25 research outputs found

    Combinatorial Problems on HH-graphs

    Full text link
    Bir\'{o}, Hujter, and Tuza introduced the concept of HH-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a graph HH. They naturally generalize many important classes of graphs, e.g., interval graphs and circular-arc graphs. We continue the study of these graph classes by considering coloring, clique, and isomorphism problems on HH-graphs. We show that for any fixed HH containing a certain 3-node, 6-edge multigraph as a minor that the clique problem is APX-hard on HH-graphs and the isomorphism problem is isomorphism-complete. We also provide positive results on HH-graphs. Namely, when HH is a cactus the clique problem can be solved in polynomial time. Also, when a graph GG has a Helly HH-representation, the clique problem can be solved in polynomial time. Finally, we observe that one can use treewidth techniques to show that both the kk-clique and list kk-coloring problems are FPT on HH-graphs. These FPT results apply more generally to treewidth-bounded graph classes where treewidth is bounded by a function of the clique number

    Efficient and Perfect domination on circular-arc graphs

    Get PDF
    Given a graph G=(V,E)G = (V,E), a \emph{perfect dominating set} is a subset of vertices V′⊆V(G)V' \subseteq V(G) such that each vertex v∈V(G)∖V′v \in V(G)\setminus V' is dominated by exactly one vertex v′∈V′v' \in V'. An \emph{efficient dominating set} is a perfect dominating set V′V' where V′V' is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remains NP-Hard, even when restricted to certain graphs families. We study both variants of the problems for the circular-arc graphs, and show efficient algorithms for all of them

    A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set

    Full text link
    An independent dominating set D of a graph G = (V,E) is a subset of vertices such that every vertex in V \ D has at least one neighbor in D and D is an independent set, i.e. no two vertices of D are adjacent in G. Finding a minimum independent dominating set in a graph is an NP-hard problem. Whereas it is hard to cope with this problem using parameterized and approximation algorithms, there is a simple exact O(1.4423^n)-time algorithm solving the problem by enumerating all maximal independent sets. In this paper we improve the latter result, providing the first non trivial algorithm computing a minimum independent dominating set of a graph in time O(1.3569^n). Furthermore, we give a lower bound of \Omega(1.3247^n) on the worst-case running time of this algorithm, showing that the running time analysis is almost tight.Comment: Full version. A preliminary version appeared in the proceedings of WG 200

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    Total 2-domination of proper interval graphs

    Get PDF
    A set of vertices W of a graph G is a total k-dominating set when every vertex of G has at least k neighbors in W. In a recent article, Chiarelli et al. (2019) prove that a total k-dominating set can be computed in O(n3k) time when G is a proper interval graph with n vertices and m edges. In this note we reduce the time complexity to O(m) for k=2.Fil: Soulignac, Francisco Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentin
    corecore