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ABSTRACT 

Slow-servo single-point diamond turning as well as advances in computer controlled 

small lap polishing enable the fabrication of freeform optics, specifically, optical surfaces for 

imaging applications that are not rotationally symmetric. Freeform optical elements will have a 

profound importance in the future of optical technology. Orthogonal polynomials added onto 

conic sections have been extensively used to describe optical surface shapes. The optical testing 

industry has chosen to represent the departure of a wavefront under test from a reference sphere 

in terms of orthogonal φ-polynomials, specifically Zernike polynomials. Various forms of 

polynomials for describing freeform optical surfaces may be considered, however, both in optical 

design and in support of fabrication. More recently, radial basis functions were also investigated 

for optical shape description. In the application of orthogonal φ-polynomials to optical freeform 

shape description, there are important limitations, such as the number of terms required as well 

as edge-ringing and ill-conditioning in representing the surface with the accuracy demanded by 

most stringent optics applications. The first part of this dissertation focuses upon describing 

freeform optical surfaces with φ-polynomials and shows their limitations when including higher 

orders together with possible remedies. We show that a possible remedy is to use edge-clustered-

fitting grids. Provided different grid types, we furthermore compared the efficacy of using 

different types of φ-polynomials, namely Zernike and gradient orthogonal Q-polynomials. In the 

second part of this thesis, a local, efficient and accurate hybrid method is developed in order to 

greatly reduce the order of polynomial terms required to achieve higher level of accuracy in 

freeform shape description that were shown to require thousands of terms including many higher 

order terms under prior art. This comes at the expense of multiple sub-apertures, and as such 
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computational methods may leverage parallel processing. This new method combines the assets 

of both radial basis functions and orthogonal phi-polynomials for freeform shape description and 

is uniquely applicable across any aperture shape due to its locality and stitching principles. 

Finally in this thesis, in order to comprehend the possible advantages of parallel computing for 

optical surface descriptions, the benefits of making an effective use of impressive computational 

power offered by multi-core platforms for the computation of φ-polynomials are investigated. 

The φ-polynomials, specifically Zernike and gradient orthogonal Q-polynomials, are 

implemented with a set of recurrence based parallel algorithms on Graphics Processing Units 

(GPUs). The results show that more than an order of magnitude speedup is possible in the 

computation of φ-polynomials over a sequential implementation if the recurrence based parallel 

algorithms are adopted. 
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CHAPTER ONE: INTRODUCTION 

Freeform optical components are going to play key roles in the future of optical systems. 

The ability of these components by definition to depart from rotational symmetry, for the first 

time, enables truly folded geometries with excellent overall optical correction. These properties 

enable optical systems with reduced physical sizes through a reduction in element count, with the 

added property of being lighter weight. In addition to the gain in compactness and reduction in 

weight, optical designs leveraging freeform components may also yield performance 

improvements in terms of a gain in étendue, where étendue may be thought of as the product of 

the field of view and aperture size of the system at a given focal length. In layman terms, as the 

étendue increases the efficiency of the system may increase together with the resolution or the 

ability to image a larger field of view or both. One of the early types of optical systems to take 

advantage of the new fabrication capabilities that enable freeform surfaces is unobstructed all-

mirror systems that are being designed enabling ultra-broadband imaging. Some pioneering 

examples of freeform optical elements have started to emerge in Head Worn Displays (HWDs) 

[1], projection systems [2], and infrared imagers [3]. As Rolland and Thompson discuss in a 

recent Optics and Photonics News article, there is a revolution occurring in the field of optical 

design that is mainly driven by two concurrent but unrelated major developments requiring the 

optical design community to develop new methods and tools to describe freeform optical 

surfaces [4].  

A first development, prior to even considering freeform optical components but providing 

some guidance to their development, resulted from discovering that a power series representation 
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introduced by Abbe [5] for aspheric optics is failing in part because of the lack of 

orthonormalization. When new polishing methods, small tool polishing, ion beam polishing, and 

magneto-rheological finishing (MRF) polishing have come to be adopted throughout the 

industry, this issue has become apparent because rotationally symmetric aspheres were started to 

be favored in challenged optical designs to insure least number of elements while meeting high 

performance specification such as for the compact cell phone high resolution cameras and at the 

other end of the spectrum lithography lenses. New methods to describe optical aspheres were 

proposed by Forbes in place of historical power series, the Q
bfs 

and Q
con

 polynomials [6], in order 

to address this issue. Recent work shows that designing with Q-polynomials together with slope 

constraints that may easily be constrained in the optimization merit function given the unique 

description of these polynomials, yield optics that is less sensitive to alignment and assembly, a 

huge gain for higher yield in optical manufacturing that will lower cost while maintaining or 

improving quality [7, 8].  

The second development is the introduction of the slow-servo axis in the diamond turning 

based manufacturing of optical elements [9]. This development enables the controlled 

manufacture of optical freeform surfaces, which are not intrinsically rotationally symmetric. The 

initial impact of this development is to broaden the definition of optical surfaces from a conic 

surface plus the power series to basis functions that may describe freeform surfaces. Cakmakci et 

al. proposed and implemented local shape descriptors, in the form of Gaussian basis functions 

that appear well suited for local shape description [10, 11]. Recently gradient orthogonal 

Q-polynomials as an addition to a best fit sphere have been proposed to describe optical freeform 

surfaces in the context of optical manufacturing [12]. Together with the recurrence relations, 
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they may also provide an efficient and robust optical surface description capability that may also 

be leveraged in design.  

One approach to specifying a freeform surface is to use a base conic surface plus Zernike 

polynomials to describe the non-rotationally symmetric components [13]. Zernike polynomials 

are used as a pervasive means of representing optical surface deformations in optical testing, as 

they are complete and orthogonal over the unit circle. Moreover, the lower order Zernike terms 

are readily identified with Seidel and H.H. Hopkins aberrations [14, 15, 16] that are used in 

optical design. However, important limitations in the optical surface descriptions with full 

aperture Zernike polynomials exist: It may be the case that higher order Zernike terms are 

required in order to represent optical surfaces with the accuracies required by most stringent 

optics applications. High order terms possess numerical problems in implementation because of 

round-off errors. Recurrence relations are adopted as a remedy for this case as in any other 

orthogonal polynomials [17]. Even when the problems with the numerical round-off errors are 

bypassed, it is anticipated that the thousands of terms required to describe a freeform surface 

with subnanometer accuracy is a bottleneck for the optical designers. A second limitation is 

severe edge ringing associated with φ-polynomial surfaces. Edge clustered fitting grids are 

proposed to overcome the edge-ringing successfully with φ-polynomial surfaces [18]. Although 

for optical design purposes it is suitable to apply effective edge clustered ray grids, for testing 

purposes, a clustered edge grid may not be easy to implement.  

As opposed to full-aperture φ-polynomials as optical freeform surface description, local, 

multi-centric, additive Radial Basis Functions (RBFs) were recently investigated for describing 
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optical freeform surfaces [10, 11, 19]. While orthogonal φ-polynomials are defined over only 

specific geometries, such as a circle, RBFs are more general, conforming to any aperture shape. 

Although the orthonormalization of φ-polynomials over other specific aperture shapes are 

possible [20], RBFs constitute one basis set that applies to any aperture shape. Forsaking the 

orthogonality of φ-polynomials, RBFs offer simplicity and geometric flexibility in terms of 

aperture shapes. However RBFs have their own drawbacks as well. They may suffer from 

numerical ill-conditioning when their shape is flat or excessive numbers of them are used to 

describe freeform surfaces. 

Motivation 

 As the optics manufacturing industry is forging ahead in the advancement of their 

fabrication methods, the mathematical models to describe optical surfaces are required to be 

retooled and redefined. The major motivation for this work is how to best efficiently describe 

general optical surface shapes with different aperture geometries and uncommon features. In 

other words, with the optics manufacturing industry presenting itself with the ability to fabricate 

most general freeform optical elements, we pose the question of how to best economically and 

accurately represent general optical shapes. As an impact of these developments, optical 

designers need to answer the following questions: Does the sampling of the surface have any 

effect on the accuracy of the description of the optical surface? Is there a way to describe a 

freeform surface with minimum number of basis elements, as few as 25 terms of φ-polynomials, 

while at the same time achieving subnanometer accuracy? Do they need to change the basis for 

the description of freeform elements if they work on an aperture shape different than a circle? Is 
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it possible to use highly threaded many-core computational platforms to reduce the 

φ-polynomials computation time through parallel computing? In this thesis, we investigate the 

possible answers for the above questions while proposing new methods for the description of 

optical freeform surfaces. We also report on the merits and limitations of working with different 

basis for freeform optical surfaces under different sampling patterns in addition to devising and 

implementing parallel algorithms for φ-polynomials computation. 

Research Summary 

In the first part of this thesis, we show that the ray grids commonly used in sampling a 

freeform surface, such as a uniform hexagonal sampling grid, to form a database from which to 

perform a φ-polynomial fit is limiting the efficacy of computation. We present an edge clustered 

fitting grid that effectively suppresses edge ringing that arises as the φ-polynomials adapt to the 

fully nonsymmetric features of the optical surface [18]. Secondly, we show that a substantial 

number of Zernike (φ-polynomial) terms, sometimes thousands, is required in order to achieve 

subnanometer accuracy. Prior to arriving to the appropriate number of terms, intermediate results 

with insufficient number of terms exhibit high departure errors at the edge. The impact of this 

edge-clustered fitting grid on the reduction of edge-ringing and the improvement of surface 

representation by several orders of magnitude is also compared with uniform hexagonal subgrids 

centered on rectangular uniform grid, Chebyshev-based radial grids, and polar grids. 

  As part of an investigation of fitting grids for optical surface description, full aperture 

φ-polynomials, specifically Zernike and recently introduced gradient orthogonal Q-polynomials, 

are also investigated in a comparative manner in terms of efficacy of optical surface description 
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[21]. Results establish the similarity of φ-polynomials for accurately describing freeform 

surfaces under stringent conditions (i.e. a high departure surface with high local slopes), which is 

a critical step in the future application of these tools in advanced optical system design and 

fabrication. 

 In the second part of this thesis, we developed an efficient, accurate, and localized hybrid 

method combining assets of both RBFs and φ-polynomials for freeform shape description, which 

makes it uniquely applicable across any aperture shape due to its domain decomposition and 

local stitching properties [19]. Results show that the proposed method yields subnanometer 

accuracy with as few as 25 terms φ-polynomials in each subaperture. Subnanometer accuracy is 

required for the stringent conditions of lithography and related precision optics applications. 

Under less stringent conditions, such as for illumination optics, it is shown that the necessary 

accuracy is achieved using as few as 16 terms of local φ-polynomials in each local partition. 

 Finally in this dissertation, we have devised and implemented recurrence based parallel 

algorithms for φ-polynomials in order to take advantage of parallelism on highly threaded 

computational platforms i.e. Graphical Processing Units (GPUs). The results show that more 

than an order of magnitude improvement is achieved in computational time over a sequential 

implementation if recurrence-based parallel algorithms are adopted in the computation of the 

φ-polynomials [50].  

Dissertation Outline 

 In the next chapter, we present a review of state-of-the-art methods for the description of 

optical surfaces. The chapter starts with a description of the orthogonal 1D φ-polynomials for 
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aspheric optical elements. The recurrence relations for the slope orthogonal Q-polynomials as 

descriptors of rotationally symmetric aspheres are reviewed in this first section. Chapter 2 

continues with the presentation of freeform (i.e. 2D and non-rotationally symmetric) 

φ-polynomials. First, the set of Zernike polynomials as a descriptor for freeform elements is 

explained, followed by the recently introduced gradient-orthogonal Q-polynomials. The 

recurrence relations for efficient and accurate computation of these polynomials are given in the 

same section. In the next section, RBFs are introduced along with their numerical properties and 

QR-based algorithms for this optical surface description. 

 Chapter 3 focuses upon efficient ray grids for the description of freeform optical 

elements. The first section describes the least squares fitting process currently used in the 

preliminary optical design work with optical freeform surfaces and how low order φ-polynomials 

matches the Seidel wavefront aberrations. In the following section, four different ray grids are 

described: uniform hexagonal subgrids centered on a uniform rectangular grid, a polar grid with 

Chebyshev-based radial weighing, a uniform random point grid, and an edge-clustered random 

point grid. In the last section, numerical experiments with different test cases as the examples of 

highly varying freeform optical surfaces are given. 

 In Chapter 4, we have compared two different φ-polynomials in terms of least squares in 

order to understand the freeform description capabilities of these two polynomial sets under two 

different sampling ray grids, uniform hexagonal subgrids centered on the uniform rectangular 

grid and an edge-clustered fitting grid. In the first section two different ray-grids and test cases 

are presented. In the numerical experiments section, two different test cases are described with 
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increasing number of basis elements in order to reveal any similarities or differences between 

these two methods in terms of least-squares fitting of freeform optical surfaces. The last section 

is an inquiry of the effect of the height of the surface features on the number of φ-polynomials 

terms required and the impact on the residual peak-to-valley (PV) fitting errors. 

 In Chapter 5, a local, hybrid, efficient and accurate optical surface description 

methodology is proposed and shown to have striking significance in the reduction of the order of 

φ-polynomials terms used for freeform surface description. In the first section, the hybrid RBF 

and local φ-polynomials method is presented along with a description of its algorithm. In the 

next section a variation of the method with local Gaussian RBFs with local shape optimization 

instead of local φ-polynomials is described. Finally in the numerical experiments section a 

complex freeform surface is represented with the hybrid RBFs and local φ-polynomials method. 

Results show that the surface may be described with as few as 25 terms in each subaperture for 

subnanometer accuracies. Also in this section the trade-off between the local number of basis 

elements in the local φ-polynomials fits and the size of the subapertures is shown with a brief 

comparison to its shape optimized local Gaussian RBF counterpart.  

 In Chapter 6, recurrences based parallel algorithms, devised and implemented on a highly 

threaded GPU for the acceleration of computation of φ-polynomials, are presented. In the first 

section, general purpose computational methods with GPUs are described along with the brief 

review of GPU architectures. In the second section, in addition to the pseudo-codes, some 

parallel algorithms of φ-polynomials constructed upon the recurrence relations are shown with a 

detailed description. In the final section of this chapter, numerical experiments including the 
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effect of the ray grid size and φ-polynomials order on the computation time are carried out as 

well as the validation of the parallel algorithms and speedups through the parallelism. 

Chapter 7 summarizes the main findings and major contributions of this research effort 

along with possible future directions for the mathematical and computational methods for 

freeform optical surface description. 
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CHAPTER TWO: POLYNOMIALS AND RADIAL BASIS FUNCTIONS AS 

OPTICAL SURFACE SHAPE DESCRIPTORS 

In this chapter, we review the state-of-the-art polynomials and radial basis functions 

(RBFs) for freeform optical surface description. Historically, power series expansions with a 

conic section of choice are used to describe optical surfaces, which until recently have been 

dominantly rotationally symmetric, or portions of rotationally symmetric parts, with some 

limited use of anamorphic aspheres. Failures in this mathematical description model emerged 

early in 2000 when commercial optical software unwittingly provided optical designers with 

more aspheric terms than could be support with 32-bit computing. This occurrence then posed 

the question of how to best describe optical surfaces with high accuracy and minimal cost. The 

mathematical propositions for this question are reviewed in the next sections. We start with the 

recently introduced slope orthogonal Q-polynomials [6] for rotationally symmetric optical 

surfaces. We then review Zernike polynomials as the well-known and currently emerging basis 

for φ-polynomials freeform optical surface descriptions, which are not rotationally symmetric. In 

the final section of polynomials applied to the description of optical surfaces for optical design, 

gradient orthogonal Q-polynomials are described along with their recurrence relations. The last 

section concludes this chapter with a review of RBFs and their stable evaluation with a 

QR-based approach. 

Slope-orthogonal Q-polynomials for Aspheres 

 The most widely used and conventional method for characterization of optical surface 

shape, whether that shape is rotationally symmetric or not, is a power series expansion 
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introduced by Abbe [5] almost a century ago. This power series representation is made more 

effective with a base conic section of choice as conic sections have some useful optical 

properties. Hence an optical surface is most generally represented as follows 
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In above Eq. (2.1), ρ and z represents the standard cylindrical coordinates, κ represents the conic 

constant of choice, c stands for the curvature of the conic. This representation of an optical 

surface is completed with the aperture radius, ρmax.  For aspheric surfaces, because of the 

rotational symmetry, the sag, z(ρ) has only one independent variable, ρ. For freeform surfaces 

however, there is also an angular dependence of the sag function, which is represented as z(ρ,θ). 

 Although the expression in Eq. (2.1) yields a complete set for approximating the optical 

surfaces for the required accuracies provided that m is allowed to be large enough, the monomial 

basis, i.e. m , is numerically inefficient and provides the surface approximations through heavy 

cancellation of the terms, which leads to associated least squares approximation and the Gram 

matrix to become heavily ill-conditioned. One improvement is to apply normalization of the 

basis such as to adopt 
max

u 
  and second is to remove the degeneracies between the basis 

elements, which is to orthogonalize the basis. 

 Conditioning is related to the perturbation behavior of a mathematical problem and 

stability is related to the perturbation behavior of an algorithm [22]. Generally, a well-

conditioned problem is the one where a small perturbation in the data causes only negligible 
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changes in the solution. An ill-conditioned problem is the one where small changes in the data 

lead to an unacceptable change in the solution. In terms of numerical linear algebra, conditioning 

of a problem is measured with a condition number. Trefethen defines the condition number as 

follows [22]: 

 “Let A be a nonsingular matrix, consider Ax=b, the problem of computing b, given x, has 

condition number, 
1

K


 A A , with respect to perturbations of x. The problem of computing x, 

given b, has the condition number, 
1K  A A  with respect to perturbations of b. The problem 

of computing x, when b is fixed, 1
x A b , has the condition number 

1
K


 A A  with respect to 

perturbations in A, where .  represents the norm of a matrix.” 

 A is ill-conditioned when the condition number, K, is large, and similarly A is well-

conditioned when the condition number is small. It is always expected to lose 10log K  digits in 

the solution of a least square system if the least square matrix is ill-conditioned [22]. An 

orthogonal basis, since all the basis elements are orthogonal to each other and the associated dot 

product is zero, contains no degenerate or near-degenerate basis elements, which leads to well-

conditioned approximation matrices. The trade-off between the ill-conditioning of a matrix and 

the accuracy of the solution of the least squares system is best captured through an example. As 

such, in the following example, the orthogonal Chebyshev polynomials are compared with the 

monomials (power series) in terms of the least square approximation of a smooth surface [23].  

 In this section, we present a summary of the example given in [23] to further clarify the 

differences between the monomials and an orthogonal basis. Let’s consider that example [23]: a 
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1µm bump over a 60 mm aperture that is fitted with 9 monomials and 9 orthogonal Chebyshev 

polynomials. The shape of the function is given in Figure 1. The function to be fitted is an 

exponential of form, 
2

81( )g e





 . The monomials used for the fit are {1,ρ
2
, ρ

4
,… ρ

16
}. The 

Chebyshev polynomials are defined to be  

  ( ) cos arccos( ) ,mT m   (2.2) 

where m is even. 

 

Figure 1 Sample fitted with monomials and Chebyshev Polynomials, adapted from [23]. 

When we carried out the least squares approximation, coefficients for the monomials are found 

out to be {999.5, -11024.9, 59072.8, -196235.6, 427931.4,-608789.4, 540151.6,-269848.7, 

57744.7}nm.  

The condition number for this least squares approximation matrix is 5.4711e+5. So, we expect to 

lose 6 digits of accuracy because of the ill-conditioning associated with this monomial basis, i.e. 

log(5.4711e5) is about 5.74. We see that there is heavy cancellation between the fit coefficients. 

Even if the fit is required to be within a 1 nm tolerance and the test surface is 1 micron in height, 

the coefficients are thousands of microns. More importantly, since the approximation matrix has 



14 

 

a non-empty null space, there are infinitely many solutions to this problem. Furthermore, 

changing the coefficients with a scaled version of the nullspace vectors constitutes more 

solutions for this problem and does not effectively change the result. For example Forbes [23] 

mentioned that 539995 could be replaced with 539995-212992, and the fit is still within 1 nm 

tolerance. 

Instead, when doing the least squares fit with orthogonal Chebyshev basis, the fit coefficients are 

given as {173.6, -314.0, 234.1, -145.5, 76.9, -34.8, 14.0, -4.7, 1.8} nm [23]. The condition 

number for this orthogonal Chebyshev least squares matrix is just 4. Thus all of the digits in this 

list are significant, i.e. log(4) is 0.6, and these coefficients cannot be changed without changing 

the result of the fit. Since the condition number is very small compared to that of the monomials, 

this matrix is well-conditioned. This representation of the fit is also more efficient [23]. 

Furthermore, the coefficients do not change if we include one more basis element to the 

approximation matrix in the next approximation. If we truncate the number of basis elements at 

some point, such as 7, then we would expect to have a fit error about the shape and size of the 8
th

 

basis element, since this spectrum of coefficients decreases in magnitude. For example, we will 

expect to lose about 2 nm of accuracy if we truncate the last basis element from the 

approximation list, since all the digits in this list count. The null space of this approximation 

matrix is empty (a well-conditioned problem), which means there is a single solution to this 

approximation problem. The fit coefficients do not change no matter how many basis elements 

are used in the fit. For example, we carried out the fit with 15 Chebyshev polynomials, and the 

coefficient list is 
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{173.6, -314.0, 234.1, -145.5, 76.8, -34.9, 14.0, -4.9, 1.6, -0.5, 0.1, -0.03, 0.006, -0.001, 

0.0003}nm. 

By examining the above list, we expect to have a subnanometer tolerance in the fit if we had just 

used 11 basis elements, since the fit coefficient of the 12
th

 basis element is just -0.03 nm.  

Thus, although the monomial basis is practically useless after a few terms, for example 6, 

on the other hand, we can use an orthogonal basis such as Chebyshev basis to arbitrary 

accuracies significantly set by machine precision. Another useful interpretation of fitting with an 

orthogonal basis is that the sums of squares of these fit coefficients result in the mean square sag 

at that point.  

 After observing that monomial basis totally fail due to ill-conditioning of the associated 

Gram matrix, and considering the requirements of the optical interferometry testing, Forbes 

proposed two sets of orthogonal polynomials in [6]. In the following, we will summarize Forbes 

article [6] for Q-polynomials, namely Q
con

 and Q
bfs

 polynomials.  

 Instead of using the monomials that are given in Eq. (2.1), we could have replaced the 

monomials with a set of orthogonal polynomials, Q
con

’s. Then, a surface sag can be represented 

with a conic base plus the departure from the conic, such as given as Eq. (2.3), also in [6]. In this 

way, ill-conditioning of the Gram matrix is removed since the orthogonality will not allow it to 

be ill-conditioned. 
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In Eq. (2.3), the first part of the equation represents the base conic, and Dcon(u) represents the sag 

departure from the conic. All other variables are as the same as Eq. (2.1). The departure from the 

conic is represented in [6] as  

    4 2

0

.
M

con

con m m

m

D u u a Q u


   (2.4) 

Q
con

 polynomials are related to the Jacobi polynomials such that the associated Gram matrix G is 

diagonal. Under a unity weight function, the dot product between two basis elements forms the 

contents of the Gram matrix shown in [6] as follows 

    
1

8 2 2 4

0

( ) 2 ( ) ,con con con con

nm m n m nG u Q u Q u Q x Q x x dx    (2.5) 

where angle brackets denote a weighted average, and the dot product under the unit weight 

reduces the integral form given in Eq. (2.5). Since these Q
con

 polynomials are orthogonal, the 

associated Gram matrix is diagonal. The relationship between the orthogonal Q
con

 polynomials 

and Jacobi polynomials, P, is given in [6] as follows 

 
 0,4

( ) (2 1).con

m mQ x P x   (2.6) 

A few initial polynomials are {1, 6x-5, 28x
2
-42x+15 …}. In Figure 2, we show the first 7 

polynomials from this list.  
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Figure 2 The first seven orthogonal Q
con

 polynomials, adapted from [6]. 

Similar to the generation of Q
con

 orthogonal polynomials, Forbes derived orthogonal Q
bfs

 

polynomials. Two main significant differences between Q
bfs 

and Q
con

 are the use of a best-fit 

sphere as the base surface for Q
bfs

 (as opposed to a conic for Q
con

) and the orthogonalization in 

slope for Q
bfs

 as opposed to sag for Q
con

, motivated thereafter. First, aspheric surfaces are most 

cost effective when their deviation from a best fit sphere is restrained to meet the needs of 

metrology and fabrication, thus the choice of a sphere for the base surface. Moreover 

significantly, limiting the absolute maximum slope of the departure leads to enhancements in 

manufacturability of aspheres as it extends the slope range over which metrology can be 

successfully performed and reduces the sensitivity to alignment. Thus a representation such as 

Q
bfs

, where the square root of the sum of the coefficients squared represents the Root Mean 

Square (RMS) slope error is most convenient as this sum may be computed on the fly during 
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optimization of a surface in lens design. As such, the maximum slope can also be simultaneously 

constrained as the RMS and max slope errors are intimately related.  

Most fabrication shops use for the definition of the best-fit sphere the one that touches the 

surface at its axial point and around its perimeter. The best-fit sphere curvature is effectively 

calculated in [6] as  
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where f(ρmax) is the sag at the perimeter, and ρmax is the aperture radius. The sag can then be 

written [6] as  
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where the departure from the best fit sphere is defined in [6] as 
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In Eq. (2.9), u is the normalized radial coordinate. Note that by having the term u
2
(1-u

2
) appear 

in the numerator, the departure from the best fit sphere is as required zero at the edge and its 

axial point, the denominator is the cosine of the angle between the normal of the best-fit sphere 

and the optical axis. In order to construct the RMS slope of the departure along the normal from 
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the sum of squares of the coefficients, am, the slope functions, Sm(u) must be orthogonal. The 

slope functions are defined in [6] to be 

       2 2 21 .bfs

m m

d
S u u u Q u

dx
   (2.10) 

A dot product with a weighted function is defined such that the orthogonal polynomials do not 

grow unboundedly towards the ends of the interval, 
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where Sn and Sm are orthogonal slope functions and w(u) is the weight function, (u
2
(1-u

2
))

-0.5
 [6]. 

With this dot product, the first function can be taken to be a constant and normalized. Then the 

new members of the orthogonal Q
bfs

 polynomials can be made orthogonal to all the previously 

computed Q
bfs

 polynomials. An appropriate procedure for this orthogonalization is to use a 

modified Gram-Schmidt algorithm. The first few of the polynomials are  

    
1 2

1, 13 16 , 29 4 25 19 ,... .
9519

x x x
  

     
  

 (2.12) 

In Figure 3, we have shown seven of the slope orthogonal Q
bfs

 polynomials. The advantage of 

using this set of orthogonal polynomials as compared to that of monomials are described with 

examples in [6, 23, 24]. As an application example, Ma et al. recently showed that the design of 

a 28 element lithographic lens and an optimization integrated RMS slope constraint resulted in 
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an order of magnitude decrease in overall sensitivity to tilts and decenters with Q-polynomials 

[7]. Ma et al. also reported similar findings in the investigation of a high-resolution cell phone 

camera [8]. 

 

Figure 3 The first seven slope orthogonal Q
bfs

 polynomials, adapted from [6]. 

 

In order to efficiently calculate the Q-polynomials, Forbes used recurrence relations. 

Often used with orthogonal polynomials, recurrence relations provide simplicity and stability for 

the numerical calculations that would otherwise be affected by numerical cancellation and round-

off errors leading to an ill-conditioned system of equations. For a Q
con

, a standard 3-term 

recurrence relation, defined in [17], is given as 

        2 2 2 2

1 1 2 3 1 .con con con

m m m m m mQ u rv rv u Q u rv Q u     (2.13) 
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In Eq. (2.13), u is the normalized radial coordinate, 
max

u 
 , rv1m, rv2m, and rv3m are recurrence 

variables defined below in Eqs. (2.14)-(2.16), and m starts at 1. The recurrence relation is 

initialized with the first two polynomials, which are  2

0

conQ u  and  2

1

conQ u , 1 and 26 5u 

respectively. After initialization, any Q
con 

polynomial of order m can be computed with the 

recurrence relation whose variables are defined in [17] as 
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For the Q
bfs

 polynomials, however, there is no standard 3-term recurrence relation. Instead they 

satisfy an unconventional 3-term recurrence relation with a set of auxiliary polynomials, Pm(u
2
), 

[24]. The unconventional 3-term recurrence relation for Q
bfs

 polynomials is defined in [24] as 
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The auxiliary polynomials, Pm(u
2
), are a special form of Jacobi polynomials which satisfy a 

conventional 3-term recurrence relation given in [24] as 

        2 2 2 2

1 12 4 .m m mP u u P u P u     (2.18) 
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The recurrence relation in Eq. (2.18) is initialized with first two auxiliary polynomials, P0(u
2
) 

and P1(u
2
), which are 2 and 6-8u

2
, respectively. After initialization, any Pm(u

2
) of order m can be 

computed. 

 The unconventional 3-term recurrence relation given in Eq. (2.17), contains recurrence 

variables gm, hm-1, and fm+1. These variables can be found for each iteration of the recurrence 

relation progressively starting with m=2, f0=2, f1=19
0.5

/2, and g0=-0.5 and using the recursions 

given in [24] as  
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   2 2

1 21 3 .m m mf m m g h       (2.21) 

Once the variables and auxiliary polynomials defined above are computed, they can be iterated 

through the unconventional 3-term recurrence relation defined in Eq. (2.17) by first initializing 

the recurrence with the first two polynomials  2

0

bfsQ u  and  2

1

bfsQ u , which are 1 and 19
-0.5

(13-

16u
2
), respectively. All of the Q

bfs
 and Q

con
 polynomials illustrated in Figure 2 and Figure 3 are 

computed with the recurrence relations shown in this section. 
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Zernike Polynomials 

Zernike polynomials are orthogonal polynomials over the unit circle. Since their 

introduction by F. Zernike while developing the theory of phase-contrast microscopy in the 

1930s [13], Zernike polynomials have emerged as a pervasive means of describing as-fabricated 

optical surface deformations. More recently, Zernike polynomials have further emerged to 

illustrate the field dependence of the polynomial coefficients in rotationally symmetric optical 

systems [25]. In optical design and manufacturing, Zernike polynomial representations of surface 

departure, placed as an added layer on top of a conic surface, form an enabling fundamental basis 

as they are complete and orthogonal over the unit circle and, in addition, the lower-order terms 

are readily identified with the Seidel aberrations. Moreover, H.H. Hopkins wavefront aberration 

function may also be described in terms of Zernike polynomials [15]. The forms of the lower 

order Zernike polynomials and the associated optical wavefront aberrations are shown in detail 

in [26]. The Zernike polynomials provide a mapping between an optical surface under 

consideration and wavefront aberrations, central to optical system design. Overall, Zernike 

polynomials are one of the major tools in optical applications ranging from modeling optical 

surfaces to representing wavefront test data and defining residual error profiles. 

The Zernike polynomials are defined in standard form in Born and Wolf [27] as follows 
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where n>=m and m-n is even. Instead of the radial variable, ρ, a normalized variable 
max

u 
  

may be adopted. This representation shows that Zernike polynomials are composed of Fourier 

series in angular direction. The radial polynomial in explicit form is given in [27] as 
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The radial polynomial shown above in Eq. (2.23) comprises even powers of the radial variable 

scaled with factorial coefficients. Radial polynomial is of power n, which contains no powers of 

ρ less than m. Forbes in [17] presented another useful representation of the radial polynomial, 

which is first given in [28] 

    2 ,m m m

n nfR Z    (2.24) 

where 
m

nfZ is an orthogonal polynomial, which is of power nf =(n-m)/2. The Zernike polynomials 

are strongly related to orthogonal Jacobi polynomials to the extent that the radial polynomial is 

sometimes referred as one-sided Jacobi polynomial. Authors in [17, 28] depicted this relationship 

as 

      0,2 22 1 ,
mm

nf nfZ P    (2.25) 

where  0,m

nfP  is the Jacobi polynomial. This form of the radial polynomial is more concise 

compared to the explicit form given in Eq. (2.23). 
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In Boyd and Yu [29], where seven spectral methods were compared for approximations 

of surfaces, each method’s virtues and drawbacks were listed; Zernike basis is listed as one of 

the best spectral methods due to its spectral convergence and fewer number of basis elements for 

the same accuracy as compared to that of the Chebyshev-Fourier basis. Although the Zernike 

polynomials are one of the best tools for representing wavefront data and optical surfaces, which 

may both be rotational symmetric or not, high-order terms become necessary for their 

representation. A representation based upon the explicit form of the Zernike polynomials given 

above in Eq.(2.23), especially for the higher-order terms, suffers from the round-off errors 

produced by numerical cancelation. This most often leads to ill-conditioned system of equations 

for the least squares procedures for surface approximations. Author of [17] summarizes this 

situation as “It has not been generally appreciated that, in practice, this is a road to grief.” 

Thanks to the relationship with the Jacobi polynomials given in Eq.(2.25), Zernike 

polynomials satisfy a conventional 3-term recurrence relation. The standard 3-term recurrence 

relation for Zernike polynomials is given in [17] as  

  2 2 2 2

1 1 2 3 1( ) ( ) ( ),m m m

nf nf nf nf nf nfZ u rv rv u Z u rv Z u     (2.26) 

where the u represents the normalized radial coordinate as before, and rv1nf, rv2nf, and rv3nf are the 

recurrence variables. For each recurrence relation iteration, the recurrence variables need to be 

computed. They are defined in [17] as 
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with s=m+2nf. For each azimuthal order m, this recurrence relation is initialized with  2

0

mZ u  

and  2

1

mZ u , which are 1 and [(m+2)u
2
-(m+1)], respectively. The recurrence relation then can 

be iterated for any order of Zernike polynomials. Forbes states that the recurrence relations not 

only remove the round-off errors in the computation of the polynomials in explicit form, thus the 

ill-conditioning of the least squares and Gram matrix, but also they provide computational 

advantages by reducing the computational cost from a O(M
2
) process to a O(M) process [17]. In 

Figure 4, a high-order Zernike term  0 2

25Z u
 
is shown with its associated round-off errors if the 

explicit form is followed, and the remedy for round-off errors, the recurrence relation. 

 

Figure 4 (a) The round off errors present in the Zernike polynomial  0 2

25Z u  in explicit 

computation; (b) The recurrence relation removes the numerical artifacts, adapted from [17]. 
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By looking at Figure 4 above, we can clearly see that large numerical cancelations lead to the 

round off errors making the polynomial towards the edge unstable, off almost two orders of 

magnitude, and of chaotic sign. In Figure 4, we also observe that the recurrence relation 

computes the polynomial with the exact magnitude and correct oscillations.  

To make matters more explicit, we present another example in two-dimensional form 

shown in Figure 5. In Figure 5(a) a high-order Zernike with its round-off errors produced by 

numerical cancellations is shown and the accuracy in the computation is evidently off by a full 

order of magnitude. Fine scale details are not observed if the explicit form of the polynomial is 

used in the computation. However when the recurrence relation defined in Eq. (2.26) is used, the 

polynomial peaks at one at the edge of the normalized aperture and clear sine-like details are 

present in the computation of the polynomial. 

 

 

Figure 5 (a) Numerical ill-conditioning associated with  4 2

22Z u ; and recurrence relation 

correctly computes  4 2

22Z u (b). 
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The ill-conditioning associated with the explicit form of Zernike polynomials are also 

investigated by Boyd and Yu [29]. They have compared the dot product of the radial polynomial 

with itself for both the explicit power series representation and a 3-term recurrence relation. We 

have shown Figure 3 of their paper [29] for illustration of the ill-conditioning of the Zernike 

polynomials in explicit form in Figure 6. 

 

Figure 6 The effect of recurrence relations on the accuracy of the dot product of Zernike 

polynomials for increasing order, n, adapted from Boyd and Yu [29]. 

 

In Figure 6, authors presented the errors in evaluating the dot product of a radial component of 

the Zernike polynomial with itself for the increasing powers of n, while keeping the azimuthal 

variable, m=4 for both explicit and recursive evaluations. The accuracy of the dot product is lost 

as the degree of the polynomial is increased with the explicit power series computation, which is 

highly ill-conditioned and unstable for large n. On the other hand, the recurrence relation 
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provides a stable computation and preserves its accuracy even for the larger degrees of the 

polynomials. Concisely, the orthogonality of Zernike polynomials is maintained with the 

recurrence relation even for the higher degrees because of the stability of the recursion. 

 Similar to the slope orthogonal polynomials, an optical surface characterization based 

upon Zernike polynomials with the help of a best-fit sphere is represented as  
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where z(ρ,θ) represents the sag of the surface, as the surface is not necessarily symmetric, cbfs 

represents the curvature of the best fit sphere,  2m m

nu Z u  represents the standard Born and Wolf 

Zernike polynomials of order n [27], and u is the normalized radial coordinate. 

Gradient Orthogonal Q-polynomials 

Recently a new set of orthogonal polynomials over a circular aperture has been 

developed by Forbes, orthogonalized with respect to the mean square gradient over an enclosing 

circular aperture with the goal of facilitating measures of manufacturability, e.g. optical testing, 

pad polishing [12]. These polynomials will be referred to in this text as gradient-orthogonal 

Q-polynomials following from the Q-polynomial form developed earlier for rotationally 

symmetric aspheric surfaces. Since the common method to express an optical surface is to define 

the departure of the surface from its best fitting conic with an orthogonal set of polynomials, 

Forbes decided to conform to this methodology in the definition of gradient orthogonal 

Q-polynomials in order to facilitate estimates for manufacturability of these surfaces and to 
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integrate with optical design environments. Orthogonal polynomials have the advantage of 

expressing an optical surface as a spectrum of coefficients in decreasing order, which helps in 

interpreting the frequency content of an optical surface. In terms of optical manufacturing and 

testing of an optical surface, the shapes closer to a sphere are easier to produce. Thus the rate of 

change of departure of a surface along the local normal from its best fitting sphere must be 

specified and considered because the local principal curvatures are related to the derivatives of 

the departure. 

Similar to slope orthogonal Q
bfs

 polynomials, a two-dimensional freeform optical surface 

with gradient orthogonal Q-polynomials is represented in [12] as follows 
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where the departure from the best fit sphere is specified in [12] as  
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 (2.32) 

In Eq. (2.32), u represents the normalized radial coordinate as before, ρmax is the radius of the 

enclosing circular aperture,  2bfs

nQ u  represents the slope orthogonal polynomials,  2m

nQ u  

represents the gradient orthogonal Q-polynomials, cbfs represents the curvature of the best-fit 

sphere. The entity within braces corresponds to the departure of the optical surface from its best-

fit sphere along the local normals of that sphere. The first line on top in Eq. (2.32) accounts for 
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the rotationally symmetric Q
bfs

 polynomials contributions to the departure along the normal, 

whereas the nonsymmetric contributions are defined with the gradient orthogonal Q-polynomials 

in the second line of the Eq. (2.32). The departure along the local normals of the best fitting 

sphere is converted to a sag deviation along the principal axis of interest by dividing it with the 

cosine of the angle between the principal axis and the local normal of the best-fit sphere, which 

is the square root in the denominator in Eq. (2.32). For a surface description, the truncation of the 

sums of the polynomials in Eq. (2.32) is carried out by selecting a truncation point, T, which 

constrains the highest degree of the polynomials, n+2m. 

In order to construct the gradient orthogonal Q-polynomials, Forbes made use of the fact 

that the mean square gradient of the normal departure from the best-fit sphere is given by the 

sum of the squares of the coefficients of the surface description in Eq. (2.32) [12], 
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where angle brackets define the mean of the entity over the aperture. The average of a function 

over the aperture is usually found by taking a double integral of the function with an appropriate 

weight. Forbes used the following function in [12] for defining the weights, 
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Then the average over the aperture of a function, g(u,θ) is given in [12] by 
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Since the trigonometric modes for different azimuthal orders m and m’ are orthogonal by 

definition, the radial parts of the polynomials need to be orthogonalized with Gram-Schmidt 

orthogonalization, with the constraint given in Eq. (2.33). Some of the orthogonal polynomials 

are given in [12]. We present here a couple of the first gradient orthogonal Q-polynomials for 

each azimuthal order m=1, 2, 3, and n=0, 1 as below: 
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In Figure 7, we have illustrated the cosine version of the gradient orthogonal Q-polynomials for 

different m and n values. We have plotted two polynomials from the sequence for each azimuthal 

order m. It is important to note that these polynomials are generated with the constraint that their 

gradients fields are orthogonal to each other. Their gradient fields are shown in Figure 8. The 

gradient is a vector. So the gradient for different points in the aperture forms a vector field that is 

shown in Figure 8. For each azimuthal order these gradients are orthogonal to each other and for 

Figure 8, it can be verified that the dot products of the gradients shown in each row are zero. 

Also when we examine the gradient orthogonal Q-polynomials shown in Figure 7 and their 

respective gradients in Figure 8, we can observe that when there are steep slopes in the 

Q-polynomial, the gradient field has a peak, and when there are flat regions, gradients are zero. 
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Figure 7 Cosine version of the gradient orthogonal Q-polynomials (a) m=1 n=1 (b) m=1 n=3  

(c) m=5 n=0 (d) m=5 n=2, adapted from [12]. 

 

Figure 8 Gradient fields of the gradient orthogonal Q-polynomials for the given m, n pairs, 

adapted from [12]. 



34 

 

In the generation of Figures 7 and 8, we have made use of the recurrence relations defined for 

gradient orthogonal Q-polynomials in [12]. Similarly to the slope orthogonal Q
bfs

 polynomials, 

gradient orthogonal Q-polynomials satisfy an unconventional 3-term recurrence relation with the 

help of a set of auxiliary orthogonal polynomials. 

For each azimuthal order m, the auxiliary polynomials  2m

nP u  satisfy a standard 3-term 

recurrence relation given in [12] as 

  2 2 2

1 1( ) ,m m m m m m

n n n n n nP u A B u P u C P 
      (2.37) 

where the recurrence variables are defined in [12] as 
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    24 1 2 2 3 .m

nD n m n m n       (2.41) 

The recurrence relation shown in Eq. (2.37) is initialized with 
2

0 ( ) 1/ 2mP u   and n=1, and the 

first polynomial in the set, 
2

1 ( )mP u . Special handling is required for when m=1, and 
2

1 ( )mP u is 

defined to account for the special case given in [12] as follows 
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By iterating through n, any order n of the auxiliary polynomials can be generated for each 

azimuthal order m. Once auxiliary polynomials are computed then, they can be used for the 

unconventional recurrence relation for the gradient orthogonal Q-polynomials. The 

unconventional recurrence relation for the gradient orthogonal Q-polynomials is given in [12] as 
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where the recurrence variables 
m

nf  and 
m

ng  are defined in [12] as 
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The 
m

nf and 
m

ng variables can be computed to any order n for a fixed m through iteration over n, 

starting at n=1. The unconventional recurrence relation shown in Eq. (2.43) is initialized with 

 2

0
0

1 .
2

m
mQ u

f
  After 

m

nf  and 
m

ng  are computed for a fixed m, and up until the desired order 

n, then the recurrence relation defined in Eq. (2.43) is iterated over n to find the gradient 

orthogonal Q-polynomial for the fixed azimuthal order m. The details of the recurrence relations 

can be found in the appendix A of [12].  
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In order to illustrate a description of a surface with the gradient orthogonal Q-polynomials, an 

example is given by Forbes [12]. An implementation of the gradient orthogonal Q-polynomials is 

carried out in what follows in order to validate and explain in detail a characterization of an 

optical surface in terms of gradient orthogonal Q-polynomials through the step by step 

implementation of the example presented in [12] by Forbes. An off-axis section of a simple 

parabolic surface is fitted with gradient orthogonal Q-polynomials. The paraxial radius of 

curvature of the parabola is 1 20c   mm, and the center of the off- axis section of interest is 

offset 20 mm away from the optical axis (z-axis). The radius of curvature of the best-fit sphere is 

1
c
bfs

= 37.405mm [12]. The best-fit sphere is the one that touches the surface at its axial point. 

The best-fit sphere curvature is calculated by taking the mean value of the sag around the 

perimeter, 
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where the angle brackets denote the average of the sag around the perimeter over θ. The off-axis 

section of interest has a diameter of 20 mm. In Figure 9 (a) a two dimensional cross section of 

the parabola and its best-fit sphere intersecting at the point of intersection (POI) along the local 

normal are shown. The sag departure from the best-fit sphere along the local normal is presented 

in Figure 9 (b).  



37 

 

 

Figure 9 (a) 2D Cross-section for fitting with gradient orthogonal Q-polynomials; (b) The sag 

departure from the best-fit sphere, adapted from [12]. 

 

In three dimensions, the positions of the best-fit sphere and parabola are shown in Figure 10 (a). 

The red grid shows the best-fit sphere that touches the parabola at the POI, and the green section 

shows the off-axis section of interest. The green line is the normal at the POI, (20, 0,-10) mm. In 

Figure 10 (b) the sag departure from the best-fit sphere for the off-axis section of interest is 

shown. Note the similarity between Figure 10 (b) and Figure 9 (b), which is just the central line 

of the former. 
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Figure 10 (a) 3D view of the off axis section on the parabola and the best-fit sphere intersecting 

and POI, (b) the sag departure of the parabola off its best-fit sphere over the off-axis section, 

adapted from [12]. 

 After performing a least square fit of the sag shown in Figure 10 (b), we arrive at the 

coefficients for the fit. The tolerance for the fit is 1 nm. The truncation of the series expansion 

shown in Eq. (2.32) is T=8, which is m+2n=8. The slope orthogonal and gradient orthogonal 

Q-polynomials are entirely computed with the recurrence relations in order to achieve robustness 

and stability. For each azimuthal order m, the coefficients of the fitting Q-polynomials are given 

in Table 1. In Table 1, we can see that the coefficients decrease in magnitude as their order n 

decreases, and the smallest coefficient is 1 nm, which is the tolerance we have for the error 

profile.  
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Table 1 The coefficients for the gradient orthogonal Q-polynomials for fitting the sag shown in 

Figure 10 (b) [12]. 

 

m

nb

nm

 

m 

n
 

 0 1 2 3 4 5 6 7 8 

0 11509 199278 592756 -72134 6311 -274 -27 8 -1 

1 -218 -187945 16062 115 -145 17 -1   

2 6 1353 -243 5 2     

3  -35 5       

 

The residual error profile for this least square fit with the gradient orthogonal Q-polynomials is 

shown in Figure 11. It is clear from Figure 11 that the Peak to Valley (PV) error never reaches 

the tolerance level of 1nm that is set for the fit.  

 

Figure 11 Profile of the residual error for the fit with the gradient orthogonal Q-polynomials of 

the sag shown in Figure 10(b), adapted from [12]. 
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Radial Basis Functions and QR-based Algorithms 

RBFs can be seen as a general optical surface description methodology forsaking the 

orthogonality of the polynomials in exchange for much improved simplicity and geometric 

flexibility in terms of aperture shapes. As opposed to the polynomials being orthogonal only over 

specific aperture shapes, such as Zernike and Q-polynomials over the unit circle, RBFs can be 

used over any aperture shape. They are simple to implement, they do not require any mesh or 

triangulation or polygonizations. The RBF description of a surface that is developed here is 

based upon a summation of a basic function translated across the aperture of the optical element. 

Linear combinations of the translation of the basic function form the foundation of this surface 

description methodology. It is the implementation of translation as a fundamental parameter that 

is innovative and powerful for application to optical systems without rotational symmetry. RBFs 

provide comparable accuracy to polynomials, and spectral convergence might be achieved [30]. 

Furthermore, Fornberg and Zuev reported that 10 node RBF interpolation of an arctangent 

function results in the same accuracy (10
-5

) as the interpolation with the 170 Chebyshev 

polynomials provided the node locations and RBF basis functions are properly optimized [31].  

Cakmakci et al. made use of Gaussians RBFs centered uniformly over an aperture for 

designing of HWDs freeform surfaces [10]. Cakmakci and Rolland designed and implemented 

some of the first pioneering examples of compact and lightweight Head Worn Displays (HWDs) 

employing RBF freeform surfaces [32, 33, 34]. Figure 12 shows sample HWDs designed by 

Rolland and Cakmakci with RBFs. A RBF freeform surface is described as:  
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where an represents the weights in the combination, xn represents the center, x is a point in the 

aperture, ε is the shape factor, and ϕ are the basis functions. 

 

Figure 12 RBF optical surfaces in compact HWD design [32, 33]. 

We can observe that the basis functions are radial with the distance from the center,

2n
x x  with the definition shown in Eq. (2.47). An example of a freeform RBF surface 

formation is shown in Figure 13. 

 

Figure 13 Forming of an RBF surface with Gaussians, ɛ=0.19mm
-1

 over a rectangular aperture 

40 mm x 80 mm. 
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In generating Figure 13, we have made use of 100 uniformly distributed Gaussians with the 

shape parameter 0.19 mm
-1

. The coefficients an become the scaling weights for each of the 

Gaussian basis functions to form the overall approximated surface shown. In Figure 13, we can 

clearly see the individual Gaussians scaled with the weights. The overall RBF surface touches all 

of the Gaussian peaks at their center. A zero height surface in solid green is also shown in the 

center. 

Unfortunately, giving up the orthogonality constraint does not come without a price with 

RBFs. As a consequence, severe ill-conditioning may occur, especially when the shape 

parameter ε is small, which corresponds to a flattening of the basis functions. In the flat basis 

function limit, Driscoll and Fornberg showed that limiting interpolants exist and converge to the 

form of polynomials [35]. In Figure 14 (a), we show a severe ill-conditioning of the RBF 

interpolation for a shape parameter corresponding to the flat basis functions. The range of shape 

parameters for which the RBF is ill-conditioned for this surface is shown in Figure 14 (b). 

 

Figure 14 (a) Ill conditioning of RBF interpolation for ɛ =0.2 mm
-1

; (b) the range of ɛ over which 

the RBF is ill conditioned, adapted from [37].  
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One solution to remedy the ill-conditioning of RBFs is to use a QR-based algorithm. 

Fornberg et al. devised a QR approach [36] based upon the polynomial expansions of Gaussians 

in order to overcome the numerical ill-conditioning associated with RBFs. Their method expands 

the Gaussians over Chebyshev polynomials for the radial component, with a Gaussian weighting 

function along that dimension, and trigonometric functions for the angular components. A 

Gaussian over the polar coordinates is expanded by Fornberg et al. [36] as follows 
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where rn, θn represents the Gaussian center, dj,m,cj,m, and sj,m are expansion coefficients which 

depends on the shape parameter ɛ, and  ,

, ,c s

j mT r   are the final expansion functions. The cosine 

version of the expansion functions are given in [36] as 
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where T(j-2m)(r) are the standard Chebyshev polynomials, and p is 0 or 1 depending on the index 

variable j. The sine version of the expansion function is exactly the same as Eq. (2.49), except 

the cosine function is replaced with a sine function. When we analyze the expansion functions 

given in Eq. (2.49), we observe that for the small shape parameter, first term is a Gaussian that 

becomes unity, therefore leaving us with the orthogonal Chebyshev polynomials and a monomial 

term in the radial component and orthogonal trigonometric functions in the angular direction. 
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The method then applies the QR decomposition on the resulting expansion matrix in 

order to yield a well-conditioned basis. When considering the application to large shape factors 

as well, the RBF-QR method may suffer from numerical overflow as the expansion coefficients, 

dj,m start to diverge quickly depending upon ɛ and the index variable. In Figure 15 (b) such an 

overflow of expansion coefficients is seen for the range of shape parameters larger than 3. In this 

case the RBF method shown in Eq.(2.47) may be used instead, given that in this case RBFs 

mostly do not suffer from ill-conditioning. 

More recently, Fasshauer and McCourt devised another RBF-QR approach [37] similar to 

Fornberg et al.’s QR algorithm. This method works by deploying eigenfunctions of Gaussians 

that are related to Hermite polynomials. The eigenfunctions of the Gaussians are given in [37] as  
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  (2.50) 

where α is the global scale parameter, β, γn, and δ are defined in [37] as auxiliary parameters, and 

Hn-1(x) is the Hermite polynomials of order n-1. The multivariate eigenfunctions are obtained 

with a tensor product of the eigenfunctions over the different dimensions. With these 

eigenfunctions at hand, a Gaussian can be represented as a summation of eigenfunctions 
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where λk is the corresponding eigenvalue [37]. The multivariate case is obtained through a tensor 

product of eigenfunctions and a multiplication of the eigenvalues on each dimension. The 

well-conditioned basis is acquired though a QR decomposition on the resulting expansion 
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matrix. In Figure 15, we have shown a RBF-QR application for the surface shown in Figure 14 

to successfully remove the ill-conditioning of RBF interpolation. 

 

Figure 15 (a) RBF-QR successfully removes the ill-conditioning for ɛ=0.65mm
-1

; (b) RBR-QR is 

more stable and yielding more accuracy over a range of ɛ, adapted from [37]. 

Fasshauer and McCourt also suggest using a regression method with RBF-QR, which 

consists of internally truncating the data to lower rank approximations to maintain accurate 

approximants [37]. This large data reduction requires that the original surface is greatly 

oversampled. Whenever high orders of orthogonal polynomials are necessary within the use of 

the RBF-QR method, recurrence relations can be used to remove ill conditioning associated with 

these polynomials [38]. For a more detailed description of RBF-based methods, the book by 

Fasshauer contains an in-depth analysis of the RBF methods [39]. 

The RBF-QR method, while correctly removing ill conditioning associated with RBFs of 

small shape factors, has prominent aspects notable for optical designers. As the method itself 

expands the Gaussians onto polynomials, it makes use of a large number of terms in the 

expansion in order to represent the Gaussians with desired accuracies. Moreover, the Chebyshev 
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polynomials with trigonometric modes are only orthogonal over circular apertures. The 

expansion coefficients suffer overflows when the shape parameter, ɛ, becomes larger; as a 

consequence, standard RBF methods appear as a viable alternative to compensate for the 

deficiency in QR-based algorithms.  
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CHAPTER THREE: EDGE-CLUSTERED RAY GRIDS  

In this chapter, we focus on some of the important limitations to φ-polynomials, 

specifically Zernike polynomial representation of optical surfaces in describing the evolving 

freeform surface descriptions. There are two major bottlenecks in representing an optical surface 

sag or wavefront aberration function over the unit circle with φ-polynomials to the accuracies 

demanded for most stringent optics applications. One is the numerical ill-conditioning associated 

with computation of the higher-order polynomials that might be required to achieve an accurate 

representation of an as-fabricated optical surface. Forbes addressed this bottleneck with the 

development of three-term recurrence relations for Zernike polynomials that were described in 

chapter 2 [17]. Second is the substantial number of Zernike terms required, sometimes 

thousands. Prior to arriving at the proper number of terms in the representation of the optical 

surface, intermediate results with an insufficient number of coefficients exhibit high-departure 

errors at the edges. Importantly, as it is shown in this chapter, the rate of convergence to an 

adequate number of terms in the representation is sensitive to the surface sampling. The content 

of this chapter was published in our article [18]. 

Specifically in this chapter, we show that the ray grids commonly used in sampling a 

freeform surface to form a database from which to perform a φ-polynomial fit is limiting the 

efficacy of computation. We show an edge clustered fitting grid that effectively suppresses that 

edge ringing that arises as the polynomial adapts to the fully nonsymmetric features of the 

surface. The impact of this fitting grid on the reduction of edge ringing and the associated 

improvement of surface-fit quality by several orders of magnitude compared to the current fitting 
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grids are demonstrated in this chapter. We compare the effectiveness of fit with commonly used 

grid types such as 1) a set of uniform size hexagonal subgrids centered on a uniform rectangular 

grid, 2) a polar grid with a Chebyshev-based radial sample points, and 3) a uniformly random 

point fitting grid to show the significance of the edge-clustered random fitting grid on the 

accuracy of surface approximation. 

This chapter is organized as follows; in the next section a detailed explanation of the least 

squares procedure to map the freeform surface based on the sampled database created on the 

fitting grids to a Zernike polynomial representation is presented. In the succeeding section, the 

surfaces that were created to be the benchmark cases for freeform surfaces are described. In the 

following section, four fitting grids that supply the database for the least-square fitting process 

are detailed. Finally, the numerical results that show Root Mean Square (RMS) errors as a 

function of the number of Zernike polynomial coefficients for each test surface with different 

fitting grids are reported, before concluding this chapter. 

Least-squares Data-fitting to Create a Zernike Polynomial Surface 

A freeform surface over a circular aperture may be represented as a function  ,f  
 

that is a weighted sum of Zernike basis functions that form a complete and orthogonal set over 

the unit disk or circle as 
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where ck represents the coefficient associated with each Zernike polynomial. If the function is 

known beforehand, the coefficients ck could be determined by taking a double integral of the 

function multiplied with the corresponding Zernike polynomial over the circle. In optical system 

design, these surfaces are to be determined from optimization of the user selected variable 

coefficients, based on wavefronts that are initiated at different field points, by a real ray trace of 

a grid (typically uniform, rectangular) of rays in the pupil at one wavelength through a model of 

a complete optical system. In this scenario, the least squares approach given in Eq.(3.2) is used to 

find the coefficients ck associated with each Zernike polynomial at each wavelength and field 

point. Here, the goal is to represent the sag of a surface to be used as an exact representation of a 

freeform surface, to the extent possible. In Eq. (3.2) a least squares system of equations is shown 

as 

 .Ac f  (3.2) 

The matrix A is M by N, where N is the number of Zernike polynomial coefficients to be 

fit, and M is the number of sample points throughout the aperture, and M>N.  Each row 

corresponds to a sample point, where each Zernike polynomial is computed. Each column 

corresponds to a Zernike polynomial evaluated over all the points in the circular aperture. The 

coefficients ck are the weights multiplying the columns of the matrix A to match the surface sag 

vector, f. The coefficients vector, c, comprises the coefficients ck. Once the coefficients are 

determined, the approximant can be evaluated at any point across the aperture as would routinely 

occur in evaluating the impact of the surface in an overall optical system design. 
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In general a system consisting of M equations and N unknowns, where M>N, does not 

have an exact solution. This is an overdetermined system. The residual, r, can be made very 

small by a suitable choice of coefficients c, as 

 . r f Ac  (3.3) 

This residual is minimal if and only if it lies perpendicular to the range of matrix A. It then 

satisfies 

 
* 0,A r  (3.4) 

where * represents the transpose of the matrix A. Considering Eqs. (3.3) and (3.4), the set of 

coefficients that gives the minimal residual is then given by 

  
1

* * .


c A A A f  (3.5) 

Instead of Eq. (3.5), which provides the normal set of equations for the general least squares that 

may be unstable, a QR decomposition of A is taken leading to the coefficients 

  1 * ,c R Q f  (3.6) 

where Q is the orthogonal column matrix, and R is the upper triangular matrix of the QR 

decomposition. The QR based algorithm given in Eq. (3.6) to compute the solution of the least 

squares system is very stable. It is used throughout this dissertation for the solution of any least 

squares problem. In Figure 16, as an example, we have shown the 136 Zernike polynomials 

coefficients that are computed as a result of least squares fitting of a conventional rotationally 
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symmetric asphere, which is shown in Figure 17 (a) and whose description is given in Eq. (3.7). 

As can be seen in Figure 16, most of the coefficients are almost zero up to the working double 

precision limit, as expected. The non-zero valued coefficients are aligned with increasing orders 

of the Zernike polynomial terms that are affiliated with spherical aberration. Table 2 provides a 

list of the nonzero Zernike polynomial coefficients of Figure 16.  

 

Figure 16 Zernike coefficients resulting from the least squares fitting of a conventional asphere 

with 136 Zernike polynomials using the Born and Wolf ordering of terms. 

The Test Surfaces 

In order to investigate the effectiveness of different sampling distributions over the unit 

circle, we chose three different test cases for analytic surface shapes as a benchmark suite whose 

analytical expressions in mm units are given in Eqs. (3.7)-(3.9). The second two test surfaces are 

designed to exercise features of a next generation freeform surface shape that includes not only 
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conic and polynomial terms but also multi-centric additive or subtractive functions. The first test 

surface is a rotationally symmetric five-term aspheric mirror surface shown in Figure 17 (a).  

Table 2 Zernike Polynomials with significant coefficients for a rotationally symmetric 

conventional asphere 

Index n m Born & Wolf Zernike Polynomial Aberration type 

1 0 0 1 Piston 

5 2 0  2
2
1 Defocus 

13 4 0  6
4
 62

1  4th spherical aberration 

25 6 0  206
 304

122
1  6

th
 spherical aberration 

41 8 0  708
1406

 904
 202

1 8
th

 spherical aberration 

61 10 0  25210
 6308

 5606
 2104

 302
1  10

th
spherical aberration 

85 12 0  924
12
 2772

10
 3150

8
1680

6
 420

4
 42

2
 1 12

th
spherical aberration 

 

 

Figure 17 The test surfaces described in Eqs. (3.7) -(3.9) (a) A five-term conventional aspheric 

mirror; (b) A F/1 parabola with 600, 50, and 30 µm bumps; (c) Franke surface. Note that in this 

illustration the apertures were normalized to 1 in radius. 
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The second test surface is an F/1 parabolic surface with three Gaussian bumps of 

different heights added and standard deviations (as shown in Eq. (3.8)), aiming to be a general 

example of a multiple bump surface that might be encountered in optical surface manufacturing 

and illustrated in Figure 17 (b). The third test surface is a Franke [39] test function (description is 

given in Eq. (3.9)), shown in Figure 17 (c) that comes from the scattered-data approximation 

literature that is widely used to assess the approximation capabilities of different mathematical 

bases. 

Hexagonal, Chebyshev, Uniform-random and Edge-clustered Grids 

In this section, we present four different fitting grid patterns that form the database 

content for the least squares fits to yield the Zernike polynomial coefficients that are then used to 

describe the surface sag at any point on the optical surface. The resulting Zernike polynomial 

definition of the surface is re-sampled during either an analysis of the optical system 

performance or during optical system optimization. When optical surfaces are specified by a 

polynomial function in an optical system design and analysis simulation environment, the 
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predicted performance of the optical system is computed by an often sparse sample of the 

wavefront obtained by ray tracing. Typically, in a commercial raytrace code, uniform rectangular 

grids are used to form a sampled database for the wavefront at an individual wavelength and at 

an individual field point where the grid density is often in a user specified range between 64 x 64 

and 1024 x 1024. 

In this chapter, four different sampling grids are considered to create the database that is 

applied to transform the specially selected set of analytic test surfaces defined by a small number 

of coefficients to an equivalent surface, but now computed from a Zernike polynomial 

description in all cases. The four types of grids applied to the transformation process are 1) a set 

of uniform size hexagonal subgrids centered on a uniform rectangular grid (hex grid), 2) a polar 

grid with Chebyshev-based radial weighting (Cheby-polar grid), 3) a uniformly random-point 

grid (uni-random grid), and 4) an edge-clustered, random-point grid (e_clust-random grid). 

Figure 18 displays each of these grid types using approximately 450 points over the unit circle. 

The purpose of compiling and illustrating the evolution of the fit accuracy is to highlight 

the relationship between the spatial-frequency content of the test surface and the number of 

Zernike terms required. Moving forward, one of the features of the broader class of freeform 

surfaces will be an ability to introduce surface features with higher spatial-frequency content. 

With the hex grid setting, the unit circle is divided into regular hexagonal cells. The center point 

for each hexagonal cell is also included as a sample point. We have chosen a hexagonal grid 

structure for the uniform setting since a circular aperture is more uniformly covered with 

hexagons rather than rectangular cells. 
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Figure 18 Fitting grids used to demonstrate efficacy of data sampling: (a) hex grid, 

(b) Cheby-polar grid (c) uni-random grid (Halton points) (d) e_clust-random grid that clusters 

points towards the boundary over the unit circle. 

In the Cheby-polar grid, the sample points are placed along an expanding set of circles at 

the roots of the Chebyshev polynomial of degree n in the ρ direction. The points along the ρ 

direction are called Chebyshev abscissas. Therefore we call these circles Chebyshev circles. The 

radii of the circles are given as 
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The third grid type, uni-random, consists of simply randomly placed sample points. A 

point sampling function generates uniformly distributed random points across the unit square 

(see [39], Halton points). The fourth sampling method is termed e_clust-random point sampling. 

Here the radial coordinate of the random Halton points is modified with a sine function 

weighting to move them towards the boundary of the unit circle. If a point has coordinates (ρ,θ) 

then the corresponding clustered point has (sin( ), )/ 2   as its coordinates. This type of edge-

clustered sampling was previously used in the context of an RBF-QR method by Fornberg et al. 

[36]. As will be shown in the next section, it is the fourth fitting grid that has clearly 

demonstrated the best efficacy. 

Results of Efficacy of Fitting the Test Surfaces with Four Different Sampling Grids 

To study the efficacy of each grid type for determining the coefficients of a Zernike 

polynomial fit to each of the test surfaces, over an increasing set of coefficients, we have 

sampled each surface with the four different fitting grids, carried out the least squares 

approximation to create the Zernike polynomial fit and then evaluated the approximant at around 

7000 points that are on a uniform grid as would be the case in any commercial lens design 

software. Then, RMS errors in the resulting approximant to the test surface, which quantifies the 

difference between the height of the test surface computed using Eqs. (3.7)-(3.9) and the Zernike 

polynomial fit determined for each fitting grid type, are recorded in meters in order for 10
-9

 on 

the vertical scale to correspond to nanometers. For each approximation, the size of the 

approximation matrix is M by N, where N is the number of Zernike polynomials coefficients, and 

M is the number of samples over the circular aperture, where M ≈1.5N. We have chosen this ratio 
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such that the computational cost is not too high in the approximation; meanwhile the number of 

samples is sufficient to avoid working within an interpolation setting (i.e. M=N). In Chebyshev-

based clustering methods, this ratio has been studied in 1D, and optimum results are obtained 

when this ratio is around 1.5 for different bases [40]. We have analyzed if the results in our 

experiments are affected with this ratio. For example, if we increase this ratio to 2.3, and kept the 

number of samples between 25 to 4980, the observed impact is a slower rate of convergence 

when using the Cheby-polar grid and the e-clust random grid, which produce effectively the 

coincident results however with 2 or 3 orders of magnitude less accuracy, which is still much 

better than the uniform hexagonal grid or random point outcomes. In another set-up, where we 

decided to increase the number of samples across the circular aperture to an interval between 37 

to 7639 while keeping the number of basis elements the same in order to increase this ratio to 

2.3, similar to the previous experiment, we noticed that all major trends remained unchanged, 

except that the Cheby-polar grid and the e-clust random grid results coincided at the expense of 

needing extra samples compared to the results presented in what follows. For instance, we have 

reached 2e-14 level of accuracy for the Franke test case both with 7639 samples and the ratio 

being 2.3, and with 4980 samples and the ratio being 1.5. Since in our work, we are also looking 

for the most economical solutions to optical surface description, we are pleased with a ratio of 

surface samples to basis elements kept at 1.5 so the edge clustered grid has a faster spectral rate 

of convergence and the number of samples needed to reach a level of accuracy is lower than if 

using a ratio of 2.3. It is important to note that the computational time that it takes to solve a least 

square problem grows with O(M
3
), where M is the dimension of the approximation matrix, i.e. 

total number of samples. 
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Figure 19 (a) Rotationally symmetric analytic five-term asphere departure from best sphere 

based on minimum RMS; (b) rotationally symmetric analytic five-term asphere; (c) RMS error in 

Zernike polynomials approximant performance relative to the analytic function expressed in 

meters for an increasing number of Zernike coefficients with hex, uni-random, Cheby-polar, and 

e-clust random sampling grids for the asphere shown in (b). 

In Figure 19 (c), we have plotted the RMS errors in meters versus the number of sample 

points on a uniform grid for the four different fitting grids for the analytic conventional 

rotationally symmetric test surface described in Eq. (3.7), and shown in Figure 6 (a)-(b). This test 

surface is well approximated with all fitting strategies by using around 200 points. We see that 

initially, all the fitting grids achieve good RMS errors, and the geometry of the fitting grid has 

little influence on the quality of the approximation. As shown in Figure 19(c), all fitting grids 

quickly achieved sub-nanometer accuracies with less than 100 points. However, as the number of 

Zernike coefficients increases, the RMS error grows with hex grid, uni-random, and Cheby-polar 

grids, whereas the edge clustered random point set produced the most stable results with errors 

kept on the order of machine precision. As this surface is a conventional rotationally symmetric 

surface rather than a freeform surface, the number of Zernike polynomials is minimal, i.e. 66 
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terms, to reach the high accuracy levels demanded by precision or lithography applications (also 

see Figure 16). 

 

Figure 20 (b) RMS error in Zernike polynomials approximant performance relative to the 

analytic function expressed in meters for an increasing number of Zernike coefficients with hex, 

uni-random, Cheby-polar, and e-clust-random sampling grids for the F/1 parabola with 3 bumps, 

shown in (a). 

In Figure 20 (b), we illustrate the RMS errors in meters versus the total number of sample 

points on a uniform grid for the four fitting grids applied to fitting a Zernike polynomial to the 

F/1 parabola with three bumps described in Eq. (3.8). Results show that the hex grid and the uni-

random grid produce large errors in the order of 10
-5

 m to 1m, which is huge compared to the 

sizes of the bumps on the F/1 parabola spanning 30 to 600 µm. This is caused by the dominant 

effect of the oscillations on the circular boundary when there is no edge weighting. On the other 

hand, applying either of the edge clustered sampling grids, Cheby-polar or e_clust-random, 

produces exponentially decaying errors as the number of sampling points increases. However, it 

is only with the e_clust-random fitting grid that we can obtain an approximant described with 
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machine precision accuracy, as illustrated in Figure 20 (b). The Cheby-polar grid produces a 

similar RMS error trend as that of the e_clust-random grid until the number of point samples 

reaches around 3000, after which it yields less accuracy. Only the edge clustered sampling grids 

achieved sub-nanometer accuracies, while the unclustered fitting grids could not even describe 

the surface with micron accuracies. Hex grid and uni-random grid point sampling produced 

consistently poor surface approximants when fitting Zernike polynomials to intrinsically 

nonsymmetric surfaces.  

The reason that all of the fitting grids initially produce RMS errors around 5x10
-5

 m for 

the F/1 parabola with bumps is best captured in Figure 21, where we show the resulting 

approximants with the hex grid fitting (top row) and e_clust-random fitting (bottom row) grids 

while increasing the number of sample points and in proportion the number of Zernike 

polynomial coefficients for the F/1 parabola with bumps. Results show that initially the number 

of sample points used in the evaluation of the approximation, is so small that the bumps on the 

F/1 parabola are under-sampled. However, as the number of Zernike polynomial coefficients 

increases to better fit the surface (and in conjunction the number of sampling points used in the 

evaluation), the least squares process tries to match the sag values at more points with a higher 

number of Zernike polynomial terms, causing severe oscillations at the edges when distributions 

that are not edge clustered are used as seen in the upper row of Figure 21. As the lower row of 

displays in Figure 21 shows, the e_clust-random fitting grid successfully describes the surface 

without significant edge ringing, therefore producing much better approximants than a sampling 

without edge clustering. 
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Figure 21 Comparison of the approximants obtained with two different fitting grids for the F/1 

parabola with bumps; Top row: Approximant with uni-hex grid sampling with (a) 25 samples, 

(b) 204 samples, (c) 1990 samples, (d) 4980 samples; Bottom row: Approximant with e_clust-

random sampling with (e) 25 samples, (f) 204 samples, (g) 1990 samples, and (h) 4980 samples. 

The reason the edge clustered fitting grids produce better surface approximants can be 

explained by their success in reducing the boundary errors over the unit circle. In the same way 

that adjusting an equispaced grid to Chebyshev points is the remedy for the Runge type 

oscillations that result in using equispaced points in 1D, the edge clustered fitting grids act as a 

remedy for φ-polynomials edge ringing for surface shapes with offset localized structured such 

as seen with multi-centric RBFs [18]. 
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Figure 22 (b) Zernike polynomial fit RMS error expressed in meters as a function of coefficient 

order with hex, uni-random, Cheby-polar, and e_clust-random fitting grids for the freeform 

Franke surface (Eq. (3.9)) shown in (a). 

In Figure 22(b), we have plotted the RMS errors in Zernike approximants compared to 

the analytic equation as the number of Zernike coefficients increases for the Franke surface 

(Eq. (3.9)), which is selected to be a stressing example of the important characteristics of a next 

generation optical freeform surface. Similar to the results presented for the F/1 parabola with 

bumps, edge clustered fitting grids produced excellent approximants with errors decaying 

exponentially with respect to the number of sample points used in the least squares 

approximation. Two to nine orders of magnitude improvement over the unweighted fitted grids 

was achieved. The reason the unweighted fitting grids produce large RMS errors as the number 

of Zernike polynomial coefficients is increased is because the edge oscillations must be 

controlled with edge weighting or clustering. Only the edge clustered fitting grids achieve sub-

nanometer accuracy levels (i.e. 10
-10

 m) demanded by lithography applications. Cheby-polar 

fitting grids produced similar results to e_clust-random fitting grids until around 2800 points. 
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After this point, Cheby-polar fitting grids produce approximants with growing RMS errors. The 

stable and exponentially decaying errors produced by the edge clustered sampling make this 

method the method of choice for fitting Zernike polynomials to freeform optics surfaces and is 

the key result of this chapter. 

In order to analyze the behavior change between the two different edge clustering grids 

(namely Cheby-polar and e-clust-random grids) that is observed in both Figures 20 (b) and 22(b), 

(see green and black lines at and after 2834 sample points), we have divided the unit circle into 3 

parts. In each region in Figure 23, we determined the percentage of the number of points per unit 

area and reported that metric for two edge clustering grids types in Table 3.  

 

Figure 23 Three regions on the unit circle. 

As the degree of the Zernike polynomial increases in order to better fit the surface shown 

in Figure 22 (a), the variations on the form of the polynomial are increased towards the edge, see 

for example Figure 4 (b) in chapter 2. In order to account for these variations for the Zernike 

polynomials towards the edge, and decouple the basis elements - especially higher orders - 

increased sampling need to occur in the outermost region, R3, not in R1. Only e_clust-random 
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grid provide this requirement and therefore stably reduce the error as the polynomial order 

increases, see Figures 20 (b) and 22 (b). 

 Table 3 Percentage of the number of points per unit area for the two edge clustering grids  

S
am

p
le

s 
 

Chebyshev polar grid Edge-clustered random grid 

R1 

(%) 

R2 

(%) 

R3 

(%) 

RMS 

(m) 

R1 

(%) 

R2 

(%) 

R3 

(%) 

RMS 

(m) 

745 15.5 10.2 10.7 4.4e-7 4.7 5.6 15.7 4.6e-7 

1990 18.2 9.1 10.9 2.8e-9 4.7 5.7 15.7 2.5e-9 

2834 19.2 8.9 10.7 1.7e-10 4.7 5.6 15.6 1.4e-10 

3832 22.6 7.5 10.9 8.7e-9 4.7 5.7 15.7 3.0e-12 

4980 20.0 8.6 10.9 1.8e-8 4.7 5.6 15.6 4.5e-14 

 

In the process of optical design, due to the number of parameters, fields, wavelengths, 

etc. the number of sample points within any one ray set used in evaluating the metric for 

optimization is minimal, often less than 100. However, once a solution is established, the 

analysis of the performance is typically conducted with hundreds of thousands if not millions of 

ray samples per surface. In the context of the process being pursued here, the Zernike 

coefficients that characterize the surface are computed with a relatively sparse optimization grid. 

The result is that there is a spatial frequency content on the wavefront that will not typically be 

sampled during the optimization. This gap may result in a poor match to the wavefront by the 

surface model. It is necessary in fact, for the surfaces shown here, especially the parabola with a 
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series of three bumps and the Franke surface, to greatly exceed the number of samples that can 

be applied in a typical lens design software if the distinguishing features are to be picked up in 

the surface models as revealed by the high resolution analysis that is readily conducted in a ray 

tracing code. Additionally, as compiled here using a standalone code, the number of Zernike 

terms that needs to be available in the optimization procedure exceeds by thousands the 

parameterization sets available during an optical design, which currently rarely exceeds 100. 

Conclusion 

In this chapter, we have investigated the effect of edge clustering points towards the 

boundary of the unit circle when fitting Zernike polynomials to a general surface shape that 

represents a family of freeform optical surfaces. We demonstrated that these grids are effective 

and that the edge-clustered random-fitting grid is particularly effective. We have also compared 

this fitting grid with a hexagonal sub-grid spaced on uniform centers and a simple random fitting 

grid for optical surface approximation with Zernike polynomials. We have observed that edge-

clustered fitting grids produced very good approximants, and improved the approximation 

performance by several orders of magnitude compared to that of fitting grids without edge 

clustering. For rotationally symmetric aspheres, it turns out that sampling grid do not have a 

particular significance, as all the fitting grids produced very good approximants with a small 

number of Zernike terms and samples. For highly varying freeform surfaces (e.g. surfaces with 

no specific symmetry) like Franke or surfaces with mid spatial frequencies, only the edge-

clustered sampling method achieved sub-nanometer accuracies. Since this work was completed, 

Forbes used this finding to fit mid spatial frequency defects on optical surfaces with a Cheby-



66 

 

polar like fitting grid, however points were displaced from the original “spoke structure” to 

simulate some equivalence to the randomness similar to edge clustered fitting grid shown in this 

work [41]. The RMS errors produced by edge clustered fitting grids stably and exponentially 

decreased as the number of point samples was gradually increased for freeform optical surfaces. 

In the test cases considered, edge clustered random sampling has achieved in 2D what a 

Chebyshev-radial spaced sample achieves in 1D in removing the impact of edge ringing. 
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CHAPTER FOUR: COMPARISON OF FREEFORM POLYNOMIALS 

In this chapter, we have comparatively assessed optical surface characterization with two 

different φ-polynomials, namely the widely used Zernike polynomials and the recently 

introduced gradient orthogonal Q-polynomials in terms of the least squares approximation. 

Various forms of polynomials for describing freeform optical surfaces exist in optical design and 

to support fabrication. Among the several forms of optical surface description, a popular method 

is to add orthogonal polynomials onto a conic section; the latter can equally be a sphere if the 

conicity is zero. In order to achieve numerical robustness when higher-order polynomials are 

utilized to describe freeform surfaces, recurrence relations are a key enabler. A detailed review 

of φ-polynomials (both Zernike and gradient orthogonal Q-polynomials) and their associated 

recurrence relations are given in chapter 2 of this dissertation. Results shown in this chapter 

establish the equivalence of both sets of φ-polynomials in accurately describing freeform 

surfaces with clustered sampling grids in terms of least squares. Quantifying the accuracy of 

these two freeform surface descriptions is a critical step in the future application of these tools in 

both advanced optical system design and optical fabrication. 

This chapter is organized as follows: In the next section, two benchmark test cases based 

on an F/1 parabolic surface with generic asymmetric features are described along with two 

different ray-based sampling strategies. In the succeeding section, we show the results of 

performing least-squares fits of these analytical surface test cases by utilizing the two sets of 

φ-polynomials with two different sampling grids. Prior to concluding this chapter, the effect of 
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heights of the nonsymmetric features on the Root Mean Square (RMS) fit residual is 

investigated. The major content of this chapter is published in our article [21]. 

Ray-grids for Data-site Sampling and Test Cases 

In chapter 2, we have shown some examples of sag representation with the recently 

introduced gradient orthogonal Q-polynomials and Zernike polynomials (see Eq. (2.30), Eq. 

(2.31), and Eq. (2.32)). In order to achieve numerical robustness and for the removal of the ill-

conditioning associated with the higher order φ-polynomials, throughout this chapter the 

recurrence relations are utilized, which are given in chapter 2. A brief review of surface 

descriptions with φ-polynomials is provided in chapter 2.  

We showed previously that, in the context of fitting a set of polynomials to a continuous 

analytical surface, edge clustered fitting grids demonstrate the best efficacy in fitting optical 

surfaces in a least-squares sense [18]. Thus, we will make use of an edge clustered fitting grid in 

our performance evaluations. Edge clustered sampling is created by first generating random 

Halton points and then applying a sine function on the radial coordinate to move these points 

towards the boundary of the aperture, as described in chapter 3. 

To continue to illustrate the effectiveness of edge clustered ray grids and to enable a 

comparison with earlier evaluations, we also provide results using hexagonal subgrids centered 

on a uniform rectangular grid. We have sampled the optical surface with hexagonal subgrids 

rather than rectangular subgrids as the circular aperture is more uniformly covered with this 

strategy. In Figure 24, we have illustrated two examples of the sample grids that will be used in 

the φ-polynomials comparisons. Throughout this dissertation, when comparisons are made 
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between two sets of φ-polynomials with two different sampling grids, we make sure that we use 

about the same number of samples on each of these grids. The number of samples on each grid is 

empirically determined as approximately 9*k
2
, where k is the highest order of the φ-polynomials 

in the least square fit.  

 

Figure 24 Two types of ray-grids used for φ-polynomials fitting with about 900 rays in this 

figure: (a) Hexagonal uniform (b) Edge clustered. 

In order to investigate the effectiveness of the gradient-orthogonal Q-polynomials versus 

the Zernike polynomials using the ray grids given in Figure 24, we have formed a benchmark 

test suite consisting of analytical functions. The first test case is an F/1 parabola with a Gaussian 

bump away from the edge of the aperture. The second test case is again the same F/1 parabola 

with the Gaussian bump placed now at the edge of the parabola. The aperture diameter for the 

F/1 parabola is chosen to be 80 mm. The Gaussian bump is 12.5 µm in height and has a 
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2.357 mm standard deviation. The analytical definitions for the test cases are given in Eq. (4.1) 

and Eq. (4.2) as 
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where f1 represents the F/1 parabola with the Gaussian bump away from the edge, and f2 

represents the F/1 parabola with the Gaussian bump near the edge. To illustrate these two test 

cases, we plotted the sag departure from a best-fit sphere in Figure 25. 

 

 Figure 25 Sag departure from the best fit sphere (bfs) : (a) f1-bfs, F/1 parabola with the Gaussian 

bump away from the edge (b) f2-bfs, F/1 parabola with the Gaussian bump near the edge of the 

aperture. 

Figure 25 (a) illustrates the sag departure of the first test case that is an 80 mm diameter 

aperture F/1 parabola with the Gaussian bump away from the edge of the aperture. Figure 25 (b) 

shows the sag departure of the second test case that is an 80 mm diameter aperture F/1 parabola 

with the Gaussian bump near the edge of the aperture. 
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Similar to the Eq. (4.2) in [24], the curvature of the best-fit sphere (bfs) is computed as 
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where the angle brackets denote the average of the sag at the edge of the aperture over θ. 

Because for freeform surfaces the sag also depends upon θ, correctly computing the curvature of 

the best-fit sphere has a profound effect on the computations associated with fitting of surfaces 

with gradient-orthogonal Q-polynomials, especially when the surface to be fitted has asymmetric 

components at the edge of the aperture. 

Numerical Simulations for the Efficacy of Zernike versus Q-polynomials 

We investigated the fidelity of creating freeform optical surface descriptions based on the 

gradient-orthogonal Q-polynomials and the Zernike polynomials with data points sampled on the 

hexagonal uniform and the edge clustered grids. We have carried out the least squares fits with 

the increasing numbers of basis elements (coefficients). The relation between the number of 

samples and the number of basis elements was established empirically as 9*k
2
, where k is the 

highest order of the polynomial in the polynomial fit. Truncation of the sums is carried out based 

upon the condition k<T, for some given integer T, and k equals m+2n for the gradient-orthogonal 

Q-polynomials. 

In Figure 26, we illustrated the effect of sampling on the fidelity of the surface 

representation with both sets of φ-polynomials for the f1 test case. We found that both sets of 

φ-polynomials performed about identically for this test case. We have made use of 
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approximately 54845 samples and 3320 elements from either set of φ-polynomials. We have 

seen that for the f1 test case, which is the 80 mm diameter F/1 parabola with a Gaussian bump 

placed away from the edge of the aperture, hexagonal uniform ray grids yield for both 

φ-polynomials a Peak to Valley (PV) fit residual around ~10 nm (see Figure 26 (a)). Edge 

clustered ray grids result in a remarkable improvement on the overall fit residual profile, as 

shown in Figure 26 (b). Both sets of the φ-polynomials produced PV fit residuals on the order of 

sub-nanometers with edge clustered ray grids. 

 

Figure 26 Sag fit residual profiles for f1 ; the F/1 parabola with a Gaussian bump away from the 

edge of the aperture with T=80; (a) fit residual with hexagonal uniform sampling, (b) fit residual 

with edge clustered sampling. The gradient-orthogonal Q-polynomial and the Zernike 

polynomial representations give indistinguishable results, so only one is shown. 

In Figure 27, we have displayed the effect on the fit residual for test case f2, when the 

Gaussian bump is placed near the edge of the aperture. Also in this case, the fit residuals for 

gradient-orthogonal Q-polynomials and Zernike polynomials are indistinguishable. In 

Figure 27 (a), the hexagonal uniform ray grid is used to create samples for the least squares 

fitting, and we observe that the PV fit residuals are around ~4 nm with the gradient-orthogonal 

Q-polynomials and Zernike polynomials. The outcome is more compelling with the edge 
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clustered ray grid, which increases the density of samples towards the edge of the aperture. As 

seen in our earlier work [18], this ray grid strategy significantly reduces the PV fit residuals, 

which is observed in Figure 27 (b) as both φ-polynomial sets produced a sub-nanometer fit 

residual with the edge clustered sampling grid.  

 

Figure 27 Sag fit residual profiles for f2; the F/1 parabola with Gaussian bump near the aperture 

edge with T=80; (a) fit residual with hexagonal uniform sampling, (b) fit residual with edge 

clustered sampling. Zernike and gradient-orthogonal Q-polynomials perform similarly, so only 

one is shown. 

In Figure 28, we have compared RMS fit residuals resulting in fitting test cases f1 and f2 

with hexagonal uniform and edge clustered ray grids with the two sets φ-polynomials. We have 

gradually increased the degree of the Zernike polynomials and the gradient-orthogonal 

Q-polynomials as the truncation parameter in the sum is moved from T=5 to T=80 in steps of 10. 

As the number of basis elements goes up from 19 to 3319, the number of data samples in the fit 

increases from 226 to 54845. As stated previously [18], we observe that the edge clustered 

sampling consistently produces better fits when compared to the hexagonal uniform sampling as 

demonstrated by the solid black lines that are compared to the solid or dashed blue lines in 

Figure 28 (a) and Figure 28 (b). We have also shown that gradient-orthogonal Q-polynomials 
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and Zernike polynomials produced effectively exact representations with edge clustered 

sampling for both the less stressing f1 case, with the bump away from the edge, and the more 

stressing f2 case, with the bump near the edge of the aperture as marked with solid black lines in 

Figure 28 (a) and Figure 28 (b). 

 

Figure 28 Comparing Zernike and gradient-orthogonal Q-polynomials as freeform surface 

representations. The fidelity is investigated with both edge clustered and hexagonal uniform 

sampling in the case of fitting analytical functions with these surface descriptions; the evolution 

of the RMS fit residual vs. the number of coefficients for the test case (a) f1, F/1 parabola with 

the bump away from the edge, (b) f2, F/1 parabola with the bump at the edge. 

In the case of fitting an analytical surface using the hexagonal uniform sampling, which 

is known to be less efficient, the gradient-orthogonal Q-polynomials fit residuals are slightly 

more accurate than that of the Zernike polynomials for both the f1 and the f2 test cases, as shown 

by the dash-dot blue curves in Figure 28 (a) and Figure 28 (b). Zernike polynomials and 

gradient-orthogonal Q-polynomials combined with edge clustered sampling consistently 

produced significantly better fits as the maximum degree of the polynomial is increased from 
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T=5 to T=80 (see the black solid curves in Figure 28 (a) and Figure 28 (b)). For both test cases f1 

and f2, the φ-polynomials fits reached the required subnanometer levels (see point B in 

Figure 28 (a) and Figure 28 (b)). The gradient-orthogonal Q-polynomials performed as well as 

Zernike polynomials in achieving the accuracy levels for the optical surface descriptions, as 

illustrated here test cases f1 and f2. 

The Effect of Irregular Surface Features Height on -polynomials Surface Description Efficacy 

We expanded the test case study given in Figure 28 to quantify the fit residuals for 

Zernike polynomials and gradient-orthogonal Q-polynomials by systematically doubling the 

height of the Gaussian bump. We have quantified the minimal RMS fit residuals in the fits for 

when the truncation point in the expansion is determined by T=80, with hexagonal uniform and 

edge clustered sampling with both φ-polynomials sets for the height of the bump set at 12.5µm, 

25µm, 50µm, and 100µm as shown in Figure 29. 

In Figure 29, dash-dot lines show the RMS fit residuals in the least-squares 

approximations with gradient orthogonal Q-polynomials whereas solid lines illustrate the 

performance of the Zernike polynomials. Results show that there is a linear relationship between 

the minimum RMS fit residual and the height of the bump. Specifically, in Figure 29 (a) that 

addressed a bump away from the edge of the aperture (i.e. case f1) Point A shows the RMS fit 

residual when the height of the bump is 12.5 µm using Zernike polynomials with edge clustered 

sampling. Point B shows the RMS fit residual when the height of the bump is 100 µm. The RMS 

fit residual increased from 4.5x10
-12

 m to 3.6x10
-11

 m that is 8 times. An equivalent relation is 

also found for the Points C and D. Moreover, we observe that with edge clustered sampling both 
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φ-polynomials produced two orders of magnitude better RMS fit residuals when compared with 

either φ-polynomials performance with hexagonal uniform sampling (see blue and black curves 

in Figure 29). The Point A records a RMS fit residual 4.5x10
-12

 m; Point C shows 1.8x10
-10 

m 

RMS fit residual. 

 

Figure 29 Zernike (solid lines) and gradient-orthogonal Q-polynomials (dash lines) surface 

approximation performance over a range of heights of the rotationally nonsymmetric bump with 

hexagonal uniform and edge clustered sampling for the test cases (a) f1, (b) f2. 

 

The blue curves show RMS fit residuals in the approximants when hexagonal uniform 

sampling is used for both sets of φ-polynomials. In Figure 29 (a) the blue dash-dot curve is 

slightly lower than the solid blue line indicating the gradient-orthogonal Q-polynomials 

performed slightly better, while not significantly, with hexagonal uniform sampling for the test 

case f1. Similarly for Figure 29 (b), the Zernike polynomials performed slightly better, while not 
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significantly, with hexagonal uniform sampling for the test case f2 (see blue lines in 

Figure 29 (b)). Similarly the black curves demonstrate the improved performance with edge 

clustered sampling. We can see for both Figure 29 (a) and Figure 29 (b) that the black dash-dot 

line and the black solid line coincide, which suggest that with edge clustered sampling, Zernike 

polynomial and gradient-orthogonal Q-polynomials provide fits with identical fidelity for the test 

cases f1 and f2. 

Conclusion 

In this chapter we have seen that in order to achieve an acceptable φ-polynomial fit to an 

asymmetric localized feature any single additive polynomial requires many terms, on the order of 

thousands, if subnanometer accuracy is required, as is the case in precision optics. We have also 

observed that Zernike polynomials placed additively on a base conic section and 

gradient-orthogonal Q-polynomials with a best fit sphere base are able to equally represent the 

nonsymmetric features of the surface no matter where these features might be positioned over a 

significant range of feature height and slope. One crucial step working with Q-polynomials is to 

accurately calculate the curvature of the best fit sphere, which later on affects the sag 

computation significantly (see Eqs. (4.3) and (2.32)). Also, in both cases, the use of recurrence 

formula is a key enabler to nanometer accuracy when representing high frequency features in an 

aperture. 

In all the analyses carried out, we have used least-squares methods in arriving at the 

coefficients of fit. In a real optical design environment, these approximations are the results of 

optimization procedures involving not only the polynomials, but also their first and second 
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derivatives. Hence a next level of comparison takes into account the first and second derivatives 

of the polynomials under evaluation. Also, the offset Gaussian bump may be considered as a 

possible extreme feature to fall beyond a departure that would be seen in a freeform optical 

design for an imaging application. In addition, while representing a surface with thousands of 

coefficients such as given in this paper currently exceeds the capabilities of commercial optical 

design optimization, it does not exceed their analysis. An alternative to thousands of terms for 

representing a generic asymmetric feature, while perhaps not as narrow as in this chapter, is to 

consider using a number (tens) of multi-centric additive bases. An initial evaluation of this 

approach is found in [10]. 

The capability to fabricate rotationally nonsymmetric surfaces for imaging applications is 

a new capability for the industry and as a result there are currently few examples. However, the 

generation of aspheric surfaces with small tool grinding and polishing provides an early set of 

surface examples that often suffer from significant mid spatial frequencies. Also bump 

generation with small tools polishing may occur during the fabrication process. For this study, 

the stressing asymmetric surface was used to establish that there are no limits to the application 

of the results in the context of current or future rotationally nonsymmetric surfaces in image 

forming optical systems. The offset Gaussian bump may be considered as a possible feature 

during fabrication if considered as an isolated bump. However, there is some anticipation that the 

Gaussian bump used in this simulation could represent a limiting spatial frequency in the 

aperture, but, as part of an imaging surface departure, it would be expected that there may be tens 

of, or perhaps even hundreds of features with this limiting geometry on a future surface. Future 

work will investigate the application of the tools developed under this work to fitting mid spatial 
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frequencies on measured surface data with the goal to set tolerances for fabrication. The 

application of freeform surfaces in advanced optical system design also requires establishing 

quantitatively the equivalence between various freeform surface descriptions.  

Finally we can clearly observe with all the experiments carried out in this chapter that it 

is not so much the type of the φ-polynomials but the type of the sampling grid that dominates the 

magnitude of the errors in RMS fit residuals, thus the level of accuracy obtained through the 

fitting process. 
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CHAPTER FIVE: HYBRID RADIAL BASIS FUNCTIONS AND LOCAL 

φ-POLYNOMIALS METHOD 

In this chapter, we develop an efficient and accurate localized hybrid optical surface 

characterization method combining in one implementation assets of both Radial Basis Functions 

(RBFs) and φ-polynomials, in another implementation RBFs are locally deployed instead of 

φ-polynomials with a locally varying spatial shape optimization. This local description method is 

based upon the partitioning of an aperture into smaller subapertures as opposed to a global 

description. The new method not only has a striking significance in the reduction of the order of 

φ-polynomials terms used for the description of optical surfaces but also it is applicable to any 

overall shaped aperture. Initial results show that the proposed method yields sub-nanometer 

accuracy with as few as 25 terms of local φ-polynomials used in each subaperture. Sub-

nanometer accuracy is required for the stringent conditions of lithography and related precision 

optics applications. Less stringent conditions are also shown to be achieved with as few as 16 

terms φ-polynomials deployed in each subaperture. The content for this chapter was recently 

published in [19]. 

The method is based upon the partition of unity principle employing RBFs as weights for 

local partitions, and φ-polynomials or RBFs as local surface descriptors for freeform optical 

surfaces. The concept of local shape descriptors is not new as it is central to differential 

geometry [42]. In optics, it has been adopted in surface metrology using curvature sensing [43, 

44] and in some cases combined with wavefront reconstruction [45, 46], and stitching 

interferometry [47]. 
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Because the state of the art optical surface description methodologies are largely covered 

in chapter 2, we skipped the review of RBFs and orthogonal φ-polynomials in this chapter. This 

chapter starts with the description of the localized hybrid RBF and φ-polynomials method. In the 

following section, we describe another implementation of this method with local Gaussian RBFs 

with local shape optimization. In the section preceding the conclusion, the numerical 

experiments showing the details of deploying only low-order φ-polynomials to describe a fairly 

complicated freeform surface are described. The last section concludes this chapter. 

Hybrid RBF and Local φ-polynomials Method 

Inspired by the intuitive notion of local shape descriptions for freeform surface together 

with some of the fundamental ideas associated with RBF-QR presented by Fornberg et al. [36] 

and Fasshauer and McCourt [37], we have developed a hybrid method employing local 

φ-polynomials as orthogonal polynomials for local surface description and combining the local 

descriptions based upon these polynomials over circular subapertures with Wendland’s 

compactly supported RBFs (CSRBFs) as a global description. In this form, this method may be 

applied to any overall shaped aperture. Conceptually, the method can be thought of as follows. 

Instead of translating RBFs with their associated centers over the aperture of the optical 

elements, we translate the coordinate origin of the φ–polynomials to the centers of the local 

circular subapertures. Then we carry out a polynomial regression fit over the local subapertures. 

The contributions of each subaperture are combined with Wendland’s CSRBFs that serve as the 

weights in order to render the overall surface description. Wendland’s CSRBFs have been used 

as weights for the local partitions in the context of RBF interpolation techniques [39]. We 
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summarize here a partition unity method [39] with a local φ-polynomials approximation for 

freeform optics surfaces. It is important to note that accuracy obtained over the local 

subapertures is carried over to the global description as for any other partition of unity method. 

The algorithm associated with this hybrid method for the description of the freeform surfaces can 

be summarized in four steps: 

– Step 1: Decompose the domain into smaller circular subapertures and record the centers and 

radii of the subapertures. Depending upon the required accuracy over the overall fit, the radii of 

the subapertures can be adjusted. Sample domain decomposition is shown in Figure 30. 

 

Figure 30 Domain decomposition with circular subapertures of radius 1.33 mm over a 4 mm x 

4 mm square aperture. 

– Step 2: For each point where the global fit is evaluated, find the subapertures that it belongs to 

and build a weight matrix. The weight matrix is built to identify the contributions of local fits to 

the overall global fit. The point may be located at the intersection of the more than one 

overlapping subapertures. In this case, each intersecting subaperture will contribute to the overall 

surface at the points in the intersection according to the weights defined in this step. The radii of 

the subapertures match the compact support of Wendland’s CSRBFs. Wendland’s CSRBFs are 
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utilized for the weight assignment as they provide sparse band-diagonal approximation matrices 

through omitting the points falling beyond their compact support. This approach makes the 

method even more local as compared to that of Gaussians, because Gaussians include a tail 

section spanning the whole aperture. This is especially useful when large sets of sampling and 

evaluation points are used. A Wendland’s C
2
 CSRBF, as a weight function, is given as [39] 

    
4

( , ) 1 4 1 ,w  


    
i ii

x x x x x x  (5.1) 

where xi denotes the center of the subaperture that the point x falls within. The ɛ is the shape 

parameter as before. The subscript after the first term shows that there is a cut-off after the 

compact support in the function declaration. In Figure 31, several Wendland’s CSRBFs that 

might be used as weight functions are shown. 

 

Figure 31 Wendland’s CSRBFs for weight assignment, adapted [39]. 
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Weights are assigned after they are normalized according to the Shepard method, a 

moving least-squares method, such that contributions from multiple subapertures add up to unity. 

The Shepard method is formulated in [39] as  
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where xi denotes the center of the subaperture that the point x falls within, f(xi) represents the 

contribution of i
th

 intersecting subaperture (local approximation in the i
th

 subaperture), and s(x) is 

the final outcome at point x, i.e. global approximation.  

– Step 3: For each subaperture, carry out a local least squares approximation with local 

φ-polynomials shifted to the centers of subapertures. A least-squares matrix can be formed with 

local samples within each subaperture and as many φ-polynomials as desired with the recurrence 

relations. We established, for example, that a small subset of FRINGE Zernike polynomials 

provides subnanometer accuracies within each subaperture. To speed up the determination of 

sample and evaluation points within each subaperture, a kd-tree data structure [48] is utilized for 

all sample and evaluation points separately after the domain decomposition step. Local samples 

and local evaluation points are found by querying the kd-trees for each subaperture. In this way, 

we can locate the points inside the subaperture in a fast and efficient manner. The algorithm 

complexity reduces from an O (N) procedure to an O [log (N)] process. 
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– Step 4: By combining the local surface descriptions computed in step 3 with the normalized 

weights computed in step 2, stitch the overall surface description. With the weights and local 

surface descriptions computed in previous steps, this step reduces to accumulating weighted 

local results. 

Hybrid RBFs and Local RBFs with Locally Shape Optimization  

A variation of the hybrid RBF and local φ-polynomials method is obtained by using 

Gaussian RBFs instead of local φ-polynomials for the local surface descriptions with locally 

optimized shape parameters in subapertures. Step 3 of the algorithm presented in previous 

section is modified to approximate the surface with local Gaussian RBFs in place of local 

φ-polynomials. The contribution of this method is its capability to allow utilizing a locally 

varying spatial shape parameter assigned to the each subaperture as opposed to having a unique 

shape parameter used in global RBF approximations. We have optimized this contiguously 

varying spatial shape parameter for each subaperture in order to yield minimum least square 

approximation errors. After the local samples and local evaluation points for each subaperture 

are determined through querying the kd-trees, a local least squares approximation matrix is 

formed with these local samples and as many as local Gaussian RBFs as required. In our 

implementations, local Gaussian RBF centers are created uniformly across each subaperture in 

addition to sample and evaluation points. When a subaperture is at the intersection with the 

aperture boundary, then Gaussians RBF centers are shifted into the part of the subaperture 

located inside the aperture.  
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The local approximations with the Gaussian RBFs with uniformly located centers is 

optimized over the shape parameter wi to achieve best accuracy over each subaperture. An 

approximation with locally optimized Gaussian RBFs can be formalized as  

  2

2
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( ) , ,
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i n n

n

f a R 


  x x x x  (5.3) 

where an represents the weights in the approximation, xn represents the centers and x a point in 

the subaperture, wi is the shape factor constant across the subaperture, and ϕ are the local RBFs 

within the subaperture. A brute force approach is adapted for shape parameter optimization 

within the subapertures. For each subaperture, the shape parameter interval is divided into 

equally spaced points and for each shape parameter an approximation is carried out within the 

subaperture. The approximation which minimizes the least square error is selected as the best 

shape parameter value for that subaperture. This way locally varying spatial shape parameters are 

optimized for each and every subaperture. An illustration of this method with 16 subapertures 

and 16 different optimized shape parameters is shown in Figure 32. 

 

Figure 32 Locally optimized shape parameters for hybrid RBFs. 
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After optimizing shape parameters for the best RBF approximation in each subaperture, 

the local approximations are combined with the weights calculated according to the CSRBFs and 

Shepard’s method. The global surface description is the accumulation of the weighted local 

approximations as before. 

Numerical Experiments for Hybrid RBF and Local φ-polynomials Method 

In this section, we describe an application of the hybrid RBF and local φ-polynomials 

method, specifically Zernike polynomials, for the description of an extremely asymmetric 

surface. The surface is chosen to be a stressing example of departure from rotational symmetry. 

It does, however, represent a descriptive case for spatial frequency. The surface is an F/1 

parabola over an 80 mm × 80 mm rectangular domain with several 12.5 μm – 100 μm isotropic 

and anisotropic bumps distributed over the aperture. An analytical description of the surface is 

given as follows 
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Figure 33 The F/1 Parabola where 12.5 μm – 100 μm bumps may be visualized in Figure 34. 

In Figure 33 we show the test function, the F/1 parabola with several bumps over the 

rectangular aperture, to mainly show the overall sag of the surface. In Figure 34, several isolated 

bumps on the surface are shown. There are several radially symmetric and anisotropic bumps of 

different heights in the range between 12.5 μm and 100 μm. We have sampled the representative 

freeform surface with 600 × 600 uniform samples, and evaluated the overall fit with 120 × 120 

uniform points.  

 

Figure 34 12.5 µm to 100 µm isotropic and anisotropic bumps on F/1 parabola over an 80 mm x 

80 mm square aperture. 
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The shape parameter for the weight function, which is a Wendland’s C
2
 CSRBF, is 

1.25 mm
-1

. As for the local approximations, we have used 36 FRINGE Zernike polynomials. We 

have decomposed the domain with 100 × 100 overlapping circular subapertures. The radius of 

each subaperture is 800 μm. In Figure 35, we show a subregion of the aperture that is located 

within -2 mm to 2 mm. The decomposition of the subregion with circular subapertures of radii 

800 µm is also exhibited in Figure 35. We can observe the uniform distribution of samples (blue 

points) along with a grid of uniform evaluation points (red points). As shown in chapter 4, there 

is actually no significant difference in surface approximation performance of φ-polynomials with 

uniform or clustered samples when the number of φ-polynomials is low and the number of 

samples are abundant (see Figure 28), such as in this case 36, we make use of a uniform grid of 

samples across the overall aperture. 

 

Figure 35 Decomposition of the aperture of an F/1 parabola into circular subapertures of radii 

800 µm along with uniformly distributed sample points, shown only for a -2 mm to 2 mm 

subregion. 

Although the number of the FRINGE Zernike polynomials used in local subapertures is 

only 36, we have obtained excellent approximation errors on the orders of a subnanometer. In 
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Figure 36, we show the Peak to Valley (PV) approximation error profile for the F/1 parabola 

with several bumps. Results show that the approximation PV errors are less than or equal to 

around 0.3 nm. There are no edge-related oscillation errors even with uniform sampling. 

Nonetheless, errors concentrate around the 25 μm and 50 μm anisotropic bumps whose slopes 

are the largest [see lines 2 and 3 in Eq. (5.4)]. The overall RMS error for this description is 

0.01 nm. Given the oscillatory nature of the errors, even if at subnanometer scale, smoothing of 

the computed surface would further decrease the magnitude of these errors. 

 

 

Figure 36 Approximation error profile for an F/1 parabola with several bumps showing the 

maximum PV errors on the orders of the subnanometer with only 36 local FRINGE Zernike 

polynomials across an 80 mm x 80 mm aperture. 

We have carried out the F/1 parabola with bumps test with 25, 36, and 64 Zernike 

polynomials within the local subapertures in various surface approximations. We have recorded 

the radius of the subapertures along with the number of subapertures that is sufficient for 

reaching the subnanometer PV errors. Table 4 summarizes the overall results. The shape 
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parameter for Wendland’s CSRBFs for each experiment is the inverse of the radius of the 

subapertures shown in Table 4.  

The more Zernike polynomials that are added into the approximation set, the more 

capable the method becomes in terms of locally describing a freeform surface, and thus we can 

increase the radius of the subapertures. This trade-off is well captured in Table 4 and Figure 37. 

In Figure 37 (a), as the number of Zernike polynomials in the local approximation increases from 

25 to 64, the radii of the subapertures increase from 610 μm to 1.33 mm. Meanwhile, the number 

of subapertures decreases from 16900 to 3600, see Figure 37 (b). 

Table 4 Subnanometer PV errors with a small set of Zernike polynomials (4
th

 column) or 

Gaussian RBFs (5
th

 column) in each subaperture. 

Cell count 

Cell radius 

(mm) 

Number of local 

basis elements 

PV error Zernikes 

(nm) 

PV Error Gaussians 

(nm) 

60x60 1.33 64 0.2 1.01 

100x100 0.8 36 0.31 2.29 

130x130 0.61 25 0.78 3.59 
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Figure 37 The trade-off in the subaperture radius (a) and subaperture count (b) vs. the number of 

basis elements within subapertures. 

In Table 4, we also compare a simple version of the Gaussian RBFs as local surface 

approximants to that using a small number of Zernike polynomials in each subaperture needed to 

represent the surface using the hybrid method in both cases. In this investigation, we included a 

shape optimization, where wi was varied from 0.01 mm
-1

 to 10 mm
-1

 for Gaussians (with 

uniformly distributed centers) over each subaperture. Every other parameter, i.e., the number of 

samples and their uniform distribution, was kept the same. As we varied the number of 

Gaussians in each subaperture, the results show that although local Gaussians within 

subapertures provide accuracies around nanometers, Zernike polynomials provide accuracies on 

the orders of subnanometers. However, Gaussian RBF implementation may still be improved 

with different sampling, different center distributions and a modified shape optimization. For 

example in [29], different grid types were applied for approximation with Gaussian RBFs and 

results concluded that residual errors are comparable to polynomial approximation counterparts. 

Furthermore in [49], the authors proposed and compared different edge remedies for improving 

the errors of RBF approximations, including clustering the sample points towards the boundary 

and two possible Not-a-Knot implementations. Without incurring any additional computational 
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cost, methods mentioned in [49] for improving Gaussian RBF approximation errors may be 

applied within each subdomain to further increase the level of accuracy obtained through 

Gaussian approximations. 

In order to achieve more accurate approximants with Gaussian RBFs whose PV errors are 

shown in table 4, an adaptive approach may be used for the domain decomposition and sampling 

steps instead of a fixed uniform grid of samples and a uniform decomposition of the overall 

aperture into subapertures. For example, Driscoll and Heryudono present an adaptive refinement 

method based upon residual subsampling [30]. This adaptive method clusters the samples and the 

subapertures around the steep regions, whereas it coarsens the samples and subapertures around 

the large smooth areas. By clustering the samples towards the steep gradients and locally 

increasing the density of subapertures around the steep regions, more accuracy can be achieved 

and significant benefits in terms of cost, especially for local RBF approximations, can be gained, 

where a local shape optimization can be carried out based on the density of the RBF centers. 

Another possible improvement for the Gaussian RBF approximations is to use an 

approach that is presented in [31] that allows selecting sample and center locations along with an 

optimum shape parameter for each and every RBF basis. This method has shown significant 

advantages compared to orthogonal polynomials in 1D [31]. Fornberg and Zuev show that a 

small set of Gaussian RBFs with properly optimized basis center locations and shape parameters 

are able to achieve the level of accuracies that is only to be matched by utilizing a high number 

of Chebyshev polynomials [31]. 
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In a large range of optics applications termed as illumination optics, a surface description 

is considered acceptable if the surface is approximated with 10 nm accuracy. Hence, as an 

additional experiment, we have carried out an F/1 parabola with bumps approximation test with 

16, 25, 36, and 64 Zernike polynomial terms in local subapertures while recording the radius of 

the subapertures and their total number in order to reach a PV accuracy of 10 nm. Results 

reported in Table 5 show that as few as 16 φ-polynomials terms in each subaperture can describe 

this surface with 10 nm PV errors. A similar trade-off to the one shown in Figure 37 also exists 

between the radius of subapertures and the subaperture count versus the number of local basis 

elements in each subaperture. As the number of φ-polynomials in each subaperture decreases 

from 64 to 16, the radius of the subapertures decreases from 2.29 mm to 670 μm, whereas the 

number of subapertures increases from 35 × 35 to 120 × 120 to reach 10 nm PV errors. 

 

Table 5 Showing 10 nm PV errors with a small set of Zernike polynomials. 

Cell count 

Cell radius 

(mm) 

Number of local 

basis elements 

PV Error 

(nm) 

35x35 2.29 64 10.06 

57x57 1.40 36 6.07 

75x75 1.07 25 9.35 

120x120 0.67 16 8.41 
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In summary, the numerical experiments quantify that a small set of FRINGE Zernike 

polynomials, 25 in each subaperture, are able to describe the overall surface within a non-circular 

aperture with the hybrid RBF local φ-polynomials method within subnanometer accuracies. The 

analysis further shows that fewer polynomials are needed if the requirement on accuracy is 

loosened such as to satisfy only illumination optics application requirements. 

Conclusion 

As the optics manufacturing industry is forging ahead in the advancement of their 

methods, freeform optical elements are going to be key components of optical systems in the 

near future. In this paper, we describe a fast, efficient hybrid method combining local 

approximants (i.e., RBFs or φ-polynomials) and RBF global approximants. With this method, we 

are able to describe a freeform surface by using only 25 FRINGE Zernike polynomials in each 

subaperture within subnanometer accuracy. With a simple local RBF approximant or with a low 

order 25 to 64 Zernike basis functions in subapertures, nanometer-level accuracy was achieved. 

Because of its local nature and the ability to carry the local accuracies over to the overall surface 

description, this hybrid method reduces the order of the φ-polynomials required to describe a 

freeform surface. The method is highly efficient mainly because φ-polynomials of three inherent 

properties. First, the method makes use of Wendland’s CSRBFs that are known to handle best 

the large datasets; also they result in band diagonal approximation matrices that are simple to 

manipulate in algebraic systems since they do not have a tail section spanning the whole aperture 

like Gaussians. Second, to find the local samples and evaluation points, we make use of kd-trees 

location queries, which reduces computational complexity to an O[log(N)] process. A third 
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reason for efficiency is the fact that the number of local basis functions is kept to a minimum, 

which results in small approximation matrices. In the case of φ-polynomials, using a small 

number of them allowed us using uniform sampling without an approximation performance 

penalty. Reducing the number of φ-polynomials to a minimum in subapertures and using only 

lower order φ-polynomials is also important because it facilitates understanding of the local 

optical properties of the surface for optical designers while providing computational advantages. 

We also note that there is no inherent limit in terms of the number of local φ–polynomials that 

may be used in the method; in order to achieve better accuracies than subnanometers, that is, 

machine precision, high-order polynomials may also be used within the local subapertures. 

Finally, the Q-polynomials or other forms of φ-polynomials may substitute within local 

subapertures the Zernike polynomials. However, a crucial step working with Q-polynomials is to 

accurately compute the curvature of the best-fit sphere, which requires mean sag over the 

perimeter of the local subaperture as a targeted step into the hybrid algorithm. 

A consideration may arise with the total number of the subaperture count. As this method 

utilizes only the lower order φ–polynomials and it deploys 16 to 64 φ–polynomials in each 

subaperture, it accomplishes a level of subnanometer surface approximation accuracy with a 

finer set of subapertures. The total number of basis elements used in the overall surface 

approximation maybe calculated as the total subaperture count times the local number of basis 

elements. A global surface fit such as the one described in [41] over a circular aperture may 

result in a smaller number of terms globally then the subaperture count times the local basis 

elements in the method shown here. For example, tens of thousands of global φ–polynomials 

consisting of a major count of high order φ–polynomials may be less than the total subaperture 
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count times the number of local basis elements. However, in this text we are working with least 

squares approximations for optical surface descriptions. A least square matrix of a global 

approximation consisting of tens of thousands of higher order φ–polynomials with a tens of 

thousands or even hundreds of thousands of samples points means working with a huge least 

squares matrix in surface descriptions. Even the formation of this matrix is computationally 

intensive because of the computation of the higher order polynomials even with the recurrence 

relations leaving aside the computational cost to solve this huge global approximation matrix, 

which is O(N
3
) N being the size of the matrix, i.e. tens of thousands. It might be the case that 

author in [41] suggests the usage of Fourier methods to compute the fit coefficients due this 

significant computational cost. As opposed to these global methods, local method such as the one 

described in this chapter has the advantage of the divide and conquer approach. Decomposition 

step does not incur any significant cost due to the kd-trees to locate the local samples within 

subapertures. Also forming and solving the least square matrix of local subapertures consisting 

of only 25 polynomials and around 120 samples is no cost at all compared to the solution of the 

global approximation matrix consisting of tens of thousands rows or columns. Also we may keep 

in mind that computing a lower order φ–polynomial utilized in the local hybrid method shown in 

this chapter is several times easier than computing a higher order φ-polynomial needed in a 

global approximation method in terms of least squares. In terms of conditioning of linear 

systems, lower order polynomials do not suffer from ill-conditioning even when they are 

computed with explicit expressions. Also round off errors are minimized when working with 

computational methods for smaller size matrixes. 
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CHAPTER SIX: ACCELERATION OF COMPUTATION OF 

φ-POLYNOMIALS 

 In this chapter, we investigate the benefits of making an effective use of impressive 

computational power offered by multi-core platforms for the computation of φ-polynomials used 

in the description of freeform surfaces. Specifically, Zernike polynomials and gradient 

orthogonal Q-polynomials are implemented through a set of parallel algorithms on Graphical 

Processing Units (GPUs), with their respective recurrence relations. The results show that more 

than an order of magnitude improvement is achieved in computational time over a sequential 

implementation if recurrence-based parallel algorithms are adopted in the computation of the φ-

polynomials. The results reported in this chapter are under review in the literature [50]. 

As the demands of the optical surface descriptions increase, more terms of φ-polynomials 

may be required in order to accurately express the surface departure from a base surface that may 

typically be a sphere, a conic, or a best fit sphere. Both the total number of terms and the higher 

order φ-polynomials themselves become computationally intensive in their inclusion for 

describing the surface. Furthermore, multi-dimensional optical surface optimization with the full 

aperture φ-polynomials is a highly challenging and computationally intensive task. Optimization 

cycles may become a major bottleneck for the optical design process.  

In order to reduce the computational time for the computationally intensive scientific 

problems, such as the computation of φ-polynomials and their utilization in global 

multi-dimensional surface optimization, GPUs may be utilized with several parallel algorithms. 

In many different fields of science ranging from computational dynamics [51] to optical imaging 
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applications [52] GPUs are reported to accelerate applications more than one order of magnitude 

or achieve the fastest data processing and visualization rates [61]. Through parallel algorithms 

designed to work on Single Instruction Multiple Thread (SIMT) GPU architecture, the 

computation of the full aperture φ-polynomials may achieve a significant pace by leveraging the 

commodity graphics hardware. The main contribution presented in this chapter is to devise and 

implement several recurrence-based data-parallel algorithms for the computation of Zernike and 

gradient orthogonal Q-polynomials and show that an order of magnitude speedup is possible in 

the computation of these φ-polynomials. 

This chapter is organized as follows: In the next section we briefly review the general 

purpose computation on GPUs. The following section summarizes the details of the parallel 

algorithms to implement the recurrence relations of φ-polynomials on a SIMT architecture. Prior 

to the conclusion, we show the computational results of executing the specifically designed 

parallel algorithms for Zernike polynomials and gradient orthogonal Q-polynomials on GPUs 

and report the speedups as compared to that of a sequential implementation of the recurrence 

relations on multi-core Central Processing Units (CPU). The last section concludes this chapter. 

General Purpose Computation on GPUs 

GPUs are invented to tailor the rendering of computer graphics. The rendering of visual 

scenes, effects and artificial environments on the computer is a computationally intensive task 

which is inherently parallel. GPUs are specially built to take advantage of parallelism to render 

these graphics. In the last decade, graphics programmers tricked the GPUs into handing more 

general purpose computation instead of just executing specific tasks in graphics pipeline. 
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Executing general purpose programs other than graphics on GPUs is called general purpose 

computation on GPUs. A detailed survey of general purpose computation on GPUs can be found 

in [53]. The reason that we are today able to do general purpose computation on GPUs is that the 

graphics pipeline has been made gradually programmable over the last 15 years. One of the 

recent realizations of the graphics pipeline on GPUs is shown in Figure 38.  

 

Figure 38 Microsoft’s DirectX 11 standard graphics pipeline adapted [54]. 

 Vertices of 3D scenes are fed into this pipeline and pixels of images are obtained as the 

outcome in the end of the pipeline shown in Figure 38. Each stage of the graphics pipeline has a 

specialized task to perform, i.e. vertices transformation in the vertex shader, illumination and 

lighting models in the pixel shader. In early implementations, each stage in the pipeline had its 

own allocated resources. However recently, all the resources on the GPUs are unified to be 

allocated on demand. The new type of architectural models is called as Compute Unified Device 

Architecture (CUDA) shown in Figure 39.  
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We can see in Figure 39 that a GPU is organized into many streaming multiprocessors. 

Each multiprocessor consists of many thread processors with a double precision arithmetic logic 

unit for executing instructions, and a shared memory to act as a mediator for communication 

among the treads of a thread block. 

 

Figure 39 an example GPU architecture adapted [55].  

The data-parallel programming model built on top of CUDA to take advantage of 

parallelism is referred as Single Instruction Multiple Thread (SIMT) model. In order to satisfy 

thread level synchronization and a fine level of granularity, the threads are grouped into the 

thread blocks, and all the threads within a block executed on the same multiprocessor. In this 

way, when a thread branches on the pipeline, only the threads within the block are affected. 

Threads within the same block use the shared memory for common read and write purposes in 

synchronization.  

With the advent of CUDA also a CUDA C programming language became available to 

easily harness the power of GPUs in general purpose computation [56]. With this programming 

language, a programmer without a graphics programming background is able to start taking 
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advantage of parallelism and computational power of GPUs. As a consequence, the applications 

taking advantage of general purpose computation on GPUs started to emerge in all fields of 

science and engineering. For instance, a GPU cluster is used to implement a FEM based seismic 

wave propagation and 12 to 20 times speedup is reported in [57]. Similarly, Walsh et al. report 

10 to 30 times performance improvement in spectral finite element method and least square 

minimization applications in fluid dynamics and geosciences with general purpose computation 

on GPUs [58]. Another similar speedup figure (about 10 times) is reported in a medical image 

segmentation application accelerated through parallelism on GPUs by Kaufmann et al [59]. 

There are many other applications which we have not listed in this thesis report similar or more 

speedup figures in different areas of computational science and engineering through parallelizing 

the applications on GPUs. For further list of examples, please visit the showcase at [60]. 

Parallelization of Recurrence Relations of φ-polynomials 

 The two types of φ-polynomials specifically Zernike and gradient orthogonal 

Q-polynomials are considered in order for parallelization on GPUs in this chapter. Briefly, 

Zernike polynomials consist of orthogonal polynomials in the radial direction and Fourier series 

in the angular direction. The orthogonal polynomials in the radial direction are strongly related to 

Jacobi polynomials and sometimes they are called one-sided Jacobi polynomials. Zernike 

polynomials definition in explicit form Eq. (2.22) and Eq. (2.23) and their relation to Jacobi 

polynomials Eq. (2.24) along with their recurrence relations Eq. (2.26) to Eq. (2.29) are given in 

chapter 2.  
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 Similarly to the Zernike polynomials, gradient orthogonal Q-polynomials satisfy a 

recurrence relation (see Eq. (2.43)). Their recurrence relation however is an unconventional 

recurrence relation that works with an auxiliary polynomial in tandem. The auxiliary polynomial 

itself satisfies a 3-term recurrence relation given in Eq. (2.37) which is very similar to 3-term 

Zernike polynomials recurrence. The coefficients for the auxiliary polynomial recurrence 

relation can be found in chapter 2 (see Eq. (2.38) to Eq. (2.41)). The unconventional recurrence 

relation for the gradient orthogonal Q-polynomials along with the coefficients for the 

unconventional recurrence relation can be found from Eq. (2.43) to Eq. (2.45) in chapter 2. In 

this chapter, we only show the parallel algorithms to implement recurrence relations. 

In order to investigate the parallelization and possible speedups in the computation of the 

φ-polynomials, recurrence relations shown in Eq. (2.26) and Eq. (2.43) are parallelized on a 

SIMT architecture. There are two promising ways to accelerate the computation of the 

recurrence shown in Eq. (2.26). The first one is that instead of computing the coefficients shown 

in Eq. (2.27) to Eq. (2.29) sequentially as the recurrence is run, all the coefficients up until the 

(n-m)/2
th

 execution of the recurrence relation are computed together at once:  

for each thread 

    get the local id corresponding to the nf
th

 recurrence run,  

    compute the rv1nf, rv2nf, rv3nf locally (see Eq.(2.27) to Eq. (2.29)) 

    store them 

end 
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In the above algorithm, each thread operates for a specific run of the recurrence relation, 

computes the coefficients required only for that specific run. When all the threads return, all the 

coefficients for the recurrence are ready to use. This is a data-parallel SIMT algorithm, since a 

single compute instruction is executed on each and every thread with different data 

corresponding to the specific recurrence runs, nf. 

The second way to accelerate the recurrence relation shown in Eq. (2.26), thus the 

computation of Zernike polynomials shown in Eq. (2.24) and Eq. (2.22), is to compute the 

recurrence relation on each thread for each sample ray position in the ray grid. In other words, 

each thread computes the recurrence relation, thus the Zernike polynomial, for each sample 

location of the rays on the ray grid over the aperture. Each thread not only computes the 

recurrence relation shown in Eq. (2.26) but also the power term in Eq. (2.24) and sine or cosine 

terms in Eq. (2.22) on the sample ray point (r, θ). Hence once all the threads return, the 

computation of the Zernike polynomial, ( , )m

nZ r   is completed across the aperture of the optical 

element. This data parallel SIMT algorithm is shown below: 

for each thread 

    get the local sample ray point to operate on (r, θ). 

    create a local data cache[3]. 

    store cache[0]the first Jacobi, J0, cache[1] the second Jacobi, J1 at (r, θ). 
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    while (recurrence exec num < (n-m)/2) 

 run the recurrence, store it cache[2]. 

 swap cache[0], cache[1], swap cache[1], cache[2].    

            recurrence exec number ++. 

    end 

   compute power, r^m 

   compute sine/cosine (mθ). 

   store the result 

   end 

Similar algorithms are written for the gradient orthogonal Q-polynomial recurrence 

relation shown in Eq. (2.43) and also for the auxiliary polynomial working in tandem. Two 

recurrence relations are implemented together in parallel for the Q-polynomials. Specific details 

might be a little different depending on the definition of special cases for the recurrence relation 

in [12]. Similarly to the Zernike polynomials, the coefficients of the recurrence relation are 

computed in parallel much the same way as the first algorithm given in the previous page. 

However not all the coefficients can be implemented in parallel for the gradient orthogonal 

Q-polynomials because there are interdependencies between the coefficients. In that case a single 

thread is chosen to compute those coefficients, for instance f and g computation shown in 

Appendix A of [12]. 
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Numerical Results of SIMT Parallelization of φ-polynomials 

In this section, we present the results of the implementation of the algorithms shown in 

the previous section on commodity graphics hardware. We have used MATLAB® and 

CUDA™ C programming languages [56] to implement and run the parallel and sequential 

algorithms for the φ-polynomials. All the implementations are run on a middle ranking laptop 

computer with a GeForce™ GT 650M GPU and a CPU of Intel® Core™ i7-3610QM. 

The first step is to validate that the result that is obtained out of parallelization is the same 

as the result that comes out of the sequential algorithm. For this purpose, a low order Zernike and 

Q-polynomial is computed and the results are compared to sequential counterparts and displayed 

in Figure 40. Since the sequential and parallel computed φ-polynomials coincide visually, only 

the GPU versions are shown. However, to quantify the differences, Figure 40 also shows the 

difference between the sequential and the parallel versions and results show that they are in 

correspondence within 14 significant digits. This is because of the IEEE compliant double 

precision support inherent on both chips. 

 

Figure 40 GPU computed low order φ-polynomials (a) Zernike, 3

9
Z , (c) gradient orthogonal 

Q-poly, 3

3Q ; the difference between the parallel and sequential implementations within 14 

significant digits (b) Zernike (d) Q-poly. 
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The second investigation is to analyze the effect of the total number of ray points across 

the aperture over the φ-polynomials computation time. Naturally, as the number of ray points 

increases, the total time to compute a specific φ-polynomial increases. In order to quantify 

however the effect of the ray grid size on the computation time, a high order Zernike, 
10

110
( , )Z r   

and a high order gradient orthogonal Q-polynomial,
10

50
( , )rQ   were computed both sequentially 

and in parallel. The results are shown in Table 6 and Figure 41. 

Table 6 Effect of the size of the ray grids on the speedup of the computation of φ-polynomials. 

Grid-size 

Zernike polynomial Gradient orthogonal Q-poly 

CPU 

(ms) 

GPU 

(ms) 
Speedup 

CPU 

(ms) 

GPU 

(ms) 
Speedup 

256x256     43.0   5.0  8.6  53.0  5.9 8.9 

512x512   107.8   8.3 13.0 162.9 13.2 12.4 

1024x1024   316.3 21.1 15.0 512.7 25.2 20.4 

2048x2048 1219.7 71.2 17.1 1967.3 78.9 24.9 

 

Table 6 shows that the computation time for both the parallel and the sequential 

algorithms increases as the number of rays quadruples at each row for both of the φ-polynomials. 

However the time for the sequential algorithm increases more in proportion to the parallel 

algorithm time. The ratio of the total time for the sequential algorithm execution over the total 

time that it takes to execute the parallel algorithm is defined as the speedup and this parameter 

increases as the ray grid size increases. Figure 41 shows the total execution times of sequential 

and parallel algorithms on CPU and GPU and corresponding speedups of the φ-polynomials with 

respect to the ray grid size. 
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In Figure 41, we can clearly see that the computational time for the gradient orthogonal 

Q-polynomials is higher than for the Zernike polynomials (see dash-dot blue line in 

Figure 41 (a)), although the recurrence relations are run exactly 50 times for both of the 

φ-polynomials. The reason for the compute intensive nature of the gradient orthogonal 

Q-polynomial is because of the unconventional recurrence relation and the necessity of an 

auxiliary polynomial computation through another recurrence. This computationally expensive 

operation causes significant overhead for the sequential algorithm on CPU; however it is not a 

significant burden for the parallel algorithm running on GPU. This can be observed with the 

almost coincident red dash-dot and solid lines on Figure 41 (a) showing the parallel execution 

times of Q-polynomial and Zernike polynomial, respectively. Figure 41 (b) quantifies the 

speedup for both the gradient orthogonal Q-polynomial and the Zernike polynomial. Results 

show that the speedup increases with the total number of ray samples and grows significantly in 

average as the number of rays quadruples across the aperture. 

 

Figure 41 (a) Total execution time of the sequential and parallel algorithms of φ-polynomials on 

both CPU and GPU as a function of the grid size (b) speedups of φ-polynomials with grid size. 
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Another aspect of inquiry for the φ-polynomials computation is the order of the 

φ-polynomials. As higher order polynomials may occur in optical surface description, it is 

desirable to determine if parallelization and speedup in computation time is affected by the order 

of the φ-polynomials. In table 7 and Figure 42 we show the computation times of sequential and 

parallel algorithms as the order of the φ-polynomials is increased. For this experiment, the total 

number of ray points is kept fixed at 1024x1024 over the circular aperture, and azimuthal order 

is fixed at m=2. 

Table 7 Effect of the order of the φ-polynomial over the computation time and speedup. 

Polynomial 

order 

Zernike polynomial Gradient orthogonal Q-poly 

CPU 

(ms) 

GPU 

(ms) 
Speedup 

CPU 

(ms) 

GPU 

(ms) 
Speedup 

50   177.7 21.7  8.2  262.3 25.2 10.4 

100   289.4 21.8 13.3 484.1 25.5 19.0 

150   406.5 22.1 18.4 751.2 25.1 29.9 

200   514.7 22.6 22.8 953.7 24.7 38.6 

 

Table 7 shows that the speedup for the φ-polynomials increases as the order of the 

polynomials increase. It takes gradually more time to compute the φ-polynomial sequentially if 

the order of the polynomial is increased (see Figure 42 (a), blue lines). However the 

φ-polynomial computational time does not grow at all if parallel algorithms are utilized (see 

Figure 42 (a), red lines). Consequently, this finding leads to speedups with parallelization of an 

order of magnitude, i.e. 10 to 40 times, in computation of Zernike or gradient orthogonal 

Q-polynomials over the polynomial order (see Figure 42 (b)). 
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Figure 42. Effect of the polynomial order on the computation of φ-polynomials (a) computation 

times on CPU and GPU (b) speedups through parallelization. 

The speedups reported in table 6 and table 7 may be associated with the specific features 

of the GPUs in executing the parallelized recurrence algorithms. A modern GPU is able to run 

many more concurrent active threads compared to the number of concurrent threads a CPU can 

run [62]. The GeForce 650M GPU has 2 multiprocessors each having the ability to support 1536 

active concurrent threads [62] whereas Intel® Core™ i7 3610QM consists of 4 cores running 8 

concurrent threads in total with hyper-threading [63]. Furthermore, GPU threads are lightweight, 

and context switches are faster. Although the computational load is increased gradually in table 7 

by incrementing the polynomial order, the computational time to compute the φ-polynomials on 

GPU does not change due to the GPU ability to execute more instructions in one clock cycle. 

The Clenshaw process [64] to compute the linear combination of φ-polynomials based upon the 

recurrence relations implemented in this chapter may also be carried out on GPUs. It seems 

natural that the extension of the Clenshaw algorithm in parallel would yield similar speedups as 

reported in this chapter. 
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Conclusion 

In this work, we have investigated the effects of parallelizing the algorithms of 

φ-polynomial computation with the recurrence relations as they provide more robust and 

efficient results. Also the effects of ray grid sizes and the orders of the φ-polynomials on the 

computational time are examined. We have quantified the increased benefits through 

parallelization as the intensity of the computation grows, such as higher orders and finer ray-grid 

resolutions. Furthermore, the parallel algorithms proposed in this research were validated to be in 

excellent correspondence with the sequential implementations. We have utilized the many-core 

highly threaded GPU for parallel executions, and used a multi-core CPU for the sequential 

algorithms. This by no means states that CPUs should not be utilized for parallelization with 

appropriate hyper-threading libraries. Just the contrary, the future computation of the 

φ-polynomials should take advantage of parallel algorithms running on both highly threaded 

many-core GPUs and CPUs. 
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CHAPTER SEVEN: CONCLUSION 

Freeform optical elements, which are intrinsically not rotationally symmetric, will not 

only be the most prevalent components but also they will play a key role in the future of optical 

systems. They provide a reduction in the physical size of the optical elements through compact 

and lightweight designs. In this dissertation, we have investigated mathematical and 

computational propositions for freeform optical surface description with a motivation for most 

economical, efficient and beneficial methods in terms of precision, accuracy, computation and 

general applicability.  

In the second chapter, we presented a review of the state of the art surface description 

methodologies for optical surfaces. We have elaborated on the major short comings of power 

series description including ill-conditioning and numerical artifacts associated with this method. 

We surveyed φ-polynomials for both rotationally symmetric and freeform surfaces. The 

complete and orthogonal Zernike polynomials are described in this chapter. We detailed the 

major drawbacks of Zernike polynomials such as the round off errors produced by numerical 

cancelation, which are prevented if the recurrence relations are deployed in the computation of 

these polynomials. Also recently introduced slope and gradient orthogonal Q-polynomials are 

summarized and reviewed along with the recurrence relations developed for them. Finally the 

Radial Basis Functions (RBFs) and QR based algorithms in order to remove the ill-conditioning 

associated with the near flat basis functions are described for the freeform shape description for 

generally shaped apertures.  
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One of the major contributions of this dissertation is described in chapter three. The 

effect of the type of ray grids in sampling an optical surface to perform a φ-polynomial fit is 

investigated in this chapter. It is shown in this chapter that an edge clustered fitting grid 

effectively removes the edge ringing that arises as the polynomial adapts to the fully 

nonsymmetric features of the freeform surface. The impact of this fitting grid on the reduction of 

edge ringing and improvement of the accuracy several orders of magnitude is compared to 

different types of sampling grids including but not limited to hexagonal uniform subgrids 

centered on the rectangular uniform grids, Chebyshev based radial sampling, and  random grids. 

Also shown in this part of the dissertation is that for rotationally symmetric surfaces, the type of 

the fitting grid does not have a particular influence on the quality of the fit as all types of ray 

grids produced very good approximants with a small number of φ-polynomial terms and 

samples. Another outcome of this study is that a large number of φ-polynomial terms, i.e. 

thousands might become necessary in order to represent a freeform surface. Nonetheless, the 

significant observation established in this chapter is that edge-clustered fitting grids produced 

very good approximants, and improved the approximation performance by several orders of 

magnitude compared to that of fitting grids without edge clustering in addition to providing 

stable and exponentially decreasing errors. 

As part of the investigation of efficient ray grids for freeform surface description, we 

have assessed the merits and drawbacks of two different sets of φ-polynomials in terms of least 

squares. Results obtained in chapter four show that Zernike polynomials and gradient orthogonal 

Q-polynomials added on top of a best fit sphere are able to represent freeform surfaces with 

similar if not identical accuracies with edge clustered fitting grids over a significant range of 
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heights and locations for the nonsymmetric features of the optical surfaces. Finally we clearly 

observed with all the experiments carried out in chapter four that it is not so much the type of the 

φ-polynomials but the type of the sampling grid that dominates the magnitude of the errors in 

Root Mean Square (RMS) fit residuals, thus the level of accuracy obtained through the fitting 

process. It is also found out in this chapter that accurately computing the best fit sphere radius 

has a profound effect on the accuracy of the approximant obtained with gradient orthogonal 

Q-polynomials.  

Another contribution presented in chapter five is a hybrid, local, and efficient method 

combining assets of both RBFs and φ-polynomials for the description of freeform surfaces over 

more general aperture shapes. The method proposed is based upon the partition of unity 

approach acting on decomposition of aperture into smaller overlapping subapertures. This 

method is applicable to more general aperture shapes given its decomposition and stitching 

properties as opposed to the global application of φ-polynomials for predefined geometries. This 

method is not only applicable to more general shaped domains, but also it reduces the order of 

the φ-polynomials deployed. In other words, it does not require higher order terms in the 

description as opposed to globally employed φ-polynomials. In fact, initial results show that the 

proposed method yields sub-nanometer accuracy with as few as 25 terms of local φ-polynomials 

utilized in each subaperture. Sub-nanometer accuracy is required for the stringent conditions of 

lithography and related precision optics applications. Less stringent conditions are also shown to 

be achieved with as few as 16 terms of φ-polynomials deployed in each subaperture. 

Conceptually the method can be thought of as deployments of groups of φ-polynomials whose 

origin is translated across the aperture into the centers of the subapertures. Instead of translating 
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the centers of RBFs across the aperture, in this method the origin of the φ-polynomials are 

shifted into the centers of subapertures.  

A variation of this method can be obtained when RBFs are deployed locally inside the 

subapertures instead of local φ-polynomials. This method offers the opportunity of shape 

optimization for RBFs over each local subaperture. In other words, locally varying shape 

parameters are optimized and assigned to all RBFs inside each subaperture. This is a spatially 

varying shape optimization technique but yet different from the method presented in [31], since 

all RBFs within a subaperture still assigned the same locally optimized shape parameter. Initial 

numerical results are presented in chapter five of this dissertation. As a future work of this local 

hybrid method, an adaptive approach may be used for the domain decomposition and sampling 

steps instead of a fixed uniform grid of samples and a uniform decomposition of the overall 

aperture into subapertures. For example, an adaptive refinement method based on the residual 

subsampling presented in [30] may provide significant advantages especially when finer 

sampling and subaperture decomposition is achieved in steep regions where errors are 

augmented. Another possible improvement maybe implemented through a different shape 

optimization (such as shown in [31]) over each subaperture. 

A discussion point may be raised on the total number of subaperture count for this local 

method. The method significantly reduces the order of the local φ-polynomials at the expense of 

the subaperture count. It works by decomposing the domain into smaller subapertures. As the 

level of precision and accuracy is increased, it is possible to obtain that level of accuracy through 

another level of decomposition of subapertures. This means more subapertures and thus an 
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increase in the total number of φ-polynomials over the global aperture. However, even then since 

the local least square matrix size is now small, i.e. on the order of tens or hundreds, as opposed 

to the global fit using global φ-polynomials requiring extreme high orders and all the samples 

over the aperture, i.e. the size of tens of thousands if not hundreds of thousands. Computationally 

the hybrid method is much more efficient compared to the global approach because the solution 

of a fully populated least square matrix depends on the size of the matrix, N, as O(N
3
). We 

propose as a future work another implementation that takes into account the total number of 

subapertures, and whenever a finer set of subdivision is required, it only produces another level 

of division over the subapertures and regions where the accuracy is lower than that required, 

similar to the adaptive gridding used in [30]. This way total number of subapertures may be kept 

within a smaller bound if desired. 

A significant outcome of this research conducted in this dissertation is the devised and 

implemented recurrence based parallel algorithms for the computation of φ-polynomials to take 

advantage of highly threaded many-core computational platforms i.e. Graphical Processing 

Units, (GPUs). Specifically, Zernike polynomials and gradient orthogonal Q-polynomials are 

implemented through a set of parallel algorithms on GPUs, with their respective recurrence 

relations by using CUDA C programming. The results presented in chapter six show that more 

than an order of magnitude improvement is achieved in computational time over a sequential 

implementation if recurrence-based parallel algorithms are adopted in the computation of the φ-

polynomials.  
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In our implementations, we verified that the accuracy obtained through a sequential 

implementation was guaranteed by the parallel algorithm. Our results showed that there was an 

excellent correspondence within 14 significant digits obtained over the sequential and parallel 

implementations. 

We investigated the effect of the size of the ray grid on the speedups achieved with 

parallelism in the computational time for the recurrence based φ-polynomials implementations. 

The results established that the finer set of ray grids increased the speedup in computational time, 

and speedup grew significantly in average as the size of the ray grid quadruples in each 

numerical experiment.   

Another analysis is carried out for the effect of order of the φ-polynomial on the speedup 

obtained on GPUs in computational time. It is interesting to note that as the order of a 

φ-polynomial is increased the computational time of the sequential algorithm grows in 

proportion to the order of the φ-polynomial whereas the parallel implementation computational 

time almost does not change. This observation on the speedups with parallel implementation of 

recurrence based φ-polynomial algorithms is shown in chapter six.  

Conclusively, we have quantified the increased benefits through parallelization as the 

intensity of the computation grows, such as higher orders and finer ray-grid resolutions. As a 

result, the future computation of the φ-polynomials should take advantage of parallel algorithms, 

such as the ones devised for this dissertation, running on both highly threaded many-core GPUs 

and CPUs with appropriate hyper threading support. 
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