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Abstract 

This paper will discuss the history of gravity estimation and determination models while 

analyzing methods that are in development. Some fundamental methods for calculating the 

gravity field include spherical harmonics solutions, local weighted interpolation, and global point 

mascon modeling (PMC). Recently, high accuracy measurements have become more accessible, 

and the requirements for high order geopotential modeling have become more stringent. Interest 

in irregular bodies, accurate models of the hydrological system, and on-board processing has 

demanded a comprehensive model that can quickly and accurately compute the geopotential with 

low memory costs. This trade study of current geopotential modeling techniques will reveal that 

each modeling technique has a unique use case. It is notable that the spherical harmonics model 

is relatively accurate but poses a cumbersome inversion problem. PMC and interpolation models, 

on the other hand, are computationally efficient, but require more research to become robust 

models with high levels of accuracy. Considerations of the trade study will suggest further 

research for the point mascon model. The PMC model should be improved through mascon 

refinement, direct solutions that stem from geodetic measurements, and further validation of the 

gravity gradient. Finally, the potential for each model to be implemented with parallel 

computation will be shown to lead to large improvements in computing time while reducing the 

memory cost for each technique.   
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1. Introduction 

1.1 Motivation 

Accurate calculation of the geopotential has become more desirable as requirements for 

precise orbit determination, geodesy, hydrology, and interest in the exploration of irregular 

bodies has grown. Recently, high quality data from missions like GRACE and GOCE have 

enabled ultra-high-fidelity models of the global gravity field, but they have also spurred 

development in our techniques for modeling the geopotential [1].  

Typically, our techniques for modeling the geopotential have been limited by the memory 

space available on processors. However, the speed and size of computer chips has increased 

dramatically, making higher order gravity fields computationally feasible. Remarkably, a gravity 

field of full degree/order 360 can be calculate with a single CPU. As memory has become more 

accessible, it has become more feasible to trade memory for speed for many applications. Due to 

the limited portability of ultra-high-performance computing machines, this paper will generally 

focus on optimizing software implementations for common hardware applications.  

However, this study will suggest a hardware implementation where many orders of 

magnitude of computational speedup can be achieved through the efficient use of parallel 

computation methods using inexpensive, off the shelf, GPUs. The gravity estimation problem is 

well suited for parallelism, and the hardware necessary for parallel implementation is far from 

restrictive.  

The most computationally expensive calculations required for high fidelity simulations of 

spacecraft motion lie within the evaluation of local gravity components, geomagnetic fields, and 

space weather prediction. This paper will focus on methods that seek to alleviate the burden of 
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computing the gravity field. The largest computational expenses in the gravity field estimation 

are defined by Daniel Oltrogge [2] as follows: 

1. Evaluating and performing coordinate transformations 

2. Evaluating planetary and other third body positions 

3. Evaluating accelerations acting upon the satellite 

 The models presented in this paper will aim to simplify the burden of evaluating 

attitudinal and positional accelerations that act on the satellite. More specifically, efficient 

methods for estimating and evaluating the gravity field will be explored. 

This research is motivated by movements in the field of astrodynamics that require more 

efficient methods for estimating and evaluating the gravity field. High Fidelity gravity estimation 

and evaluation will be required for: 

 precise orbit determination (P.O.D) 

 Accurate mapping of Earth’s hydrological variations 

  Monte Carlo simulations for trajectory planning 

Furthermore, high speed calculations are increasingly important for applications including: 

 Real time P.O.D 

 Computationally intensive Monte Carlo simulations 

 Increasing numbers of objects tracked by space catalogs 

Additionally, asteroid missions have become a top priority for the aerospace community 

over the last few decades. These missions present unique challenges for orbit estimation and 

determination due to the irregular shape of these bodies and the lack of a-priori knowledge 
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concerning their gravity field. The spherical harmonics approach is not well suited for this 

application for several reasons: it provides global representations without direct local 

representations, it is much too slow to compute real-time (as required without a-priori 

knowledge), and series expansions of orthogonal expansions are not well suited for objects that 

are not approximately spherical or ellipsoidal.  

1.2 Thesis Outline 

This report aims to summarize the current state of geopotential modeling. This paper will 

recognize the four categories of gravity representations outlined by Tscherning (1996) [3]: 

1. Series Expansion of Orthogonal Functions 

2. Linear Combinations of Potential Functions 

3. Linear Combinations of Functions defined via splines, kernels, or finite elements 

4. Collocation methods using minimum norm or least squares 

Each modeling method will be introduced with a brief overview of theory, followed by 

an analysis of various implementations within the category. When available, recent 

implementations within each category will be used to assess the relative strengths and 

weaknesses of the evaluation technique. This paper aims to assess the overall performance of 

current gravity estimation and evaluation techniques by comparing the relative speed, accuracy, 

and complexity of each model. In doing so, it is recognized that some models are well suited for 

applications that others are not. In concluding this paper, the best use case for each technique 

will be defined and suggestions will be offered for the next generation of research.  
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2. Background 

2.1 Geoid and Geopotential 

The geoid is an equipotential surface that accounts for the non-uniform distribution of 

Earth’s mass. The model corresponds to the theoretical shape the oceans take under the influence 

of gravity and rotation, alone. This surface can be defined at any potential, resulting in 

geopotential values defined at all heights. To calculate the geoid, extensive measurements and 

calculations are necessary. The geoid is a useful feature in Earth system sciences because the 

gravitational acceleration is perpendicular to the geoid at all points along its surface.  

2.2 Spherical Harmonics Standard 

The classical method for estimating the geopotential uses a linear combination of an 

infinite series of orthogonal functions along a sphere. Using a set of solutions to the Laplace 

equation, the stokes coefficients for the spherical harmonics series are used to estimate the 

gravity field.  

 The current demands of astrodynamics require a more efficient computational method for 

gravity estimation. Spherical harmonics are computationally burdensome at high degree/order, 

and they occupy a large memory footprint. In fact, increasing the desired accuracy of the SH 

solution produces a quadratic increase in the computational requirements for the solution. 

Furthermore, spherical harmonics required ill-conditioned inversions and often use recursive 

relationships that are not amenable to parallelism. 
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Theory 

3. Series Expansions of Orthogonal Functions 

The basis for computing series expansions lies in a fundamental relationship defined by 

Laplace. Laplace’s famous equation is as follows, where U is the potential: 

 

The solution to Laplace’s equation above can be computed using Thomson and Tait’s 

Legendre polynomials developed in 1879 [4]. The polynomials use boundary values on the 

surface of the sphere to produce a solution that includes the nonzero order terms which define 

variations in gravity with longitude. In practice, increasing the degree of the spherical harmonic 

decreases the wavelength of the solution set. In doing so, the difficulty of evaluating the 

Legendre functions increases exponentially. Most modern solutions for spherical harmonics 

utilize recursive formulations, and in some cases, Fourier transformations are employed to 

compute solutions in the frequency domain. 

3.1 Spherical Harmonics 

Traditionally, the geopotential is estimated using a series of spherical harmonics. The 

spherical harmonics equation is solved as a set of solutions to the Laplace equation. Each of 

Stokes coefficients is determined through an iterative method that represents the gravity field. 

The static geopotential field can be represented in the following series:   
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Figure: Spherical Harmonics Equations [5] 

 The degree and order of the system can be chosen to improve the resolution of the 

spherical harmonics solution. Typically, spherical harmonics are solved for a degree/order of 

either 180 or 360. As shown in the table below, the number of coefficients required to solve the 

spherical harmonic grows exponentially with degree and order. However, current harmonic 

solutions at degree/order of 180 and 360 have proven to be remarkably accurate representations 

of the geopotential. 
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Figure: Spatial Resolution of spherical harmonics in terms of smallest representable 

shape [5] 

Satellites like GOCE and GRACE, which use laser altimetry to provide remarkably 

precise measurements of the geopotential have provided the means for much more accurate 

gravity representations. In fact, the GGM03S GRACE model [1] uses four years of data to model 

the geopotential up to degree 180. When paired with surface gravity and altimetric mean sea 

surface measurements, the GGM03C model is useful to degree 360, while including a covariance 

matrix. 

The GGM03S model uses four years of data to model the geopotential up to degree 180. 

When this data is combined with surface gravity and altimetric mean sea surface measurements, 

it can provide a model (GGM03C) that is useful to degree 360 and includes a covariance matrix. 

The model obtains remarkable accuracy through a processing strategy that allows for the 

weighting of inhomogeneous data types. However, this model demonstrates the difficulty of 

spherical harmonic computation: GGM03C requires 130,000 parameters that occupy 68 GB of 

space. 

The major advantage of the spherical harmonics approach is that it is guaranteed to converge 

at all points that lie outside of the circumscribing sphere. The series can be truncated at any finite 

order to achieve desired resolution and accuracy of the global field. However, this truncation is 

simply an approximation rather than a perfect representation of the field.  

 In their calculation of the RL05 Mascon field, Russell and Arora note the weaknesses of 

spherical harmonics as a means for mapping the geoid [7]. Their research argued that high 

degree harmonics have large errors in the estimation of the Stoke’s coefficients due to poor 
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observability in the East to West direction. Further, they argue that the ill-posed inversion 

problem makes spherical harmonics solutions inherently slow. Finally, they noted that 

unconstrained GRACE solutions have suffered from north-south stripes. Although these stripes 

are traditionally removed using de-striping filters, they often produce physically unrealistic 

regions of the geoid model. 

Although spherical harmonics have proven to be effective as accurate solutions for the 

geopotential, they are computationally burdensome, and they are recursive. High-fidelity 

computation of the geopotential using spherical harmonics is time intensive which makes it 

difficult to compute in real-time applications.  

Spherical harmonics suffer many drawbacks when studying irregular bodies. They often 

diverge inside of their circumscribing sphere, and they present no information about whether a 

point is inside or outside of a body. For orbital trajectory computation, a separate computation is 

required to ensure that orbits do not lead to collisions with the body. Finally, spherical harmonics 

present large errors close to the radius of convergence. In fact, spherical harmonics were shown 

to exhibit errors larger than 100% when studying 4769 Castalia [8]. 

 Sucarrat and Palmer [9] offer a straightforward solution for spherical harmonics inside of 

the circumscribing sphere. Whereas spherical harmonics and spherical Bessel functions satisfy 

Laplace’s equation outside of the circumscribing sphere, they argue that Poisson’s equation can 

be effectively applied to provide SH solutions inside of the Brillouin sphere.  

 In a simple model of 4769 Castalia [8], using an elongated body up to second order, SH 

solutions for Laplace converged outside of the shell and Laplace’s equation was satisfied near 

the surface with no divergence.  
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4. Linear Combinations of Potential Functions 

4.1 Polyhedron Modeling 

Recent interest in the study of comets and asteroids has prompted a necessity for calculating 

and modeling the geopotential of highly irregular bodies. The advantage of polyhedron modeling 

of surfaces is that they will converge everywhere (unlike the spherical harmonics model). The 

polyhedron model attempts to remedy the drawbacks of the spherical harmonic and mascon 

models. Polyhedron modeling allows for convergence everywhere – inside and outside of the 

surface. It also provides an exact solution for the gravity field (excluding the errors from 

discretization). Finally, an evaluation of the Laplacian of gravitational potential allows for the 

determination of whether a point is inside or outside of the body.  

The CSR RL05 mascon model [10] defines a geodesic grid that models Earth’s surfaces as 

set of tiles created formed by a subdivided icosahedron inside of a circumscribing sphere 

(brillouin). This icosahedron iteratively bisected into four equal triangles until a polyhedron with 

40962 vertices is formed. The resultant surface has 40950 hexagonal tiles and 12 pentagonal 

tiles. This choice provides a resolution of 1 degree at the equator such that each tile has an area 

of 12400 km.  

Similarly, a volume model uses a set of cubes or spheres to model irregular bodies. These 

models are less complex than the surface model, but they contain large errors near the surface of 

the body in study. These models require volume integrals, which become much more 

cumbersome than the surface integrals used in surface models. 

Although the polyhedron model presents a strong use case for irregular bodies, it is not 

justified for use in modeling Earth’s surface because Earth orbiting satellites rarely penetrate the 
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brillouin sphere. Further, the polyhedron model is slow as it requires a summation of the entire 

surface to obtain a force value. However, research suggests that there could be “utility in 

superimposing polyhedron and conventional spherical harmonic expressions in a planetary 

gravitation field, to include details such as ocean trenches, mountain ranges, or density 

variations” [8].  

 

Figure: Icosahedron Earth grid subdivision [11] 

4.2 Optical Modeling 

Another useful feature of polyhedron modeling arises from its usefulness in the analysis of 

optical data. Imagery from spacecraft fly by or ground based doppler imaging telescopes can 

provide information regarding asteroid shapes. For example, JPL produced a paper using a shape 

model of asteroid 4769 Castalia that was derived from data collected by the Arecibo radio 

antenna [8]. In a comparison of the polyhedral model to the mascon and spherical harmonics 

models, the polyhedral model proved to be significantly more accurate close to the surface of the 

asteroid. 
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Figure: Digital contour mapping of 4769 Castalia Optical data [8] 

4.3 Global PMC Model 

Method 

A global point mascon model (PMC) has been proposed as a solution to the cumbersome 

nature of the spherical harmonics [12]. The model places an arbitrary number of mass 

concentrations along Earth’s surface to estimate the geopotential. By fixing the location of these 

mascons, the weighted linear least squares problem can be used to define a mass for each point.  

 

Figure: Global Point Mascon Equations and Least-Squares Problem [12] 
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Mascon Distribution 

The lateral distribution of mascons is chosen using Thompson’s problem which provides a 

solution that balances high resolutions without eliminating the useful gravity signature of each 

element. Further, the global radius of the mascon shell is chosen using an optimization loop that 

provides a bury distance that minimizes the performance index of the least squares problem. 

 

Figure: Sample mascon distribution schematic [13] 

Results 

 Russel and Arora found that the choice of summation method is directly related to the 

precision of solutions. They suggest that an ill conditioned inversion results from mass terms that 

are both negative and positive and span throughout large orders of magnitude. To alleviate 

precision loss caused by the ill inversion problem, Russel and Arora suggest two summation 

methods: a Kahan approach and a divide and conquer method. They noted that a pairwise or 

cascade summation which incorporates recursive implementation to perform a naïve sum with a 

minor overhead could produce 1-2 digits of precession using ~6 recursive calls. This method 
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performed at a speed that was within a few percent of the naïve sum. In Russel and Arora’s tests, 

an ascending order sort of the mascon magnitudes was found to be preferred to other sort orders. 

However, they argue that further research could improve the summation by refining the sort 

order of the summation method. The “divide and conquer” method is deemed amenable to 

parallel computation and is expected to match CPU precision levels when implemented in GPU. 

 The required runtime for the mascon model is determined by the time required to solve 

the linear least squares problem. Russel and Arora argue that this runtime equivalent to the ratio 

of the number of mascons to the number of measurements provided (gamma).  

 A second scaling parameter (alpha) is introduced to relate the number of mascons to the 

resolution of the SH fitting function. This parameter provides a relationship to determine runtime 

complexity given below.  

 

 The complexity of the computation grows with the fourth power of the parameter d which 

is equivalent to the size of the SH fitting function. The maximum value computed in Russel and 

Arora’s study was limited by computer memory at d=156, requiring 1 CPU day to complete. 

However, this complexity can be dramatically reduced as d is reduced.  

Resolution of the mascon model is determined by how fine the mascon grid is. However, 

current mascon solutions are limited by the memory requirements for adding mascons. The 

following chart shows that the number of mascons (corresponding to memory use) grows 

exponentially with increased degree/order: 
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Figure: Point Mascon Models and their Corresponding Fields [13] 

Russell and Arora suggest that further research ought to provide a method to fit mascons 

directly to geodetic measurements rather than fitting the SH function. This method will be 

employed in the RL05 model discussed below.  

5. Linear Combinations of Functions Using Splines, Kernels, or Finite Elements 

As discussed earlier, representations of the gravity field often break down using spherical 

harmonics. Although the solution of Poisson’s equation can yield convergent solutions for the 

geopotential near the surface of nearly spherical bodies, these solutions are often inaccurate for 

irregular bodies. To alleviate these issues, Werner and Scheeres proposed the use of summations 

over the faces and edges of polyhedral models. However, these models are often computational 

intensive, making them unfit for Monte Carlo analysis and other trajectory planning procedures. 

5.1 Finite Element techniques 

5.1.1 Junkins 

Method 

The interpolation method for modeling the geopotential was proposed by Junkins in 1976 

[14]. This method can be classified as a finite element approach that uses a weighting function to 

ensure a piecewise continuous approximation for the geopotential. Junkins provided 
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computational experiments proving that a weighted least squares approach was superior to 

Taylor series approximations in terms of RMS acceleration errors.  

Junkins’ model had the following criterion: 

1) Finite model for shell within 1.2 Earth radii 

2) Second order terms represented using Spherical Harmonics 

3) Element sizing such that errors are in the seventh significant digit 

4) Fixed order of local approximation of 3 

Junkins replaced Taylor’s series approximations with a judicious choice of Chebyshev 

approximations to replace high order polynomials with lower order representations. The 

following graph from his numerical experimentation shows that lower order Chebyshev 

functions can achieve accuracies comparable to Taylor’s functions of higher order.   

 

Figure: Order of local approximations vs RMS acceleration approximation error [14] 

Results 
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Using these criterion, Junkins produced a 3rd order approximation of the geopotential 

containing 1500 finite elements. When compared to a 23 degree/order SH series, Junkins’ model 

had a mean acceleration error of at least one order of magnitude lower than that of the SH model. 

His max acceleration error was also 4 times less than that of SH.  

Junkins model exhibited a computational speedup of an order of magnitude by replacing 

a 23rd order SH expansion with a 3rd order weighted least squares problem. Junkins admitted that 

further research would be necessary to reduce the number of random accesses necessary to 

perform his calculations. 

5.1.2 Colombi 

 Colombi’s research proposes an interpolation scheme with adaptive local representation 

to compute gravity forces directly [15]. Colombi’s interpolation scheme is closely linked to the 

interpolation methods proposed by Junkins, but Junkins model relies on a nearly spherical body 

of study. Colombi’s method precomputes the domain of gravity forces, rather than potentials to 

and provides an adaptive spatial structure to yield a speed of 2 orders of magnitude relative to 

previous polyhedron interpolation methods. 

Method 

 Colombi’s model chooses to interpolate the force directly to improve the speed of the 

computation. His model uses cubic cells for the interpolation and uses Gauss-Lobatto-Legendre 

interpolations (GLL) with barycentric forms of the Lagrange polynomials. The low Lebesgue 

constant for this interpolation scheme ensures a relatively uniform approximation of the 

interpolation function. Furthermore, the barycentric form of the Lagrange polynomials is chosen 

for computational efficiency. The polynomial approximation appears as a linear combination of 



20 
 

function values at the interpolation nodes, which corresponds to a component of the gravitational 

force.  

 The adaptive local representation is implemented using an octree data tree structure. This 

structure subdivides each elemental cube in the model until the element meets a required error 

tolerance. The benefit of the octree structure is that provides higher computational speed than 

traditional polyhedral subdivisions. In fact, the octree structure provides a sub-linear relationship 

between run-time complexity and the number of subdivisions required (corresponding to the 

resolution or minimum size of each element), whereas polynomial divisions are linear. The result 

of this relationship is that the octree model will provide more speed than the polyhedral model, 

and this performance enhancement will scale with increasing numbers of subdivisions. Since the 

octree structure is inherently bounded, spherical harmonics are used to calculate the gravity field 

outside of the octree structure.  

 The following schematic of a quadtree portrays the 2D representation of the octree. It is 

notable that this structure allows for adaptive resolution by allowing the algorithm to make 

subdivisions only where necessary. 
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Figure: Quadtree schematic representing adaptive query resolution [15]    

Example Octree Construction and Performance 

 The 1998 ML14 asteroid was studied using an octree with 10 layers, corresponding to a 

smallest cell size of 4.8 meters. This cell size was chosen from experiments that determined a 

required resolution to minimize error in modeling the asteroids curved surfaces. The highest 

order polynomials required for the octree were of order 6.  

 To refine the structure, each cell was tested at 10,000 sample points so that the 

subdivision would produce an error below 5e-7. The octree construction required 1150 CPU 

hours on a message passing interface (MPI). The process required 64 processors, 18 hours of 

clock run-time, and 635 MB of memory. Outside the octree bound, spherical harmonics of 

degree/order 12 were employed.  

Results 

 The performance of the various force models in generating several trajectories was 

analyzed against a reference trajectory that used Werner and Scheeres’ polyhedron model with a 

required error below 10e-10.  

A. Close Retrograde Orbits 

111 trajectories were analyzed, and most of these propagations fell within 2 meters of the 

reference trajectory. The max position error was 2.56 meters. The cubetree was 112 times faster 

than the augmented polyhedral method.  

B. Midrange Orbits 
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The initial conditions for the midrange orbits were placed at 1250 meters and 1500 meters from 

the center of the transition between octree and spherical harmonics representations. 1487 

trajectories were analyzed, where most differed by less than 2 meters and the max error exhibited 

was 10.24 meters. The cubetree method was 90 times faster than the augmented polyhedral 

method. 

C. Random Trajectories 

The initial conditions for the random trajectories ranged between 600 and 1500 meters. In 911 

simulations, only 38 trajectories had an error greater than 2 meters, and 8 trajectories had errors 

larger than 100 meters. The cubetree method was 111 times faster than augmented polyhedral.  

D. Ejecta Trajectory 

Of the ejecta trajectory simulations, only one test showed errors larger than .5 meters. These 

trajectories were calculated 169 times faster than the polyhedral method. 

The 15 trajectories with the worst-case errors were analyzed in the frequency domain using 

FFT transforms. A sensitivity analysis using a Monte Carlo simulation of perturbations around 

the initial conditions for these orbits showed large variations in the resultant trajectories under 

small perturbations. This analysis showed that the dynamics of these trajectories were highly 

sensitive.  

The adaptive spatial structure with polynomial interpolation proves to be an accurate tool for 

performing trajectory analysis and mission planning near irregular bodies.  

Future Work 
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 Colombi suggests that further work could improve the adaptive local representation 

technique in his model. For example, he notes that the construction of interpolation points using 

cartesian products uses more points than required for the given accuracy. Further, he notes that 

this representation is not globally exact, as it interpolates forces rather than gradients of potential. 

He suggests that this could be improved using a Hermite interpolation or other techniques, 

chosen after rigorous study of the impacts of the change. 

 Colombi also mentions that his model creates discontinuities across cell boundaries. 

Although his experimentation did not find these discontinuities to impact his trajectory 

propagation, he notes that they could impact other orbits like those of low thrust trajectories. He 

suggests that regularly subdivided tetrahedra or other octree variants could provide for 

continuity.  

 Further research should also explore different techniques for capturing interpolated 

values. Poisson’s equation or physical experiments could provide starting points for these 

endeavors.  

5.2 Cubed Sphere Model 

Beylkin and Cramer suggested mapping the sphere to a cube to compute the geopotential and 

acceleration. Each face is segmented with uniform grids and multiple concentric shells are 

mapped to these cubes to perform function interpolations. Beylkin and Cramer suggested three 

interpolation methods [16]: 

1. B-splines defined on the surface of the sphere 

2. Polynomials on subdivisions of the surface of the cube 

3. B-splines on the surface of the cube 
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The first method suffers from stretching that is caused by oversampling near the poles. 

The second method does not experience stretching, but it requires a much higher sampling rate 

than B-splines. Choosing the third method, which employs B-splines on the surface of the cube 

does not suffer from stretching or require oversampling. This method, known as the cubed-

sphere model was determined superior as a technique that trades speed for memory.  

 

Figure: Illustration of the mapping from a sphere to a cube [17] 

Jones’ refined the Junkins’ theory in a model that uses the GGM02C model as a “truth 

model” for comparison. Using multiple concentric shells and Chebyshev basis functions, allowed 

for speedups on the order or 30 for the 150x150 model. The breakeven resolution for speed 

occurred for the 20x20 model. Jones’ model had only required 856 MB of memory. Agreement 

between SH and cubed-sphere model broke down under 200 km, where the cubed-model 

outperformed SH in some cases due to the fluctuations in the integration constant at the limits of 

machine precision. Furthermore, the cubed sphere model reduced gravitational anomalies.  

Jones suggests that the cubed sphere model should be further refined for moon-based models 

to account for large mass concentrations created by asteroid impacts. Furthermore, the model 

requires additional tuning below 50 km of altitude. Finally, Jones argues that further research 
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could provide a useful implementation for the cubed sphere model in orbital determination 

procedures with the addition of integration with non-linear filters, like those of the unscented 

Kalman filter. 

 

Figure: Speedup factors for varying degree Cubed-Sphere Models [17] 

 

Figure: Cubed-Sphere state 3-D RMS performance at 300 km [17] 

5.3 AstroHD 

AstroHD provides “a revolutionary digital approach…to three-dimensional dataset storage 

and modeling, particularly for gravitational, magnetic field, and atmospheric data.” The method 

aims to leverage the benefits of cheaper and highly capable random-access memory (RAM). The 

digital approach increases computational speed and precision while producing complete, high 

order fields that do not suffer from truncation error like spherical harmonics.  

 

Method 
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AstroHD seeks to minimize the effort needed to perform interpolations. In doing so, the 

software minimizes the number of grid points required for a desired angular resolution. 

Additionally, these grid points are constrained such that all data is weighted equally. The 

employment of 3D dataset storage for icosahedron points provides an efficient method for 

mapping grid points. Furthermore, a unique mapping technique is employed to reduce the 

number of grid points. 

 

AstroHD replaces the inefficient right ascension/declination spherical coordinate system 

with a digital icosahedron representation. The subdivided icosahedron yields a perfectly 

symmetrical collection of non-planar points. The subdivision used a linear interpolation of 

primary faces and great circle arcs to provide a uniform set of cells that maintain the same 

shapes. The digital dataset led to 40 percent less function evaluations and memory usage than 

spherical harmonics representations. Furthermore, a variable step size yielded computational 

accuracy gains by de-emphasizing the importance of gravity perturbations at high altitudes. 

 

Results 

Numerical experimentation compared the AstroHD representation to a 145x145 EGM96 

spherical harmonics base-model. The numerical experiments were run using 7 icosahedron shells 

separated by 5 km. Three tests were run, with vertex to vertex angular separations of 1, .25, and 

.1 degrees. These grids required 1 minute, 50 minutes, and 4 hours of computational time, 

respectively.  

The finest grid, (.1-degree angular separation), required ~4 million functions and 

evaluations or 46 MB of storage. Whereas this memory footprint is relatively small, a field with 
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more higher resolution data at varying altitudes would require much more memory. For example, 

a field with 100 icosahedron shells at the same angular resolution would require 4.6 GB of 

memory.  

The numerical experiment also performed sample orbital integrations to compare the 

AstroHD method to spherical harmonics representations. The AstroHD performance yielded 

high speed and accurate solutions for 10-day propagations. Propagation throughout the coarsest 

grid (1-degree angular separation) yielded a max error of 3 km, which is comparable to a 

truncated 40x40 spherical harmonics representation. The grid with angular resolution of .25 

degrees exhibited an error of 1 km over 10 days, which is comparable to the 90x90 SH solution. 

Finally, the finest (.1 degree) grid yielded a max error of 35 meters. The following graph depicts 

the relative accuracy of each AstroHD field in relationship to varying degree spherical 

harmonics. 
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Figure: Comparison or residual errors between SH and AstroHD orbit 

propagations [2] 

 The following graph relates the runtime of the AstroHD propagation to that of the 

spherical harmonics solution for varying degree. The data shows that AstroHD provides a 

speedup on the order of 20 compared to the 125x125 SH field. Furthermore, the data indicates an 

accuracy improvement of 620 times for a spherical harmonics field of the same runtime.  

 

Figure: Run time Comparison for SH and AstroHD propagations [2] 

5.4 FETCH 

The fetch interpolation model [7] uses the typical Junkins weighting function to force 

continuity and smoothness for its solutions. Fetch is unique because it uses an overlapping grid 

strategy and an adaptive order-based method for selecting polynomials that minimize memory 

requirements. Furthermore, the method allows for analytic inversion of the normal equations that 

eliminate the need for linear systems solvers. 
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 The benefits of fetch lie in its ability to quickly produce continuous and smooth models 

that are singularity free. The unique grid strategy of the method minimizes memory costs and 

adaptive polynomial selection minimizes the memory required to store coefficients. Finally, the 

analytic inversion method allows for very rapid solutions to the least-squares problem and orders 

of speedup compared to prior interpolation methods. Finally, Arora and Russell’s analysis of 

fetch prove that it is highly accurate, producing residual errors that are within the noise of the 

spherical harmonics underlying model. 

Fetch Results 

 Four Fetch models were produced from the GGM03C field. The highest resolution field 

was computed using a 360x350 GGM03C SH field, which took 12,000 CPU hours and 2.36 GB 

of memory to complete. Fetch offered speedups on the order of 3 orders of magnitude, with 

runtime matching SH for an 8x8 field. The major advantage of the Fetch model allowed it to 

compute gradients and higher order partial derivatives directly with no additional memory costs. 

The minimum breakeven resolution, compared to SH, was determined to be degree/order of 360. 

The models are continuous up to order 3 and 60 Earth radii. The memory requirements and 

speedups are listed below: 

 

Figure: Performance characteristics of varying degree Fetch models [7] 
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6 Parallel Computation 

6.1 CUDA 

Method 

 The implementation of the Global Point Mascon Model in compute unified device 

architecture (CUDA) can achieve one order of magnitude speedups compared to traditional 

computational methods. Previously, heterogenous computing architecture implemented PMC 

using multi-core processers and accelerated coprocessors. However, CUDA enables the use of 

CPU as the host device in tandem with GPUs from NVIDIA that support parallel 

implementations due to their ability to carry double precession operations.  

 The basic implementation of PMC in CUDA uses the CPU for logical tasks while the 

GPU provides parallelism. The fundamental unit of the GPU is a thread, a collection of threads 

form blocks, and the blocks create the grids necessary for tasks. All the threads which belong to 

one grid then execute the kernel function. The CUDA provides a layered memory space 

comprising of global, local, shared, texture, and registers. 

 The implementation of the PMC with parallel computation based in GPU is relatively 

straightforward. Since the most time intensive portion of PMC modeling occurs during the 

computation of the gravity forces at the target point, implementing this computation in 

parallelism with the GPU provides the most opportunity for speedups. The following list 

provides a simplified pseudocode for the operation: 

1. Each block loads information about the mass points from global memory and saves it in 

shared memory 
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2. Each thread in the block uses the point info to compute gravitational acceleration at the 

target point, generated by the single point, and saves this information to shared memory 

3. When all threads complete the computation, the reduction method sums all results in the 

block to a single value and save it to shared memory 

4. The new kernel function is launched to sum the results of all blocks producing the 

resultant gravity field 

 

Figure: CUDA’s heterogenous programming [13] 

Results 

 The CUDA implementation was tested in a simulated scenario. The scenario used a 

spacecraft trajectory model using a Runge-Kutta, Dormand-Prince numerical integration of 

Earth’s gravity. The results of this integration were compared to the SH model. Speedups for low 

order fields (~30) were on the order of 5, and speed ups for the order of 70 were on the order of 

8. The global PMC model was 10 times faster than spherical harmonics for high order 
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gravitational fields. Furthermore, CUDA met the precision requirements (error of about .01 m). 

In fact, the accuracy of the CUDA method were on the same order as the SH model. CUDA 

required 3 days of integration time to achieve max residuals of 2 cm for LEO and 2 mm for 

HEO. The following table summarizes these results: 

 

Figure: Error and speed-up ratio for CUDA propagation of different orbit types [13] 

7. Conclusion 

The traditional method for computing the gravity field, spherical harmonics no longer 

fulfils the evolving requirements of gravity estimation and determination applications. Although 

the method provides a very high-fidelity representation of the field with low memory 

requirements, its low speeds are not suitable for many applications. Existing spherical harmonics 

models remain relevant as base models for the “fitting” of new models. Numerical 

experimentation allows for the reduction of residuals in new models which aim to match the 

accuracy of spherical harmonics within given tolerances. In fact, spherical harmonics remains as 

the only exact representation of the gravity field in its infinite form.  

 The major conclusion of this academic survey is that gravity fields can be quickly 

computed through efficient discretization of the field (in contrast to the continuous nature of the 
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SH equation). The strategies listed in this paper achieve this discretization through a variety of 

forms: 

1. Polyhedral grids with a series of grid points or planar surfaces 

2. Grids of point mass concentrations 

3. Finite element techniques which generate piecewise continuous, localized 

approximations 

4. Basis splines 

Discretized models allow for computational advantages by allowing for innovations in: 

1. Adaptive local representations 

2. Adaptive polynomial interpolation 

3. Parallel computation 

4. Creative storage datasets 

Although some of these innovations have been tested for particular discretization methods, it is 

important to note that these improvements can apply elsewhere. For example, adaptive 

representations could benefit mascon solutions or creative datasets could be employed for 

mascons rather than icosahedron subdivisions. 

8. Applications 

It would be naïve to conclude this analysis by proclaiming a superior method for 

representing the gravity field. Instead, each strategy exhibits different relative strengths and 

weaknesses depending on the requirements of its applications. The following list will attempt to 

define the requirements of some of the current applications of gravity field estimation and 

suggest an ideal gravity representation for that application. 
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A. Irregular Bodies 

Irregular bodies require a model that can maintain its integrity for objects that are far from 

spherical. Additionally, spacecraft missions to asteroids require on-board computation of the 

gravity field for objects of which little a-priori knowledge exists. Several techniques for doing so 

are discussed in this paper. In general, it is important to make use of optical data to provide a 

baseline for asteroid surface information. Data from the optical surface model can then be used 

to subdivide the irregular body into a set of planar surfaces or grid points (like those of the 

icosahedron). These surface representations can then be used to compute combinations of 

potential functions or finite element techniques.  

B. Earth Sciences 

Earth sciences require high fidelity fields that can represent very small gravitational 

perturbations related to density variations and the non-spherical nature of Earth’s surface. 

Additionally, Earth science require capabilities to study the temporal variations associated with 

changes in hydrology. The spherical harmonics solution is best fit for Earth science’s studies 

which require high accuracy gravity data.  

C. Trajectory Planning/Monte Carlo 

Trajectory planning and Monte Carlo simulation require high speed estimation for propagation of 

up to thousands of orbits. Additionally, relatively high levels of accuracy are required within the 

requirements of the mission. The implementation of polyhedral or mascon modeling with 

creative datasets and adaptive resolution or adaptive interpolation have been shown to be well 

suited for these applications.   

D. On-Board Computation 
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On-board computation can refer to gravity estimation or propagation integrations that occur on a 

satellite during flight. This application is unique in its restrictive hardware requirements. On-

board computation requires relatively low memory requirements, high speed, and varying 

degrees of accuracy. On-board applications require portable, yet highly efficient, processers. The 

parallel computation techniques discussed in this paper require further research for on-board 

computation but are well suited for future endeavors. 

9. Future Research 

 This paper discusses a variety of techniques that seek to benefit the computation of the 

gravity field. It is notable that these techniques are not mutually exclusive, and some strategies 

should be combined to create a comprehensive gravity model. For example, it is suggested that 

the polyhedron and spherical harmonics solutions be superimposed to provide better 

representations surface features like mountains and valleys on bodies.  

 Most of the research presented in this paper describes the numerical experiments which 

aim to characterize models based off their relationship to spherical harmonics base models. 

Additionally, many of the models are configured by minimizing the residual errors between the 

new model and SH. Future research should seek to derive the developing modeling techniques 

directly from measurements, rather than in relationship to SH. Additionally, this research should 

seek to move past numerical experimentation by employing the models for their intended use.  

 Although it is beyond the scope of this research, the refinement of integration techniques 

is required for high speed orbit propagation in trajectory planning or other orbital propagation 

uses.  
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 The refinement of gridding techniques like those of the polyhedral models, icosahedron 

subdivisions, or mascon spacing provides an opportunity for speed improvements and memory 

reduction. For example, a systematic method for including adaptive resolution within mascon 

models could prove useful for ground track analysis. Further, the polynomial representations in 

this paper assume that each discretized point or surface has a constant density. Although this 

assumption has not been shown to cause large errors, a variable density technique could prove 

useful.  

 The final argument of this research is that the continuous refinement of parallel 

computation techniques is the most valuable opportunity for the future of gravity estimation and 

determination. Parallel computation offers an opportunity for “divide and conquer” approaches 

while maintaining portability in the form of common GPU hardware. Cards like those used for 

the CUDA experimentation could benefit stationary and on-board computations alike. 
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