156 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Review of the machine learning methods in the classification of phishing attack

    Get PDF
    The development of computer networks today has increased rapidly. This can be seen based on the trend of computer users around the world, whereby they need to connect their computer to the Internet. This shows that the use of Internet networks is very important, whether for work purposes or access to social media accounts. However, in widely using this computer network, the privacy of computer users is in danger, especially for computer users who do not install security systems in their computer. This problem will allow hackers to hack and commit network attacks. This is very dangerous, especially for Internet users because hackers can steal confidential information such as bank login account or social media login account. The attacks that can be made include phishing attacks. The goal of this study is to review the types of phishing attacks and current methods used in preventing them. Based on the literature, the machine learning method is widely used to prevent phishing attacks. There are several algorithms that can be used in the machine learning method to prevent these attacks. This study focused on an algorithm that was thoroughly made and the methods in implementing this algorithm are discussed in detail

    Applications in security and evasions in machine learning : a survey

    Get PDF
    In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications' perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers' knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks

    A New Incremental Decision Tree Learning for Cyber Security based on ILDA and Mahalanobis Distance

    Get PDF
    A cyber-attack detection is currently essential for computer network protection. The fundamentals of protection are to detect cyber-attack effectively with the ability to combat it in various ways and with constant data learning such as internet traffic. With these functions, each cyber-attack can be memorized and protected effectively any time. This research will present procedures for a cyber-attack detection system Incremental Decision Tree Learning (IDTL) that use the principle through Incremental Linear Discriminant Analysis (ILDA) together with Mahalanobis distance for classification of the hierarchical tree by reducing data features that enhance classification of a variety of malicious data. The proposed model can learn a new incoming datum without involving the previous learned data and discard this datum after being learned. The results of the experiments revealed that the proposed method can improve classification accuracy as compare with other methods. They showed the highest accuracy when compared to other methods. If comparing with the effectiveness of each class, it was found that the proposed method can classify both intrusion datasets and other datasets efficiently

    Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics

    Get PDF
    The availability of massive amounts of data, fast computers, and superior machine learning (ML) algorithms has spurred interest in artificial intelligence (AI). It is no surprise, then, that we observe an increase in the application of AI in cybersecurity. Our survey of AI applications in cybersecurity shows most of the present applications are in the areas of malware identification and classification, intrusion detection, and cybercrime prevention. We should, however, be aware that AI-enabled cybersecurity is not without its drawbacks. Challenges to AI solutions include a shortage of good quality data to train machine learning models, the potential for exploits via adversarial AI/ML, and limited human expertise in AI. However, the rewards in terms of increased accuracy of cyberattack predictions, faster response to cyberattacks, and improved cybersecurity make it worthwhile to overcome these challenges. We present a summary of the current research on the application of AI and ML to improve cybersecurity, challenges that need to be overcome, and research opportunities for academics in management information systems

    Internet of Things security with machine learning techniques:a systematic literature review

    Get PDF
    Abstract. The Internet of Things (IoT) technologies are beneficial for both private and businesses. The growth of the technology and its rapid introduction to target fast-growing markets faces security challenges. Machine learning techniques have been recently used in research studies as a solution in securing IoT devices. These machine learning techniques have been implemented successfully in other fields. The objective of this thesis is to identify and analyze existing scientific literature published recently regarding the use of machine learning techniques in securing IoT devices. In this thesis, a systematic literature review was conducted to explore the previous research on the use of machine learning in IoT security. The review was conducted by following a procedure developed in the review protocol. The data for the study was collected from three databases i.e. IEEE Xplore, Scopus and Web of Science. From a total of 855 identified papers, 20 relevant primary studies were selected to answer the research question. The study identified 7 machine learning techniques used in IoT security, additionally, several attack models were identified and classified into 5 categories. The results show that the use of machine learning techniques in IoT security is a promising solution to the challenges facing security. Supervised machine learning techniques have better performance in comparison to unsupervised and reinforced learning. The findings also identified that data types and the learning method affects the performance of machine learning techniques. Furthermore, the results show that machine learning approach is mostly used in securing the network

    Advances in Cybercrime Prediction: A Survey of Machine, Deep, Transfer, and Adaptive Learning Techniques

    Full text link
    Cybercrime is a growing threat to organizations and individuals worldwide, with criminals using increasingly sophisticated techniques to breach security systems and steal sensitive data. In recent years, machine learning, deep learning, and transfer learning techniques have emerged as promising tools for predicting cybercrime and preventing it before it occurs. This paper aims to provide a comprehensive survey of the latest advancements in cybercrime prediction using above mentioned techniques, highlighting the latest research related to each approach. For this purpose, we reviewed more than 150 research articles and discussed around 50 most recent and relevant research articles. We start the review by discussing some common methods used by cyber criminals and then focus on the latest machine learning techniques and deep learning techniques, such as recurrent and convolutional neural networks, which were effective in detecting anomalous behavior and identifying potential threats. We also discuss transfer learning, which allows models trained on one dataset to be adapted for use on another dataset, and then focus on active and reinforcement Learning as part of early-stage algorithmic research in cybercrime prediction. Finally, we discuss critical innovations, research gaps, and future research opportunities in Cybercrime prediction. Overall, this paper presents a holistic view of cutting-edge developments in cybercrime prediction, shedding light on the strengths and limitations of each method and equipping researchers and practitioners with essential insights, publicly available datasets, and resources necessary to develop efficient cybercrime prediction systems.Comment: 27 Pages, 6 Figures, 4 Table

    LC an effective classification based association rule mining algorithm

    Get PDF
    Classification using association rules is a research field in data mining that primarily uses association rule discovery techniques in classification benchmarks. It has been confirmed by many research studies in the literature that classification using association tends to generate more predictive classification systems than traditional classification data mining techniques like probabilistic, statistical and decision tree. In this thesis, we introduce a novel data mining algorithm based on classification using association called “Looking at the Class” (LC), which can be used in for mining a range of classification data sets. Unlike known algorithms in classification using the association approach such as Classification based on Association rule (CBA) system and Classification based on Predictive Association (CPAR) system, which merge disjoint items in the rule learning step without anticipating the class label similarity, the proposed algorithm merges only items with identical class labels. This saves too many unnecessary items combining during the rule learning step, and consequently results in large saving in computational time and memory. Furthermore, the LC algorithm uses a novel prediction procedure that employs multiple rules to make the prediction decision instead of a single rule. The proposed algorithm has been evaluated thoroughly on real world security data sets collected using an automated tool developed at Huddersfield University. The security application which we have considered in this thesis is about categorizing websites based on their features to legitimate or fake which is a typical binary classification problem. Also, experimental results on a number of UCI data sets have been conducted and the measures used for evaluation is the classification accuracy, memory usage, and others. The results show that LC algorithm outperformed traditional classification algorithms such as C4.5, PART and Naïve Bayes as well as known classification based association algorithms like CBA with respect to classification accuracy, memory usage, and execution time on most data sets we consider
    corecore