94,136 research outputs found

    Mathematical And Computational Methods For Freeform Optical Shape Description

    Get PDF
    Slow-servo single-point diamond turning as well as advances in computer controlled small lap polishing enable the fabrication of freeform optics, specifically, optical surfaces for imaging applications that are not rotationally symmetric. Freeform optical elements will have a profound importance in the future of optical technology. Orthogonal polynomials added onto conic sections have been extensively used to describe optical surface shapes. The optical testing industry has chosen to represent the departure of a wavefront under test from a reference sphere in terms of orthogonal φ-polynomials, specifically Zernike polynomials. Various forms of polynomials for describing freeform optical surfaces may be considered, however, both in optical design and in support of fabrication. More recently, radial basis functions were also investigated for optical shape description. In the application of orthogonal φ-polynomials to optical freeform shape description, there are important limitations, such as the number of terms required as well as edge-ringing and ill-conditioning in representing the surface with the accuracy demanded by most stringent optics applications. The first part of this dissertation focuses upon describing freeform optical surfaces with φ-polynomials and shows their limitations when including higher orders together with possible remedies. We show that a possible remedy is to use edge-clusteredfitting grids. Provided different grid types, we furthermore compared the efficacy of using different types of φ-polynomials, namely Zernike and gradient orthogonal Q-polynomials. In the second part of this thesis, a local, efficient and accurate hybrid method is developed in order to greatly reduce the order of polynomial terms required to achieve higher level of accuracy in freeform shape description that were shown to require thousands of terms including many higher order terms under prior art. This comes at the expense of multiple sub-apertures, and as such iv computational methods may leverage parallel processing. This new method combines the assets of both radial basis functions and orthogonal phi-polynomials for freeform shape description and is uniquely applicable across any aperture shape due to its locality and stitching principles. Finally in this thesis, in order to comprehend the possible advantages of parallel computing for optical surface descriptions, the benefits of making an effective use of impressive computational power offered by multi-core platforms for the computation of φ-polynomials are investigated. The φ-polynomials, specifically Zernike and gradient orthogonal Q-polynomials, are implemented with a set of recurrence based parallel algorithms on Graphics Processing Units (GPUs). The results show that more than an order of magnitude speedup is possible in the computation of φ-polynomials over a sequential implementation if the recurrence based parallel algorithms are adopted

    Efficient Parallel Carrier Recovery for Ultrahigh Speed Coherent QAM Receivers with Application to Optical Channels

    Get PDF
    This work presents a new efficient parallel carrier recovery architecture suitable for ultrahigh speed intradyne coherent optical receivers (e.g., ≥100 Gb/s) with quadrature amplitude modulation (QAM). The proposed scheme combines a novel low-latency parallel digital phase locked loop (DPLL) with a feedforward carrier phase recovery (CPR) algorithm. The new low-latency parallel DPLL is designed to compensate not only carrier frequency offset but also frequency fluctuations such as those induced by mechanical vibrations or power supply noise. Such carrier frequency fluctuations must be compensated since they lead to higher phase error variance in traditional feedforward CPR techniques, significantly degrading the receiver performance. In order to enable a parallel-processing implementation in multigigabit per second receivers, a new approximation to the DPLL computation is introduced. The proposed technique reduces the latency within the feedback loop of the DPLL introduced by parallel processing, while at the same time it provides a bandwidth and capture range close to those achieved by a serial DPLL. Simulation results demonstrate that the effects caused by frequency deviations can be eliminated with the proposed low latency parallel carrier recovery architecture.Fil: Gianni, Pablo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ferster, Laura. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; ArgentinaFil: Corral Briones, Graciela. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hueda, Mario Rafael. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Electrónica. Laboratorio de Comunicaciones Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Layered architecture for quantum computing

    Full text link
    We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical control of quantum dots. The timescales of physical hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum dot architecture we study could solve such problems on the timescale of days.Comment: 27 pages, 20 figure

    Radiative transfer in disc galaxies I - A comparison of four methods to solve the transfer equation in plane-parallel geometry

    Full text link
    Accurate photometric and kinematic modelling of disc galaxies requires the inclusion of radiative transfer models. Due to the complexity of the radiative transfer equation (RTE), sophisticated techniques are required. Various techniques have been employed for the attenuation in disc galaxies, but a quantitative comparison of them is difficult, because of the differing assumptions, approximations and accuracy requirements which are adopted in the literature. In this paper, we present an unbiased comparison of four methods to solve the RTE, in terms of accuracy, efficiency and flexibility. We apply them all on one problem that can serve as a first approximation of large portions of disc galaxies: a one-dimensional plane-parallel geometry, with both absorption and multiple scattering taken into account, with an arbitrary vertical distributions of stars and dust and an arbitrary angular redistribution of the scattering. We find that the spherical harmonics method is by far the most efficient way to solve the RTE, whereas both Monte Carlo simulations and the iteration method, which are straightforward to extend to more complex geometries, have a cost which is about 170 times larger.Comment: 12 pages, 4 figures, accepted for publication in MNRA

    Accelerated Modeling of Near and Far-Field Diffraction for Coronagraphic Optical Systems

    Full text link
    Accurately predicting the performance of coronagraphs and tolerancing optical surfaces for high-contrast imaging requires a detailed accounting of diffraction effects. Unlike simple Fraunhofer diffraction modeling, near and far-field diffraction effects, such as the Talbot effect, are captured by plane-to-plane propagation using Fresnel and angular spectrum propagation. This approach requires a sequence of computationally intensive Fourier transforms and quadratic phase functions, which limit the design and aberration sensitivity parameter space which can be explored at high-fidelity in the course of coronagraph design. This study presents the results of optimizing the multi-surface propagation module of the open source Physical Optics Propagation in PYthon (POPPY) package. This optimization was performed by implementing and benchmarking Fourier transforms and array operations on graphics processing units, as well as optimizing multithreaded numerical calculations using the NumExpr python library where appropriate, to speed the end-to-end simulation of observatory and coronagraph optical systems. Using realistic systems, this study demonstrates a greater than five-fold decrease in wall-clock runtime over POPPY's previous implementation and describes opportunities for further improvements in diffraction modeling performance.Comment: Presented at SPIE ASTI 2018, Austin Texas. 11 pages, 6 figure

    Using Quantum Computers for Quantum Simulation

    Full text link
    Numerical simulation of quantum systems is crucial to further our understanding of natural phenomena. Many systems of key interest and importance, in areas such as superconducting materials and quantum chemistry, are thought to be described by models which we cannot solve with sufficient accuracy, neither analytically nor numerically with classical computers. Using a quantum computer to simulate such quantum systems has been viewed as a key application of quantum computation from the very beginning of the field in the 1980s. Moreover, useful results beyond the reach of classical computation are expected to be accessible with fewer than a hundred qubits, making quantum simulation potentially one of the earliest practical applications of quantum computers. In this paper we survey the theoretical and experimental development of quantum simulation using quantum computers, from the first ideas to the intense research efforts currently underway.Comment: 43 pages, 136 references, review article, v2 major revisions in response to referee comments, v3 significant revisions, identical to published version apart from format, ArXiv version has table of contents and references in alphabetical orde
    • …
    corecore