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1 Introduction

1.1 Importance of non-technical losses detection

Non-technical losses (NTL) represent a serious concern for electricity utilities as they are
responsible for significant revenue losses as well as affecting the power grid reliability.
These losses are defined as the energy consumption (EC) of the clients that has not been
billed by the utility [1]. Worldwide, a recent report has estimated that NTL are responsible
for yearly revenue losses of $96 billion [2]. At the grid level, NTL can affect the power
system operation by overloading transformers and causing voltage unbalances as well as
providing uncertainty with regards to the real consumption [3, 4, 5].
NTL affects honest customers as well, as high NTL rates will reflect in the electricity

price as well as in the reliability of the power grid. Moreover, fraudulent connections
to the grid increase the risk of fire and electrocutions [6]. Consequently, the electricity
utilities are increasingly investing more time and effort to reduce NTL losses given their
negative technical and economic impact.

The current way to mitigate the effects of NTL is through on-field inspections based on
customer data analysis. The objective of these inspections is to find customers with an
anomaly or a fraud in the electricity meter in order to recover the revenue loss produced by
these customers. In the past, these inspections were made based on simple rules derived
from expert knowledge. With the roll-out of smart-grid technologies, the utilities have
now access to a more in-depth understanding of their customers consumption behavior due
to increased data granularity. The algorithms for NTL detection have thus shifted from
simple rules to more complex models based on machine learning. The mix of increased
data granularity and machine learning has pushed this field forward, as many advances
have been reported in the recent literature.
Ultimately, the recovery of the revenue losses caused by NTL majorly depends on the

precision of these on-field inspections. A low precision will further augment these losses
rather than mitigate them. Besides the economic impact, a high precision of on-field
inspections can further discourage recurrent fraud behavior or new frauds. Thus, it is
extremely important to advance and increase the precision of future on-field inspections
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2 Chapter 1. Introduction

for an efficient revenue loss recovery as well as to increase the security of the power grid
and improve its operations.

1.2 Non-technical losses detection in the smart metering context

In this thesis, we will explore the capabilities of machine learning algorithms for NTL
detection in a smart metering context, where electricity utilities have access to measure-
ments provided by smart electricity meters (SMs). It is estimated that by 2020, 70% of the
European Union customers will have their conventional meters replaced with SMs [7].

The SMs roll-out has a positive impact on both power grid planning and operations. As
an example, the power grid planning can be improved by using the SMs data to correct
topological errors. Furthermore, by integrating Supervisory Control and Data Acquisition
(SCADA) systems with SMs data, the power systems operations and reliability can be
improved by increasing network observability [8]. SMs also improve NTL detection in
electricity grids, as they provide better security, control [9] and a better understanding of
the customer’s consumption behavior through increased data availability.
SMs are measuring devices that are able to provide high-granularity timestamped

EC measurements as well as additional data in comparison with conventional electro-
mechanical meters (EMCs) [10]. The additional data consists either of power quality
measurements or events logs. The measurements related to power quality monitoring are:
current, voltage, power factor, active and reactive power [5] whilst the events logs monitor
the activation of different alarms in the SMs.
Table 1.1 shows a comparison between SMs and EMCs. An important advantage of

SMs, besides increased data availability and granularity, is the capability of remote reading.
This removes the possibility of human errors that might occur with EMCs readings. SM
data also helps to detect zero or missing measurements. It gives a better overview of the
EC pattern by being able to differentiate the EC by time and type of day.

Table 1.1 Smart meters versus electro-mechanical meters.

Smart meters Electro-mechanical meters

15 minutes/hourly measurements monthly measurements
energy consumption, power quality

and events monitoring energy consumption
remote reading manual reading

1.3 Classification of non-technical losses

NTL can occur due to both malicious and non-malicious causes. NTL that occurs due to
non-malicious cases can be attributed either to billing errors or meter malfunctioning due
to a component fault. The malicious cause of NTL is energy theft. Energy theft can be
done through various techniques. Though SMs bring a lot of advantages due to remote



1.3 Classification of non-technical losses 3

reading and increased data granularity, they also introduce new methods for committing
energy theft [11, 12, 13, 14]. Energy theft techniques have been classified in [13] as cyber
attacks or physical attacks. Cyber attacks can occur through any sort of communication
interference that aims to block, interrupt or alter the EC measurements [13]. Physical
attacks occur either through meter tampering or double-tapping. Meter tampering can be
done either by mechanically altering the SM components, manipulating the wires [15] or
through high-frequency interference sources or strong magnets [16]. A common way of
meter tampering is using a shunt device between the input and output terminals of the SM
to divert the current. Figure 1.1 shows a shunt fraud scenario. With a shunt fraud, the EC
pattern stays the same but at a lower amplitude.

Figure 1.1 Shunt fraud scenario.

Another common method of energy theft is double tapping, where part of the consump-
tion is connected directly to the grid, bypassing the SM. Usually, the customer will bypass
the appliances with a higher EC [15]. Figure 1.2 shows the EC scenario of a double tapping
case that happens from the beginning of the client’s contract. Double tapping changes
significantly the real EC pattern, unlike a shunt.
Last but not least, Figure 1.3 shows an example of an NTL that occurs due to a non-

malicious cause: an electronic fault. In this case, the meter simply records 0 kWh or null
measurements. Though this case might seem easy to detect at a first glance, it can be easily
mistaken as the EC pattern of client who goes on a long holiday.

As it can be noticed in Figures 1.1, 1.2 and 1.3, NTL occurs whenever the billed EC is
lower than the actual consumption.

This thesis will not focus on specific types of NTL or trying to understand the different
techniques through which a customer can alter the readings of a SM. Rather, it will treat
NTL as a black-box, providing a global solution for NTL detection in electricity utilities.
This means that the methodologies developed in this thesis will aim to detect any type of
NTL, regardless of the source. This is especially important since, as mentioned previously,
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Figure 1.2 Double tapping scenario.

Figure 1.3 Electronic fault scenario.

SMs introduce new methods for energy theft and methodologies can be become easily
outdated if they cannot adapt automatically to new types of NTL.

Hence, the following chapters will focus on providing a methodology to detect any type
of mismatch between the recorded and actual consumption of a SM that results in an NTL.

1.4 Non-technical losses detection with machine learning

The current NTL detection algorithms fall into three categories: data-oriented, grid-
oriented or hybrid-oriented which is a mix between these two [17]. This thesis will
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investigate the capabilities for NTL detection of data-oriented approaches. Data-oriented
approaches exploit the data available at the customer level, without the need of any
additional hardware components. The following types of data are considered to be available:
SM raw data, technical and geographical characteristics of the SM and the results of
previous on-field inspections.
Supervised learning algorithms are used on datasets where each sample has its corre-

sponding target [18]. Thus, the results of previous on-field inspections can be used to train
a machine learning (ML) model in a supervised manner. Figure 1.4 shows an example of
a training dataset for NTL detection. During training, the ML model will learn a function
that is able to map the input data of each customer to its corresponding target. Once
the model has been trained, it can be used to make predictions on new unseen customer
samples, using the mapping function learned during training. NTL detection is a binary
classification task as there are only two target values (0 - no NTL detected in the SM, 1 -
NTL detected in the SM).

Figure 1.4 Example of an NTL dataset.

SM raw data is, however, unstructured, making it difficult for traditional supervised
algorithms such as decision trees to discover useful patterns. In most cases, a structured
dataset is created after extracting relevant features for NTL detection from the raw SM data.
The feature extraction methodology is based either on expert knowledge or unsupervised
learning algorithms. Unsupervised learning algorithms are used for clustering, density
estimation or dimensionality reduction [18]. The feature extraction processing step can
be omitted when using deep neural networks, which are able to learn by themselves the
appropriate representation of data.
Nonetheless, NTL detection in electricity utilities is an extremely challenging case of

anomaly detection. The main struggle of an ML algorithm built for this task is not merely
detecting changes in the customer’s consumption pattern but rather if these changes are
due to malicious or non-malicious factors (e.g. holidays, change of lifestyle, appliances).
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Furthermore, attempting to detect NTL using a supervised approach can be quite
challenging as this is an extremely imbalanced classification problem [19]. Naturally, the
number of customers who are not committing fraud or have a faulty meter is much higher
than the number of customers detected with NTL. Moreover, as the customer samples
are labeled manually by on-field inspectors they are prone to human error. Introducing
misclassified samples makes it more difficult for a ML model to distinguish between
classes.

1.5 Research objectives

The global objective of this thesis is to explore the capabilities of machine learning algo-
rithms and SM data for NTL detection in electricity utilities. The goal of these algorithms
is to detect any type of NTL, regardless of its source (excluding NTL which comes from
billing errors). This research is focused on two types of customers: industrial/large com-
mercial (contracted power > 50 kW) and residential/small commercial (contracted power
< 15 kW).

The thesis has the following objectives:

• Research and develop feature extraction methodologies based on SM data availabil-
ity.

• Investigate the performance of state-of-the-art machine learning algorithms using
handcrafted feature engineering methodologies.

• Assess the impact of SM data availability for NTL detection.

• Investigate the performance of algorithms that are not based on expert knowledge,
using deep neural networks.

1.6 Outline

This thesis has been written in the short format, based on the published work in [20] and
[21]. The first part of Chapter 2 will give an overview of grid-oriented methodologies.
Its second and third part will focus on describing the state-of-the-art in hybrid-oriented
and data-oriented methodologies for NTL detection. Chapter 3 will provide a summary
of the results obtained by the proposed methodologies. Its first part starts by giving an
overview of feature engineering techniques for NTL detection, for multiple types of data:
EC measurements, smart meter alarms and electrical magnitudes. The performance of
several state-of-the-art ML algorithms is also investigated. This part of the chapter finishes
by describing different techniques used for tackling the imbalance that occurs in NTL
datasets as well as the impact of data availability on the performance of NTL detection
models. The second part of Chapter 3 will describe a deep learning architecture that is
capable to handle both sequential and non-sequential data, such as the EC history. It will
also provide a comparison between the proposed deep learning model, traditional machine
learning models and previously proposed deep learning models for NTL detection. Last
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but not least, Chapter 4 and 5 will discuss the main insights obtained after experimenting
with both methodologies as well as provide the final conclusion for this thesis. Both
publications [20, 21] can be found in the Appendices A and B.





2 State of the art in non-technical
losses detection

This chapter will present the state of the art in NTL detection methodologies. Although the
work presented in this thesis focuses on data-oriented methodologies, this section will give
a broader overview of all the methodology types that are used in this field. Thus, the next
sections of this chapter will discuss the following types of methodologies: grid-oriented,
data-oriented and hybrid-oriented, which is a mix between both [17].

2.1 Grid-oriented methodologies

Grid-oriented methodologies use energy balances, power flows or state estimation to
detect where NTL occurs. Besides using the data recorded at the customer level, these
methodologies rely on measurements made throughout the entire distribution grid. Most
of these methodologies also need knowledge of the network topology and parameters.

In [22], the authors propose a methodology for NTL detection at the MV/LV transformer
level, using distribution state estimation (DSE). This methodology needs a single main
measurement at the beginning of the distribution substation. Technical and commercial
data of the grid, such as the connectivity between the meter of the customer and the
transformer, is also needed. The monthly billed energy at the MV/LV transformer level
has been used in order to assign a ratio of the total power consumption provided by the
main measurement, to each transformer. The main advantage of this methodology is that
it has very low metering requirements. Its drawback is that it cannot detect NTL at the
customer level.
A methodology for detecting NTL using SM data has been proposed in [23]. The

method has been devised specifically for theft detection. An energy balance is performed
in order to detect NTL at the MV/LV transformer level. If an NTL is detected at this level,
the methodology will further detect the NTL location at the customer level, by comparing
the estimated and measured voltages of the SMs. This methodology has been tested on a

9



10 Chapter 2. State of the art in non-technical losses detection

simulated typical LV grid configuration from the Netherlands, with 240 customers, and
was shown to be able to detect intermittent NTL cases as well.

The authors use DSE to detect NTL in [24], using the Weighted Least Squares (WLS)
technique. The methodology assumes availability of network and measurement data. The
distribution transformers found with bad data measurements, according to the DSE, can
be shortlisted as locations for possible on-field inspections. The model has been tested on
a 11-bus test system and has been shown to outperform traditional meter data validation,
estimation and editing (VEE) methods for estimating meter load curve if the EC patterns
are volatile.
In [25], the authors use the Energy Flow Problem Solution (based on state estimation

theory) to detect NTL. The methodology is based as well on detecting bad data measure-
ments, through the use of energy balances. It was tested on a very simple grid and showed
a need of redundant measurements for an accurate NTL detection.
Using power flow computations, the authors in [26] estimated NTL at the distribution

transformer level. Since it is extremely hard in practice to have an exact knowledge of the
network topology and parameters, the authors assumed that the distribution circuit has a
simplified topology and connectivity. This assumption allowed to compute the level of
technical losses and indirectly the NTL. The methodology has been tested on a simulation
with 10 customers, where one of the customers was committing theft. The simulation
has shown that the methodology is able to detect NTL percentages as low as 10% at the
transformer level.

An extension of the work presented in [26] can be found in [27]. For a better estimation of
the technical losses, the authors considered the temperature dependency of the resistances
within the test distribution circuit. The methodology was able to detect NTL percentages
as low as 4%, at the transformer level. The main drawback of these two methodologies is
that they need consumption data, where there is no theft, for an accurate estimation of the
technical losses.
A two-stage methodology for NTL detection in LV networks using SM data has been

proposed in [28]. The first stage of the methodology is detecting NTL at the distribution
transformer level by checking the difference between the current measured on the secondary
side of the distribution transformer and the sum of all the SMs current measurements.
The second stage of the methodology detects NTL at the branch level in the LV grid, by
using the network topology and the lines’ impedances. If the impedances are unknown,
they can be estimated using historical measurement data, where no NTL was present. The
methodology has been tested on a typical Portuguese LV network and has been shown to
obtain a success rate of 85%, even in cases with incomplete data of the network.

In [29], the authors studied the problem of power quality monitoring for NTL detection.
Their methodology establishes the minimum number of power quality monitors needed
for total system observability whilst taking into consideration the P-median model. The
P-median model has been used to select the location of monitors, making sure that the
most important loads are monitored. The methodology has been tested on a 40-bus power
distribution branch of a Brazilian utility.
The authors in [30] propose a methodology to detect NTL that occurs due to cyber-

attacks. To establish the location of NTL, a comparison is made between the measurements
received from reliable devices (e.g. phasor measurements units, intelligent electronic
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devices) and the estimated measurements obtained from state estimation. The exact
location of the NTL is then found using the A-Star algorithm. The methodology has been
evaluated on a real distribution network.

Amethodology for NTL detection based on state estimation, that preserves the privacy of
the consumers, has been proposed in [31]. The privacy of the consumers has been preserved
by encrypting the data using the Number Theory Research Unit (NTRU) algorithm. The
experiments show that the proposed methodology is able to accurately detect NTL whilst
attaining data confidentiality and authentication.
As shown above, grid-oriented methodologies can detect NTL with high accuracy.

However, most of them require knowledge of network topology and parameters as well as
the installation of additional metering devices in order to increase the observability of the
distribution system. Thus, these methodologies cannot yet be widely used by the utilities
as their data and metering requirements are not easily attainable in practice. Grid-oriented
methodologies that are focused on detecting NTL at the distribution transformer level have
lower data and metering requirements, hence they can be faster adopted by the utilities in
the future.

2.2 Hybrid-oriented methodologies

Hybrid-oriented methodologies use, in the first stage, network related data to detect NTL
at the distribution transformer level or in several areas of the LV network. The second
stage of these methodologies detect NTL at the customer level, either by employing the
use of statistical methods on the energy consumption data of the customers or through the
use of machine learning algorithms.

In [32], the authors propose a methodology for NTL detection using DSE and analysis
of variance (ANOVA). The DSE is used to detect distribution transformers with anomalous
usage using the normalized residual test. To perform the DSE, the following informa-
tion was used: customer SM data, historical data from SCADA and network topology
information from various sources such as outage management and customer information
systems. After identifying transformers with anomalous usage, the NTL is detected at the
customer level using ANOVA. This analysis is done by comparing the EC measurements
of a customer with its baseline EC profile that has been previously validated.

Another hybrid NTLmethodology is proposed in [33], which uses DSE and an Optimum-
Path Forest (OPF) classifier. The methodology uses the monthly EC measurements of the
last 12 months as well as the geographic location of the meter. The DSE is used to estimate
the NTL in each month at the bus level. These NTL estimations are added to the input of
the OPF classifier. The OPF classifier was trained in a supervised manner, on a dataset
with NTL samples that have been created synthetically. The NTL was considered to occur
either as partial or total load reduction. The methodology needs additional measurement
equipment as well as knowledge of the network topology and parameters. The results show
that using the NTL estimations provided by the DSE brings significant improvements in
the performance compared to using the solely EC measurements alone.

The authors in [34] use DSE for NTL detection in LV networks. The NTLwas considered
to occur due to electricity theft. The authors used the semi-definite relaxation method,
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instead of the standard Newton Raphson method, in order to obtain the global optimal
solution for the state estimation. Suspicious users were further investigated with ANOVA.
The methodology has been tested on a 8-bus distribution system and has been shown to
detect successfully electricity theft.

In [35], the authors propose a methodology based on state estimation and pattern
recognition, for a distribution system with advanced metering infrastructure. The first
stage of the methodology uses the Weighted Least Squares State Estimator (WLS-SE) to
identify NTL at the transformer level. The authors show that analyzing the gross errors
identified during state estimation using a geometrical approach, yields better results than
the residual approach. The second stage of the methodology uses a multivariate normal
distribution to detect abnormal EC patterns among customers. The NTL cases have been
synthetically generated and were considered to come either from total or partial bypassing
of the customer’s meter. The methodology has been tested on an IEEE 69-bus test feeder
and showed that it outperforms previous approaches based on residual analysis of gross
errors.

A two-stage methodology for NTL detection has been proposed in [36]. The first stage
of this methodology identifies NTL at the transformer level. The NTL is detected at
the customer level using the K-Means algorithm and a Support Vector Machines (SVM)
classifier trained for each customer in part. The NTL samples are synthetically generated.
The methodology has been tested on SM data of over 5000 Irish homes and businesses
during 2009 and 2010 and showed high performance even for sampling rates as low as 4
samples/day.

The authors in [37] proposed a graphical user interface (GUI) platform to detect NTL
losses. The methodology is based on three stages. The first stage detects NTL at the
distribution transformer level by comparing the measured current on the secondary side
of the transformer with the aggregated current measurements of the SMs connected to
it. The second stage detects NTL at the customer level by using fuzzy logic and a SVM
classifier. The last stage of the methodology checks for correlations between anomalous
customers and their event logs. The developed methodology aims to be implemented in a
pilot project side with real SM data of customers.

In [38], the authors propose a methodology which detects areas with high NTL, in
the LV network, through the use of SM measurements and energy balances. The second
stage of the methodology detects NTL at the customer level, in the areas identified with
high NTL, using a SVM classifier. The classifier uses as an input energy consumption
data, clients’ registration data and socio-economic indices. The methodology has been
tested as part of a research and development (RD) project of ANEEL (Brazilian Electricity
Regulatory Agency). The methodology to detect areas with high level of NTL has not
been developed and tested at that stage of the project.

Hybrid-oriented methodologies can be more easily adopted by the utilities as they have
lower data requirements for network topology, parameters andmeasurements. Nevertheless,
most utilities do not currently have the necessary network data availability to deploy these
methodologies on a large scale.
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2.3 Data-oriented methodologies

Data-oriented methodologies are a very popular area of research for NTL detection, due to
their low data availability requirements. Generally, these methodologies are based only on
the data collected at the customer level. The data collected at the customer level includes
the measurements recorded by the electricity meter as well as some information of the
customer (location, meter brand, meter location etc.) that usually resides in auxiliary
databases. In the beginning, these methodologies were based on simple rules extracted
from customer consumption data, often relying on expert knowledge. Nowadays, these
methodologies are based exclusively on machine learning (ML) techniques. The ML
algorithms that are used for NTL detection are mainly based on supervised learning. There
are a few works based onML algorithms that use unsupervised or semi-supervised learning,
such as [39] or [40], but this area of research is not fully developed at this time.
Methodologies for NTL detection based on supervised learning use the results of

previous on-field inspections as labels, in order to create a training dataset. The objective
of these algorithms is to classify as accurately as possible whether a customer sample
has NTL or not. To train the supervised ML classifier, the data of each customer that had
an inspection is collected and used as an input during the training stage. Two types of
methodologies for processing the input, can be found in the literature:

• Input processing based on feature engineering - these methodologies are using expert
and domain knowledge to extract features from raw consumption data recorded by
the meter and auxiliary data that provides additional information of the meter (e.g.
meter brand, location, contract type).

• Input processing based on raw data - these methodologies use the raw data recorded
by the meter and the auxiliary data without any further processing.

Methodologies based on feature engineering can achieve great performance as they rely on
the insights gathered by on-field inspectors or utility employees, whilst the methodologies
based on raw data have the advantage that they do not have to rely on such expertise and
are not constrained to the expert knowledge for the NTL detection task. Table 2.1 shows
the main characteristics of the methodologies that will be discussed further. As seen in
the table, the performance of the models is assessed using various metrics such as the
true positive rate (TPR), known also as the recall (RCL), the false positive rate (FPR),
the precision (PRC) and the area under the receiver operating characteristic curve (ROC-
AUC). Due to the imbalanced nature of NTL detection, the ROC-AUC score provides more
reliable results as it assesses the ranking quality of customers rather than their classification.
Another metric suitable for imbalanced datasets, that takes into account also the precision
of the model, is the area under the precision-recall curve (PR-AUC). However, this metric
has not started to be used by the research community.
In [41], the authors propose a methodology for NTL detection using Extreme Learn-

ing Machines (ELM). The approach has been tested and developed with real data from
Malaysia’s Tenaga Nasional Berhad (TNB), the largest electricity utility in Malaysia. For
each customer in part, a typical customer profile is created for weekdays, Saturdays, Sun-
days and public holidays. If outliers are detected on any new load curve, the load curve is
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Table 2.1 Data-driven methodologies for NTL detection.

Method
Type of

NTL
detected

Data
source for

NTL
cases

# of cus-
tomers Type of data

%
samples

with
NTL

ML
Algorithms Results (best algorithm)

TPR FPR PRC ROC-
AUC

[41] all - 1500 half-hourly EC data -
ELM,

OS-ELM,
SVM

- - - -

[42] abrupt
changes

real
on-field in-
spections

383
monthly EC &

credit worthiness
rating

13.83 % SVM - - 77.41
% -

[43] fraud - 440 EC & auxiliary
databases - SVM, MLP - - - -

[44] all
real

on-field in-
spections

9131 EC & auxiliary
databases -

MLP (trained
with BP, PSO
and CSS)

- - - -

[45] fraud
real

on-field in-
spections

21583 monthly EC &
auxiliary databases 14.85 % MLP 29.47

%
65.03
% - -

[46] fraud synthetic 5600 half-hourly EC - MLP 93.75
%

25.00
%

78.95
% -

[47] fraud synthetic 5650 half-hourly EC - DT - - - -

[48] all
real

on-field in-
spections

- monthly EC &
auxiliary databases -

NB, KNN,
DT, MLP,
SVM, RF,
GBDT,

AdaBoost

- - - 0.84

[19] all
real

on-field in-
spections

≈ 100K monthly EC 0 % -
100 %

Boolean,
Fuzzy and
SVM

- - - 0.56

[49] contract
diversion synthetic 4245 hourly EC &

weather data
10 % -
50 %

K-Means, LR,
KNN, SVM - - - -

[50] all
real

on-field in-
spections

700K monthly EC &
auxiliary databases

1 % - 90
%

LR, KNN,
SVM, RF - - - 0.63

[51]

partial and
total

reduction
in con-

sumption

synthetic 12180 monthly EC 7%
CNN, LSTM,
SAE, MLP,
DT, RF

60 % - 100 % 0.893

[52] all
real

on-field in-
spections

3.5M monthly EC &
auxiliary databases

10 % -
90 % K-Means, RF - - - 0.74

[53] null EC
real

on-field in-
spections

3510 monthly EC &
auxiliary databases 4.67 %

Text mining,
MLP, DT,
SOM

- - 14.75
% -

[54] fraud
real

on-field in-
spections

42372 daily EC data 8.53 %

TSR, LR,
SVM, RF,
MLP,

WD-CNN

- - - 0.78

further classified for NTL detection, with one of the following algorithms: ELM, Online
Sequential ELM (OS-ELM) and Support Vector Machines (SVM). The results showed
that the ELM was able to outperform the SVM model.

A methodology based on a SVM classifier has been proposed in [42], where the authors
used the model for classifying customers as having/not having an NTL in their meter. The
methodology has been tested in 3 towns from Malaysia, targeting NTL that occurs as an
abrupt change in the customer’s consumption pattern. The input for the SVM classifier
consisted of 24 daily average EC values, aggregated from monthly measurements. Besides
EC data, the classifier uses as an input the credit worthiness rating (CWR) corresponding
to a specific customer. Though the input processing does not involve extensive feature



2.3 Data-oriented methodologies 15

engineering, the system uses additional filtering using data from the Customer Information
Billing System as well as High Risk data, in order to correlate this information with the
output predictions of the SVM.

Another methodology for NTL detection, based on an SVM classifier, has been proposed
in [43]. The SVM model uses as input the geographical location, season of the year, type
of customer and the EC. The EC has been encoded to take values between 0 and 7, and
reduced to groups of three consecutive measurements. A Multi-Layer Perceptrons (MLP)
network has been used to estimate the hyperparameters of the SVM classifier in order
to maximize the accuracy of its predictions. A MLP network is simply a feedforward
neural network (NN). The cost function, the kernel type (linear, polynomial or radial basis
function) and the γ parameters of the SVM were all selected using the neural network.
The purpose of the neural network was to save time in selecting the best hyperparameters
for the SVM.

In [44], the authors used a MLP network for NTL detection, using two labeled datasets
of a Brazilian electricity utility. The customers were either industrial or commercial.
The MLP network was trained in a supervised manner using the following data as an
input: demand billed, demand contracted, maximum demand, reactive energy, power
of the transformer, power factor, installed power and load factor. The innovation part
of this work is that the authors trained the MLP network with evolutionary algorithms
rather than backpropagation, a common way of training neural networks. They have
shown that the MLP network trained with Charged Systems Search (CSS) and Particle
Swarm Optimization (PSO) achieved lower error rates than the MLP network trained with
backpropagation.
MLP models have also been used in [45], to detect fraud in electricity meters. The

methodology has been implemented in a Brazilian electricity utility and has been shown
to improve with more than 50 % the precision of previous approaches used in the utility.
The MLP network has been used as the classifier for NTL detection. The input of the
model was based on 13 input features that were providing information with regards to the
recorded EC or of socio-economic attributes of the client. The model has been trained
with backpropagation and it used as labels the results of previous on-field inspections that
have been done in the past by the utility, to target customers with fraud in their meters.
Another methodology based on MLP has been presented in [46], where the goal was

to detect energy fraud in SMs. The methodology is based on real SM data belonging
to approximately 5000 residential customers and 600 businesses. These data have been
collected by the Irish Social Science Data Archive Center. The MLP model’s objective is
to predict the energy consumption of a customer. Potential energy fraud was detected by
checking if the Root Mean Square Error (RMSE) of the predicted energy consumption
and the actual energy consumption was higher than 0.5 kWh. The energy fraud samples
have been synthetically generated by introducing random noise in the EC profile. The
results show that the MLP model is able to detect successfully energy fraud in 93.75%
of the cases. A similar methodology has been presented in [47], where the authors used
decision trees (DT) instead of MLP to detect energy fraud in smart meters. The threshold
for the RMSE has been set to 0.4 kWh in this case.
In [48], the authors propose a methodology for NTL detection in both electricity and

gas meters. The methodology has been developed and tested with real data of a Spanish
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gas and electricity utility, Gas Natural Fenosa, and uses consumption data (meter readings
and billing extractions), static profile data (e.g. tariff, address, age and model of the meter),
historical fraud cases and external information such as the Koppen climate classification
data. The following classifiers have been tested: MLP, SVM, Naive Bayes (NB), K-Nearest
Neighbors (KNN), DT, Random Forests (RF), Gradient Boosting Decision Tree (GBDT)
and AdaBoost. The results showed that the GBDT was able to outperform any other
classifier or ensemble of classifiers.
The impact of the imbalance that naturally occurs in NTL datasets has been assessed

in [19]. Naturally, the number of customers who have been identified with NTL is much
higher compared to the one of customers with no NTL in their meter. The methodology
has been developed using real data of a Brazilian electricity utility. The NTL dataset has
been subsampled to contain different percentages of samples with NTL, from 0.1% to
90%. Three models were used in the comparison: boolean logic, fuzzy logic and a SVM
classifier. The input features for the models consisted simply of the last 12 months of EC
measurements.
A methodology to detect NTL that occurs due to violations to the energy contract has

been proposed in [49]. The methodology has been tested using load profiles from two
types of contract, collected from the advanced metering infrastructure of Korea Electric
Power Cooperation (KEPCO). K-Means clustering has been used to group customers and
create a prototype for each cluster in part. A normality and similarity score has been
obtained for each customer in part, by computing the conditional probability of a prototype
under certain conditions. The conditions used were: type of day, type of weather, type of
temperature and type of humidity. The normality and similarity scores were afterwards
used to train three machine learning models (LR, KNN and SVM) in a supervised manner.
The results showed that the methodology proposed in the paper has been able to surpass
the precision of traditional methodologies such as traditional best-fit prototype-based
classification and average prototype-based classification.

Using geographical data can improve the performance of the model used in the classifica-
tion of NTL, as shown in [50]. The methodology creates input features using neighborhood
data, which allows to extract the inspection ratio and the NTL percentage in a certain
area. Besides neighborhood information, the methodology also uses the daily average
consumption of the last 12 months as well as categorical master data (type of customer,
status of the contract, number of wires and voltage) as input features. The following
models were used in the comparison: KNN, LR, SVM and RF. All models have been
shown to obtain a better performance when adding the neighborhood and categorical
master data to the features based solely on EC measurements. The results show that RF
slightly outperformed the rest of the classifiers.

A comparison between a convolutional neural network (CNN), a long short-term mem-
ory (LSTM) network and a stacked autoencoder (SAE) for the task of NTL detection, has
been done in [51]. The performance of these algorithms has also been compared with
the ones of traditional ML models: MLP, DT and RF. The models have been trained on a
synthetic dataset with two types of NTL: partial and total load reduction. The input to these
models was the monthly EC of one year. The results showed that the CNN outperformed
the rest of the classifiers.
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In [52], the authors compared the performance of RF, logistic regression (LR) and
SVM on the task of NTL detection in electricity meters. This work also assessed the
impact of the input features’ type on the performance of the models. The input features
created from the EC data either were based on statistical analyses that took into account the
temporal nature of these measurements or based on a similarity comparison using K-Means
clustering among customers. Additional input features were created using geographical
and transformers data. The results showed that the RF slightly outperformed LR and SVM
classifiers, and that the model can achieve stable performance using only input features
coming from raw EC data.

The authors in [53] describe a two-stage methodology for NTL detection in meters
that have null consumption readings or a drop in consumption. A null consumption
measurement could be an indicator of an NTL loss in the meter, however, the authors
argue that the meter can record null measurements simply if a house is empty or there
is a drop in demand in a certain business sector. The authors use additional information,
as simply relying on EC measurements is not sufficient to detect such cases. The first
stage of the methodology is filtering customers based on text mining and MLP. The text
mining techniques have been used to create a dictionary of concepts from inspectors’
commentaries from previous on-field inspections or technical interventions. The MLP
network has been used to classify the concepts into 5 categories: closed, correct, incorrect,
low consumption and unuseful. The second stage of the methodology generates rules for
NTL detection using DT and Self-Organising Maps (SOM). The results showed that the
methodology was able to increase 3 times the precision of these type of inspections.

A methodology based on a wide and deep CNN (WD-CNN) has been used in [54] to
detect fraud in electricity meters. The wide model of the network is a simple MLP network
that uses as an input the 1D electricity consumption measurements. The CNN model uses
as an input the 2D energy consumption data, obtained by stacking the weekly consumption
profiles. The methodology has been developed and tested using a dataset provided by
the State Grid Corporation of China (SGCC), which contains the energy consumption
measurements within approximately three years and of more than 40000 customers. The
Three Sigma Rule (TSR), which is a simple anomaly detection technique, has been used
as a benchmark. The performance of the WD-CNN model has also been compared with
more sophisticated ML models such as LR, SVM, RF and MLP. The results showed that
the WD-CNN model outperformed the rest of the models.

As shown above, data-oriented methodologies for NTL detection have been studied
extensively by researchers, as they rely only on the data that it is already available in
the electricity utilities. However, it is extremely difficult to have an honest comparison
between the performance of these methodologies. This is due to the fact that there are
major differences in these approaches: different datasets availability, they use either real
or synthetic NTL datasets or they monitor for different metrics.
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2.4 Challenges in data-oriented methodologies for non-technical losses
detection

As noted in [55], there are several challenges that impede the progress in this research
area as well as the performance of NTL algorithms in the real environment. From my
perspective, these are the following challenges that can be encountered by researchers who
are trying to push forward and make advances in this field:

• Lack of benchmark datasets - Although the authors in [56] provided a benchmark
dataset for NTL detection, this dataset consists of only EC data. Its main disadvan-
tage is that it creates synthetical NTL samples that consist either in partial or total
load reduction, whilst the non-NTL samples have normal consumption patterns.
However, in the real environment, customers can have partial or total reduction due
to causes that are not related to NTL such as going on a holiday. This is why I
believe it is vital to use auxiliary data for NTL detection, as we cannot rely simply
on the EC data. A benchmark dataset provided by an electricity utility would be the
best scenario, as it will provide realistic and more complex NTL cases as well as
additional data besides the EC measurements. However, with increased data privacy
regulations, it seems to be increasingly difficult for the electricity utilities to share
their data with the research community.

• Different metrics of performance - It is difficult to compare the performance of
different methodologies when there isn’t a common metric that is reported by all
researchers. Moreover, metrics that are inappropriate for imbalanced datasets such as
the accuracy, are heavily used, making it difficult to really assess the true performance
of one’s methodology. Recent research works have started to acknowledge the
importance of choosing the right metric for NTL datasets. However, there are plenty
of methodologies proposed in the past that were not properly assessed making it
difficult to have an overview of the real progress across time in this area of research.

Besides the research challenges, practitioners that implement NTL detection models in
the utilities struggle with significant challenges as well. Here are a few challenges that can
be encountered when trying to deploy these models in the real environment:

• Noisy data and labels - Often, the data collected by electricity meters, either come
with missing values or anomalous ones. It is difficult for the practitioner to know
whether these issues come from NTL/non-NTL reasons. The choice of whether
to impute these values with normal estimates or to keep them as they are can be
vital to the performance of the model. Another important challenge is the noise in
the labels (results of previous on-field inspections). As the customer samples are
labeled manually by on-field inspections they are prone to human error. Introducing
misclassified samples makes it more difficult and decreases the performance of NTL
models.

• Dataset imbalance - NTL datasets available in electricity utilities can be extremely
imbalanced, especially in developed countries. Naturally, in these countries, the
number of electric supplies with any kind of detected anomaly is a tiny portion of the
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global amount. For supervised approaches, this can represent a significant challenge
as the model will be biased to predict the majority class (non-NTL). This challenge
can be mitigated by creating a ranked list of customers based on their probabilities
of having an NTL in the meter, rather than directly classifying a customer based on
a probability threshold.





3 Summary of results

This chapter will provide an overview of the methodologies proposed in [20] and [21],
along with their results and their contributions. Both methodologies have been

developed and tested with real data from the largest electricity utility in Spain, Endesa.
They rely on customer level data, coming from SMs and auxiliary databases, and on the
results of previous on-field inspections. The NTL was treated as a black-box, thus both
models aim to detect all types of NTL in the meters, regardless of their source.

3.1 Feature engineering and supervised learning for non-technical
losses detection

The first methodology was focused on using handcrafted feature engineering based on
SM data and auxiliary databases. After the features were extracted, they were used as
an input into several machine learning (ML) models. These models were trained in a
supervised manner, using the results of previous on-field inspections. The methodology
was developed using data of industrial and large commercial customers, with a contracted
power higher than 50 kW.

Compared to the methodologies presented in Chapter 2, which are based on handcrafted
feature engineering and supervised learning, the proposed methodology differentiates
itself by:

• Using all the information the SMs record: EC, alarms and electrical magnitudes.
These additional data are vital for NTL detection as studying only the consumption
behavior of the customer is not sufficient to detect a wide range of NTL (considering
that only customer level data is available).

• Applying both distance and density based outlier detection algorithms as well as the
usage of the XGBoost classifier.

• Creating multiple training samples for customers with more than one inspection.

The best ML model has been used to create a ranked list of customers according to their
probability of having an NTL in their meter. The methodology has been implemented

21
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in a real NTL campaign, obtaining a precision of ≈ 21 % for new on-field inspections
generated by the model.

3.1.1 Smart meter data availability

The SM data used for training, validating and testing the ML models was provided by
Endesa. These SMs register the EC every 15 minutes but due to the volume of data, the
granularity was reduced to 5 measurements/day. This reduces also the privacy concerns
that may arise with a higher data granularity. Table 3.1 shows the measurements that were
included in the SM data.

Table 3.1 SM Data.

Daily mea-
surements

Timestamp

Energy consumption

Daily
Between 2 AM - 7 AM
Between 8 AM - 1 PM
Between 2 PM - 5 PM
Between 6 PM - 8 PM
Between 9 PM - 1 AM

Quality byte

Intrusion
Invalid lecture
Synchronization

Overflow
Hourly verification

Parameter modification
Power fault

Unit of measurement

Approx. 1-6
measure-

ments/month

Timestamp

Active energy Consumed
Produced

Reactive
energy

Four-quadrant
reactive energy

Electrical magnitudes

Active power (R,S,T)
Reactive power (R,S,T)
Electric current (R,S,T)

Voltage (R,S,T)
Power factor (R,S,T)

The dataset is comprised of SM measurements from the last ten years, from 1st May
2007 until 30 December 2016. It contains customers who throughout the period of analysis
either had none or at least one inspection. For customers who never had an inspection, their
sample represents their entire consumption history. Customers with at least one inspection
were divided into multiple samples. The methodology for creating multiple samples can
be be seen in Figure 3.1.
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Inspection: No anomaly found

Inspection: Anomaly found

Normalization Date

First sample: Target 0

Second sample: Target 1

Test sample > 90 days

En
er
gy

co
ns
um

pt
io
n

Figure 3.1 Scenario of a customer with multiple training samples.

By using the results of previous on-field inspections, two datasets have been created:

• Training dataset - this dataset has been created by selecting the customers who had
at least one on-field inspection.

• Ranked list dataset - this dataset has no labels and has been created by using cus-
tomers who never had an inspection or whose last normalization date was more than
ninety days ago (See Figure 3.1).

The training dataset has been used to train in a supervised manner, using the labels of
previous on-field inspections, several ML algorithms to assess their performance and
select the best algorithm. This dataset has been used to train an ML algorithm in order to
discover patterns in the characteristics of honest customers and customers detected with
an anomaly in their meter.

The ranked list dataset has been used to generate new on-field inspections, by using the
best ML algorithm trained with previous inspections data. This dataset gives the possibility
to assess the capability of the ML model to generalize beyond its training data, on unseen
customer samples.
Table 3.2 shows the number of customers used during training and in the ranking list.

As mentioned in Chapter 2, NTL datasets are naturally imbalanced. Figure 3.2 shows the
number of samples of customers with and without an NTL detected in the entire training
dataset. This is an extremely imbalanced dataset as the number of customer samples with
an NTL detected represents ≈ 5 % of the entire training dataset.

3.1.2 Methodology overview

The main aim of the proposed methodology was to provide an electricity utility with a
ranked list of customers, according to their probability of having an NTL in their electricity
meter. The methodology used mainly SM data for feature extraction (Figure 3.3). The
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Table 3.2 Size of the training dataset and the ranking list.

First day analysis 01/05/2007
Last day analysis 31/12/2016

Unique customers in the training dataset 41571
Customer samples in the training dataset 57304
Customer samples in the ranking list 72489

Figure 3.2 Target distribution.

features were based on SM alarms, EC and electrical magnitude measurements. It also
used features extracted from auxiliary databases which mainly provide geographical
and technological characteristics of the customer. The features extracted from auxiliary
databases have been provided by the utility.

A training dataset has been created by concatenating all the features obtained from SM
data and auxiliary databases. Several preprocessing techniques such as normalization
and missing data imputation have been used, in order to prepare the data to be used as an
input to the ML models. Feature normalization is a common ML preprocessing procedure,
where each feature vector is normalized to be within the same range as the rest of the
features. As most ML algorithms cannot work with missing values in the input, the missing
data have been imputed using the statistics on the available data.

After preprocessing the dataset, the original training dataset has been split into a training,
validation and test dataset. These datasets were further used as an input into several
ML algorithms for model selection and evaluation. After the best ML model has been
selected, its performance has been further improved by reducing the data imbalance. If
the performance of the best model met the desired standard required by the utility, its
parameters were saved and used to make predictions on new customer samples obtaining
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a ranked list of customers as the final output.

SM data

Data cleaning

Feature extractor

Features based
on SM alarms

Data preprocessing

Create a train, valida-
tion and test dataset

ML model selection

ML model evaluation

Reduce data imbalance

Does the performance
of any algorithm
meet the standard?

Ranked list of customers

First and last day of
each customer sample
(provided by utility)

Features based on the EC

Features extracted from
auxiliary databases

Features based on
electrical magnitudes

Yes

No

Figure 3.3 Methodology outline for NTL detection.

3.1.3 Feature engineering

Feature engineering is an important processing step in ML. The performance of a ML
model is dependent on how relevant are the features extracted for the NTL detection task.
These features are regularly used as an input to a ML algorithm. The following section
will focus on the methodologies used for feature extraction from SM data. The extracted
features are based either on ECmeasurements, smart meter alarms or electrical magnitudes.
The smart meter alarms and ECmeasurements are considered to be recorded synchronously
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whilst the electrical magnitudes are considered to be recorded asynchronously through
power snapshots.
Features based on EC measurements aim to detect a drop in consumption or unusual

consumption behaviors. They are divided into two types:

• Features that detect recent anomalies.

• Features that detect old anomalies or anomalies that start from the beginning of the
contract.

3.1.3.1 Features aimed to detect recent anomalies

A sudden decrease in the EC can be noticed for most of the fraud and non-fraud related
anomalies. To detect a recent drop in consumption, the Zscore can be used. This score
indicates how many standard deviations away from the mean is a new measurement.

Zscore =
Xi− X̄i

σXi

(3.1)

where Xi is an EC measurement of the customer i, X̄i is the mean EC of the customer i and
σXi

is the standard deviation of EC measurements of customer i.
Given the data granularity of SMs, the EC consumption history can be separated by

hours or type of day. Thus, a different set of Zscores can be obtained for the first hour of the
day, for weekdays, weekends etc. Figure 3.4 shows the procedure of feature extraction for
these scores. The objective is to compute the average Zscore of the last n days. The size
of this window is variable. As an example, a different set of features can be computed
for a window size of 30, 60, 180 days. The mean and the standard deviation of the EC
measurements are thus computed using the entire EC history except for the last n days.
The entire set of features can be inserted as an input to a ML algorithm or as input to a
feature selection algorithm in order to select the optimal window size given the dataset
available for training. Though the Zscore is able to capture recent drops in consumption, it
cannot capture drops in consumption that took place at the beginning of the contract as
the mean and standard deviation of the EC will already be shifted towards the anomalous
measurements.

In the case of a SM anomaly, in most cases, the SMs either stop sending measurements
or record 0 kWh energy consumption. A set of features can be created to capture this
behavior using a variable sized window. Figure 3.5 shows the methodology for feature
extraction. The day of the last measurement can be easily retrieved as the ECmeasurements
of SMs are timestamped.

Table 3.3 shows the features that have been computed to detect recent anomalies. Several
types of features have been created, by:

• type of day (t): weekday, Saturday, Sunday.

• number of days (n): 15, 30, 45, 60, 90.

• time windows (w): as described in Table 3.1.
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Figure 3.4 Zscore feature extraction.

3.1.3.2 Features aimed to detect old anomalies

To detect anomalies that have started before the period of analysis, or from the beginning
of the contract, clustering techniques must be employed as for these cases a sudden drop
in consumption cannot be observed.
Customer segments can be created by grouping customers by diverse characteristics
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Figure 3.5 Feature extraction for anomaly detection in SMs.

Table 3.3 Features aimed to detect recent anomalies.

Type of data Input Features

EC

Number of 0 kWh measurements in the last
n days

Slope of a linear model approximation
Number of measurements received in the

last n days
Average Zscore of measurements taken

during time window w on type of day t in
the last n days

Average Zscore of daily EC measurements
taken on type of day t in the last n days

of their contracts such as contracted power, tariff type or type of business in case of
commercial customers. The K-Means clustering algorithm proposed by Lloyd in [57] can
be used to create customer segments on continuous data such as the contracted power. For
discrete data such as tariff type or type of business, the grouping of customers is done
automatically.
Within these customer segments, there are several methods that can be employed to

detect abnormal consumption patterns. In this thesis, we will explore both distance based
as well as density based features.

a. Features based on distance metrics
If data of previous on-field inspections are available, base consumption profiles can be
created using the consumption data of customers who weren’t identified with an NTL in
their meters. For each customer segment, a base profile can be created for each month of
the analysis. Using the timestamp of EC measurements, the base profiles can be further
improved by dividing the ECmeasurements by type of day (e.g. Monday, Tuesday, weekday,
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weekends):

Bk
i, j,t = {

1
N ∑

z∈M
Pz

wt
: 1 < w≤ L}, (3.2)

where Bk
i, j,t is the base consumption pattern of month i, year j of the customer segment k

for type of day t. M represents the set of customers belonging to the customer segment
k that had an inspection without an anomaly detected whilst N is the number of these
customers. Pwt

represents the average power consumption for type of day t during the time
window w selected within a day. L represents the number of time windows selected within
a day.
The maximum size of the base profile L is 24 if the hourly measurements are not

aggregated further (e.g. morning, noon, evening).
After creating the base profiles for each customer segment part, a customer profile can

be created for each customer in part, by using the last month of its EC history. These
profiles are created for each customer, regardless if it had been previously inspected or the
results of its inspection.

Ct = {Pz
wt

: 1 < w≤ L} (3.3)

whereCt represents the consumption profile of the last month and Pwt
is the average power

consumption for type of day t during the time window w selected within a day. L represents
the number of time windows selected within a day.
Using the consumption profile of each customer, and the base profile assigned to its

customer segment, two distance metrics can be computed: the Manhattan distance and the
euclidean distance. The Manhattan distance can be computed for each time window in
part and for the entire day, using the following mathematical formulations:

MHTwt
= |Pwt

− 1
N ∑

z∈M
Pz

wt
|, (3.4)

MHTTt
=

L

∑
w=1
|Pwt
− 1

N ∑
z∈M

Pz
wt
|, (3.5)

where MHTwt
is the Manhattan distance of a consumption profile for time window w and

for type of day t, and MHTTt
is the total Manhattan distance of all time windows.

The Euclidean distance can be computed on an entire day, by aggregating the distances
within each time frame. It is defined as follows:

ECLTt
=

√√√√ L

∑
w=1

(Pwt
− 1

N ∑
z∈M

Pz
wt )

2, (3.6)

where ECLTt
is the total euclidean distance of all time windows.

Table 3.4 shows the features that have been computed using distance metrics.
b. Features based on density metrics

The second approach to detect an unusual customer behavior consisted on using the Local
Outlier Factor (LOF) [58]. This metric assigns to each customer profile a degree of being
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Table 3.4 Features aimed to detect old anomalies (distance metrics).

Type of data Input Features

EC
Total euclidean distance for type of day t
Total Manhattan distance for type of day t
Manhattan distance of time window w for

type of day t

an outlier by measuring how isolated is its consumption profile in comparison with the
profiles in its neighborhood.

To compute the LOF for each customer involved, the last month’s EC measurements of
each customer were clustered together, according to their customer segment. Table 3.5
describes the features that have been computed, using this metric.

Table 3.5 Features aimed to detect old anomalies (density metrics).

Type of data Input Features

EC
LOF score of daily EC measurements for

type of day t
LOF score of EC daily profile for type of

day t

3.1.3.3 Features based on smart meter alarms

Features developed using the quality byte (QB) measurement are aimed to detect meter
faults or physical tampering. The QB measurement uses an 8-bit code to assess the quality
of the measurement, as the IEC 870-5-102 protocol defines [59]. Table 3.6 shows what
type of alarms the SMs register.
In order to compute features related with alarms, each QB measurement, which was

initially represented with the decimal numeration system has been converted to its binary
representation. Furthermore, the binary value has been split into eight separate values, each
value representing an alarm. If an alarm was triggered during the period of measurement
(one day in our case) its value will be set to 1. Otherwise, its value will be zero.

Figure 3.6 shows an example of how a QB measurement was interpreted. When the
value of a QB measurement is 130, its binary value will be 10000010, meaning that IV
and AL were activated during the day when the measurement was taken.

1 0 0 0 0 0 1 0

130 decimal to binary

IV SINC OW VH MP INT AL U

IV and AL alarms activated

Figure 3.6 Example of a QB measurement..
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Table 3.6 Alarms registered by the QB measurement [59].

Bit Alarm Description
7 IV The measurement is valid (IV = 0)

6 SINC Synchronized meter during the period
of measurement (SINC = 1)

5 OW Overflow (OW = 1)

4 VH Hourly verification VH during the
period of measurement (VH = 1)

3 MP Parameter modification during the
period of measurement (MP = 1)

2 INT An intrusion has occurred during the
period of measurement (INT = 1)

1 AL Incomplete period due to power fault
(AL = 1)

0 U Unit of measurement. 0 for kWh/kvarh
and 1 for MWh/Mvarh

Depending on the length of the contract, each customer will have a different number of
QB measurements thus these indicators cannot be used in their raw state as a ML algorithm
will require a fixed number of inputs. Instead of using the raw measurements, the features
described in Table 3.7 have been computed for each customer. These features are generated
for each x alarm (IV, SINC, OW, VH, MP, INT, AL) for different numbers of n days (15,
30, 60, 90, 180, 360, 720).

Table 3.7 Features based on SM alarms.

Type of data Input Features

QB
Number of days with alarm x in the last n

days
Number of days from last x alarm

3.1.3.4 Features based on electrical magnitudes

The features developed using the electrical magnitudes (EM) were aimed to detect mainly
fraud such as phase inversions and shunts (three-phase customers). The snapshots were
divided within three time frames (9AM to 6PM, 7PM to 10PM and 11PM to 8AM). The
last snapshot within each time frame has been taken in order to compute the features. Table
3.8 shows the features developed using EM.

3.1.4 Supervised machine learning models

3.1.4.1 Evaluation and metrics

To evaluate the performance of the ML models, the original training dataset was split into
a reduced training dataset, a validation dataset and a testing dataset. The validation dataset
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Table 3.8 Features based on electrical magnitudes (three-phase customers).

Type of data Detection
aim Input Features

Electrical
magni-
tudes

Phase
inversion

Phase voltage ≤ 0 (Yes/No)
Phase imbalance
∆V = Vmax−Vmin

Vmax
Phase electric current ≤ 0

(Yes/No)
Phase active power ≤ 0

(Yes/No)

Shunt Neutral current ratio IN
Imax

Neutral current angle

was used to tune the hyperparameters of the ML models whilst the testing dataset was
used to assess how well the models generalize to new, unseen customer samples. This is a
general practice in ML.
In Figure 3.7, the approach for model selection and evaluation is presented. Given the

scarcity of NTL samples, a nested cross-validation (NCV) has been chosen to make use of
the available data as much as possible. A 3-fold NCV has been chosen to use as example
in Figure 3.7 for simplicity reasons. In practice, a 5-fold nested cross validation has been
used. The test fold was used only in the model evaluation stage.

Model selection

Model evaluation
Train Validation Test

Figure 3.7 3-Fold Nested Cross-Validation example.

One of the most common metrics used for assessing the performance of a ML algorithm
is accuracy. However, the accuracy of an algorithm on a severely imbalanced dataset
cannot provide a real assessment of its predictive power. Just by using a naive predictor
which predicts that none of the customers has an NTL in their meter we would achieve an
accuracy of approximately 95 %.

A performance metric that has been proven to be reliable on imbalanced datasets is the
area under the receiver operating characteristic curve (ROC-AUC) [60], [61]. This metric
assesses how fast the true positive rate increases with the increase of the false positive
rate. By varying the decision threshold, the trade-off between the true and false positive
rates can be observed on the ROC curve. The score ranges between 0 and 1, a score above
0.5 being obtained with better than random predictions. However, the ROC-AUC score
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does not take into account the precision of the model, a metric that is extremely important
for the NTL detection task. A metric suitable for imbalanced datasets that also takes into
account the precision of the model is the area under the precision-recall curve (PR-AUC)
[62, 63]. The PR-AUC score ranges as well between 0 and 1. The PR-AUC of a random
classifier is ≈ 0.05, corresponding to the percentage of NTL samples in the dataset.

Both the ROC-AUC score and the PR-AUC score have been used to evaluate the perfor-
mance of the ML models.

3.1.4.2 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is one of the simplest classification algorithms. It uses the
training data at test time to find the nearest neighbors. In our scenario, to get a probability
estimate of having an anomaly for a new customer, the algorithm looks at the results of
the previous on-field inspections. The results of the on-field inspections of the closest
neighbors will be therefore averaged in order to compute a probability for the new customer.

Table 3.9 shows the hyperparameters used during grid-search along with their optimal
value found using the validation dataset.

Table 3.9 KNN Grid-Search.

Hyperparameter Range of values Optimal value
K 2, 4, 8, 16 16
p 2, 3 2

Figures 3.8 and 3.9 show the performance of the KNN model on the test dataset. The
KNN model obtains a ROC-AUC significantly higher compared to the ones obtained using
random predictions. For the PR-AUC score, the KNN model performs ≈ 6 times better
than random predictions.

3.1.4.3 Logistic Regression

The Logistic Regression (LR) algorithm has also been used in the comparison. This classi-
fication algorithm simply takes the matrix of input features X , multiplies it with a matrix of
weights θ and passes it through the sigmoid function g(z) = 1

1+e−z , where z = θ
T X [64].

The classifier has been trained on a logarithmic loss function using the LIBLINEAR solver
[65]. Table 3.10 shows the optimal values found for the hyperparameters used during
grid-search.

Table 3.10 LR Grid-Search.

Hyperparameter Range of values Optimal value
C 0.001, 0.01, 10, 100 0.01
R L1 norm, L2 norm L2 norm

Figures 3.10 and 3.11 show the performance of the LR model on the test dataset. The
LR model obtains ROC-AUC score of 0.842, which is significantly higher than the one
obtained by the KNN model as well as the one obtained by making random predictions.
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Figure 3.8 ROC curve for the KNN model.

Figure 3.9 PR curve for the KNN model.

The model also obtains a PR-AUC score of 0.382, an improvement over random predictions
of more than 7 times.
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Figure 3.10 ROC curve for the LR model.

Figure 3.11 PR curve for the LR model.

3.1.4.4 Support Vector Machines

Support Vector Machines (SVM) are a very popular classifier for anomaly detection in
the utilities. They not predict probability estimates but rather decision values. An SVM
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algorithm takes the input features into a high dimensional space and tries to find the optimal
hyperplane that maximizes the margin between the vectors of the two classes [66]. This
margin will be determined by the support vectors of the classes. The support vectors are
customer samples from the training dataset that are the closest to the decision function.
Table 3.11 shows the optimal hyperparameters found during grid-search. The kernel

parameter is helpful if the customer classes are not linearly separable by a hyperplane in
the high dimensional space.

Table 3.11 SVM Grid-Search.

Hyperparameter Range of values Optimal value
C 0.001, 0.01, 10, 100 0.001

Kernel Linear, Radial Basis Function Linear

As can be seen in Figure 3.12, the SVM obtains a slightly higher ROC-AUC score than
the LR. However, when taking into consideration the PR-AUC score (see Figure 3.13), its
performance is worse than the one of the LR model.

Figure 3.12 ROC curve for the SVM model.

3.1.4.5 Extreme Gradient Boosted Trees

XGBoost is one of the most popular ML algorithm in the data science community. In
2015, 17 out of 29 winning solutions on the Kaggle platform used XGBoost [67]. The
algorithm uses gradient boosting [68] with a regularized cost-function. Gradient boosting
builds an additive model by combining the predictions of many "weak" classifiers. The
classifier in this case is a regression tree.
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Figure 3.13 PR curve for the SVM model.

The model starts the training process with only one regression tree. This regression
tree is looking to find a set of rules that separate customers with/without anomalies as
best as possible. After building the first tree, the model adds a new regression tree with
each training round. In each round, the model looks where the previous tree has predicted
poorly and builds a new tree with a set of rules which will correct the mistakes of the
previous one.
Table 3.12 shows the hyperparameters used during grid-search for XGBoost.

Table 3.12 XGBoost Grid-Search.

Hyperparameter Range of values Optimal value
Number of trees 1000, 2000 2000
Learning rate 0.01, 0.1 0.01

Maximum depth 7, 15 15
Minimum child weight 1, 10 1

As can be seen in Figures 3.14 and 3.15, XGBoost significantly outperforms all the
previous ML models. It obtains a ROC-AUC score of 0.864 and a PR-AUC score of 0.508.
The XGBoost model has a significant advantage over the rest of the models, especially
when the precision of the model is also taken into consideration.

3.1.4.6 Comparison

The experiments done above show that the XGBoost model outperforms the rest of the
classifiers whilst the KNN model obtains the lowest performance. When the PR-AUC of
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Figure 3.14 ROC curve for the XGBoost model.

Figure 3.15 PR curve for the XGBoost model.

the models is taken into consideration, the performance of XGBoost is significantly better
in comparison with the rest of classifiers.
Figure 3.16 shows the execution time for all the ML models used in the comparison,

during both training and testing. As it can be seen, LR was extremely fast to train and to
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test. The KNN model does not have any training step as it simply uses the entire training
dataset to make a prediction, at test time. This can be a major issue as the dataset used to
create the ranking list is often much larger than the training dataset. Finding the nearest
neighbors requires going through the entire training dataset, for each customer in the
ranking list in part. This can be a very computationally expensive process. The XGBoost
model had the longest training time, but its test time was as fast as the one of the LR model.

Figure 3.16 Execution time.

3.1.5 Reducing the data imbalance

As seen previously, only ≈ 5 % of the samples in the training dataset belong to SMs who
had been identified with an NTL. This is an extremely imbalanced dataset. To mitigate
this challenge, the dataset imbalance has been reduced using undersampling techniques.
Undersampling simply removes samples that belong to the majority class. In this case, the
majority class is represented by samples found with no NTL in the meter. To select which
samples should be removed, two methods have been used:

• Undersampling by removing the samples of customers who were not identified with
an anomaly in their meter but have been inspected by inspectors who might have
misclassified fraudulent customers for more than 3 times. The misclassification
has been assessed by looking at customers who had an inspection with no anomaly
detected before an inspection with anomaly detected.

• Undersampling by removing the samples of honest customers using a different
number for the random seed.

The undersampling techniques have reduced the training dataset by ≈ 35 %. Their
effects on the performance have been assessed by using the best ML model found in the
comparison: XGBoost. Figures 3.17 and 3.18 show the results obtained after using both
undersampling techniques.
As it can be seen, undersampling techniques significantly improve the performance

of the XGBoost model. The improvement can be seen on both metrics (ROC-AUC and
PR-AUC). The first undersampling method is slightly outperforming the second method



40 Chapter 3. Summary of results

Figure 3.17 ROC curves for undersampling vs. no undersampling.

Figure 3.18 PR curves for undersampling vs. no undersampling.

which has been used with different random seeds. However, the boost in performance is
not conclusive.

3.1.6 Performance analysis on type of data

The ML models used as input, features coming from two data sources: SM data and
auxiliary databases. The features extracted from the SM data have been described in the
previous section. The features extracted from the auxiliary databases have been provided
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by the utility. Their description can be found in [20]. These features come from four types
of databases:

• TS (Tariff Summary) - contains monthly EC and the maximum power in up to six
different tariff periods.

• GIS (Geographic Information System) - provides information not only on the location
of the customer but also on the rate of NTL in the neighborhood.

• TECH (Technological characteristics) - contains information such as the brand and
model of the SM as well as whether the SM is located inside/outside.

• CONTRACTS - includes information related to contract events as well as the activity
type of the customer.

Table 3.13 shows the ROC-AUC score obtained by using different subsets of features.

Table 3.13 Performance analysis on type of data.

Data source Type of data ROC-AUC score

SM data
EC 0.80

EC+QB 0.85
EC+QB+EM 0.88

Auxiliary databases

TS 0.76
TS+GIS 0.84

TS+GIS+TECH 0.85
TS+GIS+TECH+CONTRACTS 0.86

Just by using the SM data, a ROC-AUC score of 0.88 is obtained. When it comes
to the SM data, the highest boost in performance has been obtained by including the
features extracted from SM alarms. The features extracted from electrical magnitudes add
a boost in performance of 0.03 to the ROC-AUC score. For the features extracted from
auxiliary databases, the highest impact is given by GIS features. This is not very surprising,
especially as the authors in [50] already found that neighborhood features increase the
predictive power of a ML model trained for NTL detection.
Figure 3.19 shows the PR curves for all the subset features described in Table 3.13.

The SM data features obtain much higher precision for the same recall obtained by the
auxiliary data features.

3.2 Raw smart meter data and hybrid deep neural networks for detec-
tion of non-technical losses

This section will describe the proposed methodology and the results obtained in [21]. The
methodology has been developed and tested with real SM data of a spanish electricity
utility. The data came from residential and small commercial customers with a contracted
power smaller than 15 kW.
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Figure 3.19 PR curves for different subsets of features.

The main aim of this methodology was to be able to self-learn the features relevant
for detecting NTL in SMs, removing the need of handcrafted feature engineering. The
proposed architecture consisted of a long short-term memory (LSTM) network and a
multi-layer perceptrons (MLP) network, which used as an input simple raw data that come
either from SMs or auxiliary databases. The first network analyses the raw daily EC
history whilst the second one integrates non-sequential data such as the contracted power
or geographical information.

This work differentiated itself from similar works presented in Chapter 2, by:
• Proposing a state-of-the-art methodology that can self-learn features that are relevant
for NTL detection. This methodology was able to integrate both sequential and
non-sequential data. To my knowledge, this was the first deep learning architecture
for NTL detection that is able to accommodate both types of data.

• Investigating the boost in performance obtained by combining both types of data
and showing that the hybrid network significantly outperforms a network that uses
only EC data as an input.

• Showing that the proposed architecture vastly outperforms previous NTL detection
models that were based on deep learning and raw data, as well as traditional ML
classifiers.

The methodology was used as an NTL detection tool in the same electricity utility, achiev-
ing a precision of ≈ 47 % for new on-field inspections generated by the model.

3.2.1 Why use raw data?

The figures below show the EC history of specific SMs found with NTL in their meters.
Figure 3.20 shows the EC profile of a SM that was directly tampered with a shunt device
between the input and output terminals of the SM to divert the current.
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Figure 3.20 Shunt case (Source: Endesa).

An example of a double tapping fraud is shown in Figure 3.21. Double tapping is
a typical fraud case, where part of the consumption is connected directly to the grid,
bypassing the SM. In this particular case, the fraud occured from the beginning of the
contract, so a descent in the consumption cannot be observed.

Figure 3.21 Double tapping case (Source: Endesa).

Figure 3.22 shows the case of a SM found with an electronic fault, a common cause of
anomaly in SMs.
As it can be seen, though in all NTL cases the meter reports lower EC readings, the

change in the consumption profile is manifested differently depending on the NTL source.
Traditional approaches aim to capture the behavior of different types of NTL using hand-
crafted feature engineering, as there is no mathematical formulation for the EC pattern of a
SM with a shunt or double tapping. Their aim is to create a set of features that characterize
each type of anomaly or fraud encountered through on-field inspections. As an example,
features that detect a sudden drop in consumption are aimed to detect cases of shunts. In
the case of electronic faults, features that monitor the number of 0 kWh measurements
or number of missing measurements are employed. Unfortunately, these approaches rely
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Figure 3.22 Electronic fault case (Source: Endesa).

heavily on expert knowledge which is very expensive and time-consuming. Moreover,
they require experts to develop continuously new features in order to adapt to new types of
NTL.
The deep learning architecture described in the next sections of this chapter has been

created in order to mitigate the constraints of previous approaches, as it is able to self-
learn the features relevant for NTL detection from raw EC measurements and can adapt
automatically to new NTL behavior in the SM data.

3.2.2 Methodology

Figure 3.23 shows the methodology used to develop and test the deep learning model.
As it can be seen, it needs as an input three types of data: EC history recorded by the
SMs, auxiliary (geographical, contractual, technical and economic) data and the results of
previous on-field inspections along with their dates. The SM data were used to create the
LSTM input whilst the auxiliary data were used for the MLP input.
The same methodology described in Section 3.1.1 has been used to create customer

samples. The processed dataset was split further based on whether a customer sample
has been previously inspected or not. This created a labeled and unlabeled dataset. The
unlabeled dataset consisted of samples belonging to customers who were never inspected
or whose normalization date was more than 365 days ago. The labeled dataset was used to
train the model in a supervised manner, using the results of previous on-field inspections.
This dataset was split further into a training, validation and test dataset in order to assess
the performance of the model on samples that have not been seen during training.

A thorough description of the data processing techniques used can be found in Section
3.2.3. During model selection, the best hyperparameters of the model were selected using
the validation dataset. The final performance was assessed on the test dataset. Similarly
with the previous approach, if the model performance on the test dataset was acceptable
for the utility, the trained model was used to make predictions on the unlabeled dataset,
creating a ranked list of customers to be inspected.
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Figure 3.23 Methodology outline for NTL detection using raw data and hybrid neural
networks.

3.2.3 Data availability and processing

Two types of data sources have been used in this methodology: SM data and auxiliary
databases. The data has been provided by an electricity utility and contained meter
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measurements and additional information of SMs that belong to residential and small-
commercial customers, with a contracted power lower than 15 kW. Table 3.14 shows the
data availability for this methodology. These data have been anonymized and a noise of
approximately 5 km has been added to the geographical coordinates.

Table 3.14 Data availability.

Type of data Data

Smart meter data Hourly energy consumption
Timestamp of energy consumption measurements

Geographical data

Latitude
Longitude
Altitude

Municipality

Contractual data
Contracted power
Contract type

Voltage

SM technical data

SM model
SM location

SM firmware version
SM production year

Economic data Economic activity code

The labeled dataset that was used for training consisted of SMs which had at least one
on-field inspection. To analyze the capability of the model to generalize beyond its training
dataset, the original data have been split into a training, validation and test dataset. This is
a different approach compared to the previous work, which used a nested cross-validation
method for testing and selecting the best hyperparameters of each each model. However,
using cross-validation techniques on deep learning algorithms can be very computationally
expensive thus a single split of the original training dataset has been chosen.
The split has been done in a stratified manner, so that there is the same % of NTL

samples in each dataset. The training dataset consisted of 80 % of the labeled dataset,
whilst the validation and test datasets consisted of ≈ 10 % each. Table 3.15 shows the
number of samples in each dataset as well as their % of NTL samples.

Table 3.15 Labeled dataset.

Dataset type Number of samples % of NTL samples
Training 85226 13.34%
Validation 10612 13.50%

Test 10701 13.23%

As it can be seen, the dataset is highly imbalanced which can make the model biased to
probabilities closer to 0. This imbalance is however lower than the one in the previous
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dataset.
Several data processing techniques have been used to process both the labeled and

unlabeled datasets. Each type of sequential data (e.g. time series data such as the EC
history) have been normalized separately, using their maximum value:

f (x) =
x

max(x)
(3.7)

In the case of non-sequential features, the missing values in non-categorical features were
replaced with the mean. For categorical features, a special "Unknown" category has
been created to replace missing data. After imputing the missing data, the non-sequential
features were standardized to have 0 mean and unit variance using the following formula:

f (x) =
x− x̄

s
(3.8)

where x̄ represents the mean of the input feature and s represents the standard deviation.

3.2.4 Hybrid deep neural network architecture

Figure 3.24 shows the architecture of the hybrid neural network (HNN-NTL), which is
capable of integrating both sequential and non-sequential SM information. The network
consists of three modules:

• LSTM module - uses the sequential data of the SM (e.g. EC).
• MLP module - uses the non-sequential data as as an input (e.g. SM location, model).
• Hybrid module - uses as input the outputs of the LSTMmodule and the MLPmodule
and provides the final probability of having an NTL in the SM.

This type of architecture is very efficient as it permits joint training on both types of input.
A detailed description of each module is presented in the following subsections.

Figure 3.24 HNN-NTL model architecture.
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3.2.4.1 Long short-term memory module for sequential data

Table 3.16 shows the input features that get fed into the LSTM model at each time step.
The size represents the number of values that get fed into the input. Though the SMs
record the EC hourly (See Section 3.2.3), the granularity has been reduced to the daily
level as it has yielded better results than using the hourly measurements. The weekend ECs
were removed using the timestamp of each SM measurement. Thus, the weekly profile
consisted of 5 measurements of the daily average consumption at each time step.

Table 3.16 LSTM input at each time step.

Input Description Size
Weekly profile Daily energy consumption of

the weekdays. 5
Zero measure-
ments

Number of 0 kWh measure-
ments in each weekday. 5

Missing mea-
surements

Number of null measure-
ments in each weekday. 5

Season
The season of the week
(spring, summer, autumn,
winter).

4

Since the EC history recorded by the SMs can be years long and it is increasing day
by day, a simple recurrent neural network [69] cannot be used as it would be very hard
to train due to its vanishing and exploding gradient problems [70]. Thus, to capture the
long-term dependencies in the variable-sized EC data an LSTM cell has been used [71].
The LSTM cell uses the sigmoid σ(x) = 1

1+e−x and the hyperbolic tangent tanh(x) = e2x−1
e2x+1

as nonlinear activations and it has the following mathematical formulation:

it = σ(Wixt +Uiht−1 +bi) (3.9)

ft = σ(Wf xt +U f ht−1 +b f ) (3.10)

ot = σ(Woxt +Uoht−1 +bo) (3.11)

Ct = ft �Ct−1 + it � tanh(Wcxt +Ucht−1 +bc) (3.12)

ht = ot � tanh(Ct) (3.13)

where it , ft , ot , Ct and ht represent the activations of the input gate, forget gate, output
gate, cell state and hidden state at time step t. Wi, Wf , Wo and Wc represent the weights of
the input layer whilst Ui, U f , Uo and Uc represent the recurrent weights of the LSTM. bi,
b f , bo, bc are the biases of the network whilst xt is the input feature vector at time step t
and ht−1 represents the hidden state activation at the previous time step. � represents the
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element-wise multiplication (Hadamard product).
The LSTM module sees the entire EC history, week by week, and it provides a single

final output, hT , which is the hidden state of the LSTM cell at the final time step (last week
of the sample).

3.2.4.2 Multi-layer perceptrons module for non-sequential data

The MLP network was used to analyze the non-sequential data. The input data that has
been used for this module can be found in Table 3.17. Input features that are continuous
have a size of 1 whilst categorical features have a higher dimension. Entity embeddings
[72] have been used to encode the categorical variables, instead of one-hot-encoding, in
order to reduce the input space of the MLP network.

Table 3.17 MLP input data.

Type of data Input Size

Geographical data

Latitude 1
Longitude 1
Altitude 1

Municipality 5

Contractual data
Contracted power 1
Contract type 2

Voltage 1

SM technical data

SM model 3
SM location 3

SM firmware version 3
SM production year 3

Economic data Economic activity code 10

The MLP module has N hidden layers, where N is chosen using the validation dataset.
Each hidden layer goes through an affine transformation (n > 0):

zn =Wnhn−1 +bn (3.14)

whereWn represents the weights of layer n, hn−1 represents the hidden state of the previous
layer and bn represents the bias of the nth layer.

To speed up the convergence of the network, a batch normalization layer [73] has been
used on the affine transformation:

bn = γ ẑn +β (3.15)

where ẑn represents the standardized affine activation with the mean and standard deviation
of the batch sample and γ and β are trainable parameters that are tuned during optimization.

The final state of the hidden layer was obtained by using a rectified linear unit:

hn = max(0,bn) (3.16)
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3.2.4.3 Hybrid module

The hidden state hLST M of the hybrid module has been obtained using as input the hidden
state of the LSTM cell hT at the final time step (T is the sequence length). Similarly, the
hidden state hMLP has been computed using as an input the hidden state activations of the
last hidden layer in the MLP module hN . Both hLST M and hMLP have been computed using
the transformations described in the equations (3.14), (3.15) and (3.16).
The hybrid module simply takes afterwards the hidden states hLST M and hMLP and

concatenates them in order to form a new hidden layer.
The final state of the HNN-NTL model is obtained as follows:

hHNN = max(0,γ ẑHNN +β ) (3.17)

where ẑHNN = WHNN [hLST M,hMLP]+bHNN and γ and β are trainable parameters of the
model.
The outcome of the network was computed using the sigmoid activation, providing a

score between 0 and 1. This score can be interpreted as the probability that there is an
NTL in the SM, though its confidence strength depends on the strength of regularization
[74]:

PNT L =
1

1+ e−(WNT LhHNN+bNT L)
(3.18)

where PNT L represents the probability that there is an NTL in the SM. WNT L and bNT L
represent the trainable weights and bias of the output layer.

3.2.4.4 Learning and evaluation

The performance of the model has been evaluated with the logarithmic loss function, as
this is a binary classification task:

L =
1
M

M

∑
i=1
−(yi log(Pi

NT L)+(1− yi) log(1−Pi
NT L)) (3.19)

where M is the number of customer samples, yi is the ground-truth label and Pi
NT L is the

probability of NTL computed by the HNN-NTL model for the customer sample i.
The trainable parameters of the model have been initialized with a Xavier initialization

[75] and optimized to minimize the loss function using the Adam optimizer [76], a first-
order gradient-based optimization method.
The same metrics used in the previous approach have been used, as the dataset is as

well very imbalanced and the goal of this methodology is the same as the previous one: to
rank customers with NTL as high as possible. Thus, the ROC-AUC and PR-AUC scores
are reported for the HNN-NTL model as well as for all the models used in the comparison.
The ROC-AUC score of a dummy model which makes random predictions is 0.5 whilst its
PR-AUC score is the percentage of NTL samples in the dataset, in this case ≈ 0.13.

3.2.4.5 Results

As it was seen in Figure 3.24, the size of the HNN-NTL network can be adjusted by
controlling the size of various hidden layers such as hLST M and hHNN . A grid-search has
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been implemented in order to find the best hyperparameters. Table 3.18 shows the range
of values searched as well as the optimal values found. The optimal values were found
by monitoring the performance on the validation dataset. As a regularization method, a
dropout layer has been used on the output of the hLST M , hMLP, hHNN and every hi layer of
the MLP module. No regularization has been used on the LSTM cell hCELL, as it did not
improve the performance of the model.

Table 3.18 HNN-NTL hyperparameters search.

Hyperparameter Range of values Optimal value
N 4, 6 4

Size hi 256, 512 256
Size hCELL 256, 512 256
Size hLST M 256, 512 512
Size hMLP 256, 512 512
Size hHNN 1024, 2048 1024
Dropout 0.3, 0.5 0.3

a. LSTM with the weekly profile
This experiment uses only the LSTM module from the HNN-NTL model, in order to
assess its performance and prediction capabilities. It also uses only the weekly profile as
an input, omitting the information related to the number of 0 kWh and null measurements
as well as any temporal information of the EC history such as the season at each timestep.

Figure 3.25 shows the performance of the LSTM model when using as input only the
weekly profile. As can be seen in Figures 3.26 and 3.27, a PR-AUC of 0.33 and a ROC-
AUC score of 0.72 have been obtained on the test dataset. Even with such simple input,
the model significantly outperforms random predictions.

b. LSTM with all data
The next experiment uses only the LSTM module, but with the entire input (weekly profile,
zero measurements, missing measurements and season). Figures 3.28, 3.29 and 3.30 show
the model performance of the LSTM model when using all input data. By using this
additional data, the PR-AUC has increased from 0.33 to 0.41 on the test dataset.

c. HNN-NTL model
The performance of the HNN-NTL model can be seen in Figures 3.31, 3.32 and 3.33.
As can be seen, the HNN-NTL model greatly outperforms the LSTM model, obtaining a
PR-AUC score of 0.54 on the test dataset. As expected, using non-sequential features such
as the contracted power or the SM model dramatically improves the performance for NTL
detection.
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Figure 3.25 Simple LSTM model performance during training.

Figure 3.26 PR curve of simple LSTM model using the best trained model.
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Figure 3.27 ROC curve of simple LSTM model using the best trained model.

Figure 3.28 LSTM model performance during training.
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Figure 3.29 PR curve of LSTM model using the best trained model.

Figure 3.30 ROC curve of LSTM model using the best trained model.

3.2.5 Comparison with traditional machine learning models

In this section, a comparison between the performance of the HNN-NTL model and
state-of-the-art classifiers has been made. The following algorithms have been used in the
comparison:

• Support Vector Machines (SVM)
• Logistic Regression (LR)
• Random Forests (RF)
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Figure 3.31 HNN-NTL model performance during training.

Figure 3.32 PR curve of HNN-NTL model using the best trained model.
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Figure 3.33 ROC curve of HNN-NTL model using the best trained model.

• Extreme Gradient Boosted Trees (XGBoost)

• Multi-Layer Perceptrons (MLP) Networks

All the models described above require a fixed size input, thus a fixed size window of one
year on the sequential data has been used (daily EC of the past year). The same training,
validation and test datasets described in Table 3.15 have been used for all the models in
this comparison.
The input that was used for these models is shown in Table 3.19. The auxiliary data

input is equivalent to the same input used in the MLP module of the HNN-NTL model.
The same entity embeddings have been used for the categorical features. The EC input
consists of the same information that has been used in the LSTM module, but restricted to
the EC of the previous year.

3.2.5.1 Support Vector Machines

As seen in the previous methodology, as well as in Chapter 2, the SVM is a very popular
classifier for NTL detection. Table 3.20 shows the range of hyperparameters used during
grid-search as well as their optimal values found on the validation dataset. In this case,
only a linear kernel has been used due to the size of the dataset.

Figures 3.34 and 3.35 show the performance of the SVMmodel on the training, validation
and test dataset. The ROC-AUC and PR-AUC scores are much more lower than the ones
obtained with the HNN-NTL model. However, the model is still performing considerably
better than random predictions.

3.2.5.2 Logistic Regression

The LR model developed in the previous methodology has been used. Table 3.21 shows the
hyperparameters used during grid-search for LR along with their correspondent optimal
values.
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Table 3.19 SVM, LR, RF, XGBoost and MLP inputs.

Input Description Size

Auxiliary data

Latitude 1
Longitude 1
Altitude 1

Municipality 5
Contracted power 1
Contract type 2

Voltage 1
SM model 3
SM location 3

SM firmware version 3
SM production year 3

Economic activity code 10

EC input
Daily EC consumption 260
Daily zero measurements 260

Daily missing measurements 260

Table 3.20 SVM hyperparameters search.

Hyperparameter Range of values Optimal value
C 0.001, 0.01, 10, 100 0.001

Figure 3.34 ROC curve of SVM model using the best trained model.
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Figure 3.35 PR curve of SVM model using the best trained model.

Table 3.21 LR hyperparameters search.

Hyperparameter Range of values Optimal value
C 0.001, 0.01, 10, 100 0.001
R L1 norm, L2 norm L2 norm

Figures 3.36 and 3.37 show the performance of the LR model. As it can be seen, the
LR model slightly outperforms the SVM. The performance on train, validation and test
dataset is very similar which suggests that the model is not overfitted and that it has the
ability to generalize beyond its training dataset.

3.2.5.3 Random Forests

RF fall into the category of ensemble models [77]. The algorithm combines several
decision trees to create a collection of trees that can make more accurate predictions. The
mode of the predictions of individual trees is used in order to output a final decision. Table
3.22 shows the hyperparameters used during grid-search for RF.

Table 3.22 RF hyperparameters search.

Hyperparameter Range of values Optimal value
Number of trees 1000, 2000 1000

Minimum samples split 5, 10, 15 10
Maximum depth 7, 15 15

Minimum samples leaf 5, 10, 15 15
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Figure 3.36 ROC curve of LR model using the best trained model.

Figure 3.37 PR curve of LR model using the best trained model.

Figures 3.38 and 3.39 show the performance of the RF model. As it can be seen, the
RF model significantly outperforms the SVM and LR models. However, the gap between
the performance of the training, validation and test datasets is now considerable. This
was expected as the RF model is using decision trees which are known to be prone to
overfitting. Though the RF model outperforms the rest of the traditional classifiers, it still
has not been able to surpass the performance of the HNN-NTL model.
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Figure 3.38 ROC curve of RF model using the best trained model.

Figure 3.39 PR curve of RF model using the best trained model.

3.2.5.4 Extreme Gradient Boosted Trees

XGBoost has already been used successfully for NTL detection [20]. It is thus only fair
to include it into the comparison. Table 3.23 shows the hyperparameters used during
grid-search as well as the optimal values found.
Figures 3.40 and 3.41 show the performance of the XGBoost model on the training,

validation and test datasets. As expected, XGBoost outperforms the SVM, LR and RF
models. The XGBoost model is as well using decision trees so the model is still overfitting
on the training dataset. This issue could be mitigated by searching for higher regularization
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Table 3.23 XGBoost hyperparameters search.

Hyperparameter Range of values Optimal value
Number of trees 1000, 2000 1000
Learning rate 0.01, 0.1 0.01

Maximum depth 7, 15 7
Minimum child weight 1, 5, 10 10

rates during grid-search. The performance of the XGBoost model is still considerably
lower than the one obtained with the HNN-NTL model.

Figure 3.40 ROC curve of XGBoost model using the best trained model.

3.2.5.5 Multi-Layer Perceptrons Networks

MLP networks have been used successfully for NTL detection in [45] and [44]. In this
comparison, the same architecture and hyperparameters of theMLPmodule from the HNN-
NTL model has been used. This MLP network has in addition input features extracted
from the raw EC data.
Figures 3.42 and 3.43 show the performance of the MLP model. The MLP model

has not been able to surpass the performance of the best traditional classifier: XGBoost.
A ROC-AUC score of 0.738 and a PR-AUC score of 0.314 has been obtained on the
test dataset. The results show that restricting the input to the last year of the EC history
dramatically affects the performance of the model. Neural networks by themselves are not
able to surpass the performance of powerful classifiers such as XGBoost. The ability of
the HNN-NTL model to surpass the performance of all traditional classifiers comes from
the fact that it is not constrained to restrict the input size of the EC history.
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Figure 3.41 PR curve of XGBoost model using the best trained model.

Figure 3.42 ROC curve of MLP model using the best trained model.

3.2.6 Comparison with other deep learning models

In this section, a comparison with the following deep learning approaches has been made:

• Convolutional Neural Networks, as in [51].

• Wide & Deep Convolutional Neural Networks, as in [54].

Both architectures do not allow for a variable sized input, thus the EC history has to be
restricted to a fixed size input as well.
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Figure 3.43 PR curve of MLP model using the best trained model.

3.2.6.1 Convolutional Neural Networks

CNN have been shown to outperform stacked autoencoders and LSTM networks in [51],
on a dataset with synthetic NTL samples. The same architecture proposed in [51], as well
as the same hyperparameters have been used. The original experiment used only monthly
EC data as an input to the CNN network but the granularity has been increased to daily
EC measurements given better data availability.

Furthermore, for fairness reasons, the experiments have been divided into two sections:

• First experiment: using only the EC data as an input.

• Second experiment: adding the MLP module from the HNN-NTL model to the
CNN architecture, so that the network has access to the same information as the rest
of the models.

a. Using only EC data as input
In this experiment, the CNN network uses as input only the 1D daily EC data, as can be
seen in Table 3.24.

Table 3.24 CNN input.

Input Description Size
EC input 1D daily EC consumption of last year. 260

Figures 3.44 and 3.45 show the ROC-AUC and the PR-AUC scores obtained using
the CNN network. As expected, the CNN performs very poorly compared to the HNN-
NTL model as well as to the traditional classifiers. A ROC-AUC score of 0.689 and a
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PR-AUC score of 0.244 have been obtained on the test dataset. The low performance can
be attributed to the fact that the CNN network is restricted to a fixed size input as well to
the fact that it uses only EC data.

Figure 3.44 ROC curve of CNN model using the best trained model.

Figure 3.45 PR curve of CNN model using the best trained model.

b. Using both EC and auxiliary data as input
In this experiment, the output of the MLP module was simply concatenated with the output
of the CNN module before making the final predictions. The CNN-MLP network uses as
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input the 1D daily EC data for the CNN module and auxiliary data for the MLP module,
as can be seen in Table 3.25.

Table 3.25 CNN-MLP input.

Input Description Size
CNN input 1D daily EC consumption of last year 260
MLP input See Table 3.17 34

Figures 3.46 and 3.47 show the performance of the CNN-MLP model, using the PR and
ROC curves. As expected, the CNN-MLP network outperforms significanty the simple
CNN model. Having access to auxiliary data that gives the network additional information
besides EC data, such as the location of the SM or its brand, seems to bring a significant
boost in performance. The ROC-AUC score increased from 0.689 to 0.756 whilst the
PR-AUC score increased from 0.244 to 0.327.

Figure 3.46 ROC curve of CNN-MLP model using the best trained model.

3.2.6.2 Wide & Deep Convolutional Neural Networks

The wide & deep convolutional neural network (WD-CNN) is a deep learning architecture
for NTL detection proposed by the authors in [54]. The algorithm uses a wide network
(equivalent to a MLP network) on the 1D daily EC data and a CNN on the 2D stacked
weekly energy profiles. This experiment uses the same model architecture, therefore a
grid-search has not been performed for this model. The special convolution kernel has
also been implemented using a hyperbolic tangent activation function. Similarly to the
CNN experiment, the MLP module has also been added as a separate component within
the architecture so that the algorithm has access to the available auxiliary data.
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Figure 3.47 PR curve of CNN-MLP model using the best trained model.

a. Using only EC data as input
The input for the WD-CNN algorithm that uses only EC data as input can be found in
Table 3.26. For the wide module, the input is simply the daily EC of the past year. To
create the input for the CNN module, the daily EC consumption has been divided into
weekly profiles and stacked into a 2D array. The weekly profiles were stacked starting
with the first week of the year up until the last.

Table 3.26 WD-CNN input.

Input Description Size
Wide input Daily EC consumption of last year. 260
CNN input Weekly EC profiles of last year. 260

Figure 3.48 and Figure 3.49 show the performance of the WD-CNN model. The WD-
CNN model obtains a slightly higher PR-AUC score compared to the CNN network but
its ROC-AUC score is slightly lower. As mentioned, the network has access only to EC
data thus its poor performance cannot be attributed solely to the architecture.

b. Using both EC and auxiliary data as input
The input for the WD-CNN-MLP algorithm can be found in Table 3.27. The WD-CNN-
MLP architecture simply adds the MLP module used in the HNN-NTL model and con-
catenates its output with the WD-CNN module before making a final prediction.
Figures 3.50 and 3.51 show the performance of the WD-CNN-MLP model on the

training, validation and test datasets. As with the CNN-MLP model, the performance
fo the WD-CNN-MLP is significantly higher than the one of the simple WD-CNN net-
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Figure 3.48 ROC curve of WD-CNN model using the best trained model.

Figure 3.49 PR curve of WD-CNN model using the best trained model.

Table 3.27 WD-CNN-MLP input.

Input Description Size
Wide input Daily EC consumption of last year 260
CNN input Weekly EC profiles of last year 260
MLP input See Table 3.17 34
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work. Though the performance of the network has improved, the HNN-NTL model still
outperforms it by a quite significant margin.

Figure 3.50 ROC curve of WD-CNN-MLP model using the best trained model.

Figure 3.51 PR curve of WD-CNN-MLP model using the best trained model.



4 Discussion

The previous chapter described and showed the results of the two methodologies this
thesis is based on. Each of these methodologies has been developed and tested on

different datasets and targeted for different types of customers.
The first methodology has been targeted to detect NTL in industrial and large commercial

customers, with a contracted power higher than 50 kW. Electricity utilities are particularly
focused on these types of customers, as NTL in large customers can represent a large
percentage of the total NTL losses. Thus, detecting an NTL in the meter of an industrial
customer recovers significantly higher revenue losses than in the case of a residential
customer. At the moment the first NTL model has been designed and developed, data-
oriented methodologies were already starting to make use of SM data and handcrafted
feature engineering based on domain knowledge. By comparing the existing literature,
several gaps have been found in the following areas:

• Robustness to detect NTL occurring from the beginning.

• Adaptability to new types of NTL attacks.

• Data privacy.

• Detection delay.

Thus, the NTL methodology has been developed having in mind this set of criteria. To
make sure that the NTL model is able to detect NTL that has occurred from the beginning,
where no descent in the EC can be observed, clustering techniques have been used in order
to compare customers among themselves rather than their individual consumption history.
In order to improve the reliability of this technique, both distance and density metrics have
been employed in order to asses how similar is a consumption curve compared to the ones
belonging to the same group. Another important quality of an NTL methodology is the
adaptability to new types of NTL attacks. To mitigate this challenge, the methodology
extracts features from multiple types of SM data (e.g. alarms, electrical magnitudes)
as well as auxiliary databases. Having access to diverse types of features, increases the
adaptability of the model, as it has more complete information of the customer. Data
granularity plays also an important role in the adaptability to new types of attacks as well
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as in data privacy and detection delay. Intermittent fraud, where an NTL might occur
only during some periods of a day, week or month can be detected much easier with a
higher data granularity of EC measurements. Though the SMs of these customers record
the EC every 15 minutes, the granularity has been reduced to 5 measurements a day in
order to increase data privacy. The detection delay of an NTL methodology represented
as well an important criterion in the design of the model. Very often, past methodologies
proposed on NTL detection would rely on EC data of the past 12 months, creating a
detection delay of one year. This represents a major issue for utilities. In theory, the
methodology proposed has a very short detection delay (as little as one day), as it creates
features from EC consumption histories of various lengths. In practice, a limit of 90 days
on each customer sample has been put, in order to give the network more information on
the consumption pattern. This makes the network more robust to the potential noise in the
dataset.

Another important aspect of this work was training the XGBoost model with different
subset features. This can represent an important step for any utility who is looking to collect
data to create its own NTL detection algorithm. The results can give some information on
whether the SM data or auxiliary data should be prioritized for data collection.

The second methodology was focused on developing an NTL model that does not rely
on handcrafted feature engineering and domain knowledge. It was targeted to detect NTL
on residential and small commercial customers with a contracted power lower than 15
kW. Naturally, this dataset was bigger than the previous one thus it was a great fit for
methodologies based on deep learning, which require significant amounts of data to be
trained on.
The most important limitation of traditional ML models is that they cannot function

with a variable sized input. Since the length of a customer sample varies for each one in
part, the EC history has to be either restricted to the last N measurements or to various
features extracted from it, as it was done with the previous methodology. Thus, the second
methodology has been designed so that it can process both input features with variable
length as well as static features that do not change through time (e.g. SM location). This
has been done by combining a LSTM network to process the variable sized input and a
MLP network, that processes the non-sequential features. By combining both networks, it
has been shown that a significant boost in performance is being obtained.
The same limitation of traditional ML models has been encountered in the previous

deep learning methodologies proposed for NTL detection. Though the authors in [51]
used a LSTM network to detect NTL, they have concluded that the CNN is outperforming
it. However, their study has been done on a dataset with synthetically generated NTL
cases, with oversimplifying assumptions on the types of NTL. The experiments presented
in this thesis show that on real NTL datasets, LSTM is outperforming methodologies
based on CNN. This was expected, as restricting the input of the EC history makes the
model less reliable as it has incomplete information on the changes in the EC pattern (e.g.
missing the descent in consumption). Moreover, none of the previous methodologies had
the capability to integrate both sequential and non-sequential features.

A direct comparison between the two methodologies presented in this thesis is difficult
as they were both developed and targeted to detect NTL in different types of customers.



5 Conclusion

This thesis explored the capabilities of machine learning algorithms and smart meter
data for the detection of non-technical losses in electricity utilities. It has developed

twomajor methodologies for NTL detection. The first one was based on handcrafted feature
engineering whilst the second one was based on a simple end-to-end model that uses raw
data as input. Both methodologies have been developed and tested on datasets with real
non-technical losses cases, belonging to a Spanish electricity utility. The data came from
smart meters’ measurements as well as from auxiliary databases which contained additional
information of the meters such as their location. Besides testing the performance of these
models on previous on-field inspections, they have also been implemented as two separate
non-technical losses campaigns in the same electricity utility. The first methodology has
obtained a precision of ≈ 21 %, for new on-field inspections made on industrial and large
commercial customers whilst the second methodology obtained a precision of ≈ 47 % on
residential and small commercial customers. Chapter-wise summaries are given below.

• Chapter 1 started by emphasizing the importance of detecting non-technical losses
in electricity utilities. It also provided a context for detecting these losses with
smart meters and machine learning algorithms. A classification on the type of losses
considered has also been made. Last but not least, this chapter finished by providing
the research objectives of this thesis.

• Chapter 2 provided an overview of the existing methodologies proposed for NTL
detection. These methodologies have been classified either as grid, hybrid or data-
oriented. The challenges in non-technical losses detection have also been discussed
in this chapter.

• Chapter 3 described the methodologies and the main results of the two journal
articles this thesis was based on. The first part of this chapter focused on describing
all the stages involved in creating a machine learning model using handcrafted
feature engineering data as an input, to detect non-technical losses. The second part
of the chapter described the end-to-end hybrid neural network model used to detect
non-technical losses in customers with a contracted power lower than 15 kW.
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• Chapter 4 emphasized the main insights gathered from developing and testing the
methodologies proposed in this paper, for non-technical losses detection. A brief
comparison of these methodologies with previous works has also been made.

5.1 Thesis contributions

This thesis can help both fellow researchers working in this field as well as electricity
utilities around the world who want to migrate from models based on simple rules derived
from expert knowledge to machine learning models that are capable to learn automatically
from the data. The contributions of this thesis are outlined below.

• Data collection and processing pipelines of smart meter and auxiliary data - this
thesis provided an in-depth description of the data sources and processing techniques
necessary to build a machine learning model for NTL detection. Standardizing,
handling categorical variables and missing data are all important stages in the
pipeline of a machine learning model. Thus, it is very important to have an accurate
description of the data sourcing and processing pipeline in order to be able to
replicate and further advance these models.

• Handcrafted feature engineering and supervised learning models - the thesis de-
scribed a comprehensive set of features that can be extracted from smart meter data,
that are relevant for this task. They use all the information that the smart meters
record: energy consumption, alarms and electrical magnitudes. It also used a very
powerful classifier, extreme gradient boosted trees, which was able to outperform
algorithms that have been very often used for non-technical losses detection (e.g.
support vector machines).

• Impact of data type and undersampling techniques on non-technical losses detection
performance - an experiment with different subsets of features sourced either from
smart meter or auxiliary data has been made. These subset features have been
used as an input to a machine learning model, to study their impact on the detec-
tion performance. This experiment can be interesting for the utilities and fellow
researchers, as it provides an insight on where the efforts should be focused, to
increase the performance of these models. To reduce the imbalance in the original
dataset, an experiment has been made where the number of samples belonging to
the majority class (samples that have not been found with a non-technical loss)
has been reduced either randomly or by using simple heuristics. The results have
shown that undersampling techniques are effective at improving the performance of
non-technical losses detection models.

• Deep learning with raw smart meter and auxiliary data - this thesis described a
methodology for non-technical losses detection that does not rely on handcrafted
feature engineering and uses simple raw data as an input. The features that are
relevant for non-technical losses detection are extracted automatically, from the data.
To my knowledge, this is the first architecture proposed that is able to incorporate
both sequential (e.g. energy consumption) and non-sequential (e.g. smart meter
location) features.
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5.2 Limitations and future work

Though the methodologies proposed in this thesis have been successfully implemented in
the real environment, they still have limitations. As they are trained in a supervised manner,
they require a labeled dataset built using the results of previous on-field inspections. Thus,
they cannot be easily implemented by researchers or utilities who do not have access to
such labels. These methodologies are also relying on the efficiency and the accuracy of
on-field inspectors. It is not sufficient for the model to detect a non-technical loss in the
meter. The on-field inspector has to be able to detect it as well. This limitation can be
mitigated by introducing information on the percentage of non-technical losses at the
distribution transformer level. This will increase the reliability of the predictions made
by the machine learning model. In this context, a smart meter will be inspected only if a
non-technical loss has been computed at the corresponding distribution transformer level.
I believe that the number of false positives can be greatly reduced by combining machine
learning algorithms with grid data. Thus, future work should be focused on developing
hybrid methodologies.

Another interesting area for future work is the development of more advanced method-
ologies for reducing the natural imbalance that occurs in non-technical losses datasets.
Though undersampling techniques have been proven to be very effective, they are quite sim-
plistic. There are more sophisticated techniques such as Synthetic Minority Over-sampling
Technique (SMOTE) [78], which is an oversampling methodology that can generate new
samples belonging to the minority class (samples that were found with non-technical
losses).

5.3 Dissemination

Besides the published work in two journals, mywork has been disseminated at the following
events, throughout the thesis:

• Research Seminar in Smart Grid technology at Royal Society of London (Oc-
tober 2016) - I had a poster presentation during this event and gave a brief talk
describing my research. The title of the poster was "Data analytics for non-technical
losses detection in power utilities".

• Workshop on Smart Distribution Networks: Technologies and Business mod-
els, organized by SUNSEED, ADVANTAGE, PEER-2-PEER (April 2017) - Gave
a talk on "Smart meter data analytics for fraud/anomaly detection" where I have
described the advances made in building non-technical losses detection models in
the real environment, by collaborating with an electricity utility.

• IEEE ICC 2017 Conference, Workshop on Integrating Communications, Con-
trol, and Computing Technologies for Smart Grid (May 2017) - Poster presen-
tation on "Data analytics for non-technical losses detection in power utilities".

• 12th IEEE PES PowerTech Conference (June 2017) - Gave a presentation on
“Non-Technical Losses Detection in Power Systems using Smart Meters Data”,
within a special session held by the ADVANTAGE project.
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• Data Science Summer School, co-organised by the Data Science Initiative of
École Polytechnique and DATAIA Institute (June 2018) - Participated in the
poster session held by this summer school. The title of my poster was "Machine
learning algorithms for non-technical losses detection in electricity utilities".
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Abstract—Non-technical electricity losses due to anomalies or
frauds are accountable for important revenue losses in power
utilities. Recent advances have been made in this area, fostered
by the roll-out of smart meters. In this paper, we propose a
methodology for non-technical loss detection using supervised
learning. The methodology has been developed and tested on
real smart meter data of all the industrial and commercial cus-
tomers of Endesa. This methodology uses all the information the
smart meters record (energy consumption, alarms and electri-
cal magnitudes) to obtain an in-depth analysis of the customer’s
consumption behavior. It also uses auxiliary databases to provide
additional information regarding the geographical location and
technological characteristics of each smart meter. The model has
been trained, validated and tested on the results of approximately
57 000 on-field inspections. It is currently in use in a non-technical
loss detection campaign for big customers. Several state-of-the-
art classifiers have been tested. The results show that extreme
gradient boosted trees outperform the rest of the classifiers.

Index Terms—Supervised learning, non-technical losses, smart
meter, extreme gradient boosted trees.

I. INTRODUCTION

NON-TECHNICAL electricity losses (NTL) due to any
kind of anomaly (installation error, meter parametrization

error, faulty meter or energy fraud) represent a major problem
for the utilities. Not only do they cause significant revenue
losses but they can also affect the power system operation as
they provide uncertainty of the real consumption [1].

Reducing NTL is of major interest to the electricity
providers as they represent a significant part of the total power
losses [2]. Furthermore, detecting NTL in industrial and large
commercial customers is of particular interest as their con-
sumption is equal to approximately 55% of the total energy
consumption (EC). Surely, detecting an anomaly in the meter
of an industrial customer recovers significantly higher revenue

Manuscript received July 7, 2017; revised December 1, 2017 and
February 10, 2018; accepted February 13, 2018. Date of publica-
tion February 21, 2018; date of current version April 19, 2019. This
work was supported by the European Community’s Seventh Framework
Programme FP7-PEOPLE-2013-ITN (ADVANTAGE Project) under Grant
607774. Paper no. TSG-00945-2017. (Corresponding author: Madalina
Mihaela Buzau.)

M. M. Buzau, P. Cruz-Romero, and A. Gómez-Expósito are with the
Department of Electrical Engineering, University of Seville, 41092 Seville,
Spain (e-mail: madalina.buzau@gmail.com).

J. Tejedor-Aguilera is with Endesa-Enel, 41005 Seville, Spain.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSG.2018.2807925

losses than in the case of a residential customer. Moreover,
large customers represent major interest for anomaly detec-
tion when the cost of the on-field inspection itself is also
considered.

Attempting to detect NTL using a supervised approach can
be quite challenging as this is an extremely imbalanced clas-
sification problem [3]. Naturally, in developed countries the
number of electric supplies with any kind of detected anomaly
is a tiny portion of the global amount. Moreover, as the cus-
tomer samples are labeled manually by on-field inspections
they are prone to human error. Introducing misclassified sam-
ples makes it more difficult for a machine learning (ML)
algorithm to distinguish between classes.

Smart meters (SMs) allow utilities to devise new and inno-
vative ways to detect NTL, a task perceived in the past as
very difficult given the granularity of the data at that time.
With the SM roll-out utilities have now access to frequent
measurements of EC, giving them a better understanding of
their customers’ consumption behavior [4].

In this work, we propose a methodology which uses the
SM data and auxiliary databases to formulate various charac-
teristics of the customer’s consumption behavior and also to
provide additional information with regard to the geographical
and technological characteristics of the SM. These character-
istics are afterwards introduced into several supervised ML
algorithms for model selection and evaluation. The models
have been trained, validated and tested using real data from
all the customers of the largest electricity utility in Spain
(Endesa), with a contracted power higher than 50 kW.

II. RELATED WORK

The current approaches for NTL detection found in the lit-
erature can be categorized either in hardware or non-hardware
solutions. The non-hardware solutions can be based on state
estimation, game theory or classification algorithms [5]. Our
approach proposes a non-hardware solution based on classifi-
cation. We will thus be focusing in this section on the recent
advances made in this area.

Table I presents the main characteristics and performances
of previous approaches (discussed in this section) as well
as our approach. A common aspect is the building of a
global model that can be used for all customers, though
Jokar et al. [6] built a model on a customer-by-customer basis.
Their approach uses Support Vector Machines (SVM) to dis-
tinguish between the normal and fraudulent pattern of the

1949-3053 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I
COMPARISON OF CURRENT APPROACH WITH PREVIOUS WORKS

customer. Rather than classifying the customers directly as
having a NTL or not, Ford et al. [7] and Cody et al. [8] forecast
the energy consumption of the customers. A neural network
(NN) is used in [7], whilst Cody et al. [8] use a decision
tree (DT). If the difference between the actual and forecasted
consumption exceeds the limit imposed by the authors, the
customer is considered to be committing fraud.

Nagi et al. [9] use SVM and the results of real on-field
inspections to detect NTL in Malaysia. An Extreme Learning
Machine (ELM), Online Sequential Extreme Learning
Machine (OS-ELM) and SVM were used to detect electric-
ity theft in [10]. The authors trained the algorithms with the
results of real on-field inspections, though the performance of
these algorithms has not been reported.

Han et al. [11] propose a solution to detect the NTL that
occurs due to energy contract diversion with a cheaper con-
tract. The authors use the k-means algorithm to cluster load
profiles. A similarity and normality index is computed for each
customer. These indexes are used as an input to several algo-
rithms such as logistic regression (LR), k-nearest neighbors
(KNN) and SVM.

A solution for fraud detection based on NN has been
presented in [12]. The authors use monthly consumption data
and auxiliary databases to train a NN with the results of real
on-field inspections of a Brazilian electricity utility.

Similarly to our approach, the solutions proposed in [3],
[13], [14], and [15] treat NTL as a black-box, aiming to
detect all types of NTL. Glauner et al. [3] use boolean, fuzzy
logic and SVM to detect NTL. The input features for the
algorithms consist only of the last 12 monthly EC measure-
ments. Glauner et al. [13] improved the approach in [3] by
adding the geographical location of the customer to compute

the inspection rate and the NTL rate in its neighborhood. The
methodology was tested with LR, KNN, SVM and random
forests (RF). Meira et al. [14] used RF for supervised learn-
ing and k-means clustering during feature engineering to create
features with regards to the geographical location, transformers
and consumption profiles. Coma-Puig et al. [15] used several
ML algorithms to detect both electricity and gas NTL and dis-
covered that a single gradient boosted machine (GBM) gave a
better performance than any ensemble or any other classifier.
The algorithms used were Naive Bayes (NB), AdaBoost (AB),
KNN, DT, NN, SVM, RF and GBM.

Guerrero et al. [16] propose a methodology to increase
the precision of NTL campaigns based on null consumption
analysis. Text mining and NN are used for customer filtering
whilst a second module creates rules devised from DT and
self-organizing maps (SOM-NN).

As seen in Table I, the performance of the models is
assessed using various metrics such as the true positive rate
(TPR), known also as the recall (RCL), the false positive rate
(FPR), the precision (PRC) and the AUC score. Due to the
imbalanced nature of NTL detection, we believe that the AUC
score provides more reliable results as it assesses the ranking
quality of customers rather than their classification. The util-
ity does not need a list with all the customers classified either
with or without NTL but rather a ranked list of customers
according to their probability of having an NTL. Thus, the
performance of our model has been assessed using the AUC
score.

Compared to previous approaches, our work distinguishes
itself by:

• Using all the information the SMs record: EC, alarms and
electrical magnitudes. We believe these additional data
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Fig. 1. Methodology outline for NTL detection.

are vital for NTL detection as studying only the con-
sumption behavior of the customer is not sufficient to
detect a wide range of NTL.

• Applying both distance and density based outlier detec-
tion algorithms as well as the usage of the XGBoost
classifier.

• Creating multiple training samples for customers with
more than one inspection, as described in Section V.

III. METHODOLOGY PROPOSAL

The main aim of the methodology described in this paper
is to provide the utility with a ranked list of customers,
according to their probability of having an anomaly in their
electricity meter. The methodology uses mainly SM data
for feature extraction (Figure 1). The features are based on
SM alarms, EC and electrical magnitude measurements. It
also uses features extracted from auxiliary databases which
mainly provide geographical and technological characteristics
of the customer. After preprocessing the datasets, the fea-
tures are inserted as an input into several ML algorithms for
model selection and evaluation. If the performance of the best
model meets the desired standard required by the utility, its
parameters are saved and used to make predictions on new
customer samples obtaining a ranked list of customers as the
final output.

IV. SM DATA

The data used to train, validate and test the model were
provided by Endesa. It included all the industrial and large
commercial customers of the utility. Approximately 95% of

TABLE II
SM DATA

these customers are equipped with meters capable of provid-
ing automatic reading. These meters register the EC every 15
minutes but due to the volume of data, the granularity was
reduced to 5 measurements/day. This reduces also the privacy
concerns that may arise with a higher data granularity.

Table II shows the measurements that were included in the
SM data provided by the utility. Please note that the SM of
these customers register the active and the four-quadrant reac-
tive energy every 15 minutes/hour but we are collecting the
total active and reactive energy consumption/production with
the power snapshots.

V. CREATING CUSTOMER SAMPLES

The performance of the model was assessed on data from
the last ten years, from 1st May 2007 until 30 December 2016.
Nevertheless, the model will keep also updating with new
data as it is aimed to detect anomalies that occur right at this
moment. Therefore, the features which characterize the cus-
tomer’s consumption behavior will keep updating according
to the latest data available.

The dataset contains customers who throughout our period
of analysis either had none or at least one inspection. For cus-
tomers who never had an inspection, their sample represents
their entire consumption history. Customers with at least one
inspection were divided in multiple samples (Figure 2).

The methodology presented in this paper uses a supervised
approach to detect anomalies in the SMs by using the results
of all the on-field inspections that have occurred for these type
of customers. The training dataset has been created by select-
ing the customers with at least one inspection. This dataset has
been used to train an ML algorithm in order to discover pat-
terns in the characteristics of honest customers and customers
detected with an anomaly in their meter.

The ranking list is created for customers who never had
an inspection or whose last normalization date was more than
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Fig. 2. Scenario of a customer with multiple training samples.

TABLE III
SIZE OF THE TRAINING DATASET AND THE RANKING LIST

Fig. 3. Target distribution.

ninety days ago (Figure 2). This list is being obtained by using
a trained model to make predictions on these unseen customer
samples. The number of customers used during training and
in the ranking list can be seen in Table III.

The main challenge of a ML model aimed to detect anoma-
lies is given by the imbalance between customer classes.
Figure 3 shows the number of samples of customers with and
without an anomaly detected in the entire training dataset. This
is an extremely imbalanced dataset as the number of customer
samples with an anomaly detected represents ≈ 5% of the
entire training dataset. This will affect the learning process, as
the model will be biased to predict the majority class.

VI. FEATURE EXTRACTION FROM SM DATA

Several types of features have been extracted using the SM
data. Features developed using the quality byte (QB) measure-
ment are aimed to detect meter faults or physical tampering.
Features based on EC measurements aim to detect a drop in
consumption or unusual consumption behaviors.

A. Features Extracted From QB Measurements

The QB measurement uses a 8-bit code to assess the
quality of the measurement, as the IEC 870-5-102 protocol
defines [17]. Table IV shows what type of alarms the SMs
register.

In order to compute features related with alarms, each QB
measurement, which was initially represented with the decimal
numeration system has been converted to its binary represen-
tation. Furthermore, the binary value has been split into eight

TABLE IV
ALARMS REGISTERED BY THE QB MEASUREMENT [17]

Fig. 4. Example of a QB measurement.

separate values, each value representing an alarm. If an alarm
was triggered during the period of measurement (one day in
our case) its value will be set to 1. Otherwise, its value will
be zero.

Figure 4 shows an example of how a QB measurement was
interpreted. When the value of a QB measurement is 130, its
binary value will be 10000010, meaning that IV and AL were
activated during the day when the measurement was taken.

Depending on the length of the contract, each customer will
have a different number of QB measurements thus these indi-
cators cannot be used in their raw state as a ML algorithm
will require a fixed number of inputs. Instead of using the raw
measurements, the features described in Table V have been
computed for each customer. These features are generated for
each x alarm (IV, SINC, OW, VH, MP, INT, AL) for different
numbers of n days (15, 30, 60, 90, 180, 360, 720).

B. Features Extracted From EC Measurements

A sudden decrease in the EC can be noticed for most of the
fraud and non-fraud related anomalies. Nevertheless, if the
anomaly started before the period of analysis the decrease in
the EC cannot be captured and clustering techniques must be
introduced in order to capture unusual consumption behaviors.

1) Features Aimed to Detect Recent Anomalies: To detect
anomalous measurements, the Zscore has been used. This score
indicates how many standard deviations away from the mean
is a new measurement.

Zscore = Xi − X̄i

σXi

(1)

where Xi is an EC measurement of the customer i, X̄i is the
mean EC of the customer i and σXi is the standard deviation
of EC measurements of customer i.

To avoid erroneous results, the measurements have been
divided into measurements taken on weekdays, Saturdays or
Sundays. The measurements taken during a holiday have been
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removed. Table V shows the features computed using the
Zscore. These features were computed for each type of day
t (weekday, Saturday, Sunday), for each number of n days
(15, 30, 45, 60, 90) and for measurements taken in different
w time windows (as described in Table II).

The EC measurements can also be used to detect faults in
the meter. The timestamp of each set of measurements can be
used to compute the number of measurements received in the
last n days. These data can inform a ML model of the number
of missing measurements in the last n days for a certain SM.

SM data can also capture zero measurements. To make use
of this knowledge, the number of days with 0 kWh consump-
tion has been tracked in order to develop a new set of features.
The slope of a linear model approximation of the EC measure-
ments has also been used. Table V enumerates the features
developed using the criteria described above. Multiple fea-
tures were obtained by using different number of days (15,
30, 60, 90).

2) Features Aimed to Detect Old Anomalies: To detect
anomalies that have started before the period of analysis, clus-
tering techniques must be employed as for these cases a sudden
drop in consumption cannot be observed.

Customer segments were created using the contracted power
in each customer sample, to capture unusual behaviors. These
segments were created using the k-means clustering algorithm
proposed by Lloyd [18]. The optimal number of clusters was
found at 25. Customer segments with less than 20 customers
have been removed.

To identify abnormal customer profiles, two approaches
have been used: distance based and density based measure-
ments.

3) Base Models and Features Based on Distance
Measurements: After obtaining customer segments using
the contracted power of each customer, base consumption
patterns have been created for each month of the analysis.
The consumption patterns have been separated by weekdays
and weekends. The base consumption patterns for each
customer segment have been created using the EC of all
non-anomalous customer samples belonging to that segment.

Bk
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,

1
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}
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where Bk
i,j,t is the base consumption pattern of month i, year

j of the customer segment k for type of day t (weekday,
Saturday, Sunday). M represents the set of customers belong-
ing to the customer segment k that had an inspection without
an anomaly detected whilst N is the number of these cus-
tomers. PIt , PIIt , PIIIt , PIVt , and PVt represent the average
power consumption for type of day t during the time windows
presented in Table II.

After creating base models for each customer segment, sev-
eral features have been computed for each customer sample

(regardless if they had an inspection or not) using the dis-
tance between the base model and the customers consumption
pattern.

For each customer sample, two consumption patterns have
been created by averaging the power consumption of the
weekdays and weekends of the last month.

Ct = {
PIt , PIIt , PIIIt , PIVt , PVt

}
, (3)

where Ct represents the consumption pattern and PIt , PIIt , PIIIt ,
PIVt , PVt are the average power consumptions for type of day
t in the last month.

The features were developed by computing the Euclidean
and Manhattan distances between each consumption pattern
of a customer’s sample and its base model. The Manhattan
distance was computed for each individual time frame and also
for the entire day, whilst the Euclidean distance was computed
using all time windows.

Mwt =
∣∣∣∣∣Pwt − 1

N

∑
z∈M

Pz
wt

∣∣∣∣∣, (4)

MTt =
V∑

w=I

∣∣∣∣∣Pwt − 1

N

∑
z∈M

Pz
wt

∣∣∣∣∣, (5)

where Mwt is the manhattan distance of a customer sample
for time window w and for type of day t, and MTt is the total
manhattan distance of all time windows.

The euclidean distance was computed using all time win-
dows, and was defined as follows:

ETt =
√√√√ V∑

w=I

(
Pwt − 1

N

∑
z∈M

Pz
wt

)2

, (6)

where ETt is the total euclidean distance of all time windows.
The features obtained using distance measurements are

shown in Table V.
4) Features Based on Density Measurements: The second

approach to detect an unusual customer behavior consisted on
using the Local Outlier Factor (LOF) [19]. This metric assigns
to each customer profile a degree of being an outlier by mea-
suring how isolated is its consumption profile in comparison
with the profiles in its neighborhood.

To compute the LOF for each customer involved, the last
month’s EC measurements of each customer were clustered
together according to their customer segment. In Table V, the
features computed using this metric are shown. The features
were computed for each type of day t (weekday, Saturday,
Sunday).

C. Features Extracted From Electrical Magnitudes

The features developed using the electrical magnitudes
(EM) were aimed to detect mainly fraud such as phase inver-
sions and shunts (three-phase customers). The snapshots were
divided within three time frames (9AM to 6PM, 7PM to 10PM
and 11PM to 8AM). The last snapshot within each time frame
has been taken in order to compute the features. Table VI
shows the features developed using EM.
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TABLE V
FEATURES BASED ON SM DATA

TABLE VI
ELECTRICAL MAGNITUDE-RELATED FEATURES (THREE-PHASE

CUSTOMERS)

VII. FEATURES EXTRACTED FROM

AUXILIARY DATABASES

The features described in Table VII have been provided
by the utility. The majority of features come from the Tariff
Summary (TS) database which uses the SM and the portable
reading terminals data to compute the monthly EC and the
maximum power in up to six different tariff periods.

The Geographic Information System (GIS) data provides
information not only on the location of the customer but
also on the rate of NTL in the neighborhood. Other auxiliary
databases provide information with regards to the techno-
logical characteristics (TECH) of the SM such as the brand
or whether the meter is located inside/outside. The contracts
database offers information related to contract events as well
as the activity type of the customer.

VIII. TRAINING, VALIDATION AND TESTING

To evaluate the performance of the methodology described
in this paper, the original training dataset is split into a reduced
training dataset, a validation dataset and a testing dataset. The
validation dataset is used to tune the hyperparameters of our
models whilst the testing dataset is used to assess how well
the models generalize to new, unseen customer samples.

It is often encountered that the error obtained on the vali-
dation dataset is reported as the final error of the model [20].
However, this approach leads to biased error estimates as
reported in [21]. In Figure 5, our approach for model selection

TABLE VII
FEATURES BASED ON AUXILIARY DATABASES

Fig. 5. 3-Fold Nested Cross-Validation example.

and evaluation is presented. Given the scarcity of our anoma-
lous samples, a nested cross-validation (NCV) has been chosen
to make use of the available data as much as possible. The
test fold is used only in the model evaluation stage.

As it can be observed, a NCV is a computationally expen-
sive approach compared to other traditional methods. However,
its major advantage is that it provides an almost unbiased esti-
mate of the true error [21]. This is extremely important for the
utilities as they want to have a realistic assessment of how well
the model will generalize to new customer samples.

IX. MODEL SELECTION AND EVALUATION

Before using the features described above in a ML algo-
rithm, several preprocessing steps have been taken: (1) each
feature has been standardized to have zero mean and unit
variance; (2) the categorical variables have been converted to
numerical ones using one-hot encoding; (3) the missing val-
ues of continuous features were replaced with the mean value
whilst the missing values in discrete features were replaced
with the most frequent value.

For model selection and evaluation, a 5-fold nested cross
validation was used. Due to computational constraints, the
model selection of hyperparameters was made using all the
customers from Barcelona. The Scikit-learn library [22] has
been used to fit the model using SVM, Logistic Regression
(LR) and k-Nearest Neighbors (KNN). The model fitting with
XGBoost [23] has been done using its Python API.
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TABLE VIII
KNN GRID-SEARCH

TABLE IX
LR GRID-SEARCH

A. Model Selection

During model selection, the inner loop of the NCV was used
to select the hyperparameters that obtained the best results on
the validation dataset. The hyperparameter optimization has
been done using a grid-search approach.

1) K-Nearest Neighbors: KNN is one of the simplest clas-
sification algorithms. It uses the training data at test time to
find the nearest neighbors. In our scenario, to get a probabil-
ity estimate of having an anomaly for a new customer, the
algorithm looks at the results of the on-field inspections. The
results of the on-field inspections of the closest neighbors will
be therefore averaged in order to compute a probability for
the new customer.

Table VIII shows the hyperparameters used during grid-
search. The best results were obtained using 16 neighbors (K)
and a power parameter of 2 (p) which is equivalent to the
euclidean distance.

2) Logistic Regression: The binary LR algorithm has also
been used during model selection. This classification algorithm
simply takes the matrix of input features X, multiplies it with a
matrix of weights θ and passes it through the sigmoid function
g(z) = 1

1+e−z , where z = θTX [24]. The classifier has been
trained on a logarithmic loss function using the LIBLINEAR
solver [25]. Table IX shows the hyperparameters used during
grid-search for LR.

The C hyperparameter represents the inverse of the strength
of regularization and it is used to control the overfitting of the
model during training. The R hyperparameter represents the
type of regularization, either L1 or L2. The best results on
the validation folds were obtained using a C of 0.01 and a L2
regularization.

3) Support Vector Machines: As seen in the related work
section, SVM are a very popular classifier for anomaly detec-
tion in the utilities. Unlike the previous algorithms, SVM do
not predict probability estimates but rather decision values.

A SVM algorithm takes the input features into a high
dimensional space and tries to find the optimal hyperplane
that maximizes the margin between the vectors of the two
classes [26]. This margin will be determined by the sup-
port vectors of the classes. The support vectors are customer
samples from our training dataset that are the closest to the
decision function.

Table X shows the hyperparameters used during grid-search
for SVM. The hyperparameter C is similar to the LR parameter
and represents the inverse of the strength of regularization.

TABLE X
SVM GRID-SEARCH

TABLE XI
XGBOOST GRID-SEARCH

The kernel parameter is helpful if the customer classes are
not linearly separable by a hyperplane in the high dimensional
space. The best results on the validation folds were obtained
using a C of 0.001 and a linear kernel.

4) Extreme Gradient Boosted Trees: XGBoost is one of the
most popular ML algorithm in the data science community. In
2015, 17 out of 29 winning solutions on the Kaggle platform
used XGBoost [23]. The algorithm uses gradient boosting [27]
with a regularized cost-function. Gradient boosting builds an
additive model by combining the predictions of many “weak”
classifiers. The classifier in our case is a regression tree.

The model starts the training process with only one regres-
sion tree. This regression tree is looking to find a set of
rules that separate customers with/without anomalies as best
as possible. After building the first tree, the model adds a new
regression tree with each training round. In each round, the
model looks where the previous tree has predicted poorly and
builds a new tree with a set of rules which will correct the
mistakes of the previous one.

Table XI shows the hyperparameters used during grid-search
for XGBoost. The best results for XGBoost were obtained
using the following hyperparameters: a learning rate of 0.01,
a maximum depth of 15, a minimum child weight of 1 and
2000 regression trees.

B. Model Evaluation

One of the most common metrics used for assessing the
performance of a ML algorithm is the accuracy. However, the
accuracy of an algorithm on a severely imbalanced dataset
cannot provide a real assessment on its predictive power. Just
by using a naive predictor which predicts that none of the
customers has an anomaly in their meter we would achieve
an accuracy of approximately 95%. A performance metric
that has been proven to be reliable on imbalanced datasets
is the AUC score [28], [29]. This metric assesses how fast
the true positive rate increases with the increase of the false
positive rate. By varying the decision threshold, the trade-off
between the true and false positive rates can be observed on
the Receiver Operating Characteristic (ROC) curve.

Figure 6 shows the results obtained during model evalua-
tion for each classifier studied. The results were obtained by
concatenating the predictions of all the test folds. This gives
us a prediction score on the entire training dataset. As it can
be observed XGBoost outperforms the rest of the classifiers
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Fig. 6. Receiver Operating Characteristic curve.

Fig. 7. Precision-Recall curves.

Fig. 8. Execution time.

whilst KNN obtains the lowest performance. The performance
of a naive predictor, which predicts that none of the customers
is fraudulent, has been added for benchmarking purposes.

Furthermore, the precision-recall curve [30] has been cre-
ated for each classifier (Figure 7) in order to give a better
overview on the performance of each algorithm. As with the
ROC curve, the precision-recall curve has been obtained by
varying the decision threshold for the probability estimates.
When both the PRC and RCL of the model are taken into
consideration, the performance of XGBoost is significantly
better in comparison with the rest of classifiers. It can reach
approximately 70% PRC at a 40% RCL.

Moreover, the execution time of each model during both
training and testing can be seen in Figure 8. LR was the fastest
algorithm during both training and testing. The experiments
were run on a machine with a 3.9 GHz Intel Core i7 CPU.

X. REDUCING DATA IMBALANCE

The data imbalance has been reduced using undersampling
techniques. With undersampling, some samples of honest cus-
tomers are being removed during training. The selection of
customers to be removed has been done with two meth-
ods. The first method removes the samples of customers who

Fig. 9. ROC curve undersampling vs. no undersampling.

Fig. 10. Precision-Recall curves for undersampling.

were not identified with an anomaly in their meter but have
been inspected by inspectors who might have misclassified
fraudulent customers for more than 3 times. The misclassifi-
cation has been assessed by looking at customers who had an
inspection with no anomaly detected before an inspection with
anomaly detected. The second method removes samples of
honest customers using a different number for a random seed.
The training dataset has been reduced from 57304 samples to
36806 samples.

Figure 9 shows the results obtained when removing the cus-
tomer samples with a higher chance of being misclassified as
honest customers. The figure shows also the results obtained
when doing the undersampling randomly with different ran-
dom seeds. Undersampling seems to improve the AUC score
significantly. Nevertheless, the AUC score obtained using the
first method is not much higher than the AUC scores obtained
by randomly removing samples.

Figure 10 shows the precision-recall curves obtained
with undersampling techniques. Undersampling obtains major
improvements on the precision and recall performance.
However, the difference between the two undersampling tech-
niques is not conclusive.

XI. DISCUSSION AND COMPARISON

NTL detection is an extremely challenging task as it cannot
be constrained solely to an anomaly detection problem. It is
often encountered to find anomalous measurements or dras-
tic changes in the customer’s consumption pattern that are
due to non-malicious factors. We have aimed to tackle these
challenges by using all the available data the SMs provide.

Though the authors in [6]–[8] and [11] use SM data,
they only use the EC measurements. Furthermore, the work
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TABLE XII
COMPARISON WITH THE STATE-OF-THE-ART

presented in [16] improved the precision of campaigns that tar-
get customers with null consumption from 4.67% to 14.75%,
in the same utility, Endesa. In comparison, our approach pro-
vides the utility a methodology to detect all types of NTL.
Moreover, our best model achieves ≈ 21% precision for the
new on-field inspections generated by our model.

Table XII shows a comparison between our methodology
and the methodologies which report the AUC score. The
robustness to detect NTL occurring from the beginning is
assessed on whether the methodology compares the consump-
tion behavior of the customer with similar customers as a
descent in consumption cannot be observed. The methodolo-
gies presented in [3] and [13] do not make any comparison
between the consumption behavior of similar customers. The
approach in [15] compares the consumption of a customer with
the average consumption, without using any clustering tech-
niques. Meira et al. [14] make a thorough comparison between
customers by using k-means clustering on geographical data,
transformers and consumption profiles. The adaptability to
new types of attacks is related with the diversity of type
of features as well as the granularity of EC measurements.
Approaches such as [3] and [13] use only the monthly EC
and geographical data, making it harder to detect new types
of NTL. The methodologies presented in [14] and [15] use a
wider range of features. Nevertheless, the low granularity of
monthly EC makes it more difficult to adapt to emergent NTL
attacks such as intermittent fraud. Higher granularity of EC
measurements reduces the privacy of customer but it increases
the adaptability to new types of NTL and also shortens the
detection delay.

We have attempted to replicate the methodologies presented
in Table XII, using our dataset. For the experiment presented
in [3], we have obtained an AUC score of 0.59. However, as
this methodology requires consumption history of at least 12
months, we had to discard 20% of our training data. Training
with a smaller batch of customers distorts the final result.
The methodology presented in [13] introduces two major data
leakages during training. The authors computed the inspec-
tion rate and the NTL rate of the neighborhood area of a
customer, without removing the customer itself. In this case,
if a customer had an inspection with NTL detected, the NTL
detection rate in his/her area would be higher as the result of
this inspection was taken into consideration. The other leak-
age is that they take information from the future to train the
algorithm, as the date of the client inspection is not taken into
account. To replicate the experiments in [14] and [15], we had

TABLE XIII
PERFORMANCE ANALYSIS ON TYPE OF DATA

Fig. 11. Precision-Recall curves for different subsets of features.

to make assumptions on some of the parameters, (e.g., number
of clusters used for the consumption profile, the time horizon
of the analysis). Alas, a thorough comparison is not possible.

Furthermore, as none of the approaches presented in the
table above used SM data, we have attempted to assess its
impact on the AUC score by training the XGBoost model with
different subsets of features (see Table XIII). A 0.88 AUC
score was obtained only by using the features that the SM
provide, without the use of auxiliary databases.

Figure 11 shows the precision-recall curves for all the subset
features described in Table XII. The SM data features obtain
much higher precision for the same recall obtained by the
auxiliary data features.

XII. CONCLUSION

This paper presents a methodology for non-technical loss
detection based on the use of smart meter data and auxil-
iary databases as raw data that feed a supervised machine
learning algorithm (XGBoost). During training, the features
of customers which had at least an inspection were used to
train the algorithm.

The methodology has been tested on real data of the largest
distribution company in Spain (Endesa), obtaining an AUC
score of 0.91, higher than any previous approach as shown in
the text. Moreover, the precision and recall for various deci-
sion thresholds on the probability estimates are also shown
for different subsets of features, highlighting the advantages
of using all the data.

This methodology is currently implemented in a real NTL
campaign using the XGBoost classifier for training. It currently
obtains a precision of ≈ 21% for new on-field inspections
generated by our ranked list of customers.
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Hybrid deep neural networks for detection of
non-technical losses in electricity smart meters
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Abstract—Non-technical losses in electricity utilities are re-
sponsible for major revenue losses. In this paper, we propose a
novel end-to-end solution to self-learn the features for detecting
anomalies and frauds in smart meters using a hybrid deep neural
network. The network is fed with simple raw data, removing
the need of handcrafted feature engineering. The proposed
architecture consists of a long short-term memory network and
a multi-layer perceptrons network. The first network analyses
the raw daily energy consumption history whilst the second one
integrates non-sequential data such as its contracted power or
geographical information. The results show that the hybrid neu-
ral network significantly outperforms state-of-the-art classifiers
as well as previous deep learning models used in non-technical
losses detection. The model has been trained and tested with
real smart meter data of Endesa, the largest electricity utility in
Spain.

Index Terms—Supervised learning, hybrid neural networks,
non-technical losses, smart meter data.

I. INTRODUCTION

NON-technical losses (NTL) in electricity utilities are
defined as the energy consumed by the clients that has

not been billed by the utility [1]. These losses, also known
as commercial losses, can be caused either by theft, faults in
the meters or billing irregularities [2], [3]. Regardless of their
source, they are accountable for important revenue losses and
have a negative impact on the grid reliability [4].

Worldwide, a recent report estimated that NTL are respon-
sible for yearly revenue losses of $96 billion [5]. At the
grid level, NTL can affect the power system operation by
overloading transformers and causing voltage unbalances [4],
[6]. Thus, reducing NTL will also reduce the physical losses of
the grid [7]. Moreover, the costs of on-field inspections made
to recover these losses, debt collection and even court costs in
some cases, have to be taken into consideration as well. The
low effectiveness of these inspections can further increase the
NTL cost. Hence, it is extremely important for the utilities to
advance in this field and increase the success rate of future
on-field inspections for an efficient revenue loss recovery.

NTL detection is a complex anomaly detection task. Relying
solely on outlier detection methods (e.g. k-means clustering,
local outlier factor) is neither sufficient nor reliable for accu-
rate predictions. Energy consumption (EC) patterns can change
due to multiple factors and only a few of those changes are due

Madalina-Mihaela Buzau, Pedro Cruz-Romero and Antonio Gómez-
Expósito are with the Department of Electrical Engineering, University of
Seville, Spain. Javier Tejedor Aguilera is with Endesa-Enel, Seville. Corre-
sponding author: Madalina-Mihaela Buzau (email: madbuz@alum.us.es).

to NTL. The main challenge of the algorithm is to recognize
these NTL patterns among all of them.

In this paper, we propose an end-to-end solution for NTL
detection using a hybrid neural network, requiring minimal
input data and no domain knowledge of the problem. The
architecture proposed in this paper outperforms state-of-the-art
classifiers as well as previous deep learning approaches. The
daily EC profile is analyzed through a long short-term memory
network (LSTM) whilst the non-sequential data are passed
through a multi-layer perceptrons (MLP) network. Throughout
this paper, we refer to the EC, as the energy consumption that
has been recorded by the meter. By combining the LSTM and
MLP networks, major improvements in the performance have
been obtained. The model has been trained and tested on real
smart meter (SM) data of the largest electricity utility in Spain,
Endesa.

A. Related work

The current NTL detection algorithms fall into three cat-
egories: data-oriented, network-oriented and a mix between
both, hybrid-oriented [8]. Network-oriented approaches such
as the methodology described in [9], use Distribution State
Estimation (DSE) algorithms to search for irregular cases
of EC. Hybrid-oriented methodologies use DSE algorithms
combined with statistics or machine learning algorithms. A
hybrid approach has been proposed in [10], where the au-
thors use DSE and analysis of variance (ANOVA) for NTL
detection. The DSE is used to detect distribution transformers
with anomalous usage using the normalized residual test. After
identifying transformers with anomalous usage, the NTL is
detected at the customer level using ANOVA. Another hybrid
NTL methodology is proposed in [11], which uses DSE and
an optimum-path forest (OPF) classifier. The DSE is used to
estimate the NTL in each month at the bus level. These NTL
estimations are added to the input of the OPF classifier which
was trained in a supervised manner, on a synthetic dataset.
Network and hybrid approaches can detect NTL cases with a
high precision but they cannot be widely implemented by most
utilities as they require knowledge of the network topology and
parameters, as well as the installation of additional metering
devices.

Data-oriented approaches focus only on the data provided
by the SMs, requiring no knowledge of the network topology
and no additional hardware devices. The solution proposed
in this paper is a data-driven approach based on supervised
learning, using data from previous on-field NTL inspections.
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Previous NTL detection methods that fall into this category
[2], [12], [13], [14], [15], apart from being very expensive
(they require the time-consuming engagement of experts),
require specific human expert knowledge far from being
complete in practical terms. Moreover, though the SMs roll-
out improves the performance in NTL detection, they also
introduce new methods for energy theft [16]. This makes
it more difficult for detection algorithms based on expert
knowledge to adapt to new types of frauds. Therefore, the
problem of NTL detection is still not solved satisfactorily.

MLP networks have been previously implemented in NTL
detection methodologies, but the majority of them have not
been used with the purpose of replacing expert knowledge.
As an example, the methodology described in [17] uses a
MLP network to estimate the hyperparameters of a support
vector machines (SVM) classifier, in order to maximize the
accuracy of its predictions for NTL detection. The authors
in [18] used statistical techniques and unsupervised neural
networks (Kohonen networks), as two separate methodologies,
for NTL detection. The Kohonen networks were used to cluster
customers based on their EC pattern. In [19], the authors used
text mining techniques to extract concepts from inspectors’
comments of previous on-field inspections. After manually
labeling 1% of the extracted concepts, a MLP network was
used for training and for classifying the rest of the concepts.
MLP networks have been used as end-to-end models for NTL
detection in [20] and [21].

New methodologies based on deep learning have been
proposed recently, such as the work described in [22], where
the authors compared the performance of a convolutional
neural network (CNN), a stacked autoencoder and a LSTM for
the task of NTL detection. The results showed that the CNN
outperformed the rest of the classifiers, on a synthetic dataset.
Another deep learning methodology has been proposed in
[23], where a CNN and a MLP network are used on raw EC
data. However, CNN and MLP networks cannot work with
sequential data such as the EC history, limiting the input to a
fixed size window for all samples. For example, if the input
is limited to EC data of the previous year, the model cannot
capture a descent in the EC if it happened before the period
of analysis. Furthermore, as we will show further, simply
analyzing the EC on a real dataset, with real NTL samples,
does not yield optimal results due to the nature of this problem.

The main contributions of the paper are as follows:
• We propose a state-of-the-art methodology for NTL de-

tection that can self-learn features that are relevant for
NTL detection. This methodology can integrate both se-
quential and non-sequential data. To our knowledge, this
is the first deep learning architecture for NTL detection
that is able to accommodate both types of data.

• We investigate the boost in performance obtained by
combining both types of data and show that the hybrid
network significantly outperforms a network that uses
only EC data as an input.

• We show that the proposed architecture vastly outper-
forms previous NTL detection models that were based on
deep learning and raw data. We also compare its perfor-
mance with state-of-the-art classifiers and their learning

capabilities with raw SM data.
Contrary to [23] and [22], in this paper the precision of
new on-field inspections guided by our proposed model is
reported. The precision is the fraction of SMs that were
actually identified with NTL, among the total number of SMs
that have been inspected using the ranked list of customers
provided by our model. This methodology is currently used as
an NTL detection tool in the utility, achieving a precision of
≈ 47 % for new on-field inspections generated by our model.
This represents a 3.5 times improvement over the precision of
previous on-field inspections that have been generated through
other tools and campaigns.

II. MOTIVATION

Several types of fraudulent customer-related NTL are re-
ported by utilities throughout the world [1]. Figure 1 shows
the EC history of specific Spanish SMs found with NTL in
their meters. Figure 1.a shows the EC profile of a SM that was
directly tampered with a shunt device between the input and
output terminals of the SM to divert the current. An example
of a double tapping fraud is shown in Figure 1.b. Double
tapping is a typical fraud case, where part of the consumption
is connected directly to the grid, bypassing the SM. In this
particular case, the fraud occured from the beginning of the
contract, so a descent in the consumption cannot be observed.
Figure 1.c shows the case of a SM found with an electronic
fault, a common cause of anomaly in SMs.

(a) Shunt (b) Double tapping

(c) Electronic fault

Fig. 1. Real NTL cases (Source: Endesa)

Though in all NTL cases the meter reports lower EC
readings, the change in the consumption profile is mani-
fested differently depending on the NTL source. Traditional
approaches aim to capture the behavior of different types
of NTL using handcrafted feature engineering, as there is
no mathematical formulation for the EC pattern of a SM
with a shunt or double tapping. With this approach, a set
of features that aim to characterize each type of anomaly or
fraud is created. For example, features that detect a sudden
drop in consumption are aimed to detect cases of shunts. In
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the case of electronic faults, features that monitor the number
of zero measurements or number of missing measurements are
employed. Unfortunately, these approaches rely heavily on ex-
pert knowledge which is very expensive and time-consuming.
Moreover, they require experts to develop continuously new
features in order to adapt to new types of NTL. To mitigate
the constraints of previous approaches, we propose a deep
learning architecture that is able to self-learn these features
from raw EC measurements and that can adapt automatically
to new NTL behavior in the SM data.

III. METHODOLOGY

Figure 2 shows the methodology proposed in this paper for
NTL detection. It has been developed and tested on a real
dataset of an electricity utility. This methodology needs as an
input three types of data: EC history recorded by the SMs,
auxiliary (geographical, contractual, technical and economic)
data and the results of previous on-field inspections along with
their dates. The SM data are used to create the LSTM input
whilst the auxiliary data are used for the MLP input.

The first step is to create customer samples. This methodol-
ogy is the same as in [15]. By using the results of previous on-
field inspections, the first and last day of each customer sample
can be extracted following the rules presented in Figure 3. For
customers who never had an inspection their sample represents
their entire consumption history. The minimum length for a
customer sample has been set to 365 days, as the traditional
classifiers used in our comparison need at least an year of EC
measurements. In practice, our HNN-NTL model can detect
NTL on samples as short as 90 days. This is a major advantage
as it significantly reduces the delay in detection. The processed
dataset is split further based on whether a customer sample has
been previously inspected or not. This creates a labeled and
unlabeled dataset. The unlabeled dataset consists of samples
belonging to customers who were never inspected or whose
normalization date was more than 365 days ago. The labeled
dataset is used to train the model in a supervised manner,
using the results of previous on-field inspections. This dataset
is split further into a training, validation and test dataset in
order to assess the performance of the model on samples that
have not been seen during training.

Data processing techniques have been used on all datasets.
A thorough description of these techniques can be found in
Section V-B. During model selection, the best hyperparameters
of the model are selected using the validation dataset. The
final performance is assessed on the test dataset. If the model
performance on the test dataset is acceptable for the utility, the
trained model is used to make predictions on the unlabeled
dataset, creating a ranked list of customers to be inspected
based on their probabilities of having NTL in their SM.

A. Model architecture of the hybrid neural network

The model proposed in this paper is a hybrid neural network
(HNN-NTL), capable of integrating both sequential and non-
sequential SM information (Figure 4). The network consists
of three modules: the LSTM module, the MLP module and
the hybrid module. The LSTM module uses the sequential

Fig. 2. Methodology outline for NTL detection

Inspection: No anomaly found

Inspection: Anomaly found

Normalization Date

First sample: Target 0

Second sample: Target 1

Test sample
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Fig. 3. Scenario of a customer with multiple training samples.

data of the SM (e.g. EC), whilst the MLP module uses the
non-sequential data as as an input (e.g. SM location, model).
The outputs of the LSTM module and the MLP module are
afterwards used as an input to the hybrid module which
provides the final probability of having an NTL in the SM.
This type of architecture is very efficient as it permits joint
training on both types of input. A detailed description of each
module is presented in the following subsections.

B. Long short-term memory module for sequential data

Table I shows the input features that get fed into the LSTM
model at each time step. Though the SM records the hourly
EC, we have reduced the granularity of measurements to the
daily level as we have seen through our own experiments that
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Fig. 4. HNN-NTL model architecture

it yields better results than hourly measurements. The daily
EC has been obtained by simply averaging the hourly ECs
in a day. The weekend ECs were removed using the time
stamp of each SM measurement (weekend and weekday data
are not comparable). Thus, the weekly profile consisted of 5
measurements of the daily average consumption at each time
step.

TABLE I
LSTM INPUT AT EACH TIME STEP

Input Description Size

Weekly profile Daily energy consumption of the
weekdays. 5

Zero
measurements

Number of 0 kWh measurements
in each weekday. 5

Missing
measurements

Number of null measurements in
each weekday. 5

Season
The season of the week (spring,
summer, autumn, winter). 4

Since the EC history recorded by the SMs can be years
long and it is increasing day by day, a simple recurrent neural
network [24] cannot be used as it would be very hard to train
due to their vanishing and exploding gradient problems [25].
Thus, to capture the long-term dependencies in the variable-
sized EC data an LSTM cell has been used [26]. The LSTM
cell uses the sigmoid σ(x) = 1

1+e−x and the hyperbolic
tangent tanh(x) = e2x−1

e2x+1 as nonlinear activations and it has
the following mathematical formulation:

it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ(Wfxt + Ufht−1 + bf ) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

Ct = ft � Ct−1 + it � tanh (Wcxt + Ucht−1 + bc) (4)

ht = ot � tanh (Ct) (5)

where it , ft, ot, Ct and ht represent the activations of the
input gate, forget gate, output gate, cell state and hidden state
at time step t. Wi, Wf , Wo and Wc represent the weights of
the input layer whilst Ui, Uf , Uo and Uc represent the recurrent
weights of the LSTM. bi, bf , bo, bc are the biases of the
network whilst xt is the input feature vector at time step t and
ht−1 represents the hidden state activation at the previous time
step. � represents the element-wise multiplication (Hadamard
product).

The LSTM module sees the entire EC history, week by
week, and it provides a single final output, hT , which is the
hidden state of the LSTM cell at the final time step (last
week of the sample). We decided to use the weekly profile
as input to the LSTM, rather than the daily consumption, in
order to reduce the number of time steps through the network.
By reducing the number of time steps, the network is able to
learn faster. Using the weekly profile gives the network the
opportunity to detect more complex types of NTL, such as
intermittent NTL, which occurs only on some certain days of
the week. These cases would be much more difficult to detect
when using only the monthly EC as an input.

C. Multi-layer perceptrons module for non-sequential data

The MLP network is used to analyze the non-sequential
data. The metadata that has been used in this module can be
found in Table II. Input features that are continuous have a
size of 1 whilst categorical features have a higher dimension.
We used entity embeddings [27] for the categorical variables,
instead of one-hot-encoding, in order to reduce the input space
of the MLP network. For example, only the economic activity
code has 473 unique categories.

The MLP module has N hidden layers, where N is chosen
using the validation dataset. Each hidden layer goes through
an affine transformation (n > 0):

zn = Wnhn−1 + bn (6)
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TABLE II
MLP INPUT DATA

Type of data Input Size

Geographical data

Latitude 1
Longitude 1
Altitude 1

Municipality 5

Contractual data
Contracted power 1

Contract type 2
Voltage 1

SM technical data

SM model 3
SM location 3

SM firmware version 3
SM production year 3

Economic data Economic activity code 10

where Wn represents the weights of layer n, hn−1 represents
the hidden state of the previous layer and bn represents the
bias of the nth layer.

To speed up the convergence of the network, a batch normal-
ization layer [28] has been used on the affine transformation:

bn = γẑn + β (7)

where ẑn represents the standardized affine activation with the
mean and standard deviation of the batch sample and γ and
β are trainable parameters that are tuned during optimization.

The final state of the hidden layer is obtained by using a
rectified linear unit:

hn = max(0, bn) (8)

D. Hybrid module

The hidden state hLSTM of the hybrid module has been
obtained using as an input the hidden state of the LSTM cell
hT at the final time step (T is the sequence length). Similarly,
the hidden state hMLP has been computed using as an input
the hidden state activations of the last hidden layer in the MLP
module hN . Both hLSTM and hMLP have been computed
using transformations described in the equations (6), (7) and
(8).

The hybrid module simply takes afterwards the hidden states
hLSTM and hMLP and concatenates them in order to form a
new hidden layer.

The final state of the HNN-NTL model is obtained as
follows:

hHNN = max(0, γẑHNN + β) (9)

where ẑHNN = WHNN [hLSTM , hMLP ] + bHNN and γ and
β are trainable parameters of the model.

The outcome of the network is computed using the sigmoid
activation, providing a score between 0 and 1. This score can
be interpreted as the probability that there is an NTL in the
SM, though its confidence strength depends on the strength of
regularization [29]:

PNTL =
1

1 + e−(WNTLhHNN+bNTL)
(10)

where PNTL represents the probability that there is an NTL
in the SM. WNTL and bNTL represent the trainable weights
and bias of the output layer.

IV. LEARNING AND EVALUATION

A. Loss function and optimization

The performance of the model has been evaluated with the
logarithmic loss function, as this is a binary classification task:

L =
1

M

M∑

i=1

−(yi log(P i
NTL) + (1 − yi) log(1 − P i

NTL))

(11)
where M is the number of customer samples, yi is the ground-
truth label and P i

NTL is the probability of NTL computed by
the HNN-NTL model for the customer sample i.

The trainable parameters of the model have been initialized
with a Xavier initialization [30] and optimized to minimize
the loss function using the Adam optimizer [31], a first-order
gradient-based optimization method.

B. Metric for evaluation

One of the main challenges of tackling the NTL detection
problem with a supervised approach is the imbalance between
classes. A suitable metric for NTL detection is the area under
the receiver operating characteristic curve (ROC-AUC) [32].
The ROC curve is obtained by plotting the true positive rate
(TPR), also known as recall, against the false positive rate
(FPR) by varying the decision threshold on the predictions.
The score ranges between 0 and 1, a score above 0.5 being
obtained with better than random predictions. Though the TPR
and FPR are valuable metrics when assessing the performance
of a model for NTL detection, they do not account for the
precision of the model. A metric suitable for imbalanced
datasets that takes into account the precision of the model is
the area under the precision-recall curve (PR-AUC) [33], [34].
We therefore decided to use the PR-AUC metric for the model
selection on the validation dataset, as taking into account the
success rate of the on-field inspections is extremely important
for the utilities, for economic reasons (a limited budget for on-
field inspections leads to a limited number of inspections per
year, for which the success rate is required to be maximized).

V. EXPERIMENTS AND RESULTS

A. Data availability

All the models have been trained and tested on real SM data
of Endesa, the largest electricity utility in Spain. The data
provided by the utility have been anonymized and a noise
of approximately 5 km has been added to the geographical
coordinates. All samples in the dataset have a contracted power
below 15 kW.

The labeled dataset that is used for training consists of
SMs which had at least one on-field inspection. To analyze
the capability of the model to generalize beyond its training
dataset, the original data have been split into a training,
validation and test dataset. The split has been done in a
stratified manner, so that there is the same % of NTL samples
in each dataset. The training dataset consists of 80 % of the
labeled dataset, whilst the validation and test datasets consist
of ≈ 10 % each. Table III shows the number of samples in
each dataset as well as their % of NTL samples.
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TABLE III
LABELED DATASET

Dataset type Number of samples % of NTL samples
Training 85226 13.34%

Validation 10612 13.50%
Test 10701 13.23%

As can be seen in Table III, the dataset is highly imbalanced
which can make the model biased to probabilities closer to 0.
However, this doesn’t have a strong negative impact on our
model as the metrics employed assess the ranking of samples
rather than the confidence strength of their probabilities.

B. Data processing
The weekly profile, zero measurements and missing mea-

surements have been normalized separately, using their maxi-
mum value:

f(x) =
x

max(x)
(12)

The season did not require any normalization, as it was one-
hot-encoded.

In the case of non-sequential features, the missing values
in non-categorical features were replaced with the mean. For
categorical features, a special ”Unknown” category has been
created to replace missing data. After imputing the missing
data, the non-sequential features were standardized to have 0
mean and unit variance using the following formula:

f(x) =
x− x̄

s
(13)

where x̄ represents the mean of the input feature and s
represents the standard deviation.

C. Implementation
Given the large size of the dataset, all the data exploration

and processing have been done with open source software
PySpark [35], taking advantage of distributed computing using
a cluster of machines. All neural networks were built and
trained using TensorFlow [36], an open-source deep learning
framework. For the comparison with state-of-the-art ML al-
gorithms, the Scikit-learn [37] library has been used to fit the
models. For extreme gradient boosted trees [38], the model
has been fitted using its Python API.

D. Experiment hyperparameters
The performance of a machine learning algorithm depends

strongly on its hyperparameters. As it was seen in Figure 4, the
size of the HNN-NTL network can be adjusted by controlling
the size of various hidden layers such as hLSTM and hHNN .
A grid-search has been implemented in order to find the best
hyperparameters. Table IV shows the range of values searched
as well as the optimal value found. The optimal value was
found by monitoring the performance of the validation dataset.
As a regularization method, a dropout layer has been used on
the output of the hLSTM , hMLP , hHNN and every hi layer
of the MLP module. No regularization has been used on the
LSTM cell hCELL, as it did not improve the performance of
the model.

TABLE IV
HNN-NTL HYPERPARAMETERS SEARCH

Hyperparameter Range of values Optimal value
N 4, 6 4

Size hi 256, 512 256
Size hCELL 256, 512 256
Size hLSTM 256, 512 512
Size hMLP 256, 512 512
Size hHNN 1024, 2048 1024

Dropout 0.3, 0.5 0.3

E. LSTM module results

In order to assess the performance in particular of the LSTM
module (only sequential data), an experiment was performed
with a simplified network where the MLP module and the
hHNN layer of Figure 4 were omitted.

1) LSTM with the weekly profile: Figure 5 shows the
performance of the LSTM model when using as input only the
weekly profile. As can be seen in Figures 6 and 7, a PR-AUC
of 0.33 and a ROC-AUC score of 0.72 have been obtained
on the test dataset. Even with such simple input, the model
significantly outperforms random predictions.

2) LSTM with all data: Figures 8, 9 and 10 show the model
performance of the LSTM model when using all input data
(weekly profile, zero measurements, missing measurements
and season). By using this additional data, the PR-AUC has
increased from 0.33 to 0.41 on the test dataset.

Fig. 5. Simple LSTM model performance during training

Fig. 6. PR curve of simple LSTM model using the best trained model
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Fig. 7. ROC curve of simple LSTM model using the best trained model

Fig. 8. LSTM model performance during training

Fig. 9. PR curve of LSTM model using the best trained model

Fig. 10. ROC curve of LSTM model using the best trained model

F. HNN-NTL model results

The performance of the HNN-NTL model can be seen
in Figures 11, 12 and 13. As can be seen, the HNN-NTL
model greatly outperforms the LSTM model, obtaining a PR-
AUC score of 0.54 on the test dataset. As expected, using

non-sequential features such as the contracted power or the
SM model dramatically improves the performance for NTL
detection.

Fig. 11. HNN-NTL model performance during training

Fig. 12. PR curve of HNN-NTL model using the best trained model

Fig. 13. ROC curve of HNN-NTL model using the best trained model

G. Comparison

In this section, we will compare the performance of the
HNN-NTL model with state-of-the-art classifiers as well as
previous deep learning approaches. As all the models de-
scribed below require a fixed size input, we have used a fixed
size window of one year on the sequential data.

1) Support Vector Machines: The support vector machine
(SVM) is a very popular classifier for NTL detection. The
objective of this algorithm is to find an optimal hyperplane
that maximizes the margin between the vectors of the distinct
classes [39].
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Table V shows the range of hyperparameters used during
grid-search as well as their optimal value found on the
validation dataset. A linear kernel has been used due to the
size of the dataset.

TABLE V
SVM HYPERPARAMETERS SEARCH

Hyperparameter Range of values Optimal value
C 0.001, 0.01, 10, 100 0.001

2) Logistic Regression: Logistic regression (LR) is a pop-
ular supervised algorithm for binary classification tasks, that
uses the same principles as neural networks. To obtain the
probability of NTL for a sample, the algorithm multiplies the
input features with a matrix of trained weights and passes
the output through the sigmoid function [40]. The optimal
weights were found using the logarithmic loss function and the
LIBLINEAR solver [41]. Table VI shows the hyperparameters
used during grid-search for LR.

TABLE VI
LR HYPERPARAMETERS SEARCH

Hyperparameter Range of values Optimal value
C 0.001, 0.01, 10, 100 0.001
R L1 norm, L2 norm L2 norm

3) Random Forests: Random forests (RF) fall into the
category of ensemble models [42]. The algorithm combines
several decision trees (DT) to create a collection of trees
that can make more accurate predictions. The mode of the
predictions of individual trees is used in order to output a final
decision. Table VII shows the hyperparameters used during
grid-search for RF.

TABLE VII
RF HYPERPARAMETERS SEARCH

Hyperparameter Range of values Optimal value
Number of trees 1000, 2000 1000

Minimum samples split 5, 10, 15 10
Maximum depth 7, 15 15

Minimum samples leaf 5, 10, 15 15

4) Extreme Gradient Boosted Trees: Extreme gradient
boosted trees (XGB) is a very popular algorithm in the data
science community, winning many competitions on the data
science platform Kaggle [38]. It has already been used suc-
cessfully for NTL detection [15]. The algorithm uses gradient
boosting [43] with a regularized loss function which makes the
model less prone to overfitting and increases its generalization
capabilities on new samples. Gradient boosted learning is a
very powerful machine learning technique which combines
several DT to create a collection of trees that can make more
accurate predictions. Table VIII shows the hyperparameters
used during grid-search as well as the optimal value found.

5) Multi-Layer Perceptrons Networks: MLP networks have
already been used successfully in NTL detection [20], [21]. In
this comparison, we use the same architecture and hyperpa-
rameters of the MLP module from our HNN-NTL model. This

TABLE VIII
XGB HYPERPARAMETERS SEARCH

Hyperparameter Range of values Optimal value
Number of trees 1000, 2000 1000

Learning rate 0.01, 0.1 0.01
Maximum depth 7, 15 7

Minimum child weight 1, 5, 10 10

MLP network has in addition input features extracted from the
raw EC data.

6) Convolutional Neural Networks: CNN have been shown
to outperform stacked autoencoders and LSTM networks, in
[22], on a dataset with synthetic NTL samples. We used
the same architecture proposed in [22], as well as the same
hyperparameters that have been used in their experiment.
Furthermore, for the sake of completeness, the MLP module
has been added to the CNN architecture so that the network has
access to the same information as the rest of the models. The
output of the MLP module was simply concatenated with the
output of the CNN module before making the final predictions.
The original experiment used monthly EC data as an input to
the CNN network but we have increased the granularity to
daily EC measurements given our data availability.

7) Wide & Deep Convolutional Neural Networks: The
wide & deep convolutional neural network (WD-CNN) is a
deep learning architecture for NTL detection proposed by the
authors in [23]. The algorithm uses a wide network (equivalent
to a MLP network) on the 1D daily EC data and a CNN
on the 2D stacked weekly energy profiles. We used the same
hyperparameters that were used in their experiments, therefore
a grid-search has not been performed for this model. The
special convolution kernel has also been implemented using a
hyperbolic tangent activation function. Similarly to the CNN-
MLP experiment, the MLP module has also been added
as a separate component within the architecture so that the
algorithm has access to the available auxiliary data.

8) Results: This section shows the results obtained for the
comparison of the HNN-NTL algorithm described above with
other state-of-the-art classifiers. The same training, validation
and test datasets described in Table III have been used for
all the models in this comparison. The input that was used
for the SVM, LR, RF, XGB and MLP models is shown in
Table IX. As mentioned previously, these algorithms require
a fixed size input, thus we have retrieved from each customer
sample the daily EC of the past year. The auxiliary data input
is equivalent to the same input used in the MLP module of
the HNN-NTL model. The same entity embeddings have been
used for the categorical features. The EC input consists of the
same information that has been used in the LSTM module,
but restricted to the EC of the previous year.

The CNN-MLP network uses as input the 1D daily EC data
for the CNN module and auxiliary data for the MLP module,
as can be seen in Table X.

The input for the WD-CNN algorithm can be found in
Table XI. For the wide module, the input is simply the daily
energy consumption of the past year. To create the input for
the CNN module, the daily EC consumption has been divided
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TABLE IX
SVM, LR, RF, XGB AND MLP INPUTS

Input Description Size

Auxiliary data

Latitude 1
Longitude 1
Altitude 1

Municipality 5
Contracted power 1

Contract type 2
Voltage 1

SM model 3
SM location 3

SM firmware version 3
SM production year 3

Economic activity code 10

EC input
Daily EC consumption 260

Daily zero measurements 260
Daily missing measurements 260

TABLE X
CNN-MLP INPUT

Input Description Size
CNN input 1D daily EC consumption of last year 260
MLP input See Table II 34

into weekly profiles and stacked into a 2D array. The weekly
profiles were stacked starting with the first week of the year
up until the last.

TABLE XI
WD-CNN INPUT

Input Description Size
Wide input Daily EC consumption of last year 260
CNN input Weekly EC profiles of last year 260
MLP input See Table II 34

Table XII shows the results of the comparison, for various
sizes of the training dataset. Deep learning models are known
to be sensitive to the size of the dataset used during train-
ing. Therefore, this analysis shows whether the HNN-NTL
model maintains its superiority when less training samples
are available. As can been seen, the HNN-NTL model vastly
outperforms any other algorithm, for both PR-AUC and ROC-
AUC metrics and for all sizes of the training dataset.

TABLE XII
FINAL PR-AUC AND ROC-AUC RESULTS ON THE TEST DATASET

Training = 40% Training = 60% Training = 80%
Methods ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC
Random 0.5 0.133 0.5 0.133 0.5 0.133

SVM 0.710 0.277 0.714 0.281 0.716 0.284
LR 0.715 0.282 0.718 0.285 0.719 0.285
RF 0.744 0.331 0.751 0.340 0.753 0.345

XGB 0.767 0.377 0.776 0.391 0.777 0.394
MLP 0.685 0.246 0.723 0.263 0.738 0.314

CNN-MLP 0.748 0.328 0.755 0.321 0.756 0.327
WD-CNN 0.768 0.381 0.770 0.385 0.774 0.397

HNN-NTL 0.822 0.520 0.813 0.499 0.836 0.545

For traditional classifiers such as SVM and RF the perfor-
mance always increases with increased data availability. For
the CNN-MLP and HNN-NTL models, the performance is
either increasing or decreasing which suggests that a new grid-

search on hyperparameters should be performed on each size
of the training dataset for optimal results.

VI. CONCLUSION

In this paper, we have proposed a hybrid model for non-
technical losses detection. To our knowledge, this is the first
deep learning approach that is able to incorporate both sequen-
tial and non-sequential data. We have shown that by integrating
auxiliary data, significant improvements in the performance of
the model are achieved. The model has obtained a PR-AUC of
0.545 and a ROC-AUC score of 0.836 on the test dataset. The
results show that it significantly outperforms previous deep
learning approaches. Furthermore, the comparison with other
state-of-the-art classifiers has shown that the proposed hybrid
neural network model is able to surpass the performance of
very powerful classifiers such as extreme gradient boosted
trees. The methodology has been developed and tested with
real smart meter data of Endesa, the largest electricity utility in
Spain. It is currently used as a non-technical losses detection
tool in the utility, obtaining a precision of ≈ 47 % for new
on-field inspections generated by our ranked list of customers.
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Daniel Capilla-Cerezo, José D. Carvajal-Valderrama and Lour-
des Dı́az-Mena, from the Endesa Distribución - Energy Recov-
ery - Data Science team, for their invaluable help during the
course of this project.

REFERENCES

[1] International Conference on Electricity Distribution (CIRED), “Reduc-
tion of Technical and Non-Technical Losses in Distribution Networks,”
2017. [Online]. Available: http://www.cired.net/files/download/188

[2] C. León, F. Biscarri, I. Monedero, J. I. Guerrero, J. Biscarri, and
R. Millán, “Variability and trend-based generalized rule induction model
to NTL detection in power companies,” IEEE Transactions on Power
Systems, vol. 26, no. 4, pp. 1798–1807, 2011.

[3] P. Glauner, J. A. Meira, P. Valtchev, R. State, and F. Bettinger, “The
Challenge of Non-Technical Loss Detection Using Artificial Intelligence:
A Survey,” International Journal of Computational Intelligence Systems,
vol. 10, no. 1, pp. 760–775, 2017.

[4] S. S. S. R. Depuru, L. Wang, and V. Devabhaktuni, “Electricity theft:
Overview, issues, prevention and a smart meter based approach to control
theft,” Energy Policy, vol. 39, no. 2, pp. 1007–1015, 2011.

[5] Northeast Group LLC, “Electricity Theft and Non-Technical Losses:
Global Markets, Solutions, and Vendors,” 2017. [Online]. Available:
http://www.northeast-group.com

[6] L. Arango, E. Deccache, B. D. Bonatto, H. Arango, P. Ribeiro, and P. M.
Silveira, “Impact of electricity theft on power quality,” in 2016 17th
International Conference on Harmonics and Quality of Power (ICHQP).
IEEE, 2016, pp. 557–562.

[7] A. Fragkioudaki, P. Cruz-Romero, A. Gómez-Expósito, J. Biscarri, M. J.
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