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ABSTRACT As power systems evolve by integrating renewable energy sources, distributed generation,
and electric vehicles, the complexity of managing these systems increases. With the increase in data
accessibility and advancements in computational capabilities, clustering algorithms, including K-means,
are becoming essential tools for researchers in analyzing, optimizing, and modernizing power systems.
This paper presents a comprehensive review of over 440 articles published through 2022, emphasizing
the application of K-means clustering, a widely recognized and frequently used algorithm, along with
its alternative clustering methods within modern power systems. The main contributions of this study
include a bibliometric analysis to understand the historical development and wide-ranging applications of
K-means clustering in power systems. This research also thoroughly examines K-means, its various variants,
potential limitations, and advantages. Furthermore, the study explores alternative clustering algorithms that
can complete or substitute K-means. Some prominent examples include K-medoids, Time-series K-means,
BIRCH, Bayesian clustering, HDBSCAN, CLIQUE, SPECTRAL, SOMs, TICC, and swarm-basedmethods,
broadening the understanding and applications of clustering methodologies in modern power systems. The
paper highlights the wide-ranging applications of these techniques, from load forecasting and fault detection
to power quality analysis and system security assessment. Throughout the examination, it has been observed
that the number of publications employing clustering algorithms within modern power systems is following
an exponential upward trend. This emphasizes the necessity for professionals to understand various clustering
methods, including their benefits and potential challenges, to incorporate the most suitable ones into their
studies.

INDEX TERMS Clustering algorithms, K-means clustering, power systems.

I. INTRODUCTION
In recent years, advances inMachine Learning (ML)methods
have captured significant attention and interest in both aca-
demic and industry domains [1], [2]. Unsupervised learning
ML models have attracted considerable interests due to their
remarkable ability to extract new knowledge from datasets
without relying on prior information [3], [4]. This powerful
capability opens up vast opportunities for discovering hidden
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patterns and insights that might have otherwise remained
unnoticed or unsolved. Clustering algorithms are crucial as
they categorize vast datasets into understandable and mean-
ingful groups, uncovering hidden patterns and structures [5].
Especially in modern power systems, clustering algorithms
facilitate automated, data-driven decision-making by man-
aging enormous data points. They assist in predicting load
demands, optimizing grid management, anomaly detections,
and formulating power management strategies, enhancing
overall operational efficiency and reliability [6], [7], [8],
[9], [10].
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A power system, or electrical power system, is a com-
plex network responsible for generating, transmitting, and
distributing electrical energy to various consumers. This
infrastructure, comprising power plants, substations, trans-
mission lines, and devices, is essential for powering modern
society and technological advancements, supporting diverse
applications and industries.

The K-means algorithm is a popular choice for clus-
tering analysis in power systems due to its simplicity,
efficiency, scalability, and ease of implementation [11], [12].
It is an iterative algorithm that divides a dataset into k
non-overlapping subgroups or clusters. It can handle large
datasets effectively, making it a practical choice for numer-
ous applications such as load profiling, fault detection and
diagnosis, renewable energy forecasting and management,
smart grid management, customer segmentation, optimal sit-
ing and sizing of distributed generation, Electric Vehicle (EV)
charging infrastructure planning, Phasor Measurement Unit
(PMU) placement, Power Quality (PQ) analysis, and energy
management [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23].

The widespread utilization of k-means clustering in power
systems [24], along with its diverse applications, under-
lines the importance of conducting a thorough bibliometric
analysis and a combination of scoping and systematic lit-
erature reviews concerning the applications of the k-means
algorithm in modern power systems. This clustering method
has become a vital tool in the field, employed in load fore-
casting, condition monitoring, fault detection, and renewable
energy integration, amongmany other applications [25], [26],
[27]. These applications highlight the essential role that
k-means clustering plays in improving the reliability, effi-
ciency, and sustainability of power systems. Consequently,
an exploratory examination of existing literature is not only
beneficial but crucial to gain insights into the current usage
trends, identifying the advantages and limitations of this clus-
tering method in power systems, and guiding future research
directions. This knowledge can also inform the development
of more effective strategies and tools to enhance power sys-
tems operation and management.

On the other hand, the K-means algorithm has certain
limitations that may make it less suitable for some specific
applications [11]. While it is widely used and appreciated
for its simplicity and efficiency, it does not always meet
the subtle requirements of complex domains like power
systems [28]. In the literature, numerous other clustering
algorithms have been developed, used, and can be applied
to modern power systems, providing various benefits that
may not be achievable with K-means. These alternative
methods offer more sophisticated clustering techniques and
might handle particular challenges, such as noise, non-
linearity, or the presence of outliers, more robustly [29],
[30]. The choice of the best clustering algorithm should
be guided by the specific requirements and characteris-
tics of the data and the goals of the analysis in power
systems.

To the best knowledge of the authors, while the appli-
cations of K-means algorithm have been explored in other
domains, no study has yet provided a review of this
well-known algorithm within the context of power systems.
Moreover, in power systems, studies have yet to thoroughly
review and study the alternatives to the K-means clustering
algorithm. This gap in the literature highlights a crucial area
for future research, as exploring various clustering meth-
ods could uncover new insights and techniques specifically
adapted to the unique challenges and demands of modern
power system analysis and optimization. To fill this gap, more
than 490 articles published by 2022 have been studied and
analyzed in this work. The main contributions of this paper
are as follows:

1) Conducting a bibliometric analysis of K-means cluster-
ing algorithms to understand their historical develop-
ment, application, and future trend.

2) Providing a comprehensive analysis of K-means that
includes its various variants, highlights its applications
within the power systems, and examines both its advan-
tages and disadvantages.

3) Investigating alternative clustering algorithms that can
be considered in place of the K-means algorithm, such
as K-medoids, Time-series K-means, BIRCH, Bayesian
clustering, HDBSCAN, CLIQUE, SPECTRAL, and
swarm-based clustering algorithms, thereby broadening
the understanding of clustering methodologies in the
context of power systems.

4) Analyzing and evaluating the performance of predom-
inantly used clustering algorithms in modern power
systems.

The rest of this paper is organized as follows: Section II
presents the bibliometric analysis of the K-means algorithm.
Section III discusses the K-means algorithm in detail,
including different configurations for using this algorithm.
Section IV explores the various applications of K-means
in different aspects of modern power systems. Section V
summarizes the application of K-means, discussing its advan-
tages, limitations, and other variants. Section VI presents
alternative clustering methods to K-means and their appli-
cations in modern power systems. Section VII analyzes and
evaluates the performance of the most commonly used clus-
tering algorithms in modern power systems. Section VIII
delves into the findings, including additional analysis.
Finally, Section IX concludes the paper.

II. BIBLOMETRIC ANALYSIS
The production of new reliable scientific data makes it pos-
sible to identify the relevance of a topic within a complex
framework of bibliographic references. At the same time,
identifying the progress of a subject within the general
framework allows for determining new areas of research and
interest, starting from the understanding of the evolution of
the topic. Bibliometric analysis is among the most effec-
tive methods for analyzing these data and trends. With the
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development of scientific databases, this methodology has
grown in popularity and fields of application [31], [32], [33],
[34], [35]. Bibliometric analysis techniques vary according to
the objective. A performance analysis considers the authors’
contribution to topic-related research. On the other hand,
science mapping is focused on correlating research topics
and components. The latter technique is used in five different
ways [36], [37], [38], [39]. Through the use of one of these
methods or their combination, it is possible to indicate the
relevance of a topic and monitor its evolution over time, until
arriving at an accurate prediction of its trend for the future.
Therefore, it is analyzed the K-means clustering in modern
power system applications to identify the relevance of the
different correlated elements. Fig. 1 reports theK-means clus-
tering in power systems bibliometric trend using the Scopus
database.

In Fig. 1 are annually collected the number of publications
made involving the topic ‘‘K-means’’ in the power system
field. The publications are differentiated as:

Conference papers;
Journal articles;
Conference reviews;
Book chapters;
Reviews.

FIGURE 1. K-means clustering and power system bibliometric trend.

As presented in Fig. 1, the trend of interest in the k-means
clustering topic has increased exponentially, growing the
number of publications almost every year, reaching 366 in
2022. Following this trend and using the same classification,
it is worth investigating the most relevant sources of publi-
cations related to the topics. The processing of the sources
results in Fig. 2.

Fig. 2 highlights that conference papers are the primary
source of publication related to K-means (984), and the
most interesting conference is ‘‘Lecture Notes In Com-
puter Science Including Subseries Lecture Notes In Artificial
Intelligence And Lecture Notes In Bioinformatics,’’ which
published 38 conference papers until 2022. Additionally,
journal articles account for a significant proportion of pub-
lications related to K-means, comprising 44% of the total,
which equates to 851 articles. The journals with the most
publications are IEEE Access and Energies, with 44 and
43 articles, respectively. Both of these are open-access jour-
nals. On a completely different scale, conference reviews and

FIGURE 2. K-means clustering and power system most relevant sources.

book chapters account for 72 and 18 publications, respec-
tively. In this context, ‘‘Advances in Intelligent Systems and
Computing’’ is the most publishing conference of conference
review, while ‘‘Computer Science’’ accounts for the highest
number of book chapter publications. Finally, article reviews
are only 2, making them almost negligible in the framework.
Considering the increasing trend of the K-means clustering
topic, it is predictable that this number is going to increase.

Moreover, the origins of publications are of interest
in order to understand which countries are more actively
engaged in working on K-means clustering in the power sys-
tem field. Therefore, Fig. 3 presents the publications related
to this topic by country, focusing on the ten most relevant
nations in terms of publication numbers.

FIGURE 3. K-means clustering and power system bibliometric trend per
country.

Fig. 3 distinctly illustrates that China leads in research
on K-means clustering in the power system, boasting
730 indexed publications up to 2022. The United States and
India are next, with 220 and 208 indexed publications, respec-
tively. The remaining countries in the top 10, in terms of
publications related to K-means clustering in the power sys-
tem, include the UK, Iran, South Korea, Canada, Australia,
Italy, and Japan.

Lastly, a co-word analysis is performed to explore the
relationship between the main subject and the broader
research landscape. This examination reveals the significance
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of each topic connected to K-means clustering in power
systems. Fig. 4 presents a graphical representation of the
co-word analysis related to K-means clustering, portrayed
through a heatmap, using VOSviewer software. This analyti-
cal approach clarifies howK-means clustering integrates with
other key research themes and domains.

The heatmap uses more intense colors to signify proximity
to the reference topic, reflecting the high number of keyword
connections, while the size of a word depends on the fre-
quency with which the keyword is mentioned. As anticipated,
‘K-means clustering’ is the most significant keyword and
is positioned in the midst of the most intense color, as it
represents the main keyword of the research, often coupled
with ‘power grid’ to define the general context. Several other
connected topics are frequently mentioned, such as forecast-
ing and energy efficiency. These occurrences are unsurprising
since K-means clustering is often utilized to create scenarios
or clusters in forecasting models, and enhancing energy effi-
ciency is a common goal. The intensity of the color indicates
that K-means clustering is a widely used technique, exten-
sively linked to various subjects, as evidenced by connections
to terms like stochastic system and forecasting.

FIGURE 4. Co-word analysis for K-means clustering in power system.

Considering Fig. 4 and the domain knowledge of the
authors, several key areas have been identified for further
exploration in the context of applying K-means clustering
to power systems. These topics represent diverse aspects
of power systems, ranging from different energy sources to
operational and managerial considerations as presented in
Table 1. Each of these areas presents unique challenges and
opportunities, and understanding how K-means clustering
can be adapted to meet the specific needs of these aspects is
investigated in section IV. The selection of papers published
up to 2022 was based on these keywords, aiming to conduct
a comprehensive review that covers a diverse range of appli-
cations of K-means in power systems.

The VOSviewer software is used to identify the connec-
tions between the selected keywords and K-means clustering,

TABLE 1. Selected keywords.

considering the publications in the literature from the Scopus
database by 2022, as presented in Fig. 5.

The rules for Fig. 5 are the same as those for Fig. 4;
a larger name represents a higher number of occurrences,
while a more intense color indicates a greater number of
connections to the keywords. In this case, K-means clustering
also is the main topic, signified by the largest size and most
intense color. However, other keywords are also notewor-
thy. Forecasting and energy efficiency remain two of the
most frequent and correlated keywords, but other terms such
as wind power, electric power utilization, electric utilities,
and PV-related keywords also stand out. This reflects that
K-means clustering is widely used in literature for forecasting
renewable energy sources (RESs) and identifying common
energy demand patterns. Further descriptions of K-means
applications in the power system field for each selected topic
are provided in Section IV.

FIGURE 5. Co-word analysis for K-means clustering in power system
restricted to main applications.

III. K-MEANS CLUSTERING
The K-means clustering algorithm is among the most pop-
ular unsupervised machine learning algorithms. It was first
proposed by Stuart Lloyd [40] in 1957; However, James
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MacQueen [41], a decade later in 1967, not only popularized
this effective algorithm but also named it ‘‘K-means,’’ a
term now used worldwide [42]. The K-means algorithm has
gained popularity because it is easy to understand, imple-
ment, and relatively efficient, especially when dealing with
large datasets.

A. K-MEANS ALGORITHM
The primary role of the K-means algorithm is to divide a
dataset into K distinct clusters, which are non-overlapping
groups formed around the K centroids calculated by the
algorithm [11]. The K-means algorithm aims to minimize
the within-cluster variance, forcing the centroids to move to
positions surrounded by samples closer to them than any other
centroid. The measure of similarity or dissimilarity between
data points, typically determined using the Euclidean dis-
tance (1), plays a crucial role in this process [43], although
other distance measures can also be utilized.

d
(
xp, cq

)
=

√√√√ n∑
i=1

(xpi − c
q
i ) =

∥∥xp − cq∥∥2 (1)

where x is the pth sample from X , c is the qth centroid of the
qth cluster, and x and c are sets of n-dimensional vectors.
The K-means, algorithm 1, is initialized by randomly

selecting k data points from the input X as initial centroids.
The process then enters a loop that continues for a specified
number of iterations or until the centroids cease to shift
significantly, indicating convergence. During each iteration
of the algorithm, every data point in X is assigned to a closet
cluster with a minimum Euclidean distance to its centroid.
Following this assignment, the centroids are updated based
on the current composition of the clusters. The new position
for each centroid is computed as the mean of all data points
currently within the respective cluster [42], [44], [45]. After
completing the iterative loop or convergence, the algorithm
ultimately yields the final set of k centroids and the corre-
sponding clusters.

Convergence in k-means is typically defined as the point
at which the assignments of data points to clusters no longer
change or the changes are below a predefined threshold. This
indicates that the algorithm has found an optimal solution
(local optimum) given the current centroids. The mathemat-
ical definition of convergence in K-means can be expressed
by 2:

k∑
i=1

∥∥∥cit − cit−1∥∥∥2 ≤ ϵ (2)

where cit is the i
th centroid at the t th iteration, and cit−1 is the

same centroid at the (t − 1)th iteration.
The K-means algorithm begins by randomly assigning

data points to clusters and determining their centroids. The
algorithm aims to minimize the variance or distance of
points within the same cluster. This process, however, does

Algorithm 1 Original K-Means Algorithm
Input:

Input samples: X =
{
x1,x2, · · · ,xm

}
, xi ∈ Rn

Number of clusters: k
number of iterations: I

Output:
Cluster centroids: C =

{
c1,c2, · · · ,ck

}
Associated clusters: S =

{
S1,S2, · · · ,Sk

}
Initialization: Randomly select k data points from X as
the initial centroids
For iter = 1 to I or until convergence do

For i = 1 to m do
j∗← argmin

j

∥∥xi − cj
∥∥2
2

S j
∗

← S j
∗ ∪

{
xi

}
For i = 1 to k do

ci = 1
|ci|

∑
xj∈ci x

j

Return:
C and S

not assure an efficient convergence or an optimal cluster-
ing outcome. Due to its random initialization, the K-means
algorithm can suffer from poor convergence and suboptimal
clustering dependent on initial conditions. Moreover, it is
prone to settling into local minima instead of finding the
global optimum [12], [46], [47].

K-means++, along with Principal Component Analysis
(PCA) initialization, serves as a robust strategy for enhancing
the performance of the K-means clustering algorithm [12],
[46], [48]. K-means++, by providing a more intelligent
initialization method, substantially reduces the algorithm’s
sensitivity to the initial cluster centroids. This minimizes
the convergence risk to suboptimal solutions, making the
K-means algorithm more consistent and reliable across dif-
ferent runs. On the other hand, the PCA components are used
as the initial cluster centroids for K-means, allowingK-means
to start with amore informed initialization rather than random
centroids [49], [50]. This approach can be useful in scenarios
where PCA is applied to preprocess data, and the resulting
components are assumed to provide a reasonable starting
point for clustering. While several initialization techniques
are available for the K-means algorithm, K-means++ stands
out as one of the most widely adopted and effective methods
due to its ability to consistently generate high-quality initial
cluster centroids.

B. K-MEANS++ ALGORITHM
K-means++ introduced to improve the initialization process
and significantly reduces the likelihood of converging to a
local minimum, thus offering a more reliable path to optimal
clustering [12], [51]. The K-means++ algorithm is described
with the following steps:
1. Randomly select a data point from the dataset to serve

as the first cluster center.
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2. For each remaining data point in the dataset, calculate
its distance squared to the nearest pre-existing cluster
center.

3. Select the next cluster center from the remaining data
points with a probability proportional to the calculated
squared distance. This means that a point further away
from the existing cluster centers is more likely to be
selected as the next center.

4. Repeat steps 2 and 3 until a total of K cluster centers
have been chosen.

After selecting the initial cluster centers during the ini-
tialization phase, the K-means algorithm resumes its usual
course, proceeding with the standard iteration process for
optimal cluster formation.

Repeating the standard K-means algorithm multiple times
while offering opportunities to avoid poor initializations
can be computationally expensive and does not guarantee
improved clustering outcomes due to the randomness of
initialization [51], [52]. On the other hand, K-means++
provides a substantial advantage by adopting a determinis-
tic approach to initialization, improving the probability of
finding the global optimum and reducing the likelihood of
converging to local minima.

K-means++ provides computational efficiency by
enhancing initialization in a single run, making it espe-
cially beneficial for large datasets or when many clusters
are required [53]. It strategically selects initial centroids to
increase the likelihood of achieving a global optimum, reduc-
ing the chance of convergence to local minima. Moreover,
K-means++ ensures more consistent and stable results than
the traditional K-means algorithm.

C. PCA INITIALIZATION
Principal Component Analysis (PCA), a widely used dimen-
sionality reduction technique, can also be used in the
initialization step of the K-means algorithm. PCA finds the
dimensions displayingmaximum data variance. Thus, assign-
ing the initial cluster centers to the points that align with the
first K principal components potentially provides a beneficial
starting point for the clustering procedure. This approach is
particularly effective when clusters are distinguishable and
linearly separable along the axes of high variance.

However, PCA initialization has some limitations. Mainly,
it assumes a linear structure in the data, which is not always
met. If the principal components do not align well with the
actual cluster structure in the data, this could lead to an inef-
fective initialization and potentially poor clustering results.

D. CONFIGURATIONS
The K-means clustering algorithm is implemented in three
distinct configurations [54], [55], [56], as shown in Fig. 6.
Since K-means employs Euclidean distance to evaluate the
similarity and dissimilarity within each cluster, normalizing
the data in the preprocessing phase is essential [11]. This
step guarantees that each feature holds the same weight in

determining the cluster centroids. The main configurations
are as follows:
• Vanilla configuration: K-means can be directly applied
to data following the preprocessing step, as presented in
Fig. 6 a).

• Feature-extracted configuration: Another potential con-
figuration involves extracting new features, such as
statistical attributes from the dataset, to enhance the per-
formance of the K-means algorithm [22]. These newly
extracted features may necessitate normalization once
again. The newly extracted features can be used inde-
pendently or in combination with the original features
as inputs to the model, as depicted in the Fig. 6 b).

• Dimensionality-reduction configuration: The perfor-
mance of the K-means algorithm can be significantly
impacted by the so-called ‘‘curse of dimensionality,’’
a phenomenon where high-dimensional data can lead
to computational or analytical difficulties for machine
learning models. Dimensionality reduction techniques,
such as PCA, Kernel PCA (KPCA), or neural network
autoencoder can be strategically utilized to alleviate
the challenges posed by high-dimensionality in data
before initiating the clustering process [43], [57], [58],
[59], as shown in Fig. 6 c). In recent years, due
to their efficient and effective compression capabili-
ties, autoencoders have been a state-of-the-art choice
for dimensionality reduction, particularly when dealing
with complex or large-scale datasets.

FIGURE 6. K-means clustering configurations: a) Vanilla, b) Feature-
extracted, and c) Dimensionality-reduction configurations.

In the second configuration, it is crucial to emphasize the
computation of distances or similarities between data points

VOLUME 11, 2023 119601



S. M. Miraftabzadeh et al.: K-Means and Alternative Clustering Methods

as a powerful feature extraction step before applying cluster-
ing algorithms in specific scenarios. These measures, such
as Euclidean distance, Manhattan distance, Cosine similarity,
and Dynamic Time Warping (DTW), quantify the relation-
ships or dissimilarities among data points within a dataset.
These computations create a distance or similarity matrix,
which serves as input for clustering algorithms [60]. This
approach can lead to efficient clustering, as it establishes
the foundation for identifying clusters based on the inherent
relationships within the data.

IV. K-MEANS APPLICATIONS IN MODERN POWER
SYSTEMS
This section comprehensively reviews and presents the appli-
cations of K-means clustering across various fields within
modern power systems.

A. POWER GENERATION
1) WIND POWER
The K-Means clustering method is used to cluster the days
into distinct clusters based on factors such as wind power,
weather conditions, and other relevant impact factors. Subse-
quently, a separate model is created for each cluster to predict
wind power generation within that specific cluster [61], [62],
[63], [64], [65].

A wind farm frequency regulation technique is devel-
oped by incorporating the k-means clustering algorithm,
which considers wind uncertainties for spatially grouping
generators [66]. Reference [67] proposed a method based
on clustering algorithms, including K-means, to coordinate
the scheduling of generators under wind power uncertainty.
References [68] and [69] introduces a novel power curve
modeling technique that utilizes the k-means algorithm.

In [70], the K-means clustering method is employed to
identify outliers within each cluster. Subsequently, these
outliers are then filtered out using an autoencoder applied
to SCADA measurements. Reference [13] proposes using
K-means clustering with meteorological data to strategically
allocate wind power capacities in an interconnected power
system, aiming to optimize the allocation of wind power
resources.

2) SOLAR ENERGY
Using solar output, weather conditions and time as param-
eters, the K-means algorithm divides data into multiple
clusters. Subsequently, a unique photovoltaic power predic-
tion model is formed for each individual group [20], [71],
[72], [73]. Also, this algorithm is utilized to cluster sky
images, enhancing photovoltaic power forecasting accuracy
[74], [75].

The K-means clustering method has been applied to iden-
tify high-quality and diverse reduced scenarios within a
distribution network characterized by high photovoltaic pen-
etration [76], [77], [78], [79]. Leveraging this algorithm, [80]
developed a method for rating rooftop PV system capacity

for buildings. Similarly, this algorithm clusters different cities
based on their installed PV capacity [81], [82].

A K-means algorithm clusters PV systems with simi-
lar Effective Capacity Factor (ECF) behaviors to enhance
Extreme Value Analysis (EVA) applicability in real-life
scenarios of power systems with inadequate extreme PV
data [83]. The K-means algorithm is used by [84] to identify
isolated points within solar cells.

3) ELECTRIC POWER PLANT LOADS
Distributed energy systems represent the key elements of the
new perspective of the smart grid. If, in the past, the flow
of energy followed a linear and hierarchical logic, including
generation, transmission, dispatching, and sale, this is no
longer the case [85], [86]. The landscape has changed, and
users have now become an active part of the generation phase,
reflecting a more decentralized and participatory approach
to energy management. This new structure has led to the
creation of energy hubs, allowing consumers to function
as power plants through renewable distributed generation
[87], [88]. Still, they have to face several issues related to
both load-side and source-side. To face this issue, several
publications work to connect energy consumption to energy
production [25], [89], [90]. Therefore, short-term predictions
became a relevant topic of interest in the electric power plant
loads field [14], [91], [92], [93], [94]. Finally, the inclusion
of EVs in household loads can also be considered in the case
studies performed, even though they add another degree of
uncertainty to the load due to their potential integration into
energy hubs [95], [96].

In this context, K-means clustering is combined with other
algorithms and techniques to predict the load at both sides,
load and source, to identify consumption patterns to match
power generations [97], [98], [99], [100]. Currently, combi-
nations of learning strategies are frequently employed, as they
are considered more accurate and feasible than individual
predictive models [101]. Moreover, with the high amount of
available data, K-means clustering is also used to filter out
data that are considered noise [102].

B. POWER TRANSMISSION AND DISPATCHING
1) ELECTRIC LINES
In the electric lines case study, K-means algorithms are pri-
marily used in cascade fault prevention, allowing the decision
maker to have an early warning [103]. Meteorological condi-
tions, such as ice, can influence electric line performances,
so K-means algorithms are utilized to perform an anti-ice
prediction strategy [104].

Moreover, as in many other cases, the K-means algorithm
is used during the PMU data processing process along the
line, with the aim of solving the numerical dispersion of the
line loss rate in the area covered by the transformer, also with
high accuracy [105], [106], [107]. Linked to the operational
monitoring of electric lines, the K-means algorithm is utilized
to minimize the number of inspection teams dedicated to
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the maintenance of an electric line [108]. Focusing on the
reliability of the electric lines, K-means algorithms are used
to process data for the identification of the level of influence
of lighting resistance on lightning arresters [109].

2) ELECTRIC LOAD FLOW
Electric load flow inmodern applications is closely connected
to the coordination of the elements within a grid, a coordi-
nation that becomes especially important in cases involving
renewable energy sources. References [110], [111], and [112]
provide a model for a direct probabilistic power flow, includ-
ing renewables. In this context, [67], [113], [114] focus
on predicting renewable production, and this estimation is
achieved through the use of K-means algorithms. Moreover,
the integration of a significant number of distributed energy
resources into the electrical grid introduces new substantial
challenges, where the K-means is employed to address them.
In [115] the ultimate goal of using K-means is to identify
the impact of harmonics generated by the integration of PV
systems. Similarly, it is used in maximum frequency assess-
ment, specifically to group the samples into multi-clusters by
maximizing the membership degree of each training sample
[116]. In [117] and [118] K-means is used again in cooper-
ation with the distributed renewable energy sources, first for
generation balancing, then for scenario selection, preserving
simultaneous and chronological combinations of different
loads and distributed energy resources. Reference [119] uses
the K-means algorithm to cluster and provide a suitable
linearization of the power-flow equations reducing the com-
putational burden involved in determining terminal voltages
for the clusters. Last, with the electrification of transport
systems, the optimization of power flow became a primary
interest also in this field [120].

3) FAULT DETECTION
In a hybrid anomaly detection model for electricity theft
in smart meter systems, the K-means algorithm clusters
customers exhibited similar behavior [121]. Similarly, this
algorithm is utilized for anomaly detection in PMU stream-
ing data [122]. Reference [123] proposed an ensemble
learning model, which includes K-means, to detect attacks
and anomalies in the power system. The same clustering
algorithm is employed to categorize single phase-to-ground
fault instances and identify the defective segments within the
distributed network [124].
Damaged areas in PV systems are identified using an

algorithm based on the K-means clustering technique [125].
This algorithm is employed to identify faults within the PV
data using PVs and weather data [15], [126]. In [127], a novel
anomaly detection technique that leverages the K-means
algorithm to cluster behavior patterns of industrial com-
ponents is proposed for application in hydropower plants.
Reference [128] introduced a hybrid model employing the
K-means clustering algorithm to identify and locate anoma-
lous cells within lithium-ion battery packs.

Alternatively, [16], [17], [129] employed a K-means clus-
tering approach, effectively trimming the original sample size
of the dataset and thus enhancing the computational speed
for fault detection in wind energy conversion and islanding
approach for power systems.

4) REACTIVE POWER
With the increment of renewables in energy distribution net-
works, reactive powermanagement became a relevant issue in
many power systems applications [7], [130], [131]. With the
aim of quantitatively identifying the influence of renewables
access on voltage and reactive power operation, the K-means
algorithm is used to process data on renewables energy
production and load demand [132]. Thus, reactive power opti-
mization problems with large-scale distributed generation are
performed in [133], and the K-mean clustering algorithm is
employed to identify the better initial clustering center. In this
framework, [134] proposes an approximated AC model for
simultaneous transmission expansion planning and reactive
power planning depending onwind power investment, and the
K-means clustering technique is used to reduce the scenario
numbers.

The K-means clustering is also utilized with the final aim
of compensationmethod for unbalanced voltage by active and
reactive power control through a smart inverter [135]. More-
over, with the purpose of fluctuation reduction, K-means
cluster, combined with logic operation techniques, are used to
process offline data for training support vector machine [16],
[136]. The K-means clustering is incorporated to process data
linked to the State of Charge analysis in hierarchical planning
in charging electric vehicles and the interaction between the
power grid and transportation sector; this led to the minimiza-
tion of reactive power losses [137].

C. POWER SYSTEM UTILITIES
1) ELECTRICITY CONSUMPTION
The K-means algorithm is utilized to determine groups of
customers exhibiting similar patterns in electricity consump-
tion, aiding in understanding the various types of regular
behavior [121], [138], [139], [140]. Alternatively, [141] also
incorporates temperature alongside electricity consumption
data to analyze regional energy usage patterns.

K-means clustering is used to derive daily electricity con-
sumption profiles from the electric energy data acquisition
system based on the centroid centers [142], [143], [144],
[145]. Similarly, household electricity consumption patterns
have been identified by [18], [95], [146], [147], and [148].
By employing consumption pattern curves derived from this
clustering technique, the typical use of appliances has been
distinguished in [149].

2) ENERGY UTILIZATION
The variability of renewable energy sources and the electric
load represents a major concern in modern power systems;
providing a precise forecast of power output can help to
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reduce the cost of power system operation. References [62],
[70], and [150] provide a model for short-term wind power
forecasting, utilizing the K-means algorithm to cluster the
inputs into different groups and to reduce noise in mea-
surements. Similarly, [18], [146], [151], and [152] develop
models to enhance energy efficiency and reduce electric-
ity consumption in household applications. In these works,
the K-means algorithm is employed to categorize typical
electricity consumption patterns, types of users, and house
characteristics.

Also, [89] proposed an optimization-designed distributed
energy system based on load forecasting, and K-means
clustering is used to predict the load both on the source
and load sides to improve efficiency. However, these pre-
dictive solutions are not used exclusively for household
applications. Reference [143] provides a methodology for
discovering electricity consumption patterns in smart cities
using this algorithm for energy utilization systems. The
push to expand electrification in developing countries often
focuses on microgrid applications. K-means clustering plays
a role in this effort, being employed to identify dominant
trends within the energy generation sector [153].

3) SMART METERS
The K-means algorithm has been utilized by [154] for
monitoring appliance-level energy consumption in homes,
deriving energy consumption profiles from smart meter
data. By analyzing voltage measurements of smart meters,
K-means clustering is deployed for identifying the phase (sin-
gle or three phases) of the connected network [155], [156].
The clustering algorithm has been utilized to determine the
optimal location for the Data Aggregation Point (DAP) to
collect data from smart meters [157].
In [158] and [159], K-means is employed to identify neigh-

bors with similar energy consumption patterns. Reference
[160] proposes a method that uses the K-means algorithm
and smart meter data to establish household load profiles
for energy analytics. K-means is also applied to smart meter
data from a university campus to establish representative
monthly load profile patterns [161]. This algorithm is uti-
lized in a study by [162], where they aggregate household
energy consumption data sourced from smart meters. The
study introduces a model aimed at reducing the peak demand
of customers. I [19], [163] n, the centroids of each cluster
serve as representatives for each group within the smart meter
energy consumption data.

D. POWER SYSTEM PLANNING AND CONTROL
1) SCHEDULING
With the integration of distributed renewable energy sources
and the consequent bidirectionality of the electricity grid, the
planning and scheduling strategy becomes a topic of primary
importance within the research field, for local distributors,
and for infrastructure management [164]. In this context, sev-
eral studies proposed coordinated scheduling of generators in

order to relieve the grid from the randomness and volatility
of renewables, such as wind and solar [67], [165], [166],
[167], [168]. Moreover, the significance of energy hubs in
the field is steadily increasing, as they embody a multi-carrier
energy system catering to diverse types of energy demands.
However, the unpredictability of renewable energy sources
remains a major concern. Consequently, the scheduling pro-
cess has become a key area of interest in exploring solutions
to this challenge [169], [170]. Therefore, several applications,
also different from renewable distributed power plants and
energy hubs, such as smart buildings and EVs, play a relevant
role in power flow scheduling. The K-means clustering also
serves as a useful technique for data clustering in scheduling
problems in these cases [101]. Additionally, K-means clus-
tering is employed within this framework to classify typical
scenarios, providing a foundation to propose a predictive
model [171].

The integration of PHEVs (Plug-in Hybrid Electric Vehi-
cles) can also present challenges for the electric network
due to the unpredictability of their connections. Utilizing
K-means clustering can help organize them into distinct
fleets, mitigating this issue [172], [173]. The topic of schedul-
ing is closely related to the aggregation and remuneration
of services, where K-means clustering plays a key role in
defining tariffs for specific periods of the week [174], [175].

2) NETWORK SECURITY
Following the trend of interest in power system applications,
K-means clustering is being employed within the network
security framework. In this context, the false data injection
attack has emerged as a recent and relevant tendency in the
state estimation field, where aspects like frequency regulation
and market operations can be dramatically affected [176],
[177], [178], [179]. Moreover, intrusion detection systems
are of significant interest for identifying data anomalies in
control signals and sensor measurements. Thus, K-means
clustering algorithms are combined with power predictions
to create a cluster-driven ensemble learning algorithm to
address this issue [180]. The literature also presents examples
of methods to identify vulnerable elements: determining the
most vulnerable components is crucial for establishing a
robust defense for the power grid [181]. K-means clustering
is also employed in energy and trust management routing
algorithms for mobile ad-hoc networks. This approach leads
to identifying unstable clusters, which can be replaced by oth-
ers, thereby implementing a self-configurable cluster method
[182]. Lastly, using K-means clustering enhances network
security and energy conservation in wireless communication
systems [183].

3) OUTAGES
The reliability of the electrical network has become a cru-
cial concern, with outages emerging as a significant issue
to address in order to prevent losses of data, money, and
services. In this context, prognostic models able to combine
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model-based and data-driven techniques are used both for
anomaly detection and remaining useful life [8], [184], [185],
[186]. Moreover, self-healing is becoming an essential fea-
ture for self-organizing networks to detect faults and provide
a response and a recovery [187]. Also, transmission line
outages caused by overtemperature are studied and deter-
mined using K-means clustering [188]. Failure predictions
in power systems are therefore treated with supervised and
unsupervised learnings techniques, such as K-means cluster-
ing, or using a combination of them [181], [189], [190].
In the Quality of Service (QoS) field, cross-layer resource

allocation is also noteworthy; in [191], a model is proposed
based on K-means that can define a statistical quality of
service based on a fixed power allocation method. More-
over, in edge networks, QoS often involves bringing network
resources closer to end devices. The speed, ease of deploy-
ment, and cost efficiency of Unmanned Aerial Vehicles
(UAVs) make them promising technologies for the network.
UAVs provide computational capability, enhance services to
edge devices, and establish a better line-of-sight link with
ground devices. Therefore, identifying the optimal height for
UAVs to hover has become a valuable application [192].

Thanks to big data management, the ability to identify and
eliminate erroneous data within the system has become more
accessible. K-means clustering is employed to categorize the
data gathered for various contingencies, such as blackout
prevention and islanding. This approach has been proposed
for use in multi-bus and multi-node systems [193], [194],
[195], [196], [197], [198]. Additionally, K-means clustering
algorithms are used in predicting load shedding to alleviate
pressure on the supply during peak times [199]. Lastly, joint
clustering, including using K-means, is involved in power
allocation for managing crossroad congestion in cooperative
vehicular networks [200].

4) RISK ASSESSMENT
Another challenge to face in the reliability of power system
planning and control is risk assessment. Currently, in this
research field, machine learning algorithms are employed for
state evaluation and risk assessment for relay protections,
ensuring the stable operation of the power system [201],
[202], [203]. Addressing high safety risks in the new inte-
grated energy system requires sophisticated computations for
safe and smart electricity consumption. K-means clustering
is utilized to create a smart and safe electricity consumption
model for the integrated energy system, leveraging big data
management [204], [205], [206]. Using a risk-based cluster-
ing method to identify Near Misses among safe scenarios is
important since the possibility of recovering the combinations
of failures in a tolerable time allows to avoid deviations to
accident, reducing the downtime and its risk to the system
[207]. K-means clustering methodology is also applied in the
risk assessment of power transformers, which occupy a crit-
ical role in power systems, considering technical conditions
and strategic importance of the units [208]. Risk assessment

is a critical aspect of the electricity market, as it introduces
uncertainties that cause fluctuations in electricity prices and
complicate the measurement of losses and gains. Therefore,
K-means clustering is employed to quantize the time series,
accurately reflecting real-world conditions in the electricity
market [209], [210].

E. ELECTRICITY MARKET
1) POWER MARKETS
The K-means clustering algorithm is employed to identify
representative scenarios for optimizing the short-term elec-
tricity market [210]. To represent an entire year, [211], [212]
utilized this algorithm and identified eight representative
days, capturing solar irradiance, offshore and onshore wind
speeds, as well as demand patterns. The K-means clustering
algorithm is employed to categorize diverse loads, including
EVs [213], [214], thereby simplifying the size of bidding
optimization problems for an aggregator in the day-ahead
energy market [215].
In a specific case study of Black Friday, the K-means

algorithm was implemented for market segmentation, iden-
tifying potential customer zones to facilitate the formulation
of effective marketing strategies [216]. Similarly, in [217],
this algorithm is utilized to categorize all participating com-
panies in the market based on their similarities, facilitating
strategic involvement in competitive electricity markets. Ref-
erences [218], [219],and [220] employs a K-means clustering
model to segment similar price zones into clusters, aiming to
improve energy price prediction accuracy by creating sepa-
rated models for each cluster. Likewise, In the study [221],
the authors applied the K-means algorithm to group electric
vehicles (EVs) based on their travel behavior patterns. This
grouping allowed the creation of a predictive model for each
cluster, aiming to forecast the day-ahead energy demand and
manage uncertainty in the electricity market [169], [222].

2) LOAD FORECASTING
The K-means clustering algorithm is utilized to categorize
users based on weather conditions or consumption levels,
aiming to identify similarities among different load patterns
[223], [224], [225], [226], [227]. Most studies employ this
clustering algorithm to cluster users based on their load
profiles. The goal is to construct separate models for each
cluster, thereby enhancing the accuracy of their predictive
models. In [6], [226], [228], [229], [230], and [231], the
authors applied the same methodology of clustering similar
energy consumption patterns to develop a prediction model
for residential load consumption. Additionally, temperature
data was utilized to cluster users in order to build load fore-
casting models [224].

Conversely, some studies utilize the K-means algorithm to
extract new features based on consumption similarities, ulti-
mately building a unified model for all clusters [223], [225],
[232], [233], [234]. In this case, the new features derived
from K-means serve as additional inputs to the model. This
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approach requires the machine learning model to interpret
the relationship between each cluster and the output. The
same approach was utilized in [235] and [236], where a
household load consumption predictionmodel was developed
by clustering similar load profiles.

References [102] and [237] employed the K-means
algorithm to detect noise and outliers in load forecasting
models. Reference [238] used this algorithm to decrease the
complexity of consumption scenarios for more efficient load
forecasting.

F. SMART POWER GRIDS
1) SMART GRIDS
The continuous exchange of information is a key aspect
of smart grid implementation. The ability to collect and
process vast amounts of data promotes the integration of
renewable energy sources and enables proper distribution
grid management. Additionally, with continuous population
growth and constant urbanization, pressure on the national
grid increases, leading to potential failures. In this context,
Demand-Response (DR) programs can alleviate electrical
demand during periods of stress, contributing to a more
resilient and adaptive energy system. In this application,
K-means clustering is applied to identify the clusters of DR
power consumption [239], [240], [241]. Cluster analysis,
including methods like K-means clustering, is widely used
to analyze smart meter electricity demand data. By identi-
fying patterns in electricity consumption, these techniques
enhance predictions for DR programs, contributing to more
efficient and responsive energy management [152], [242].
DR-based methods are also applicable for optimal scheduling
applications within the smart distributed grid, particularly in
cases involving the integration of EVs. Consequently, it helps
coordinate charging and discharging schedules, balance the
load, and maintain the grid’s stability [173].

Considering the complex management requirements of
smart grids, support management systems and operation plan-
ning tools, such as aggregators, become noteworthy in the
research framework. K-means clustering is often utilized for
scenario reduction, helping to simplify and focus the analysis
on critical patterns and trends within the data [175], [243].
One of the key aspects of the smart grid is the renewables
integration, and in this context, K-means clustering is widely
used for predictions in renewable power production, espe-
cially in short terms cases [20], [73]. Also, in smart grids,
the applications of clustering techniques, such as K-means,
to synchrophasor data to determine the number of clusters
formed for grid management [244]. Moreover, In residen-
tial applications, K-means clustering is used to identify user
categories and minimize energy expenditure, facilitating tar-
geted interventions for more efficient and equitable energy
usage [151], [245], [246]. Finally, the energy pricing aspect
is not negligible considering smart grid applications, where
K-means is also used for the determination of a real-time
pricing [247].

2) ENERGY EFFICIENCY
Energy efficiency improvement is a major concern in
industrial, residential, and building applications, aiming to
minimize costs, emissions, and losses while ensuring grid
reliability. Demand response programs and storage systems
are crucial instruments for achieving this goal. In [248],
a model of an improved residential micro energy grid is
presented, focusing on enhancing energy efficiency. The
K-means algorithm is utilized for scenario reduction in this
context. Similarly, identifying electricity consumption pat-
terns can minimize wasted energy in the residential sector,
with K-means being widely used for clustering typical elec-
tricity consumption patterns [146]. The necessity to improve
energy efficiency is also highlighted because of renewable
integration in the smart grid. Reference [249] proposes a
model to increase wind farm efficiency by analyzing the
parameters which influence the wake effect of wind tur-
bines using K-means clustering. Additionally, dynamic user
clustering and the utilization of UAVs for optimal power
allocation are employed to enhance energy efficiency [250],
[251]. There is a significant interest in smart building appli-
cations specifying innovative strategies to operate HVAC
systems and reduce energy consumption, as they are among
the main energy-consuming components in these applica-
tions. Thus, K-means clustering can be utilized to identify
new energy-saving opportunities in high-efficiency buildings,
such as offices [252]. By analyzing the data and patterns
related toHVACusage, K-means clustering can help optimize
energy consumption and enhance overall energy efficiency in
these buildings.

In [253], a joint resource allocation model and clustering
algorithm are proposed for machine-to-machine communica-
tion systems. They convert the optimization problem into an
optimal location problem and then utilize K-means clustering
to obtain an effective clustering strategy. This approach aims
to enhance the overall efficiency of the system by optimizing
resource allocation and communication strategies.

G. ENERGY MANAGEMENT SYSTEMS
1) ENERGY STORAGE
With the increase in the number of renewables connected to
the electricity grid, the reliability of the energy supply has
becomemore volatile due to the unpredictable inhomogeneity
of distributed generation [254]. To increase grid flexibility
and to satisfy grid ancillary services, the addition of energy
storage systems has become of primary importance [165],
[255], [256], [257]. Energy storage applications are used
both for household and industrial applications [215]. The
appropriate and optimal sizing is a key aspect of the design
of an efficient model. In this context, K-means clustering
is used on customer net meter electricity data to limit the
input net/gross meter energy data for the optimal sizing [159].
The management of energy hubs requires the presence of
storage systems to enhance their flexibility, and K-means
clustering is employed to reduce consumption scenarios [25].
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This approach helps optimize energy usage and improve the
overall performance of energy hubs by effectively manag-
ing and utilizing the storage systems. K-means clustering is
applied to identify optimal storage device locations, reducing
the number of scenarios while maintaining data correlation,
leading to efficient placement for improved energy manage-
ment [76], [78].

2) ENERGY MANAGEMENT
Energy management has become a crucial topic due to the
growing use of renewable resources and distributed genera-
tion. The unpredictability of these sources, alongwith varying
consumption patterns, poses challenges for the electrical
grid and market. As a result, it has sparked interest among
industries and researchers in effective energy management
strategies to optimize and balance the system. Energy hubs
must implement scheduled energy management to reduce
uncertainties. Clustering methods like K-means are utilized
to manage these uncertainties effectively [169], [190], [258].
Furthermore, energy hubs must coordinate the simultaneous
operations of various generators and transmission infrastruc-
tures. Their goal is to optimally choose energy carriers to
minimize costs while complying with environmental regu-
lations and concerns [259], [260]. Also, the use of smart
transformers integrated into the hybrid energy hub improves
the quality of energy management, enhancing efficiency and
control [261]. However, energy monitoring is primarily con-
ducted through smart meters, which provide detailed energy
consumption profiles when combined with data analysis
algorithms [154].

Beyond buildings, energy management strategies are also
utilized in the field of electric vehicles. For instance, in [262],
K-means clustering is used with an adaptive energy man-
agement strategy to extend the range of electric logistics
vehicles by classifying driving blocks through intelligent
driving pattern recognition. In [95], a model is proposed
that schedules the effects of EV movement and implements
machine learning-based load forecasting to provide the elec-
tricity cost for a single household application. Additionally,
K-means clustering techniques are used to identify extreme
atmospheric conditions and their impact on electricity load
profiles [263].

H. OPTIMIZATION
As power systems continue to advance with heightened
levels of sensorization, the need for optimization becomes
paramount in boosting energy efficiency. The K-means
clustering algorithm has become a valuable tool within
optimization, providing the capacity to identify distinct clus-
ters, thereby facilitating predictions. This clustering method
enhances optimization modeling by providing both reliability
and the capacity to maximize performance. Optimization is
a transversal field that includes PV and wind generation
predictions, EVs and load consumption forecasting, and other
different kind of stochastic models [70], [89], [158], [204],

[214], [264], [265], [266]. K-means clustering, combined
with other algorithms, helps to provide reliable and optimized
forecasting. For instance, [72] proposed a model integrated
with Differential Evolution Grey Wolf Optimizer to predict
PV power generation.

Moreover, multi-objectives models are widely used com-
bined with K-means clustering for the implementation of
complex structures such as independent energy hubs: K-
means clustering is used for the scenarios identification,
and multi-objective model is utilized for the system opti-
mization [258]. Similarly, [267] proposed a stochastic opti-
mization approach for multi-energy microgrids after using
K-means clustering for scenario reduction. A similar model
is proposed in [259], where the micro-grid is powered by
solar energy, and the optimization is conducted using the
grasshopper optimization algorithm. due to the uncertainties
associated with renewable energy sources, the optimization
of integrated storage systems has become a significant area
of interest.

In [255], a model for optimal sizing of storage systems
is proposed. Following the clustering of the load profile by
K-means, a bi-level optimization is performed that considers
both cost minimization and power deviation. This optimiza-
tion is carried out using a combination of meta-heuristic
algorithms and mixed-integer programming for the intended
purpose. Also, K-means clustering is used combined with
Monte Carlo simulation for the optimal location of the dis-
tributed generation [268]. Additionally, the reduction of real
power loss is achieved by combiningK-means clusteringwith
another optimization algorithm, specifically the enhanced
brainstorm optimization algorithm, as detailed in [269].

Moreover, with the integration of electric mobility, EVs
are no more negligible in power systems field [96], [270],
[271]. Reference [23] proposed an optimized model for
allocating EV charging stations, integrating themwith renew-
ables, where K-means clustering is used to highlight the
connection between charging distance and user satisfaction
degree. Similarly, [272] proposed optimized energy manage-
ment strategies for fuel cell hybrid vehicles, where K-means
clustering is employed to identify the optimal data set in
clusters for the rules extraction of the rule learned-based
energy management strategy.

Lastly, economic optimization for energy systems can also
result from combining K-means clustering and optimization
algorithms. K-means and discretization methods are used to
represent scenarios affected by uncertainties, utilizing the
modified non-dominated sorting genetic algorithm [273].

I. POWER QUALITY
The K-means method is utilized to identify the most critical
scenarios for voltage dip assessment in [274]. In [275], volt-
age variation patterns at the sub-10-minute scale are extracted
using the K-means algorithm. Similar harmonic voltage and
current distortions in distribution networks are recognized
and clustered using this algorithm in [9]. Reference [10]
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proposed a new model that uses the K-means algorithm to
cluster and segment oscillographic records. K-means cluster-
ing is used to determine the optimal level of PV penetration,
considering harmonic power quality constraints [115].

In [276], [277], [278] and [279], the K-means cluster-
ing analysis algorithm is applied to categorize and detect
voltage sag, utilizing the historical data gathered from a large-
scale grid. Likewise, [280] used this clustering algorithm to
identify and locate the flicker sources in a non-radial power
system. Power quality disturbances (PQDs) are determined
and clustered using the k-means method [21], [281] with
SVD [282].

J. ELECTRIC VEHICLES
The K-means clustering algorithm is used to categorize EVs
battery cells [283], considering their charging and discharg-
ing states, to optimize their electrochemical performance.
Similarly, spatiotemporal uncertainties associated with EVs
are managed by K-means to maximize the expected marginal
revenue of the Distribution System Operator (DSO) by
using charging data in [284]. This algorithm was utilized
in [285] to categorize driving styles to develop strategies
to minimize the EV energy consumption. Also, K-means
clustering was used to classify plug-in hybrid electric vehi-
cles (PHEVs) based on their daily mileage and arrival and
departure times [96], [172], [270], facilitating the integration
of PHEVs.

In [286], the K-means clustering method is applied to
group batteries based on their State of Charge (SOC) and
State of Health (SOH) characteristics, facilitating the con-
struction of an Energy Storage System (ESS) for microgrids.
Reference [243] used the same clustering algorithm to reduce
scenarios, taking into account factors such as renewable
energy, EVs, energy demand, and energy storage. The objec-
tive was to enhance the electricity market within microgrids.
Alternatively, this algorithm has been employed by [287] for
generating electric vehicle charging scenarios to understand
the distribution of EV charging current.

The K-means clustering was utilized by [120], [288],
[289], and [290] to identify the optimal number, positioning
and configurations of charging stations. The same algorithm
was employed to depict the association between the distance
of charging stations and the degree of user satisfaction [23].
Considering travel time, solar access availability, and energy
consumption for solar-powered electric vehicles, [291] pro-
pose a unique route mergingmethod that utilizes the K-means
clustering algorithm to extract the most representative Pareto
routes.

V. K-MEANS VALUES, ADVANTAGES, AND CHALLENGES
IN MODERN POWER SYSTEMS
The K-means clustering is applied to various aspects of
power systems, highlighting its unique value contributions,
its benefits in solving complex problems, and the potential
challenges or limitations that professionals should consider
when implementing this technique.

A. APPLICATIONS AND VALUES
Table 2 summarizes the principal applications of K-means
clustering in modern power systems based on the literature
review presented in this paper. From this abstract summary,
it is possible to identify the main applications of the K-means
algorithm in various domains of power systems, such as
energy management, forecasting, optimization, and power
system planning. The main applications of K-means cluster-
ing in different power systems topics can be summarized as
follows:
• Generation prediction: Clusteringmethods likeK-means
can segment data into distinct groups, facilitating the
creation of specialized models for each cluster. This is
particularly beneficial for predicting power generation
from various energy sources, like solar or wind, where
different clusters might represent different weather con-
ditions or geographical regions.

• Outlier and anomaly detection: This algorithm can be
used to detect abnormalities in data, such as faults,
islanding conditions, or unexpected changes in load or
generation. By identifying the typical patterns and devi-
ations, maintenance can be more proactive, enhancing
grid reliability.

• Scenario reduction and generation: Clustering helps in
reducing the complexity of large datasets by catego-
rizing them into manageable subsets. In various power
system applications, it can be used to decrease sam-
ple size, improve computational speed, and facilitate
more accurate simulations and optimizations. Moreover,
K-means can be used to generate scenarios based on
the clustering results, representing the entire dataset in
a more manageable and structured form.

• Scheduling and demand-supply matching Clustering
techniques assist in efficiently scheduling energy pro-
duction and consumption. It helps in understanding the
patterns of demand and aligning them with the genera-
tion, thereby aiding in the balance of supply and demand.

• Identifying dominant patterns: K-means can be used
to identify and understand dominant trends in energy
consumption, generation, and demand. By cluster-
ing similar behaviors, insights can be derived to
inform energy-saving strategies and intelligent grid
management.

• Optimal sizing and hosting capacity: For RESs like PV,
wind, or even EV charging stations, clustering algo-
rithms can help in determining the optimal size and
location of installations. It can also assist in battery
sizing, ensuring energy storage is alignedwith consump-
tion patterns and generation capabilities.

• Electricity pricing and optimization: Clustering enables
a better understanding of consumption patterns, allow-
ing more sophisticated pricing strategies. It can also be
used in downtime management, minimizing losses by
identifying optimal times for maintenance and upgrades.

• PQD identification and localization: Clustering meth-
ods can help in the precise detection and location of
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TABLE 2. Summary of K-means applications in modern power systems.
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TABLE 2. (Continued.) Summary of K-means applications in modern power systems.

disturbances in power quality. By understanding the typ-
ical patterns and clustering anomalies, prompt actions
can be taken to rectify issues, maintaining the quality of
power delivery.

• Integrating RESs: As renewable energy becomes a sig-
nificant part of the energy mix, clustering helps in
forecasting generation, matching supply with demand,
and integrating these sources into the grid in a stable
manner.

• Energy efficiency enhancement: By using clustering to
understand consumption and generation patterns, sys-
tems can be optimized to minimize waste and improve
energy efficiency. DR programs, storage system integra-
tion, and smart building applications.

The application of K-means or other clustering algorithms
in power systems leads to enhancements in both modern-
ization and optimization, supplying essential insights for
creating amore resilient and intelligent grid. As technological
innovation advances, these techniques are poised to become
increasingly integral in shaping smart, sustainable, and effi-
cient energy systems.

B. ADVANTAGES AND LIMITATIONS
K-means clustering has been applied successfully in numer-
ous power system applications. Table 3 summarizes the
advantages and disadvantages or challenges associated with
this algorithm [11], [292]. The K-means algorithm is simple

TABLE 3. Advantages and disadvantages of K-means clustering algorithm.

to understand and easy to implement, which also is ranked
among the most rapid clustering methodologies. Moreover,
in the context of big data, it presents a favorable time com-
plexity of bigO(n) [11], [58], [293]. This feature indicates the
capability of K-means to scale efficiently with larger datasets.

The K-means algorithm— capable of handling various
types of features, including numeric and binary— yields
clusters that are straightforward to interpret. Moreover, the
algorithm exhibits an inherent ability to parallelize, enabling
it to leverage multi-core processors or distributed computing
systems. This attribute is particularly advantageous in big
data applications.

The primary challenge with the K-means algorithm is the
requirement to pre-determine the correct number of clus-
ters (k), which is not automatically determined [11], [294].
This is particularly problematic when dealing with com-
plex multi-dimensional power system data, where the ideal
number of clusters is not always obvious. Several method-
ologies are available to estimate the optimal number of
clusters, including the ‘‘elbow’’ method, a commonly utilized
approach that considers measures like inertia, or silhouette
score [44], [295]. However, in specific applications, the suit-
able number of clusters is frequently determined following
a post-processing stage or via domain-specific knowledge.
This introduces a certain level of subjectivity to the process.
It highlights the importance of integrating reliable statistical
techniques with a nuanced understanding of the context to
achieve the most effective results.

The k-means algorithm is sensitive to the initial selection
of centroids and can get stuck in local optima [11], [52]. This
could lead to inconsistent results in power system applica-
tions, where system states can significantly vary based on
time and environmental conditions. To mitigate these issues,
the K-means++ algorithm was proposed, which employs
a more ingenious initialization technique to choose the ini-
tial centroids, thereby enhancing the quality and stability
of the final clustering solution. Furthermore, given that this
algorithm relies on Euclidean distance, it exhibits sensitivity
to outliers. A few extreme data points can skew the centroids,
resulting in potentially incorrect cluster formations.

K-means assumes clusters are spherical (or globular),
which may not hold true for many power system scenarios
[11], [296]. For example, load profiles or power generation
patterns could form clusters of various shapes, not neces-
sarily spherical. Also, it assumes linear boundaries between
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clusters, which may not accurately capture the complex
relationships and transitions between different power sys-
tem states or operating conditions. Moreover, this algorithm
operates under the assumption that each cluster exhibits
approximately equal variance. However, in power system
applications, this assumption may not always accurately rep-
resent the data, potentially affecting the performance and
interpretability of K-means clustering results. For exam-
ple, consumer behavior can introduce significant variability
within clusters. Usage patterns can vary greatly depending on
the type of consumer (residential, commercial, or industrial),
time of day, day of the week, or seasonal factors.

While K-means is generally regarded as scalable, it can
face performance challenges when dealing with exceedingly
high-dimensional data. Such scenarios are not uncommon in
power systems, particularly with the rise of smart grids and
the explosion of big data. Therefore, several solutions have
been proposed in the literature to handle high-dimensional
data in power systems before clustering, as it shown in
Fig. 6 c). PCA, Kernel PCA, and autoencoders help reduce
the dimensionality of the dataset, preserving as much relevant
information as possible. Methods such as Singular Value
Decomposition (SVD) [58], factor analysis, and feature selec-
tion techniques can simplify the data by extracting critical
features, thereby improving the K-means algorithm’s effi-
ciency and performance.

C. K-MEANS VARIANTS
There are several variants of theK-means algorithm, as shown
in Fig. 7, each with its own enhancements or adaptations
to address some of the limitations of the original algorithm.
For instance, Mini-Batch K-means efficiently handles larger
datasets by leveraging a subset of data, also known as a
‘‘mini-batch,’’ in each iteration, which accelerates computa-
tion significantly [297].

FIGURE 7. K-means variants.

The Spherical K-means variation is particularly effective
with text data or any dataset transformable into a ‘‘tf-idf’’
representation, adjusting the standard Euclidean distance
to cosine similarity [298]. Bisecting K-means starts with

a single all-encompassing cluster and iteratively divides it
into two, determining the split cluster based on the potential
to reduce the sum of squared errors [299]. the Weighted
K-means modification considers the varying importance of
data points by assigning weights to each point, contributing
to the calculation of cluster centroids [300]. It is noteworthy
that K-means++ or PCA can be utilized as an initializa-
tion technique across all variants of the K-means algorithm.
Finally, scalable K-means++, also known as parallel
K-means, provides a scalable and parallelizable initialization
algorithm that efficiently handles many clusters and dataset
sizes [53].

VI. ALTERNATIVE CLUSTERING METHODS
Although the k-means algorithm is widely used in the liter-
ature, other clustering methods can surpass its performance
in specific tasks in modern power systems. The principal cat-
egories of clustering algorithms encompass Centroid-Based
Clustering, Hierarchical Clustering, Distribution-BasedClus-
tering, Density-Based Clustering, Grid-Based Clustering,
Graph-Based Clustering, and others, as shown in 7. Each cat-
egory provides distinctive approaches and benefits, and their
effectiveness can vary depending on the specific requirements
of the data analysis task.

A. CENTROID-BASED CLUSTERING
Similar to K-Means, these types of algorithms assign data
objects to the closest cluster based on the distance to the clus-
ter’s centroid. Some of the most commonly used algorithms
are:

1) K-MEDOIDS
K-medoids, or PAM (Partitioning AroundMedoids), is a vari-
ant of K-Means, offers greater resilience to noise and outlier
data points. Unlike K-Means, which uses the mean value as
the cluster’s center, PAM designates the most centrally posi-
tioned data point within each cluster, known as the medoid,
as the cluster representative. This method significantly mit-
igates the impact of outliers on the clustering process. For
instance, in power systems, PAM could be utilized to cat-
egorize consumers based on their electricity consumption
patterns [29], [301], [302]. As power usage data often contain
noise and outliers due to varying factors such as weather
conditions, time of day, or unexpected appliance use, PAM’s
robustness to such irregularities makes it an ideal choice for
this application [303], [304].

2) CLARA
CLARA (CLustering for Large Applications) is an exten-
sion of the PAM method and is particularly suited for large
datasets. Instead of finding medoids over the entire dataset,
CLARA draws a small sample of the dataset, applies PAM
on the sample, and defines the best medoids over the samples.
After several iterations, the best clustering is chosen over all
samples is reported as the final result. For example, in power
systems with vast smart meter data [305], CLARA could
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FIGURE 8. Clustering algorithms category in modern power systems: Centroid-Based Clustering, Hierarchical Clustering, Distribution-Based
Clustering, Density-Based Clustering, Grid-Based Clustering, Graph-Based Clustering, and others.

efficiently identify unique consumption patterns by sampling
and processing smaller subsets of the large dataset [306],
[307], [308].

3) CLARANS
CLARANS (CLustering Large Applications based upon
RANdomized Search) is an improvement over CLARA
which considers a more randomized search instead of a
sample-based search. It offers the flexibility of choosing the
number of neighbors in each search step, leading to the
possibility of faster convergence. In a power system context,
CLARANS could simplify the identification of customer load
profiles [309] or fault zones [310], [311] by quickly converg-
ing on distinctive patterns within the large, multidimensional
datasets common in smart grid applications [28].

4) TIME-SERIES K-MEANS
This is another variant of the K-means algorithm explicitly
designed to handle time-series data. It uses Dynamic Time
Warping or other appropriate distance measures to compare
time-series data which can vary in length and may exhibit
shifts in time. In power systems, Time-series K-means can
be applied to analyze consumption data or load profiles over
time, aiding in demand forecasting [312], [313] and peak load
management by identifying patterns and trends that might be
obscured in a traditional K-means analysis [126], [314].

5) FUZZY C-MEANS (OR FCM)
Fuzzy C-Means (FCM), K-means variation, permits data
points to have varying degrees of membership across mul-
tiple clusters, which proves beneficial when cluster bound-
aries aren’t well-defined. In power systems, FCM could be
useful in load profiling [315], [316] where consumption
patterns might not distinctly fall into specific categories,
thereby allowing consumers to be classified under multi-
ple profiles based on their electricity usage habits [317],
[318], [319], [320].

6) MEAN-SHIFT CLUSTERING
This algorithm updates candidates for centroids to be the
mean of the points within a given region. These candidates are
then shifted towards regions of the highest density, identified
using a kernel density estimate. In power system applications,
Mean Shift could be beneficial for detecting areas of high
energy consumption or demand hotspots [321], [322], [323],
providing valuable insights for power distribution and load
management strategies [324], [325], [326].

B. HIERARCHICAL CLUSTERING
Hierarchical clustering algorithms progressively generate
nested clusters, either by merging or splitting them. The
primary types of hierarchical clustering are as follows.
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1) AGGLOMERATIVE HIERARCHICAL CLUSTERING
Agglomerative Hierarchical Clustering employs a ‘‘bottom-
up’’ methodology, initially treating each data point as an
individual cluster and successively merging pairs as we
ascend the hierarchy. In power system applications, such as
smart grid analytics, this approach can facilitate grouping
power consumers with similar energy usage patterns [327],
[328], [329], thereby enabling better demand forecasting and
load balancing strategies [26].

2) DIVISIVE HIERARCHICAL CLUSTERING
This method implements a ‘‘top-down’’ strategy. Initially, all
data points are classified under a single cluster, and recursive
divisions occur as one moves down the hierarchy. In power
systems, this method could be valuable for breaking down
large-scale power grid data into manageable subsets, such as
regional [330] or local clusters, aiding in tasks like fault detec-
tion [331], load management [332], [333], and infrastructure
planning [328].

3) BIRCH
BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) algorithm is designed to perform hierarchical
clustering over large data sets. A standout feature of BIRCH
is its use of a tree structure known as a Clustering Fea-
ture (CF) tree, which serves as an in-memory summary of
the data distribution. This enables BIRCH to handle much
larger data than the available memory. BIRCH works by
scanning the dataset and updating the CF tree in one pass,
with clustering decisions made without needing to revisit the
actual data, which makes BIRCH a significantly efficient
algorithm. BIRCH’s efficiency in handling large datasets
would be beneficial in a modern power system, where
smart grid technologies generate vast amounts of data. For
instance, BIRCH could be applied to group together cus-
tomers based on their electricity usage patterns [334], [335].
By aggregating customers into clusters, utility companies
could gain a more comprehensive understanding of demand
patterns [335], [336], [337], which facilitates more efficient
planning and operation of the power grid.

Linkage methods [338] in hierarchical clustering are
strategies employed to calculate distances between clusters,
influencing their arrangement in the hierarchy and determin-
ing which clusters to merge (in agglomerative hierarchical
clustering) or divide (in divisive hierarchical clustering). The
common linkage methods include [56], [338], [339], [340]
Single Linkage, defining cluster distance as the shortest dis-
tance between points in each cluster; Complete Linkage,
using the longest distance between points; Average Link-
age, using the average distance between each point in one
cluster to every point in the other cluster; Centroid Link-
age, utilizing the distance between centroids of clusters; and
Ward’s Method [339], calculating distance as the increase in
the summed square error upon merging two clusters. Each
of these methods shapes the clusters distinctly, and their

application relies on the unique characteristics of the dataset
and the objectives of the clustering process.

C. DISTRIBUTION-BASED CLUSTERING
Distribution-based clustering algorithms model the data as if
it was generated from a mixture of probability distributions.
This type of clustering model assumes that the dataset is an
outcome of mixed probability distributions [341], and the
goal of the algorithm is to identify these distributions and
their parameters. In this model, each cluster is represented
by the particular distribution that generated it. A common
examples of a distribution-based clustering algorithm are as
follows.

1) GAUSSIAN MIXTURE MODELS
Gaussian Mixture Models (GMMs) operate on the proba-
bilistic assumption that each data point arises from a mix
of a finite number of Gaussian distributions, each with
unknown parameters. In the context of power systems, GMM
can be employed to model various scenarios like electricity
consumption patterns [342], [343] or system reliability anal-
yses [344], [345], [346], [347], given that these patterns often
follow Gaussian or near-Gaussian distributions.

2) EXPECTATION-MAXIMIZATION
Expectation-Maximization (EM) algorithm is used with
GMMs to estimate the parameters of the Gaussian distribu-
tions and to assign cluster memberships. In power systems,
EM clustering can prove advantageous for tasks like system
state estimation or load forecasting [27], [246], [348] where
underlying data might align well with Gaussian distributions,
enabling more precise identification of distinctive states or
patterns.

3) HIDDEN MARKOV MODEL
Hidden Markov Model (HMM) is a statistical model, that
assumes the system being modeled to operate as a Markov
process with unseen or ‘‘hidden’’ states. They are often used
in time series data to find underlying states or clusters.
HMMs can be valuable in power systems for tasks like outage
prediction [349], anomaly detection [350], [351], or iden-
tifying state transitions in load profiles over time [352],
[353], [354], [355], as these tasks often involve underlying
temporal patterns or states that may not be immediately
observable.

4) BAYESIAN CLUSTERING
This algorithm leverages a probabilistic model to charac-
terize data, using Bayesian statistical principles to estimate
the model parameters [356], [357]. The Bayesian approach
allows uncertainty within the modeling and can integrate
prior knowledge. In power systems, Bayesian Cluster-
ing could be applied in scenarios where prior knowledge
about consumer behavior, equipment performance, or energy
generation patterns is available, helping to improve the
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accuracy of tasks such as demand forecasting [358], [359],
failure prediction, or the detection of energy consumption
patterns [360], [361].

5) DPMM (DIRICHLET PROCESS MIXTURE MODELS)
Dirichlet Process Mixture Models (DPMMs) are a type of
infinite mixture model where the number of clusters is
not predetermined and can grow with the data. They are
often used when the number of clusters is unknown in
advance. DPMM could be valuable in scenarios like identi-
fying consumer groups or grid segments in power systems,
where the precise number of clusters may be unknown or
expected to change with new data [362], [363]. By employ-
ing DPMM, utilities could dynamically adjust their models
to account for evolving patterns in energy usage or grid
performance [364], [365].

D. DENSITY-BASED CLUSTERING
Density-based clustering algorithms group data points into
clusters based on regions of high data density, distinguishing
them from sparse regions. These methods, effective with
spatial data or irregularly shaped clusters, identify clusters
as areas where data point concentration surpasses a pre-
determined threshold. Their strength lies in their ability to
discover clusters of any shape and effectively handle noise
and outliers. Common density-based clustering algorithms
include:

1) DBSCAN
DBSCAN (Density-Based Spatial Clustering of applications
with Noise) algorithm defines clusters as continuous regions
of high density. As one of themost widely-used density-based
clustering algorithms, DBSCAN stands out for its ability
to discover clusters of varied shapes and sizes, making it
particularly qualified for handling complex data structures.
For instance, in the power systems domain, DBSCAN can be
used in identifying clusters of power consumption patterns
[366], regions on the power grid that display similar char-
acteristics [146], [367], [368], or anomaly detection [369]
in grid operations, as it effectively discerns dense regions
indicative of similar behavior or performance, in the presence
of noise [370], [371].

2) OPTICS
OPTICS (Ordering Points To Identify the Clustering Struc-
ture) is a more advanced version of DBSCAN that can
find clusters of varying densities. It orders data points in a
way that spatially closest points become neighbors in the
ordering. Unlike DBSCAN, it doesn’t require a single den-
sity threshold, instead generating an augmented ordering of
the dataset representing its density-based clustering struc-
ture. This characteristic allows it to adapt to the varying
density of clusters, providing superior performance in sce-
narios with complex spatial distributions. OPTICS could be

applied in power systems to detect clusters of consumers
with varying energy usage densities. It could potentially iden-
tify high-consumption neighborhoods or commercial districts
versus low-consumption areas, aiding in demand forecast-
ing and grid management [372], [373], [374]. It can also
be helpful in identifying clusters of power grid failures or
anomalies [375] that might indicate issues requiring mainte-
nance or infrastructure upgrades.

3) HDBSCAN (HIERARCHICAL DBSCAN)
HDBSCAN (Hierarchical DBSCAN) is an extension of
DBSCAN that converts it into a hierarchical clustering
algorithm, enabling it to find clusters of varying densi-
ties. Unlike traditional DBSCAN, which requires a prede-
fined density threshold, HDBSCAN adjusts dynamically,
leading to improved cluster identification, especially in
datasets with diverse density distributions. In power systems,
HDBSCAN could be advantageous in analyzing varying
power consumption densities across different regions or
times [376], [377]. For example, it could be used to discover
clusters of households with similar usage patterns throughout
the year [377], despite significant variability in consumption
between summer and winter months. Moreover, it can assist
in identifying irregularities or anomalies in power usage or
system performance data, providing valuable insights for
power grid maintenance and optimization [378].

4) DENCLUE
DENCLUE (DENsity CLUstEring) method is based on the
concept of the density distribution function and can identify
clusters of varied shapes and sizes [379]. This capability gives
it an edge in handling complex datasets where clusters are
not necessarily spherical or of similar size [380]. In power
systems, DENCLUE could be particularly useful in tackling
intricate datasets, such as those from smart grids or renewable
energy sources. For example, it might be employed to cluster
wind or solar power generation data based on varying output
patterns, which could be irregular and of diverse scale due
to fluctuating environmental conditions [381]. Additionally,
it can assist in creating distinct user profiles for energy
consumption, even when these patterns are inconsistent or
irregular, thus aiding in efficient energy management and
planning.

E. GRID-BASED CLUSTERING
Grid-based clustering is a technique that segments the data
space into a finite number of cells (or set of cells), forming
a grid-like structure [382]. Instead of performing operations
directly on the data objects, the technique operates on the
grid cells, significantly expediting processing time. As the
time complexity is dependent solely on the number of cells
in the quantized space rather than the number of data objects,
this approach is especially effective for handling large spatial
databases. The most common grid-based clustering algo-
rithms include:
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1) STATISTICAL INFORMATION GRID
Statistical Information Grid (STING) uses a hierarchical grid
structure where each cell at a given level of the grid is
partitioned into several smaller cells at the next level [383].
Statistical information is stored at each cell in the grid,
allowing for efficient processing of queries. STING can be
valuable in power systems for detecting patterns or anomalies
in large spatial data sets, such as the geographical distribution
of power line faults or the spread of energy consumption
across a large region [382], [384]. By breaking down the data
into a grid structure, this algorithm can quickly process and
identify high-fault frequency or heavy power usage clusters,
thus aiding in system maintenance and planning decisions.

2) WaveCluster
This grid-based algorithm employs wavelet transformation
to identify dense regions in the feature space for cluster-
ing [385]. The transformation allows for multi-resolution
clustering and noise removal, enhancing the effectiveness
and robustness of the algorithm. WaveCluster can be lever-
aged in power systems for multi-resolution analysis of power
consumption data. For instance, it can identify clusters of con-
sumers exhibiting similar consumption patterns at different
temporal resolutions (hourly, daily, monthly) [386], assisting
demand forecasting. Moreover, its noise removal capability
can help filter out transient spikes in the data, providing
a more accurate representation of typical consumption pat-
terns [387].

3) CLIQUE (CLUSTERING IN QUEst)
CLIQUE (CLustering In QUEst) identifies dense cells in a
grid structure and then finds adjacent dense cells to form
clusters. It is unique in its ability to find subspaces of the
highest dimensionality such that high-density clusters exist
in these subspaces. In power systems, CLIQUE can be used
in identifying high-density areas of power usage, essentially
identifying clusters of consumers with similar power usage
behaviors. Thus, it can help in effective load forecasting,
optimal power distribution, and identifying potential areas
for the expansion of the grid infrastructure. By finding
high-dimensionality subspaces, it can also aid in understand-
ing multi-dimensional relationships between different factors
affecting power consumption, such as time, weather condi-
tions, and type of usage [388], [389], [390].

F. GRAPHED-BASED CLUSTERING
Graph-based clustering, or network clustering, is a method
where data is represented as a graph or a network. Each
data point is considered a node, and the relationships or
similarities between these nodes are represented as edges.
The aim is to find clusters or communities within this network
structure. These clusters often represent groups of nodes
more highly connected to each other than the rest of the
network. Here are some common graph-based clustering
algorithms:

1) SPECTRAL CLUSTERING
This method uses the spectrum (eigenvalues) of the similarity
matrix of the data to perform dimensionality reduction before
clustering in fewer dimensions. The similarity matrix is pro-
vided as an input and consists of measures of the similarity of
each pair of points in the dataset. In power systems, Spectral
Clustering can be highly useful. Assessing the similarity in
power usage [391], [392] or power generation patterns across
different nodes in the power grid, it can facilitate the identi-
fication of groups of nodes with analogous behaviors [393],
[394], [395]. These insights can assist operators in enhanc-
ing grid efficiency, planning maintenance, or predicting and
mitigating potential disruptions.

2) AFFINITY PROPAGATION
This algorithm uses a graph-based approach where each data
point sends messages to other points, communicating its
‘affinity’ for being its exemplar (representative). This results
in a collection of exemplars that represent the centers of
each cluster and the respective assignments of data points.
The process concludes with a set of identified exemplars that
signify the center of each cluster and the corresponding asso-
ciation of individual data points to these clusters. In power
systems, Affinity Propagation can be used in identifying pat-
terns [396], [397] or groupings within smart grid data, such
as usage patterns across various customer segments or the
identification of similar performance metrics across different
regions of the grid, thereby aiding in more efficient system
management and resource allocation [398], [399], [400].

3) MARKOV CLUSTERING
MarkovClustering (MCL) algorithm simulates randomwalks
within a graph through an alternating process involving two
operations: expansion and inflation. It has been widely used
in bioinformatics but can be applied to any graph [401].
In power systems, MCL could be used for network analysis,
identifying closely connected nodes or components in the
system based on usage or functionality. Therefore, it can aid
in system optimization, fault detection, and network upgrade
or expansion planning [402], [403], [404].

4) LOUVAIN METHOD
This method is specifically used for community detection in
large networks. It optimizes the modularity of the network
iteratively to identify communities. In power systems, this
method can be used to determine groups of interconnected
assets or subsystems based on their mutual interactions,
dependencies, or commonalities [405], [406]. It can facili-
tate an understanding of network dynamics, simplify fault
localization, and help develop efficient energy distribution or
maintenance scheduling strategies [407], [408].

5) WALKTRAP
This algorithm finds communities by performing random
walks. The basic idea is that if you perform random walks
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on the graph, then short walks are likely to stay in the same
community because only a few edges lead outside a given
community [409], [410]. In power systems, Walktrap can
help identify tightly interconnected groups of assets or nodes.
Such information can be useful in various ways, such as
optimizing load distribution, enhancing network resilience,
or understanding localized effects of faults or disturbances.
It can also aid in the planning and management of renew-
able energy sources integration within traditional power grid
infrastructure.

G. OTHERS
Aside from the previously discussed categories of clustering
algorithms, there are other commonly used algorithms, such
as shapelet-based, swarm-based, and Self-Organizing Maps
(SOM) clustering, that do not neatly fall into the predefined
groups.

1) SHAPELET-BASED CLUSTERING
This algorithm represents a distinct approach predominantly
used for time series data [411], [412]. This technique identi-
fies shapelets, which are representative subsequences within
a time series, facilitating the discovery of inherent patterns in
the data [413]. Such methodology can offer insightful appli-
cations in various fields, including power systems, where
it could be deployed for identifying patterns in power con-
sumption or predicting anomalies, thereby enhancing overall
system efficiency and reliability [414], [415], [416].

2) SWARM-BASED CLUSTERING
Swarm clustering, also known as swarm intelligence-based
clustering [417], [418], [419], applies the concepts of swarm
intelligence—inspired by decentralized, self-organized sys-
tems like ant colonies or flocks of birds—to cluster data.
It employs swarm algorithms, wherein numerous simplis-
tic agents or ‘‘particles’’ maneuver through the data space,
adjusting their positions based on a basic rule until a sat-
isfactory clustering solution is achieved. Popular swarm
optimization techniques such as Particle Swarm Optimiza-
tion (PSO) and Ant Colony Optimization (ACO) can be
employed to enhance the results of clustering operations
[420], [421]. Swarm clustering can be used in power systems
to improve load forecasting by segmenting users or regions
based on electricity usage, simplifying state estimation by
grouping similar electrical buses, optimizing power flow by
clustering power generation and load points, and assisting
in fault detection by analyzing historical fault data clusters
[422], [423], [424], [425].

3) SELF-ORGANIZING MAP CLUSTERING
Self-Organizing Map Clustering (SOM) is an unsupervised
neural network used for clustering and visualization. SOMs
employ artificial neural networks to map high-dimensional
data into a low-dimensional (usually 2D or 3D) space.
This technique arranges similar data points close to each

other in this reduced space, thus forming clusters of similar
data points. In power systems, it enhances load forecasting
by clustering customers based on their energy usage and
electricity consumption patterns [426], [427], [428]. Addi-
tionally, it can be used in fault detection systems, maintain
system security, and improve power quality [429], [430],
[431], [432].

4) TOEPLITZ INVERSE COVARIANCE-BASED CLUSTERING
Toeplitz Inverse Covariance-based Clustering (TICC), a tech-
nique proposed in 2017, offers a unique approach to handling
time series data. It is designed to discover communities
or clusters in multivariate time series by leveraging the
inverse covariance structure of the data. An essential fea-
ture of this method is that it assumes the time series data
to be stationary and the covariance structure to be Toeplitz
[433], [434]. In power systems, TICC can be employed to
tackle various challenges such as load forecasting and pro-
filing [435], anomaly detection, and integration of renewable
energy [436].

Although there is great potential for relatively new clus-
tering algorithms to be applied in modern power systems,
they are not currently utilized. Reference [437] presents
an innovative density-based clustering algorithm that clas-
sifies data elements based on similarity. Inspired by the
K-medoids method, this approach focuses solely on the
distances between data points. Like DBSCAN and the mean-
shift method, it can identify non-spherical clusters and
automatically determine the appropriate number of clusters.
The algorithm defines cluster centers, similar to the mean-
shift method, as local maxima in the density distribution
of data. Also, it automatically detects and excludes outliers
from the analysis. This method offers a versatile and effec-
tive approach to cluster analysis with applications spanning
various domains, including astronomy, bioinformatics, bib-
liometrics, and pattern recognition [11], [438].

This paper [439] introduces a novel non-parametric clus-
tering method based on the concept that each latent cluster
consists of layers surrounding its core, with the outer layers
acting as border points that effectively delineate the clusters.
Unlike previous approaches like DBSCAN, which directly
define cluster cores by density, this method uncovers latent
cores by gradually peeling border points. By examining the
density of local neighborhoods, it identifies border points
and links them to inner-layer points. This peeling mechanism
adapts to the local density and inherent characteristics, effec-
tively distinguishing neighboring clusters, even when they
exhibit varying densities [440].

Reference [441] introduces theMultistep Three-Way Clus-
tering (M3W) algorithm, which addresses limitations in
existing three-way clustering approaches. M3W employs
a progressive erosion strategy to build a multilevel data
structure, enabling lower levels to gather more information
from higher levels. Additionally, it incorporates a multistep
three-way allocation strategy that considers neighborhood
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information for eroded instances. These combined tech-
niques enhance the algorithm’s ability to adaptively capture a
dataset’s inherent clustering structure by gradually acquiring
more knowledge, thereby increasing the likelihood of accu-
rate assignments.

VII. ANALYSIS OF CLUSTERING ALGORITHMS
PERFORMANCE
This section evaluates the performance of clustering algo-
rithms other than K-means. The selected clustering algo-
rithms from each category include agglomerative, Bayesian,
DBSCAN, CLIQUE, Spectral, SOM, and time-series
K-means, which are among the most commonly used.

Seven distinct time-series waveform patterns commonly
observed in power systems were synthesized to create the
input dataset, with each pattern consisting of sub-10-minute
intervals and one data point recorded per second. The primary
patterns consist of the sinusoidal, sawtooth, square, linear
ramp down, exponential decay wave, and constant value.
From each pattern, a random selection of 500-800 samples is
generated by altering both the phase (along the x-axis) and the
amplitude (along the y-axis) while adding Gaussian noise to
them. These approaches preserve the temporal relationships
and patterns in the data, which is crucial for time-series
analysis. Fig. 9 demonstrates the random samples derived
from the sinusoidal pattern.

FIGURE 9. Five random samples derived from the sinusoidal pattern.

The final dataset, comprising 5037 samples with seven
different classes, is employed to evaluate the performance
of the selected clustering algorithms. The dataset is normal-
ized using the standard z-score method before modeling.
Fig. 10 illustrates the dataset in three dimensions using the
t-SNE visualization technique, which is utilized to project
the high-dimensional input data (with 600 dimensions) onto a
3-dimensional space, resulting in a more compact representa-
tion. As seen in this figure, each cluster exhibits a distinctive

FIGURE 10. The input dataset in three dimensions. Each class is depicted
using a unique color.

shape, which can pose a challenge for clustering methods to
identify them accurately.

The number of clusters is pre-determined and remains con-
sistent at seven for all the clustering models; this is the only
information provided to the models. The hyperparameters of
all models are optimized using the Bayesian optimization
method. For algorithms such as DBSCAN, which automati-
cally determine the number of clusters, their hyperparameters
are tuned and optimized to identify precisely seven clusters
within the dataset.

The accuracy of models is assessed using the Normalized
Mutual Information (NMI) metric since the true class labels
for the clusters are available. A normalized score ranging
from 0 to 1 is provided by NMI, with higher values indicating
a stronger alignment between the clustering results and the
ground truth. Importantly, it should be noted that the NMI
score remains unchanged when the class or cluster labels are
shuffled or permuted in any way.

The performance of the chosen clustering algorithms is
evaluated with and without KPCA using an RBF kernel for
dimensionality reduction, as presented in Table 4. Both accu-
racy and elapsed time are considered as evaluation metrics.

Fig. 11 showcases the clustering outcomes achieved by
eight selected clustering algorithms after applying KPCA,
utilizing the initial 50 principal components. In this paper,
the CLIQUE algorithm is specifically designed for process-
ing two-dimensional data. This CLIQUE implementation
segments the 2D space into a grid of cells or partitions.
In contrast, when the CLIQUE deals with higher dimensions,
the grid comprises hyperrectangular cells, each being defined
by a set of coordinates in n-dimensional space.

As presented in 4, the introduction of KPCA has shown
noticeable enhancements in both computation time and accu-
racy across the models. Notably, Bayesian Gaussian Mixture
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FIGURE 11. The clustering results using KPCA and selected algorithms: a) K-means, b) Agglomerative, c) Bayesian GM,
d) DBSCAN, e) CLIQUE, f) Spectral, g) SOM, and h) Time-series K-means.
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TABLE 4. Performance evaluation of clustering methods.

(Bayesian GM) achieved its highest accuracy post-KPCA
integration. In terms of computational efficiency, the Time-
series K-means model experienced the most significant ben-
efit from input dimensionality reduction, with a remarkable
reduction from nearly 4 hours to just 5minutes—representing
over a 97% reduction in processing time. However, its accu-
racy exhibited a more modest improvement, advancing from
0.9245 to 0.9561.

As shown in Fig. 11, it becomes evident that numerous
algorithms encountered challenges when it came to accu-
rately distinguish the random noise cluster, which is situated
in close proximity to both the exponential decay and sawtooth
clusters.

Both the Bayesian GM and CLIQUE clustering algorithms
demonstrated precision in correctly clustering all data points,
whereas Time-series K-means exhibited strong performance
both with and without KPCA. The table emphasizes that
several algorithms surpass the performance of the traditional
K-means algorithm. This suggests that considering alter-
native clustering algorithms to K-means is essential when
tackling clustering tasks.

In this study, Python served as the primary programming
language and a range of libraries and packages were utilized.
These included NumPy and Pandas for data pre-processing,
Scikit-learn for modeling and optimization, and Matplotlib
and Seaborn for crafting visualizations. For this research,
the computational resources employed consisted of an i7-
8700K CPU with 16 GB of RAM and an Nvidia RTX
GeForce 2080 GPU with 16 GB of RAM.

VIII. DISCUSSIONS AND FUTRE TRENDS
Clustering algorithms, specifically K-means, hold a crucial
role in modern power systems. Their wide-ranging applica-
tions highlight their importance, including load forecasting,
fault detection, power quality analysis, and system security

FIGURE 12. Publications in power systems using clustering algorithms.

FIGURE 13. Contributions of the various clustering categories to the
power systems literature up until 2022.

assessment. Furthermore, as power systems become more
complex with the integration of RESs, EVs, and DRs, the
significance of clustering algorithms in identifying patterns,
segmenting the system, and optimizing operations is only set
to grow. Moreover, since more data has become available
and data-driven methodologies have demonstrated promising
solutions in recent years, there has been a corresponding
growth in the use of these methods within the power sys-
tem domain. Therefore, as shown in Fig. 12, the number of
publications using clustering algorithms in power systems
is growing as well. This growth has surged by 4.5 times
between 2012 and 2022. The results presented in Fig. 12 are
based on the keywords ‘‘clustering’’ and ‘‘power systems,’’
sourced from the Scopus library. This figure also con-
tains all clustering algorithms, including customized ones or
those specifically proposed for particular problems in power
systems.

Fig. 13 illustrates the distribution of different categories
of clustering algorithms used in the power system litera-
ture. As observed in this figure, centroid-based algorithms
are prominent, contributing to 47% of publications, pri-
marily thanks to the K-means algorithm, which is the
most frequently used. Following that, hierarchical clustering
algorithms (with 23%) have been employed extensively, suc-
ceeded by graph-based algorithms. The other categories have
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FIGURE 14. The contributions of various clustering algorithms to the power systems literature until 2022 based on the Scopus
database. In this figure, the K-means algorithm has been excluded as it skewed the scale of the figures with a substantial number of
1,929 publications.

fewer contributions, indicating that they are not as extensively
explored or utilized in the literature. For instance, grid-based
algorithms make up only 1% of contributions to publications
in the field of power systems, emphasizing their relatively
limited adoption in this domain despite their potential appli-
cability. This distribution not only highlights the popularity
of certain methods but also suggests potential areas for future
research and development in underexplored clustering tech-
niques within power systems.

Fig. 14 illustrates the contributions of various cluster-
ing algorithms to the power systems literature up until
2022, as derived from the Scopus database and discussed
in this article. In this figure, the K-means algorithm has
been intentionally excluded, as its substantial count of 1,929
publications skewed the scale of the figures, thus poten-
tially affecting the comparative analysis. After K-means, the
graph-based spectral clustering algorithm has been employed
most frequently, with almost 600 publications, and it is
closely followed by Fuzzy C-means, which has been featured
in more than 300 publications. As shown in this figure, other
clustering algorithms are less widely used, indicating a pre-
vailing tendency toward utilizing K-means over alternative
methods. This observation highlights the dominant position
of K-means within the clustering methodologies applied to
modern power systems.

However, while K-means proves to be powerful, it has
inherent limitations, such as sensitivity to initial starting con-
ditions and the requirement of pre-determining the number
of clusters, often suggesting the exploration and utilization of
alternative methods for the highest clustering solution. In the
case study presented in Section VII, the CLIQUE algorithm
demonstrated superior performance over K-means, achiev-
ing 100% accuracy in identifying all clusters and samples.
This performance highlights the importance of delving into

less typical algorithms within the power system domain, for
example, grid-based algorithms, which constitute only 1% of
contributions in this research area.

Therefore, one of the emerging trends in the applica-
tion of clustering algorithms in power systems could be the
exploration and implementation of less common or newer
clustering techniques. By tackling conventional methods and
applying these innovative algorithms to power system prob-
lems, there may be an opportunity to enhance the overall
performance of the systems. This approach not only fosters
innovation but also encourages researchers and engineers to
challenge existing paradigms, potentially leading to break-
throughs in efficiency, reliability, and adaptability within the
power systems domain.

Another possible trend may be the application of clus-
tering algorithms specifically designed to work with time-
series datasets. The time-series nature of many electrical
variables in power systems, such as voltage and current,
emphasizes the importance of utilizing specific clustering
algorithms designed to handle time-series data. These spe-
cialized algorithms can capture the temporal dependencies
and patterns inherent in power system data, which standard
clustering methods may overlook. This capacity for handling
time-series data expands their utility in various power system
applications, from load forecasting and anomaly detection to
integrating and managing renewable energy sources.

Several clustering algorithms are recognized in the
literature for effectively handling time-series datasets.
These include K-means, PAM, Time-series K-means, Fuzzy
C-means, DBSCAN,Hidden Markov Models, Spectral Clus-
tering, and Shapelet-Based Clustering. Additionally, Self-
Organizing Maps and the innovative Toeplitz Inverse
Covariance-based Clustering have been recognized for their
applicability in time-series analysis.
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Dynamic time warping is critical in time-series analy-
sis and clustering because it can align temporally shifted
or distorted sequences. It provides flexibility in compar-
ing different lengths and warped sequences and can handle
non-linear alignments. Its robustness to noise and ability to
integrate with other methods make it applicable across var-
ious fields like speech recognition, finance, and healthcare.
By considering the entire sequence and its dynamics, DTW
enhances clustering and enables more accurate and insightful
data groupings.

Time-series K-means and Shapelet-Based Clustering uti-
lize dynamic time warping as a distance metric among these
algorithms. While other methods like PAM, DBSCAN, Hid-
den Markov Models, TICC, SOM, and Spectral Clustering
do not typically employ DTW in their original versions;
however, DTW could potentially be integrated as a distance
measure in these algorithms, thereby adapting these algo-
rithms for time-series data. As demonstrated in Section VII,
the Time-series K-means algorithm outperformed the original
K-means clustering algorithm, achieving an NMI accuracy
of 0.9245 compared to the NMI accuracy of K-means with
0.6769 when applied to the original dataset. This improve-
ment can be attributed to the utilization of the DTW similarity
measurement.

K-means also should be used as the benchmark to compare
the performance of other clustering algorithms. Its simplicity
and efficiency make it a good starting point for any clus-
tering task, especially with large datasets. As one of the
most widely used clustering algorithms, K-means is often
chosen for comparison to measure the relative performance
of newer or less-known algorithms. Its results are easy to
interpret, contributing to its ubiquity and utility in explaining
clustering tasks’ outcomes. It provides robust baseline perfor-
mance, setting a high standard that any advanced algorithm
must exceed to demonstrate its effectiveness. Furthermore, its
adaptability to various data types and applications in diverse
domains indicates its role as a fundamental reference point in
clustering analysis.

IX. CONCLUSION
The application of K-means in modern power systems pro-
vides essential technical insights into load forecasting, fault
detection, power quality analysis, system security assess-
ment, and other applications. Its simplicity, efficiency, and
adaptability make it a benchmark in clustering tasks. How-
ever, while K-means offers several advantages, its limitations
and challenges must be addressed. It can be sensitive to ini-
tialization and may converge to local optima, which presents
concerns in complex and large-scale systems. These inher-
ent challenges drive the investigation and implementation of
alternative clustering methods, such as K-medoids, Time-
series K-means, BIRCH, Bayesian clustering, HDBSCAN,
CLIQUE, SPECTRAL, TICC, and SOM, among others.
These alternatives provide a broader perspective and flexi-
bility in addressing the unique demands of modern power
systems.

The exploration of time-series clustering in modern power
systems emphasizes the importance of techniques such as
dynamic time warping, allowing non-linear alignment of
temporally distorted sequences. It provides a significant
advantage in handling complex time-series data, which is
becoming increasingly common in modern energy systems.
Moreover, continual data availability and computational
power growth indicate a promising future for clustering
algorithms in power systems. The trends suggest a growing
tendency towards exploring newer clustering techniques and
an enhanced focus on time-series data analysis. The future
of K-means and other clustering algorithms in modern power
systems is poised to play a crucial role in shaping sustainable,
efficient, and intelligent energy systems, providing a platform
for continuous innovation and optimization.
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