story world."

The ABL compiler is Java based, so could be considered for our project, which is based on

a Java game engine. The story is controlled by a drama manager that breaks action into

story beats (similar to small scenes), which trigger using preconditions and depend on the

user's actions and current overall tension level to create an Aristotelian Arc style partially

ordered drama. As a user navigates from beat to beat the characters are driven through

different arguments and resolutions by their ABLcode.

Review:

Facade is the only published and most complete interactive storytelling system with

natural language processing, a 3d world, believable agents and the player controlling a

main character, but wasn't designed to bemodified so is a closed system with no authoring

tools. Also the user's actions don't have a great impact on the future outcomes of the story.

Fa~de's novel features (Figure 10) include:

II

I:
I'

I
!

3.1.10 FA~ADE

• The player's actions have a significant influence on what events occur, which
are left.out, and how the drama ends.

• Drama manager monitors the simulation and adds and retracts procedures

(behaviours) and discourse contexts by which Grace and Trip (the NPC's)
operate.

• Plot is made up of dynamically sequenced story beats.

• The multi-agent co-ordination is sequenced by these beats.
• Supports joint behaviours.

so

http://www.interactivestorv.net/

Ftgure 10:F~e Interaethe Drama Arehlteeture (Mateu ItStern, a003)

51

3.1.11 FEARNOT
Key Features:

~ Child centric, structure based on Forum Theatre.
~ DL:http://bit.lvlgg3rOD

FearNot is a bullyilll simulator storytelling system for chUdren created for the EU
framework funded VICI'EC project (ecirweb, 2006). The unscripted 3D characters use
cognitive and emotional modelling to drive their behaviour and create an overall story

from complex interactions without the need for a story manager. Story authors can assign
characters goals and features and set which preconditions trigger an episode. The user
watches a clip of a bullying scene and then talks to the victim using a text-chat window to
advise them on what to do next (Figure 11). The next scene is then played out and can vary

depending on the users talk with the victim.

FIpJ.re 11:FearNotl Victim Interaction (eelrweb, 8006)

FearNot's architecture uses the oce Model for character/agent emotions in a

similar manner to ActAffAct, but in this case it is paired with a unique double appraisal

system that bases agent's decisions on their estimated effect on the other agent (Figure

12). This is split into a reactive level that uses emotional rules based on Elliot's Construal

Theory that provides a quick reaction and a deliberative level which is slower but offers

more "complex and rich behaviour" (Louchart, Aylett, Diu,& Paiva, 2006).

http://bit.lvlgg3rOD

FIgure 12: FearNottABent Arehlteeture Dlqram (Louehart, Aylett, Diu, IePaiva, 8(06)

Review:

The FearNot system is novel in its ability to create unscripted autonomous
characters using double appraisal and its use in schools as a bullying simulator/tutorial.
Its limitations are in the way the user interacts with the story; players are invisible friends
that can only interact with characters at certain points via messenger style text chat-bot,
which can make the scenes appear scripted even though they are not.

53

3.1.12 GADIN
Key Fedures:

d'" Planner, Dilemma Based Narrative.
d'" Dl: http://www-users.cs.york.ac.uk/ ...maria/gied/

Barber and Kudenko created an Interactive Storytelling system based on dilemmas
called GADIN (Barber & Kudenko, Dynamic Generation of Dilemma-based Interactive
Narratives, 2007). The system uses a story planner to create a plot with various dilemmas
which ask for user input to resolve each one (Fi&ure 19). The use of dilemmas is similar to

the notion of conflicts in Aristotle's dramatic theory and screen writing (g-Act Paradigm
and 5-Act Model). To create a GADIN story the following data is needed:

• Actions - allows eharacters to perform action or change their emotions and
principles.

• Dilemmas - have to be initialised.

• Events - logged actions carried out by characters.

• Piece of Knowledge - a single fact, along with preconditions, reasons to
share, how to know lun-know it.

• User Model- record of user's choices used to create new dilemmas.
• Story Length - finite or infinite.

Review:

The advantaxes of GADIN are its use of narrative dilemmas to extend planning
systems and the soap opera like nature, which allows for on-going story generation with
no definitive end. On the down side the user interface is ad and completely GUI menu/text
based.

Flpre 131OADINAreblteeture (Barber &: lCudenko, Generation ofDOemma-basecl Interaetiw
NU'l'atlftawlth. ~le StD..,Goal, H08)

54

http://www-users.cs.york.ac.uk/

3.1.13 HEFTI
Key Features:

cl' HEFTI,Evolutionary/Genetic FuzzyAlgorithms, 20 Microsoft Agent, Integrated Authoring
Environment.

cl' OL: not available.

Genetic algorithms have been used to solve many computer science problems as an
adaptive heuristic search algorithm designed to find an exact or approximate solution,
optimised over several generations of abstract populations in a computer simulation. Also
known as evolutionary algorithms, they are designed to mimic evolutionary biology
methods such as natural selection, crossover of genetic material, inheritance and
mutation. These techniques give a diverse population of solutions, which are then
evaluated, scored a fitness value, then re-selected for the desired number of generations,
or until an appropriate fitness is reached. 0Ill, TeongJoo and Legett, J. use this approach
in their work to generate interactive narrative (Ong & Leggett, 2004). Their engine, the
Hybrid Evolutionary-Fuzzy Time-based Interactive (HEFI'l) Storytelling Engine uses
genetic algorithms to recombine and evaluate story components generated from a set of
story templates.

Review:

Figure 14 shows that" A gene is generated by constructing valid story element sets
based on the current state of the story and the various conditions and rules imposed by the
author. However, dependencies and ordering of various story elements dictate that the
encoding process is strictly sequential since rules and story element selection will be
resolved gene by gene" (Ong & Leggett, 2004). HErn has an integrated Authoring
Environment (IAE) and a Graphical Object Ubrary to create new stories with. One of the
drawbacks of this system is that the IAE is based on the XML language, whim is "program
code for programmers, incomprehensible to the kind of creative talent needed for
storytelling. So long as development environments look like this code example, only
programmers will write storyworlds, and we'll continue to get the same old cliched stories"
(Crawford, Chris Crawford on Interactive Storytelling, 2004).

55

3.1.14 IDTENSION
Key Features:

rI* java based, centralised goals
rI* DL:http://bit.ly/ijlcfb

IDtension is a Java based Interactive Drama Engine by Dr Nicolas Szilas (Szilas,
2008). In the demo the user decides the actions that they would like the main character to

perform using a text menu interface.

• Goals
• Tasks
• Segments
• Obstacles

• Values

The amount of actions a user can perform is much greater than some of the other

systems mentioned in this study (up to 100).

Review:

Limitations - some of the actions get no response from certain characters and

creating stories is complicated.

3.1.15 INTERACTIVE STORYENGINE
Key Features:

rI* Case Based Planning, Story Director, Propp Morphology, MMO Client-Server Architecture,
C++.

rI* DL: not available.

Fairclough, R. & Cunningham, P (Fairclough &: Cunningham, 2003) investigated a
multiplayer story engine that uses case based reasoning/planning to create a story
adventure MMO game. "The system handles multiple users in a game world and directs
the non-player characters therein to perform for the users parallel storylines, interweaving
character roles in each story. The story is told through a 'narrative of actions' and
automatically generated dialogue" (Fairclough &: Cunningham, 2003).

An omnipotent director agent is used to control the story; by including a multiplayer
aspect their director must be more capable and -assign story goals that are relevant to
each player". Fairclough &:Cunningham also base the story structure on Propp's analysis
(Propp, 1977) and use functions that play on the hero Ie villain theme. Their system also
includes interactive objects that can enable specific actions or transportation.

56

http://bit.ly/ijlcfb

The story world is inhabited by computer controlled non-player characters that

utilise a five part model:

• Low level control behaviours - e.g. path-finding.

• Social simulation - gossip system.

• Idle behaviours - such as patrol area.
• TUleted behaviour - goal search and execution.
• Attitudes - characters score other characters that they meet or hear about

and record events for later gossip.

F1pre 1StSyatemArehlteeture for Multlplayer Stories <Falrclouah "CunnlnPam, a003)

The Interactive Story Engine has three demo games, an original story called "Bonji

and the magic peanut", a story based on the film Star Wars: A New Hope and a third demo

which includes multiplayer and more action objects.

Review:

The Interactive Story Engine allows the player to roam free around the 3d world and

click on interactive objects to act on and change the path of the story. Using their Story

Director (SD) agent and case-based planning different story structures can be generated

"allowing the Story Author a higher level control of story events- (Fairclough Bc

Cunningham, 2003). The mnltiplayer component and real-time play allows players to

compete for NPCs loyalties, with persistent characters useful for creating a consistent

online RPG adventure story.

57

3.1.16 LOGTELL

Key Features:
tt> Goal-inference planning, 3rd person viewpoint, 3D visualisation, based on Propp's

morphology of the folktale.
tt> DL: http:lLbit.ly/tK7EnE (video only).

Ciarlini, M, et al. created a tool called LOGTELL to interactively generate and
dramatize stories (Ciarlini, Pozzer, Furtado, & Feij6, 2005). Their system uses goal-
inference rules, planning and user intervention to drive a 3D drama visualisation that can

be used for entertainment or story creation within a specified genre.

Review:

Its main focus is on generating a large variety of coherent stories, rather than

"creating an immersive experience in which the user takes part in the story as one of the

characters". For this reason they use a third person perspective, with indirect/passive user

interaction. LOGTEll. borrows some story structure from Propp's works on the topology

of Russian folk tales (Propp, 1977) and "comprises a number of distinct modules to

provide support for generation, interaction (management) and visualization of interactive

plots", with the arrows representing the dataflow (Figure 16).

Ftgure 16: LOGTEU':. Archltecture (ClarBnl, Pozzer, Furtado, ItFeU6, 2005)

2 Described further insection 4.14 Propp's Morphology of The Folk Tale

S8

http://http:lLbit.ly/tK7EnE

3.1.17 SIFTABLES
Key Features:

~ Unique hardware & user interface: a unit is combined with other units and a pc.
~ LINK: https:/Iwww.sifteo.com/

Merrill Br Kalanithi (Merrill & Kalanithi, 2008) created a physical object based
children's storytelling game for learning and language development using the Siftables
interaction platform. ·Siftables are cookie-sized computers with motion sensing,
neighbour detection, graphical display, and wireless communication. They act in concert
to form a single interlace: users physicallymanipulate them - piling, grouping, sorting - to
interact with digital information and media. Siftables provides a newplatform on which to
implement tangible, visual and mobile applications" (Merrill & Kalanithi, 2008)(See
Figure 17).

For the storytelling game several Siftables each depict an object or character which
when moved around or connected together change the state of the story on the main view
screen, which displays the whole scene. To bring a character on stage the user lifts the
character's Siftable offthe table so the motion sensor will detect the action and change the
scene. When two character's Siftables are placed adjacently they will form a simple
interaction, e.g. when the cat and dog Siftables were moved the scene changed to show
"TheCat and Dog SayHello!"
Review:

The object centric approach is easy to understand and the Siftable hardware is a
natural wayto interface with the story, but the story and interactions are limited to simple

children's stories with only a few different combinations (around nZ- n + n, where n is
2

number of Siftables). Siftables have recently been re-named to Sifteo and launched
commercially as a trial run with 12 different games/apps and a more polished hardware
design.

59

http://https:/Iwww.sifteo.com/

3.1.18 SLEEP IS DEATH
Key Features:

d"" Two player only, collaborative storytelling experience, turn based and 2D graphics using
STL.

d"" DL: http://www.sleepisdeath.net!

Sleep Is Death is a 2D storytelling game for two players by Jason Rohrer (Rohrer,
2010) that blurs the line between playing and creation of stories. One person fulfils the
role of the 'player' with the other acting as the 'controller'. The player takes their tum
exploring the screen; talking by typing text, which appears next to them in a speech
bubble; and performing actions by typing the action and moving it with the mouse to point
at its subject. Next control is passed to the controller, whose job is to react to the player
and progress the story by manipulating the scene using the editor view. The default time
for a tum is 30 seconds, but this can be altered in the settings for beginners and the tum
can be ended early by clicking the advance button.

The editing view (Figure 18) contains tools for modifying the background, player
object, general objects, sprites (a small image that can be used to build objects), creating
music and adding text boxes/speech bubbles. Also included is a library of rooms, tiles,
objects, sprites and whole scenes. If the controller creates new assets they can be saved to
their library for later re-use, and also saved as resource 'PAl(' files, which can be shared
online.

FIpre 18&Sleep"Death Bdltor VIew (Rohrer, 8010)

Sleep Is Death archives the completed story as a website folder containing a
slideshow of images showing the screen state that was submitted for each step of the story

60

http://www.sleepisdeath.net!

which can be easily shared and viewed later.

Review:

Sleep Is Death (SID) is a successfully completed storytelling game, with a large
community of storytellers, players and object/content builders. The graphics are simple ad
sprite based and static, but using clever art techniques a variety of view-points can be
used. By letting a human control the editing and sending the modified world state across
in a manner similar to the Games Master (GM) technique, any situation can be handled
and depending on their imagination and authoring skills any genre and topic can be used.
The negative points of SID are apparent when looking at our specific design goals, as it
takes an alternative approach to Interactive Storytelling and is a completely differently

designed system to the one we aim to create. This is not an entirely bad thing, but some
negative points are the lack of true 3D graphics, the absence of any animation system
(which means that characters jump around the screen when their position is changed by
the GM), the difficulty of mastering how to use the editor fast enough to be prepared for
any situation under the turn clock's demand, SID is turn based rather than real-time
(which means waiting times can break the story's pacing and immersion), and the lack of a
mode where the computer AI can control the game for a single player experience.

FIaure I" 8Iuumon va. Juon: Are We Home? (Rohrer, .010)

61

3.1.19 S-MADE
Key Features:

cl' Multi Agent Development Environment, Goal Net, Fuzzy Cognitive Goal Maps, Drama
Manager, Active Worlds 3-D virtual environment powered by Renderware.

cl' DL: not available.

Another technique generating Interactive Storytelling is described by Cai et al (Cai,
Miao, Tan, Br Shen, 2006). In this approach, a tool S-MADE, (Multi-Agent Development

Environment for Storytelling) based on Goal Net is used to plan the story and Fuzzy
Cognitive Maps are employed to analyse the user inputs and decide which path should be

followed; they were selected due the fact that they act as "collection of the rules such that it
not only concerns the relationships between the causes and effects, but also considers
their relationships among the causes" (Cai, Miao, Tan, Br Shen, 2006). Similar to the work
described by Champagnat, Estraillier and Prigent, this approach implements an agent,
modelled using the Goal Net tool, which will be in charge of presenting the story in
accordance to the user actions (Champagnat, Estraillier, Br Prigent, 2006) (Cai, Miao, Tan,
Br Shen, 2006). In order to accomplish this, a controlling agent keeps information related
to the states required to achieve a goal, and the relationships or transitions that connect

those states (Cai, Miao, Tan, Br Shen, 2006).

Review:

Goal Net's ability to break goals down into simpler states make it useful for

Interactive Storytelling (Cai, Miao, Tan, Br Shen, 2006) (Shen, Miao, Tao, Br Gay, 2005).
Scenes can be divided into smaller segments creating multiple routes to the main plot

subtext. It also has four different ways of connecting the small segments states (sequence,

concurrency, choice and synchronization) allowing for flexible and more interesting

transitions between the different states, which leads to the creation of more complex

interlinking stories. Also important to note is that according to Cai et al, using Goal Net as

planning tool instead of Hierarchical Task Network yields better results in terms of

Interactive Storytelling, since it provides the ability to select scenes at real-time, according
to the current context and user input (Cai, Miao, Tan, Br Shen, 2006).

The engine created by Cai et al consists of a knowledge database, where the scenes

and their relations are stored, the fuzzy cognitive goal net engine, a container for the

agents to be used, known as the Drama Manager, and a Multi Agent Development
Environment (MADE) platform to implement the agents' system; using fuzzy cognitive

maps, the engine will decide, at runtime, which scenes from the knowledge database

should be loaded into the agents in order to better suit the path selected by the user (Cai,
Miao, Tan, & Shen, 2006) (Shen, Miao, Tao, BrGay, 2005).

Three main advantages can be distinguished from employing this method to create

Interactive Storytelling (Cai, Miao, Tan, & Shen, 2006) (Shen, Miao, Tao, &Gay, 2005):

62

• All events are simplified into 1("$complex scenes

• The engine can react not only to the user inputs but also to the actual state of
the game, and look for the best path.

• Since all the events are loaded into the engine in real time, its performance is

increased.

63

3.1.20 STORYTRON
Key Features:

er Uses verbs & objects, text-based, SWATEditor, uses Deikto "linguistic toy interface" for
input/output.

er Dl: http://www.storytron.com/

The Storytron platform by Crawford & Mixon (Crawford & Mixon, Storytron
Interactive Storytelling, 2008) is one of the most complete examples of Interactive
Storytelling. It is character based and uses a verb based action system. "It is centred on
artistic works called storyworlds. Each storyworld is a universe of possible narratives. The

technology is comprised of four parts: SWAT, the Storyteller, Deikto, Sappho, and the
Storyengine". SWATis used to create new storywords, the Storyteller is the software used
to play storyworlds, Deikto is the English-like language used by players to create the
sentences that drive their actions, Sappho is the scripting language the author uses to
create a storyworld and the Storyengine drives the computer characters AI. Storytron's
main novelties are the use of verbs and objects in the construction of action sentences (see
Figure 20). Storytron represents characters emotions with cartoon face emotion icons
called "Emoticubes". These are driven by the characters mood taken from an array of data
in their personality model.

Review:

The system has the potential to define many actions and stories, but is complex for
the author, even with the SWAT editor to create new content; "many concepts are
counterintuitive, because of some necessary backward thinking" (Axelrad & Szilas, 2010).

~oryteher S1~ld
0' c,C,"

-~:1'WHAT HILPPENS You Dl!CIDE

~
[")1IYour advisofs Ipresent it backgrOlRl bOeIlng

Mohammed omar,; dislikes Iyou. You I\aIIe ~
.

~ !ask Ithe leader of IAfghanistan, IMullah Mohammed

I, Omar, HowMIKh? I
dlsmlsslwly

nollchalanlly

dilfJdentl)'

earnestly

~
timidl'/
hillfll)ly

deferentially

desper.eIy
obsequiously

grCM!fingly

Figure 20: Storytron Screenshot

http://www.storytron.com/

3.1.21 RIDDLE MASTER
Key Features:

cl"" Planning based, tension arc, riddle based plots, Ugh's Story, Metric-FF, 3d world, and
mouse-click action selection.

«" DL: not available.

Barros & Musse create a system that focuses on 'Riddle Master plots' with pre-

planned tension arcs (Barros & Musse, 2007). The tension arcs are used to model the

player's current knowledge of the riddles events or the truth about what actually
happened, with the story ending when the player solves the case. The tension arc can be

modified to withhold or dispatch clues depending on the discrepancy between the author's

desired arc and the player's actual progression arc; modelled as D(t) == K. (t) - K(t),

with K representing the increment, which is increased as each clue is released (with its
magnitude equal to the clue's importance) and t equalling time. The clues are altered by

generating new plans in Metric-FF for the NPC's, with a greater number of actions,
causing them to work harder to give more new clues to the player.

When the generated stories closely follow an ideal tension arc, the narrative will

progress in the pace imagined by its author (Barros &Musse, 2007).

Their prototype runs a 3D story world called Ugh's Story 2, with the player

controlling the protagonist and making choices by clicking objects or characters with the
mouse to produce a list of related actions.

Review:

This system works well for riddle games, but may not be suited to other genres. The

stories outcome does not vary, only the rate at which clues are released to help the player.

Only simple tension arcs are supported so expansion would be needed to model advanced
situations such as NPCs lying to give out false clues.

65

3.2 NARRATIVE THEORY &MODELS

Narrative theory is the study of stories and how they are structured. By searching for

a formula to describe the core components of a story and their grouping or order, whilst

also keeping a level of narrative interest, the components can be served in a variety of
combinations by changing the variables to create multiple unique stories. Interactive

storytelling systems could incorporate some of these formal structures to allow computers
to generate narratives and some publications covered in '3 RELATEDWORK' have already
experimented with various theories to great effect.

Some narrative theories are more formal than others, which only serve as a practical
guideline but could still be useful. "Since our final goal is not theoretical but practical -
'How to improve [Interactive Storytelling] systems?' every approach, as soon as it is
justified, is worth considering" (Axelrad & Szilas, 2010).

The following subsections explain some of these linear theories/models and include
the author, compatible genres/story sets, related theories and systems already using the
particular theory. These are divided into sections relative to the two main groups of
thought:

• Dramaturgy (Drama Models)

- Aristotle's Dramatic Arc

Freyta.g's Five-Act Model

- Field's Three Act Paradigm

• Classical Narratolo&y (Narrative Formalisms/Structuralisms)
- Propp's Morphology of the Folk Tale

- Bremond's Roles & Processes

- Souriau &Greimas' Actancial Model

- Todorov's Narrative Grammars

- Todorov's Theory of Equilibrium
- Barthes' Narrative Units

- Barthes' Five Codes of Analysis
- Eco's Theory of Possible Worlds

Courtes et al. Ethical Dimension

- Genette's Discourse/Story Relation
- Campbell's Hero's Journey

66

3.2.1 ARISTOTLE'SDEFINITION OFDRAMATIC ACTIONS

Aristotle's drama model was created around 350 BCE (Before Christian Era) in
Greece and related to classic poetic narrative such as: comedy, tragedy, and epic themes.

His rules can be transcribed into a high level algorithmic model, making them suitable for

Interactive Storytelling.

In (Axelrad & Szilas, 2010) (Aristotle, 1961) tragedy is said to contain the following

elements in order of importance: "Plot, Character, Diction, Thought, Spectacle and Song";
with their relationship defined in this fixed set of rules:

• "Aplot is the list of incidents presented in a specific sequence."

• "An incident implies an agent."

• "An agent possesses character and thought."

• "An action implies character and thought."

• "From character and thought stems action."

The sequencing of the actions must follow these constraints:

• "The beginning action has no probable or causal action before it, but does
have one following it."

• "The middle follows an action as a result of causality and gives way to
another action as a result of causality."

• "The end is a causal result of an action and has no causal actions after it."

The overarching plot must also follow these general rules:

• "A good narrative must have a good plot, putting all the importance on

action. The sequence of actions should arouse/inspire an emotion."

• "Plot with a change of fortune is Simple while Plot with a change of fortune
through Reversal of Recognition is complex."

• "Reversal is an action's opposite. Recognition is a change in state from
ignorance to knowledge."

Climatic Event
Maximum confusion

Unravelling of Plot

ActionrTension
Growth resolution of confusion

START THE END

Aristotelian Dramatic Arc

Figure 21:Aristotle's Dramatic Arc

Aristotle's rules can be used to create a dramatic story arc of tension, confusion,
unravelling and resolution as depicted in Figure 21. These rules have been more recently

revised by Tomaszewski and Binsted (Tomaszewski & Binsted, 2006); form the base of the

'Five-Act Model' and 'Three-Act Paradigm' screenwriting theories (covered in the next two

sections); and have been incorporated into many storytelling systems such as DEFACTO
(Chapter 3·1.6), FACADE(Chapter 3.1.10) and GADIN (Chapter 3.1.12).

68

3.2.2 FIVE-ACTMODEL

Gustav Freytag studied Greek and Shakespearian inGermany 1863 and expanded
on Aristotle's dramatic arc narrative structure, creating the five-act 'Freytag's Pyramid'
model that can define story structure in plays or films (Freytag, 1900). The five acts are:
Exposition, Rising Action, Climax, Falling Action, Denouement, resolution, or catastrophe
(See Figure 22: Freytag's Pyramid).

FIgure 22: Freytag's Pyramid <Wheeler, 2004)

The weakness of this model is in its application to complicated modem plays that
can contain multiple scenes (around 25 in some cases) that are difficult to pigeonhole into
a clear five-act structure. Freytag's Five-Act Model heavily influences Syd Field's Three-
Act Paradigm which is explained inthe next section.

3.2.3 THREE-ACT PARADIGM

Syd Field describes his drama model, the Three-Act Paradigm in his book

Screenplay (Field, 1979). He describes the core elements of a story as: actions, characters,
scenes, sequences, Act I, Act II, Act III, incidents, episodes, events, music, and locations

(Field,1979)·

THREE-ACT PARADIGM

Figure 23: Field's11lree-Act Paradlsm (Field, 19'79) (Christopher, 2010)

Figure 23 shows that a screenplay should be made up from three main acts that

setup the story (ACf 0, add confrontation (ACf II) and bring resolution (ACf 110.The
illustrated plot points are incidents or events that allow the story to take a new direction,

with the pinches designed to "pinch the story back on track" (Christopher, 2010) and focus
the story on the next event

This model focuses on the main characters quest that is a suitable format for
computer games that traditionally allow the player to experience the story from a single
characters point of view. Some Interactive Storytelling systems today can utilise aspects of

the Three-Act Paradigm although they do not all enforce it, for example: DRAMACHINA
(Chapter 3·1·7), which could use its Scene object to represent each act and IDTENSION
(3·1.14),which has a similar "concept of obstacles" (Axelrad & Szilas, 2010).

70

3.2.4 PROPP'S MORPHOLOGY OF THE FOLK TALE

During the Russian formalism movement of literacy criticism and scientific study of

poetic language in 1928, Vladimir Propp devised a system to describe the common

components of 100 Russian folk tales. His morphology contains a set of 31 functions that
have to appear in order, but don't have to be included in their entirety.

The functions in the correct order are: Absention, violation of interdiction,

reconnaissance, delivery, trickery, complicity, villainy or lack, mediation, beginning

counteraction, departure, first function of the donor, hero's reaction, receipt of a magical
agent, guidance, struggle, branding, victory, liquidation, return, pursuit, rescue,
unrecognized arrival, unfounded claims, difficult task, solution, recognition, exposure,

transfiguration, punishment, and wedding. Propp also identifies 7 roles that the characters
assume as the fable unfolds; the hero (who seeks something), the antagonist (villain), the

donor (helps the hero by giving them an important object), the dispatcher (sends the hero
on their quest), the helper (supports the hero), the false hero (pretends to be the hero), the

princess or her father (needs protection from the villain and rewards the hero) (Axelrad &
Szilas, 2010). Wee and Seifert (Wee & Seifert, 2001) created the web-app 'Proppian Fairy

Tale Generator' that allows users to select which of the 31 functions are to be included,

then prints a section of text selected randomly from several possible strings for each

function that was used, generating the full story as a number of paragraphs. Propp's

morphology has also been used previously in systems with a director agent, to create their
user roles and also build story functions.

Propp's model can work in some cases with Interactive Storytelling but due to the

pre-defined ordering is not suitable for a fully branched narrative. Other complaints

include the model's "[failure] to recognise the importance of such story components as

tone, mood, characterization, and writing style" (Wee & Seifert, 2001). As an example we

can compare the narrative in films/movies (a more established format) with Propp's
model. Hero's journey style stories like the Star Wars films fit perfectly, but more modem
nonlinear films such as Pulp Fiction do not

Later theories build on Propp's work and are covered in the next three sections
(3.2.5 ROLES & PROCFSSES, 3·2.6 ACfANCIAL MODEL and 3.2.9 NARRATIVE UNITS).

3.2.5 ROLES & PROCESSES

Claude Bremond a member of the French structuralism movement in 1965built
on Propp's work on analysing folk tales and dividing them into dramatic units (Bremond,

1966).Bremond grouped Propp's functions in a more flexible way and also requires the
characters to have specific roles, defining functions for their actions and the effects on the

overall story. The new updated model describes Processes, Agents, Patients and
Functions in the following manner (Axelrad & Szilas, 2010):

• Actions are now called Processes.
• Characters can have the role of Patient or Agent.
• APatient is affected by a Process.
• AnAgent creates a Process.

• Processes are carried out by Agents or Patients.
• A Function is the relation between character and process and its overall

effect on the story.

• AProcess has three steps: eventuality, action, result.

• Processes can be ordered: sequentially (one after the other), imbricated
(overlapping) or parallel (side by side).

Patients also have states associated with them, which canbe changed by the Processes.

A = State of a patient (P) at time (t)

A' = State of (P) at time (t') (Where t' > t)

IfA == A' then either:

1. No modifying processes exist.

2. Amodifying process exists but is not complete.
3· A conserving process exists and completed successfully.

IfA! = A' Then:

1. Amodifying process exists and completed successfully.
2. A conserving process may exist but faDed.

This allows characters to choose whether or not to deal with a situation and also

models their resulting success or failure. The characters roles switch in a cycle between
Patient and Agent.

Bremond's theory is one of several that drives the narrative logic in 3.1.14
IDTENSION.

3.2.6 ACTANCIAL MODEL

French structuralist E. Souriau and later refined by A. J. Greimas in the mid-
twentieth century (Axelrad & Szllas, 2010). Following Propp's work they found a general
model that could be applied to a wide range of stories. As a complete model it can describe
simple narratives such as myths and quests. As an action model it can be applied more
widely. The model is composed of the following six actants:

• The subject: the main actant and hero of the story.
• The object: that the subject is directed towards.
• The helper: helps the subject reach the object.
• The opponent: hinders the subject.
• The sender: initiates the quest between subject and object.
• The receiver: desires the object.

These are then split onto the following 3 axis:

• Axis of desire: subject/ object, the main axis.

• Axis of power: helper/opponent.
• Axis of transmission: sender/receiver.

The distribution of actant roles can be split over multiple characters or one character
can have multiple actant roles; actants can also shift between characters as the story
progresses.

The Actancial model treats the narrative as a large sentence and would be useful for
Interactive Storytelling due to its generativity. Switching characters and roles can create
different takes on the narrative outline, but the model would need to be combined as a
building block with other models to generate the narrative actions to go with the scenario,
so to date few systems have used this.

3.2.7 NARRATIVE GRAMMARS

In the 1960's Tzvetan Todorov created a model also based on Propp's work, but
with 3 narrative aspects (fodorov, 1969):

• Semantic aspect: story sense (content, values, messages).

• Syntactic aspect: The combination of narrative units and their
relationships. The order of the sequence of narrative events is similar to
Propp's work in 3.24 PROPP'S MORPHOLOGY OF THE FOLK TALE, but
the sequences transitional rules are more general.

• Verbal aspect: the sentences used to tell the story.

13

"Todorov considers a sequence to be a series of linked narrative propositions"

(Axelrad & Szilas, 2010). These narrative units are linked with a logical, temporal or

spatial relationship; where one unit is the cause and another is the effect. These are

descn'bed in (Todorov, 1969) as:

• Proper name: Agent.
• Adjective: Agents states.

• Verb: Agents action; defined further as:

- Mask or unmask: while the situation might not actually be
modified, someone is made to believe it is modified.

- Words - calm a situation, hurt a situation.
- Physieal- attack or resistance.

- Seek help - by evoking compassion or asking for advice.
- Change of location - moving/walking.

Exchange - through payment or giving freely.

This model has great formal detail and would be fitting for the non-linear nature of

Interactive Storytelling. It is partially used in the narrative logic of 3.1.14 IDTENSION.

3.2.8 TODOROV'S THEORY OF EQUILIBRIUM

Tzvetan Todorov was a Bulgarian literary theorist who suggested most narratives

start with a state of equilibrium that is disturbed by an outside foree, which must be
battled against to return to an equal state.

Todorov's theory states that there are five stages a narrative can pass through:

• Equilibrium - a state of equilibrium.

• Disruption - a disruption by an event.

• Recognition - recognition of the disorders occurrence.

• Repair - an attempt to repair the damage.

• New EquUibrium - the return of a new equilibrium

These stages are not linear but can run multiple times in a circular cycle, with the
new (different) equilibrium being reached changing the story each time.

Bquilibrium -> Disequilibrium -> New Equilibrium

74

3.2.9 NARRATIVE UNITS

Roland Bartbes the French semiologist suggested a more general model in 1968,
which did not include structural rules, but had a broader concept of three principles:

• The story is built from narrative units, which all have a purpose.

• Each unit has a different 'type' that defines its function.

• The meaning of narrative units and their relations are organised

hierarchically.

The types of narrative units are categorised into the following two main types, each

with their own subtypes:

• Functions - these are the most important units and contain links to other
functions, creating a chain of actions and events.

Cardinal Functions: open and close story possibilities.

Catalysis: expand cardinal functions to fill in the gaps.

• Indices - these expand functions providing further information.

Pure Indices: implicit descriptions.

Informants: explicit facts.

Cardinal functions are organised into unit sequences of related actions, with the

highest level sequence being the main narrative. Changing these sequences will alter the

overall narrative and changing the catalysis and indices changes the stories discourse.

3.2.10 FIVE CODESOFANALYSIS

Roland Barthes the French semiologist suggested in 1977that written narrative

works with five codes which activate the reader to make sense of it. These codes are:

• Action: the characters behaviours.

• Enigma: how is the story knowledge disclosed to the reader?

• Symbolic: themes based on symbolism.

• Semic: the ideas/feelings suggested by the narrative.

• Referential/Cultural: where the reader is assumed to have common
reference or cultural knowledge not explicitly stated in the narrative.

Some of these codes are used in many Interactive Storytelling systems, mainly
actions and the concept of knowledge/enigma.

75

3.2.11 THEORY OF POSSIBLE WORLDS

The Theory of possible worlds was devised by Umberto Ec:o in the 1960'S and was

originally designed for written text. Eco states that narrative text is not complete without
the reader and that the author must plan for all possible interpretations of their work. In

Interactive Storytelling this could be used to generate a separate branched path for each

possible interpretation of the narrative. The model of the user in 3.1.14 IDTENSION is
based on Eco's 'Ideal Reader' concept.

3.2.12 ETHICAL DIMENSION

"The axiological or ethical dimension of narrative (how a narrative conveys ethical

values) has been studied by various authors such as Courtes, Hamon, and more recently
Adam and Jouve" (Axelrad & Szilas, 2010). Most narratives contain ethics, but this model

is best suited to fables. The ethical values can be represented on bi-polar scales such as
honest/dishonest.

The systems described in 3.1.6 DEFACTO and 3.1.14 IDTENSION use ethical
dimension to compute the decision of dramatic actions using values.

Ethical dimension is also used in commercial games such as Fable and the Mass

Effect series of games use a real-time conversation system with lifelike digital actors. The

user chooses a shortened "emotional and instinctive response" text from a wheel menu

interface rather than reading full lines and re-expressing them when they are said in the

characters voice. The responses chosen by the player start to create branches in the

conversation and therefore narrative. Some responses will have a moral value (either good

or bad: paragon or renegade) and can cause both conflict and resolve in certain situations.

There is also an interrupt action opportunity at various pre-determined conversation

points with the paragon or renegade value attached to them, which can also be ignored by

the player. The only problem with these representations is the black and white view of
morals with a clear good and bad choice and no grey areas often found in real life.

3.2.13 DISCOURSE/STORY RELA TION

Gerard Genette (Genette, 1983) analysed novels and fiction and broke narrative

into three main levels: "Story" Oist of events that happen), "Discourse" (how they are

announced) and "Narration" (including the medium of conveyance). He also factored in

the timing of the story and discourse levels and split this into three categories:

• Order -linear or flash back/forward.

• Duration - the ratio of story time to discourse time (how long the event
lasts and how long it is presented for), which can make fast events appear
slowly or can quickly breeze over long events that are not plot essential. For
example a character's three years spent in jail may only take up five pages in

a novel or 10minutes of a movie.

• Frequency - certain events can occur multiple times (such as character

habitual actions) or one event can be re-told again and again to reiterate its

importance.

In Interactive Storytelling giving a player the freedom to choose their path makes it

difficult to flash forwards and predict the future in a way linear stories can. Also many

systems don't separate the story and discourse components. "The story/discourse

theoretical distinction and analysis presented above, though rather simple in principle,

has been so far largely overlooked in IS so far. This could open the way to interesting new

approaches in IS" (Axelrad & Szilas, 2010).

Bae and Young (Bae & Young, 2008) have been working on a computational model

for flashbacks and foreshadowing using Genette's theory, called Prevoyant.

PIpre 24SInput and Output of Prevoyant (Bae IeYoUJ1l,&008)

77

3.2.14 HERO'SJOURNEY

One of the oldest narrative patterns is found in ancient mytholo&y around the world

and was termed 'Monomyth' by Joseph Campbell in his book of comparative mythology

'The Hero with a Thousand Faces' (Campbell, 1949).

He stated that many myths share the same structure and 17 general stages,

organised into three main groups; although some can be skipped, re-ordered or covered

more intensely. "A hero ventures forth from the world of common day into a region of
supernatural wonder: fabulous forces are there encountered and a decisive victory is won:
the hero comes back from this mysterious adventure with the power to bestow boons on
his fellow man" (Campbell, 1949). The Office of Resources for International and Area
Studies list the breakdown of the Monomyth framework stating that "the stories and what
they reflected of shared and diverse cultural roots of world history were exciting and fun to

read and teach" (ORIAS, 2000). The Monomyth/Hero's Journey framework is apparent in
parables, myths and fables, from King Author to Adam and Eve; but is still relevant to

stories today and can be seen in popular film series such as Star Wars, Harry Potter, the

Matrix and Rocky.

FIpre 25&OutlIne of the Hero'. Joumey (Campbell, 1949)

3.3 COMPUTATIONAL MODELS

The main five computational models that have been used for Interactive Storytelling
systems in the past are Bayesian Networks, ISRST, Linear Logic, Automated Planning and
Scheduling. We will concentrate on the latter as it is the most advanced, developed and
rich model and has been used in a diverse range of software solutions, from creating
intelligent agents in computer games, such as F.E.A.R, to controlling robots, intelligent
systems and even the Hubble Space Telescope at NASA. Planning is also the best fit for
Interactive Storytelling as it allows the decoupling of actions and goals (Orkin, 2006).

3.3.1 AUTOMATED PLANNING AND SCHEDULING

Automated planning and scheduling is a branch of Artificial Intelligence that deals
with the automatic generation of solutions to goals via action sequences, usually by
intelligent agents or robots. In an automated planning and scheduling task the planner is
given parameters coded in a formal language, including an initial world state and a final
goal state that needs to be reached. It also has a list of actions that can be performed and
which states they affect. The planner finds a solution by listing the actions to carry out, in
order of execution, to get from the initial world state to the goal state. The actions contain
a precondition: a world state specification which needs to be true before the action can be

used and an effect: the state of the world after the action takes place.

Popular techniques used in modem planning systems are:

Forward chaining - a data-driven state space search, which looks ahead from the
initial state in the inference rules until a true 'if statement is found and then completing
the statement's clause effect ('then'), until the goal is found. Forward chaining is suited to
dynamic situations where the conditions will change.

Backward chaining - a goal-driven state space search similar to forward
chaining, but working backwards from the goal state to find a matching 'then' clause and
then following its opening 'if statement and adding it to the goal list if the match is true.

These searches can be optimised for greater solution speed by using the hierarchical
relationships between conditions such as in Graphplan (Blum, 2001), search heuristics
such as Enforced Hill Climbing (EHC) and heuristics with translation to propositional
satisfiability, such as in SatPlan (Kautz & Selman, 2006).

79

3.4 CRITICAL ANALYSIS OF INTERACTIVE STORYTELLING
TECHNIQUES
In this section we will critically analyse the papers mentioned throughout the

literature review by splitting them up into their component parts to see which techniques

are best suited to provide the functionality we desire from our Interactive Storytelling

engine.

From the key points made in our background research and as this is a computer
games technology research project; we have decided to use a first person narrative
running in real-time, similar to the approach taken by Facade (Mateas & Stem, 2003) and

the narrative techniques discussed previously in '2.1 RESEARCH AREA'.

Creating interactive stories can be challenging as we are replacing human

imagination with computer Al. In an article for ERCIM News Fairclough "The research
field of Artificial Intelligence (AI) has encompassed a series of more or less discrete

approaches including neural networks, genetic algorithms, expert (rule-based) systems,

machine learning techniques such as reinforcement learning, and case-based (memory-

based) reasoning. These are based on cognitive and biological theories and most are good

at certain specialised types of tasks, much like different parts of the brain, and different

people, are good at certain types of tasks. When it comes to creativity, however, all of these
techniques are left in the dust by the human mind ..." (Fairclough C. , 2004)

To make our engine novel we will combine several of the techniques from other

projects, such as PDDL planner/goal based characters (Barros & Musse, 2007),

personality models (Crawford, Personality Modelling for Interactive Storytelling, 2004), a

Story Manager (Fairclough & Cunningham, 2003), verb based actions and a point and

click user interface with action filtering using preconditions in predicate logic (3·1·9

FABULATOR and 3.1.21 RIDDLE MASTER); whilst applying knowledge from other

storytelling media, such as cinema, theatre and books (Noyle, 2006) (Murray, 2004)

(Spector, 2007).

Sticking to one narrative theories strict model can narrow the author's narrative

scope and story genre, whereas some models are far too general to use alone, so we will

also combine the most useful aspects of the narrative theories covered in section 3.2. Table

1:The Importance of Narrative Theories in the DISE Framework, below, lists the narrative

theories that have the most significance to an Interactive Storytelling system like the one

we are proposing and references the most significant parts of each model that we will use.

The DISE storytelling engine will be object/character and verb centric, with respect.

to choosing the action and the object of the preposition. The story author's narrative

80

control will derive from structured scene elements that are triggered by predetennined

rules, for example scene two can be triggered by the event: "dawn of day 2", to create a

"narrative of actions" (Fairclough & Cunningham, 2003).

We intend to use key rule based, planning and heuristic methods to filter out actions

that are irrelevant or inappropriate to the player at a given point. This method can be used

to:

• Limit a player's choice to make them to stay true to the basic story world
and its constraints.

• Avoid breaking the flow of the story by having commands & actions that
don't work.

• Avoid making them think that they are restricted to set actions and a fixed
path.

In Fairclough & Cunningham's system 3.1.15 INTERACfIVE STORY ENGINE,

computer controlled non-player characters utilise the following five part model:

• Low level control behaviours - e.g. path-finding.

• Social simulation - gossip system.

• Idle behaviours - such as patrol area.

• Targeted behaviour - goal search and execution.

• Attitudes - characters score other characters that they meet or hear about
and record events for later gossip.

This model is useful and would apply to many multi-agent systems our character

system will also include low level controls, idle behaviours, targeted behaviour and

attitudes via a personality model, but will be executing these systems using different
models and heuristics.

Non-player characters actions are controlled & sequenced by the character engine,

which will update their individual plans with new actions. Each character will have a
personality model to record their current emotional state and views of other characters in

the game. Each character has a list of actions that they can carry out that can be chosen

from the same list that the player utilises, allowing the characters to be given loose roles
based on their abilities (for example only the fireman character has the action extinguish

house fire). By referencing specific personality traits, the rules embedded in each action

can help the computer controlled characters to choose an appropriate behaviour.

When characters have no goals we will use Fairclough & Cunningham's idle

behaviour concept from 3·1·15 INTERACI'IVE STORY ENGINE "When an NPC does not

have a goal to achieve, they can execute behaviour such as patrolling around a house or

81

following another NPC. These behaviours are assigned by the story author" (Fairclough &

Cunningham, 2003).

Table 2 shows a comparison of storytelling techniques and why they're suitable or

unsuitable for the criteria we wish to meet in the development of our own storytelling
engine, editor and general framework.

82

Table 1:The Importance of Narrative Theories in the DISHFramework

3.2.1 Aristotle's Dramatic Actions

3.2.2 Five-act Model and

3.2.3 Three-act Paradigm.

3.2.5 Roles & Processes

3.2.7 Narrative Grammars

3.2.9 Narrative Units

3.2•10Five Codes of Analysis

3.2.12 Ethical Dimension

Agents have character and thought, from this I
stems action.

Using scenes, story mods and story triggers in
the DISE Story Manager (5.5 STORY
MANAGER) the author has the power to
create any number of acts and the transitions I

I
between them, allowingeither of these models
to be represented along with more modern
non-linear models seen in films such as Pulp
Fiction and Memento. I
The DISE system represents agents, patients
and modifying processes using characters and
verb based actions along with planning data
for their effects.

DISE uses the syntactic idea of verbs and
nouns to create the action sentences that later
become events when carried out.

DISEhas a hierarchical decomposition of goals
and actions and can allow the author to inject
indices using scenes and the story mods fact
based predicate logic. '

The 'Action' code is used in DISE, with the I
Iother codes cropping up as general narrative

elements depending on what story is created.

Author can use scenes and story triggers along
with customised character personality models
to recreate the ethical dimensions moral
choicecomponent.

-e-
.g ~ e- ex>(1)

o:S ~.::: '"' (1)

~~~ ~l~to:i CIS
.0:= S >.;a .- 0 (1)....

o ;:::"5 S '0 ._
S,c

~ 5;a ~ ~ (1)_ 8= .0 ;:::0 .- q:: f

! t.;(1)~S :s .-
eoo ~ .- '"' g'8

~.:::r5.s ~ 8 Po.

'O<a
CI)'O Q,)

~ A () ;::: ;:::
~~ ;::: .- o CIS

~
Cl}

§ '';::"0 CIS ~ '';::t) s...Cl} .... .,;:: ~;::: Cl) Po. §Of :s'"' c: CIS (1) Q,) Cl) 0 -g(1)
'"' (1) E () Cl} bO'0 :ir5 Cl) (1) .s:Coo (1) 8 ~ ~ ;::: c: . ...

'"' c: '"' CIS .~Cl (1) -5bO~.s~~ ~ ~ ~ ~ .- ~.::: 8~ t:: C";I..s ... ;:::o- 8 CIS ::> 0 call:.=b.O CI}._ Cl} () ...

"0
Q,)
Cl}

CIS
Q,) .0... t)Cl E .~ to:iCoo t§ 8= ~~ fCl 8~ <~ '0

~ § t) CI)~"g ~
',Q t- .,;:: ..... ;::: c: c:.g.~ ~
t 2 ::113000 '';::'0 1l',p '';::'3 CIS ·c

CIS
III 8 ~ 0 ;:::8 ~ ~

~~ --=
Q,) ..... 8 Q,)

~ 0 ..0 Q,) 8 .5 c: -5

Cl)

...... ~ ~ t)i <~~Coo

~
Cl

1ii~~aCoo

~ ~
Q,) lIS ...

~ '";j is ... ,...j
~ ~



o...-...,t:;a
=!

"- C!>e <~zi 50.

~
.. 0 i:2i ~~Ob

~
M ~S§~ "t... .c: ...l:3 I;,) ~ M ~<~ ~

M



~.., t-
t 2

~~~ =
I::r:

<, 5e
~ '"u

~'" ~u I/)... .c: Z ...:3 o Cl ~ c..;

~......, ~
~OJ
El Elo ~U be

<,

t!
~i ...a

~ «I ~ \0.:: ~ ...;
:l u Cl M

~....

1

00
00

J

~ c-~ ~

~

.!S..,C > - ~ >.G ~ ... ~--e cdE 2 ~ 'tU o PO;~ e '"' 2 ~]1i s~15 .$ofl tu eC) ~ c: 'tii "tj

- ~e ~
~

.. :; I:;l.. l ::>
(7\ ~ 0!

~
!:Q .-4

:3 ~
...

~
...eil eil

-e
~! ...
i

~

z... CIt~ ...
~

.....c::: ~ ~:3 to) ~ d:l

o
C)\

C
::I:s...
1
!

~...
1e
'iI e: ~=e N <Ii." co Ii! E
~,!j

Cl
0 .£ :E',p

~-8 .El
0 Cl 08~ ~ ~~

-e
2 a..
e ! ~ ~~ ...
•t: ~
...:l ::c M

- ~e
~ '"a

~'" ~~
~

... ~:3 Q th......

M
0\

'"' tIC =-0
0 Q,) .S o =,e. ..c: ~ g;j -0 ~.... ~ -= S en ~ ~- Q,) ~.... = Q,) 2:l-O§~..co.c <Ii:a 2:l ~ .~ ~.;::: Q,) '"' Q,)

·;:::bOen~= ~.~ ~ ~ .~.~ § "2;

! g.~~~O~
~ ~ S 5l-8 ~_gct Po.

...

j

"'=t
0\

0

P I=:
bO~ I=:.. tU- ..= '.;1....

~
~ 't:I •
~ Cl) Cl)

~'"-C O.l::l

! t!).!l~S 0 tU.s ~

.- ds Cl) tU I=: ~ !.~- ..= e o ~
~ '" ~ .£ -tU

Cl) ~ .g&& 't '"
'" ~..= Cl) ~= 0 o'E ~..s ;6 .SCl) Cl)

~ ~ ~
o ._ & ~~-s . .S ~

-
j j j

e..
1

-e
~

... ~~... Q.
~

e-,~ J ...
•t:: ~
.:l U I Men

cd--I::::
.....e

~i '"l ~'" 00
tI
.i:: 0 ~
~ en M

~
fIJ = 'iCl) tU°ll =(\...::1 t- ot: § fIJ

o '"' tUt 2 ~ fo~ ,t:J..s::
of~t5 e tU § tUo_ 0 Q e ~CI)

f z
0

i ... Cl)

~i i~... 0- 0Q) ...
~

c-..1:::l ~Q M M

c....-:s;a
=!

3.5 CHAPTER SUMMARY

In this chapter we first looked at the approaches used by other researchers to create

an interactive story and summarised their work in Table 2: Interactive Storytelling System

Review Table (pages 84-97). From this work we observed the potential for further research
into an Interactive Storytelling framework which has a greater focus on allowing the user
to playas a central character in the story, rather than an observer. We also noticed that
many of the systems do not have an interactive 3D environment and also lack the editing
tools to create these environments as well as the narrative elements of the story world. It is
also important that these editors are usable by writers and not just programmers who can

modify source code.

Next we compiled a list of relevant narrative theories and models that could prove

useful in creating a structure for our story to follow and a way of generating an interesting

story. From these we picked out the key parts as described in Table 1:The Importance of

Narrative Theories in the DISE Framework (page 83). Some of these narrative theories are

key parts of our storytelling framework, such as verb based actions and characters with

unique goals and personalities. Other narrative structures are optional and up to the user

creating the story to follow, such as the act/scene structure (g-act, 5-act or more).

Finally we looked at computational models for Interactive Storytelling, mainly

automated planning and scheduling with various search algorithms and goal driven

actions.

The next chapter, 'DISE: AN INTERACTIVE STORYrELLING FRAMEWORK'

introduces our take on interactive storytelling and documents the design of a framework
"DISE: the Digital Interactive Storytelling Engine", that matches our requirements and
specifications, such as: data types, points of view, game technologies and user

characteristics. It gives an overview of the various components of DISE and includes their
UML and class diagrams.

99

" [Interactive Storytelling is] any game featurinq both
characters and a story ill which one or more narrative
aspects changes interactively (lGDAI 20(1).

4 DISE: AN INTERACTIVE

STORYTELLING FRAMEWORK

4.1 INTRODUCTION

In the previous chapters we have looked at why storytelling is important, explored

the relatively new field of Interactive Storytelling, and highlighted relevant work already
carried out in this area. The main focus of this section is to determine how Interactive

Storytelling (IS) systems can be improved and look at what makes a story interesting and

immersive. We will break down the problem, the deliverables and create a framework of

our approach in picking the important ideas to build DISK It also contains our plan of

development to show we approached the problem systematically, whilst raising any design
issues that could occur.

In the previous section 3 RELATED WORK we identified the key elements from
previously implemented Interactive Storytelling Systems and found that although some
elements have been implemented, no one system has all of the following:

• The player is a main character in the story and can move and interact

freely with the world to make decisions, which have an effect on the
narrative.

• Full3Dgraphics and animations.

• Flexibility to create stories in multiple genres which are also not bound to
one strict narrative theory for their discourse.

• Intelligent non-player characters which have their own personal goals
and personalities.

• A Story Manager to constrain and progress the narrative in the ways that
the author defined depending on certain events.

• Easy to use editing tools to allow new story content to be created.

• Procedurally generated environments which can be controlled with
high level constraints.

• Character facial animation system with an editor.

100

• The ability to run cross platform and viaweb deployment.
• Modular framework, which can be expanded, upgraded and improved,

for example: by switching the planner out for a newer version or a different

planning system/algorithm/heuristic altogether.

Our Framework is called DISE - Digital Interaetive Storytelling Engine and

includes all of the features listed above. It is designed not around one strict narrative

theory, but to allow the story author to control how they compile their narrative structure

using the Scene Editor.

The Story MllD8gerwill monitor this narrative structure composed of multiple

scenes and progress the narrative by making the changes that the author implements
using the powerful StoryMods which trigger pre-defined rules written in predicate logic

to update the state of the world. Using Story Triggers the author can choose when, how
and why the current scene changes and which scene is next. A Story Trigger connects

together two scenes, creating a one-directional from-to relational link and contain pre-

defined rules written in Boolean logic that if returns true will move the current scene

forward to the next one.

The Character Engine, which runs in a separate thread, sequences characters

behaviour in turns with more important characters prioritised higher in the list. Each

computer controlled non-player character (NPC) gets one tum per update loop cycle,

which allows them to run an instance of a planner to solve a goals requirements and to

carry out an action or continue and progress their current action. The planner will queue

up a sequence of actions for the NPCs to execute on a tum by tum basis to complete their

goals. The Character Engine also has systems for re-planning and prioritising goals and

setting NPCs to wandering mode when they are idle and have no goals or actions, so un-

programmed extras will still appear alive and busy, until they receive new orders.

The Player Action Engine handles all the player input systems such as mouse

picking and keyboard movement. It is also responsible for allowing the player to interact

with the world by choosing actions. When an interactive object is clicked the Player Action

Engine uses context filtering to display all the relevant action verbs in a floating text cloud
display around the object. Italso executes the chosen action and updates the world with its
effects.

In the next section we will look at the current games technologies needed to create

and render these 3d worlds and handle the players input by updating what they can see on

the screen.

101

4.2 STORYTELLING GAME TECHNOLOGIES

Storytelling via digital entertainment is at the forefront of many industries. It is

entwined within the filming industry to create special effects. For example, it was
extensively used to create the Beowulf production. Despite modeUing the actors in digital
form as they are in the real, it was techniques borrowed from the gaming industry that

allowed digital representations of themselves to do things they couldn't do physically. As

time goes on we see mass convergence between social networking and virtual
environments which provide technologies that exceed conventional websites.

For example, many gaming or virtual environments provide a means of expressing
oneself through the way you look and the artefacts you surround yourself with, as well as

providing far more advanced social settings. Given, what we believe is a new and emerging

phenomenon; it is not too difficult to imagine the Internet itself porting many 3D
functions to represent content in a more life-like fashion. The challenge is to provide tools

that simplify the production of 3D gaming and virtual environments to allow anyone to

contribute to the production of the environment and the story content within such

environments.

We are already witnessing a trend emerging, so to a certain extent this is happening.

Moving from conventional modding, through content created by users within

environments that support such capabilities, we see platforms, such as Xbox Live, that

now provide a platform, where recreational game developers can create and deploy their

work. Nonetheless, this is not performed from one single development environment, or for

cross-platform developments. We addressed this problem through an integrated game

development environment we have developed called Homura. The Homura IDE is a

platform designed to facilitate the development of 3D Java games in an all-inclusive

interface, which provides text and graphical editors, compilers and launchers, and

interfaces to objects in the game (Carter, Cooper, Dennett, & Sabri, 2008) (Dennett, et al.,
2008) (El Rhalibi, et al., Homura: A Step Further Toward 3D Java Game Development
Support, 2008).

We have utilised the advances made within many existing technologies to create a
new and novel platform where all aspects of gaming can be realised. This provides obvious

benefits. First, it provides a single environment, which contains different development

views dependent on what part of the game you are developing, thus the user does not have

to learn and use many different applications. Secondly, it provides a set of simplified tools

that can not only be used by professional game developers but also by less experienced

developers. In this way we can tap into the imaginations of anyone connected to the
Internet.

102

To create procedural stories we will use this game technology as the medium of
conveyance as computer games are the most advanced form of interactive entertainment.
Games technology has quickly evolved over the last 30 years and can now define a 3d
scene in a fairly realistic or artistically stylised manner, with object creation and
management and support for multiple input devices. In the following sections we will
describe some of the desirable features needed to display a story world in real-time 3d and
allow the player to interact with and navigate the world.

4.2.1 RENDERER

The renderer draws everything in the scene that the camera can see by generating an
image from the scenes objects. In 3d graphics the renderer has to generate a ad image
from a scene represented in 3d by sending calculation data to a graphics card to solve the
rendering equation. These calculations can vary but mainly include predicting the
behaviour of virtual light and the effect it has on objects with various material properties.
On top of drawing the basic scene geometry, the renderer processes the art pipeline to
produce the following advanced functions and effects:

• Shading - adjusting the objects surface colour to be lighter/darker depending on
the light source.

• Texturing - the mapping of zd images to 3d objects to give greater detail and
colour information.

• Bump mapping - adding fine detail by simulating bumps and wrinkles on an
object by perturbing its surface normals then using these new values to calculate its
illumination.

• Shadows - calculating where light is blocked.

• Transparency - making objects that are see-through.

• Reflections - for light bouncing off shiny surfaces like mirrors or water.
• Refractions - bending of light through clear objects like glass or water.

• Caustics - like indirect illumination but with the light highlights caused by
reflection & refraction.

• Volumetric fogging - for a thicker environment like smoke.

• Indirect illumination - global illumination, with light bouncing off other surfaces,
not just emitting from the main light source.

• Subsurface Scattering - scattered transmission of light through semi-translucent
objects like human skin.

• Bloom & HDR - an imaging artefact of real world cameras and to some extent the
human eye, where very bright light sources in the scene bleed beyond their natural

103

borders. It can also be used for the transition from a dark to light room to

represent human eyes adjusting to the new light levels.

• God Rays - columns of light radiating from a single point in the sky through gaps

in clouds, tree canopies or broken cover.

• Motion Blur - fast moving objects or camera movement creates a blur.

• Depth of Field - things further away lose focus and become blurry,

• Anti-aliasing - smooth's the jagged edges of angled or curved sd objects.

• Non-photorealistic Rendering (NPR) - artistic techniques to give objects a
particular stylised look/theme such as cartoon shading, comic book halftone &
outlines, or high contrast black and white.

4.2.2 SCENE GRAPH

As aforementioned, the main task of a 3D engine is to maintain and display 3D
objects. A collection of 3D objects in a game is known as a scene. To relate all these

objects, a so-called scene graph is used.

The scene graph is a graphical data structure that logically manages the spatial

representation of all the scenes objects. Everything is arranged in a graph/tree of nodes,

where nodes have many children but only one parent. Any operations or settings on a

parent get propagated down to the children. This is useful for adding render settings,

materials, textures, lighting, or spatial transformations to batches of grouped objects.

These transformations could be used to move a race driver along when the car node moves

or rotate planets around a sun. Using HUD node a collection of quads can be nested to

create a user interface, which scales with the display resolution.

The scene graph allows a large level scene graph to be created, without having to

process it all at once. Only the regions that are being observed are of direct interest, while

scenes that are further away have a reduced amount of observable detail in areas, such as

meshes and textures. This general concept is commonly known as spatial subdivision, with

the graphical aspect being known as level-of-detail (LOD) management. The trade-off for

this reduction in processing is more memory usage, and more code required for these
aspects of the engine.

4.2.3 INPUT SYSTEM

The input system allows devices such as mouse and keyboards or game controllers to

provide input data to trigger game logic. Listener objects can poll devices to see which

ones are attached and being currently used. These listeners also provide trigger call-backs

when an event happens. The event can be used to call any function and take the input

values into account, such as mouse position, key pressed, key released and

104

left/right/middle button mouse clicks.

4.2.4 ART PIPELINE

It is important to have a useable art pipeline (Figure 26) to add new assets directly

into the game world. Tools such as Adobe Photoshop and Autodesk 3DS Max can be used
to create game data files for images/textures and 3d models respectively. The images and

models have to be in a format that is readable by the asset manager classes and without

strong art tools along with exporters and loaders creating something more complicated
than a colour fill or simple geometric 3d shape can be tricky.

Texture Images in brnp,
Jpeg, png, tga

Figure 26: Homura Art Pipeline

Now that we have determined the requirements for the game engine used in DISE

we need to identify the requirements of an interesting story and what systems will be

necessary to convey this story, whilst adapting it to the player's choices and how these can
be combined together to form a complete Interactive Storytelling framework.

4.3 REQUIREMENTS & SPECIFICATIONS

The first thing to think about is the basic needs of a story; usually there is a main

character/protagonist that has a problem to overcome or a need to solve (see 3.2.14 Hero's

Journey above). Looking also at Propp's 7 character roles gives a suggestion of this plus

the other supporting characters usually found: "the hero (who seeks something), the

105

antagonist (villain), the donor (helps the hero by giving them an important object), the
dispatcher (sends the hero on their quest), the helper (supports the hero), the false hero
(pretends to be the hero), the princess or her father (needs protection from the villain and
rewards the hero)" (Axelrad & Szilas, 2010). It is clear that a system is needed to easily
manage and sequence seven (or more) characters with individual roles (goals) and
personality traits.

The core physical elements that work together to create a narrative can be broken
down into the following in game objects/classes: An audience, memorable characters, a
location/setting for the action to take place in, actions for the characters to perform and
objects of importance to interact with (props).

4.3.1 GENERAL SPECIFICATIONS

To create a capable Interactive Storytelling framework we need to find an answer to
the following questions:

Design Strategies, Architecture & Game Engine

• Which main components & technologies is the framework made up from?
- Which computational model can process the story interaction?

Can a narrative theory create a model to represent the story?
- Which game engine can render and update the adworld in real-time?

Can infinite choices be put into sentences and can the author control the
story's direction?

Point of View

• Which point of view is the story told from?

- A subjective (player has a limited view of the story) or omniscient (player
sees everything) point of view?

- Will the player control a single or multiple character(s)?
- Will the player view a scene from a different perspective at certain points?
- What perspective will the camera show the story world from (1at person/3M

person/whole scene)?
Actions

• How are actions defined?
- When can an action be performed?
- What does it interact with?

- What happens after the action is carried out?
Characters

• How can we make believable characters which progress the narrative?
- What do they look like?

106

How do they behave?
- What are their intentions and desires?

Locations
• How can different story locations be created?

How can authors draw and import 3d graphical assets?

• What objects can be interacted with?

- What do they look like?

- What can a character do with them?

World Taxonomy
• How can the story world and everything in it be categorised?

How do we differentiate between a character and an inanimate object?

- How do we differentiate between an object that is interactive and one that
is just visual decoration/scenery?

Story Manager
• How do the story authors constrain the narrative to retain their original ideas?

How is the story broken down and revealed (three-acts, five-acts, and

tension/suspense)?

- How can the author introduce the hero's problem to overcome or create a

conflict?

How does game model compare to narrative model?

How can new stories be created?
- What editing tools are needed?

How is the story data stored on the computer?

4.3.2 IS FRAMEWORK DESIGN STRATEGIES

There are different strategies that need to be considered in order to tackle the
problem of creating an Interactive Storytelling framework, some have been tried before

and do not work, whilst others have much more scope for future work and expansion. The

main differences between these are the richness of stories that can be produced, the effect

of the players actions on the outcome of the story, the amount of content that has to be
created and predefined and the amount of content that is experienced by the player.

Crawford lists some of the main strategies as: Simple, Environmental, Data Driven,

and Language Based (Crawford, Chris Crawford on Interactive Storytelling, 2004). For

convenience we will group these along with all of their sub-categories into the following

two categories: Incapable Strategies and Potential Strategies based on their
proficiency and stating why they lack capabilities or have the potential to work.

107

4.3.2.1 Incapable Strategies

These are the storytelling strategies that have been tried in the past, don't work for
true Interactive Storytelling and have no suitability or room for improvement. These are:

Branching Trees: As we have mentioned before in the background section;
branched narrative usually splits each decision into a binary tree, leading to a new choice
and further child branches (Figure 27). The problem with this technique is that content for

the branches quickly spirals out of control with an extra 2n pre-determined unique nodes

on the tree for each of the 'n' choices a player is allowed to make and the player only
experiencing one path through the story. For example the small story in Figure 27 with

only 3 choices will lead to 1+ 21 + 22 + 23 = 1+ 2 +4 +8 = 15created scenes in total,
with only 4 scenes (around 27% of the game) being experienced on each unique
playthrough. The number of branches could be increased to create more choices at each
node and making a richer story, but this would result in even more states/scenes to
program, so is not a scalable solution.

Foldback Schemes/Converging Trees: These are similar to the branching trees
above, but to limit the number of nodes in the tree some branches converge to the same
point. This means that the player is given a choice to make which ultimately doesn't affect
the outcome of the story, for example in Figure 27 the converging tree shows that both
decisions leading to 'A' & 'B' eventually merge back to scene 'C', giving little divergence to
the overall story plot.

Kill on Stray: Similar to the branched tree narrative but terminating branch
numbers by having multiple choices with only one 'correct' choice and the others resulting
in death of the player character, forcing a restart and for the player to learn the one correct
path through the story. In Figure 27 choices 'B', 'C' & 'E' all lead to game over states,
leaving only one true path to navigate along a single fixed story.

BranchingTree ConvergingTree Kill OnStray

108

F1pre rr.BranehecI, Convel'llin8 andKID on StrayTree Baaed Narratives

Interleaved Story/Game: These are games that have elements of a story

interleaved between gameplay sections. This can be presented in multiple ways including:

written background story in the game's manual; story cut-scenes triggered after
successfully completing a puzzle, section of the game, or level; pieces of story hidden in the

game world that reveal more of the plot as they are uncovered; and 'in-engine' cut-scenes

using scripting which solves the disjunction from cut away movies, but still are not

changed depending on gameplay other than winJlose situations.

Environmental Strategies: These are games with a large 3D world usually

inhabited by AI agents or non-player characters (NPCs). The player can further the
narrative by locating and talking to these NPCs who provide personal anecdotes, nuggets

of information, useful quest items or offer their assistance. Most games in the last few
generations of PC and console hardware use this model and have been successful games,
but are not true interactive stories. This model could be expanded on by creating smarter

agents using Personality Modelling (see Section 5·8.4) or adding a narrative structure such

as the Hero's Journey (see Section 3·2·14), but then these could be used independently of

the Environmental Strategy, so are considered individually as entirely different strategies

in the next section.

4.3.2.2 Potential Strategies

These are the strategies that have the potential and richness to create a true

Interactive Storytelling system. Theseare:

Language Based Strategies: are inside-out approaches, which use words or

symbols/images and grammar as their core model to represent drama. Crawford states his

belief that "language itself contains the core elements of drama" (Crawford, Chris
Crawford on Interactive Storytelling, 20(4). The problem is that the ambiguity of the

English language does not translate well to computer programming so a less complex and

more rigid dramatic sub-language is required. This is a potential strategy as clear

languages have been designed to describe specific terminologies in a number of
disciplines, such as Mathematics, Music, Chemistry and even film direction (screenplays

and storyboards have a standard format to describe what is happening in a scene). When

language is parsed the computer has to calculate what variables change in the story world.

The English language can be broken down into categories and mapped to describe a story

world, for example:

• Nouns - represent a thing or object in the world (e.g. car, stool, Bob).

• Verbs - represent actions carried out (e.g. running, sitting, and trading).

• Prepositions - function words to describe temporal, spatial or logical

lOQ

relationships (e.g. on, of, in, at, has).
• Pronouns - can replace nouns to select multiple types of object (e.g. we,

they, and everyone).
• AdjectiftS - add to noun or pronoun to describe, identify and quantify (e.g,

instead of car we could use 'small' car).
• Adverbs - can modify verbs, adjectives, whole phrases or can be stacked on

top of another adverb to define the manner, time, place, cause, degree and
add context of the scene (e.g. quickly, boldly, gently).

The language's grammar can be defined in many ways, the simplest one being a
word matrix that lists every word along both the x and y axis, with the grid cells being
marked true if the words can be connected as: 'y + x',

e.g, (y) Ride + (x) Bike - true, (y) Bike + (x) Ride 8: false, (y) Ride + (x) Tree - false.

A more complicated extension of this concept of cross-linking words is a semantic
network, the biggest being 'WordNet' (Princeton University, 2011). WordNet is"a large
lexical database of English, developed under the direction of George A. Miller (Emeritus).
Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations" (princeton University, 2011). Using the extra
linkage dimensions a richer language can be produced and user input can be improved
using inverse parsing. This technique allows one word from the user input to be read by
the computer at a time and displays all the new possible choices for the next slot in the
sentence. This narrows down choices, eliminates errors or dead ends and speeds up
processing the whole input sentence, as it is done in small chunks whilst calculating the
next possible steps. Inverse parsing has been used before to quickly display possible
results in Internet searching and e-commeree product searching to save time so is a tried
and tested method.

Data Driven Strategies: need a set of story data and model to describe how that
data is combined into an Interactive Story. Crawford calls these "Story Components" and
"Connectivity Data" (Crawford, Chris Crawford on Interactive Storytelling, 2004).

• Story Components are broken down pieces of story data that can be used
as building blocks for an overall narrative.

• Connectivity Data describes how these are connected together and which
pieces are used in response to a player's choices and actions.

To create the Story Components and Connectivity Data we can look at the work done
in the field of narrative theory over many years by many famous scholars. Narrative theory
is the study of "the devices, strategies and connections governing the organisation of a

110

story (fictional or factual) into • sequence" (O'Sullivan, Hartley, Saunders, Montgomery, &

Fiske, 1994). Using these cross genre conventions and formalisations we can form the

basic components of our story and the organisation of these into a narrative. To represent
this data in a simulation the narrative theory will have to be paired with a computational

model. The model will specify how the story components are stored in the computer's

memory, their structure and the methods to monitor the story and adjust it by choosing

the appropriate data information at the correct time. To find this data quickly (in real-
time) whilst the story game is running a search heuristic/algorithm is also usually

required.

Using different formalisations can dramatically change the outcomes, design and

purpose of an Interactive Storytelling system, so it is important to evaluate different
approaches in relation to our original project specification and the goals we want to

achieve. Combining narrative theory with a computational model allows the
aforementioned data driven and language based strategies to function and has the
potential to create a compelling story that dynamically changes depending on a player's

actions without the tedious work of hardcoding the specific connections between every

outcome, including the ones that are never used.

111

4.3.3 STORY DATA ELEMENTS

To design a storytelling framework and create data flow diagrams the data

dictionary needs to be identified. This is a list of the data elements needed in the software

and how these can be combined into data records and stored on the computer.

• Physical Elements (who? what? where?)

- Characters
- Props

- Locations
• Narrative Elements (what happens? when? why?)

- Actions

- Goals
- Initial State of the Story

- Predicates (Boolean states representing the current condition of the
physical story objects.)

- Scenes (Can force a particular event(s) to happen, progressing the story as
the author desires.}

Figure 28 shows the data elements and types stored in the OISE database (which

will be inside the story manager section of the framework). This data can also be split out
to create a full POOL file for the characters planning.

112

...
I1/1 Q.l Goal listc Parameters +J

0 U
.z:; 11)...u 11) I«

Preconditions
..c Action Plan Listu

I Action Execution List I
I Character Action Set I

I I Current Goal I1/1

tJ CharactersQ)

"is I \0
Locations I Re-plan Attempts

Q.l Props \1/1
11)
.tl 1/1

Ic
11) 0 Moods+'
11) .z:;
0 uc I::l First-orderu,

At(obj, loc) >
±!

I11) Second-orderc
Accessible(to, from) 0

1/1... IQJ Third-orderI Q.

Personality Values

Predicates/States \

~

Figure 28: DISE Story Database

4.3.4 USER CLASSES & CHARACTERISTICS

The goals of the system can be found by looking at the users requirements. For an
Interactive Storytelling framework the users are clearly defined as the storyteller (the
Story Author) and the person experiencing the story (the Player). The Player has to
navigate the story world and make decisions by performing actions on the things around
them. On the other hand the Story Author has a more complicated role; as they have to
create and manage the story assets, definewhat the player can do, describe the characters
looks, personalities and goals and playtest to see if it works and most importantly is

enjoyable. This means that the Player only needs to interact with the front end of the
system, whilst the Story Author switches between the editor and the player components

(Figure 29)·

113

DISE Editor DISE Player

Story Author

Player

F1gure 29: DISH Use-ease Diagram

Looking at the physical elements that are needed to make up a story the 'create
story' process can be pieced together in more detail (Figure 30). The StoryAuthor needs to
create a location/environment for the events to happen in using 3d modelling tools and lay
out all of the objects starting positions in a similar way to a stage director. Each prop
object and character also needs a graphical representation in the 3d world, similar to a
token in a board game or a chess piece.This means that a sdmodel file browser/importer
is necessary. Although the props and characters now have a process to create their
representation and location the computer needs to know more descriptive information
about them and their properties. Props need predicate information about their current
state and what they are actually used for; this data will allow the props to be coupled with
the appropriate actions. The props can then be created with the following two attributes:
those that can be used to do something by the actors and those that are purely aesthetic
(for example background set decoration). For example the object cloak could have the
predicate iswearable (cloak), which would pair up with the action 'wear' that requires
a prop with the wearable property set to true. Predicates could also be used to represent
object states such as isOn (deskLight) and isOpen (frontDoor). Characters require

even more data such as variables to describe their moods and personalities (emotional
models) and a description of their initial goals and the available actions that they are
allowedto utilise to meet them.

114

Flpre 30:Create Story Expanded View

To create the story the Story Author can use the actions already available and

defined in the system, but if what they need is not present or needs to be customised the

an add new actions process is necessary. This also applies for the creation of new

predicates. To create a story progression and direct the narrative in a particular direction

the Story Author needs a create scenes process. Scenes need something to modify the

current narrative taking place and make something new happen (a new event or unit of
drama) and something to tell the computer when to progress the story to the next scene.

This is achieved using the 'assign story mods' and 'assign story triggers' processes. Also a

scene can be constrained to a particular mood or nudged in a certain direction by changing

the actions a player can perform in that scene using the 'define action set' process.

Next the 'Play Story' process can be expanded to explain what the Players role is

(Figure 31). The Player moves around the story world using the mouse and keyboard until

they see an interactive object. The 'click objects' process allows them to select the desired

object using the mouse, to perform an action on it. The 'choose actions' process then lists

possible actions and may require the player to fill in further details to describe the rest of
their action to understand what they want to do.

115

F'Ipre 31: Play Story Expanded View

116

4.3.5 POINTOFVIEW

Point of view in a story can be very important and also provide context. Is the player
a spectator or participant? If so, are they a single character in the story, or is the view
switched between characters to reveal different perspectives and additional plot threads?
This device is used in the game Call of Duty Black Ops, which cleverly reiterates a single
stage in the campaign from the perspective of two characters Mason and Hudson. In the
first play through Mason witnesses a character called Reznov execute an ex-Nazi scientist
who defected to the Soviet Union in a key plot point. Later replaying from Hudson's
perspective reveals a brainwashed Mason carrying out the deed himself with the long dead
Reznov being the result of a dissociative disorder caused by the traumatic brainwashing
program.

Part of the novelty of this system is to involve the player as a main character in the
story instead of being a god like omnipresence that watches other characters interact.

Compton's opinion is that currently a fixed point of view works best for interactive
narrative, "The day may come when changing tastes and changing visions mean
[videogames] begin to follow mainstream epic fantasy into splitting the narrative. Until
that time, however, it is incumbent on game designers to do everything they can to give
the player an engaging journey from the single point of view-a world that comes alive just
as much for the player character as it does for the player" (Compton, 2010).

Alongside a fixed viewpoint we will reiterate the player's central role in the world by
assigning them a first person camera view. This means that the player sees the world
through the eyes of their character, and knows only what their character knows and
experiences. Game designer Ken Levine has released the majority of his games using this
perspective stating that it is "the most direct way to engage the player ... first person allows
players to embody the on-screen character more effectively, which ultimately makes for a
more engaging experience" (Pakinkis, 2011).

117

4.4 DISE ARCHITECTURE OVERVIEW

DISE will be made up from the following components and arranged as illustrated in

Figure 13 (below). The main components of DISE as illustrated in the diagram are: the
Game Engine, World Fact Database, Player Action Engine, Character Engine, PDDL

Planner, Story Manager and Story Editor; and are expanded on in the following sections.

There are also sections covering the story data classes that are used by these systems and

the procedural content generation found in the world editor.

Figure 32: DISE Architecture

118

4.4.1 GAME ENGINE

For the game engine and implementation development aspect we will use our
Homura Game Engine and development Framework (El Rhalibi, et al., Homura: A Step
Further Toward 3D Java Game Development Support, 2008) (El Rhalibi, et al., 3D Java
Web-Based Games Development and Deployment, 2009) (Carter, Cooper, Dennett, &

Sabri, 2008). We created the Homura project's game development framework to provide
an Open Source (LGPL-Licensed)API for the creation of Java and Open GL based
hardware-accelerated 3D games applications, which support cross platform, cross-
browser deployment using Java Web Start (JWS) and Next-generation Applet
technologies. Our frameworkbundles together several example applications and technical
demos, which demonstrate and explain how to implement common games functionality in
our applications; An application template, which acts as a great starting point for
developing research applications and Homura related games; The APIs of both Homura
and the key open-source projects it builds upon including the Java Monkey Engine
scenegraph API, jME Physics Library, MDS Model Importer, GBUI User Interface
Libraries and many more; External Tools for the creation of Font Assets, Particle Effects
and Levels for the games. Figure 33 shows the layout of the Homura Architecture and
these primary components.

User created
Content

Java-Based
Libraries

(Java SE 1.6+)

Native libraries

System
Requirements

Groovy, Jython, JRuby. SeanShell, Seala, Jaskell, Scheme Scripts

Hbtl'lura Asset Collection

Hbh'tUra Games Framework

Java Monkey Engine .lOM!:) Scene Monitor I
Worker

Light Weight Java Games library (lWJGl)

Open GL 1.1- 3.0 ODEPhysics OGG Vorbls

Windows 2000 I XP I VISTA Linux x861 xG4 Mac OS X (PPC lintel)

- - - ~
Nvldia I ATI/lntel: Open Gl2.0 Compatible GrJphics CJrd

Figure 33:Logical Architecture of a Homura-based Game

We have chosen Java as the primary language within our project. Byusing the same
implementation language and runtime for all the game development systems (i.e. engine,
IDE and games) we improve the amount of compatibility and interoperability between the
various sUb-componentswe are developing. For instance, by having the engine and IDE
both developed in Java, we allow the engine to run inside the IDE and allow the user to

119

introspect upon various parts of the engine, and debug the games during execution. This

also aids multi-platform execution and reduces the overall complexity of game

development in Java.

The IDE enables the development of 3D games for a variety of platforms, and the

engine, include all the libraries required to render and execute 3D games. Homura
provides an integrated solution for Java based 3D games, offering, Java editors, compiler,

and virtual machines, aswell as an extended eclipse based IDE interface. The IDE features

a game spatial editor, positional editor, and a series of wizards facilitating the
development of the game logic, and the management of the game assets. Different games
are being developed and will be integrated into the Homura IDE, and run with the engine

to experiment with the several components of the IDE, including an on-the-fly debugging
facility.

The class diagram (Figure 34) below shows our main application and the example
base it extends. Using this base app we can rapidly create our implementations and

visualise our ideas. As shown from the example base we have created the DISE main class

which loads in the main DISE components, such as the Character Engine, Story Manager,
Player Action Engine and Fact Database.

120

+run() : void
+ed(): void
+irit() : void
#iJitExsmpleO : vcid
+update(timer : ReadOnlyTlmer) : void
#l4ldateLogicalLayer(tiner : ReadOnlyTmer) : void
#.updateExamp1e{timer: ReadOnlyTlmer) : void
+renderUnto(reooerer : Renderer) : booieM
j#renderExample(renderer : Renderer) : void
#renderDebug(renderer : Renderer) : void
#qult(renderer : Renderer) : void
.start(examoleOszz: Oass<? extends DISEExampieBase>\: void
#getAttributes(setlings : DISEPropertiesGameSettirgs): DISEPropertiesGameSettirgs
#reglsterlnputTrggersO :void

DISEEnmpleBase
.Joaaer : Looaer ,. Looaer.(]etLoaaer(DISEExamDieBase.class.aetNameO)
+ooiT VM ON EXIT: booieM :: true
#jogicaLayer : LogicalLayer :: new Logical.ayer()
#: hysicalLayer: physican..ayer
#: tlner: Timer:: new TlmerO
#-franeHandler : FrameHandler '" new FrameHandler(timer)
#:settngs: OisplaySetlings -
#.Ji~ISlate : Lig,IState
l#:"wireframeState : WireframeState
#: exit: boolean:: f~se
N.-stereo: boolean" false
showBounds: boolean= false
#- showNormals : bcotean= false
#- showDepth : bodean .. false
#- doSl-clt : boolean :: false
#-canvas: NativeCanvas
#-screenShotExp : SereenSl-clllmageExporter:: new SoreenShotlmsgeExporter()
(mouseManager: MouseManager
worldUp :Vector3 = new Vector3(O, 1, 0)
#-minDepthBits : nt= ·1
minA!>haBits : 1nl= ,1
#I minStencilBls: nt= -1
#:_rooINode: Node = new Node()

DISEmain
•_charactcrEngioo ,_nittlmer: nl .. 0

[::£~~~!i]~]E~-----~\.v ._factDatabsse : FactDatabaser Character-Engine .:::: "_characterEnglne : CharacterEngine
._storyMMager: StoryManager
._ptayerActionEngine: PlayerAcUonEngne
~_box: Mesh
·frames : nt " 0
~startTIne : long.: SYSlem.currentTimeMlllls()
_frameRateLabel: BasicTex.1

-_lrtoryManager

1

[StoryM.nager I •_fad Oa!abase

1 'V I
1r-------~F~ac~t=OI~g~~~M---------~1

•_playerAclionEngino

PlllyerActlonEngln. 1

Figure 34: Game Engine Base Class Diagram

121

4.4.2 WORLD FACT DATABASE

The world fact database bolds the current state of the world using predicate logic.

Each fact stored is a statement that is true in the world and contains a predicate from the

planning domain along with its associated objects.

Some simple examples would be:
(at ?what - (either character item dynamic static) ?where -
location)

(wearing ?who - character ?what - item)

(iswearable ?what - item)

(islit ?where - location)

Figure 35 shows that the Fact Database class is one of the most heavily linked classes
in the DISE framework. The database can have added to it by the Story Manager (via Story

Mods), Character Engine and Player Action Engine and facts checked against it via the

Character Engine, Player Action Engine and Story Manager (via Story Triggers). The

entire database is passed to the planner and reformatted into the correct planner input by

the planner link class for the current planning system (in this case Metric-FF) to create a

snapshot of the initial world state when beginning to plan. The DISE main class is

responsible for creating the instance of the Fact Database along with the Story Manager,
Player Action Engine and Character Engine.

I StollMod I IStoryTrlgg... I
~)1'

11 #_factDatabaso # factDalabase
1 \ 1 \ l! _

FactO.tab ...
'cSCflalllcrsionUID : lono '" 1L
•_foldctpa til : String
,_splitline : StringO ~ .:-..L J,_objects: ArmyUsI<;string> = new ArmyUsI<;String>() " ._factDatabase" MetrlcFFPlan

1
+FactDatabase()
+loadFactFile(file: String) : wid
+loadObjectsFiIc(fiIe: String) : IIOid /

~ Character£nalne I~etObjccts(): ArmyUst<;String> "'
+setObjects(objects: ArrayUsI<;Strng»: 'lOKI 1 _factOatabasc

I "1 "_factDatabase 1'1 11\•_factDatabase
•_fact Databa.sc

* * *I StoryManager I IPIa~ActlonEngl.ne I I DISEmaln I

Figure 35: Fact Database Class Diagram

122

4.4.3 STORY DATA

The story data package consists of all the information needed to create the story and
the classes to hold that information.

Story Data includes: Objects (such as characters, locations, items, dynamic and

static), Actions, Predicates, Scenes, the Fact Database, Goals, NPCs, StoryMods, Story
Triggers and Collada models.

-- ..
_ .. «St..... DlSEs.:-

JIf~.Am~~._.AI"-.ylilt'<S~O
_~.F~

•....f"'CIOI'dll:tnsTrIM.bClC:HriIftl'
·_"'"'P5fIIng.Stdng"-
_~tI6nGkt..,.·S.1IWIIIO

_.... a ;"~I<Scnn.p. MWNt~s.inP()
~.,ac:""''-.......... -
~SlftngU
t;pilW~·StrngQ
IIIqISiRnoAI,.,.11M,IO_.,o,s_.SbryT..-t~~. 'M:~)

qlldT~~SlfIng}.1IOid
.uTr): bCdNn
~lIf'diIlCltl&fpIllCCII'Idi~=~·1ICMi
~18VQ. tKSESc:tM
....... ~IIe:IiCScMI. asesuw.)- v*
IMPleClDftdibDn.TII,I4I(pr.eondi1Kln SIdng"). tlOoIun

.s~r.ctOMlbow FilldO' '
~.dcI£lec"etr.c:t . kr'lgl . Wlid
.. .cIAO() 1fOId

1'fOCIIt£ telhM:c~·\IOd
·..."..IXlNlIlln.TN.econdll;Jl\ SWIng)boc:ItNn

. i._--
._IklrYTt-098S I- _-- ._tac~ a

·_""~Ih.~'_"'_'__~ AI".)Uelc~·",,""""""L.»r4trinpo I.-
...._

_~."""o
_~.~.ftNM".uItC~O
_lICI'yModIt.:~~ ... ntwMa;t.J.c~ct'1l
_etyTfljJgM: Atflll}lllll~TlIg~-' new~l.tIl'<Skltylr'QOlW~)
.o.SEScwll(C«W'lI;rn. -s....;)
-eddAcbICxlloft· Ad.onl; ~
~IJIOIISayt.locJl·Y'QiI1

•• ddT,~I"V9l': SIotylJ.). CliS"-'-t:=:.z::~"-'·"1,-
~riggtwI('.~DYT"'"
~Tn '.W)·StJl'yT ...
~*,**" .. ;Stttng):'1010

"_1
.....,,~I .. ;SWnQ) IIiIOId

~~FtIi(.. ·SlMooJ'O<I.._.,.-
.WItOqacb(~ MlI)t.ist"6m~) _Id

I__ .$"'0_....._
_M)6eFM;SfrIng

..maGiII. CoI.ad:aNocrIl
_JICIMIc)1'I:v.c:kW'3
_ , TimIv

.. ~.Sbwl;.fype SIrJI9. ... '·T..-,
"1,I~"f.R.I,clCWyT",,,,;~
...,~1(JvoitI

T·---......
.._ftIIN.SIIiI'Ig
-_PQdI. af'IQ
"'*ft.J.: Anyl&kf.ck:IIPo. new M..,u.Ac:liCtPO

~"':~pddI:s."",)

I'<t-:-----;*I::::....~;-:'.....Aclbpo
"_ac:tklnU. ~f'WI'I'Ioe·Slrflt)."'OU

"'9.... 0 SWtng
~'-;pdd SIn1gI..aii:f

.NPct-!IN Sht91

1E't-._...=_==.....,....-l~=!.!~)~.Od
t ~.OOII GoIiI \II!IIiICI

~MGaI\i1lO "'~'cOCIiII~
o.o~':CAl:ln.Uit.t(); AQ¥l.t<At"'*~
~-..::.npIlnUIIIO' Att~~IICtIcI!t~
·wc",..NOoIL<wftnCGoII· GoIiI· ¥Od
~~O.OoM
1tCRadfllWle~"'~b-",,}. WId"-_I,...
·f,fIICo.If,.~c~ klttnl.¥CIId
oglHC~diOn(l. A.ctIGn
·~~~boiIiMtt):¥04d
ob\~a'IdImOll_~r._-,

<0_

Figure 36: Story Data Package Class Diagram

123

4.4.4 PLAYERACTION ENGINE

The player action engine is the self-contained user interface for DISE. It allows the

player to move around the 3d world and perform actions by selecting objects using the

mouse to click on them. The Player Action Engine is created in the Main class and links to
the Fact Database in a similar way to the Character Engine in order to check action
preconditions and execute their effects by adding and removing facts.

F .. tD_ ...

•_fact~tabaSe I ,
•_play ... Actiol\E ngine

DISEmaln _ PlaYWActIonEIIlIIn., • «>01: Node~:canva.:NativeCanvas
"_logicaLay«: LoglcalLayor
it'_mooseManager: lvIouseManager

JacI~labaso : Fac:lDataba!le.=~Manager: SIooyManager
~_controtiand ... : FrslPatsonCollllo1, Itt_WOI1d~ : Voclot3 = newVocIot3(O, 1,0)

SloryManlllM
•_stotyt.lanagef

+PlayorAclionEngine{root: Node, fac:lOaiabase: FaclDatabase, .~gor: StO<)+Aanager,canvas : NaliYeCanvas, moo ...
wpdale(tmer: ReadOnlyTmet) : void
~lc\..oglcalLayor(tmer: ReJldOnlyTimef) : void
-doPick(pid<Ray : Ray3) : Pid<Resull.
lIptocessPicks(picl(Resuls : PrmillvePk::kResuls): VOId
jllregislerlnputTriggorsO : vcid

Figure 37: Player Action Engine Class Diagram

124

4.4.5 CHARACTER ENGINE

The character engine is the 'brain' of each computer controlled non-player character

(or NPC) and also the sequencer of these characters (in a similar manner to a multi-agent

system). The characters are listed in order of their importance and role to the current

situation and are given a tum each in sequence which can result in them being instructed
to carry out an action, decide what to do next using planning and re-planning and to

wander (in a pre-set behaviour pattern) if they have no current goal to achieve.

In our prototype the Character Engine is updated in the main update loop, but
ideally it will be moved into its own thread when the full system is more stable and fully
implemented. This will allow the characters thinking process to run in parallel with the
story updates, creating a smooth experience for the player. Also the step time/ clock update
speed can be set lower as thinking updates do not need to be as fast as the 60fps renderer

and input update calls.

1 I~
-_plan net

)k
,/ "

CharacterEnglne
I FactOatab1 '" ,_totaltums: int = 20

•_factDatabase ,_turnoumbcr : lnt = 0
,_trne : long
,_opcUst: ArrayUst<NPC> = 00\'" ArrayUst<NPC>()
·_factDatabase : FadOatabase
,_pIannet: MctricFFPlan

+CharactcrEngioo(factOatabaso : FactDatabasc)
~update(tirner: RcadOnlyTtmCf} : void

'_I\PCUst +addNPC(npc: NPC) : void.
" .gett.astNPC() : NPCI NPC '" .gctNPC(ildox : int): NPC

·ruoTum(npc : NPC) : void

11\ /1\
1 •_cha ractorEnginc 1

,_characterEnglnc

* *I StoryManaaer I I DISEmaln 1

IMetrlcFFPlan

Figure 38: Character Engine Class Diagram

125

4.4.6 PDDL PLANNER INTERFACE

The planner class is designed to interface with a particular planner and gets called

for each characters planning phase when their turn dictates it. Our goal for DISE is to have

interchangeable planners, so comparisons can be made and the most efficient planner can

be switched in.

The job of the interface class (Figure 39) is to execute the relative planner and pass

in the current PDDL data from the Fact Database in the format it requires. In this case two
files: 'problem. pddl' and 'domain. pddl' .

It then needs to process and format the planners output (in this case from the
console) to pass the character a list of actions which match the available classes for each
action in the action dictionary to execute in order to complete their goal. The planner
interfaces also need to know when the planner has failed and return the plan found equals
false Boolean.

This class makes any planning system into a black box; by calling

planner .plan (npc) the Character Engine can sequence and process the characters

goals and receive the appropriate action sequence regardless of the planning system.

ICharacterEnglne I
)~

-_planner
1

'11
MetrieFFPlan

+ACTION PACKAGE: String = "adjmu.dise.actions.-
._panfound : boolean: false
~_relativeplannerpath : String
-_tempnewParameters : ArrayList<Stril'Y::J> _factDatabase
roblemFile : File
-_8CtionParam: Strin9lJ v FactDatabase 1-_factDatabase : FactDatabase A "
+MetricFFPlan(factDatabase : FactDatabase) 1
+plan(npc: NPC) : boolean
+writeFie(npc: NPC) : void
..getActionClass(pclassname: String, pargl : String): Action

Figure 39: Planner Interface Class Diagram

126

4.4.7 STORYMANAGER

The Story Managers job is to both load the story scene structure data and world data
and assets and to monitor the story Fact Database, triggering narrative changes when

certain values appear. The Story Manager is called by the main game loop and is the story

initialiser and updater. First it loads the scene data then handles the initialisation of the
story objects such as characters, locations and props, including their model and animation

files. Figure 40 below shows that the Story Manager class is created in the main class and

links to the Character Engine (which allows it to create and remove characters from the
story) and the Fact Database (which allows it to check, add and remove facts, thus
manipulating the story). It enforces the changes programmed in the current scene by the
story author and also switches between scenes using the pre-coded triggers and is the
main system to discreetly progress the narrative in the directions the author desired, along

with processing the initial setup of the story from the saved story file and updating
animation systems for in game Collada model objects.

Focto.raba ..

"_fad 00 labase 1

1
DlSEbne

lI_cunenlSame

,
StoNManaal< v 1

chattCterEi'lliln.14_rootNode : Node
-_d"""cIe<Englne

"_cloak It)mer:Tme<

rColladiMo<ltl
!(cu ntSoone: DtSEScene

1
v OISElI1Iln- fadOotaba .. : FadOatab_1

":chatacIe<Engloo: CharacterEngiIe "_slOIY~
_cloak: CClIIadaMcdel

'StoryManagcr(rooiNode: Node, chaJaClorEnglne: Characle<Envioo, lactOatabas,,: FactOatabase, tinor: Tlm&r) ",,' v PlaverACllonEoiiiin.'Ilpdatejlimor: ReadOntyTmerj : void -_TiIoryManager

Figure 40: Story Manager Class Diagram

127

4.4.8 PROCEDURAL CONTENT CREATION

Procedural methods are important and show great potential in games and

interactive storytelling but are an underused solution to manual content creation.

Limitations to these methods include the lack of control of the output due to its random

nature and the absence of integrated solutions, although more recent systems increasingly
address these issues, they are rarely used to complement Interactive Storytelling. This

section describes procedural methods applied to terrain modelling, including the variable

realism of their output, performance and control users can exercise over the procedure to
easily create stylised worlds for new stories.

As gaming machines become more and more powerful the average development

time has significantly increased. A large portion of this time is used to create sprawling
levels with highly detailed assets, requiring game development tearns to have over a
hundred full-time people, including not only dozens of programmers but also equal

numbers of artists and level designers. These assets also require large amounts of storage

space on optical media, with read breaks in gameplay to strearn new content in to the

game engine or an installation to a local mass storage drive with greater memory access to

counter this delay. In Interactive Storytelling this also creates a barrier to entry for Story
Authors with limited technical art and graphics skills.

A way to reduce these issues is to procedurally create assets programmatically or

creatively reuse a small number of predefined assets and using recursive algorithms,

Artificial Intelligence, rule systems, Iterated Function Systems (self-similar fractals & L-
Systems), noise generation (Perlin), random or pseudo-random processes and shape

transformations in a manner such as to avoid obvious pattern repetition.

One of the goals of DISE is to create a system that can procedurally generate content

for a game level, using either random constraints or those set by a user before the

generator is started. The final level should then be exportable to a generic file format,
which could be loaded in at a later time.

4.4.9 EDITORS

A DISE story is made up from many aspects which would be complicated to create

from scratch, so a selection of editors are needed, each one focusing on a specific content

area. A story is made up from the story data, game engine data and graphical data. The
DISE editors consist of:

World Editor - To create the physical environment, stages or sets where the story

takes place. These are divided up into manual content creation and procedurally

generated content, the former being a blocks world editor for exterior settings, a

128

room tiles editor for interior settings, and the latter being a city building generator

and a blocks world terrain generator.

Character Editor - used to create new characters, represented by 3d model and

animation files. They are also given names, start positions, default wandering

behaviours, personality model settings and initial goals using the editor.

Charisma - this allows the Story Author to create complex character facial
animation sequences using keyframes synchronised with voice audio.

Story nata Editors-

• Actions - used to create new action and assign parameters, preconditions
and effects.

• Predicates - used to create new predicates made of parameters and types
which return true.

• Initial states - used to setup the state of the world and everything in it when
the story starts.

• Objects/Props Editor - Used to load in and position model and animation

files that represent the objects/props in the scene and assign them physical
properties, names and types.

These editors will consist of a selection of menu based panels for data entry and

custom GUIs overlaid onto the HUD and around the 3d world with specific mouse and
keyboard controls appropriate for each task.

129

4.5 CHAPTER SUMMARY

In this chapter we introduced our interactive storytelling framework called 'DISE'.

We mapped out the main requirements and specifications and decided on some key

features. Although some features can be found in other storytelling research, our design
would be the first to include all of the following in one comprehensive framework:

• The player is a main character in the story and can move and interact freely with
the world to make decisions, which have an effect on the narrative.

• Full 3D graphics and animations.

• Flexibility to create stories in multiple genres which are also not bound to one
strict narrative theory for their discourse,

• Intelligent non-player characters which have their own personal goals and
personalities.

• A Story Manager to constrain and progress the narrative in the ways that the
author defined depending on certain events.

• Editing tools to allow new story content to be created by writers not just
programmers.

• Procedurally generated environments which can be controlled with high level
constraints.

• Character facial animation system with a key-frame editor.

• The ability to run cross platfonn and viaweb deployment.

• Modular framework, which can be expanded, upgraded and improved, for
example: by switching the planner out for a newer version or a different planning
system/ algorithmjheuristic altogether.

The system was then mapped out using Unified Modelling Language (UML)

including the class diagrams for each engine component in the system architecture
diagram (Figure 32).

The next chapter 'DISE IMPLEMENTATION' describes how we implemented the
various test applications that make up the DISE framework, starting with an overview and

then explaining how each system or data class works in detail. The chapter includes sub-
sections for the Game Engine, World Fact Database, Story Data, Story Manager, Planning

System, Player Action Engine and Character Engine. These sections explain how each

individual part was created and bow they interact with the user and the rest of the
framework's components.

130

" The stories u e tell reflect and determine how we think
about ourselves and one another. (Murray, 2004)

5 DISE IMPLEMENTATION

5.1 DISE ARCHITECTURE OVERVIEW

The high level DISE architecture was described in section 4.4 'DISE Architecture
Overview'. In this section we will explain the inner systems and their data models in more
detail and will also include some diagrams and examples of the DISE code base. The basic
structure of DISE was split into player and editor components then further categorised
into smaller interlinked sub-systems, which each have a specific role (Figure 41).

Figure 41: DISEArchitecture

131

These sections can be divided further into the following categories that also match

the following sections in this chapter:

Game Engine

• Homura

StoryData

• Types
• Verb Dictionary

• Initial States

• Actions
• Action Grammar

• Parameters, Preconditions & Effects

• Action Editor

• Props

• Locations

• Navrneshes

• World Editors

• Procedural Generation

Player Action Engine

• Player Interface & UJ
• Inverse Parser

Character Engine

• Goal, Action & Execution Lists
• Turns & Sequencing

• Personality Models

• New Goal Generation
• Character Animation

Planner

• PDDL

StoryManager

• Scenes
• Story Mods

• Story Triggers

132

Figure 42: DISE Class Diagram

133

5.2 GAME ENGINE

5.2.1 HOMURA GAME ENGINE

We developed the procedural content and physics based editor test applications
using the Homura Game Engine, another research project we undertook (El Rhalibi, et al.,
Homura: A Step Further Toward 3D Java Game Development Support, 2008). The

Homura project's development framework provides an Open Source API for the creation

of Java and Open GL based hardware-accelerated 3D games applications, which support
cross platform, cross-browser deployment using Java Web Start (JWS) and Next-
generation Applet technologies. The framework bundles together several example
applications and technical demos, which demonstrate how to implement common games
functionality in your application; An application template, which acts as a great starting
point for development your own Homura related games; The APIs of both Homura and
the key open-source projects it builds upon including the Java Monkey Engine scene

graph API, jME Physics Library, MDSModel Importer, GBUI User Interface Libraries and

many more; External Tools for the creation of Font Assets, Particle Effects and Levels for
the games.

The lowermost layer of the architectural stack is the System layer. Homura is a

cross-platform framework and will run on Wmdows, Linux, Mac OS X, with the
requirement of an OpenGL 14+ compatible graphics card.

The second layer is the Native Library Layer. Homura is coded in Java, but utilises

native, platform-specific libraries for the key sub-systems. This provides the best

combination of performance and feature support, allowing hardware-accelerated

rendering and audio to be utilised. Homura relies on the native versions of OpenGL for

rendering support, Open Dynamic Engine (ODE) for Physics simulation, OpenAL for

Audio support and OGGVorbis for open source audio format support. Java interlaces with
these libraries using the Java Native Interlace (JNI).

The Homura Framework comprises the uppermost layer of the API and is
programmed exclusively in Java. Alllibraries directly referenced by Homura are also Java
based, with these libraries handling the calls to the Native libraries. This approach was

chosen because these existing libraries are already established and have been optimised to
handle the native calls in the most efficient way, whereas Homura is primarily concerned
with the high-level architecture of a games application.

Homura utilises the Java Monkey Engine GME) to provide rendering and input
handling functionality. Programmed entirely in Java, jME uses the Light Weight Java

Games Library (LWJGL) as its low-level OpenGL-based rendering sub-system. The

134

primary function of LWJGL is to act: as a Java binding to OpenGL by mirroring the

interface of the C-Based OpenGL library with a Java version of each function. For

example, OpenGL's glBegin () is adapted as GLll.g1Begin () in LWJGL. The LWJGL

function will then utilise Java's JNI system to call the native version of glBegin (), and

uses Java's NIO system to pass information between OpenGL and LWJGL as Byte Buffers.
jME provides a high performance scene-graph based graphics API. The scene-graph

allows the organization of 3D geometry into a tree-like structure where a parent node can

contain any number of children nodes, but a child node must contain only a single parent.
The nodes are organized spatially so that whole branches of the graph can be culled. This
allows for complex scenes to be rendered quickly, as typically, most of the scene is not
visible at anyone time. The scenegraph's leaf nodes consist of the geometry that will be
rendered to the display. jME is an open-source technology which, over the last five years,
has matured into a feature-rich system which is one of the most perform ant graphical
implementations in Java for 3D applications. Homura also integrates jME's 3D Audio

support.

The audio sub-system again relies on LWJGL to provide the native bridge to the

OpenAL audio library, whilst using the open-source OGG Vorbis codec as the media

format for audio files. Homura also utilises a jME sub-project, jME Physics 2, to provide

the Physics simulation functionality of the framework. jME Physics integrates tightly with

the jME scene-graph by virtue of its Physics object classes inheriting from the jME scene-

graph classes. jME Physics uses the ooncept of Static and Dynamic node types, Static

nodes are nodes that are not affected by physics, but other objects still can react physically

to them (e.g. a wall), Dynamic nodes can be affected by forces and mass such as gravity

and collisions with other physics objects (e.g. modelling a bouncing ball oolliding with the

static wall). JNI is used to bridge jME Physics with ODE to provide the low-level physics

functionality. Homura also integrates with the Java Open Particle System (JOPS), a
framework which allows the creation of advanced particle effects (Smoke plumes,
explosions, fireworks etc.) designed for LWJGL. This has been integrated into Homura by

incorporating the JOPS file type into the Homura asset management system and
encapsulating the particle generators as a specialised scene-graph node called a
JOPSNode allowing for easy incorporation within a scene.

The framework composites a large set of disparate components into a single system,

allowing a game to be easily built on top of the Homura system through linkage with the

project's binary Java Archive (JAR) file. Consequently, the final architectura1layer is the

User-Creation layer, which comprises the developed game. A game utilises the Homura

base classes using 00 inheritance and composition to provide the skeleton game _

complete with all the aforementioned sub-systems. These classes are then implemented

135

with the required game logic and the user-developed content (Models, textures, particle

effects, music, sound effects, backgrounds, etc.) which are stored as a Homura asset

collection and loaded within the game classes using the Homura Asset Management

System to construct the virtual environment which embodies the game.

Whilst the core of a Homura-based game is developed in Java, non-performance

critical sections of the game (e.g. some parts of the game logic) can be implemented as

Scripts. Homura supports a variety of languages such as Scala, Jython, JRuby and

JavaScript (or any other JSR-223 compatible scripting engine), Scripts can easily be
written to control any portion of the scene-graph (from the whole scene to a single node)
and can be used for a variety of purposes such as AI, cinematics, animation control, event

triggers etc.

We used the Homura 3d engine to create the DISE Story Player 5.7, World Editor
5.4.12 and Story Editor 5.4 main test applications, which are explained in greater depth in
their respective sections.

5.2.2 OPERATING ENVIRONMENT

The initial operating environment for the DISE framework will be Windows 7, as

this is installed on the two current test machines and is the latest and most widely used

platform at our University. As the system is mainly written in Java it will be possible to

reach our goal of deploying across other machines and operating systems such as Mac

OSX 10 and Linux. It is also desirable to run DISE on computers that do not have the
highest specs, using graceful downscaling.

The two current development and testing computers are as follows:

Machine 1: Windows 7, Intel Core 2 Quad Q6600 2.4 GHz, 4 GB RAM, NVIDIA
GeForce 8500 GT 256MB DDR2 memory.

Machine 2: Wmdows 7 and Mac OS X 10·5 Leopard, Intel Core Duo at 2 GHz, 2 GB
RAM,ATI X1600 with 256 MB GDDR3 memory.

To run planners programmed in C for Linux in a Windows environment, the
'cygwin1.d1I' file needs included along with the recompiled executable in the resources
'planners' folder.

5.3 WORLD FACT DATABASE

The World Fact Database as described in section 4.4.2 holds all the information

about the current state of the story world and its objects. This information is stored as a
large list of objects and predicate facts, where each fact that is in the list is a true statement

about the world that is written in the 'PDDL predicate' format. This format basically gives

a vector of varying lengths for each predicate. Keeping strictly to this format allows easy

interoperation between DISE and the PDDL based planners, with little to no conversion
necessary. The facts can then be stored in an array list of strings and can be quickly
checked for existence using Java array list's built in 'contains' function. This World Fact
Database class is passed to many of the other classes in the DISE system, which can
directly read from and add to the facts list. The read/write functionality is very useful for
checking that preconditions are true and updating the effects of executed actions or Story
Mods (heavily used in the Story Manager, Character Engine and Player Action Engine).

5.3.1 PREDICATES

Predicates have shared traits in human language and computer language and are an

expression that is true of something, expressing a relationship, or property of an argument

in a clause. Predicates are the second main part of a sentence, with the other being the

subject that is modified. In PDDL predicates can have multiple subject parameters along

with their corresponding types and always follow the pattern of: predicate-name,
parameter, and parameter-type.

Example of the 'at' and 'have item' predicates are given below:

(at ?who/what - (either character item dynamic static) ?where
- location)

(haveitem ?who - character ?what - item)
Predicates are used to represent the state of all objects (nouns) in the story domain

and are the main components in the Fact Database along with the list of objects in the

story (which are used as the subject parameters for the predicates). Using these predicates
to define the state of the world (by adding and removing them from the Fact Database); we
can represent the initial state, goals, and actions (with preconditions and effects).

5.3.2 PREDICATE EDITOR PANEL

The Predicate Editor Panel allows new predicates to be added to the list and used

in a story. New predicates can be used to describe new states for existing objects or states

for entirely new objects. There are no rules as to how many predicates are used to define

an object's many states, but the Story Author has to be careful that none logically conflict

with each other. To help and also avoid PDDL syntax errors the editor will not allow

137

predicates with duplicated names to be added to the list.

New predicates can be created by typing a unique name into the large box and

clicking the add button. They can also be removed using their delete (X) button. Once

created, they need to have their parameters and parameter types set. This is achieved by
clicking the corresponding edit button and adding a row for each parameter. Parameters

are automatically named x, y, z, w, etc. to make things easier. The Author then just needs

to put a tick against each type that the parameter shares. Figure 43 shows how the 'at'
predicate in the previous section was created. The first predicate (who/what) has types
(either character item dynamic static) and the second (where) can only be a location.
When finished the save button can be clicked to save and close the popup. Defining types

limits what objects can be set as the subject parameter of the predicates and also helps
when defining actions, goals and initial world state in the other editor panels by narrowing
down the available choices in the drop down menus.

Figure 43: Predicate Edit Panel

5.4 STORYDATA

5.4.1 TAXONOMY OF THE STORY WORLD USING TYPES

The structure of the story is the most important aspect of DISE and will also dictate

how the player can interact with the virtual world. The base concept uses a hierarchy of
words to create taxonomy of the game world and everything in it (Figure 44). The base

general instance that every object is derived from is 'word'. This is then broken down into

'verbs' for actions and 'nouns' for 'props, 'characters' and 'locations'; thus allowing a type

definition for each individual object instance or a collection of things. For example 'props'
are everything added to the story that is not a character or location, 'information' is
treated as a prop that a character can have (if they know) and 'items' are props that can be
picked up and stored in a character's inventory. The 'dynamic' environmental objects are
props that cannot be taken, but have a level of interactivity, such as a door and 'static'
environmental objects have no interaction apart from blocking movement using collisions.

This type definition also marries well with the type hierarchies needed for our planner.

Word

Verb

Character

Information

Noun

Props Location

Item Environmental

Static Dynamic

Figure 44: Type Hierarchies

139

5.4.2 VERBDICTIONARY

The verb dictionary is a list of all action definitions that have been saved into the
storytelling system for every story so far. This is the equivalent of a master list of actions.

In the final system we will include a base list that can be expanded on by creating new
actions or editing existing ones using the editor and saving them to the verb dictionary.
We would also like a way for these to be shared by story authors and used as a general

repository for quick story building. We have given each verb its own Java class The author

can scroll through all the available verbs and choose which ones they need for their story,
which moves them from the master list over to the current list.

5.4.3 INITIAL STATES

Initial states are just a list of predicates (see section 5.3.1)with objects assigned to all

of their parameters. Using the predicate example in section 5.3.1, we could replace the '?
Parameters' and use 'at' and 'have item' to initialise npcr as being at location 1whilst
possessing the cloak item:

(:init
(at npc1 11)
(haveitem npc1 cloak)

If an initial state is desired that changes regularly, depending on the current time

and the Author does not want to complicate their scene transitions, then initial states can
have 'timed initial literals'. These are states which are given time switches in the

initialisation of the PDDL problem file. For example a shop's opening hours can dictate if
it is currently open or closed:

(:init
(at 9 (shop-open))
(at 20 (not(shop-open)))

)

5.4.4 INIT EDITORPANEL

The init editor panel displays a list of the initial state of the story world using
predicates. These can be deleted using their corresponding (x) buttons and added by

choosing a predicate from the dropdown menu and clicking 'add'. The new predicate will

then appear in the list and objects can be selected from the dropdown menus for each

parameter. The predicates subject parameters will only list objects of the matching types,

so no impossible facts can be added. For example 'have item' would only have two

dropdown menus (one for each of its two parameters), containing only characters and
items respectively.

140

5.4.5 ACTIONS

Actions describe everything characters (and player) can do in the story world. The

actions are defined by verbs and can be linked to nouns to create full action phrases.

Actions are made up of data the describes what variables they are concerned with, when

they can be carried out, what their effects are on the story world, what reactions other
characters should have to them, what animations should play for the action and Java code
to update the game engines objects and the players view of the world.

5.4.6 ACTION GRAMMAR

To create the full description of an action we need to form a sentence using a set

grammar that humans can understand and that the computer can interpret. To achieve
this each action needs a verb to describe the action, immediately followed by an agent to

carry out the action. The next part of the sentence can vary depending on the subject of the
action and the objects needed to carry it out. This third word will be a noun of type

character, location, prop, or dynamic object. The next word is an optional noun, only used

by some actions that need to combine more objects that interact with each other. Any

other nouns can also be added after this, stretching the length of the action sentence to n

words, where n is the number of parameters formally defined in the action's PDDL code

(see the next section for more detail on action PDDL), The last word is always the location

where the character needs to be to perform this action, which allows the characters to plan
their movement and path-find to the correct area.

The final action sentence format is then:

VERB, CHARACTER, NOUN, (OPTIONAL)NOUN, ,." LOCATION
Abasic action could consist of only three words:

take-off(?who - character ?what - item)
take-off (npcl, cloak)

Where npci is a computer controlled character and cloak is an item that is currently worn
by npci.

An example of a more complex action sentence that uses five words would be:

hang-up(?who - character ?what - item ?hangOnWhat - dynamic?where - location)

hang-up (npcl, cloak, hook, cl)

Where npci is a computer controlled character, cloak is an item that can be hung up,

hook is an interactive (dynamic) prop which can have an item hanging on it and Cl is sub-

node 1 of the cloakroom's navigation mesh (see section 5.4.13 for more info on
navrneshes).

141

5.4.7 PARAMETERS, PRECONDITIONS AND EFFECTS

To correctly sequence and describe our story actions wewill use a branch of artificial
intelligence called automated planning and scheduling. The main data to describe actions
is stored in the Planning Domain Definition Language (PDDL) format. PDDL is a recent
attempt to standardise planning domain and problem description languages and includes
STRIPS, ADL and more via extensions. This gives the most important information about
the actions nature that the computer needs to understand when the action is possible,
which variables it is concerned with and what its effects are.

The actions are usually made up of three parts:

• Parameters - Usually the 'Name' and 'Type' of an object, character, or
location that are used by the action.

• Preconditions - Requirements that need to be met (i.e. states of the world
that must equal true) to perform the action.

• Effects - Post conditions and modifications to the world's states after the
action is carried out.

This data can be used both for the non-player character AI to plan and sequence
which actions need to be performed to reach their goal and to calculate the adjusted world
state after an action is completed by either the player or a computer AI agent. Later we will
also explain how the parameters and preconditions can be used to select a subset of
actions that fit the player's current context using inverse parsing (see section 5.7.2). The
effects PDDL description is a useful tool that can be used not only to plan, but to update
the world state data (the model). Inorder to reflect this in the game engine (the view) we

also require some Java functions attached to the predicates that get called when the effects
are processed. The following table (Figure 45) shows further details on how the structure
of a verb file will look in the verb dictionary. Some brief examples of the verb 'give' are
shown in pseudo code underneath each section heading.

This verb system can be used to represent the most important state modifying verbs
mentioned in Todorov's model (Todorov, 196<) as outlined in section 3.2.7 NARRATIVE
GRAMMARS. These are:

• Mask or unmask: while the situation might not actually be modified,
someone is made to believe it is modified (knowledge).

• Words - calm a situation; hurt a situation (personality model).
• Physica1- attack or resistance.

• Seek help - by evoking compassion or asking for advice.
• Change oflocation - (go to/walk).

• Exchange - (trade) through payment or giving freely (shown in the example

below in the table: Figure 45). The flexibility of an Actionary gives the story
author a wide scope to create any action and to even expand out of Todorov's

model if they see fit.

Breakdown of an Action Verb

Name: Name of the action

Example:
Action: Give

Parameters: Usually the 'Name' and 'Type' of an object, character, or

place that are used by the action and inthe format:

?parameter_name - parameter_type

Example:

Giver - Character, Receiver - Character, Item - Thing/Object,
L - Location

Precondition: Requirements that need to be met to perform the action.

Example:

Giver != Receiver And Giver Has Item And At L Giver And At L-Receiver

Effect: Post-condition & states after this action is carried out.

Example:

Giver !Has Item And Receiver Has Item

Figure 45: Breakdown of an Action Verb

143

5.4.8 ACTIONS EDITOR PANEL

Using the actions panel in the editor new verbs can be created fairly easily and

without knowing the exact PDDL code syntax. Figure 46 below shows the prototype action

editor and the popup windows used to create and edit actions with their parameters,

preconditions and effects.

Figure 46: DISE Action Editor UI Panel

144

The following code is produced from the information input in the diagram above:
(:action scare
:parameters (?x-character ?y-character ?z-location)
:precondition {and (at ?x ?z) (at ?y ?z) (not(= ?x ?y»)
:effect (and (decrease (AngerFear ?y) 1»

)

To create this code first the action name is typed in the top text box and is then

added using the 'add action' button. It will be appended to the scrolling list of all actions

below and can be re-named by double-clicking its text label and changing the text. At first
the parameters, preconditions and effects will be empty so each one needs to be filled in
with the appropriate data by clicking the corresponding button to open a new window. The
parameters section needs a list of the variables concerned with the action and their types.

The 'add row' button adds a new variable which is automatically given a name (x, y, z, w,

etc.). The types can be selected using the drop down box in the second column and selected
parameters can be removed completely with the delete row button. To edit the
preconditions the main dropdown is used to choose an available predicate for the

particular precondition. Then pressing the add button will add the predicate to the list.

The editor will automatically filter and list any parameters that are useable in the new

predicate row. These can be changed to any parameter/type available to make the correct

precondition test. Clicking save will save and exit the precondition popup window. The

final effects can be added with the effects button, which opens up a similar window to the

preconditions. Here effect predicates and their parameters/types can be defined and saved
(Figure 46).

5.4.9 OBJECTS& PROPS

The Objects in PDDL are any Locations, Characters, Items, Dynamic environment

object or Static environment object (see section 5.4.1 for taxonomy explanation). The
object PDDL definition only needs a name for each object in the story and its type,

however more information than this is needed for the story world to be drawn correctly by
the game engine.

'Locations' are defined separately in the DISE world editor as the whole

environment needs to be built up and positioned and its navmeshes generated for each
location, so are covered later in section 5.4.12.

Also 'Characters' have much more data, such as personalities, goals, etc. so are
covered later on in the character engine section (5.8).

That just leaves us with the subcategory of objects caned 'Props'. Props are similar to
their stage counterparts and are further broken down into 'Items' (things that can be

carried in a character's inventory), 'Dynamic environment objects' (things that are usually

145

larger and can be interacted with, but not carried around) and 'Static environment objects'
(things that form barriers but cannot be interacted with or moved). Static props only have
game engine data as they are not used in the planner. Item props usually have a model file
to represent them, a location and vector position and a dynamic physics setting. They can

also contain their size in number of inventory blocks needed to store them and the pattern
of these blocks. Dynamic prop objects have their physics set to static or dynamic
(depending on what they are), a model file, loeation and vector position, but do not require

inventory block data as they are never carried. This data can be created using the editor
panel and free drop editor detailed below.

5.4.10 OBJECTEDITOR PANEL

The object PDDL definition, physics type and model file can all be easily input using
this panel in the Story Editor. A new object ean be created by typing its name into the top
box and hitting the add button. This will create a new row in the objects list, which can be
deleted or edited further. There are two drop down boxes allowing the story author to
choose the type of the object and the physics type and a file browser allows the easy

loeation and importing of Collada model files. Items ean also be given an inventory block
size and shape by highlighting grid squares if this is required in the story. These objects
can then be positioned using the prop free drop editor mentioned in the previous section

to give them a position loeation and their exact vector data.

Figure 47: Object Edit Panel

5.4.11 PROP FREE DROP EDITOR

A physics based editor prototype was created using the Homura Engine, which
allows new props to be dropped freely into a level. The props are created using their model
and texture data and then wrapped up as physics objects (see Figure 48). These objects
can be given the following physical properties:

• Dynamic - these are moving objects that collide with other static and
dynamic objects.

• Static - these are non-moving objects, such as a solid wall, that can collide
with dynamic objects.

• Phased - these objects can pass through any object and then be set to static
as above. This is useful for a column partially buried in the ground.

• None - ignore collisions for this object. This is useful for objects that are
purely aesthetic, such as scenery placed out of bounds in the background of
the level.

Figure 48: DISE World Editor Free Drop Mode

Dropped objects can be picked up by aiming the mouse reticule at the object and
clicking. This will create a physical joint between the camera and the object, so the object
will follow the user's movement. When an object is picked up extra keyboard commands

allow it to be rotated in 3d and with another click re-dropped into its new position. When
an existing object is selected with a mouse left click a menu will appear with the options to
move or delete the chosen object (Figure 49).

147

Figure 49: Editor Move/Delete Menu

If the move command is selected the cursor will change to a hand and the object
should now float in front of the camera. Using the mouse to look around and the arrow
keys to move, the object can now be positioned anywhere in the 3D world. After moving
the object it can also be rotated to the desired direction and placed with another left-click.
As some objects are affected by physics properties, they may not be able to pass through
each other, when an object is dropped if it is dynamic, it may bounce around and find a
natural resting place. The editor will also support new object creation, either from a list of
predefined objects or allowing the user to load their own model files and editing some
object properties to describe how it will behave in the story world.

5.4.12 LOCATIONS

Locations are areas of the virtual environment where the story takes place. Using
various editors detailed below the graphical representation of these locations can

The 'Accessible' function specifies which locations a character can get to from
another location and requires two parameters: x- location to (the location that can be
accessed) and y -location from (the start point from which it can be accessed).

The PDDLfunction code is shown below:
(:functions
(accessible ?x - location ?y - location)
)

(:ini t

; showing that the exit is reachable from the foyer
(accessible exit foyer)

; showing that the foyer is reachable from the exit
(accessible foyer exit)
)

Using both of these statements means that the locations have bi-directional access.
If only one 'accessible' function is used for this pairing of locations then a one way system
is created. This will only be used in certain cases such as a turnstile gate. If this data can be
created in the editor automatically or generated when the game starts, the agent planning
could incorporate node-to-node navigation and even find the most cost effective route
using the 'minimize' function in the PDDL 'metrics' requirement and a cost for each node

traversed.

For example:

(:metric minimize (total-distance-travelled»

(:init (= total-distance-travelled 0»

Can be used with the 'goto' action, by adding an increment cost to its effect, giving:
(:act ion goto
:parameters

:precondition

(?x - character ?from - location ?to -
location)
(and (at ?x ?from) (accessible ?from
?to))
(and:effect
(at ?x ?to) (not (at ?x ?from»
(increase total-distance-travelled 1)
)

149

5.4.13 NAVIGATION MESHES

Navigation meshes (or navmeshes) are strips of convex polygons that are overlaid

onto the world map to define the areas that are 'walkable' or not. The non-player

characters can use these areas as waypoints to navigate the scene, usually moving between

each polygon's centre points. Tozour (Tozour, 2008) lists the five benefits of using

navigation meshes instead of traditional waypoint systems as:

1. Big worlds need large numbers of waypoints vs. the simplicity of navmeshes

means fewer nodes and faster real-time pathfinding.

2. Waypoints force characters to take a zigzag route vs. navrneshes can use

smooth spline paths as long as they remain inside the mesh's area.

3. Navmeshes allow path correction for dynamic obstacle avoidance.

4. Waypoints don't work well for different sizes of characters/vehicles due to

their lack of volumetric information.

5. Navmeshes can be used for collision tests during character action

animations, so extra collision ray-casting is not needed.

When structures are created or loaded into the world editors their navrneshes can be

pre-generated using various tools (such as the Slick Library for tile based levels and Recast

for complicated scenes). These then need to create a graph of accessible nodes so that the

characters can plan a route around the world towards their goal location. One method is to

find where two polygons edges join then find the centre point of the smallest edge.

In the example below (Figure 50) a navmesh has been generated for the cloak of

darkness story world (see Section 6.1.1. for the full description). This building has four

rooms all divided up into numbered subsections: the main Foyer (divided into 8 nodes),

the Bar (divided into 9), the Cloakroom (which also has 3 nodes) the Exit (with 3 nodes).

Each mesh is drawn as a green box and given a node number label and the adjacent edge's

centre points are marked with small red squares. From this navmesh the data needed for

the characters plan generation can be gathered. The planner's problem. pddl 'file

contains an 'init' section, which holds the initial state of the storyworld before a plan is

generated, made from various predicates which are currently true. To see if a node can be

reached from the characters current node the following predicate function is used:
(accessible ?to - location ?from - location)

150

Floor plan

Cloakroom (c0<2)

Exit (eO-e2)

e2

to

Foyer (fO-f7)

Bar (bO-b8)

Figure 50: Navmesh Floor plan

Each node is stored as a location in the planner's list of objects. The diagram above
contains a total of 23 nodes (bo-b8, fo-fz, eo-e2 and CO-C2), which would be stored as the
following init predicates:
(:init

iExit Nodes
(accessible eO el) (accessible el eO) (accessible el e2)
(accessible e2 el)

;Bar Nodes
(accessible bO bl) (accessible bO b2) (accessible bO b3)
(accessible bO b4) (accessible bO bS) (accessible bO b6)
(accessible bI bO) (accessible b2 bO) (accessible b3 bO)
(accessible b4 bO) (accessible bS bO) (accessible b6 bO)
(accessible bl b2) (accessible b2 bI) (accessible b3 b4)
(accessible b4 b3) (accessible b4 bS) (accessible bS b4)
(accessible bS b6) (accessible b6 bS) (accessible b4 b7)
(accessible b7 b4) (accessible b3 b8) (accessible b8 b3)

;Foyer Nodes
(accessible fO fl) (accessible fl fa) (accessible fl f2)
(accessible f2 fl) (accessible f2 f3) (accessible f3 f2)
(accessible f2 f4) (accessible f4 f2) (accessible f2 fS)
(accessible fS f2) (accessible f3 f4) (accessible f4 f3)
(accessible f3 f6) (accessible f6 f3) (accessible f6 f7)
(accessible f7 f6)

151

;Cloakroom Nodes
(accessible cO cl) (accessible cl cO) (accessible cl c2)
(accessible c2 cl)

;Adjoining Rooms Nodes
(accessible fl bO) (accessible bO fl)
(accessible el fl) (accessible fl ell
(accessible cl fO) (accessible fO cl)

If an NPC started at node 'eo' and had to reach their goal at node 'b6' the following
list of move actions (represented by the red line in Figure 50) would be generated by the
planner:

Init: (at npcl eO)
Goal: (at npcl b6)

Plan:
O. goto npcl eO el
1. goto npcl el fl
2. goto npcl fl bO
3. goto npcl bO b6

To move the character all that is needed is to get the adjoining edge centre point for
the shared edge between each pair of polygon nodes to create the waypoints and restrict
movement to the area inside the navmesh. In the diagram the characters path is defined
with a straight line, but CatmuU-Rom smoothing can be applied for a more natural
movement spline path.

152

5.4.14 WORLD EDITOR

The world editor allows the story authors to build a 3d environment or stage/set for
their story to take place on. Depending on the type environment required there are specific

types of editormodes:

• Block Mode (Figure 52) - this allows the user to build up their world from
textured blocks by left clicking the fare of an existing block to create a new
cloned block in the 90 degree compass direction (N, E, S, W) of the selected

fare. Using the right mouse button the block directly under the cursor can be
removed.

• Vertex Mode (Figure 52) - this is selected by clicking the centre mouse
button and allows the shape of the selected box fare to be altered by moving
single or multiple vertices using the transform face tool (Figure 51:

Right), found on the HUD compass. Left clicking will move vertex points
towards the camera and right clicking will move vertices away from the
camera. A comer point will move only the selected comer vertex; the edge
mid-pints markers will move both connecting comer vertices and the centre
square will move all four fare vertices. The blocks vertices are saved by
storing the value of each point, along with its offset value (Figure 51: Left).

• In both block mode and vertex mode the texture coordinate values are also
altered to tile the texture to accommodate cbanges in sbape and size.

Vertex Labels for Offset vectors Transform Face Tool

E F 0 0&3 3

A 0, 1,2 It 3

0&1 2ft3

H G

D 1 1&2 2

F13ure 51: The Vertex Labels fOr Baeh Box and Transt'onn Face Tool VI with Vertex Numbers

Figure 52: DISE World Editor Vertex Mode

• Room Mode (Figure 53) - this editor allows the user to draw squares on
the floor plan grid by clicking and dragging with the left mouse button. The
editor will then automatically calculate the surrounding walls for the room.
The left mouse button adds rooms, or if clicked in an already existing room
will extend that room; whilst the right mouse button will subtract the
rectangular selection shape from any rooms on the grid. Pressing the space
bar allows door frames/archways to be placed on a wall tile with an empty
square either side, to create access points and join adjacent rooms and
corridors.

Figure 53: DISE World Editor Room Mode

154

5.4.15 PROCEDURAL CONTENT GENERA TION

One of the goals when creating DISE was to create a system that can procedurally
generate content for a story locationflevel, using either random constraints or those set by
a user before the generator is started. The final location should then be exportable to a
generic file format, which could be loaded in at a later time. This section explains the steps
needed to generate a block world environment procedurally with water, hills, trees,
buildings and roads.

Environment - To generate a natural environment procedurally we used a variety
of techniques, which are broken down into the sections presented below. These sections
are the basic parts of a natural world and provide the building methods for land
mass/terrain, seas, rivers & streams, and trees/plants.

Terrain & Midpoint displacement fractals - The terrain was created first, as it
determines where everything else ean be placed and every other part must be built up on
top of it.

To create a random terrain we used the midpoint displacement algorithm to create
fractal height maps. Four corner points are chosen from the map grid and assigned
random colour values between 0 and 1. The square is then subdivided equally into four
equal squares and the midpoints of each edge are given a colour value equal to the average
value of the two adjacent points (Figure 54). The centre point then gets its colour value
from all four corners averaged with the addition of a random offset value, which is sealed
by the size of the grid and a roughness variable.

Start grid with 4 find midpOInts
colorRGB values (a ...b + c ...d)/4 co IorRGB

(a, b, c, d) + rand offset
a b a (a ...b)/2 b

(a ... c)/2 ~ (b ...d)/2

e d c (c + d)/2 d

Flgure 54: Midpoint DIsplacement Algorithm

The higher this roughness variable the more dramatic the peaks and troughs will be.
This process is repeated to divide recursively until the smallest divisor/unit size is
reached, which in this case is 1pixel. This height map is then output as a black and white
image with a grid size of 128X128. These numbers/pixel colours correspond to the terrain

155

height at point [x, y] (or [x, z] in our 3d game world). The colour values are a percentage of
the maximum height of land, with black representing 0% height - the lowest points and
white representing 100% height - the high points.

Water - we divided the water creation up into the following three parts:

• The general flat water level created by the sea.

• The edge detection between sea and land creating the shore line/shallows.

• The generation of rivers and streams, that needs to be naturally routed
around the map.

Sea and Shoreline - For the sea we created a water level plane; the generated
height map for the land mass can determine which parts of the map are above water level
and which are submerged. The sea level depends on the range of terrain heights and a
water level variable between 0 and 5, which divides the range of terrain heights in to five
with zero being no water, five being flooded and the values in between setting the level at
1-4 fifths of the max height.

Once the land and sea were created we added a shoreline of lighter water with an
animated tide texture. To implement this we used textured quads placed just above the sea
quad. An algorithm scans across each tile in the height map grid that is equal or less than
sea level, performing a four-way cheek to see the surrounding tiles are above sea level. If
one direction passes the tile is added to the cheeked list and not tested further. If the
unchecked list has remaining tiles they are cheeked off one by one until it is empty. Next
for each tile in the checked list a new quad was created at the same coordinates with the
direction of the shore tiles tide pattern determined by the sides that are touching land.

Rivers & streams - Rivers can be harder to create dynamically as their path

heavily depends on the terrain. We started with the assumptions that:

• Rivers will flow into a larger body of water (in our case the sea or in-land
pools created by creators in our terrain) or off the screen if there are none

present.

• Rivers will flow downhill due to gravity usually taking the easiest path.

Using these rules we could generate a random start and end point for the river,
either on one edge of the map, in the sea or in a lake pool. Next we set an A* pathfinding
algorithm to compute the route between these two points, using a custom 'cost heuristic',
similar to a possible technique for road generation (see the 'Roads' section below for more
detail). The heuristic will look for the most cost effective path, with steps taken downhill

being cheaper.

Trees & plants - To add more features to our map we added trees and plants. The

problem was defining where to place them in a pattern that looks natural. If the trees and
plants are scattered using en' randomly generated [x, z] positions within our grid the

results can look "neither random nor natural" (West, 2008). Due to the way trees and

plants grow: from seeds falling; to growing and taking in nutrients, water, C02, light and

competing with other plants, their scattering pattern can look more complicated. A simple

model for this pattern would include each plant having an exclusion zone around it that no

other plants can occupy. Plants and trees can be arranged ina grid with an equal distance
between them before a small random offset is applied to scatter them. This offset must
also be small enough to stop two trees overlapping. More variation can be added later by
randomly rotating and scaling the trees (including their exclusion zones), as some trees
will be more fully-grown than others.

Roads - Once the land was created it could be populated with an urban city

structure. The first main step was to divide up the level into lots (smaller areas that can be

used to place buildings and other man made areas such as parks or town squares) by

forming a road network. There are two main structural layouts for the roads, which were

dependent on the area being in an urban or rural setting. For a big city the gird plan road

structure is most fitting, but in rural areas the streets need to be non-uniform (smaller,

more winding and with further separation). As the land and natural features are

determined first, the height map from terrain generation could be used to control where

the roads can and cannot be built. Features like water and hill gradients can be factored in
to exclude roads or define points for bridges and tunnels.

There are two useful techniques we could use to generate the roads: L-systems and

A* Pathfinding. These could be used individually to give different results or be used
together in passes to create roads more intelligently.

L-Systems - An L-system or Lindenmayer system is a parallel rewriting system
using string rewrites, where each symbol is interoperated as a rule step. They can be used

to generate self-similar fractals. An L-system contains: variables, constants, a start string

(start, axiom or initiator) and rules. The original L-system was used to model the growth
of algae and can be seen in Figure 55 below.

157

This L-system contains: "'- -

Variables: AB n=O: A
/ \

Constants: none n=l: A B
/ I \

Start: A n=2: A B A
II I \

Rules: (A -+ AB) (B -+A) n=3: ABA AB
/1 i t\ 1\ \n=4: ABAAB ABA

Figure 55: Original LSystem for modelling the growth of Algae

We used this system to create our roads starting with a small line drawn in the initial

forward direction. As the steps for 'n' increased more lines were added and for each one a
random number check was done with a small chance of returning true. If the test returns

true up to three branches will be created in the north, east and west directions from the

original point at around 90 degrees to create a block pattern (this number could be

changed, or have a random offset to give different road patterns).

To create a rural non-linear road system the distance for each line drawn every 'n'

could be shortened and the maximum number of branches reduced from 3 to 2. Also as

mentioned previously the chance of the angle changing could be increased and the angle
value varied to create a more curved or 'dog-leg' shaped road.

To make the road creation more dynamic we overlay the height map from the terrain

whilst building the road (Lintfordpickle, 2009). Areas that have water could be impassable

or require a bridge and the gradient can be checked to stop roads having too steep an

incline and force them to spiral uphill gradually. We could also add a population density

map, which can control where main roads are build and the density of the roads. These
rules can all be added to the drawing process 'A' mentioned above and alter the return true
statement for adding new branches.

Our irsystem is structured in the following way (Figure 56):

Variables: XA =

':

'A' = if random check true draw line of

distance 'D' in forward direction.

1~6
",7 ~6 noS In=s

O-:-:-:-O~~

n=6 1,"4

n;3 ~

Constants: + -

Start: X

Rules: (X ~ [[-AX] +AX] +AX)

Angle: 90°

X = road growth control variable

'I' = Push

I

'l' = Pop

'-' = Turn Left Angle"

'+' = Turn Right Angle?

Figure 56: L-system for grid block system roads

A* algorithm and heuristic pathfinding - Pathfinding is used to navigate from

one point to another whilst avoiding any obstacles in the way by finding a suitable route

around them. A popular algorithm for this is A*, which can run in real time on a

reasonable sized map. As our roads are generated in an editor a slight delay is not as big

an issue as it would be in other cases such as an enemy AI in a shooter game. We can

scatter points around the map then connect them using pathfinding to create the roads
along suitable routes (Glass) (Lester, 2005).

A heuristic developed by multiple authors for the game 'Open Transport Tycoon'

devised a logical cost heuristic for a road-building pathfinder, which also includes
provisions for turns, slopes, bridges and tunnels (OpenTTD Contribs., 2011).

Buildings - When the roads are placed the shape of the lots between them can
determine where the buildings can go.

Shape grammars - Shape grammars are used to provide a computational

approach to the generation of designs. In architecture, building structures have many
repeating shapes and patterns that can be described using a rule.

159

Shape grammars consist of:

• Shapes - the structures building blocks.

• Spatial Relations - how these shapes are positioned relative to one another.

• Rules - to describe how and where new shapes are added.

• Rule Labels - give a set orientation marker to the rule.

• Transformations - translation, rotation and scale of the shapes.

• Derivation - repeat the rule for n steps to create multiple designs.

Figure 57 shows a labelled rule for a rectangle. For each step a new rectangle is
added with a clockwise rotation of 90° and aligned to the original shapes narrow edge
(labelled with a dot}. The pattern repeats for 3 steps, forming a closed square shape with a
gap in the centre.

derivation 1

labelled rule 1

,----,,-I c=:o

Figure 57 Labelled Rule Example 1(Knight, 2002)

Figure 58 shows that with exactly the same shapes that changing the label dot, thus
changing the rule, can produce a different structure. This time the new rectangle is rotated
90° in an anticlockwise direction and aligned with the short marked edge.

Figure 58 Labelled Rule Example 2 (Knight, 2002)

160

Using these examples with randomly sized boxes can produce some interesting
tower block shapes for the city buildings. The number of steps n can be also set randomly,
so just by using the two rules above 8 different structures can be made and when
combined with the randomly sized boxes this creates hundreds of different buildings.

To create cylindrical office buildings we consider the technique used in (young,
2009). A circle is generated in 10° slices, with a random chance of skipping ahead 90°,

creating a bigger slice and a flat edge. This process continues with up to three 90° skips,
until the total rotation is a full 360° circle. The circle can then be extruded upwards with a
random height value and capped to create a cylindrical officebuilding.

We experimented with shape grammars to also create smaller houses and other
buildings such as a church. Figure 59 below shows two basic house shapes CA& B) created
in 3DSMax and loaded into our game engine as a shared mesh which can be cloned.

Using some labelled rules and a combination of these two shapes (along with a thin

box for a chimney) many more complicated houses can be built (as depicted in C, D, E, F,
G & H). For example the house 'D' is a combination of 'B' and 'A' rotated 90° clockwise.
House 'H' is more complicated using translation, rotation and scaling on four instances of
house 'A' along with the originally positioned house 'B' and two chimney boxes.

A B c o e

F G H

Figure 59: Example House Configurations

Procedural Textures - The textures used in the scene are generated in two main
ways for the land, trees, water and buildings:

• Existing textures produced beforehand by an artist in the PNG format are
dynamically chosen and scaled according to the object and a set of rules.

• The texture is created procedurally using AWT image graphics and saved as a
texture state, which then can be treated as the predesigned textures above.

To create the textures for our buildings we used the latter option to create a series of

161

windows in different sizes, colours and designs. To make the process easier to start off
with, we used a procedure similar to the one described in (young, 2009), where buildings
are dark to mask the missing detail and defined by lit windows, which gives a night time
city effect. A 512X512 texture is reserved in memory and each pixel is coloured in several
stages:

• First determine the number of windows across and down and what their size
is when equally dividing up the texture.

• Set a base colour for the window that is dark (unlit), white or orange (lit).
These colours also have a random offset to give a small variation in tone.

• There are two settings for the distribution of the lit windows to simulate
either residential tower blocks or offices. The residential buildings have a
random scattering; the lit and unlit windows are selected using the math
library's next random integer function, with the probability set to roughly 1:3

lit to unlit and an equal chance for white or orange to be chosen for the lit
windows. The offices are lit in random blocks consisting of up to a whole
floor of windows as companies usually occupy a whole floor or several units
and some are open later than others.

• Next for each pixel row the selected base colour is modified by subtracting a
small value each time to create a light to dark gradient. This gives the
windows more depth and matches the light sources, which are usually at the
top of a room.

• To create more variation a per-pixel random colour noise is added.

• Now adding black lines or pixels can create different window shapes/designs
and for smaller houses a separate texture can be created with fewer windows
spread out over a wider space.

Figure 60: Procedural Wmdow Textures

To create more variety we considered an assortment of window shapes and sizes,
especially for the smaller houses textures. Houses have less windows and light, with a

162

more varied array of designs including the bay styled windows.

Implementation - we implemented the user interface using swing, with a similar
look and feel to the Story Editor. Some controls are provided to the user to constrain
elements of the level generation, including the option to turn off some generated features
in a level or completely randomise the generation for a two-click level design.

Figure 61: Swing User Interface Layouts

Some example settings that would be useful are:

• Terrain Height - flatflarge peaks.

• Terrain Roughness - flat/many peaks & troughs.

• Water Height - no water/some water/flood.

• Tree Density - no trees/ many trees

• Texture theme - Grass, Desert, Snowy

• Rebuild Level- Rebuild geometry using the above settings.

• Show Tweening Animations - on/off.

• Buildings - on/off

• Population Density - City/Rural

• Roads, Bridges, Tunnels - on/off toggle each

Figure 62: Procedural Buildings

Optimising geometry - To optimise the creation of our geometry we used shared
meshes. There are many objects in the scene that are copies of each other and shared mesh
allow us to share that data between multiple nodes. «Aprovided TriMesh is used as the
model for this node. This allows the user to place multiple copies of the same object

throughout the scene without having to duplicate data" (Powell). Each copy node has
unique translations, rotations, scales and render-states applied to them. Another useful
feature to include is object pooling. We initialised a store of objects in a pool when the
game starts for objects like new buildings, trees and textures; so that when one is created
it can be quickly taken from this pool.

Figure 63=procedural Terrain Generator

5.5 STORYMANAGER

In our framework the Story Manager contains all the information that will progress
the narrative according to the story authors design. All the effects of the player's and N~
actions are sent back to the Story Manager via the World Fact Database, which itmonitors

for changes and then checks against its internal predicate logic waiting for a trigger to
manipulate the story data. The Story Manager class is also responsible for
creating/instancing the objects and assets needed for the current scene and propagating
these changes to the relevant classes and data stores.

5.5.1 SCENES

To create a story, we have taken inspiration from the more mature media of
literature, film and theatre and use their tried and tested structure of 'sequences' and
'scenes'. A film's scene is descn'bed as "a shot (or series of shots) that together comprise a
single, complete and unified dramatic event, action, unit, or element of film narration, or
block (segment) of storytelling within a film, much like a scene in a play; the end of a scene
is often indicated by a change in time, action and/or location" (Dirks, 2010), with a
sequence being a number of consecutive scenes that have an overarching plot Inmovies if
the scene has no purpose or justification it is cut Using these scenes and giving the story
author a Scene Editor to create them and their hierarchical structure, DISE give a higher
level of flexibility than enforcing a particular narrative theory. For example scenes can be
used to recreate the structured acts mentioned in section 3.2.2 FIVE-ACf MODEL and
3.2.3 THREE-ACf PARADIGM or even in a more modem way like the non-linear stories
such as Pulp Fiction mentioned in 3.24.

In fiction writing the job of the scene is the same as our scene concept for Interactive
Storytelling to achieve as many of the following goals as possible (Bickham, 1993):

• Advance the story - a scene needs to move the story forward; it can also
introduce problems or further them.

• Create conflict - this could be between characters or against time, nature,
environment, etc.

• Introduce a character - a new character can be introduced to the story.

• Develop a character - reveal more of a character's personality and
intentions.

• Create suspense - building up some minor events with large pauses before
something big happens.

• GivinI out information - pass some information to the player via text,

speech or visuals.

165

• Creating an abDosphere - changing the current environmental
properties and time can set a tone for the story (e.g. a horror could have the
creaky mansion at night time in a thunder storm).

• Develop the story's theme - the story should have a main theme which
can be further revealed to the player in a scene.

As well as definite purpose a scene also needs a start and end, a point of view, a
setting (location), a following scene and a length of time to play out over.

Although in the aforementioned media these scenes are linked linearly we can use
them grapbically to more easily create a multithreaded story made up of bite-sized chunks.
We want our stories to be dynamic and allow the player to have an impact on their
decisions and eventually the outcome of the story. In DraMachina, Donikian and Portugal
logically define their narrative scene objects as "the combination of current setting/actors
on stage/Dramatic Action currently going on/and present state of the Dramatic Units
map. Entrance of a character, change of Dramatic Action ... will automatically change the
Scene Object and thus its parameters such as Mood/Ambience, Level of Formality,
Rhythm of Action, Actions Allowed, etc." (Donikian & Portugal, 20(4).

This automatically changing scene model can be replicated by building triggers into
scenes that call other scenes, creating our dynamic sequences.

Each scene contains the following information to give it a purpose and to progress

the story further:

• List of verbs (actions) available to the player in that scene.
• List of StoryMods (character intro/individual events/changes to the story).
• List of Trigger Connectors (the events that when triggered will advance to the

next scene e.g. "a change in time, action and/or location" (Dirks, 2010) as
mentioned above).

By choosing the selection of verbs/actions a player can execute in a given scene and
running several StoryMods an author can craft a story that indirectly affects the player
giving them more freedom to explore and make their own choices whilst still under some
of the author's constraints (for example in a fairy-tale the verb 'slaying' (of the dragon) can
be withheld until the hero has reached the 'quest attained' scene in the story. By creating
scenes in the editor and linking them into sequences with triggers for each one the story
author is creating a high level finite state machine (FSM) that modifies the story
differently depending on the player's actions (Figure 64).

FSMs are a well-formed programming technique used already in many games today,
so they are relatively easy to represent in code and also to save out in a file from the editor

166

to be loaded in as a story file at a later time. The novelty of this system compared to other

FSM based games is that the state machine is only used to indirectly guide the story
towards certain events, for example: an author could create a scene that is only triggered

when the king is angry, but what actually makes the king angry is not pre-determined.

This would allow a number of events to change the king's emotional state and the player
could even avoid the scene completely if the king's happy mood is maintained.

~
X

Q.Cl)
::le eCl)

(v
C)Vl ~

~
~ Cl)

/ C'I
C'I~ Z ·C0 w- I-1j ::>Cl) 0::e I-

.0:::
c: c:0 ~

:0.. 'd :;,

/ ...
QICl) ...

C'I <II...C'I QI/ ·C 0'1/ 0'1t- .;::
I t:./

11'1
- c:~ 0Cl) ._

.... +-'
V to
to V~ 0
to...J.s:.o(S
U III
'+-o V
~ .~._ .c
...JO

'-o
.~
-0
UJ
Q)
c:
Q)
u
l/)

\
\
\
\

E
~
0\
re.-
Cl

.....~
"I-o
~
III..c
::l
V)

II

5.5.2 STORYMODS

When a scene is triggered, it will execute all of its Story Mods in order. A StoryMod
modifies the story in some way to progress the narrative. We want to create a base library
of StoryMods with the option for programmers to extend them if necessary.

In Crawford's book on Interactive Storytelling (Crawford, Chris Crawford on

Interactive Storytelling, 2004), he lists the following techniques that can be implemented
to evolve a story:

• Environmental Manipulation
- To keep a player on a certain path, e.g. a cave-in can prevent players

from leaving the dungeon.
- To kill off a character.
- To progress the story or alert the player, e.g, at sunrise they should

leave the house to set off on ajoumey.

• Goal Injection
- Give a computer character a new goal to change the story. This works

best when done in context adhering to a characters traits, personality
and Modus operandi.

• Shifting Personalities
- Altering the personality variables of NPCs can influence them to

make certain choices. This is an elegant way of discreetly altering the
path of the story without breaking the player's immersion.

• Ticking Oock of Doom
- Change certain variables gradually over a period time, to converge to

a particular state or event. This should also be done discreetly with no
timer displayed to the player, unless needed for a particular story.

• Dropping the Fourth Wall
- This is a last resort, where the players are alerted that their actions

are contradicting development of the story. An example of this is
shown in Nintendo's 'Animal Crossing' game, where deliberately
resetting the game circumvents the intent of gameplay mechanics and
ethics, so is therefore roeating. The player is alerted of this 'rule
breaking' by a lecture from a mole character called "Mr Resetti" that
gets more aggressive with each appearance.

169

We adapted this guide list comparing it to the goals/purpose of a movie scene listed
in the last section (5.5.1) and created the following StoryMods to cover each technique:

• Advance the story

Progresstimeforwards,e.g. (increase (time-days) 1).

Display Message Text t, e.g. "you wake up a day later and

find out that your magic cloak has gone".

Add/remove props, e.g. remove: cloak.

Add/remove facts, e.g. add: (islit bO).

Add/remove characters, e.g. remove: npc1.

Add/remove character goals e.g. remove: (have-read npc1

message) .

Change character personality values, e.g. (decrease (AngerFear

npc1) 1).

Display a Charisma scene animation. E.g. animated character
dialogue explaining why the quest is important.

• Create conflict
Add/remove props, e.g. add things that hinder the player or remove
helpful items that need to be reclaimed.

Change characters personality & goals to create conflict (see Develop
a character below).

• Introduce a character
Character enter/leave story.

• Develop a character
Change personality variables, e.g. (decrease (AngerFear

?npc1) 1) or (perAttractive ?npc1 - character ?npc2

- character).

Give character a new goal, e.g. (have-read npcl message).

Display a Charisma scene animation.

• Createsuspense
Add/remove facts, e.g. add (islit bO) would tum on the light in
bar area zero.
Add/remove props.
Display Message Text t.

Giving out information
Display Message Text t.

•

Display a Charisma scene animation.

Creating an atmosphere•

170

- Add/remove facts, e.g. add (islit bO)would turn on the light in
bar area zero.

- Add/remove props.
Display Message Text t.

• Develop the story's theme
See advance the story above.

This base list allows some freedom to create a variety of stories for example: The
long lost heir to the throne enters the story and has the goal to reclaim the kingdom. While
the current evil ruler gains the new goal to kill the heir and has an increased value for
anger.

5.5.3 STORY TRIGGERS

In the last section we talked about StoryMods but the StoryMods in a scene will not
be executed until their encapsulating scene is called, this is where Story Triggers come into
play. Story triggers are created in the editor by joining two scenes together with a trigger
connector (shown in Figure 65 below with the alarm clock icon). Each scene can have
multiple connectors going in and out, but each connector can only have two scenes
attached creating a "TO" and "FROM" link, Selecting a trigger icon brings up the trigger
manager menu.

This menu shows all the triggers that need to equate to true for the "TO" scene to be
activated. Individual triggers can be stacked up and resolved using propositional logic and
'disjunctive normal form' (Russell & Norvig, 2003) to create more complex trigger
sentences. Triggers stacked in the "WHEN" box are automatically put in a trigger group
"AND" block. To create an "OR" statement new triggers should be added to the "OR
WHEN" box, in the same way as using production rules.

This allows expansion of statement creation for each trigger connector. The triggers
have a shared java interface containing their Boolean value to speed up test calculations.
Many of these tests can be run in quick succession, but the greater the number of scenes
and triggers branching from one scene the greater the impact on performance of the
system. In the future we need to benchmark the scalability of this performance and may
have to set limitation caps or cost values to the number of links from anyone node.

171

+
- NewScene

Figure 65: Story Editor and Scene Trigger Manager

The current list of story triggers contains the following types, but can also be

expanded if necessary:

• Time (exactly t, after t, before t)

If time == t
If time> t
If time < t

• Personality
If (Attribute Character) == value
If (Attribute Character) < value
If (Attribute Character) > value
e.g. (=(AngerFear bob)O)

• Event
If (Verb Character Noun ...) == (v, c, n...)
e.g. (scare player1 bob)

• Character and/or Object at/not at Location
If (at Character/Object Location) == t/f
e.g. (at bob bar)

• Object State (fact does/doesn't exist in database)
If predicate(param 1, param 2, param n) == t/f
e.g. (wearing playerl cloak)

5.5.4 STORY MANAGER CONCLUSION

The Story Manager actively checks the state of the story world and progress through
the author's scene structure using Story Triggers to link consecutive scenes. Its novel
design allows the author to use multiple narrative theories (for example three-act and five-
act models) or even their own scene structure to progress their story. Using the StoryMods

172

the author can manipulate the narrative using powerful predicate logic facts chained
together using Disjunctive Normal Form ('WHEN: a & b & c == true; ORWHEN: [not] d
== true') to change time, shift personalities, check moral values, inject goals, manipulate
the environment, introduce new agents, trigger character dialogue and facial animation,
display messages (cluesfknowledge) to the player and change any state. These tools can be
used to branch story paths and advance the story, introduce/develop characters, create
conflict/suspense/atmosphere and convey information.

5.6 PLANNING

To correctly sequence our story actions we will use a branch of artificial intelligence
called automated planning and scheduling. Planning is used widely in computer science
for problem solving, timetabling and controlling intelligent agents. The player knows to
open a locked door they need to pick up a key first, but a complex system is needed to get a
non-player character to procedurally carry out this sequence of instructions thus reaching
a goal state.

5.6.1 PDDL

Planning languages have recently been standardised in 1998 to a single description
language called PDDL (Planning Domain Definition Language) (Haslum, 2003). PDDL is
made up of smaller optional construct modules, but not all planners implement the whole
set. The main construct of PDDL is called STRIPS (Stanford Research Institute Problem
Solver) after the automated planner that used the language as its input to describe classic
planning tasks. To create a planning task in PDDLthe following components are required:

• Objects

• Predicates

• Initial State
• Goal Specification

• Actions/Operators

These components are distributed within two files: the domain file, which contains

the predicates, and actions and the problem file containing the objects, initial state and
goal (Figure 66). Also shown in Figure 66 are extra domain details such as construct
requirements, type hierarchies, and number based functions.

Predicates have shared traits in human language and computer language and are an
expression that is true of something, expressing a relationship, or property of an argument

in a clause. Predicates are the second main part of a sentence, with the other being the
subject that is modified. In PDDL predicates can have multiple subject parameters along

173

with their corresponding types.

Actions are usually made up of three parts, similar to the example shown in section

• Parameters - Usually the 'Name' and 'Type' of an object, character, or
place that are used by the action

• Preconditions - Requirements that need to be met to perform the action.

• Effects - Post conditions & states after the action is carried out.

Figure 66: Planning Data Requirements

There are several versions of PDDL, with PDDL 3.1 being the latest version used in
the International Planning Competition IPC 2011 (Jimenez, 2010). This version includes
the same features of the previous versions but has more optional modules to provide extra
functionality to the language and are included using the ": requirements" definition in

the planning domain file. The functions of these

Features ofPDDL 3.1:

• Strips - Basic STRIPS-style.

174

• Typing - Allows type names in declaration of variables.

• Negative-preconditions - Allows not in goal and preconditions

descriptions.

• Disjunctive-preconditions - Allows or in goal and preconditions

descriptions.

• EquaBty - Supports '=' as built-in predicate.

• Existential-preconditions - Allows exists in goal and preconditions

descriptions.

• Universal-preconditions - Allows for-all in goal and preconditions

descriptions.

• Quantified-preconditions - Is equivalent to existential-preconditions +
universal-preconditions.

• Conditional-effects - Allows when clause in action effects.

• Fluents - Allows function definitions and use of effects using assignment

operators and numeric preconditions.

• ADL - Is equivalent to strips + typing + negative-preconditions +
disjunctive-preconditions + equality + quantified-preconditions +

conditional-effects.

• Durative-amons - Allows durative actions. Note that this does not imply

'fluents',

• Derived-predicate - Allows predicates whose truth value is defined by a

formula.

• TIme-initial-Hterals - Allows the initial state to specify literals that will

become true at a specified time point implies durative-actions.

• Preferences - Allows use of preferences in actionCtx preconditions and

goals.

• Constraints - Allows use of constraints fields in domain and problem

description. These may contain modal operator supporting trajectory

constraints.

To run DISE stories using different planners the planner interface class was created

as a flexible abstraction layer, but DISE is still constrained to using the PDDL structure for

the problem and domain definitions as the logical structure of PDDL's goals and actions is
incorporated into the core action class and also the general concept of DISE. A new

planner can be added by writing a new planner link class or changing the existing one to fit

the function call and arguments of the new planner. The current planner is called via the

command line using the Java function:

• Runtime.getRuntime() .exec

175

• This function takes the following arguments:
• Planner exe name (including folder name inside 'planners/resources'

package), operator (domain) PDDLfile, facts 0 PDDLfile.

• Planner_folder_name/planner_exe -0 operator_file.pddl -f
facts_file.pddl

5.6.2 PLANNING AND INTERACTIVE STORYTELLING

In this section we defend the importance of planners and explain their usefulness in
Interactive Storytelling systems. First we look at why they are used and what benefits they
provide; next we evaluate the language constructs of PDDL and filter out which ones are
necessary. The next section briefly covers search optimisation needed for planning to run
in real-time and how durative actions can allow concurrent planning in future
implementations of DISE. Lastly we review some benchmarks done on existing planners

by Barros and Musse, showing their feature set and speed.

Why Use Planning? - Orkin created a STRIPS style planning system for the AI
enemies in the game F.E.A.R. (Orkin, 2006). This technique is a good fit in many ways:

• New goals and actions can be easily added to extend the support for
different stories and genres "with a planning system, we can just toss in
goals and actions. We never have to manually specify the transitions
between these behaviours. The A.I. figures out the dependencies themselves
at run-time based on the goal state and the preconditions and effects of

actions." (Orkin, 2006)

• The STRIPS planning syntax fits well with the creation of action sentences,
using production rules, as each action is stored in a format describing its
parameters, preconditions and effects in key: value pairs.

• When an object is chosen to interact with we can search in each action's
parameter definition for verbs that support objects of the same type.

• Using the effects the game state can be updated after an action is

performed.
• Preconditions can be used to remove actions that are not important in the

current context.

Constructs - There are many planners available that use this PDDL input and read
the planning problem and domain from two separate files. The only problem is that the
full specification of PDDL 3.1 is not supported by all planning systems. From the list in
section 5.6.1 Barros & Musse (Barros & Musse, 2007) consider the following five extra
language-constructs valuable to Interactive Storytelling applications:

• Type hierarchies - each object and parameter is given a type classification

to avoid errors.
• Equality - uses the '=' sign to mean equals, which is useful for conditional

effects value tests e.g. (when (= ?x cloak) (islit ?z»

• Negative preconditions - allows the 'not' command to be used with
conditionals and equality, for example to describe actions for when a

177

character does not know a fact.
• Conditional effects - allows the use of conditional 'when x > do y'

statements.
• Existential preconditions - "Using an existential quantifier in the

precondition, we are able to state that the examiner character can only

perform this action ifhe is alone in the examined place".

This means that when attaching a planner to DISE it must be checked to contain the

correct constructs, orwill not be complete enough to process detailed stories.

Search Optimisation - Another factor in planning for computer games is search

optimisation. If new plans are to be generated in real-time alongside processor intensive

game logic and rendering, they have to be fast to execute and highly optimised.

There are many different search techniques which are widely used today in many

areas of computer science, including:

• Forward chaining.

• Backward chaining.
• State-space search, with conditional relationships or heuristics (see

graphplan).

• Propositional satisfiability (satplan).
• If the assumption of determinism is dropped and a probabilistic model of

uncertainty is adopted, then this leads to the problem of policy generation
for a Markov decision process (MDP) or (in the general case) partially

observable Markov decision process (POMDP).

Durative Actions - Durative actions (Fox & Long, 2003) give a specific duration

to an action and categorise the time conditions are tested using three time groups: at the
start of the action, at the end of the action and over all the whole action. The actions effect
is also labelled as 'at start' (for immediate effects) or 'at end' (for delayed effects). This
extra set of information allows concurrent planning (the use of resources by multiple
actions). The example below shows the durative action for burning a match whilst

simultaneously picking up a coin.
(:durative-action burn-match
:parameters (?m - match) (?1 - location)
:duration (and
« ?duration 5) (> ?duration 0)
)
:condition (and
(at start (have ?m»
(at start (at ?l»
)
:effect (and

(when

{at start (dark ?l»
(and
(at start (not (dark ?l»)
(at start (light ?l»
)

(at start (not (have ?m}»
(at start (burning ?m»
(at end (not (burning ?m»)

(when
(at start (dark ?l)}
(and
(at end (not (light ?l»)
(at end (dark ?l»
)

(:action pickUp
:parameters (?l - location ?o - object)
:precondition (and
(at ?l)
(onFloor ?o ?l)
(light ?l)
)
:effect {and
(not (onFloor ?o ?l»
(have ?o)
)
)

Initial state: (onFloor coin) (have aMatch) (at basement) (dark basement
Goal: (have coin)

Problem

Plan: 0.1 (b~btch aMatch basement) [0.2]
0.2 (picklfp basement coin)

pickUp coin

Stanbumsdatch End burn MatchI d d basemen.

0.3

dark basement light b sement

0.1 0.2
Plan

Figure 67: ConCUITent planning using durative actions (Fox &:Long, 2003)

179

Benchmarking Speed and Feature Sets - Barros & Musse (Barros & Musse,
2007) benchmarked different planning algorithms testing their speed and feature sets
with Interactive Storytelling applications in mind. From this table we decided to test DISE
first with the Metric-FF planner, as it contains the necessary language constructs and has

a desirable speed. The nature of DISE allows other planners that use PDDLto be switched
in if the converter class is written to translate the appropriate values to and from the
planner, so these results could be cross referenced with our benchmark.

Table I.Summ~ of Alzorithms
AJl°rithm m EO ~7 CE EP Opt POP AC ~T Time

Ff ./ ./ ./ ./ ./ ,. ,. ,. it 0.0155

Graphplan it it it ,. it ./ .t ,. it O.13S s

HSP ./ ./ it ,. ,. ,. it it it 0.0315

HSP* ./ ./ ./ it it .t ./ ./ ./ 3.641-1.25 s 1)

!PP ./ ./ .t ./ ./ (2) ./ it II 0.1061 0.03h (3)

LPQ·TD ./ ./ ./ ,. ./ it ./ ./ .t 0.680/0.169 s (4)

Marvin ./ ./ ./ ./ ./ it ./ it ,. 0.011 s

Metric-IT ./ ./ .t ./ ./ it it (5) ./ 0.059' O.OIS 50 (4)

SatPlan_2004 ./ it it it ,. ./ ./ it ,. 0.147 -0 ..511 s

STAN4 it it ,. it it it ./ I< :re 0.093 s

TLplan :re ./ ./ ./ ./ (6) :re ./ ./ (7)

Abbnniation.r: Type hierarchies (IH); equality operator (EO): negative preconditions (JI.'P: conditional
effects (CE): existential preconditions (EF): optimal (Opt); partial-order planner (POP): action costs (AC):
numeric variables ~·V): Time to solve test problem (rime). Notes: (1) The hsp. variant took considerably more
time (4 min). (2) Can be optimal or not. depending on how it is configured. (3) first time is for optimal
configuration: second time for nonoptimal configuration. (4) First time with numeric variables: second time
without numeric variables .. (5) Not explicitly supported, but can be easily emulated, (6) Optimal as long as an
appropriate control formula is used, (7) We could not create a usable control formula for our test problem. so
timing could not be assessed.

ACM Computers, in Entertainment. Vol. 5. No.1. Article 4. Publication date: April2001.

Figure 68: Planning Benchmarks (Barros &Musse, 2007)

180

5.6.3 PLANNING FOR INDIVIDUAL CHARACTERS

The problem with traditional planning systems is that they are designed to take a

holistic approach to solving the problem in the specified domain. The planner will find a
solution using all the available agents and actions. In DISE we are using the planner to
solve on an 'individual' per-character basis. This means that any plans which provide
actions for other characters as a part of the goal solution, other than the currently acting
agent need to be removed. This is because the character does not have a mind control like
ability to make other characters act in a way that suits their plan (and if they do special

control actions need to be created for that character, using the second character as an
input parameter). DISE can avoid this problem with two extra steps. In DISE the problem
PDDL file is already dynamically generated at each characters planning stage before being
passed on to the planner, to allow the initial problem to match the current world state.
This allows the currently active character (in this example npci) to also be passed in as a

predicate fact in the init section of the problem PDDLfile as:

(currentcharacter npcl)

The second step is to make sure that every action can only be performed by the
currently active character, with any other characters just being used as the patient of the
action (see section 3.2.5 for more theory on agents and patients). This is achieved by

adding the following extra precondition for every action:

(currentcharacter ?x)

Every action for DISE should have the agent character of the action as the first
action parameter, for example: ?x - character, which would match this precondition

only when npci performs the action.

181

5.6.4 PLANNING IN NONDETERMINISTIC DOMAINS

The problem with planning in a dynamic real-time environment is that agents need
to deal with incomplete and incorrect information as the world updates. This means that
the agents need to revise their plans and knowledge base to cope.

There are two methods to achieve this:

• Execution monitoring and re-planning.

Can use classical, sensorless and conditional planning techniques to
construct a plan, but it also uses execution monitoring to judge
whether the plan has provision for the current situation or needs
revising. Re-planning occurs when something goes wrong.

• Continuous Planning.
Designed to persist over a lifetime. It can handle unexpected
circumstance in the environment, even in the middle of constructing
a plan; also the abandonment of goals and the creation of additional
goals using goal formulation.

Function: Continuous POP Agent(percieved_world_facts)
//returns an Action
static: plan //a plan, with just [start] and [finish] at the
beginning
Action //defaults to NoOp
Effects [Start] = Update(Effects[Start],percieved world facts);
Remove_Flaw(plan) //this could update/create new-Action
Return: Action

DISE characters use a custom variant on the former method: Execution monitoring
and re-planning, which is processed using the Character Engine. This method allows a
more flexible system, which is not dependant on the linked external planner's inclusion
the Partial Order Planning (POP) functionality.

5.7 PLAYER ACTION ENGINE

5.7.1 PLAYER-ACTION INTERFACE AND UI DESIGN

Action UI - The action UIwill provide the interface for the player to interact with
the story's world. It provides a traditional first-person view and allows the player to move
with the computer keyboard and look around with the mouse. To carry out an action the
player must first left-click on something of interest. After considering a text-based
approach to choosing actions, we decided an object based selection method would be more
familiar to users and provide a faster and freer flowing experience. When the mouse
reticule is moved over an object (or character) that is interactive it will highlight and spin
giving instant feedback of the items interactive nature. This interface is tried and tested

182

and was very widely used in popular classic point and click adventure games such as

LucasArts' The Secret of Monkey Island (Lucas Online, 2009). When the object is selected

its name will be added to the action phrase and a 3d cloud of verbs will appear around it.

Pressing the corresponding labelled keyboard key can choose a verb/action. The action UI

is basically a tool to fill in the required parameters for an action, so the next step can vary

depending on the requisites for each particular verb. Some parameters are sent

automatically such as:
Character - playerl
Location - playerl_location
Character/Item/Dynamic - selected_noun
Location - selected noun location

For example the action 'trade' would be carried out as follows:

1. Playerr moves towards another non-player character mCl'.

2. Playeri clicks on character 'NPC1'.

3. Playeri selects 'trade' action from verb cloud UI.

The action trade has five parameters:
(?cl-Character ?c2-Character ?il-Item ?i2-Item ?l-Location)

The following parameters the computer already knows:

?cl=Playerl ?c2=NPCl ?l=playerl_location

4. Playerr selects an item for ' ? i l' from a newly created item cloud by

pressing the corresponding keyboard key. The selectable list of items is

generated from the 'trade' action's preconditions. To trade with another

character one item must be yours and the other must be from their inventory

(see below). The precondition for '?il' is: (haveitem ?cl ?il),sothe

list will only contain items from playerr's inventory.

5. Player! selects the other item as above, but using precondition: (havei tern

? c2 ? i2), which means that the list will only have items from NPC1'S

inventory.
6. Now the full action phrase: "Playeri Trade NPC! item! (for) itemz" can be

displayed and executed by pressing the 'return' key. To go back one step the

user can press the 'backspace' key or the 'escape' key to quit the action

completely move around or choose another interactive object to act on.

In our first prototype action interface we tried the circular menu approach that is

used to great effect in games such as Mass Effect (BioWare, 2011);when the player clicks

the left mouse button the object is selected and a circular menu will be displayed showing

which actions are possible for that object. The action can be selected by highlighting its

sector by changing the angle between the mouse cursor and centre of the menu then left-

clicking the mouse to confirm the choice.

Figure 69: Action Menu Prototypel - Circle Menu

The second prototype uses the more integrated verb cloud interface (Figure 70),

which is similar to the interfaces presented in games such as Heavy Rain (Quantic Dream,
2011) or Dinner Date (Stout Games, 2011). When an interactive object is chosen a cloud of
actions rotate around the specified object in the scene. This menu is more immersive as it
is not overlaid on top of the game world, but is displayed in perspective 3d around the
object of interest. The cloud design is also more adaptable for larger numbers of actions as
the text can be scaled and scattered differently depending on numbers, whereas the
circular menu is limited to six sectors at a time.

Figure 70: Action Menu Prototype 2 - Cloud Menu

Figure 71 shows a design mock-up of the cloud interface, the action phrase and how

the decision making sequence is carried out by the player.

1. Label 1: in the diagram below shows the mouse cursor's state when an

interactive object is highlighted, in this case a wooden crate.

2. Label 2: the cloud shows that the 'use' action has been selected and has

turned blue by a press of the '5' key.

3. Label 3: this is where the full action phrase can be pieced together and shows

the state of the action. The blue word is the currently active one that requires

more information. The white words 'playen', 'use' and 'crate' have been filled

in just by clicking the crate and selecting 'use' in the first two steps. The 'use'

action is also underlined, which shows it is a word that the player has chosen,

in this example by pressing the '5' key. If a mistake was made this sentence

can be re-edited: the 'escape' key quits completely, going back to the

interactive object selection and moving around stage. The 'backspace' key

reverts back one step to the previous underlined word or quits to the object

selection stage as above if there are no more steps to revert to.

4. Label 4: this is the open inventory button and needs to be clicked to select a

noun of the type 'item' to use with the crate.

5. Labels: shows that playen is holding the 'crowbar' item, which is

185

highlighted in blue when it can be used
6. Label 6: after the crowbar is selected the noun will be placed into the action

phrase, making it complete. Player! can hit return to carry out this action or
press the 'esc' or 'backspace' keys to go back and change it.

Figure 71:DISE UI Action Sequence

So the summary of player input with the following state of the action phrase for the

above example is:

1. Walk to crate and click on it with the mouse: playerl, blank, blank,

crate.
2. Pressthe's'keytoselect'use':playerl, use, blank, crate.

3. Open inventory by clicking the bag button and select the crowbar: playerl,

use, crowbar, crate.

Inventory - The inventory contains all the items a character is holding and
wearing on their person. We will use a similar system as many classic adventure games
have successfully used in the past (See Figure 72). The inventory screen can be called up to
interact with held items, for example wear-hat or drop-bag. The player has the following

inventory sections:

• Pockets/Bags Space - the story author can customise how much item storage
capacity the player has in block units. Each item has a size in blocks and a
particular pattern/shape that will add an item management aspect to the
story. This inventory size and space limitation is of course optional and can
be removed altogether by the story author for their story, giving infinite

186

storage space for items if that aspect is not important to the story using the
"Limit Inventory Size=false" check box in the editor.

• Clothes and Accessories - this section will show what items of clothing a
character is wearing, such as shirts, hats, glasses, gloves,' watches and
jewellery.

Figure 72: Inventory screens from Diablo 3 and Deus Ex

5.7.2 INVERSE PARSER

To streamline the action user interface and only allow action choices that are a
possibility in the given context we will tie an inverse parser into the planning data. This
will mean that the user can never pick an impossible action and the lack of error messages
will maintain immersion in the story. When an object or character is selected with the

mouse the action menu is automatically filled with plausible actions. This is achieved by
inversely parsing the parameters and their preconditions and only selecting actions that
have at least one choice for all the parameters with the precondition equalling true.
Actions parameters are listed as follows in a similar to Bremond's ROLES& PROCESSES

3·2·5:

• 1stParameter: Character - The Agent of the action.

2nd Parameter: Character - The patient acted on OR Item/Dynamic - The
thing acted on.

Last Parameter: Location - The location of the agent and is usually required
to be the same location for the patient or thing acted on.

•

•

The parameters in-between can vary depending on the action.

In the 'trade' action example above, when playen clicks on NPC1,extra steps

are taken before step 4 by the action engine behind the scenes to check ahead and
populate the list of verbs. As stated before the computer already knows the
parameters: ?cl=Playerl ?c2=NPCl ?l=playerl_location, so in this case

if both playen and NPCl have an item, then the preconditions are true and this
action is made available for the player to choose. Any actions that do not have:
'Type - Character' for one of their parameters (p) between p=2 to p-n can be
instantly negated. The inverse parser takes the following steps to narrow down the
search:

1. Check one of the parameter types matches with the clicked
'object/thing' (ignoring p=l which is the actor of the action, in this
case playeri).

2. Fill in parameters that we already know.

3. Create lists for ones that are empty matching the parameter types.
4. For each thing in list, check that it passes the preconditions.
5. List the action as available in the menu.

For example consider the following actions (we have omitted their effects as we are

not concerned with that yet):
(:action wear
:parameters (?x - character ?y - item)
:precondition (and (haveitem ?x ?y) (iswearable ?y»
)

(:action read
:parameters (?x - character ?y - dynamic ?z - location)
:precondition (and (at ?x ?z) (at ?y ?z) (isreadable ?y»
)

(:action store
:parameters (?x - character ?y - item ?z - dynamic ?w - location)
:precondition (and (haveitem ?x ?y) (at ?x ?w) (at ?z ?w) (isstorage
?z»
)

(:objects
shelf - dynamic
book - item
room - location

(:init
(at shelf room) (at playerl room)
(isstorage shelf)
(isreadable book)
(hasitem playerl book)
)

188

If the clicked object is 'shelf - Dynamic' and the actions in the current scene were

wear, hang-up and read, then:

• Wear: doesn't contain a dynamic, so would be rejected at this stage.

• Read: has dynamic, so continues to next round.

• Store: has dynamic, so continues to next round.

Now it is time to fill in the parameters that we know and drill down to the

preconditions.

• Read
We know that character x = playeri, dynamic y = shelf and location z =
the player's current location, so have all the required parameters.

Checking the preconditions will flag up that shelf is not readable, so

fails at this stage.

• Store
We know that character x = playeri, dynamic z = shelf and location w =
the player's current location.

The computer has to query item y and its preconditions to proceed.

The selected dynamic - shelf is storage and the character and shelf are

at the same location so these return true.

Ifa player has any item y then this action is selectable.

Ifthis action is chosen, a list of items is generated all needing:
(hasitem playerl item) = true

• As book is the only item in the player's possession, the final action

would be: Playerl Store Book (on) Shelf (in) Room.

This technique makes sure the player is not getting negative feedback for any actions

that they select, but can take extra processing time to populate action menus, which can

increase depending on how many actions are being considered in the particular scene and

how many match up at the earlier stages.

The table in Figure 73 shows what actions would be appropriate to display for each

example object when it is selected with the mouse cursor.

Verbs to choose

Object Selected Store Trade Pickup Open Insult Tell Wear
Secret

Shelf X

Jack X X X

Jill X X X

Shoe X X X

Door X

Bag X X

Coin X

Gun X X
Figure 73: ObjectfVerb Unkage Table

5.8 CHARACTER ENGINE
The non-player characters (NPCs) are an important aspect of the story world as their

behaviour and interactions with the player can generate narrative. In this section we
explain the character engine, which is responsible for sequencing their turns and planning
stages; firstly with a brief overview. Following are that the action contents of a characters
class: Goal, Action and Execution Lists. The next section describes in depth how the
characters logical states are processed in a character engine sequencing turn, to process
planning, re-planning and execution of actions stored in execution lists, along with the
pre-condition checks needed to see if actions are still possible at their follow up time step.
The personalities of characters are explained in the next section, along with how they are
integrated into the planner. Finally the last two sections cover how characters are given
new goals using reactions and choice formulae and how characters are created using the

Character Editor Panel.

190

S.B.1 CHARACTER ENGINE OVERVIEW

The character engine handles the behavioural control of each character. It holds the

array of story characters and is responsible for updating their tum logic to process plans,

goals and actions. Each character holds a list of actions it can perform and their current

goal/s (thus defining their role), along with the action plan list, action execution list,
current goal, current action, number of re-plan attempts and wondering state. The

character engine acts like an inference engine in an expert system, deriving answers for

each character using the fact database, the character's control variables and the instance of

the planner that is dynamically created at the plan and re-plan stages.

The character engine contains a list of NPCs (non-player characters) currently in the

story. These characters hold data for their goals, available actions, lists of actions for

future plans and actions to be executed straight away. The relationship can of character

engine, the characters and the goal and action data can be seen in Figure 74. These are

described in greater detail in the next section 5.8.2 GOAL, ACI10N AND EXECUTION

LISTS.

191

NPC
'_~I

'_name: StrI'1I
,_pList: ArrayUst<G<aI>
_a:lionPtanUSI : AlTayLlSl</don> ~ Chara Englno

Go .. ,_a:tione.eculionUst: ArrayUS1<Adion>

'_nome: Strl'1l '_gooIl..Io1
~_ClITentGoal: Goal. nul
·_CUTentAction :Action .. nut

'Jlddl : Siring £_ ,_roplanAf1_lS : inl' 0
'_a:lionUSI : AlTayLisI<AcIion> • ne .. ArrayUst<Adion>() r- '_Mndert'1l: boolean. f....
+Go.~name : Siring. pdd : String)

.
'Npc(name: SlJt1g)

.getAcIionUsIO : AnayUsI<Aclion> .getNameO : StrI'1I

.getName() : Slri'1l lName{narne: String) : void
'seJName(name : String): wid •_0Jt,1intGoaf taddGoa.go>JI : Goa~ : void
+getPddl(): StrI'1I +getGoalllsl(): ArrayUSI<GoaI>
.oetPdd(pddJ: String): \'Old 1- +getAcIione.e ... onU.~) :AlTayLlsl<AcIion>

1 .getActionPianlislO : AITaylisl<AcIion>
+se IClrnHllGoaLoorrenIGOIIJ : Goal): \IOIj
+getCUrrerlGoal(): Goal
+selRoplanAfl_tsLrepaMUempi. : itt) :voId
+ge!Rep1anAlle"",1s(): 11'1
.... lClnenlActior(_oorrenlActlon : Action) : void
+getCurrerlAcIlonO: Aclion
.oetWanderingLwanderi'1l: boolean): vdd
.i.W8ndel'lng() : boolean

SCARE
rSCARE(name: SlJt1g. factDatabase: Usl<Strlng» I'e.ecuteEx1nI() : void

I~

,_ac:IIonUsi
• Qlr'fontActDn -_IKSlonPlaoUsi. ·_ac:Ilonuecll1D1Llst

DROP
- \

I:OROP(name: String. facIDaI..., ase : Llsl<Strlng» b
Action

-_name: String•• lI8CIJ"'e.trBO : void
-.""rameters : ArrayLlot<Slring>
-,precordltions: AlTayUSI<SII'Ing>
'_effecl: AlTayUsl<Slring>

TAKE OFF
'_ newParamele~ : ArrayliSI<String>

I:TAKE_OFF(name: String. facID.laba se : u.t<Stmg»_~ _precordltionsTrue: boolean = false
'e,"""tee.tra() : void ,_lIttlonComplete: boolean. rill...

-_factOaiabase : Lisl<String>
,,,,,,,,,String: String. -

WEAR ·.. "",Stri~y: SlringR
rWEAR(name: String. facID.laba ... : USI<Slring»

~
te"",StrlngAlTay2 : SlringO

.e,,,,,,,,,,e.~a() : void i"'P~tWten : SIri'1l0
'spitWteMnd: StrIngIl
.Action(name : Siring. factDalab_ : LIoI<SJring»

S~P .getNameCl: Stri'1l
I~SLAP(name : String. facIDalab ... : Llsl<SIring»

~
'..,IName("""", : String) : YOId

'e.eooteEna!) : void 'preoondtionsAreTrue(): boolean
.... tPnecondllonl{preeondition.1rue : boolean) : wid
' •• eooteO; \IOIj

'PICK UP -te.1PrecondillonsTrue(precondition: Slrihg) : bodean

rpiCK_up(name: Siring. faclDalabase: List<String» ~
+pnx:essEfta:ll{effect: Siring) : void
+exocvl&E_O : \IOIj••• """IeExtran: \IOIj
• ..,lActIonCompetaLlIClionCornpete : boolean): void
+isActionCol11PlflIe() : bodean
.getP ... ame~(): ArraylI.I<Strlng>

READ +getPrecondIions() : ArrayLIsI<Strlng>
j:READ(name : Siring, fact Database : List<SIri'1l')

~
+getEtJecl() : AlTayLlsl<SIrl'1l'

+exeatteExtraO : '101:1 • ..,tParame"'no(paramete~: ArrayList<Slring»;void
+setPnecondllonS(precondltionS ; AlTayUsl<Slrtng» : vdd
'setEftlld(etteCl; ArrIyUSI<Slrtng»: vdd o_lCeneActOns

HANG UP +getNewP_maleno() : AlTaytlsl<Slring>
rHANG_up(name: Siring. facIDalaba .. ; Ust<Slring» ~ +... INewf'arameleno(newParame_: AlTayUst<$lring»: IIdd

k+e,ecutee.lra() ; void DISESC
STEAL

I:STEAL(name : Siring. facID.labase: U.t<Slring>1

~
••• ocvtee.traO: void

GOTO
rGOTO(name: String. fllttDalabase: LISI<Stri'1l>}

~
•• ,"""teExnO: void

Figure 74: Detailed Character Engine Class Diagram

S.B.2 GOAL, ACTION AND EXECUTION LISTS

Characters interact with both the world and the planner via their goal, action and
execution lists. Each character has a state, set either to their currently active action or
wandering mode if no actions can be derived from their current goal list. When the story
starts characters should be given at least one goal to process by the story author, unless
they are required to wander around until a goal is given later in a specific scene using
'Story Mods', which are explained in more detail in section 5.5.2. Orkin states that using
goals and planning has three main benefits "The first benefit is the ability to decouple

192

goals and actions, to allow different types of characters to satisfy goals in different ways.
The second benefit of a planning system is facilitation of layering simple behaviours to
produce complex observable behaviour. The third benefit is empowering characters with
dynamic problem solving abilities" (Orkin, 2006).

(\ ' ___ ' false)
~L

It* Use(key, door)-
~L(\, ___ , true)

L__,\, false)
~

1* Use(crowbar, door)-
'\.L

L__,\,true)

Figure 75: Plan to Enter a Locked Room

The Character class contains a goal list, action plan list, action execution list and current
action. This data is chained between a Character, their personal instance of the planner
and the world state data (for every object in the world). Figure 76 below shows this
relationship inmore detail.

193

Non-player Character

-. Goal List

I World State Dat,--a J
PredicatesInit

I~1 o_~_.e_ct_s__~I~__A_c_t_io_n_s__ ~

--GOAL--+---"~

Planner

I

Action
- - Plan List +-,

I
I
I
I

Action I
r _. Execution r- - J
I List
I
I
I ,if
I
I Current-- Action

Figure 76: Character, World and Planner Interactions

194

5.8.3 TURNS& SEQUENCING

The actions a character should execute are chosen by the engine in two different
ways:

• Story Manaser Goal - the story manager processes a scene that feeds a
predetermined goal to a character which gets passed to the action list.

• Reaction Goal - the player or another character interacts with this
character and drives a reaction goal which is chosen depending on this
characters role during the event and the outcome produced when its
personality model variables are substituted into the choice formulae for that
actions role.

When either of the above generates a goal it is added to the goal list in a prioritised
sequence. The following inference engine/state machine diagram in Figure 77 shows how
the characters process these goals to generate actions. These actions are then carried out
one per tum, until a problem is found and a re-planning stage is needed. If the characters
have no goals or no pIan can be found they are set to their predetermined wandering
pattern, so characters seem to still be busy living in the world even when no important
tasks are at hand.

From Figure 77 the following states can be calculated to illustrate a characters
decision making process, showing how goals and actions are computed:

• Ifthe character has no goals - Wandering Mode.

• If the character has same top goal as previous tum - Check action-exe-list

• If the character has new top goal - PIan for new top goal.

• If action-exe-list is not empty carry on testing preconditions for action and
executing it if true. If the action has been completed also remove it from the
list. Ifaction-exe-list is empty get a new action from the action-plan-list, test
preconditions and move to execute if true.

• If action-pIan-list is empty then all the actions for current goal are complete,
so get new goal from goal-list

• Ifpreconditions are now false, a new plan is generated for the current goal.

• If a pIan cannot be found then an attempt at re-planning is made, if this fails
the character is temporarily put into wandering mode for this tum.

• If no pIan can be found after 10 turns the goal is demoted to the bottom of
the goal-list, so that other goals can be given priority instead.

195

>--__-+1 Wande<tncMode I--~ EIIcITumSbrtTum

Run Planner Willi
~~O-+I NewTopGoalin f-----,

Gea~

YES PlAN FOUND

t
GOAl. COMPLETE!

DeIet. GoaIlistFrom GoaI- 14--<
Current Goal- ... 0

Current Golla New Top Goal

Add Gear. Actions
To Action-Plan-ust

REPlAN
PlAN Run I'IannorWlth 1+- ___'

Top Goal in GoaJ...
Us'

PlAN FOUND

YES

End Tum

Figure 77: Character Planning Turns

5.8.4 PERSONALITYMODELLING

PlANFAlWl

Characters playa big role in stories and interactive software developers have been
refining the behaviour of non-player characters over the last two decades to make them
more dynamic and engaging. This had increased the scope of the personality models,
making them more detailed with many variables representing different aspects. Many
scientific personality models have been developed in academic fields such as psychology
(including the Biospheric, HEXACO, Hypostatic and Two-factor models of personality),
but these meet a different set of requirements than Interactive Storytelling, so can only be

used as a guide.

In his paper (Crawford, Personality Modelling for Interactive Storytelling, 2004)

Crawford lists these requirements as:

• Behavioural Completeness - Any personality model must address all
possible NPC behaviours associated with the story's genre. E.g. a shooting

story will need the character's weapon skill & accuracy stats, whereas a
romance story would replace these with a character's attractiveness and

romantic interests.

• Dramatic Significance - Acharacter's personality traits should be
designed to allow them to make dramatically interesting decisions. These
traits could involve values for emotions, relationships and intelligence;
rather than running speed (unless it was an important story factor, for
example in a story like Chariots of Fire, where characters competing in a race
are significant to the central narrative).

• Orthogonality - Although human personality is not understood well
enough to represent using neat vectors or matrices of values, some
correlations can be linked to more dynamically represent behaviour, for
example the correlations between love, trust and jealousy, where values
affect each other (if love and trust are high then jealousy should be low).

• Conciseness - the personality model should be a concise approximation to
remain functional. A large number of values can be simplified to make it
easier for story editors to manipulate and the computer to process.

Each character has their personality represented by an individual personality model.
The personality model will store data in arrays of 'Fuzzy Switches', which are values
between 0 and 1(unipolar) or -1and 1 (bipolar). These values represent how the character
feels about themselves, others and the state of the world and will affect the decisions they
make and the actions that they choose.

The variable types that the personality model needs to include are:

• First person variables - one dimensional array of personal character
traits, moods and moral values. For example:

Happiness (characterl) = O.Sf.
Laziness (characterl) = If.

• Second person variables - two dimensional arrays describing character
relationships. They contain both a subject and a focus character and depict
the subject's perception of the focus character. In this example character 1

thinks that character 2 is honest but is not attracted to them.
PercievedHonesty(characterl, character2) = 1.Of;
percievedAttractiveness(characterl, character2) = O.Of;

• Third person variables - three dimensional arrays describing one third-
party character's perception of another's feelings towards someone else. In
this case character 3 guesses the opposite for the perceived honesty of
character 1 for character 2 from the example above, but perceives correctly

197

that character 1is not attracted to 2.

PerPercievedHonesty(character3, characterl, character2) =
O.Of;
PerPercievedAttractiveness(character3, characterl,
character2) = O.Of;

• Accordance Variables - these describe a characters willingness to
perceive high values. Accordance describes character traits such as gullibility
or suspiciousness (which is determined by a high 'accordance to honesty' for
the former and a low value for the latter). In this example character 1wants
to believe that people are honest but is very picky about attractiveness.

AccordanceHonesty(characterl) = O.8f;
AccordanceAttractiveness(characterl) = O.lf;

Crawford's Erasmatron system (which later evolved into Storytron, described in
section 3.1.19) uses the following personality model, which could be easily implemented in

the DISE characters:

• First-order variables
Honest
virtuous
Powerful
Intelligent
Attractive

• Accordance variables
AccordHonesty
AccordVirtue
AccordPower
AccordIntelligence
AccordAttractive

• Second-order variables
PerHonest
PerVirtue
PerPowerful
PerIntelligent
PerAttractive

• Third-order variables
PerPerHonest
PerPervirtue
PerPerPowerful
PerPerIntelligent
PerPerAttractive

• Moods (bi-polar +/-)
Passion/Disgust
Joy/Sadness
Anger/Fear

In DISE the personality model only limits story authors to the five categories: First-

order, Accordance, Second-order, Third-order and Mood variables. Within these fixed
categories any new variables can be added to the models master list by a story author
using the editor, as long as they have a unique identifier name. For example if the story
was in the detective genre, the author may want to add a variable for 'detection' in the
characters' first-order variables list. If an NPC has a high detection value they could be
programmed in the current scene to inform the player that they have noticed a clue to
progress the story.

S.B.S NEW GOALGENERATION

For every action that is carried out we want a set of reactive goals to be available
along with the PDDL effects state change rules, if deemed necessary for that action. To
provide this the effect section will also contain additional rules that describe how non-
player characters (NPC) should react to a player's actions and determine which goals they
will choose. The NPCswill be sequenced using the concept of roles. For each different role
there are four main elements to consider (Figure 78). A role can be anything that a story
builder defines in a verb/action and more roles and reactions could be added later if they
are needed. Some actions have a direct subject to them that can be easily defined; other
roles could be characters that passively observed the action and want to intervene.

Effect:

NPCRoles:

1. Rules to describe which character should react to the event and
which role they fit into.

2. The Modifiers that change the personality variables of the
character in the specific role, which reflects how they feel about
the current action and how it physically affected them.

3. Alist of Reaction Goals to choose from and act out.
4. A Choice Fonnula that allows the character to choose the most

suitable verb from the aforementioned list according to their
updated personality model.

199

Example:

Role:
• Receiver - Character

Modify:
• if Likes(Receiver, Item) then Likes (Receiver, Giver) + O.lf

* Amount Receiver_Likes _Item

React:
• if Likes (Receiver, Item) then Thank (Receiver , Giver)
• if Likes(Receiver, Item} And Likes(Receiver, Giver) > 0.8f

And In Relationship(Receiver, Giver) then Kiss {Receiver,- -----
Giver)

• if !Likes(Receiver, Item) And !Likes(Receiver, Giver) then
Give (Receiver, Giver. Item)

Rol.e:
• Witness - Character
• Witness != Giver And Witness != Receiver And Witness See Give

Modify:
• Perceived_Generosity{Witness, Giver} + O.lf * Item_Value
• If Likes(Witness, Item) And Jealous_Person(Witness) then

Jealousy{Witness, Receiver) + O.lf * Likes (Witness, Item}
• If Likes{Witness , Giver) And Jealous Person(Witness} then

Jealousy (Witness, Receiver} + O.lf * Likes(Witness, Giver)

React:
• If Jealousy(Witness, Receiver}>0.9f then

Snide Comment(Witness, Receiver)

Figure 78: Effect ofNPC Roles, Modifications and Reactions

Figure 79 below shows a sequence of events and roles allocated to both the 'subject'

character and the 'witnesses' of these events. If we take the example above with Player 1

being the 'giver' and CPUl the 'receiver' of a gift using the event 'gives' the first role to be

cast is the 'receiver' character. This will then allow them to process their feelings and

choose a reaction to the event based on the variables of their personality model cross-

referenced with the 'gift' and 'giver'. The other two CPU characters are in line of sight of

the event and become 'witnesses', so get their tum next to process this event. Depending

on the value of the object, the amount the 'witness' likes the 'giver' and their tendency to

be jealous, they will make a snide comment or just have an increased perception of the

'givers' generosity. The last character can see the event but is prioritised to ignore roles for

this event for now as they are busy, so do not get affected by the scene.

200

•
CPU • ,, CPU

CPU 1

Player 1

•,
CPU

Figure 79: Character Role Sequence

201

5.B.6 CHARACTEREDITOR PANEL

The character editor enables the easy creation of new characters. It has data entry

user interfaces for:

• The character's initial personalities/moods to be set using individual
sliders for each value.

• The model skin to represent the character to be loaded using the file
browser.

• The character's initial position/location (similar to the Object Editor
Panel in Section 5.4.10).

• The initial state, such as items to be carried by each character, using a
panel similar to the lnit Editor Panel in section 5.4.4.

• The character's inventory contents and layout.

• The initial goals to be set for each character, using a panel similar to the
Init Editor Panel in section 5.4.4·

5.B.7 CHARISMA CHARACTERANIMATION SYSTEM

Charisma is the character animation system in DISE which controls the detailed
animated characters. Charisma combines MPEG-4 compliant facial animation streams
with skeletal-based animations, in order to improve the realism and smoothness of the
movements within the animation, as well as simplifying the animation pipeline. We use a
novel approach that extends and improves Garland's Quadric-Based Surface algorithm, by
providing a solution that is both MPEG-4 facial animation (MPEG-4 FA) model compliant
and maintains the model feature points whilst conserving its realism as much as possible,
improving the performance of the MPEG-4 facial animation implemented in Charisma
(Carter, Cooper, El Rhalibi, Merabti, & Price, 2010).

Figure 80: MPEG-4 Feature Points

202

The MPEG-4 FAprovides a concrete specification for representing a virtual head as
a set of 84 features points that define areas of the face which can be manipulated through
a set of 68 parameters values (FAPS), each applying a scalar transformation along a given
axis to a particular feature point (Figure 80). These feature points are key elements in a
human facial model for realistic animation and expressivity.

In order to simplify the animation process and reduce the amount of code required
to integrate a smooth MPEG-4 compliant animation system, we have developed a system
where the artist is tasked with defining the structure of feature points and the
corresponding vertices to be manipulated. In order to construct a head model which is
compliant with the Charisma API and with sufficient detail to display the required amount
of emotional response, we use Autodesk 3D Studio Max 2010, due to its industry-standard
status. Figure 81 shows an example of a Charisma compliant virtual character model
Gabrielle; textured and rigged with the skeletal structure which corresponds to the FDP
specification. The weight influences of the bones are highlighted, increasing in strength
from blue through yellow, to red.

Figure 81: A Charisma Compliant Virtual Character Model

The process is as follows:

Using a high-quality reference stock photo from the front and side perspective, the
shape of the head is produced using a polygon modelling edge-cloning technique. The
mesh is then unwrapped and textured using the reference photographs as a base. To rig
the head for animation, a framework of bones must be created. The position of the bones

203

is determined from the feature points taken from the MPEG-4 specification (Forchheimer,
Pandzic, & Pakstas, 2002). Once the bones are positioned on the face, they are labelled in
accordance to the FDP feature point they are representing (e.g. 3·1becomes bone -3_1).

In order to eliminate the need for FATs, we have substituted them with their skeletal
equivalent: blended bone weights. Figure 81 illustrates a modeJIed, textured, bone
positioned and weighted face model. The FAPU definition areas, used to calibrate the
model and define the unit transformation effect which each FAP has on its associated
feature point (bone). As seen in the image below, in our technique, these are determined
intrinsically from the model itself, requiring no additional meta-data or data processing.

Figure 82: FAPU Definition Areas inCharisma

The model is exported into the ubiquitous standard model interchange format,
Collada. This format preserves aJIthe data, whilst providing interoperability with a wide
range of additional modelling and texturing tools. This approach also allows all steps for
producing a Charisma-compliant model to be completed inside a single application.

Our pipeline also aJIowsthe bones to be manipulated inside the editor, in order to
rapidly test and incrementaJIy improve the realism of the model.

The MPEG-4 calibration step is performed directly from the model's data. We
utilize the skeletal structure of the model to determine the FAPUs. Additional marker
bones in between the eyes and the fulcrum were added. Figure 4 illustrates this concept.

This approach means that models can be made with varying levels of expressiveness.
The model is coloured using a multi-texturing approach. When the model is loaded into
the renderer, standard OpenGL lighting can make it look lifeless. To combat this we use a
GLSL-based hardware lighting Shader, in combination with normal and specular maps.
These maps are stored in the form of two additional textures, which are combined with the
standard diffuse texture. The GLSL Shader is executed directly on GPU, performing aJI
transforms and lighting in a parallel manner.

204

5.9 CHAPTER SUMMARY

In this chapter we gave a detailed account of how we implemented our design and
built the DISE framework. The basic structure of DISE was split into player and editor
components then further categorised into smaller interlinked sub-systems, which each
have a specific role. We explained these various systems and data structures and provided
screenshots of the user interface and 3D graphics where appropriate. From these details
we hope the reader can gain a deeper understanding of our approach to building an
Interactive Storytelling system which places the player in the centre of the story, giving
them choices which affect the narrative outcome. Our section on editing tools also explains
how an author can create a story without needing advance syntactical programming

knowledge or 3D modelling skills.

In the next chapter we wiU evaluate the individual parts of the DISE framework
including our Interactive Storytelling Engine (which includes the Character Engine and
Story Manager), DISE editor, procedural editing tools and finally the Charisma facial
animation system we described in this chapter.

205

" Telling stories is as basic to human beings as eating.
More so, in fact, for while food makes us live, stories
are what make our lives worth living (Kearney, 2002).

DISE FRAMEWORK EVALUATION

In this section we discuss the evaluation of the DISE framework. We will describe
the results of experiments that provide evidence in support of this thesis. We chose criteria
and experiments that will emphasise either the proof-of-concept (demonstrating the
viability of a method/technique) or efficiency (demonstrating that a method/technique

provides better performance than those that exist).

The analysis of Interactive Storytelling software is a difficult task as it is hard to
define quantitative methods for evaluating the quality of an interactive story, some
measures could be taken from the game frame rate and calculation/running speed also the
number of possible combinations of actions and effects. Qualitative approaches to story
evaluation can focus on which choices players make in game and how much they feel they
had an effect on the story world. This could involve several playthroughs of one story,
purposefully behaving in a different manner and making alternate choices to previous

sessions.

Usability and user-case study tests would involve probing users experience as regard
to story quality and how it compares to say a linearly controlled story. The usability

evaluation will focus on the story frameworks editors and will consider the main human
computer interface usability practice areas: performance, accuracy, recall and emotional

response.

We can gain some amounts of quantitative data by measuring the performance and
scalability of DISE with an increasing number of active characters, measuring the
execution and planning times and the amount of memory usage which is detailed in the
next section. Although this does not measure the quality of the story it can measure DISE's
ability to cope with multiple characters, its real-time capabilities, its range of supported
hardware and range of actions/behaviour which are important for rich storytelling.

206

6.1 STORYTELLING ENGINE EVALUATION

6.1.1 BENCHMARKING FICTION

Benchmarking bas been used for many years to oomparatively study the efficiencyor
standard of different media using a control subject. Interactive storytelling can be
represented in many different forms, with different requirements, making the process of
benchmarking difficult. Dena et al (Dena, Douglass, & Marino, 2005) research
benchmarking for interactive fiction and e-literature and define the term 'benchfic' as: "A
benchmark fiction, or 'benehfic', is an e-lit adaptation for the purposes of comparing
media. The term 'benchmark' here is playfully repurposed from the fields of computer
science and strategic management in order to emphasize the focus on utility and
standards. While 'benchmark' originated as a surveying term for a point of reference, in
contemporary computer science, 'benchmarking' bas come to mean the execution of a
software test in order to ascertain the relative performance of underlying hardware. " Their
research mentions 'Cloak of Darkness' a benchmark for interactive media that focuses on
similar behaviour and user experience just as much as story consistence. Dena et al (Dena,
Douglass, & Marino, 2005) evaluate 'Cloak of Darkness as "our most sophisticated
example of a collection of adaptations proceeding from a specification towards a concept".

The "Cloak of Darkness" specification is as stated on Firth's website (Firth, 2010):
"The various implementations have been made as similar as possible. That is, things like
object names and room descriptions should be identical, and the general flow of the game
should be pretty comparable. Having said that, the games are implemented using the
native capabilities of the various systems [...] The target is to write naturally and simply,
while sticking as closely as possible to the goal of making the games directly equivalent.
There are just three rooms and three objects:

The Foyer of the Opera House is where the game begins. This empty room has
doors to the south and west, also an unusable exit to the north. There is nobody else
around.

The Bar lies south of the Foyer, and is initially unlit. Trying to do anything other
than moving north or west; results in a warning message about "disturbing things in the
dark".

On the wall of the Cloakroom, to the west of the Foyer, is fixed a small brass
hook.

Taking an inventory of possessions reveals that the player is wearing a black velvet
cloak which, upon examination, is found to be light-absorbent. The player can drop the
cloak on the floor of the Cloakroom or, better, put it on the hook.

207

Returning to the Bar without the cloak reveals that the room is now lit. A message
is scratched in the sawdust on the floor.

• The messase reads "You have won" or "You have lost", depending on how
much it was disturbed by the player while the room was dark.

• The act of reading the messap ends the game."

Although this benchmark is designed for text based interactive fiction, it will be a
good test for the DISE action engine, planner and story editor (Figure 83). If the objects
and actions can be defined along with scenes to trigger messages to the player, destroy the
sawdust and control the lighting of the room then DISE will be considered versatile
enough to create any adventure.

This test could also be extended to involve AI characters with their own goals, to
evaluate multi-pass-planning and extra scenes/actions to create multiple ways of solving
the puzzle, with more potential outcomes, for example: we could include a foolish
character who stumbles around in the dark causing a lose condition, unless you talk to him
or give him an item. Another test could substitute the player for a computer AI, allowing
them to plan and solve the puzzle alone with the goal of reading the message.

208

Preposltrons Verts (sctlonstoperators)

- wearingCloak -examine
- haveCloak - LookAt

! - atLocatlOn -Take Off
-Hang Up
- Drop
·Read
• Goto (NPC AI)

Solution

~~er1
Ir(atLocation, Character, Object)

== (Bar, Player, Cloak)

Tr'Igger2
Ir(atLocation, Character, Object)

== (Exit, Player, nla)

Trfgger3
1'(Character, Verb. Noun)

== (Player, Hang Up, Cloak)
OR

-= (Player, Drop, Cloak)

Trlgger4
If(atLocation, Character, Object)

== (Bar, Player, Cloak)
AND

'i
If (Time += 2mins)

1

~ne_!
• Player1 enter story
• Display message "message1"
• Tlme .. 12pm
• Message Readable .. True
• Bar Ught On .. False

- Player • Cloak • Foyer
-Cloakroom
'Bar
• exit

Tr6

Tr5~ ••
Trlgger5

If(Character, Verb. Noun)
== (Player, Read, Message)

AND
Message Readab e =True

'WIN"

~e3
• Display Message "message3"

san.t!
• Bar Ught On =True
• Add Object(Message)

r g"er
II(Character, Verb. Noun)
= (Player, Read, Message)

AND
Message Readable .. False

"LOSE"

!!
• Message1 "Hurrying through the rain swept
November night, you're glad to see the bright lights of
the Opera House. It's surprising that there arent more
people about.·

• Message2 "In the dark? You could easily disturb
somelhlngl"

• Message3 "You've only Just arrived, and besides the
weather outside seems to be getting worse"

Figure 83: Example of Scene Structure inCloak of Darkness DISE hnplementation

209

6.1.2 TEST 1CHARACTER

The cloak of darkness bench mark was run for one non-player character (npci) to
solve using the Metric-FF planner linked to the DISE prototype. The simulation was
capped at 20 turns as the solution was reached before this time. To read the console

output for test 1please see Appendix 1.

The character 'npci' was given the goal to read the message (and win the game):
_characterEngine.getLastNPC() .addGoal(new

Goal("have read message", "(haveread npcl message)"));

Using the following test machine: Windows 7, Intel Core Duo at 2 GHz, 667 MHz
system bus, 2 MB shared L2 cache, 2 GB667 MHz DDR2 SDRAM(PC2-5300), ATIX1600

with 256 MBGDDR3memory.

The single shot test 1 took 84 milliseconds to complete 20 turns, using an
average of 47.9SMB Memory. The characters planning and thought process took 69.2
milliseconds of this time, with the rest being used by the Story Manager, Action Engine

and Game Engine.

In the 5 run series of test 1 the mean turn length was 4.1 milliseconds and the

mean total run time was 82milliseconds.

Test 1Turn Times
70

60

.~ .~., _, _, .
•

• Total Turn Time (ms)

• Character 1Time (ms)

10

o
1 2 3 4 5 6 7 8 9 10 11121314151617181920

Turn Number

Figure 84: A Graph Showing the DISE CoD Test 1Turn Times

210

1000

900

800

- 700

=::s 600-t' 500
0

5 400
::s

300

200

100

0

• Used Memory

• Free Memory

• Total Memory
.MaxMemory

Test 1Memory Usage

~ rl rl ~ I~..I (I ..I rl 1'1 Ii Ii Ii ..I (I rl ..I iI rl rl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

Turn Number

Figure 85: AGraph Showing the DISE CoDTest 1Memory Usage

70

60

50

20

Test 1Turn Time Variation

10 ._-N. • ___ -..Ii ..L. •

.Run1

.RU112

.Run3

.Run4

.Run5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Turn Number

Figure 86: A graph to Show the Variation in Test 1Turn TImes over 5 Runs

211

6.1.3 TEST 2 CHARACTERS

For test 2 the cloak of darkness bench mark was nm again, but this time had two
non-player characters, each using the Metric-FF planner linked to the DISE prototype.
The simulation was capped at 20 turns as the solution was reached before this time.

The character 'npci' was given the goal to read the message (and win the game):
characterEngine.getLastNPC() .addGoal(new Goal("have read

me ssaqe ", "(haveread npcl message)"»;

The character 'npcz' was given the goal to get the cloak by any means necessary:
characterEngine.getLastNPC() .addGoal(new

Goal("have cloak", "(haveitem npc2 cloak)"»;

Using the following test machine: Windows 7, Intel Core Duo at 2 GHz, 667 MHz
system bus, 2 MB shared L2 cache, 2 GB667 MHz DDR2SDRAM(PC2-5300), ATIX1600

with 256 MBGDDR3memory.

The single shot test 2 took 394 milliseconds to complete 20 turns, using an
average of 46MB Memory. The characters planning and thought process took 354
milliseconds of this time, with the rest being used by the Story Manager, Action Engine

and Game Engine.

In the 5 run series of test 2 the mean tum length was 20 milliseconds and the
mean total run time was 407 milliseconds.

Test 2 Turn Times
100

90

80

- 70

e 60
'-' 50~
.5 40
~

30
20

10

0 • •

• Total Tum Time ems)
• Character 1Time ems)
• Character 2 Time ems)

1 2 3 4 5 6 7 8 9 10 11121314151617181920
Turn Number

Figure 87: A Graph Showing the DISHCoDTest 2 Turn Times

212

1000

900

800

- 700

~ 600
'-'

t' 500
Qe 400~
~ 300

200

100

0

Test 2Memory Usage

I~~ 11 11 ~ ~
.~ Ii ~ ~ rl ~ .~ ..~ iJ ..~ rl 11 ...~ .~

• Used Memory

• Free Memory

• Total Memory
.MaxMemory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Turn Number

Figure 88: AGraph Showing the DISE CoDTest 2Memory Usages

100

90
80
70- 60rI)e

'-'
a,) 50e 40~

30
20
10
0

Test 2 Turn Times

IW_ ,L "'" n_' ..I. •

.Runl

.Run2

.Run3

.Run4

.Run5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Turn Number

Figure 89: Agraph to Show the Variation in Test 2 Turn Time over 5 Runs

213

6.1.4 TEST 4 CHARACTERS

For test 4 the cloak of darkness bench mark was run again, but this time had four
non-player characters, each using the Metric-FF planner linked to the DISE prototype.
The simulation was capped at 20 turns as the solution was reached before this time.

The character 'npci' was given the goal to read the message (and win the game):
characterEngine.getLastNPC() .addGoal(new Goal ("have read

message", "(haveread npcl message)"»;

The characters 'npca', 'npcg' and npca were given the goal to get the cloak by any

means necessary:
characterEngine.getLastNPC() .addGoal(new

Goal("have cloak", "(haveitem npc2 cloak)"»;

Using the following test machine: Windows 7, Intel Core Duo at 2 GHz, 667 MHz
system bus, 2 MB shared L2 cache, 2 GB667 MHz DDR2 SDRAM(PC2-5300), ATIX1600

with 256 MBGDDR3memory.

The single shot test 4 took 642 milliseconds to complete 20 turns, using an
average of 68.7MB Memory. The characters planning and thought process took 571
milliseconds of this time, with the rest being used by the Story Manager, Action Engine

and Game Engine.

180

160

140

120,...
{I'J

S 100....,
~5 80
E-

60

40

20

o

Test 4 Turn Times

I I I I I • •
1 2 3 4 5 6 7 8 9 10 1112 1314 15 16 1718 1920

Turn Number

• Total Turn Time (ms)

• Character 1Time (ms)

• Character 2 Time (ms)

• Character 3 Time (ms)

• Character 4 Time (ms)

Figure 90:A Graph Showing the DISE CoDTest 4 Turn TImes

214

1000

900

800- 700=~ 600-t' 500
Q
S 400~
=s 300

200

100

0

Test 4 Memory Usage

If f I' i II II i i II II I r i i i i I' i

• Used Memory

• Free Memory

• Total Memory
.MaxMemory

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 1718 1920
Turn Number

Figure 91: A Graph Showing the DISE CoD Test 4 Memory Usages

6.1.5 EXTRAPOLA TION OF RESULTS

From our previous results the data can be used to predict the performance hit on the
DISE system when the number of simultaneously acting non-player characters is
increased. Common-sense dictates that more characters equal more models on screen
with animation updates and extra character decision/planning turns, thus a greater
memory usage and a longer total turn time, but we wanted to find out to what extent this
would happen and if it would make a DISE story unplayable with x number of characters.
Looking at the earlier narrative theory and the outline in our requirements and
specification, we wanted the number of concurrent actors to be around seven to match the
character roles and support cast deemed important to an interesting story. Running tests
for one, two, four and eight characters the mean data from five runs can be extrapolated to
predict the total turn processing time way beyond this (with up to 20 non-player
characters (NPCs) as shown in Figure 92). Even with 20 characters running their decision
logic the total run time stays below 4 seconds with linear trend forecasting. The current
example is a small story with individual characters goals only having interdependencies on
the cloak object. For more complex stories increasing the number of characters could also
increase the dependencies on shared resources and their states, thus increasing the total
processing time above the linear prediction. Figure 93 shows a worst case scenario with an
exponential trend line to predict the increased interaction complexity between multiple
characters with limited shared resources and goals that depend on them. This plots the
total time at around 90 seconds to solve the Cloak of Darkness scenario with 20

characters. Even though this value is dramatically increased it would still provide

215

adequate processing speed for the non-player character's computer AI to make this
number of realistic decisions, which are of course dispersed over the course of the story
and ideally would be running in a parallel thread alongside the game rendering and

update loop.

4
_3·5

i 3
Q 2·5u~ 2
~
~ 1·5

~ 1
0·5
o

Turn Time Increase with Number of
NPCs

~
~

->
->

~
..,./

~[-~ II

- mean total run time

- Linear (mean total run
time)

1 2 3 4 5 6 7 8 910111213141516171819202122
Number of Non-player Characters (NPCs)

Figure 92: linear Predicted Turn Time with Increased Character Numbers

i 80 /

~ 60 +----------------------------~/r--
~ 40 +-------------------------~--~----
~ 20 +-----------------------~~------.i->o~~~~~~~~~_r~rT._~~

Turn Time Increase with Number of
NPCs

100.....--------------------------------
/

- mean total run time

-Expon. (mean total run
time)

1 2 3 4 5 6 7 8 9 10 11121314151617181920
Number of Non-player Characters (NPCs)

Figure 93: Exponential Predicted Turn Time with Increased Character Numbers

216

6.2 EVALUATION OF DISE EDITORS

6.2.1 DISE EDITOR EVALUATION

To evaluate the editor oomponent we created another test application. This editor

contains an swr interface that allows PDDL code to be created using simple menus and

buttons. The code created using the editor was then run through the Metric-FF planner

and was successfully read, resulting in the planner producing the solution as a series of

actions. The planner has a strict syntax engine so if any text was out of place or did not

comply the plan would not run and no solution would be generated.

We also evaluated the DISE world editor oomponents by building a level and saving

it to a binary file. The file was then loaded into DISE and also re-edited successfully. The

editor maintains a workable frame rate on the same test oomputer as the full DISE story

evaluation. It successfully allows large level geometry to be built, saved, loaded,

manipulated and saved again.

6.2.2 PROCEDURALEDITOR EVALUATION

After completing a test application that runs a tile based map generator we had

compelling results. The actual generation of a new level only takes milliseconds, so a

tweening animation was added to show how the level is built up in layers, similar to a sean

line renderer. The variety of the generated levels is noticeable with different types of water

levels, landscapes & tree scattering. At this point in time the buildings are created in a

separate application, which will be merged with the environmental one when it is nearer

completion. The frame rate runs steadily at around 30fps on a regular specification

computer, and much higher through the WebStart version, but deters proportionally with

the size of the map being requested. An optimisation for running these maps in a game

environment would be to overlay a better scene management system such as a Binary

Space Partition Tree, Octree or Clipmap (Slack, 2009) (Tanner, Migdal, & Jones, 1998).

The other aspects we have considered are:

• Novelty: contains element of randomness and unpredictability.

• Structure: is not merely random noise, but contains larger structures.

• Interest: has a combination of randomness and structure that players find
engaging.

• Speed: ean be quickly generated.

• Controllability: can be generated according to a set of natural designer-centric
parameters.

The program is still under development and a full usability evaluation will be

217

performed once it is completed, to analyse users' reaction to and satisfaction with the
tools.

6.2.3 CHARISMA CHARACTERANIMATION TOOLEVALUATION

In order to test the performance of Charisma framework, we used the Gabrielle
model in combination with the Charisma player. The character is modelled as high-
polygon (Le. 62512 triangles) model (depicted in Fig. 94.a), medium-polygon model (Le.
15560 triangles) and low-polygon (i.e. 8176 polygons) model (depicted in Fig. 94.b), with
three light sources placed within the scene on elliptic orbits around the model, tested with
a 540 frame FAP animation, and with a desired execution rate of 25FPS. The results are
averaged over 20 executions of the tests and were performed on the Java Web Start
variant of the applications. Typically, we expect an 8-10% performance drop when
executed as an Applet embedded inside a web page (El Rhalibi, et al., 2009).

(a) High-polygon (62512) (b) Low-polygon (8176)

Figure 94: Models of Gabrielle used in the evaluations

In order to test the effect of the animation on the processing, we tested the
application with full rendering of the model, but with no animation (animation loaded
with updates disabled), the interpreted mode version and the compiled version. Three test
types were performed: CPU-based skinning, where all transforms, lighting, texturing and
bone manipulation are done on the CPU (typically used in low-end machines, without
Shader Model 2.0 supporting GPUs); GPU-based skinning, where the aforementioned
processes are carried out on the GPU and finally, flat shading, dynamic texturing and
lighting is omitted - this is also a CPU bound process. Table 3 shows the results of the
performance testing on the high-polygon model.

218

Table 3: R.esults of the Charisma Performance Test 1

Testing Mode (Results expressed as Frames Per Second)

Test 1:using the Homura-based Charisma Player on a Window z-bssed PCwith an Intel®
Core™ 2 Duo E6600, NVidia 8500GT 256MBGPU, and 2GBDDR-800 System RAM.

Test Type: Static Model- No Interpreted Compiled Animation
Animation Animation Mode Mode

146.6 38.5 134·6

85.1 36.7 74·5

268·3 40·4 222·5

CPUSkinned:

GPU Skinned:

Flat Shading:

The results across the animation techniques indicate that interpreted mode has a
dramatic effect on the frame-rate with a reduction by a factor of between ax-ex, This also
produced in a levelling effect upon the frame rate across the test types, indicating that the
interpreted update consumes the majority of computational time per frame. In
comparison, the compiled mode indicated an 8-1796reduction in frame-rate, maintaining
high frames per second output.

Table 4: Results of the charisma Performance Test a

15560 POLYGONS

Static Model - No
Animation

117·9

Test 2: using the Homura-based Charisma Player on a Vista-based PC with an Intel@
Core™ 2 Duo T7200, NVidia GeForce Go 7950 GTX 256MB GPU, and 2GB DDR-800
System RAM.

Testing Mode (Results expressed as Frames Per Second)

Test Type: CPUSkinned Compiled Animation Mode

62512 POLYGONS

361,7 283·3

8176 POLYGONS 334·2

Table 4 shows the results of the performance testing, and contrasting the high-
polygon, medium-poly and low-polygon models using a slightly less powerful machine, for
the static models and the compiled animation modes. Once again, the resulting frame rate
achieved by the application exceeded the animation frame rate, resulting in very smooth
animations.

219

Figure 95: Charisma Prototype Application

The prototype applications shown in Figure 95 displays highly realistic models (top
left) with the Charisma Editor (top right) and Charisma Player (lower two). The
applications run as either standalone Java applications or JWSjApplets for web
integration.

This chapter has proved the viability of the DISE framework by evaluating the test
applications for both the storytelling engine and the content editing tools. The results
show that characters can process their decisions and re-plan if the world changes around
them, whilst still keeping memory usage and processing time to an acceptable amount (for
example the average single turn time for one character is around 4 milliseconds). We can
also see that the range of actions and level of customisability in the editors will allow a
story world to be created that meets the requirements of a tested interactive fiction
benchmark.

220

6.3 CHAPTER SUMMARY

In this chapter we evaluated our storytelling framework DISE using a popular
benchmark for interactive fiction called "The Cloak of Darkness". This benchmark proves
that DISE is feature rich enough to represent a complex story scenario and a range of
actions. We also used this benchmark to test the Character Engine's capability to solve
goals for multiple characters. The results showed that multiple characters can run and
solve the Cloak of Darkness scenario while keeping memory usage consistent and with an
acceptable solving time (even with 20 characters running their decision logic the total run
time was shown to be below 4 seconds with linear trend forecasting).

We also evaluated the DISE Editors testing save and load consistency, level
generation speed/quality and the frame rates whilst running character animation with
different levels of detail.

The next chapter will summarise and conclude the thesis, state our findings, known
limitations and list the scope for future research to further expand the DISE framework.

221

" Game authors should embrace intel'activity rather than treating
it as a problem that needs a solution . And don't just say that
storytelling isn't possible because of non -Iineariu; (Samyn, 2005)·

7 CONCLUSIONS & FUTURE WORK

Our goal was to design and evaluate a more complete Interactive Storytelling engine
and framework/middleware, called 'The Digital Interactive Storytelling Engine' (DISE);
which consists of separate player and editor components for the creation and deployment

of new interactive story modules.

In this thesis we have described a system that allows an author to more easily create
an interactive story with multiple outcomes that gives a greater level of freedom to the
player. By specifying the places, objects, characters and their personalities along with the
key scenes, sequences and the actions a player can choose from; a richer and more
dynamic narrative can be constructed. The author has the ability to choose how much
constraint they want to place on the player and what level of importance each section of
the story has. Authors can also direct their stories to different age groups by removing
inappropriate actions and content. These features along with real-time first person
interaction in a 3d world, with the player being a main character and having a direct
involvement in story progression, a context sensitive action menu, individual personalities
and switchable planners for each character, and the ability to launch the game from a web-
based 3D application using our game engine and deployment framework called 'Homura'

(Carter et al., 2008), provide a novel take on Interactive Storytelling.

We identified the key design features and the most suitable narrative theories and

computational models for use in our Interactive Storytelling framework. We used key
parts of the following narrative theories in the design of the DISE framework: Aristotle's
Dramatic Actions, Five-act Model, Three-act Paradigm, Roles & Processes, Narrative
Grammars, Narrative Units, Five Codes of Analysis, and Ethical Dimension. We also
implemented an editing system that allows the author to choose which narrative theory to
recreate for themselves (for example a scene structure created with the scene editing tool
allows the 3-act or 5-act model to be followed). The best fit computational model was a
planning system, as goals and actions can be decoupled and created modularly, which
allows a story to be greatly changed by adding a new action or goal in the editor.

Other novelties of our DISE framework include: the real-time facial animation
system for storytelling with characters; the user friendly editors to manage story data,

222

describe characters, 3d wordflevel design/editing and procedurally creating art content;

the pluggable planning system for further research and expand ability; the development of

integrated solution for DISE Framework and it's evaluation including the dissemination of

our findings.

7.1 THESIS SUMMARY
In this thesis we have introduced the concept of Interactive Storytelling and

described how it presents the opportunity for players to have an input on what is
happening in the game world they are placed in, to be the ones who dictate how certain

events may come to pass.

In Chapter one we outlined our goal, which was to design and evaluate a more

complete Interactive Storytelling engine and framework/middleware, called 'The Digital

Interactive Storytelling Engine' (DISE); which will consist of separate player and editor

components for the creation and deployment of new story modules.

In Chapter two we presented the background of this research area to demonstrate

a wider appreciation of the subject (to give context), and provide our problem statement

and motivations for this thesis.

In Chapter three we surveyed and critically assessed the projects and publications

related to the field of Interactive Storytelling, planning, and computer games technology

and stated their relation to our own work, along with their positive and negative aspects.

This included analysing the importance of narrative theories and computational models in

the design of our Interactive Storytelling strategy and examining how a story can be

formalised and deconstructed into its core components to systematically generate
narrative elements.

In Chapter four we outlined the DISE framework and the game technologies we

would need to implement it. We also looked at who will be using the framework and what
level of interactions they will require.

In Chapter five we explained our DISE framework in detail using example

flowcharts and some code examples to show how it was implemented and how both

players and story authors can use DISE to respectively play and create new interactive

story content. This implementation contained the main systems in DISE, including the

Game Engine, Story Manager, Planner, Player Action Engine, Character Engine, Charisma

Character Animation System and the editors to create all the necessary content including
procedurally generating level mesh models.

In Chapter six we ran a fiction benchmark to assess if DISE was rich enough to

223

provide an Interactive Storytelling experience with a large number of simultaneous
automated characters and a variety of goals and actions all in a real-time environment. We
also looked at the performance of the character animation system and editing tools.

7.2 CONTRIBUTION

This section contains our hypothesis and identifies the problem to be explored and
its importance to the field of Interactive Storytelling in Computer Games. It asserts that
our research may help to solve the problem under investigation and is essentially a
statement of what we believe the study will prove and/or solve including the novel aspects
of our work and the contribution to knowledge.

We believe our study proves that the DISE framework provides a viable way to not
only play a variety of real-time interactive stories, but to create new one by dedicating a
small amount of time and creative input. We have provided an in depth review of other
Interactive Storytelling systems created in the past, stating what pieces are important and
what elements were missing. We also looked at narrative theories to find what elements
can be used to create a viable narrative model for Interactive Storytelling, whilst giving the
author the freedom to choose the discourse of their narrative themselves without limiting
scene structure or genres. Our implementation proves that multiple characters can make
quick decisions based on their goals and personalities and carryout actions until either
their goals are met or they need to re-plan.

7.3 COMPARISON TO RELATED WORK

In this section we will compare our DISE framework to other researcher's
implementations of an Interactive Storytelling system. After analysing multiple
storytelling system implementations using various techniques, Crawford found that there
are several core components and technologies that make up what is considered to be a
comprehensive interactive storytelling engine (Crawford, Chris Crawford on Interactive
Storytelling.aooa):

• Story Actions and Events

- These are the actions that the user can do, multiple verbs make up
events and are stored in flat data structures; an example from
Crawford's engine is the trading sentence, "Subject Trades X (to) Direct
Object (in return for) Y" (Crawford, Chris Crawford on Interactive
Storytelling zooa).

• Drama and Story Managers

224

- This is the main algorithmic game/story engine that links everything
together. It updates the game world, the characters and their goals and
evaluates events and their impact on the plot. It also remembers past
events and learns from their results.

• Personality and Emotional Models (Character Engine)
- These help the characters decide what decisions to make depending on

certain character traits represented as dynamic numerical values that
can change depending on interactions with other characters; for
example an anger value may increase if insulted.

• Roles and Sequencing Engine
- The sequencing engine's job is to calculate what should happen next

after an event. It makes sure the options available to a player are
relevant to the previous event and that characters choices fit their role
correctly. Some of this will be moved into the Character Engine for our
design.

• History Database and Blackboard Systems
History modules record events that characters do that could influence
their future decisions and blackboard systems allow characters to share
experiences and knowledge from their own point of view.

• Anticipation Engine
- This system allows characters to anticipate another's reaction to their

behaviour and adjust their actions accordingly.
• Integrated Development Environment (IDE)

- These are the tools where story builders will specify, design, implement
and evaluate their game stories. The IDE must be comprehensive and
easy to use.

• Game Engine

The game engine handles all the logic behind the game and renders the graphics to
the screen in an update loop.

DISE contains most of these components, but does not yet contain implementations
of blackboard systems or anticipation engines.

Donikian & Portugal's Interactive Fiction system DraMachina (Donikian & Portugal,
2004), uses the architecture depicted below in Figure 96. The user interacts with a theatre
to manipulate the story world model data and the author creates narrative logic which
powers the interactive drama.

225

Figure 96z Architecture of an Interactive Fiction (Donlldan Ir:Portupl, 2004)

Our architecture uses most of the aforementioned components, but they are
integrated in a slightly different way to create a more usable and interoperable structure,
and support different technologies and data format. Our narrative logic exists as the story
file and the user interacts via a contained class called the Player Action Engine. The
theatre aspect could be represented by the game engine's rendering system.

We can use our contributions listed in section 1·4 to draw points of comparison to
benchmark the features of DISE against five other competent Interactive Storytelling

systems.

The main novel features we were aiming towards when designing and implementing
our Interactive Storytelling system 'DISE' were to:

• Make a novel storytelling framework with full real-time interaction in a
dynamic 3d world with the player taking the role of a main character in the
story and looking through their eyes in a first-person perspective.

• Create useable editors to manage story data, describe characters and for 3d
wordflevel design/editing and game assets.

• Create a switchable planning system for future extendibility.

226

So to compare these novel points we will look at the graphical output of the
storyworld, the user's role, the systems extendibility and editors and also the target

audience and genre, as shown in Table 5 below. The table cell is coloured green for
features that are on a comparable level with our system 'DISE' and red for features that
have been enhanced by or are novel to DISE.

227

Table 5: Comparing DISE to Other Interactive Storytelling Systems

3D 3D 3D 2D Icons &:Text

The user can use The user inputs The user The user chooses
the mouse to natural watches clips options from a
click objects &: language text to then advises dropdown menu
chooses actions talk &: uses the on next action in response to

action to carry out from mouse and via text chat sto!y events.
sentences by a list. keyboard to interface.

clicking move.

objects and

FABULATOR Commercial- Source code The Story World
has source files Not designed to would need. Authoring Tool
for the planner be modified so heavy "SWAT' can be
which can be is a closed modification used to create
modified but no system with no to extend e.g. new stOl')'WOrlds,
editors or source authoring tools. to add the but is complex.
code playerasa
distribution. character.

expansion.

Computer Users Adults/ School Computer Users
/ Mysteries &: Relationships. children& IWorld leader
Who-done-it's. teachers/ simulation (but

Bullying potentially any).
Education.

Automated Automated Automated Automated
Planning&: Planning&: Planning&: PIanniua&:
Scheduling Scheduling Scheduling 8ehedu1ius

228

7.4 LIMITATIONS

Our DISE framework provides the tools and game technologies to create new
interactive stories and for users to play through them. A main limitation is that no matter
how many tools are provided; interactive stories still need time and dedication from the
story author to create. This is due to the fact that every object, location, character and
action needs to be created and given their appropriate values and the structure of the
scenes and predicate logic needed to move between them still require a certain level of
experience. In Interactive Storytelling there is not just a balance between story constraints
and player freedom, but also between the complexities of story authorship/creation and
the level of control and unique detail in the final story. If the author wants their story to be
complex and flow a certain way, then high level authoring tools are not expressive enough.
In the DISE framework the tools allow the construction of new predicates, actions,
character personalities, 3d models and animations, animated character dialogues, goals
and scene events and structures. Using these a custom unique story world can be created,
but at the cost of more development effort on the authors behalf.

Other limitations that can be dealt with in the future and are mentioned in the next
section 7.5 FUTUREWORKare:

• The feature constructs (such as durative actions) and solving speed of the
planning system.

• The behavioural completeness of the characters' emotional model.

• The lack of history, gossip and deception features in DISE, to create more
dynamic characters and therefore stories.

• The number of NPCs running decisions simultaneously in a single scene
(including scenes that need large crowds).

• The number of polygons used in the close up animated character model
scenes using Charisma could slow down the frame-rate when multiple
characters are present.

• The world editor meshes could be stored in a more optimised graphical
structure such as an Octree or in chunks, so that new areas are loaded faster,
the environments can be larger and the polygon count of objects further
away from the player are lowered to maintain an optimal frame-rate.

• Our main analysis of the DISE prototype applications at this stage provide
quantitative data representing the soundness of the solution and characters
decision processes, even with multiple characters, but we have not yet
measured using an objective user analysis technique to see what users think
of story and interface quality.

229

7.5 FUTURE WORK

This section contains information on missing functionality, descriptions of
variations, extensions, or other applications of our central idea along with the possibilities
for future research. Although we have provided many technical demos of certain aspects of
the DISE system, there is still much more work that can be done to create the finished

product, as stated earlier: "The goal [for research projects] is not to actually finish the
software, but to demonstrate that it could be finished with an adequate expenditure of
money and resources. Realistically one graduate student working for two years can't be
expected to build a working system for interactive storytelling" (Crawford, Chris Crawford
on Interactive Storytelling, 2004).

As the DISE Framework covers many areas and is composed of multiple systems and
theories, we have divided up the future work that could be undertaken to enrich our
framework into the following areas: planning, characters, editors and analysis.

7.5.1 PLANNING

Durative Actions - Although DISE characters can carry out an action over
multiple turns in using the Character Engine to check if the current action is complete, it
does not use durative actions in the planning stage. Durative actions (Fox & Long, 2003)
give a specific duration to an action and categorise the time conditions are tested using
three time groups: at the start of the action, at the end of the action and over all the whole
action. The actions effect is also labelled as 'at start' (for immediate effects) or 'at end' (for
delayed effects). This extra set of information allows concurrent planning (the use of
resources by multiple actions). The example below shows the durative action for burning a
match whilst simultaneously picking up a coin.

(:durative-action burn-match
:parameters (?m - match) (?l - location)
:duration (and
« ?duration 5) (> ?duration 0)
)
:condition (and
(at start (have ?m))
(at start (at ?1))
)
:effect (and

(when
(at start (dark ?l))
(and
(at start (not (dark ?l)))
(at start (light ?l))
)

(at start (not (have ?m)))
(at start (burning ?m))

230

(at end (not (burning ?m)))

(when
(at start (dark ?1))
(and
(at end (not (light ?1)))
(at end (dark ?1))
)

(:action pickUp
:parameters (?1 - location ?o - object)
:precondition (and
(at ?1)
(onFloor ?o ?l)
(light ?l)
)
:effect (and
(not (onFloor ?o ?1))
(have ?o)
)
)

This extra level of planning logical detail could allow more realistic solutions to be
generated and remove the one action at a time limitation DISE characters currently have.
This would allow for a more dynamic and realistic story with characters that are even
more intelligent than the current implementation.

Optimising Planner - the DISE prototype allows researchers to change the
planner element to use another one which could be newer or use a different heuristic.
Further work could be done in creating a unique planning system designed specifically for
Interactive Storytelling. Using different heuristics or relational node graph hierarchies and
ignoring the elements that are not needed for story planning; a more streamlined planning
system could be attached to DISE and directly be compared to the Metric-FF planner in
the current implementation example.

Optimising Plan Dataflow - the speed of the planning stage can be increased
when a final planning system is chosen, but will sacrifice the ability to easily switch out
planning systems. Currently planning data is saved as two temporary text files (a problem
and domain file) in the PDDL format. These two text files are input parameters of the
planner's system command line, as the majority of existing planning systems require their
input in this format. Optimisation would avoid the creation of these text files and instead
hold their data in a string buffer or other suitable data structure and pass the information
directly to the planner. The downside would be that each new planner would need to have
their source code available and be edited to accept this new method of input on top of the .
planner interface class usually needed for a new DISE planner.

231

7.5.2 CHARACTERS

Personality Models - the current personality model in DISE is expandable and
uses numerical values for each trait. DISE could be expanded in the future to support
other personality models such as the widely used OCCModel by Ortony, Clore and Collins
(Ortony, 2003). The OCCmodel has 22 emotional categories shown in Figure 97 below.

Figure 97: OCCModel of emotion (Ortony, 2003)

Characters process events in three phases to generate an emotional response:

• Categorisation - finding which emotional categories are affected by
evaluating the event, object or action.

• Quantification - the intensity of the affected emotions.
• Mapping - mapping the resulting changes of the 22 emotional categories

usually to a lower number of emotions to produce the character's expressions
and behaviour.

This model requires a rich world model with a large fact database to assign values to
objects and low level goals to characters, such as staying alive, with food helping to achieve
this goal thus having a positive emotional affect.

History and Blackboard Memory System - would allow characters to retain
information of past events, to give an extra level of detail. In the current system they will
know that they do not trust another character, but they do not retain the reason why. The
memory recall could influence their future decisions in more detail. A blackboard would
allow the character to share the event from their point of view (see gossip system next).

Gossip System - this would allow characters to share information between

232

themselves and other characters via gossiping. A character's personality model could use a
gossip value to store their likeliness to spread news and also use the relationship values to
allow them to chat with friends about characters that they do not like.

Deception - Fairclough and Cunningham's paper (Fairclough & Cunningham,
2003) mentions an extension to their Interactive Story Engine to include a Character
Deception system. This would allow the characters to deceive and "inform the player of
events that did not happen in the world". These fabricated events should be designed to
manipulate the player and evoke a certain reaction.

Level of Detail (LoD) for NPCs - to optimise the NPCs decision making times,
allowing more characters to be running simultaneously in a single scene a level of detail
system would be needed. Characters can be prioritised in order of importance to the story
and also their proximity to the player's character. NPCs that are further away and not
currently visible and are also not doing anything of large importance in the story can be
updated less in the Story Managers decision turns loop and also don't need to be
animated. There are many level of detail techniques used in computer games today
(mainly for geometry optimisation), to improve the amount of processing power used on

things that are not as relevant

Level of Detail (LoD) for Charisma Character Animations - the animated
characters in Charisma are made from detailed meshes, so when more characters are in a
shot the processing power used by Charisma increases. A level of detail system would
allow the meshes of characters to be collapsed down to a lower number of individual
polygons, focusing on areas that are not visible or with less focal interest and a lower
concentration of facial contortion needed for expressions. Work is currently being carried
out by our team on an extension to the Charisma system to achieve this as described in the
paper (Duarte, El Rhalibi, Merabti, Carter, &Cooper, 2011).

7.5.3 EDITORS

World Editor - the world editor prototype allows structures to be created but can
be further developed to allow for a greater number of polygons and larger map sizes. The
user creates and edits box objects to build their scene, so an optimisation would be to
delete unseen inside faces where two boxes are adjacent and touching. The box class
already contains the code to hide selected faces of a box using a Boolean setter function
and the corresponding face's world axis aligned direction (North, East, South, West, Top
and Bottom). When the level is saved an algorithm could be created to iterate over each
box to check ifany hidden faces can be removed.

Another future improvement would be the automatic generation of navmesh data in

233

the editors. Although it ismentioned in this thesis for the design of DISE the current demo
implementation doesn't include this feature yet due to time restraints. The navrnesh would
include any faces considered to be walkable floor space with enough clearance above it for
a character to walk on standing up. The navrnesh can be pre-generated after the level
design is saved and could also write the accessibility data into the planning data files as
mentioned in section 5.4.13.

7.5.4 IMPROVING ANALYSIS

The DISE system was measured for its performance, diversity and functionality and
results were also projected to test the number of simultaneous characters and the output
solution from DISE listing the characters' actions can be found in APPENDIX 1- Test 1
Console Output. Fairclough and Cunningham suggest that further work could be carried
out to gain an objective analysis of the story from their users "In the interest of a more
objective analysis, the networked storytelling system will be combined with a separate
user interface for getting feedback on the users' experiences with the game, based on story
criticism criteria. The result of this will include an analysis of believability, consistency,
drama, and the level of user interactivity" (Fairclough & Cunningham, 2003).

For the evaluation of the Defacto system (section 3.1.6), Sgouros used user feedback
questionnaires to evaluate the clarity of player's goals and the relevancy of their actions,
along with the overall quality of the interactive story experience. Some of the questions
also evaluated the clarity of the user interface. In the future when the DISE prototype
applications are extended this method of evaluation would be useful for assessing the
quality of the framework including both the playing and editing functionality.

234

BIBLIOGRAPHY

Allbeck, J. M. (2010). CAROSA:ATool for Authoring NPCs. In R. Boulic (Ed.),
MIG 2010 (pp. 182-193). Utrecht, The Netherlands: Springer.

Aristotle. (1961). Poetics. (F. Fergusson, Ed., & S. H. Butcher, Trans.) Retrieved
September 21, 2011, from The Internet Classics Archive:
http:// elassics.mit.edu/ Aristotle/poetics.html

Axelrad, M., & Szilas, N. (2010, Feburary). IRIS Wiki - IS Systems. (IRIS)
Retrieved September 21, 2011, from IRISWoo:
http://iris.scm.tees.ac. uk/public-wiki/index, php/IS_Systems

Bae, B.-C.,&Young, R. M. (2008). AUse of Flashback and Foreshadowing for
Surprise Arousal in Narrative Using a Plan-Based Approach. In Spierling, &
Szilas (Ed.), Interactive Storytelling - ICIDS 2008 (pp. 156-157). Erfurt,
Germany: Springer.

Barber, H. (2008, January). Interactive narrative. (University of York,
Department of Computer Science) Retrieved September 21, 2011, from
University of York, Department of Computer Science: http://www-
users.cs.york.ac.uk/maria/ gied/

Barber, H., & Kudenko, D. (2007)· Dynamic Generation of Dilemma-based
Interactive Narratives. The Third Artificial Intelligencefor Interactive
Digital Entertainment Conference (AIIDE 07). Stanford, CA:Stanford
University.

235

http://iris.scm.tees.ac.

Barber, H., & Kudenko, D. (2008). Generation of Dilemma-based Interactive
Narratives with a Changeable Story Goal. International Coriference on
Intelligent Technologies for interactive entertainment. Playa del Carmen,
Mexico.

Barros, L.M., &Musse, S. R. (2005). Introducing Narrative Principles into
Planning-based Interactive Storytelling. Proceedings of the 2005 ACM
SIGCHI International Conference on Advances in Computer
Entertainment Technology. 265. Valencia, Spain: ACM.

Barros, L.,&Musse, S. (2007). Planning Algorithms for Interactive Storytelling.
Computers in Entertainment (CIE) - Interactive entertainment. Volume 5
Issue 1Article 4. New York, NY,USA:ACM.

Barros, M., &Musse, R. (2007). Improving Narrative Consistency in Planning-
Based Interactive Storytelling. Proceedings of The Third Artificial
Intelligencefor Interactive Digital Entertainment Conference (AIIDE 07).

Stanford, CA:Stanford University.

Bassos, M. (2004, September 24). Memorable Video Game Characters. (PAL
Gaming Network) Retrieved September 21,2011, from PALGN:
http://palgn.com.au/article.php?id=1586

BBCNews. (2009, January 10). Games will 'eclipse' other media. (BBC)Retrieved
September 21, 2011, from BBCNews:
http://news.bbc.co.uk/l/hi/technology/7821612.stm

Berlyn, M., & Blank, M. (n.d.). Interactive Fiction and the Future of the Novel.
Retrieved September 21, 2011, from Atari Archives:
http://www.atariarchives.org/deli/interactive_fiction.php

Bickham, J. M. (1993). Scene &Structure. Writer's Digest Books.

Bicknell, S. (n.d.). Five Coolest Mute Video Game Characters. Retrieved
September 21, 2011, from Shift-n http://WWW.shift-l.netjmutes.html

http://palgn.com.au/article.php?id=1586
http://news.bbc.co.uk/l/hi/technology/7821612.stm
http://www.atariarchives.org/deli/interactive_fiction.php
http://WWW.shift-l.netjmutes.html

BioWare. (2011). Mass Effect. Retrieved September 21, 2011, from

http://masseffect.bioware.com/

Blum, A. (2001). Graphplan HomePage. (School of Computer Science, Carnegie
Mellon University, Pittsburgh) Retrieved September 21, 2011, from School
of Computer Science, Carnegie Mellon University, Pittsburgh:

http://www.cs.cmu.edu/ -avrim/graphplan.html

Bremond, C. (1966). The Logic of Narrative Possibilities. (E. Cancalon, Trans.)
New Literary History, The University of Virginia.

Cai, Y., Miao, C., Tan, A., & Shen, Z. (2006). Fuzzy cognitive goal net for interactive
storytelling plot design. Proceedings of the 2006 AGM SIGCHI
international Conference on Advances in Computer Entertainment
Technology. (Hollywood, California, June 14 -16, 2006). 266. New York:
ACM.

Campbell, J. (1949). The Hero with a Thousand Faces (1St ed.), US: Pantheon
Books.

Carter, C., Cooper, S., Dennett, C., & Sabri, H. (2008). Web Starts. (JMU)
Retrieved 2011 iiHJI 21-September from Homura Game Development IDE:
http://java.cms.livjm.ac.uk/homura/ downloads.php

Carter, C., Cooper, S., El Rhalibi, A., Merabti, M., & Price, M. (2010). The

Application of an MPEG-4 Compliant Animation to a Modem Games
Engine and Animation Framework. Lecture Notes in Computer Science
2010,6459/2010,PP·326-338.

Cavazza, M., Charles, F., &Mead, S. (2002 iiHJIMay). Planning Characters'
Behaviour in Interactive Storytelling. The Journal a/Visualization and
Computer Animation, 13(2), 121-131(11).

Cavazza, M., Charles, F., &Mead, S. J. (2001). Narrative Representations and

Causality in Character-Based Interactive Storytelling. CAST 2001 (pp. 139-
142). Teesside: University of Teesside, UK.

237

http://masseffect.bioware.com/
http://www.cs.cmu.edu/
http://java.cms.livjm.ac.uk/homura/

Cavazza,M., Charles, F., &Mead, S. J. (2002). Sex, Lies, and Video Games: an
Interactive Storytelling Prototype. Middlesbrough: University of Teesside
CMS.

Cavazza,M., Pizzi, D., Charles, F., Vogt, T., &Andre, E. (2009). Emotional Input
for Character-based Interactive Storytelling. The Eighth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), (pp.
313-320). Budapest, Hungary.

Champagnat, R., Estraillier, P., & Prigent, A. (2006). Adaptative execution of
game: unfolding a correct story. Proceedings of the 2006 ACM SIGCHI
international Conference on Advances in Computer Entertainment
Technology (Hollywood, California, June 14 -16, 2006). 266. NewYork:
ACM.

Christopher. (2010, March 18). Writing a Screenplay with the Syd Field 3-Act
Paradigm. Retrieved September 21, 2011, from scriptxray.com:
http://www.scriptxray.com/writing-a-screenplay-with-the-syd-field-3-act-
paradigm/

Ciarlini, A., Pozzer, C., Furtado, A., & Feij6, B. (2005). A logic-based tool for
interactive generation and dramatization of stories. Valencia, Spain: ACM.

Compton, J. (2010). Character Point of View and CRPGS. (Planewalker Games
LLC)Retrieved September 21, 2011, from Planewalker Games:
http://www.planewaIkergames.com/broken-hourglass/ developer-articIes-
matnmenu-sz/ros-pov

Cooper, S., El Rhailbi, A., Merabti, M., & Price, M. (2010). DISE: The Digital
Interactive Storytelling Engine. Edutainment 2010. Changchun, China.

Cooper, S., El Rhalibi, A., &Merabti, M. (2011). DISE: AGame Technology-based
Interactive Storytelling Framework. The 12th Annual Post Graduate
Symposium on the Convergence of Telecommunications, Networking and
Broadcasting (PGNET 2011). Liverpool.

http://www.planewaIkergames.com/broken-hourglass/

Cooper, S., El Rhalibi, A., Merabti, M., & Price, M. (2008). Dynamic Interactive
Storytelling for Computer Games Using AI Techniques. 6th International
Conference in Computer Game Design and Technology (GDTW).
Liverpool: LJMU.

Cooper, S., El Rhalibi, A., Merabti, M., & Price, M. (2010). DISE: The Digital
Interactive Storytelling Engine. The utnAnnual Post Graduate Symposium
on the Convergence of Telecommunications, Networking and
Braodcasting (PGNET 2010). Liverpool.

Cooper, S., El Rhalibi, A., Merabti, M., &Wetherall, J. (2010). Procedural Content
Generation and Level Design for Computer Games. AISB 2010. Leicester.

Costikyan, G. (2005). Constraining Interaction to Create Emergent Narrative.
Tampere: University of Tampere.

Crawford, C. (2004). Chris Crawford on Interactive Storytelling. Berkeley: New
Riders.

Crawford, C. (2004). Personality Modelling for Interactive Storytelling.IE2004
Australian Workshop on Interactive Entertainment. Sydney: University of
Technology Sydney.

Crawford, C., &Mixon, L. J. (2008). Storytron Interactive Storytelling.
(Storytron, Inc) Retrieved September 21, 2011, from
http://www.storytron.com/: http://www.storytron.com/

De Sevin, E., & Thalmann, D. (2005)· AMotivational Model of Action Selection for
Virtual Humans. Computer Graphics International (CGI) (pp. 213-220).
New York: IEEE Computer Society Press.

Dena, C., Douglass, J., &Marino, M. (2005). Benchmark Fiction: A Framework for
Comparative New Media Studies. Digital Arts and Culture Coriference, (pp.
89-98). Bergen, Norway.

239

http://www.storytron.com/:
http://www.storytron.com/

Dennett, Co,El Rhalibi, A, Fergus, Po,Merabti, Mo,Cooper, So,Sabri, M.A, et al.
(2008). 3D Java Game Development with Homura. 6th International
Conference GD7W 2008. liverpool.

Dirks, T. (2010). Film Terms Glossary. Retrieved September 21,2011, from
http://www.filmsite.org/filmtermsI5.html

Donikian, S., &Portugal, J. (2004). Writing Interactive Fiction Scenarii with
DraMachina. Technologiesfor Interactive Digital Storytelling and
Entertainment, Lecture Notes in Computer Science, 3105, 101-112.

Duarte, R., El Rhalibi, A,Merabti, M., Carter, C., &Cooper, So(2011).An MPEG-4
Compliant Quadric-Based Surface Adaptative LOD. The 12th Annual Post
Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting (PGNET 2011). liverpool, UK.

ecirweb. (2006, Apri126). The FearNot! demonstrator. Retrieved January 22,
2011, from ecircus:
http://www.macs.hw.ac.uk/EcircusWeb/index.php?module=pagemaster&P
AGE_user_op=view_page&PAGE_id=13&MMN_position=37:37

El Rhalibi, A., Baker, N., &Merabti, M. (2005). Emotional agent model and
architecture for NPCs group control and interaction to facilitate leadership
roles in computer entertainment. Advances in Computer Entertainment
Technology, (pp. 156-163).

El Rhalibi, A., Dennett, C.,Merabti, Mo,Fergus, P., Cooper, S., AriffSabri, M., et al.
(2008). Homura: A Step Further Toward 3D Java Game Development
Support. AGM ACE 2008.

El Rhalibi, A., Dennett, C.,Merabti, M., Fergus, P., Cooper, S., Ariff Sabri, M., et al.
(2009)· 3D Java Web-Based Games Development and Deployment. IEEE
International Conference on Multimedia Computing and Systems 2009,
Volume: 2, Issue: 3-4, pp. 553 - 559. Ouarzazate, Morocco.

240

http://www.filmsite.org/filmtermsI5.html
http://www.macs.hw.ac.uk/EcircusWeb/index.php?module=pagemaster&P

El Rhalibi, A., Merabti, M., Carter, C., Dennett, C., Cooper, S., Sabri, M. A., et al.
(2009). 3D Java Web-Based Games Development and Deployment.
International Journal on lriformation and Communication Technologies,
202.

El Rhalibi, A., Merabti, M., Price, M., & Cooper, S. (2008). Homura Platform:
Integrated Spatial Editor and IDE for Games Development. HCI2oo8.

Elrod, C. (2007). Games and Storytelling -A Working Definition of Storytelling
That Encompasses New Media. Retrieved February 10, 2009, from PJ's
Attic: http://www.pjsattic.com/?dl=l

Fairclough, C. (2004). Story Mechanics as Game Mechanics: Applying Story
Analysis Techniques to Game Artificial Intelligence. Retrieved September
21, 2011, from ercim.org:
http://www.ercim.org/publication/Ercim_News/ enw57/fairclough.html

Fairclough, C.,& Cunningham, P. (2003). AMultiplayer Case Based Story Engine.
Dublin, Ireland.: Trinity CollegeDublin, Department of Computer Science.

Field, s. (1979). Screenplay. Delacorte Press.

Firth, R. (2010). Cloak of Darkness. Retrieved September 21,2011, from Roger
Firth's IF pages: http://www.firthworks.com/roger/cloak/

Forchheimer, R., Pandzic, I., & Pakstas, A. (2002). MPEG-4 Facial Animation:
The Standard, Implementation and Applications. NewYork, USA:Wiley
and Sons Inc.

Fox, M., & Long, D. (2003). PDDL2.1:An Extension to PDDL for Expressing
Temporal Planning Domains. Journal of Artificial Intelligence Research,
20,61-124·

Freytag, G. (1900). Freytag's Technique of the drama: an exposition of dramatic
composition and art (6th ed.), (E. J. MacEwan, Trans.) Chicago: Scott,
Foresman.

241

http://www.pjsattic.com/?dl=l
http://www.ercim.org/publication/Ercim_News/
http://www.firthworks.com/roger/cloak/

Genette, G. (1983). Narrative Discourse: An Essay inMethod (Reprint ed.). (J. E.
Lewin, Trans.) Cornell University Press.

Glass, K. (n.d.). Path Finding on Tile based Maps. (K. Glass, Editor) Retrieved
September 21, 2011, from Coke& Code:
http://www.cokeandcode.com/index.htm1?page=tutorials/tilemap2

Haslum, P. (2003). Writing Planning Domains and Problems in PDDL.
(Australian National University) Retrieved September 21, 2011, from
Australian National University:
http://users.cecs.anu.edu.au/ -patrik/pddlman/writing.html

Huber, M. J. (2001).Intelligent Reasoning Systems. (Executive Media Online)
Retrieved September 21, 2011, from
http://www.marcush.net/IRS/irs_downloads.html

IGDA. (2001). Foundations of Interactive Storytelling. Retrieved September 21,
2011, from IGDA.org:
http://archives.igda.org/writing/lnteractiveStorytelling.htm

Jimenez, S. (2010, November 10). Competition Rules. Retrieved June 25, 2011,
from IPC Conference 2011:http://ipc.icaps-conference.org/

Kautz, H. A.,& Selman, B. (2006). Satplan. Retrieved March 6,2011, from
http://www.cs.rochester.edu/-kautz/satplan/index.htm

Kearney, R. (2002). On Stories (ist ed.). London: Routledge.

Knight, T. (2002, March). Architectural Design Workshops: Computational
Design for Housing. Retrieved September 21, 2011, from MIT Open
Courseware: http://ocw.mit.edu/ courses/ architecture/ 4-184-architectural-
design-workshops-computational-design-for-housing-spring_2002/1ecture-
notes/

http://www.cokeandcode.com/index.htm1?page=tutorials/tilemap2
http://users.cecs.anu.edu.au/
http://www.marcush.net/IRS/irs_downloads.html
http://archives.igda.org/writing/lnteractiveStorytelling.htm
http://ipc.icaps-conference.org/
http://www.cs.rochester.edu/-kautz/satplan/index.htm
http://ocw.mit.edu/

Lester, P. (2005, July 18). A *Pathfinding for Beginners. Retrieved September 21,
2011, from gamedev.net:

http://archive.gamedev.net/archive/reference/programmingjfeatures/asta

r/index.html

Lintfordpickle. (2009, August 23). Procedural Road Generation. Retrieved
September 21, 2011, from Britonia Game Blog:

http://britonia.wordpress.com/2009/08/23/procedural-road-generation/

Liu, D. (2004 HHJIto-March). Heuristic Search Planners. (Artform of University
of Huddersfield) Retrieved 2011 itHJI ai-September from University of
Huddersfield: http://scom.hud.ac.uk/planet/repositOIY /heuristic.html

Louchart, S., Aylett, R., Dias, J., & Paiva, A. (2006). Unscripted Narrative for
affectively driven characters. IEEE Journal of Graphics and Animation,
26(3), 42-52.

Lozano, M., Mead, S., Cavazza, M., & Charles, F. (2002). Search-based Planning
for Character Animation. ADCOG 2002, (pp. 41-43). Hong Kong, China.

Lucas Online. (2009). The Secret of Monkey Island: Special Edition. (Lucas
Online) Retrieved September 21, 2011, from LucasArts.com:

http://www.1ucasarts.com/games/monkeyisland/

Lugrin, J., & Cavazza, M. (2006). AI-Based World Behavior for Emergent

Narratives. Proceedings of the ACM Advances in Computer Entertainment
Technology. Los Angeles, USA.

Maher, J. (2006). Let's Tell a Story Together. Retrieved September 21,2011, from
http://maher .fi1fre.netjif-book/index.html

MalIan, K. (2003)· Performing Bodies: Narrative, Representation, and Childrens
Storytelling. Flaxton, Qld.

243

http://archive.gamedev.net/archive/reference/programmingjfeatures/asta
http://britonia.wordpress.com/2009/08/23/procedural-road-generation/
http://scom.hud.ac.uk/planet/repositOIY
http://www.1ucasarts.com/games/monkeyisland/

Mateas, M., & Stem, A. (2003). Facade: An Experiment in Building a Fully-
Realized Interactive Drama. Game Developers Conference (GDC'03).
Atlanta: Literature, Communication and Culture and College of Computing,
Georgia Tech.

Merrill, D., & Kalanithi, J. (2008). Research and Coursework - Sifteos. (MIT)
Retrieved September 21, 2011, from MIT Media Lab:
https://www.sifteo.com/

Murray, J. (2004). First Person - From Game Story to Cyber Drama. (N.
Wardrip-Fruin, & P. Harrigan, Eds.) Retrieved September 21, 2011, from
http://www.electronicbookreview.com/thread/firstperson/autodramatic

Nelmes, J. (Ed.), (2003). An Introduction to Film Studies (grd Revised ed.).

London: Routledge.

Newell, G. (2008, December 24). Gabe Newell Writesfor Edge. (Future
Publishing) Retrieved September 21, 2011, from edge-online.com:
http://www.next-gen.biz/opinion/ gabe-newell-writes-edge

Noyle, J. (2006). Techniques of Written Storytelling Applied to Game Design.
Retrieved September 21, 2011, from Gamasutra.com:
http://www.gamasutra.com/features/20060426/noyle_01.shtml

Ong, T., & Leggett, J. (2004). A Genetic Algorithm Approach to Interactive
Narrative Generation. HYPERTEXT '04Proceedings of the fifteenth ACM
conference on Hypertext and hypermedia (pp. 181-182). New York, NY,
USA:ACM.

OpenTTD Contribs. (2011, March 8th). AI Road Pathfinder. Retrieved September
21, 2011, from Open TTDWiki: http://wiki.openttd.orgJ AI:RoadPathfinder

ORIAS. (2000). Monomyth Website. (University of California, Berkeley) Retrieved
September 21, 2011, from The Office of Resources for International and
Area Studies: http://orias.berkeley.edu/hero/

244

http://https://www.sifteo.com/
http://www.electronicbookreview.com/thread/firstperson/autodramatic
http://www.next-gen.biz/opinion/
http://www.gamasutra.com/features/20060426/noyle_01.shtml
http://wiki.openttd.orgJ
http://orias.berkeley.edu/hero/

Orkin, J. (2006). Three States and a Plan: The AI. ofF.E.AR. Proceedings of the
Game Developer's Conference (GDC). San Jose.

Ortony, A (2003). On Making Believable Emotional Agents Believable. In R.
Trappl, P. Petta, & S. Payr (Ed.), Emotions in Humans andArtifacts (pp.

189-212). London, England: MIT Press.

O'Sullivan, T., Hartley, J., Saunders, D., Montgomery, M., & Fiske, J. (1994). Key
Concepts in Communication and Cultural Studies (Studies in Culture and
Communication) (and Revised ed.). London: Routledge.

Pakinkis, T. (2011, February 24). First-person viewpoint 'is most immersive' -
Levine. Retrieved April 20, 2011, from

http://www.computerandvideogames.com/290598/news/first-person-
viewpoint-is-most-immersive-Ievine/

Penguin Books Ltd. (2009). We Tell Stories. (Penguin Books Ltd) Retrieved
September 21,2011, from We Tell Stories: http://wetellstories.co.uk/

Perlin, K. (n.d.). A sheet of simplex noise. Retrieved 09 21, 2011, from Ken Perlin's
Homepage:
http://mrl.nyu.edu/perlin/homepage2006/simplex_noise/index.html

Pizzi, D., & Cavazza, M. (2007)· Affective Storytelling based on Characters'
Feelings. AAAI Fall Symposium on Intelligent Narrative Technologies.
Arlington, Virginia.

Powell, M. (n.d.). Class SharedMesh. Retrieved January 10, 2010, from JME Java

Docs:
http://www.jmonkeyengine.com/doc/ com/jme/scene/SharedMesh.html

Prigent, R., Champagnat, R., & Estraillier, P. (2005). Driving stories, benefits of
properties analysis.

Princeton University. (2011, February 3). WordNet -A Lexical Databasefor
English. (princeton University) Retrieved January 20, 2011, from Princeton
University: http://wordnet.princeton.edu/

245

http://wetellstories.co.uk/
http://mrl.nyu.edu/
http://www.jmonkeyengine.com/doc/
http://wordnet.princeton.edu/

Propp, v. (1977).Morphology of the Folktale. University of Texas Press.

Quantic Dream. (2011).Heavy Rain. Retrieved March 22, 2011, from
http://www.heavyrainps3.com/

Rank, S. (2004).ActAffAct. Retrieved February 10,2011, from OFAIAustrian
Research Institute for Artificial Intelligence:
http://www.ofai.at/research/ agents/projects/ actaffact.html

Rank, S. (2004).AffectiveActing: An Appraisal-based Architecturefor Agents as
Actors. Retrieved September 21, 2011, from ACTAFFACT:
http://www.ofai.at/stefan.rank/StefanRank-AAAThesis.pdf

Rank, S., & Petta, P. (2007). From ActAffActto BehBehBeh: Increasing Affective
Detail in a Story-World. (C.M., & D. S., Eds.) Virtual Storytelling: Fourth
International Conference (ICVS 2007), LNCS 4871, 206-209.

Rickett, J. (2009). New Lookfor the Short Story. (Guardian News and Media
Limited) Retrieved September 21, 2011, from WritingNews.org:
http://www.guardian.co.ukjbooks/2008/mar/24/news.uknews

Rohrer, J. (2010). Sleep is Death Shannon Galvin's Contributions. Retrieved
September 21, 2011, from Sleep is Death:
http://www.sleepisdeath.net/galvin.php

Rollings, A., &Adams, E. (2003)· On Game Design. New Riders Games.

Russell, S., &Norvig, P. (2003)· Artificial Intelligence A Modern Approach
(Second Edition ed.). Pearson Education.

Sgouros, N. M. (1999)· Dynamic Generation, Management and Resolution of
Interactive Plots. Artificial Intelligence, 107(1), 29-62.

Shen, Z., Miao, C., Tao, X., &Gay, R. (2005). Goal-oriented Modelling for
Intelligent Software Agents. Singapore: Nanyang Technological University.

http://www.heavyrainps3.com/
http://www.ofai.at/research/
http://www.ofai.at/
http://www.guardian.co.ukjbooks/2008/mar/24/news.uknews
http://www.sleepisdeath.net/galvin.php

Slack, J. (2009, November 02). Terrain Example. Retrieved March 10, 2011, from
Blogof Josh "Renanse" Slack: http://blog.renanse.com/2009/11/terrain-
example.htmI

Spector, W. (2007). Next-Gen Storytelling Part One: What Makes a Story?
Retrieved September 21, 2011, from escapistmagazine.com:
http://www.escapistmagazine.com/news/view/708S2-Next-Gen-
Storytelling-Part-One-What-Makes-a-Story

Stout Games. (2011).Dinner Date. Retrieved April 25, 2011, from
http://thestoutgames.com/ :DinnerDate

Szilas, N. (2008). Interactive Drama: The story is in your hands ... Retrieved
January 15,2011, from http://www.idtension.com/

Tanner, C. C.,Migdal, C. J., & Jones, M. T. (1998). The Clipmap: AVirtual
Mipmap. Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, (pp. 151-158).NewYork.

Thue, D., Bulitko, V., Spetch, M., &Wasylishen, E. (2007). Interactive Storytelling:
A Player Modelling Approach. The Third Artificial Intelligence for
Interactive Digital Entertainment Conference (AIIDE 07). Stanford, CA:
Stanford University.

Todorov, T. (1969). Grammaire du Decameron. Paris.

Tomaszewski, Z.,& Binsted, K. (2006). A Reconstructed Neo-Aristotelian Theory
of Interactive Drama. Workshop on Computational Aesthetics: Artificial
Intelligence Approaches to Beauty and Happiness, National Conference on
Artificial Intelligence (AAAI).

To§it, S., Radovanovit, M., & Ivanovic, M. (2008). APP: Agent Planning Package.
Advances in Intelligent and Distributed Computing - Studies in
Computational Intelligence, 78, 217-226.

Tozour, P. (2008). Fixing Patlifinding Once and For All. Retrieved March 18, 2011,
from Game/AI: http://www.ai-blog.netjarchives/000152.html

247

http://thestoutgames.com/
http://www.idtension.com/
http://www.ai-blog.netjarchives/000152.html

Tychsen, A., Hitchens, M., Brolund, T., & Kavaldi, M. (2005). The Game Master.
Sydney, Australia: Creativity & Cognition Studios Press.

Wee, N., & Seifert, L. (2001). Vladimir Propp's Theories, 1.0. (Brown University)
Retrieved September 21, 2011,from PROPPIAN FAIRYTALE
GENERATOR:
http://www.brown.edu/Courses/FR0133/Fairytale_Generator/propp.html

West, M. (2008, August 6). Random Scattering Creating Realistic Landscapes.
Retrieved September 21, 2011, from Gamasutra:
http://www.gamasutra.com/view /feature/1648/random_scattering_creati
ng_.php

Wheeler, L. K. (2004). Freytag's Pyramid. Retrieved September 21, 2011, from
http://web.cn.edufkwheeler /freytag.html

Young, S. (2009, April 14).Procedural city, Part 2: Building Textures. Retrieved
September 21, 2011,from Twenty Sided:
http://www.shamusyoung.com/twentysidedtale/?p=2954

248

http://www.brown.edu/Courses/FR0133/Fairytale_Generator/propp.html
http://www.gamasutra.com/view
http://web.cn.edufkwheeler
http://www.shamusyoung.com/twentysidedtale/?p=2954

APPENDIX

APPENDIX1- Test 1 Console Output
This is the output from the DISE console when the Cloak of Darkness test one was

executed (see section 6.1.2). The output shows the initial facts along with the character's
decision making process composed of goals, actions and the execution times for each turn.

18-Jul-20l1 15:36:09 ac.ljmu.dise.engine.DISEExampleBase init
INFO: Display Vendor: NVIDIA Corporation
18-Jul-20l1 15:36:09 ac.ljmu.dise.engine.DISEExampleBase init
INFO: Display Renderer: GeForce 8500 GT/PCI/SSE2
18-Jul-2011 15:36:09 ac.ljmu.dise.engine.DISEExampleBase init
INFO: Display Version: 3.2.0
18-Jul-20l1 15:36:09 ac.ljmu.dise.engine.DISEExampleBase init
INFO: Shading Language Version: 1.50 NVIDIA via Cg compiler
18-Jul-2011 15:36:10 ac.ljmu.dise.engine.BMFontLoader <init>
INFO: defaultFont = DejaVu Sans Condensed-20-bold-regular
fact 0: (accessible eO e1)
fact 1: (accessible e1 eO)
fact 2: (accessible e1 e2)
fact 3: (access ib1e e2 e1)
fact 4: (accessible bO b1)
fact 5: (accessible bO b2)
fact 6: (accessible bO b3)
fact 7: (accessible bO b4)
fact 8: (accessible bO b5)
fact 9: (accessible bO b6)
fact 10: (accessible b1 bO)
fact 11: (accessible b2 bO)
fact 12: (accessible b3 bO)
fact 13: (accessible b4 bO)
fact 14: (accessible b5 bO)
fact 15: (accessible b6 bO)
fact 16: (accessible b1 b2)
fact 17: (accessible b2 b1)
fact 18: (accessible b3 b4)
fact 19: (accessible b4 b3)
fact 20: (accessible b4 b5)
fact 21: (accessible b5 b4)
fact 22: (accessible b5 b6)
fact 23: (accessible b6 b5)
fact 24: (accessible b4 b7)
fact 25: (accessible b7 b4)
fact 26: (accessible b3 b8)
fact 27: (accessible b8 b3)
fact 28: (accessible fO f1)
fact 29: (accessible fl fO)
fact 30: (accessible fl f2)
fact 31: (accessible f2 f1)
fact 32: (accessible f2 f3)
fact 33: (accessible f3 f2)
fact 34: (accessible f2 f4)
fact 35: (accessible f4 f2)
fact 36: (accessible f2 f5)
fact 37: (accessible f5 f2)
fact 38: (accessible f3 f4)
fact 39: (accessible f4 f3)

249

fact 40: (accessible f3 f6)
fact 41: (accessible f6 f3)
fact 42: (accessible f6 f7)
fact 43: (accessible f7 f6)
fact 44: (accessible cO cl)
fact 45: (accessible cl cO)
fact 46: (accessible cl c2)
fact 47: (accessible c2 cl)
fact 48: (accessible fl bO)
fact 49: (accessible bO fl)
fact 50: (accessible el fl)
fact 51: (accessible fl el)
fact 52: (accessible cl fO)
fact 53: (accessible fO cl)
fact 54: (at npcl eO)
fact 55: (at npc2 cl)
fact 56: (at npc3 ell
fact 57: (at hook cO)
fact 58: (at message b6)
fact 59: (wearing npcl cloak)
fact 60: (iswearable cloak)
fact 61: (ishangable hook)
fact 62: (isreadable message)
fact 63: (islit fO)
fact 64: (islit fl)
fact 65: (islit f2)
fact 66: (islit f3)
fact 67: (islit f4)
fact 68: (islit f5)
fact 69: (islit f6)
fact 70: (islit f7)
fact 71: (islit cO)
fact 72: (islit cl)
fact 73: (islit c2)
fact 74: (islit eO)
fact 75: (islit el)
fact 76: (islit e2)
fact 77: (islit bO)
fact 78: (islit bl)
fact 79: (islit b2)
fact 80: (islit b3)
fact 81: (islit b4)
fact 82: (islit b5)
fact 83: (islit b6)
fact 84: (islit b7)
fact 85: (islit b8)
fact 86: (= (steps-used npcl) 0)
fact 87: (= (steps-used npc2) 0)
fact 88: (= (steps-used npc3) 0)
fact 89: (= (AngerFear npcl) 0)
fact 90: (= (AngerFear npc2) 0)
fact 91: (= (AngerFear npc3) 0)
object 91: eO el e2 - location
object 91: cO cl c2 - location
object 91: bO bl b2 b3 b4 b5 b6 b7 b8 - location
object 91: fO fl f2 f3 f4 f5 f6 f7 - location
object 91: npcl - character
object 91: npc2 - character
object 91: npc3 - character
object 91: bob - character
object 91: cloak - item
object 91: hook - dynamic
object 91: message - dynamic
object 91: there-is-cloak - information
18-Jul-2011 15:36:12

com.ardor3d.extension.model.collada.jdom.ColladaAnimUtils buildAnimations
WARNING: No element-joint mapping found for element: <node id="IK ChainOl"

name="IK_ChainOl"></node>

Check if element is of type JOINT.
l8-Jul-20ll 15:36:12

250

com.ardor3d.extension.model.collada.jdom.ColladaAnimUtiIs buildAnimations
WARNING: No element-joint mapping found for element: <node id="IK Chain02"

name="IK Chain02"></node>

Check if element is of type JOINT.
l8-Jul-20ll 15:36:12

com.ardor3d.extension.model.collada.jdom.ColladaAnimUtils buildAnimations
WARNING: No element-joint mapping found for element: <node id="IK Chain04"

name="IK Chain04"></node>

Check if element is of type JOINT.
l8-Jul-20ll 15:36:12

com.ardor3d.extension.model.collada.jdom.ColladaAnimUtils buildAnimations
WARNING: No element-joint mapping found for element: <node id="IK Chain03"

name="IK Chain03"></node>

Check if element is of type JOINT.
Importing: URLResourceSource

[url=file:/C:/Workspaces/Homura2lGamingWorkspace/CharacterEngineTest/bin/ac/ljmu/
dise/media/models/collada%2Fanimegirl%2Fanimegirl.dae, type=.daeJ

Took 1394 ms
WARNING: Found unknown Windows version: Windows 7
Attempting to use default windows plug-in.
Loading: net.java.games.input.DirectAndRawInputEnvironmentPlugin

Scene Trigger Test:

testing precondition: (haveread npcl message)
...not found - false

testing precondition: (haveitem npcl cloak)
...not found - false

["npcl" turn OJ
find plan for npcl: goal = (haveread npcl message)
New 'problem.pddl' file Data Saved!
C:\Users\cmpscoop\AppData\Local\Temp\problem1494506865l86804637.pddl
C:/Workspaces/Homura2lGamingWorkspace/CharacterEngineTest/bin/ac/ljmu/dise/m

edia/planners/MetricFF/ff -0
C:/Workspaces/Homura2lGamingWorkspace/CharacterEngineTest/bin/ac/ljmu/dise/media/
planners/MetricFF/domain.pddl -f
C:/Users/cmpscoop/AppData/Local/Temp/problem1494506865186804637.pddl

Planner Output:
0: GOTO NPCI EO El
1: GOTO NPCI El FI
2: GOTO NPCl FI Ba
3: TAKE-OFF NPCI CLOAK
4: GOTO NPCl Ba FI
5: GOTO NPCl Fl Fa
6: GOTO NPCl Fa Cl
7: GOTO NPCI Cl CO
8: HANG-UP NPCl CLOAK HOOK CO
9: GOTO NPCI CO Cl
la: GOTO NPCI Cl Fa
11: GOTO NPCI Fa Fl
12: GOTO NPCl Fl Ba
13: GOTO NPCI Ba B6
14: READ NPCI MESSAGE B6
found plan for (haveread npcl message): true

Clear Action Lists!
added action: GOTO NPCl EO El to plan list.
added action: GOTO NPCl El FI to plan list.
added action: GOTO NPCl Fl Ba to plan list.

TAKE-OFF NPCl CLOAK to plan list.
GOTO NPCl Ba Fl to plan list.
GOTO NPCl Fl Fa to plan list.
GOTO NPCI Fa Cl to plan list.
GOTO NPCl cl CO to plan list.
HANG-UP NPCl CLOAK HOOK CO to plan list.
GOTO NPCl CO Cl to plan list.
GOTO NPCl Cl Fa to plan list.

added action:
added action:
added action:
added action:
added action:
added action:
added action:
added action:

251

GOTO NPCl FO Fl to plan list.
GOTO NPCl Fl BO to plan list.
GOTO NPCl BO B6 to plan list.
READ NPC1 MESSAGE B6 to plan list.

moved action: GOTO NPC1 EO El to exe list.
current action: GOTO NPC1 EO El

added fact (at npcl ell
removed fact (at npc1 eO)
updated fact (= (steps-used npc1) 1) old value=O + increase=l

WHEN 0: (wearing npcl cloak)
...found - true

THEN 0: (not (islit e1))
removed fact (islit ell
THEN 1: (islit eO)
added fact (islit eO)

WHEN 0: (haveitem npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit e1)) (islit eO)

npcl performs GOTO NPCl EO El
completed action: GOTO NPCl EO El
(so removed from exe list)

End Turn!
This turn took 47935731 nano seconds!

added action:
added action:
added action:
added action:

Scene Trigger Test:
testing precondition: (haveread npcl message)
...not found - false

testing precondition: (haveitem npcl cloak)
·..not found - false

["npcl" turn 1)
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl El Fl to exe list.
testing precondition: (currentcharacter npc1)
...found - true
testing precondition: (at npc1 ell
·..found - true
testing precondition: (accessible e1 fl)

·..found - true
[all action preconditions true!]

added fact (at npcl fl)
removed fact (at npcl ell
updated fact (= (steps-used npcl) 2) old value=l + increase=l

WHEN 0: (wearing npc1 cloak)
...found - true

THEN 0: (not (islit fl))
removed fact (islit fl)
THEN 1: (islit ell
added fact (islit ell

WHEN 0: (haveitem npc1 cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit fl)) (islit ell

npc1 performs GOTO NPC1 El F1
current action: GOTO NPCl El Fl
completed action: GOTO NPC1 El Fl
(so removed from exe list)

End Turn!
This turn took 1618741 nano seconds!

Scene Trigger Test:

testing precondition: (haveread npc1 message)
...not found - false

testing precondition: (haveitem npcl cloak)
...not found - false

["npcl" turn 2]
current goal = top goal in list!

252

action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl F1 BO to exe list.

testing precondition: (currentcharacter npcl)
...found - true
testing precondition: (at npc1 fl)

...found - true
testing precondition: (accessible fl bO)

...found - true
[all action preconditions true!]

added fact (at npcl bO)
removed fact (at npcl fl)
updated fact (= (steps-used npcl) 3) old value=2 + increase=l

WHEN 0: (wearing npcl cloak)
...found - true

THEN 0: (not (islit bOll
removed fact (islit bO)
THEN 1: (islit f1)
added fact (islit fl)

WHEN 0: (haveitem npc1 cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit b O) (islit f1)

npcl performs GOTO NPC1 Fl BO
current action: GOTO NPC1 F1 BO
completed action: GOTO NPC1 F1 BO
(so removed from exe list)

End Turn!
This turn took 1424063 nano seconds!

Scene Trigger Test:

testing precondition: (haveread npcl message)
...not found - false

testing precondition: (haveitem npcl cloak)
...not found - false

["npcl" turn 3)
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: TAKE-OFF NPCl CLOAK to exe list.

testing precondition: (currentcharacter npcl)
...found - true
testing precondition: (wearing npcl cloak)
...found - true
[all action preconditions true!]

added fact (haveitem npcl cloak)
removed fact (wearing npcl cloak)
npc1 performs TAKE-OFF NPCl CLOAK

current action: TAKE-OFF NPCl CLOAK
completed action: TAKE-OFF NPCl CLOAK
(so removed from exe list)

End Turn!
This turn took 428377 nano seconds!

Scene Trigger Test:

testing precondition: (haveread npcl message)
...not found - false

testing precondition: (haveitem npcl cloak)
...found - true

TRIGGERED NEXT SCENE: act3
running scene story mods ..
this scene has no story mods

253

["npcl" turn 4J
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl BO Fl to exe list.

testing precondition: (currentcharacter npcl)
·..found - true
testing precondition: (at npcl bO)

·..found - true
testing precondition: (accessible bO fl)

·..found - true
[all action preconditions true!)

added fact (at npcl fl)
removed fact (at npcl bO)
updated fact (= (steps-used npcl) 4) old value=3 + increase=l

WHEN 0: (wearing npcl cloak)
·..not found - false
'when' is false, so not added fact/s: (not (islit f L) (islit bO)
WHEN 0: (haveitem npcl cloak)
·..found - true

THEN 0: (not (islit fl»
removed fact (islit fl)
THEN 1: (islit bO)
added fact (islit bO)
npcl performs GOTO NPCl BO Fl

current action: GOTO NPCl BO Fl
completed action: GOTO NPC1 BO Fl
(so removed from exe list)

End Turn!
This turn took 1169352 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 5J
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl F1 FO to exe list.

testing precondition: (currentcharacter npc1)
·..found - true
testing precondition: (at npc1 fl)

·..found - true
testing precondition: (accessible f1 fO)

·..found - true
[all action preconditions true!)

added fact (at npc1 fO)
removed fact (at npcl fl)

updated fact (= (steps-used npcl) 5) old value=4 + increase=l
WHEN 0: (wearing npcl cloak)
·..not found - false
'when I is false, so not added fact/s: (not (islit f O) (islit fl)
WHEN 0: (haveitem npc1 cloak)
·..found - true

THEN 0: (not (islit fO»
removed fact (islit fO)
THEN 1: (islit fl)
added fact (islit fl)
npc1 performs GOTO NPCl F1 FO

current action: GOTO NPC1 F1 FO
completed action: GOTO NPC1 F1 FO
(so removed from exe list)

End Turn!
This turn took 1220381 nano seconds!

Scene Trigger Test:
this scene has no story triggers

254

[nnpcln turn 6)
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl Fa Cl to exe list.

testing precondition: (currentcharacter npcl)
...found - true
testing precondition: (at npcl fa)
...found - true
testing precondition: (accessible fa cl)
...found - true
[all action preconditions true!J

added fact (at npcl cl)
removed fact (at npcl fO)
updated fact (= (steps-used npcl) 6) old value=5 + increase=l

WHEN 0: (wearing npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit cl)) (islit fO)
WHEN 0: (haveitem npcl cloak)
...found - true

THEN 0: (not (islit cl))
removed fact (islit cl)
THEN 1: (islit fa)
added fact (islit fa)
npcl performs GOTO NPCl Fa Cl

current action: GOTO NPCl Fa Cl
completed action: GOTO NPCl Fa Cl
(so removed from exe list)

End Turn!
This turn took 1069870 nano seconds!

Scene Trigger Test:
this scene has no story triggers

[nnpcln turn 7J
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl Cl CO to exe list.

testing precondition: (currentcharacter npcl)
·..found - true
testing precondition: (at npcl cl)
·..found - true
testing precondition: (accessible cl ca)
·..found - true
[all action preconditions true!]

added fact (at npcl ca)
removed fact (at npcl cl)
updated fact (= (steps-used npcl) 7) old value=6 + increase=l

WHEN 0: (wearing npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit cOj) (islit cl)
WHEN 0: (haveitem npcl cloak)
...found - true

THEN 0: (not (islit cO))
removed fact (islit ca)
THEN 1: (islit cl)
added fact (islit cl)
npcl performs GOTO NPCI Cl CO

current action: GOTO NPCl Cl CO
completed action: GOTO NPCl Cl CO
(so removed from exe list)

End Turn!
This turn took 1240963 nano seconds!

Scene Trigger Test:

255

this scene has no story triggers

["npcl" turn 8]
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: HANG-UP NPCl CLOAK HOOK CO to exe list.

testing precondition: (currentcharacter npcl)
·..found - true
testing precondition: (haveitem npcl cloak)

·..found - true
testing precondition: (at npcl ca)

·..found - true
testing precondition: (at hook cO)

'" found - true
testing precondition: (ishangable hook)

·..found - true
[all action preconditions true!]

added fact (on hook cloak)
removed fact (haveitem npcl cloak)
npcl performs HANG-UP NPCl CLOAK HOOK CO

current action: HANG-UP NPCl CLOAK HOOK CO
completed action: HANG-UP NPCl CLOAK HOOK CO
(so removed from exe list)

End Turn!
This turn took 636348 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 9]
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl CO Cl to exe list.

testing precondition: (currentcharacter npcl)
...found - true
testing precondition: (at npcl cO)

...found - true
testing precondition: (accessible ca cl)

...found - true
[all action preconditions true!]

added fact (at npcl cl)
removed fact (at npcl ca)
updated fact (= (steps-used npcl) 8) old value=7 + increase=l

vmEN 0: (wearing npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit cl)) (islit cO)
WHEN 0: (haveitem npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit cl)) (islit cO)

npcl performs GOTO NPCl CO Cl
current action: GOTO NPCl CO Cl
completed action: GOTO NPCl CO Cl
(so removed from exe list)

End Turn!
This turn took 1093882 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 10]
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl Cl Fa to exe list.

256

testing precondition: (current character npcl)
...found - true
testing precondition: (at npcl cl)

...found - true
testing precondition: (accessible cl fO)

...found - true
[all action preconditions true!J

added fact (at npcl fO)
removed fact (at npcl cl)
updated fact (= (steps-used npcl) 9) old value=8 + increase=l

WHEN 0: (wearing npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit f O) (islit cl)
NHEN 0: (haveitem npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit f O) (islit cl)

npc1 performs GOTO NPC1 Cl FO
current action: GOTO NPCl Cl FO
completed action: GOTO NPC1 Cl FO
(so removed from exe list)

End Turn!
This turn took 1067725 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npc1" turn 11J
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl FO F1 to exe list.

testing precondition: (currentcharacter npcl)
...found - true
testing precondition: (at npc1 fO)

...found - true
testing precondition: (accessible fO f1)

...found - true
[all action preconditions true!)

added fact (at npc1 f1)
removed fact (at npc1 fO)
updated fact (= (steps-used npcl) 10) old value=9 + increase=l

WHEN 0: (wearing npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit f l) (islit fO)
WHEN 0: (haveitem npcl cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit f l) (islit fO)

npc1 performs GOTO NPCl FO Fl
current action: GOTO NPCl FO Fl
completed action: GOTO NPC1 FO F1
(so removed from exe list)

End Turn!
This turn took 1045857 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npc1" turn 12J
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPCl F1 BO to exe list.

testing precondition: (currentcharacter npc1)
...found - true
testing precondition: (at npcl fl)

...found - true
testing precondition: (accessible f1 bO)

257

...found - true
[all action preconditions true!]

added fact (at npcl bO)
removed fact (at npc1 f1)
updated fact (= (steps-used npcl) 11) old value=lO + increase=l

WHEN 0: (wearing npcl cloak)
...not found - false
'when' is false, so not added fact/s: {not (islit b O) (islit fl)
WHEN 0: (haveitem npc1 cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit bO») (islit fl)

npcl performs GOTO NPCl Fl BD
current action: GOTO NPCl Fl BD
completed action: GOTO NPC1 F1 BD
(so removed from exe list)

End Turn!
This turn took 1114465 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npc1" turn 13]
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: GOTO NPC1 BO B6 to exe list.

testing precondition: (currentcharacter npcl)
...found - true
testing precondition: (at npc1 bO)

...found - true
testing precondition: (accessible bO b6)

...found - true
[all action preconditions true!]

added fact (at npc1 b6)
removed fact (at npc1 bO)
updated fact (= (steps-used npc1) 12) old value=ll + increase=l

WHEN 0: (wearing npc1 cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit b6» (islit bO)
WHEN 0: (haveitem npc1 cloak)
...not found - false
'when' is false, so not added fact/s: (not (islit b6») (islit bO)

npcl performs GOTO NPC1 BD B6
current action: GOTO NPC1 BD B6
completed action: GOTO NPC1 BD B6
(so removed from exe list)

End Turn!
This turn took 1067297 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npc1" turn 14]
current goal = top goal in list!
action exe list IS empty!
action plan list NOT empty!
moved action: READ NPC1 MESSAGE B6 to exe list.
testing precondition: (currentcharacter npcl)..,found - true
testing precondition: (at npcl b6)

...found - true
testing precondition: (at message b6)...found - true
testing precondition: (isreadable message)..,found - true
testing precondition: (islit b6)...found - true

258

[all action preconditions true!)

added fact (haveread npcl message)
npcl performs READ NPCl MESSAGE B6

current action: READ NPCl MESSAGE B6
completed action: READ NPCl MESSAGE B6
(so removed from exe list)

End Turn!
This turn took 498701 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 15)
current goal = top goal in list!
action exe list IS empty!
action plan list IS empty!

GOAL have read message COMPLETE!
End Turn!
This turn took 154370 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 16)
no more goals to complete - set wandering
npcl is WANDERING!
End Turn!
This turn took 92193 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 17)
no more goals to complete - set wandering
npcl is WANDERING!
End Turn!
This turn took 91765 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 18)
no more goals to complete - set wandering
npcl is WANDERING!
End Turn!
This turn took 80615 nano seconds!

Scene Trigger Test:
this scene has no story triggers

["npcl" turn 19)
no more goals to complete - set wandering
npcl is WANDERING!
End Turn!
This turn took 75470 nano seconds!

Save results

259

APPENDIX 2 - DISE Editor Tutorial

This section contains a tutorial to guide users through the creation process for new
stories. ADISE story can be created using the following steps:

1. Adding Predicate Definitions
2. Adding Action Definitions
3. Adding Objects
4. Adding Personality Variables
5. Defining Characters
6. Creating the World
7. Defining the Initial World State
8. Creating the Scene Structure

The first five of these can be used to create re-useable assets, such as predicate
definitions, actions, props, characters and locations. The initial state and scene structure
are used to choose which of these assets from the library are used, which state they start in
and how they change over time or reactively to the player.

1. Adding Predicate Definitions

Predicates are used to represent the state of all objects (nouns) in the story domain
and are the main components in the Fact Database along with the list of objects in the
story (which are used as the subject parameters for the predicates).

Example of the code produced for the 'at' and 'have item' predicates are given below:
(at ?who/what - (either character item dynamic static)

?where - location)
(haveitem ?who - character ?what - item)

New predicates like these can be created without writing code using the 'predicate
editor' window by typing a unique name into the large box and clicking the add button.
They can also be removed using their delete (X) button. Once created, they need to have
their parameters and parameter types set. This is achieved by clicking the corresponding
edit button and adding a row for each parameter. Parameters are automatically named x,
y, z, w, etc. to make things easier. The Author then just needs to put a tick against each
type that the parameter shares. Figure 1 below shows how the 'at' predicate in the
previous section was created. The first predicate (who/what) has types (either character
item dynamic static) and the second (where) can only be a location. When finished the
save button can be clicked to save and close the popup. Defining types limits what objects
can be set as the subject parameter of the predicates and also helps when defining actions,
goals and initial world state in the other editor panels by narrowing down the available
choices in the drop down menus. The DISE editor contains some example predicate

260

definitions, but it is up to the StoryAuthor to create any extra definitions that they require
for any new states. In this example for the 'Cloak of Darkness' story we created some extra
predicates, such as: 'wearing' and 'have read'. Wearing is the state of a character and the
wearable item which they are wearing. 'Have read' is the state of a character relating to
readable interactive object (dynamic environment or item).

Figure 1:Predicate Editor Panel

2. Adding Action Definitions

To create the full description of an action when playing a story the user needs to
form a sentence using a set grammar that humans can understand and that the computer
can interpret. To achieve this each action needs a verb to describe the action, immediately
followed by an agent to carry out the action. The next part of the sentence can vary
depending on the subject of the action and the objects needed to carry it out. This third
word will be a noun of type character, location, prop, or dynamic object. The next word is
an optional noun, only used by some actions that need to combine more objects that
interact with each other. Any other nouns can also be added after this, stretching the
length of the action sentence to a number of words. The last word is always the location
where the character needs to be to perform this action, which allows the characters to plan
their movement and path-find to the correct area.

The final action sentence format is then:

261

VERB,CHARACTER,NOUN, (OPTIONAL)NOUN, [...], LOCATION

Abasic action could consist of only three words:
take-off (?who - character ?what - item)
take-off (npc1, cloak)
Where npci is a computer controlled character and cloak is an item that is currently

worn by npci.

An example of a more complex action sentence that uses fivewords would be:
hang-up (?who - character ?what - item ?hangOnWhat - dynamic

?where - location)
hang-up (npc1, cloak, hook, cl)

Where npci is a computer controlled character, cloak is an item that can be hung up,
hook is an interactive (dynamic) prop which can have an item hanging on it and Cl is sub-

node 1of the cloakroom's navigation mesh.

Using the actions panel in the editor new verbs can be created fairly easily and
without knowing the exact PDDL code syntax. Figure 2 below shows the prototype action
editor and the popup windows used to create and edit actions with their parameters,
preconditions and effects. Similar to predicates there are some actions already listed in
DISE, but more can be added by the Story Author to meet the requirements of their story's
scenario. At this stage we are just defining the action verbs and if/when they are relevant,

along with their effects.

The actions are usually made up of three part :

• Parameters - Usually the 'Name' and 'Type' of an object, character, or
location that are used by the action.

• Preconditions - Requirements that need to be met (i.e. states of the world
that must equal true) to perform the action.

• Effects - Post conditions and modifications to the world's states after the

action is carried out.

The following code is produced from the information input in the diagram (Figure 2)

below:
(:action scare
:parameters (?x-character ?y-character ?z-location)
:precondition (and (at ?x ?z) (at ?y ?z) (not (= ?x ?y)))
:effect (and (decrease (AngerFear ?y) 1))

262

Figure 2:Action Editor Panel

To create this code first the action name is typed in the top text box and is then
added using the 'add action' button. Itwill be appended to the scrolling list of all actions
below and can be re-named by double-clicking its text label and changing the text. At first
the parameters, preconditions and effects will be empty so each one needs to be filled in
with the appropriate data by clicking the corresponding button to open a new window. The
parameters section needs a list of the variables concerned with the action and their types.
The 'add row' button adds a new variable which is automatically given a name (x, y, z, w,

etc.). The types can be selected using the dropdown box in the second column and selected
parameters can be removed completely with the delete row button. To edit the
preconditions the main drop down is used to choose an available predicate for the
particular precondition. Then pressing the add button will add the predicate to the list.
The editor will automatically filter and list any parameters that are useable in the new
predicate row. These can be changed to any parameter/type available to make the correct
precondition test. Clicking save will save and exit the precondition popup window. The
final effects can be added with the effects button, which opens up a similar window to the
preconditions. Here effect predicates and their parameters/types can be defined and saved
(Figure 2).

To create the actions the Story Author needs to think logically about the verbs
meaning and what things are involved with the action. Every object used in the action

needs to be listed as a parameter.

For every action that is carried out we want a set of reactive goals to be available
along with the PDDL effects state change rules, if deemed necessary for that action. To
provide this the effect section will also contain additional rules that describe how non-
player characters (NPC) should react to a player's actions and determine which goals they
will choose. The NPCswill be sequenced using the concept of roles. For each different role
there are four main elements to consider. A role can be anything that a story builder
defines in a verb/action and more roles and reactions could be added later if they are
needed. Some actions have a direct subject to them that can be easily defined; other roles
could be characters that passively observed the action and want to intervene.

Figure 3: Action Roles Edit Panel

Click the 'add role' button for the desired action. This role is designed to specify a
particular character or group of characters, change their personality model in reaction to
the event and then make them choose a response goal based on their personality. For each
role a name for that role is entered in a similar way to creating a new action e.g. 'Role -
receiver' (Figure 3 above). Next the role needs preconditions, entered in exactly the same
way as the action preconditions mentioned above. The next panel is to edit the personality
modifiers. These can be a simple change in a value or an if-then statement to test a value
then apple a modifier. The final part is another if-then statement similar to the
preconditions panel, but with the outcome adding a new goal to the character in the

current role. For an example of the code generated by the input panels consider the table

below:

Effect:

NPCRoles:

5. Rules to describe which character should react to the event and
which role they fit into.

6. The Modifiers that change the personality variables of the
character in the specific role, which reflects how they feel about
the current action and how it physically affected them.

7. Alist of Reaction Goals to choose from and act out.
8. A Choice Formula that allows the character to choose the most

suitable verb from the aforementioned list according to their
updated personality model.

Example:

Role:
• Receiver - Character
Modify:

• if Likes(Receiver, Item) then Likes (Receiver, Giver) + O.lf
* Amount Receiver_Likes_Item

React:
• if Likes(Receiver, Item) then Thank(Receiver, Giver)
• if Likes (Receiver, Item) And Likes (Receiver, Giver) > 0.8f

And In Relationship(Receiver, Giver) then Kiss(Receiver,_ ----
Giver)

• if !Likes(Receiver, Item) And ~Likes(Receiver, Giver} then
Give {Receiver, Giver, Item)

Role:
• Witness - Character
• Witness != Giver And Witness != Receiver And Witness See Give
Modify:

• perceived_Generosity(Witness, Giver) + O.lf * Item Value
• If Likes{Witness, Item) And Jealous Person(Witness) then

Jealousy(Witness, Receiver) + O.lf * Likes(Witness, ~)
• If Likes(Witness , Giver} And Jealous Person (Witness) then

Jealousy (Witness, Receiver) + O.lf * Likes(Witness, Gi;;;)
React:

• If Jealousy(Witness, Receiver»0.9f then
Snide_comment(Witness, Receiver)

265

3. Adding Objects

The object PDDLdefinition, physics type and model file can all be easily input using
this panel in the Story Editor. A new object can be created by typing its name into the top
box and hitting the add button. This will create a new row in the objects list, which can be
deleted or edited further. There are two drop down boxes allowing the story author to
choose the type of the object and the physics type and a file browser allows the easy
location and importing of Collada model files. Items can also be given an inventory block
size and shape by highlighting grid squares if this is required in the story. These objects
can then be positioned using the keyboard and mouse in the prop free drop editor to give
them a position location and their exact vector data.

Figure 4: Object Edit Panel

4. Adding Personality Variables

In DISE the personality model only limits story authors to the five categories: First-
order, Accordance, Second-order, Third-order and Mood variables. Within these fixed
categories any new variables can be added to the models master list by a story author
using the editor, as long as they have a unique identifier name. For example if the story
was in the detective genre, the author may want to add a variable for 'detection' in the
characters' first-order variables list. If an NPC has a high detection value they could be
programmed in the current scene to inform the player that they have noticed a clue to

266

progress the story.

The default variables are split into their five types as follows:

• First-order variables
Honest
virtuous
Powerful
Intelligent
Attractive

• Accordance variables
AccordHonesty
AccordVirtue
AccordPower
AccordIntelligence
AccordAttractive

• Second-order variables
PerHonest
Pervirtue
PerPowerful
Perlntelligent
PerAttractive

• Third-order variables
PerPerHonest
PerPerVirtue
PerPerPowerful
PerPerlntelligent
PerPerAttractive

• Moods (bi-polar +/-)
Passion/Disgust
Joy/Sadness
Anger/Fear

To add a new variable just scroll to the relevant category, name the new variable
with a unique name and click the 'add new' button. All the values will be locked between
zero and one, except for moods, which are between minus one and one. To remove an
unwanted variable just click on the 'x' delete button next to it.

5. Defining characters

The character editor enables the easy creation of new characters. It has data entry
user interfaces for:

• The character's initial personalities/moods to be set using individual sliders
for each value.

• The model skin to represent the character to be loaded using the file browser.

• The character's initial position/location (similar to the Object Editor Panel).

• The initial state, such as items to be carried by each character, using a panel
similar to the Init Editor Panel.

• The character's inventory contents and layout.
• The initial goals to be set for each character, using a panel similar to the Init

Editor Panel.
6. Creating theWorld

The world editor allows the story authors to build a 3d environment or stagel set for
their story to take place on. When a location is defined in the object editor panel clicking
on the load model button will allow one of the world editors to run. Depending on the type

environment required there are specific types of editor modes the Story Author can
choose:

• Block Mode (Figure 6) - this allows the user to build up their world from
textured blocks by left clicking the face of an existing block to create a new
cloned block in the 90 degree compass direction (N, E, S, W) of the selected
face. Using the right mouse button the block directly under the cursor can be
removed.

• Vertex Mode (Figure 6) - this is selected by clicking the centre mouse
button and allows the shape of the selected box face to be altered by moving
single or multiple vertices using the transform face tool (Figure 5: Right),
found on the HUD compass. Left clickingwill move vertex points towards the
camera and right clicking will move vertices away from the camera. A comer
point will move only the selected comer vertex; the edge mid-pints markers
will move both connecting corner vertices and the centre square will move all
four face vertices. The blocks vertices are saved by storing the value of each
point, along with its offset value (Figure 5: Left).

• In both block mode and vertex mode the texture coordinate values are also
altered to tile the texture to accommodate changes in shape and size.

Vertex Labels for Offset Vectors

E F
Transform Face Toot

o 0&.1 3

2&3

1 21&2

Figure 5=The Vertex Labels for Each Box and Transform Face Tool VI withVertex Numbers

268

Figure 6: DISEWorld Editor Vertex Mode

• Room Mode (Figure 7) - this editor allows the user to draw squares on the
floor plan grid by clicking and dragging with the left mouse button. The
editor will then automatically calculate the surrounding walls for the room.
The left mouse button adds rooms, or if clicked in an already existing room
will extend that room; whilst the right mouse button will subtract the
rectangular selection shape from any rooms on the grid. Pressing the space
bar allows door frames/archways to be placed on a wall tile with an empty
square either side, to create access points and join adjacent rooms and

corridors.

Figure 7: DISEWorld Editor Room Mode

7. Defining the Initial World State

The init editor panel displays a list of the initial state of the story world using

predicates. The predicates can be chosen from the ones created in the predicate editor
panel mentioned above. These can be deleted using their corresponding (x) buttons and
added by choosing a predicate from the dropdown menu and clicking 'add'. The new
predicate will then appear in the list and objects can be selected from the dropdown
menus for each parameter. The predicates subject parameters will only list objects of the
matching types, so no impossible facts can be added. For example 'have item' would only
have two dropdown menus (one for each of its two parameters), containing only
characters and items respectively.

8. Creating the Scene Structure

The Scene Editor is used to add a structure to the story using scenes linked together
by StoryTriggers. The scene itself contains data to change the current state of the story

world called a StoryMod.

To add a scene click the '+ new scene' button and move the new scene to the desired
location (Figure 8). Double-click the scene to edit its name. This also brings up more
options to edit the scene's contents or to add a new trigger.

+
- NewScene

,

~ " 'I~ .
';:. "Scene 1 :
" '

+Add Trigger

Figure 8: Creating a New Scene

If we add two more scenes and move them into position then select the first one
again, the add trigger button can be selected. Next the Story Author needs to click on
another scene to attach to the first one using the trigger connector. This will create a
flexible link between them with an alarm clock icon in the middle. The clock will have a
red 'X' over it at first to show that it is empty and can also be given a name in the same way
as the scene earlier. Also ifwe double click the clock another window will open. This is the
trigger manager panel (Figure 9)·

270

+
- NewScene

Figure 9: Story Editor and Scene Trigger Manager

Using the 'add new trigger panel' under the when heading multiple triggers can be

chained together. The 'X' icon next to a trigger allows it to be removed when clicked. Using

the 'Or When' heading allows multiple alternative triggers to be defined. These individual

triggers can also be named and edited. These triggers can be set using the drop down box

and text field input methods similar to the preconditions in the action editor panel but

relating to specific instances of an object (Figure 10).

Figure 10:Adding Triggers

The current list of story triggers contains the following types, but can also be

expanded if necessary:

• Time (exactly t, after t, before t)

If time == t
If time > t
If time < t

• Personality
If (Attribute Character) == value
If (Attribute Character) < value
If (Attribute Character) > value
e.g. (=(AngerFear bob)O)

• Event
If (Verb Character Noun ...)
e.g. (scare playerl bob)

(v, c, n...)

271

• Character and/or Object at/not at Location
If (at Character/Object Location) == t/f
e.g. (at bob bar)

• Object State (fact does/doesn't exist in database)
If predicate(param 1, param 2, param n) == t/f
e.g. (wearing player1 cloak)

Double clicking a scene again we can now edit the StoryMods which change the state
of the world when the scene runs, by clicking the 'Edit Scene' button. This shows another
popup panel which allows StoryMods to be created in a similar way to the StoryTriggers
using the menu interface. StoryMods are split into the following categories, depending on

their effect on the story:

• Advance the story
Progress time forwards, e.g. (increase (time-days) 1).

Display Message Text t, e.g. "you wake up a day later and

find out that your magic cloak has gone".

Add/remove props, e.g. remove: cloak.

Add/remove facts, e.g. add: (islit bO).

Add/remove characters, e.g. remove: npcl.

Add/remove character goals e.g. remove: (have-read npc1

message) .

Change character personality values, e.g, {decrease (AngerFear

npc1) 1).

Display a Charisma scene animation. E.g. animated character
dialogue explaining why the quest is important.

• Create conflict
Add/remove props, e.g. add things that hinder the player or remove
helpful items that need to be reclaimed.
Change characters personality & goals to create conflict (see Develop
a character below).

• Introduce a character
Character enter/leave story.

• Develop a character
Change personality variables, e.g. {decrease (AngerFear

?npc1) 1) or (perAttractive ?npcl - character ?npc2

- character).

Givecharacter a new goal, e.g. (have-read npc1 message).

272

Display a Charisma scene animation.

• Create suspense
Add/remove facts, e.g. add (islit bD) would tum on the light in

bar area zero.
Add/remove props.
DisplayMessage Text t.

• Giving out information
DisplayMessage Text t.
Display a Charisma scene animation.

• Creating an atmosphere
Add/remove facts, e.g. add (islit bD) would tum on the light in

bar area zero.
Add/remove props.
DisplayMessage Text t.

• Develop the story's theme
See advance the story above.

This base list allows some freedom to create a variety of stories for example: The
long lost heir to the throne enters the story and has the goal to reclaim the kingdom. While
the current evil ruler gains the new goal to kill the heir and has an increased value for

anger.

The last part of the scene's data is the verbs list. This is a list of every verb defined in
the action editor panel with a checkbox next to it. To allow an action to be used in the
current scene mark it with a tick. There is also a select/deselect all button. Each new scene
starts with the checked actions from the previous scene and can be modified from there to
add and remove possible actions. By restricting certain actions the Story Author can shape

the direction of the current scenes narrative.

Although a story requires a large amount of data for both logic and displaying
graphics, the editors make it easier for someone who can't code or use advanced 3D
Modelling packages to create something interesting and fun to play.

273

