2,646 research outputs found

    Lessons learnt from mining meter data of residential consumers

    Get PDF
    Tracking end-users' usage patterns can enable more accurate demand forecasting and the automation of demand response execution. Accordingly, more advanced applications, such as electricity market design, integration of distributed generation and theft detection can be developed. By employing data mining techniques on smart meter recordings, the suppliers can efficiently investigate the load patterns of consumers. This paper presents applications where data mining of energy usage can derive useful information. Higher demands, on one side, and the energy price increase on the other side, have caused serious issues with regards to electricity theft, especially among developing countries. This phenomenon leads to considerable operational losses within the electrical network. In order to identify illegal residential consumers, a new method of analysing and identifying electricity consumption patterns of consumers is proposed in this paper. Moreover, the importance of data mining for analysing the consumer's usage curves was investigated. This helps to determine the behaviour of end-users for demand response purposes and improve the reliability and security of the electricity network. Clustering load profiles for large scale energy datasets are discussed in detail

    Improving power theft detection using efficient clustering and ensemble classification

    Get PDF
    One of the main concerns of power generation systems around the world is power theft. This research proposes a framework that merges clustering and classification together in order to power theft detection. Due to the fact that most datasets do not have abnormal samples or are few, we have added abnormal samples to the original datasets using artificial attacks to create balance in the datasets and increase the correct detection rate. We improved the crow search algorithm (CSA) and used the weight feature of Crows to improve performance of clustering phase. Also, to create balance between diversification and intensification, we calculated the awareness probability parameter (AP) dynamically at iterations of the algorithm. To evaluate the performance, we used the cross validation technique have used the stacking technique in its training phase. The results of extensive experiments on three reference datasets showed high performance to detect power theft. The evaluation results showed that if the data is collected correctly and sufficiently, this framework can effectively detect power theft in any actual power grid. Also, for new attacks, if their patterns can be detected from the data, it is easily possible to implement these types of attacks

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Energy Theft Detection in Smart Grids with Genetic Algorithm-Based Feature Selection

    Get PDF
    As big data, its technologies, and application continue to advance, the Smart Grid (SG) has become one of the most successful pervasive and fixed computing platforms that efficiently uses a data-driven approach and employs efficient information and communication technology (ICT) and cloud computing. As a result of the complicated architecture of cloud computing, the distinctive working of advanced metering infrastructures (AMI), and the use of sensitive data, it has become challenging to make the SG secure. Faults of the SG are categorized into two main categories, Technical Losses (TLs) and Non-Technical Losses (NTLs). Hardware failure, communication issues, ohmic losses, and energy burnout during transmission and propagation of energy are TLs. NTL’s are human-induced errors for malicious purposes such as attacking sensitive data and electricity theft, along with tampering with AMI for bill reduction by fraudulent customers. This research proposes a data-driven methodology based on principles of computational intelligence as well as big data analysis to identify fraudulent customers based on their load profile. In our proposed methodology, a hybrid Genetic Algorithm and Support Vector Machine (GA-SVM) model has been used to extract the relevant subset of feature data from a large and unsupervised public smart grid project dataset in London, UK, for theft detection. A subset of 26 out of 71 features is obtained with a classification accuracy of 96.6%, compared to studies conducted on small and limited datasets

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    K-Means and Alternative Clustering Methods in Modern Power Systems

    Get PDF
    As power systems evolve by integrating renewable energy sources, distributed generation, and electric vehicles, the complexity of managing these systems increases. With the increase in data accessibility and advancements in computational capabilities, clustering algorithms, including K-means, are becoming essential tools for researchers in analyzing, optimizing, and modernizing power systems. This paper presents a comprehensive review of over 440 articles published through 2022, emphasizing the application of K-means clustering, a widely recognized and frequently used algorithm, along with its alternative clustering methods within modern power systems. The main contributions of this study include a bibliometric analysis to understand the historical development and wide-ranging applications of K-means clustering in power systems. This research also thoroughly examines K-means, its various variants, potential limitations, and advantages. Furthermore, the study explores alternative clustering algorithms that can complete or substitute K-means. Some prominent examples include K-medoids, Time-series K-means, BIRCH, Bayesian clustering, HDBSCAN, CLIQUE, SPECTRAL, SOMs, TICC, and swarm-based methods, broadening the understanding and applications of clustering methodologies in modern power systems. The paper highlights the wide-ranging applications of these techniques, from load forecasting and fault detection to power quality analysis and system security assessment. Throughout the examination, it has been observed that the number of publications employing clustering algorithms within modern power systems is following an exponential upward trend. This emphasizes the necessity for professionals to understand various clustering methods, including their benefits and potential challenges, to incorporate the most suitable ones into their studies

    Advances on Smart Cities and Smart Buildings

    Get PDF
    Modern cities are facing the challenge of combining competitiveness at the global city scale and sustainable urban development to become smart cities. A smart city is a high-tech, intensive and advanced city that connects people, information, and city elements using new technologies in order to create a sustainable, greener city; competitive and innovative commerce; and an increased quality of life. This Special Issue collects the recent advancements in smart cities and covers different topics and aspects
    • …
    corecore