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Abstract 
A pervasive increase in the adoption rate of smartphones with Android OS is noted in recent years. 

Android's popular and attractive environment not only captured the attention of users but also increased 

security concerns. As a result, Android malware detection is one of the sizzling topics in the mobile security 

domain. This paper provides a comprehensive review of state-of-the-art mobile malware attacks, 

vulnerabilities, detection techniques and security solutions over the period of 2013-2019 that majorly 

targeted Android platform. We have presented various well-organized and in-depth taxonomies that 

uncover mobile malware detection approaches based on their analysis techniques, working platform, data 

acquisition, operational impact, obtained results and artificial intelligence component involved. Another 

taxonomy comprises of mobile malware attack vector is presented to look threat clusters and loopholes 

to locate their malicious widespread impact on communities. Furthermore, we have discussed and 

classified forensic analysis efforts in mobile malware detection perspective. From intruder point of view, 

we have compared various evasion techniques that are used prominently by the malware authors to 

hinder detection efforts. Finally, future work directions are presented as guidelines for academia and 

industry alike to help them reduce or even avoid the harmful impact of these annoying efforts. 
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1. Introduction 

Smartphones are the recent advent of mobile platforms having diverse kind of operating systems in which 
android, iOS, Blackberry, Symbian and windows are included. Advancement in technology opened the 
new horizons for application developers that results in providing wide variety of services and information 
at their fingertips, anytime, at any place. Popularity of android OS is not only attract the wide range of 
users but it also became main target for malware writers.  
Statista [1] reported that, number of smart phone users are reached 4.77 million  from year 2013 to 2017 
and forecasted that it can be raised over 5 billion in 2019. Recently, CEO of google reveals that, google 
android operating system reached major breakthrough with more than 2 billion monthly active android 
users[2]. Popularity of android smartphones is not hidden from malware authors to penetrate the security 
of mobile devices through malicious applications. G-DATA security blog[3], reported that 8,225 new 
malware sample targeted the android operating system and 744,065 malwares are counted during the 
Q4 2017. In addition, malicious applications used evasion techniques to hide themselves as a normal app 
and detection of these malware is really challenging task. Recently, 700,000 applications are founded that 
have malicious content and violate the google play store security policy [4]. 
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It has been observed that built-in security structures of android smart phones are largely inadequate and 
other non-malicious programs can accidently render the intimate information. Many malware threats 
such as worms, backdoors, viruses, Trojans are vulnerable to smartphones, network devices and designed 
as open source projects. An infected device can perpetrate severe harmful activities such as lock the 
phone entirely or partially to make it unavailable, social engineering attacks causes to steal sensitive 
information, infect phonebook users and generate unwanted billing. Therefore, it is a challenge to develop 
robust detection system that mitigate malicious applications.  
Detection approaches such as static, dynamic and hybrid are used by many researchers to analyze the 
android malware. From these researches, MADAM [5] follows hybrid analysis and achieved 96% accuracy 
to detect the malware in android devices. Another approach DroidGraph [6], adopt static method to 
analyze source code of applications which gives 87% android malware detection rate. Data protection and 
data privacy are identical terms in every sector. In this context, Moledorid [7] detects the information 
theft from benign and malicious applications with 99.1 % precision by dynamically analyzes them. 
Similarly, Hussain et al. [8] proposed mhealth application for healthcare department to ensure the 
affordability and accessibility of health services all the time. Additionally, they handle sensitive data of 
patients with security and privacy. 
In literature, authors discussed different aspects of mobile malware detection approaches in their review 
papers such as Feizollah et al.[9] focused on the general view of malware and detection approaches from 
the year 2010 to 2014. They discussed malware detection techniques with their four different types such 
as static, dynamic, hybrid and metadata analysis along with available android malware datasets. Although 
they did not presented any comprehensive comparison of detection approaches based on feature 
selection. In the work of [10], authors briefly describe android security, strengths, limitations and 
comparatively analyze the detection schemes based on taxonomy and survey of existing approaches. In 
addition, they explained the steps of android application development and provide baseline for entire 
community. Besides, they did not cover evasion techniques that becomes most interesting feature for 
malware writers, in that way malware easily evade from detection mechanism. Moreover, Yan et al.[11] 
concentrated on dynamic analysis to detect the mobile malware. They defined the emerging threats with 
detection techniques, classification approaches and their pros and cons widely. Likewise, they figure out 
evaluation criteria of existing methods, open issues and future directions. However, we have considered 
more elaborative and state-of-the-art dynamic, static and hybrid analysis methods to more strengthen 
the document.  
 
The highlights of the contribution of this paper is as follows: 

a. We presented mobile malware detection and mobile attack vector taxonomies, a state-of-the-art 
that covers different aspects such as, working environment, detection mechanism, data 
acquisition, malware detection architecture, types of cybersecurity attacks, operational impact, 
threat clusters and Artificial intelligence techniques in aspects of malware detection and result 
evaluation.  

b. A Comparative analysis is offered for existing detection approaches that are based on dissimilar 
features, datasets, analysis types, most targeted android malware and their performance level in 
the time period of 2013-2018.  

c. Forensic analysis is provided with respect to mobile and malware forensics along with their 
operational tools, procedural steps from start to finish and challenges that are faced in forensic 
investigation method.  

d. We elaborated some machine learning constraints, and which is overcome by deep learning 
proof-of-concept techniques in detection of mobile malware.  

e. We also relatively define and compare evasion techniques such as polymorphism, java reflection, 
obfuscation and control flow alteration that is used by malware authors to evade from detection. 



Besides, we explicitly determine some weaknesses from existing approaches that are not 
thoroughly investigated by researchers.  

f. To cope with this growing hazard, challenges and future work directions are also manifested to 
provide a quick guideline for academia and industry alike. 

 
Conclusively as a guideline, efficient tools that can detect malware from obfuscated code, analyze 
applications at runtime and identify zero-day attacks is really needed. Furthermore, code coverage 
problem needs to mitigate, and robust hybrid analysis methods are also required.   
The remaining of this paper is structured as follows: section 2 describes the mobile malware evolution 
and its types, section 3, and section 4 consist of state-of-the-art taxonomies as mobile malware attack 
vector and mobile malware detection identically. In section 5, we have covered forensic analysis in context 
of mobile and malware forensics and section 6, presented a comparative analysis of various artificial 
intelligence approaches that includes machine learning and deep learning techniques in time period of 
2013-2018 with their results. Furthermore, section 7 explain future directions that should be adopted by 
the researchers to avoid growing hazards. Finally, conclusion is provided in section 8 of the paper. 

2. Mobile Malware Evolution and Types 

Malware (malicious software) is any software with mischievous intention. It can be written to disrupt 
normal functioning, bypass access controls, gather sensitive information, display unwanted advertising, 
or getting control of device without user’s knowledge. Moreover, malware and unintentionally harmful 
software are collectively termed as bad ware. Main categories in which malware can be grouped are virus, 
worms, Trojans, ransomware, rootkits, botnet, etc. 
The evolution of Android malware has been observed to be at an accelerated pace. From the first ever 
virus, malware for mobile devices have evolved massively. F-Secure [12] reported that first virus named 
as Trojan for palm devices is introduced in year 2000. Cabir [13] made its appearance in June 2004, which 
was a worm settled as a proof of concept (POC) by Vallez, who was part of 29A group belongs to virus 
writers. The codes are written to contaminate Symbian devices, which propagate over Bluetooth as .sis 
package. Cabir was the very first malicious code that can exploit the networking technologies to spread 
itself and produced infection broadly. Correspondingly, FakePlayer [14] was the first android malware 
introduced in early August 2010. It showed the immediate motivation towards monetizing the mobile 
space. First Trojan application for android was exposed in August 2010 detected as 
ANDROIDOS_DROIDSMS.A.[15], it is a Russian SMS fraud application that sent SMS to premium rate 
numbers. The modern smartphones with evolving capabilities though offer more nefarious prospects to 
the enterprising criminals. Another Trojan was uncovered in a short time, masquerading as a game Tap 
Snake [16] . It has an ability to track GPS locations of septic devices over hypertext transfer protocol (HTTP) 
and then queried by other GPS spy applications. Ikee[17] was the first iOS based, a worm malware 
discovered in August 2010 that affects jailbroken devices and take benefit of secure shell (SSH) password 
to replicate other jailbroken iPhones. Furthermore, Trend micro [18] reported that, ZeuS malware escape 
from two way authentication factor and target the mobile banking sites. By each passing year, android 
operating system offers rich functionality and criminals reconnoiter multiple possibilities to hack devices. 
Similarly, criminals seek money making opportunities and motivated to put their efforts towards 
smartphones.  
Another malware named as DroidDream [19], which is skillful to gain root access to smartphones devices. 
This malware family not only stole device details as International Mobile Station Equipment Identity (IMEI) 
and International Mobile Subscriber Identity (IMSI) but also causes to install more concealed malwares 
which draws off further information from device. On the release of Google’s official security tool used to 
clean alterations made by malware writers, this is taken as an opportunity and release different tools that 



was cybercriminals used for information stealing and backdoor activities. Currently, more malicious 
android applications exploit users by forwarding messages, send premium rate SMS, spy on GPS location 
and detects telephone conversations using Google+ application. A recent report Kaspersky Lab [20], 
detected 1,319,148 malicious installation packages in Q2 of 2017. Moreover, it states that 200,054 mobile 
ransomwares are detected which is much more than as compare to Q4 2016. Likewise, Sophos [21] 
reported that Android ransomware grows with every passing year and number of malicious applications 
raised up to 3.5 million in 2017. Another newly invented android based malware RedDrop [22] is founded 
in fifty three android application packages (APKS) and causes to download alternative seven malicious 
applications automatically. Consequently, we summarized numerous categories of mobile malware with 
their families in table 1. Moreover, in figure 1, we presented timeline of mobile malware with top banking 
and general malware families from year 2000-2018.   
 

 
Figure 1: Mobile Malware timeline from 2000-2018 

 
Table 1: Mobile Malware Evolution 

Year Name Targeted OS Type Description 

2000 Liberty 
Crack[23] 

Palm Trojan It pretends to be a hack and removes third-party 
apps. 

2004 Cabir[13] Symbian Worm It suppers from device to device by using object 
exchange (OBEX) push protocol that relates to 
Bluetooth. 

2005 Cardblock[24] Symbian Virus It installs as a fake software installation script (SIS) 
application that encrypts all data on the memory 
card with a random password.  



2006 Fontal[24] Symbian Trojan It exploits vulnerability to over-write system files 
making the device stop functioning after reboot. 

2006 Acallno[24]  Symbian Spyware It acts like a commercial software which collects 
information and steal money from user’s device.   

2007 Feak[24] Symbian Worm A worm that sends SMS to all the contacts with a 
URL. 

2008 Infojack[25] Windows Trojan It comes with installation packages and disables 
the security settings of the device. 

2009 Ikee and Duh 
[17] 

iPhone Worm  This malware used Cydia app distribution system to 
attack jailbroken iPhones, If default password is not 
changed after installing the security shell (SSH).  

2010 FakePlayer[14] Android Trojan First ever Trojan malware in Russia that makes 
money by sending SMS to premium numbers.  

2011 DroidDream[19] Android Rootkit  It attacks on Google Play store by publishing more 
than 50 applications that contained a root exploit 
activities. 

2012 Zitmo[19] 
 

Windows Botnet A bot and banking malware Zeus improved to snip 
mobile transaction authentication numbers 
(mTANs). 

2013 MasterKey[19] Android Trojan This malware inject malicious code by putting itself 
as legitimate application.  

2014 DownAPK[19] 
 

Windows Trojan A malware causes to install fake banking 
applications by using Android debug bridge (ADB). 

2015 Gazon[19] 
 

Android Virus It spread himself through text messages and send 
a link to users to win gifts of $200.  

2016 Godless[26] Android Root 
Exploit  

It uses an open source frame work to gain root 
privilege and receive remote instructions that 
silently download and install an app that causes 
annoying apps and ads.  

2017 Bad Rabbit[27] Android  Ransom
ware 

It is distributed via drive by download and charge 
0.05 bitcoin as a ransom form victim to release its 
resources. 

2017 Judy[28] Android Adware It is type of adware that activate by auto clicking 
and generate handsome amount from 
advertisement.  

2017 GantSpy[29] Android Trojan It acts as a useful application such as update 
Facebook, Android settings and they target images, 
contacts, call history and text messages.  

2018 RedDrop[22] Android Spyware It is a spyware found by the security researcher of 
Wandera in almost fifty three applications that can 
steal user information such as device information, 
record audio, images, files etc.  

 
The popular mobile malware types are the following that are versatile in nature such as: 
 
VIRUS:  A piece of code that has an ability to replicate itself and spreading to various applications on 
device is known as virus. Viruses often spread by attaching themselves to various programs followed by 



execution of code whenever a user initiate any septic program. Viruses propagate in system with the help 
of documents, script files, and from vulnerabilities in web applications. In some cases, viruses depend on 
human activities to launch themselves by opening any infected file or through running a program. Viruses 
causes different types of attacks such as snip information, steal money, damage host networks and 
computers, create command and control (C&C) activities , and others [30]. Dust, Lasco, Cardblock, 
CardTrap and Crossover [31] are examples of mobile viruses. 
WORM: A worm is a piece of code, capable of replication and spread over computer networks from device 
to device without any human intervention [30]. Worms can contain “payloads” that damage host device 
and even it destroyed host networks by utilizing bandwidth and create congestion on web servers. 
Generally, payloads steal user’s data, delete files from system and create botnets. Worms can be spread 
by opening an infected email attachment. Some known worms for smartphones are  Cabir, CommWarrior, 
Feakk, Letum, Mobler, Beselo, Pmcryptic, Yxe, Ikee and ZeuS MitMo [31]. 
TROJEN: A type of malware that shows itself as a benign application to attract users to download and 
install malware is known as Trojan. In this type of malware, attackers gain remote access to steal data, 
money, delete and modify files, create variants of malwares, keep an eye on user activities as monitor 
screen and their logs etc. The Trojans that penetrated in mobile market are  
MasterKey, DownAPK [19], GantSpy [29] etc.  
ROOTKIT:  A type of malware that gain remote access and control a device to exploit users known as 
rootkit. Rootkit consist of a dropper, loader and rootkit itself to do harmful action. It gains administrative 
access to install different malicious activities as steal information, disturb normal routine of system, apply 
changes in system, causes to alter system configuration etc. Once rootkit installed in computer it runs on 
every boot up. Due to secret operations of rootkit, it is difficult to identify and remove from system. As 
rootkit used obfuscation to hide their presence that’s why it remains in system for a longer duration. 
Moreover, Check point [32] researchers found a rootkit HummingBad that installed deceptive application 
on mobile to stole credentials and generate fake ads.  
BOTNETs: Bot is software program created to give an attacker, a remote access and control over the 
operations of infected device without user’s consent. Bots become part of botnets, which consist of 
number of computers to be controlled by botmaster. It is evolving to become a severe security threat 
because bonnets launch distributed denial of service (DDos) attacks, web spiders that hack the server 
data, malware masquerading on famous sites and spam bots that gathers information. DoubleDoor, 
DrakSky, jenX, Zyklon and Tofsee are the well-known examples of botnet  malware[33].  
ADWARE: It is an advertising-supported malware that is specifically designed to deliver advertisement to 
users spontaneously. Adware consist of advertisements and pop up ads that shows on websites. 
Generally, adware distributed as free of cost while in some cases advertisement companies sponsor them 
and generate revenue. Adware is only designed to deliver an ad, by clicking on ads, adware activates and 
steal information or track user activities. Moreover, RiskIQ [34] reported that, 14,758 android applications 
are flagged as adware in Q4 2107. Gunpoder, LightsOut, RottenSys, Judy and Skinner [35] are the examples 
of android Adware.  
SPYWARE: A type of malware that monitor user activities without users consent. These activities consist 
of collecting key logs, screen watching and steal accounts information. Spyware create interference in 
network settings by changing its security operations. Spyware attach themselves with genuine software 
or in Trojans to exploit vulnerabilities. Acallno and FlaxiSpy are known as spywares in smartphones. 
RANSOMWARE: A type of malware that did not release computer resources until victim pays some money 
as ransom. Ransomware causes to lock computer that leads to restriction on entry and encrypt files and 
display messages to force users to pay money. After payment ransomware malware will release the 
system. According to Symantec report [36], there is a 36% increase in the ransomware attacks and its 
hundred new malware variants are introduced in year 2017. Some common examples of android 
ransomware are Simplocker, Xbot and adult player [37].  



BACKDOORs: Backdoors are type of malware that intended to set grounds for other malwares by opening 
a backdoor onto a device. It works as helper to other malicious activities by providing them a network 
connection to enter and snip information. Brador [38] a first ever malware that opens a backdoor in 
windows mobile. 
KEY-LOGGERS: The malware that records everything as user type on system, in order to gather their log-
in details and other subtle information and send it to the key-logging program. Key-loggers typically used 
by various organizations to obtain information related to computer usage. Flexispy [39] is a well-known 
spyware  that keeps log of smartphone usage. 
Consequently, in figure 2 we elaborated common malware types with their file type, origin, infection, 
propagation, etc.  Moreover, we discussed mitigation techniques that are used in literature. Host based 
and network based intrusion detection system like (IPS) [40] methods are followed in earlier mobile 
malware mitigations.  The purpose of this system is to block malicious content and unauthorized users.  
Likewise, other mitigation techniques as Scandroid [41], SMARTbot [42], HOSBAD [43], and SAMAdroid 
[44]  etc. are described in sub section 4.1.1 and sub section 6.1. Additionally, six easy steps are defined, 
how to stay away from mobile malware in figure 2.   

 
Figure 2: Mobile Malware timeline with easy steps for protective measures 



3. Mobile Malware Attack Vector   

This section elaborates the different characteristics of mobile malware attack vector that leads major loss 
to mobile users in terms of threat cluster, diverse kind of attacks, loop holes and operational impact as 
depicted in figure 3. Furthermore, a detailed description of figure 3 with state-of-the-art detection 
techniques are discussed in below sub sections.  
 

3.1 Threat Clusters 
Android employs security mechanism by providing the sandboxing feature. More ways are adopted by 
malware writers to manipulate the vulnerabilities in Android OS and network.  At the time of application 
installation, it provides the user with a list of all permissions for granting access to resources and other 
apps data if there is a need for inter-app communication. The user can judge the malicious intent of an 
app if it requires such permissions that they are not needed. However, a naïve user often tends to ignore 
this safety mechanism. The applications may use permissions to grant malicious intentions. 
Android is an open-source operating system, the vulnerabilities are exploited by the malwares to gain 
access to the device and fulfill their destructive intentions. Spywares are malwares that are intended 
towards gaining access to user’s private data including their login information and passwords. Malware 
collect and send the data to remote devices without user’s consent. Similarly, malwares intended to 
disrupt the actual functioning of the device, consume device resources including processor, storage and 
network resulting in high power usage of the device. The network may also be compromised by the 
malwares that causes too much network traffic either by sending data to servers or distributed denial of 
service (DDoS) attacks. A compromised smartphone may even causes to send premium charged SMS 
without user’s consent. Therefore, we have classified threats into five categories that is posed by 
malwares in smartphones as shown in figure 3.  
 
 
 



 
Figure 3: Mobile Malware Attack Vector 

Permissions are basically acted as a firewall between the user and mobile applications that are used to 
protect the system in security point of view. In android OS all the permissions contain in 
AndroidManifest.xml file. Permissions are usually classified into three classes(a) normal, (b) dangerous, 
and(c) signatures[45]. Most of dangerous permissions are WRITE_EXTERNAL_STORAGE, 
READ_EXTERNAL_STORAGE, SEND_SMS, WRITE_CONTACTS etc. that causes an invasion for users. 



Similarly, in the work of aung et.al [46] performed static analysis to detect the malware from permission 
based features.  Another author [47] find out hidden permissions that sends short messages without user 
knowledge. Currently, smartphone vulnerabilities are increased as well as its adoption rate. The 
vulnerabilities in android phone occurs due to system flaws, connecting to unsafe internet connection and 
lack of user awareness[48]. Similarly, diverse kinds of weaknesses that leads to storage access, call, SMS, 
database, intents and in web view. Further, authors [49] detect the vulnerabilities in database of Cam 
Scanner and Clean master applications. 
The private information comprises three different types of information i.e. social networking, sensitive 
and identification. The social networking information consists of e-mails, short messages, phone book etc. 
Furthermore, sensitive information includes credit card number, passwords, browsing logs, pictures and 
identification information having contacts, location, phone version, and IMEI etc.[7]. In the work of [50] 
authors performed experiment on smartphone numeric touchpad that is used by attackers to initiate 
keystroke inference attacks and they gain sensitive data though touch. If android smartphones are not 
protected it will be extremely vulnerable to be exploited. Recently, another researcher proposed a model 
Hybridroid [7] based on static and dynamic analysis that detect privacy leakage with the 97.8% precision 
in android applications. In addition DECIM [51], assure additional safety layer even attackers bypass the 
security of all keys in message transfer protocol.  
The grabby android applications [52] that drain mobile phone resources in which battery, storage, CPU, 
memory and data are vibrant. According to Avast android application report [53] over 50% users did not 
discriminate among frank and fake applications. DevScope [54], is an energy efficient and dynamic power 
model for android smartphone that is based on BMU (Battery Monitoring Unit) to measure the power 
consumption. Moreover, security of android devices compromised and hacked by malicious Wi-Fi 
networks. As a result, Google introduced the security layer to analyze the applications before it is placed 
on the Google play store named as Bouncer [55]. In this context, a lightweight method DeDroid [56] is 
proposed that have an ability to detect the C&C related botnet mobile malwares.  
Besides this, a famous method in which most of malicious applications send premium rate SMS messages 
and phone calls without user knowledge that causes the financial loss to the user. In that way, botmaster 
generate the revenue from it. Malwares tries to automatically subscribe users at the premium rate 
facilities[57]. Furthermore, another malware detection approach MADAM [5] is used to fruitfully identify 
the android malware families that financially charge the users.  

3.2 Cybersecurity Attacks  
With the passage of time, android malware is continuously growing and implement diverse methods to 
threaten the users.  Correspondingly, proliferation of cyber security attacks in smart devices is the major 
challenge for organizations. Forensic experts are widely deal with cyber security threats. The great 
destructive threats of cybersecurity are ransomware, DDos, internet of things (IoT) devices and phishing 
etc. In below paragraphs, we deliberated various kinds of cybersecurity attacks along with their detection 
techniques.  
Android applications furtively steal users information as new malware RedDrop [58] found in fifty three 
applications that causes to snip contacts, pictures, Wi-Fi information, device and SIM data and record 
audio. In this context , a HybriDroid model [59], is designed to detect data trickle in Android applications. 
As it covers dataset of multifarious android apps that causes data leakage during inter and intra app 
communication by analyzing applications in hybrid manner. Moreover, an app is developed named as 
MoleDroid [7], to detect malicious behavior from network flow that causes to steal users information. 
Consequently, it shows 99% true positive rate for detecting the information theft in network flows. 
Another risky attack is botnet, the word “bot” and “net” derived from robot and network separately. In 
botnet attack, the invader breaches the security of all connected nodes of the network. A botnet attack is 
controlled by botmaster. The connection is established between botmaster and compromised network 



through heterogeneous protocols that include Peer to peer (P2P) and Hypertext transfer protocol (HTTP). 
Furthermore, botnet launch attacks such as Distributed Denial of service (DDOS), Remote Access and 
Short message service (SMS) via Command and Control(C&C)[60]. Whang et al.[61] presented a Venn-
abers predictor for botnet detection in network traffic flow using K- Nearest Neighbor (KNN) and kernel 
Density Estimation (KDE) as an underlying scoring classifiers. Similarly, it covers the network traffic flow 
features as HTTP, IRC, and P2P that relates to botnet families. Another approach defined by da Costa et 
al.[62] in which they dynamically analyze the thirteen botnet families that having feature of API calls. 
Consequently, it provide 86% precision and 88% recall in 500ms time window. 
Mobile banking relates to the online banking in which transaction done through android applications. 
Recently, Avast team cooperated with ESET and they examined the new version of malware known as 
BankBot [63]. They reported that, Bankbot consist of multiple malware variants that steal login 
credentials, money, slink into google play store and target the large banking application such as Diba, 
CitiBank and Chase [63].  Bojjagani et al. introduced a threat model VAPTAi [64] , that identify and detect 
the vulnerabilities at communication level of mobile banking applications. In an addition, they analyze the 
risky behavior of applications that is based on android and iOS. Correspondingly, another application that 
analyze the risky behavior of android applications at different levels with low, medium and high is named 
as MAETROID [65]. In this experiment, analysis is performed on 11,046 android applications in which both 
benign and malicious applications are included, collected from google play store and Genome identically. 
Consequently, the risk analysis app categorized them into good, bad and infected app based on their user 
ratings, number of downloads etc. Likewise, researchers [66] performed experiments on selection of 
mobile apps based on privacy priming which included self-relevant priming and other factual priming 
questions. As a result, users select an application on basis of user ratings. Furthermore, attackers gain 
access into the opcode that causes root exploit and steal private data [67]. DroidExec [68], a novel 
approach based on bipartite graph is designed that effectively detect root exploit malware families.  
Ransomware is a form of malware in which attacker demand money from users to release their hacked 
system resources. It performs malicious actions such as steal users’ information and lock the device to 
collect ransom from victim. A survey [69] states that around 4000 ransomware attacks launched every 
day and at the end of 2019 it will initiate after every 14 secs. In addition, to detect ransomware, maiorca 
et al. [70] proposed R-PackDriod that is based on a machine learning technique and efficiently marked the 
malicious application. Another approach [71] is applied to detect ransomware that uses HelDroid and 
google play store datasets to perform analysis on it.  Finally, they achieved 100% detection rate that 
successfully discriminate between ransomware malware and trusted applications.  
Malware such as shedun [72] is from adware family that automatically download and tries to install other 
malicious applications without users consent. It displays malicious ads to attract Android users with 
interesting features. In addition, RoughTed [73], a malware that bypasses the security of Ad-blocker. 
Similarly, an android app KS Clean[74] revealed fake system update pop-ups on screen. By clicking on 
them leads to exploit device vulnerabilities. In this context , Sanders et al. [75] identified six at risk 
permissions under the google automatically update policy that causes privilege escalation.  

3.3 Loop Holes 
In this section we will discuss loop holes as Android system grounds different vulnerabilities because users 
do not recognize the difference between original and fake applications. They compromised the security 
threats that causes different types of attack. Users blindly trust third parties and install fake application 
without understanding the requested permission from an application. In that way, attacker’s record user’s 
personnel information and misuse them. However, basic social engineering attacks that included: 
phishing, vishing, smishing and pharming are the common types of fraud that uses to steal sensitive data 
of users and gain profit. These terms are inter-related but there is a difference between their attack 
method and usage of medium. In phishing, an e-mail is sent to the targeted user from any authorized 



company or from bank and notify them to update their sensitive information such as passwords, credit 
card numbers, username, pin code etc.  As a result, couple of solutions are available against phishing 
attack such as install email virus detection software, educate employees of organization, assign least 
privileges etc. [76]. 
In the work of [77], they described connection between these social engineering terms as vishing is a kind 
of phishing done through voice or phone calls. On the other hand, smishing is a phishing that initiate attack 
by short message service (SMS). Similarly, authors [77] unveil common practices involved in phishing as 
drive by download, man in the middle, javascript obfuscation etc. Furthermore, in pharming a malicious 
code is installed on the victim’s device and redirect clicks to another fraudulent website without users 
assent. In order to mitigation these attacks, two factor authentication (2FA) method is frequently applied 
by couple of organizations in which passcode is send on customers number to ensure its real identity [78]. 
Nevertheless, 2FA method is not sufficient as malware writers bypass this security mechanism reported 
by Wandera [79].  
Subscriber Information module (SIM) is a tiny card that holds memory and facilitate users in 
communication. This module works on the Data Encryption Standard (DES) algorithms that is made by US 
government several years ago. In addition, DES is an old algorithm that did not meet with new security 
challenges that’s why new robust kind of algorithms is required, that cope with recent security challenges. 
Attackers gain unauthorized access to the system that causes illegal activities. In access control, they gain 
extra advantage and find weaknesses from the system to perform malicious actions. As multiple malware 
attack vectors they try to gain access due to having some existing design flaws in the system such as 
vulnerabilities, open and unsecured system ports, unsafe network communication, unsatisfactory 
certifications etc. Recently, US Federal Bureau of Investigation (FBI) [80] announced legal notification for 
manufacturers if devices were found inadequate security measures. Furthermore, Unified Extensible 
Firmware Interface (UEFI) [81] provides a boot loader that is capable of unveiling different type of OS. It 
is not only for windows, as well as for mobile devices. By the rising rate of mobile users, it needs powerful 
security mechanism to fulfill emergent security challenges. Vendors faced major encounters in execution 
when they did not properly implement the secured boot loaders.  

3.4 Operational Impact 
Mobile malware attacks leave their impact on host and in form of Denial of Service (Dos). On the host it 
causes data theft, privacy issues, location identification, and root exploitation. Once attacker gain access 
in roots it can control all the system and generate any kind of attack. Moreover, malwares exploit the 
vulnerabilities in old security systems. In this case, easiest solution is to update the security patches of 
software’s. Similarly, mobile malware drains the battery and causes CPU consumption. Different 
applications such as snapchat, tinder, Microsoft outlook are killing your battery life and keep running in 
background [52]. In denial of service, attacker makes all the available resources inaccessible for users, it 
may show the limited resources and compromised content. Furthermore, distributed denial of service 
(DDos) attack launch through botnets by sending heavy traffic on multiple nodes that are connected in a 
same network. Attackers gain backdoor access and compromise many IoT devices with DDos attack. In 
the work of, Ashraf et al. [82] deals with DDos attack to mitigate them by using machine learning methods 
comparatively.  
 

4. Taxonomy of Mobile Malware Detection 
This section comprehensively diagnosed different aspects of mobile malware detection methods as 
presented in figure 4. We have classified this domain knowledge in terms of (a) working environment (b) 
data generation and (d) analysis mechanism in detection process (i.e. data acquisition). Furthermore, 
malware detection approaches relies on analysis types such as (dynamic, static, and hybrid) and evasion 



techniques frequently adopted by malware writers. Each head gives the lengthy description about android 
malware detection schemes i.e. different analysis methods used for malware identifying purpose.  
 
 

 
Figure 4: Mobile Malware Detection 



4.1 Mobile Malware detection Approaches 

This section illustrated the mobile malware detection approaches which are divided into three main 
categories (a) structural or static analysis (b) behavioral or dynamic analysis and (c) hybrid analysis to 
examine code and behavior of applications at runtime. These approaches are available for detecting 
malicious intentions and other security threats. Furthermore, we analyze existing studies based on 
malware detection techniques that covers main idea, proposed detection method, strengthens and their 
weaknesses.  

4.1.1 Structural or Static Analysis 
Static analysis (structural analysis), is a tactic of performing applications inspection by examining the 
program code without execution. The process provides an understanding of code structure and can help 
to understand the functionality it will perform. Code coverage is maximized in this approach as it involves 
the analysis of source code only. Another advantage of static analysis is that it reveals malicious intentions 
without paying the price of being noticed in actual execution and facing losses. However, this approach is 
highly ineffective in the presence of code obfuscation and dynamic code loading [83]. In static 
investigation method many applications suffer from challenges such as event-driven android application. 
 The issues to be kept in mind for achieving effective results are [84],[85] :  

(i) Multiple entry points to each app  
(ii) The chances of multiple simultaneous, asynchronous app components execution 
(iii) Event of frequent callbacks due to the applications development stages  
(iv) Involvement of both intra-app and inter-app ICC 
(v) Java reflection, obfuscation and native code are also there as a big challenge  

 

 
Figure 5: common steps of Static Analysis with existing tools  

In figure 5, we presented well known steps as (a) datasets (b) reverse engineering tools (c) extracted 
features (d) result files (e) machine learning phase and finally malware detection model achieved. 
Likewise, we discussed famous static tools that are used in existing researches randomly. Grace et al. 
presents RiskRanker [86] with a pro-active scheme to spot zero-day malwares. It performs two-order risk 
analysis. In very first step, its purpose to determine non-obfuscated implementations that activate (a) 



known root, (b) illicit cost of creation, and (c) attacks on privacy leakage. RiskRanker scans native binary 
files for root exploit signatures for identifying known root exploits. It then checked for privacy leakage 
detection by employing slicing method to verify any information that sends to any connected nodes that 
relates to reveal personal information readings. Moreover, it uses a set of heuristics techniques that helps 
to uncover evasion process such as encryption or dynamic code loading and java reflection which could 
not detected in very first step of proposed method. Experiments of this approach is based on 118,318 
apps, which is collected from various third party application markets. Consequently, RiskRanker 
successfully detected 718 malwares, which relates to twenty-nine malware families and 322 zero-day 
malware attacks are included. However, RiskRanker has some limitation as it uses heuristics at second 
stage rather than in first step, that’s why malwares easily escape in first detection process. 
Fuchs et al. presents SCanDroid [41] incorporating automatic reasoning by applying modular incremental 
model about the security of Android applications. ScanDroid analyze data flow process of android 
application that is based on formerly settled language security model. It compares security mechanism to 
the analyzed manifest files and then decide whether it is consistent with required specifications or not. 
However, the approach was tested on some test cases thus it lacks to perform experimentations on real-
time test scenarios. 
Yerima et al. [87] developed and analyzed machine learning methodologies based on bayesian 
classification to reveal zero-day malware in a proactive manner via static analysis. The authors analyze 
one thirty one permissions from the manifest file. Baksmali undoes .dex files into manifold files .smali files 
each containing only one class evidence. The files extracted related properties subsequently used to build 
the Bayesian classification-based models. The experiment comprised of 2000 Android apps; 1000 benign 
apps, 1000 malwares (from 49 known families) from Android Malware Genome Project, out of which 1600 
samples (800 each) were used for training, while 400 (200 each) for testing. In addition, 5-fold cross 
validation was performed to show that accuracy to be 0.9 for permission-based model, 0.92 for code 
property-based model and 0.93 for mixed attributes model showing the last classifier model as the most 
promising one. However, constructing a feature vector to include all features is highly resource 
consuming.  
Arzt et al. introduced FlowDroid [84] that perform static analysis to detect malware from android 
applications. It performs proper handling of callbacks invoked by the Android framework whereas analysis 
on data flow, context, objects, and field-sensitive data results in reduction of false alarms. Similarly, it 
models Android applications lifespan states and handles taint propagation due to user interface objects 
and callbacks. Moreover, innovative on-demand algorithms help FlowDroid to preserve high time 
proficiency and accuracy that gives a full open-source implementation. Experimenting FlowDroid on more 
than 500 benign applications from Google Play store and about 1000 malware applications from the 
virusShare confirms superior precision and recall as 86% and 93% respectively. While applying an inter-
procedural dataflow analysis, FlowDroid does not track ICC-based (inter-components communication) 
dataflow for applications. In the work of  [88], they introduced Amandroid approach that significantly 
track the ICC but does not deal with reflections and concurrency.  
In the work of Wu et al. [89] proposed a static feature-based system DroidMat, meant to extract 
illustrative configuration, API call traces and permissions. The study involved malicious samples from 
Contagio dataset [90]. It deploys clustering algorithm for intent messages, K-Means to improve malware 
modeling ability and k-NN algorithm to classify applications as benign or malicious. Consequently, the 
recall rate and predicted efficiency of DroidMat proved to be significant by achieving 97.89% accuracy. 
Another study by Samra et al. [91] focused their work towards apps in business and tools categories. The 
permissions that governs access to resources are about one hundred thirty. Other than permissions and 
the features extracted from manifest file are application name, category, description, rating value, price, 
etc. are also observed.  
 



Schmidt et al. [92] performed static analysis particularly focusing on worms, and presented on-device 
solution to malware detection that can be benefitted from remote server for heavy-weight learning 
process. Moreover, Arp et al. [93] presented Drebin as a light-weight yet effective analysis framework that 
can give explanatory results. The features to be analyzed were taken from manifest file and disassembled 
code. Drebin was evaluated to be remarkable with 94% detection accuracy, ignorable low false positive 
rate of 1% and very efficient for on-device analysis.  
Apposcopy was presented in research by Feng et al. [94] which was based on semantic approach by 
classification on the basis of data-flow and control-flow features from the manifest file. The malware 
focused were Trojans that caused private data stealth. Apposcopy’s detection accuracy for known 
malwares was 90%. Furthermore, Huang et al. [95] evaluated various machine learning classifiers and 
deduced that C4.5 and SVM are better for precision. However, Naïve Bayes causes higher recall rate.  
In the work of  Chakrade et al. [96] presented MAST that practice multiple correspondence analysis (MCA) 
to direct the limited resources for malware detection towards potential apps that exhibit malicious 
behavior. The extracted features include permissions, Intent filters, zip archives, and native code. This 
approach generates ranking faster than any light-weight analysis. It was designed for specific purpose that 
only relates with extensive apps in markets. However, it fails to judge and rank zero-day malwares. A 
signature-based mobile botnet detection algorithm with the basic factor as Bayesian spam filter 
mechanism was suggested by Vural et al.  [97]. The writers evaluated the system to be able of recognizing 
87% of spam message from given dataset. Another study by Aswini et al. [98] offered a static analysis 
mechanism DroidPermissionMiner for the detection of malwares by analyzing permissions of an 
applications. The study involved analysis of 436 applications files and mined specific features that are 
related to malicious activities. The proposed model classified the apps based on machine learning 
classifiers. Moreover, DroidAPIMiner was proposed by Aafer et al. [99] to detect malwares based on the 
frequency of API calls by each application. It was concluded that the rate at which APIs are called in 
applications is 6% larger in malware than in benign applications. As K-NN, a machine learning classifier 
was used to evaluate the performance level.  
Most prominent features that are used in literature such as Yerima et al.[100] describe the static features 
such as permissions and commands to detect the notorious malware from android applications and 
achieved the 95.8% detection accuracy by using the machine learning classifier. In the work of [101] , they 
proposed a Droid Detective approach that analyze the requested permissions in benign and malicious 
applications. Permissions are declared in androidmanifest.xml file that needs to invoke to run an 
application properly. Specifically, some permissions such as INTERNET, ACCESS_NETWORK_STATAE, and 
READ_PHONE_STATE are used in both normal and malicious applications. Conversely, some permissions 
such as WRITE_SMS, RECEIVE_SMS, SEND_SMS, and READ_SMS that are mostly invited by the malwares 
but hardly in benign apps. In this way, malicious application sends premium rate message without user 
interference that causes major financial loss. Hence, Droid detective boost the system security and 
experimental results shows 96% malware detection rate.  
In the study of Egele et al. [102] offered a CRYPTOLINT tool that uses static method for examining 
cryptographic features and hooks common misappropriation of cryptography in android apks. The 
analysis is performed on 11,748 android applications in which result shows 88% of applications used 
cryptography unsuitably. Correspondingly, Chatzikonstantinou et al.[103] investigated forty nine android 
applications in static and dynamic manners that uses cryptographic operations. Accordingly, results 
indicated 87.8% of the applications exploit cryptography feature. Besides, X-ANOVA [104] method analyze 
opcode and detect malware with the accuracy of 88.30 percent. As compare to, dynamic analysis it is cost 
effective solution to analyze the android applications. The obfuscated techniques are used by malware 
writers to hide from detection mechanism, in that way dynamic analysis is necessary. Consequently, in 
table 2 noticeable static feature are defined that are used in literature to effectively detect android 
malware. 



 

Table 2: Summary of Prominent Static Features by Existing Approaches 

Categories File Features Ref 

Permissions AndroidManifest.xml Packages, permissions, strings [87] [101] 

Intents - intent_filter, broadcast_receivers [101] 

Resources Resources.arsc Interesting strings [91] 

Hashes Other files Hash keys, md5 [102] 

Cryptographic 
operations 

.xml Data encryption, cp_traffic, 
uses_crypto, uses_reflection,java 
packages  

[102] [103] 

Bytecode, opcode .class - [104] 

4.1.2 Behavioral or Dynamic Analysis 
Dynamic analysis is the method of evaluation of a program by implementing it in run-time. The purpose 
is to find the behavior of a particular app while it is being executed. The app is observed by actually 
executing it either on a real device as actual execution or on a virtual environment as the Android Virtual 
Device. Dynamic analysis is dominated to identify behavioral features for Android apps, yet there is many 
challenges existed, as event triggers, Android’s managed resources, and Binder-based ICC. These are the 
some more challenging facts in context of dynamic analysis that are applied on applications and analyzed 
in virtual environment due to following considerations: 

(i) Time constraints on executing and observing the behavior; 
(ii) Simulation of graphical user interface response and actual system events; 
(iii) Malicious apps attempt to avoid Android virtualization; 
(iv) An enormous number of apps to be assessed by detection system 

 

  
Figure 6: Common steps of Dynamic Analysis with existing tools 

 
Aforementioned figure 6 illustrated that common steps and existing dynamic malware analysis tools that 
were used by researchers commonly in detection mechanism. Andromaly [105], is an on-device dynamic 
analysis framework was proposed by Shabtai et al. and It is based on processors with machine learning 



capabilities performing the analysis of running apps to decide the threat level also select the action to be 
performed. Authors evaluated the system on self-written malware samples, therefore lack in the observed 
behavior of various actual malwares penetrating the market. 
A varying approach with an automatic VMI-based dynamic analysis system presented by Tam et al. [106] 
is CopperDroid capable of automatic and accurate reconstruction of an applications behavior. It generates 
detailed behavioral profiles to provide intuitive behavioral properties. Its performance was evaluated on 
more than 2900 malwares samples from the real world. Similarly, a framework Andlantis [107] proposed 
by Bierma et al. is a virtualized environment with artificial network data in order to closely replicate a 
physical device. System calls, forensic footprint left by malware families, runtime behaviors and network 
traffic of apps are parsed for anomalous behavior. Andlantis is a scalable dynamic analysis system as it 
can process over 3000 apps per hour by employing minima for parallelism. 
The study done by Amos et al. [108] aimed to perform a comparative performance of various machine 
learning classifiers for dynamic analysis of apps. The study profiled 408 benign and 1330 malicious apps 
and extracted 6832 features vectors from them for analysis. A feature vector collection framework known 
as STREAM which allocates the collected feature vector to various emulators and android devices on the 
cloud for analysis using different ML-classifiers. The authors evaluated Bayes Net to be the best and 
logistic to be the worst among malware classifiers. Crowdroid [109]  system introduced by Burguera et al. 
that mainly focused on detection of Trojan horses. The authors proposed a framework in which the 
response is collected from infinite number of real time users by crowd sourcing. Furthermore, the 
collected data is analyzed with the help of numerous deployed servers. Another theme of this work is to 
monitor initiated system calls and applies 2-means clustering algorithm to identify app as malicious or 
benign. The authors tested the proposed system on real malwares along with three self-written malwares 
and evaluated it to be promising. 
AppsPlayground by Rastogi et al. [110] performs kernel-level checking, dynamic taint tracing and API 
monitoring. Moreover, it sets identifiers and data that are device related, causes to reduce sandbox 
detection. Event triggering and smart implementation techniques are implemented for comprehensive 
execution coverage. AppsPlayground is evaluated to achieve a code coverage of 33%.  An efficient 
dynamic method DroidScope [111], used to analyze native code and events that based on three layers 
such as hardware, Dalvik and Linux. Furthermore, it can analyze APIs how they interact with system and 
two well-known android malware families: DroidKungFu and DroidDream.  
Another study DroidDolphin presented by Wu et al. [112], a framework that comprises four stages: (a) 
pre-processing, (b) emulation and testing, (c) feature extraction and (d)machine learning. It collects run-
time logs and traverse’s applications code path.  With the training dataset of 32000 benign and 32000 
malicious apps and 1000 of each as test dataset, DroidDolphin evaluated to give estimated accuracy of 
86.1% and F-Score is 0.86. Moreover, Alam et al. [113] aimed at applying Random Forest classifier for 
behavioral detection by observing features regarding permission, battery, CPU and memory usage, binder 
API and network. Experimental results based on 5-fold cross validation method in which Random Forest 
to be satisfying with an accuracy of over 99% with a training dataset of 407 benign and 1330 malicious 
apps and 48919 samples used as test dataset.  
TaintDroid is a dynamic taint tracking system to detect privacy violations in Android was offered by Enck 
et al. [114] with four granularities of taint distribution (a) methods, (b) message, (c) variable and (d) file 
level. TaintDroid marks sensitive data that is likely to be leaked through untrusted apps. Furthermore, its 
main objective is to mark septic data before leaving the taint sync. It revealed that every two out of three 
apps used sensitive data suspiciously. However, the scope is limited for the proposed system as it lacks 
tracking of implicit control flows because of performance overhead. In an addition, a dynamic analysis 
with help of sandboxing proposed by Desnos et al. [115] can effectively analyze Android applications but 
excluding those which are released before Android version 4.2. Moreover, droidBox and taintDroid are 
available as open-source projects.   



Another dynamic analysis based approach VetDroid [116] given by Zhang et al.  influences TaintDroid and 
implement permission-based analysis by executing applications in secure sandbox. The permission 
analysis module mines all permissions and highlight the connection between them which is then used to 
generate a Function Call Graph (FCG), for identifying malware. Analysis on 1,249 sample apps in store, 
VetDroid identified more privacy leaks than TaintDroid and points out the leaks details in context of 
permission used by different applications.  
Livadas et al. [117] applied machine learning classifiers to detect botnet traffic in two stages. First stage 
distinguishes between IRC and non-IRC traffic, then comes the next stage to differentiate between real 
and botnet IRC traffic. The authors are concluded that Naïve Bayes performs best. Another study to 
evaluate the performance of machine learning classifiers was done by Narudin et al. [118] using 1000 
malware samples of forty nine Android families from Genome Project along with 50 more apps from other 
random markets. The authors found Random Forest classifier as a best classifier with 99.99% detection 
accuracy. Moreover, lightweight system that recognize the dynamic behavior of an application called 
DroidLogger by Dai et al. [119]detects suspicious behavior using instrumentation by logging program APIs 
and system calls along with their comprehensive arguments.                             
Another approach that is used for network-based anomaly detection established on analytical modeling, 
simulating, learning, accompanied with the billing and control-plan data for anomaly-detection was 
presented by Abdelrahman et al. [120]. Furthermore, the malware detection performed in the research 
by Andrewset al.  [121] made a virtual lab environment for emulating  environment to analyze and detect 
malware. A malware detection technique which is based on traffic flow analysis by Shabtai et al. [122] 
specially designed for applications with self-updating capabilities. The classification algorithms REPTree 
and Decision Table were implemented to classify applications as malicious or not according to 
predetermined legitimate traffic patterns. Portokalidis et al. [123] emerged with a concept of remote 
server for the first time in malware analysis as Paranoid Android. The authors investigate reconstruction 
concept during application execution. The device records and sends a nominal execution trace to the 
security server which then replays the execution traces to perceive any potential malware. 
Dynamic features that are frequently used in literatures such as DroidRevealer [124], a light weight 
approach that operate on the kernel level features and monitor the system level calls to detect the 
malicious behavior. This technique is divided into three stages, first it monitors both OS level and app level 
behavior. Second, Linux kernel that is lowest level of android architecture and has peak privileges. So, that 
was problematic to analyze the applications at this level due to low level application details. In third level, 
the DroidRevealer can run on real devices to detect runtime behavior. Finally, it shows the concrete results 
in form of graphs with detection accuracy. Furthermore, Zaman et al. [125] analyze the network traffic by 
generating the URL table that way all application communicate with the remote server. They analyze the 
features of .pcap files and match the URLs with blacklisted domains to get the appropriate results. 
Similarly, MoleDroid [7] detect the malicious behavior from network traffic that consist of outgoing, 
ingoing and complete flow of data. Furthermore, the result shows 99% true positive rate to detect the 
information theft in network flows. In the study of [62], they dynamically analyze the System calls 
attributes such as read, write, network operations, and directory operations to detect the mobile botnet. 
Consequently, the botnet detection rate shows the 86% and 88% precision and recall respectively in 
500ms time window frame. In table 3, we described dynamic features that are mostly used in literature.  
 

Table: 3 Summary of Prominent Dynamic Features by Existing Approaches 

Categories File Features Ref 

API Calls .json, .xml getConnect(),getWifiState(), 
getConnectionInfo(), 
getCellLocation(), 
getDeafult(),getSubscriberId()  

[62] [126] [44] [127] 



Network 
Operations 

.xml,.json TCP size, Duration, outgoing, ingoing 
and complete data flow  

[62] [7] 

File Operations .xml,.json File read, write, file leaks [59] [116] 

Running Services .xml,.json  started_services - 

Network traces .pcaps Source IP, destination IP, host, port, 
path 

[125] 

System Calls Classes.dex classes, fields, methods, 
prototypes, types, strings 

[62] [107] [109] [128] 
[129] [130] 

 

4.1.3 Hybrid Analysis (Static & Dynamic) 
The basic theme behind hybrid analysis is to combine the features of static and dynamic analysis that 
relates to examining code and behavior of an application as depicted in Figure 7. Similarly, It shows that, 
hybrid analysis overlays the parameters of static and dynamic analysis. Researchers used Static and 
dynamic tools such as androguard [131], APK inspector [132], Droidbox [133], Sandroid [134], and 
Tracedroid [135] specifically to extract features from applications as we discussed in mobile malware 
detection approaches. Although there is fewer research is available in literature in detection of mobile 
malware that uses hybrid analysis method. The detection accuracy of malware is higher in hybrid analysis 
as compare to adopting static or dynamic method.  
A HybriDroid model [59] that uses both static and dynamic analysis techniques to detect data leakage in 
android applications. In that way, static analysis examines the source of an applications that causes data 
loss. On the other hand, dynamic technique monitors behavior of an application at the runtime to detect 
the malware. At the end, authors compare this model with IccTa [136], DroidGuard[137] and DroidBox 
[133] tools that proves its effective performance.  
Similarly, Spreitzenbarth et al. [126] presented a Mobile-Sandbox that combines the features of static and 
dynamic methods to detect mobile malware. Static analysis monitors manifest file and decompile the 
code, whereas in dynamic analysis API calls are monitored. In the work of [129], they also adopted hybrid 
scheme to analyze the features such as permissions and system calls. The static analysis shows best results 
by using the SVM classifier as a TPR (true positive rate) of 98.68%. However, dynamic analysis depicted 
90.00% accuracy in case of system calls feature.  

 
Figure 7: Hybrid Analysis Combination of Static and Dynamic  



Moreover, another researcher [138] considered the network traffic analysis as a dynamic and permissions 
as a static feature to detect malware. Network traffic is captured by Wireshark tool that covers HTTP and 
TCP conversions. Prominent features in traffic analysis are packet size, average number of bits 
sent/received, ratio of incoming/ outgoing network bytes is analyzed to detect the normal and malicious 
application. The combined analysis of static and dynamic features evaluates 95.56% accuracy with trained 
data set of one hundred and fifteen malicious and normal applications that are collected form malgenome 
project and google play store respectively.  
In addition, SAMADroid [44] model proposed by S. Arshad et al. that is based on hybrid analysis to identify 
malevolent behavior from permissions, API calls, Network Addresses. They effectively defined the 3-level 
hybrid structure which is consist of (a)static and dynamic analysis (b) remote and local host and (c) 
intelligent machine learning techniques in context of detection and prevention methods. This model 
archives 99.07% accuracy from random forest classifier and they comparatively analyze its performance 
with MADAM[5]. 
Correspondingly, another hybrid approach [127] that deals with permissions, API calls and discriminates 
between good ware and malware applications. In this study, authors find out most frequently used 
permissions and API calls in malicious applications. The proposed hybrid method is based on the adaptive 
neural fuzzy interface system with the inclusion of particle swarm optimization. Moreover, datasets of 
benign and malicious apks are gathered from google play store and other resources identically. 
Consequently, outcome of their approach shows 89% accuracy that effectively detected android malware 
applications. Furthermore, Afifi et al. proposed DyHAP [139] approach that works in similar manner and 
used 1260 malware samples from forty nine android malware families and capture 1,000 network 
patterns. Hence, they proved optimized results by dealing with complex parameters.  

4.2 Data Acquisition 
This section describes different data acquisition means that researchers have taken to detect malicious 
behavior of android applications. Data acquisition relates to data repository that is obtained from 
different sources for experiments. Data can be analyzed statically and dynamically or in hybrid manners 
at distinct levels using real time, on line, data sets and sandboxing. 
Android applications are examined at real time to detect mobile malware. PasDroi [140], a real time 
security mechanism that notifies the user, when malware tries to breach the security. Another approach 
proposed by Ruan et al. [124] also defined the real time monitoring of android application at the kernel 
level. In addition, they presented DroidRevealer [124] that can run on real devices to detect the real time 
behavior. This approach shows concrete results in form of graph with higher detection rate.  
The prevalent dataset sources of android apks is contagio-mobile[90] having number of applications. In 
the study of [47] they taken dataset from contagio mobile dump to extract malicious features from them.  
In addition, other researchers [100] and [62] used McAfee internal repository and ICSX android botnet 
dataset respectively. Moreover, emulator is applied on applications to test their behavior and it has an 
ability to isolates applications from original android framework. Basically, it is used to dynamically analyze 
android applications. Google provided i.e. Genymotion [141] android emulator, Bluestacks, DuOS, Andy 
etc. to test applications. You et al.[142] focused on send and receive messages feature to detect SMS 
botnet by using the android emulator. Similarly, in the work of [47], they uploaded a malicious application 
on a sandbox sever to capture their suspicious behavior. In addition, island [143] provide sandbox 
environment to test android applications. 
 

4.3 Working Environment  
This section will elaborates the dissimilar options used by scientists to perform analysis and detection 
tasks. The identification and detection of malware is becoming major concern in android platform. As 
mobile malware authors target different working environments and researchers also implement their 



experiments on identical platforms to achieve required results. Different working environment includes 
platform, multiplatform, on device and off device. The two most common approaches of the analysis are 
(a) on-device and (b) off-device analysis. Similarly, another approach i.e. hybrid analysis is also used by 
existing studies.  In on-device analysis approach an “apks” is installed on Android device simultaneously 
storing the log files and network traces on the device or on the cloud. Another application is used to fetch 
those log files and network trances and matches with the predefined pattern of malicious applications. 
Whereas in off-device environment researchers normally used reverse engineering tools to decode 
applications and matches the signatures with malicious contents. 
The multifarious platform consist of android, iPhone, Microsoft and Symbian that are used in development 
of mobile phones. Among all of these operating systems, android is most pervasive in market and its 
number of users is growing day by day. According to recent antivirus (AV) security survey 2018 [144], 
75.2% are android users, 17.1% are apple/ iPhone users, 4.2% are windows mobile users whereas 3.5% 
users relates to another operating system (OS).  

 
Figure 8: Number of Publications from the year 2010 to 2018 based on multifarious platforms 

 
In figure 8, the line graph is presented number of publications with respect to OS type. As a result, it is 
observed that adoption rate of android is much higher as compare to other OS platforms. Moreover, 
popularity of android phone is increasing day by day due to its affordability, easy to use, and customized 
features as well as it is the main target of attackers. 
 

4.4 Evasion Techniques 
Recent studies shows that malwares tries to evade from detection mechanism, that’s why they use 
evasion techniques such as java reflection, Obfuscation, repackaging, Polymorphism, encryption and 
control flow alteration.  In repackaged applications, a malicious user downloads the legitimate app from 
legitimate play store, extract its files, add some harmful code and then repack it. 
Moreover, Repackaging in android applications is very challenging, because these applications look like 
original apps. Likewise, obfuscations hides the malicious code that is hardly detected in android apps. 
Furthermore, Control flow alteration and polymorphism adds some additional code with original code. In 
control flow alteration sometime malware writer adds dead code that makes tough to detect applications 
as malicious.  While, in polymorphism malware writers insert extra code in encrypted form, as a mutation 
engine (ME) that uses obfuscation methods to disrupts the normal routine of an application.  In table-4 
we presented a summary of existing studies that covers mobile malware detection approaches with 
specific evasion technique.  
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Table-4: Summary of Existing Mobile Malware Detection Approaches that deals with evasion 
Techniques i.e. Obfuscation, polymorphism, Java reflection 

References/ 
Approaches 

Year Point of 
detection. 

Data Source Result Limitations 

Droidcat [145] 2018 Obfuscation, 
reflection 

Praguard, 
Contagio dataset 
,AndroZoo (AZ) 
Google Play Store 

For highly evasive malware 
families (DroidDream, 
BaseBridge, and Droid 
kungFu) with 11 others it gives 
97% pricision 

 
 

---- 
 

HyDroid[146] 2017 Obfuscation, 
Reflection, 
encryption, 
Name alteration 

Genome 
Repository 

---- 
 

It does not deal with native 
code. 

Ordol[147] 2017 Detection of 
libraries in 
obfuscated 
applications 

Libraries were 
collected from 
Librader 
,Appbrain and 
1000 apps 
randomly chosen 
from google play 
store 

 
 
 

---- 

If the libraries are not 
comprised in ordol database, 
then ordol cannot identify it 
properly even if it is not 
obfuscated.  

DroidRA [148] 2016 Reflection and 
uncover 
dangerous code  

500 application 
selected from 
Google play store 
as well as some 
malicious 
samples  

DroidRA detect the reflected 
methods correctly and set as 
benchmark comparison with 
IccTA 

 
---- 

 

[149] 2015 Detection of 
Polymorphic 
malicious 
applications  

 
 

---- 

Malicious applications are  
examined in proposed system, 
then it generates a message to 
external server about the 
polymorphic code 

 
 

---- 
 

 

DroidCat [145] is a dynamic approach, that effectively detects most evasive malware families such as 

DroidDream, BaseBridge, and DroidkungFu including with 11 other malware families. In this experiment, 

they considered reflection, resource and system calls related obfuscated features. Similarly, Yuan et al. 

proposed an approach ACFinder[150] that relates to API dependency graph (ADG) created on birthmark 

that can detect repackaged applications. As compare to existing approaches that are based on system 

dependency graph (SDG) and IFDS, it works more efficiently. However, this approach is unable to deal 

with obfuscated code if it is encrypted because in static analysis code must need to be decrypt for analysis. 

Similarly, another novel technique Ordol [147] used to detect libraries from android applications as it is a 

difficult task. Consequently, it shows better results to detect exact version of libraries in comparison with 

publicly available LibRadar [151] tool. Despite that, ordol is also capable of detecting libraries even from 

obfuscated android applications. However, ordol is worthless if all versions of libraries are not included in 

its database because in that way it is unable to detect.  



Furthermore, hydroid [146] is used to detect malicious code that have java reflection, control flow 

alteration and encryption like evasion techniques. Hydroid method is divided into two phases in which it 

consists of static and dynamic analysis methods to generate the API call traces even in presence of 

obfuscation. Moreover, they explained malware families such as Plankton, GlodDream and BeanBot that 

are using evasion techniques related to obfuscation and non-obfuscation samples. These malware families 

causes to steal confidential information such as deviceID, IMEI number location, send and receive 

messages automatically. In this method, results are evaluated only by using fourteen malware families. 

While, further experimental results are need to be generalize more malware families and make this 

method able to deal with native code.  

DroidRA [148] perform static analysis that deals with reflection in android applications. Experiment is 
performed on 500 randomly selected applications from third party app store and google play store as well 
as malicious applications that usually contain reflective calls. Additionally, it is helpful in detecting 
dangerous code and sensitive API calls. As a result, DroidRA is set as a benchmark in comparison with 
IccTA [136] for researchers. Moreover, another researcher Lee et al.[149] detected server side 
polymorphic applications that contain malicious content. Unfortunately, evasion techniques in android 
applications are not fully investigated by the entire researchers as we discussed it in term of limitations.   

5. Forensic Analysis of Mobile and Malware Detection 

In this section, we presented forensic analysis in the perspective of mobile and malware forensics with 

their various aspects. As forensic analysis is the investigation of detecting, documenting and collection of 

evidences. Moreover, it refers to the digital forensic that involves computer forensics, mobile forensics, 

network forensics, malware forensics etc. [152]. Mobile malware forensics and digital forensics have 

similarities in perception of deep learning and features extraction. In figure 9, we presented mobile and 

malware forensic analysis comprehensively with its general procedural steps, tools and challenges 

individually.  



 

Figure 9: Forensic Analysis with respect to mobile and malware forensics 

Malware forensics are progressively becoming more significant as cybercriminals causes to initiates 

malicious activates. There are four common steps have to follow in malware forensics in which (a) 

identification of suspicious code or program (b) defeating with anti-forensic methods (c) Extraction of 

malicious code and (d) deduction of malicious function [153]. The anti-forensic methods covers code 

obfuscation, that hides harmful code and evade from detection mechanism. Moreover, for identification 

of harmful code some static features has to be analyze critically such as inflationary use of permissions 

message digest hashes etc. In this context deception is the main challenge for malware forensics in which 

malware hides its identity and reconstruction of malicious events. Kumar et al. [154] introduces a forensic 

analysis tool named as FAMOUS for android applications that is based on static method to detect the 

malware. Authors used scoring method for permissions, dataset of malicious and benign applications is 

collected from drebin [155], contagio dump [156] and play drone [157] respectively. Consequently, it 

shows 94% accuracy by using random forest classifier. However, they overlooked other static feature 

including string, function calls and metadata. Similarly, another forensic tool Fordroid [158] used to 

analyze android applications and identify where the information is stored.  

Fordroid, monitor hundred applications that is collected from APPchina [159]. As a result, it successfully 

locate the sensitive information with 98%. Mobile forensics comprises the term digital evidences of mobile 

devices using accepted forensic methods.  It is more challenging because heterogeneity and diverse 

feature set used in mobile devices technology [160]. Correspondingly, feature set is beyond from calling 



and messages feature. As couple of mobile devices used cloud services to store and retrieve data then it 

should be available all the time for evidences in case of investigation process. Furthermore, in the work 

of [161] they defined four general steps that follows in mobile forensics (a) examination (b) identification 

(c) collection and (d) documentation.  The examination phase ensures the analysis of devices with its 

synchronized devices. In identification phase, process is started by recognizing the device type along with 

running operating system. Additionally, collection of evidences and proper documentation on the every 

stage of mobile forensics is provided. Alhassan et al. [162] comparatively analyze the mobile forensics 

tools named as Encase forensics, mobiledit and Access FTK Imager with respect to performance on 

different operating systems. In addition, these tools have access to different activities of device. However, 

they did not able to access SIM card and sometime not retrieved deleted data.  Therefore, we required 

effective and efficient tool for mobile and malware forensics.  

6. Artificial Intelligence towards Malware Detection 

In this section, we will discuss artificial intelligence that is an umbrella term under which machine learning 
and deep learning take place. According to ESET report [163], a meek search of the word ‘AI’ gives 2.2 
billion results and proved as sustainable in cybersecurity. Furthermore, it is stated that, cybercriminals 
and other malicious performers are now aware from benefits of artificial intelligence and they try to 
implement it in their malicious activities. Moreover, artificial intelligence also included machine and deep 
learning-based solutions. 
In figure 10, we elaborated artificial intelligence with its sub types that are used by researchers in 
literature to evaluate their approaches. In below subsections, we described that how machine learning 
algorithms outperforms in detection of mobile malware. Unfortunately, machine learning has some 
limitations that’s why we need deep learning algorithms to deal with cyberattacks that are described in 
section 6.3.  

 
 

  Figure 10: Artificial Intelligence in malware detection 



6.1 Machine Learning Algorithms with Malware Detection Approaches 

Machine learning (ML) approaches have been effectively applied in mobile malware identification and 

detection [7] [46, 47] [61] [62] [100]  [130, 138] . ML techniques played a vital role to develop an intelligent 

system that can distinguish between both malicious and benign android application. Machine learning 

approaches are well-defined into two types that are supervised and unsupervised. Supervised term relates 

to classification algorithms i.e. SVM, Neural Networks, Baysian, Decision Tree, Random Forest, J48, 

Regression etc. Whereas unsupervised relates to clustering algorithms i.e. K-Mean, X-Mean, etc.[60] is 

described in Table 5. 

Tabe-5: Summary of Existing Mobile Malware Detection Approaches with Heterogeneous Machine 
Learning Methods 

References/ 
Approaches 

Year Analysis 
Type 

Features Dataset Source  Targeted 
Malware 

ML Classifiers/ 
Clustering  

Accuracy (%) 

[46] 2013 Static INTENET, SEND_SMS, 
CHANGE_CONFIGURATIO
N, WRITE_SMS, and 
CALL_PHONE 

200 samples of good 
ware and malware 
Android applications 

Android 
malware 
binaries 

K-Means,  
Random Forest 
and Regression  
Tree 

 
-- 

 

[164] 2013 Dynamic Networks traffic (TCP size, 
duration, no of GET/POST 
request) 

Network traffic that 
collects by using 
tPackectCapture 

Mobile botnet Naïve Bayes, K-NN, 
SVM, DT, and MLP 

K-NN shows 
99.94% detection 
rate 

Composite  
parallel 
classifier[100] 

2014 Static API Calls, Permissions, 
Commands  

Benign & malicious 
apps from McAfee 
internal repository  

Malicious 
intensions  

PART 95.8% accuracy 

[130] 2014 Static Five sets of features 
including (System calls 
,kernel based)  

 
-- 

 

Mobile 
Malware 

MLP, 
J48,KNN,RF,NB 

83% accuracy in 
MLP 

HOSBAD[43] 2015 Dynamic  SMS, CALLS, Device Status  Malicious and normal 
application dataset  

Different types 
of suspicious 
behavior  

K-NN 93.75% accuracy  

SMARTbot[42] 
 

2016 Dynamic  
 

-- 
 

Drebin Botnet Random forest, 
Naïve bayes, 
SVM,648, simple 
logistic regression, 
& MLP 

Random forest 
classifier gives 
the 99.49 % 
accuracy 

[47] 2016 Hybrid System call(permissions, 
sensitive function, intent 
priority, native 
permissions) & short 
messages 

300 applications from 
Contagio Mobile 
dump & 70 malware 
apps to analysis SMS 
feature  

 
 

-- 
 

Logistic Regression  91% accuracy in 
static , 41 out of 
70 messages 
send without 
user knowledge 

Moledroid [7] 2017 Dynamic  Network traffic 
flow(incoming, outgoing, 
complete) 

Suspicious and normal 
application  

Information 
theft 

Random  
Forest 

99.1% precision 

Host Based 
Mobile botnet 
detection[62] 

2017 Dynamic System calls(read, write, 
network operations, 
directory operations) 

13 botnet families 
with 31 apps from 
ICSX android botnet 
dataset 

Android botnet Random 
 Forest 

86% precision , 
88% recall in 
500ms time 
window 

Venn Abres 
Prediction[61] 

2017 Static  Network communication 
traffic (HTTP based,IRC 
based,P2P based) 

 
-- 

 

Botnet KNN & KDE  
-- 

 

[138] 2017 Hybrid Permissions & Network 
traffic  

Malgenome & Google 
Play Store 

Android 
Malware 

Decision  
Tree 

95.56% accuracy 

SAMADroid [44] 2018 Hybrid Permissions, API Calls, 
Network Addresses 

Drebin Mobile 
Malware  

Random  
Forest 

99.07% Accuracy 



 
Generally, different types of malware detection techniques are employed. There are number of 
researches based on machine learning algorithms that can statically, dynamically or in hybrid manners 
can detect malicious behavior from android applications. Aung et al.[46] and Yerima et al.[100] adopted 
static analysis method to detect android malware binaries. They analyze different features such as 
permissions (INTENET, CHANGE_CONFIGURATION, SEND_SMS, CALL_PHONE, and WRITE_SMS), API calls 
and features related to commands execution. Furthermore, they applied machine learning clustering and 
heterogeneous classification algorithms (i.e. K-Means, Random Forest, regression tree, naïve Bayes, 
decision tree, simple logistic, PART, and RIDOR) in order to evaluate results. 
However, another researcher[47] analyze the malicious behavior in both static and dynamic manners to 
identify android malware. Static analysis declares these four types of features as intent priority, code 
permissions, native permissions, and sensitive functions calls in this study. Furthermore, a behavior of the 
application is tested at runtime using an android emulator. The evaluated results shows that forty one out 
of seventy malware sends messages automatically without user awareness. Additionally, logistic 
regression classifier in static analysis is revealed 91% accuracy.  
Feizollah et al.[164] and another author[7] dynamically monitor the network traffic flow with their 
extracted features to detect mobile botnet malware. Consequently, K-NN classifier shows the 99.94% 
detection rate of malware in network traffic. Furthermore, they developed an application named as 
MoleDroid to identify the malicious behavior of network flow. The result endorsed 99% true positive rate 
for detecting the information theft in network flows. Similarly, Whang et al. [61] presented a venn-abers 
predictor for botnet detection in network traffic flow using K- Nearest Neighbor (KNN) and kernel Density 
Estimation (KDE) as an underlying scoring classifiers. Similarly, it covers the network traffic flow features 
as HTTP, IRC, and P2P that relates to botnet families. By the use of evasion techniques most of data hardly 
detect as malware. To attain highly comprehend results, we have to deeply analyze the evasion 
techniques in future.  
Karim et al. [42] designed a vital dynamic framework to detect botnet applications named as SMARTbot. 
They used malware dataset from Drebin, extract their features and random forest classifier gives the 99.49 
% detection accuracy. Similarly, Costa et al.[62] presented the anomaly and host based detection 
approach and considered thirteen botnet families with their thirty one applications samples that is 
collected from ICSX android botnet [165]. The random forest classifier shows great performance in 
detection of botnet applications. Recently, SAMADroid [44], approach is presented that covers static and 
dynamic features and achieves high malware detection with 99.07% accuracy. Hence, these are several 
studies conducted to identify and detect android malware by using the machine learning algorithms. 

6.2 Pros and Cons of Machine Learning 

ESET [163] defines some limitations of machine learning techniques. In which they needs to correctly label 
the data and do not have ability to deal with big datasets, as deep learning can more effectively deal with 
large datasets. Moreover, cybercriminals are using machine learning method in adversary attacks and 
causes to initiate steganography attack in that way they hide malicious code into pictures, in this case 
machine learning algorithms did not work. Correspondingly, deep learning algorithms overcome the false 
positives and provide solution to where machine learning did not perform well.  

6.3 Deep Learning Algorithms with Malware Detection Approaches 

Deep learning algorithms work on fully connected neural network and outperforms in detection of mobile 
malware as given in Table 6. The well-known deep learning algorithms are convolutional neural network 
(CNN), artificial neural network (ANN), and recurrent neural network (RNN) etc.  



Tabe-6: Summary of Existing Mobile Malware Detection techniques with Heterogeneous Deep 
Learning Algorithms 

Reference  Year Features Dataset Source Dataset Deep Learning 
Algorithms 

Result 

Malware Benign 

[166] 2017 API calls Contagio Mobile 
Dataset 

216 1016 CNN 99.4% 
Accuracy 

[167] 2017 Op code McAfee Labs 9902 9268 
 

CNN 87% Accuracy  

R2-D2 [168] 2017 -- 

 
Leopard Mobile 
Inc. 

Over one 
million 

One 
million 

CNN 93% Accuracy 

[169] 2018 -- 

 
AMD & Drebin 
Dataset 

5000 2000 1-D CNN 96-97% 
Accuracy 

MalDozer [170] 2018 -- 

 
Malgenome, 
Drebin, Virus 
share, Contagio 
minidump 

33,066 37,627 ANN 96.29% 
Recall 

 
The table 6 illustrates that, Hasegawa et al. [169] proposed a light weight model by practicing one 

dimensional convolutional neural network in android malware detection. They performed experiment on 

two different datasets as malware and benign with 5000 and 2000 samples individually. Results 

demonstrated the 97.04% accuracy rate in detection of malware. Similarly, other authors [166, 167] 

focused on system calls, op code  and use convolutional neural network (CNN) in comparison with long 

short term memory (LSTM) for classification. Their experimental results confirmed 99.4% and 87% 

accuracy respectively. Furthermore, another author [168] proposed R2-D2 approach based on CNN to 

detect mobile malware and perform experiment over one million datasets. Android apks are converted 

into images and fed to CNN for classification and malware detection. With large dataset, result shows 96% 

accuracy. Last but not the least, malDozer [170] a deep learning framework perform experiment on 

approximately 33000 malware and 38000 benign datasets. MalDozer effectively deployed on mobile and 

Iot devices and shows 96% recall rate.  

6.4 Pros and Cons of Deep Learning 
Deep learning can deal with big data sets and no need to manually extract the features. The performance 

results of deep learning is comparatively high from machine learning approaches. Furthermore, it 

overcomes the false positive rate, provide accurate results and no need to label data. However, it is 

computationally expensive as it uses graphics processing unit (GPUs) to accomplish billions of operations 

in minimum time.  

7. Future Research Directions 

In this section we present some challenges in perspective of fortifying devices and conceivable 
forthcoming research directions that can be considered as a future work by researchers.  
 

 Outrageous reverse engineering techniques: There is an acute need to make reverse engineering 
more difficult in context of those malware authors who uses repackaging methods to add 
malicious code by disassembling the android applications. A use of crypto trick is required, that 



create harder path to reverse engineer any application and apply encryption algorithms to impel 
the code of an application unconditionally opaque.  

 Extensive hybrid analysis tool: A robust and efficient tool is required to analyze the applications 
and notify users if it contain obfuscated code that causes malicious activities. In obfuscation 
method, malwares are hide themselves and tries to evade from detection process. Moreover, 
malware authors uses polymorphic techniques and insert dead code into the original application 
code. As Static analysis is unable to detect obfuscated code, therefore at this stage dynamic 
analysis should be mandatory to recognize malicious code.  

 Solution of Code coverage problems: Dynamic analysis did not cover all traits of code such as 
native code and when code is dynamically loaded. Malware writers choose hardest path for 
execution of malicious activities that helps them to escape from detection mechanisms. Hence, 
in future stiff hybrid analysis and all versions of android OS are need to be analyzed with full code 
coverage for effective malware detection solutions.  

 Tool to detect zero-day attacks: We required highly intelligent and light weight procedures that 
have an ability to examine behavior of applications at the run time and identify zero-day attacks. 
The existing methods are complicated and take long time in malware detection. However, this 
kind of detection procedures are not so easy to build, unless it required optimistic research 
directions.  

 Identical datasets with updated malware families: As time flies, there is a striking increase in 
android malwares and its variants. Hence, we required standardized and updated datasets to 
perform malware detection analysis in an efficient way. Moreover, restructured and new 
simplified datasets is help to detect emerging malwares that are increases with every passing day. 
Now it’s essential to develop multilevel procedures that deals with advance malware attacks and 
capable to detect and mitigate malicious mobile applications. 

 Laws and regulations: Governments should make legislations to deal with information security 
along with cybersecurity related attacks and enforce them at international level. Recently, Federal 
Bureau investigation (FBI) [1] declared cybersecurity law for internet of things (IoT) devices in 
which they states that “if you found any toy is being compromised security terms then you have 
to report it.” Such methods are need to be implemented in mobile devices security. 

 Cybersecurity insurance: The emerging rate of malware attacks such as distributed denial of 
services (DDos), phishing, ransomware, or any other ways that causes financial loss to individuals. 
Consequently, proper insurance structure should be applied on every scale of business that will 
surely mitigate the risk factor. Moreover, cybersecurity insurance covers cost of accidental attacks 
and hardware damage. 

 Big data challenge: As big data familiarized with special malware detection challenges and 
machine learning techniques are unable to deal with big data. Therefore, we required efficient 
deep learning methods that overcome this issue and reduce the computational overhead with 
affordable cost.  

 Hardware attack detection: In literature we have not still found any tools to detect hardware loss 
in terms of battery life failures and background consumption of CPU cycles. Moreover, virtual 
devices are also targeted by malware authors and we have not any other mechanism of safety 
expect to replace them. Hence, there is a need to devise effective and simple methods for 
stopping and cleaning untiring malware.  

8. Conclusion 



Mobile malware is progressing enormously with the same growth as mobile applications are designed and 
published on play-stores. Further the technological push of hardware (smartphones) and system software 
(e.g. Android OS) is also causing malware writers to introduce new ways and techniques in order to evade 
antivirus security traps (signatures). This paper uncovers all efforts towards mobile malware creation, 
propagations, dissemination and detection. The well-defined taxonomies are comprehensively presented 
and discussed the need to deteriorate its harmful impact on community. Furthermore, in this paper 
forensic analysis and the research work conducted during years 2013-2018 in the domain of mobile 
malware analysis along with artificial intelligence detection techniques are discussed. At the end, we 
suggest some future directions for researchers that helps to develop more accurate, efficient, robust and 
scalable mechanism in perspective of android malware detection. 
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