
ar
X

iv
:1

81
2.

00
68

9v
1

 [
cs

.D
M

]
 3

 D
ec

 2
01

8

Total 2-domination of proper interval graphs

Francisco J. Soulignac∗†

francisco.soulignac@unq.edu.ar

Abstract

A set of vertices W of a graph G is a total k-dominating set when every vertex of G has at least k

neighbors in W . In a recent article, Chiarelli et al. (Improved Algorithms for k-Domination and Total
k-Domination in Proper Interval Graphs, Lecture Notes in Comput. Sci. 10856, 290–302, 2018) prove
that a total k-dominating set can be computed in O(n3k) time when G is a proper interval graph with
n vertices and m edges. In this note we reduce the time complexity to O(m) for k = 2.

Keywords: total 2-domination, straight oriented graphs, proper interval graphs.

1 Introduction

A set of vertices W of a graph G is a total k-dominating set when every vertex v of G has at least k

neighbors in W . The problem of computing a total k-dominating set of G with minimum cardinality is
known to be NP-complete for every k ≥ 1, even when G belongs to certain subclasses of chordal graphs [7]
such as undirected path graphs [5, 6]. In turn, when G is an interval graph with n vertices, the problem is
solvable in O(n6k+4) time, as recently proven by Kang et al. [4] (cf. [2]). Moreover, the time complexity can
be reduced to O(n3k) when G belongs to the subclass of proper interval graphs [2].

Besides being a subclass of undirected path graphs, interval graphs are among the most famous classes of
graphs. Unsurprisingly, then, the problem for k = 1 on interval graphs was studied long before the general
case. In particular, Chang [1] shows that a total 1-dominating set of minimum cardinality can be obtained
in O(n) time when an interval model of G is given. The huge gap in the complexities of the algorithms
by Chang, on the one hand, and Chiarelli et al. and Kang et al., on the other hand, suggests that there
is still room for improvements when k > 1. One reason to explain this gap is the fact that the problems
attacked by Kang et al. and Chiarelli et al. are too general. In this note we consider the problem from the
opposite perspective, by studying the simplest case that is still unsolved. Specifically, we consider the total
2-domination problem on proper interval graphs, for which we obtain a quadratic (O(m)) time algorithm.

Our algorithm, as well as the one by Chiarelli et al. [2] and others, models the total 2-dominating problem
as a shortest path problem on a weighted acyclic digraph D. The major difference is that, in the model by
Chiarelli et al., each vertex of D represents a connected set of G with diameter at most 5. In turn, in our
model each vertex represents different connected sets of varying diameters, that correspond to the weight of
each outgoing edge and can be as high as Ω(n).

In Section 2 we introduce the terminology required throughout the paper. Then, in Section 3 we show
how the total 2-domination problem is modeled as a shortest path problem on an acyclic digraph D of size
O(nm). We improve this model in Section 4, where we observe that D can be compressed to an acyclic
digraph R, of size O(m), that can be computed in O(m) time. Finally, in Section 5 we discuss some ideas
to try to generalize our algorithm to the case k > 2.

∗CONICET and Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
†Supported by PICT ANPCyT grant 2015-2419.

1

http://arxiv.org/abs/1812.00689v1

v1

v2

v3

v4

v5

v6

v7 v1 v2 v3 v5 v6 v7

v4

v1

v1

v2

v2

v3

v3

v4

v4

v5

v5

v6

v6

v7

v7

Figure 1. A straight orientation of a PIG graph G (left) defined by an ordering < and mapping fr (center),
and a corresponding family of inclusion-free intervals (right) that represent G.

2 Preliminaries

In this article we work with simple graphs and digraphs. For a (di)graph G, let V (G) and E(G) denote the
sets of vertices and (directed) edges of G, respectively. As usual, we write n = |V (G)| and m = |E(G)| when
G is clear and, for simplicity, we use vw to denote both the set {v, w} and the ordered pair (v, w). Two
vertices v and w are adjacent when either vw ∈ E(G) or wv ∈ E(G). The neighborhood NG(v) of v is the set
of all its adjacent vertices, while its degree is dG(v) = |NG(v)|. When G is a digraph, we say that vw ∈ E(G)
goes from v to w, while w is an out-neighbor of v. The out-degree of v is the number d+

G(v) of out-neighbors
of v. For the sake of notation, we omit the subscript G from N and d when no confusions are possible.

A path in a (di)graph G is a sequence of vertices P = v1, . . . , vk+1 such that vivi+1 ∈ E(G), for 1 ≤ i ≤ k.
A cycle is a sequence v1, . . . , vk+1 such that v1 = vk+1 and v1, . . . , vk is a path. If G has no cycles, then G is
acyclic. We say that G is weighted to mean that each e ∈ E(G) has a weight ω(e) ≥ 0. The weight of a path

P = v1, . . . , vk+1 is, then, ω(P) =
∑k

i=1
ω(vivi+1). When G is a digraph, its underlying graph H has V (G)

as its vertex set, whereas vw ∈ E(H) if and only if v and w are adjacent in G, for v, w ∈ V (G). A graph
G is connected when there is a path between every pair of vertices, while a digraph is connected when its
underlying graph is connected. An oriented graph is a digraph G such that either vw 6∈ E(G) or wv 6∈ E(G),

for v, w ∈ V (G). If G is the underlying graph of an oriented graph ~G, then ~G is an orientation of G.
Consider a (di)graph G. For W ⊆ V (G), let G[W] denote the sub(di)graph of G induced by W . We say

that W is connected when G[W] is connected. A block of W is a connected subset of W that is maximal
by inclusion. We say that v ∈ V (G) is 2-dominated by W when |N(v) ∩ W | ≥ 2. If every vertex of G is
2-dominated by W , then W is a 2-dom. Moreover, if |W | is minimum among the 2-doms of G, then W is a

minimum 2-dom. Note that W is a 2-dom of a graph G if and only it is a 2-dom of ~G, for any orientation
~G of G. Thus, we may replace G by ~G when computing a minimum 2-dom. From now on we safely assume
that d(v) ≥ 2 (v ∈ V (G)); otherwise G has no 2-doms.

A straight graph (Figure 1) is an oriented graph G that admits a linear ordering v1 <G . . . <G vn of its
vertices and a mapping fG

r : V (G) → V (G) such that:

• vi ≤G fG
r (vi) for 1 ≤ i ≤ n and fG

r (vi) ≤G fG
r (vi+1) for 1 ≤ i < n, and

• vivj ∈ E(G) if and only if vi <G vj ≤G fG
r (vi).

As before, G is usually omitted from < and fr. A graph G is a proper interval (PIG) graph is some of its
orientations is a straight graph. It is well known that G is a PIG graph if and only if its vertices can be
mapped into a family of inclusion-free intervals of the real line in such a way that two vertices of G are
adjacent when their corresponding intervals have a nonempty intersection (e.g., [3]; see Figure 1). Yet, in
this article we prefer the combinatorial view provided by straight graphs.

For the sake of notation, we sometimes assume that a straight graph G with vertices v1 < . . . < vn has
two artificial vertices v0 and vn+1. Thus, for 0 ≤ i ≤ j ≤ n + 1, we can conveniently define the subsequence
G(vi, vj) = vi+1, . . . , vj−1. For 1 ≤ i ≤ n, let ℓG(vi) = vi−1, rG(vi) = vi+1, and uG

r (vi) = rG(fr(vi)), where
the superscript G is omitted as usual. In colloquial terms, ℓ(v) and r(v) are the vertices that precede and
follow v, respectively, and ur(v) is the first vertex not adjacent to v in G(v, vn+1). Also, define f0

r (v) = v

and f i+1
r (v) = fr(f i

r(v)) for i > 0. We extend < from V (G) to the family of subsets of V (G) in such a way
that, for W1, W2 ⊆ (G), W1 < W2 if and only if w1 < w2 for every w1 ∈ W1 and w2 ∈ W2. It is not hard

2

w1 w2 w3

fr

w1 w2 w3 w4

fr fr

w1 w2 w3 wj−2 wj

fr

r

fr fr

wj−1 wj u z

fr

r

fr

r

fr fr

(a) (b) (c) (d)

Figure 2. The expansive connected set represented by w1w2 for sizes 3, 4, and j are depicted in (a), (b), and
(c), respectively, whereas (d) describes the vertices u and z used to determine the j-extension vw of w1w2 for
the case in which u 6= z.

to see that the blocks of W ⊆ V (G) are pairwise comparable by <. Therefore, we sometimes state that
B1 < . . . < Bk are the blocks of W .

3 Computing a minimum 2-dom in O(nm) time

In this section we describe an algorithm to find a minimum 2-dom in O(nm) time when a straight graph G

is given. Let v1 < . . . < vn be the vertices of G, and define S = {v1, v2, v3} and T = {vn−2, vn−1, vn}. To
simplify the description of the algorithm, we assume that S and T are blocks of V (G). Consequently, if W

is a 2-dom of G with blocks B0 < . . . < Bk+1, then B0 = S and Bk+1 = T . Note that this assumption yields
no loss of generality because B1 ∪ . . . ∪ Bk is a 2-dom of G \ (B0 ∪ Bk+1) if and only if B0 . . . ∪ Bk+1 is a
2-dom of G. Thus, we can always transform the input graph by inserting S ∪ T . The sets S and T are called
the source and pre-sink blocks of G, respectively, whereas v1v2 and vn−2vn−1 are the source and pre-sink
edges of G.

In a nutshell, the algorithm finds the blocks B1 < . . . < Bk of the minimum 2-dom W one at a time, from
B1 to Bk. By the discussion above, B1 is simply the source block of G. Once Bi is determined (1 ≤ i < k),
the next block Bi+1 is obtained by choosing j vertices (for some j ≥ 3) in a way that Bi+1 reaches as far
as possible. To build Bi+1, its first two vertices v and w are taken as the further reaching vertices that still
cover the gap from Bi to Bi+1. Then, each of the remaining j − 2 vertices are defined in terms of v and w.
Under the terminology defined below, B1, . . . , Bk and W are “expansive”, while Bi+1 “extends” Bi.

Formally, a connected set B ⊆ V (G) with vertices w1 < . . . < wj (j ≥ 3) is expansive (Figure 2) when:

(exp1) w3 = fr(w1), wi = f i−2
r (w1) for 4 ≤ i ≤ j − 2, and wj = fr(wj−2), and

(exp2) if j ≥ 5, then wj−1 = ℓ(wj).

By (exp1) and (exp2), B is fully determined by w1, w2, and |B|; for this reason, we say that B is represented
by w1w2. Clearly, w1w2 represents at most one expansive connected set of size j, j ≥ 0. Let u = fr(ur(wj−1))
and z = fr(ur(wj)) (Figure 2). An expansive connected set B′ represented by vw extends B when:

vw =

ℓ(ℓ(u))ℓ(u) if u = z and d+(ℓ(u)) = 1

ℓ(u)u if (u = z and d+(ℓ(u)) > 1) or (u 6= z and d+(u) = 1)

uℓ(z) if u 6= z, fr(u) = z and d+(u) > 1

uz otherwise

(1)

We refer to vw as being the j-extension of w1w2. Note that the j-extension of w1w2, if existing, is unique,
because B is the unique expansive connected set with j vertices that is represented by w1w2. A set W ⊆ V (G)
with blocks B1 < . . . < Bk is expansive when:

(exp3) Bi is expansive for every 1 ≤ i ≤ k, and

(exp4) Bi+1 extends Bi for every 1 ≤ i < k.

Moreover, if B1 and Bk are the source and pre-sink blocks of G, then W is fully expansive.
Consider the weighted digraph D with vertex set E(G) that has an edge from e to g of weight ω(eg) = j

3

3 4 5 6 7 8 9 10 11 12

01

34

45

56

67

68

78

89

9|10

10|11 13|14
t

3

3

4,5

7

3,4

6

3 6

5

5

5

4,5

3,4

3
3

Figure 3. Left: a straight graph G. Right: D(G ∪ S ∪ T) for S = {0, 1, 2} and T = {13, 14, 15}, where
bold edges belong to paths of minimum weight from the source 01 to the sink t. The three fully expansive sets
encoded by D(G) are S ∪ T ∪ {4, 5, 6, 10, 11, 12}, S ∪ T ∪ {4, 5, 6, 7, 10, 11, 12}, and S ∪ T ∪ {4, 5, 6, 9, 10, 11}.

when g is the j-extension of e.1 Let e be the pre-sink of G and t 6∈ E(G). Define D(G) as the digraph that
is obtained from D after the edge et with ω(et) = 3 is inserted (Figure 3). The vertex t is the sink of D(G),
while its source is the source edge of G. By definition, B < B′ when B′ extends B, thus D(G) is acyclic.
Moreover, any path P = e1, . . . , ek+1 of D(G) encodes an expansive set W with blocks B1 < . . . < Bk such

that Bi is represented by ei and |Bi| = ω(eiei+1), for 1 ≤ i ≤ k. By definition, ω(P) =
∑k

i=1
|Bi| = |W |.

We record the previous discussion for later.

Theorem 1. If G is a straight graph, then D(G) is an acyclic digraph that has O(m) vertices and O(nm)
edges. Furthermore, W ⊆ V (G) is (resp. fully) expansive if and only if W is encoded by a path of D(G)
(resp. from the source to the sink) whose weight is |W |.

The key feature about fully expansive sets is that each of them is a 2-dom, while at least one of them is
a minimum 2-dom. Of course, this claim holds only under our assumption that G has at least one 2-dom.

Theorem 2. If W ⊆ V (G) is a fully expansive set of a straight graph G, then W is a 2-dom.

Proof. Suppose W = w1 < . . . < wk and let w0 < w1 and wk+1 > wk be the artificial vertices of G. Then,
every vertex v ∈ V (G) belongs to G(wi, wj) for some 0 ≤ i < j ≤ k + 1. Take i and j so that j − i is
minimum, and consider the following cases for v.

Case 1: i = 0. This case is impossible, as w1w2 is the source edge of G and, consequently, G(w0, w1) = ∅.

Case 2: j = k + 1. In this case, v is adjacent to wk−1 and wk because wk−1wk is the pre-sink edge of G.

Case 3: wi and wj belong to the same block of W . Then, either v = wi+1 and j = i + 2 or j = i + 1.
Whichever the case, v is adjacent to wi and wj .

Case 4: v = wi+1 is the first of its block. Then, v is adjacent to wi+2 and wi+3 = fr(wi+1).

Case 5: j = i + 1 and wi and wi+1 belong to different blocks. By (1), wi+1 ≤ fr(ur(wi−1)) and wi+2 ≤
fr(ur(wi)). Thus, either v < ur(wi−1) is adjacent to wi−1 and wi or v ∈ G(fr(wi−1), ur(wi)) is adjacent
to wi and wi+1 or v ∈ G(fr(wi), wi+1) is adjacent to wi+1 and wi+2.

As v is 2-dominated by W in every case, it follows that W is a 2-dom.

Theorem 3. If a straight graph G has a 2-dom, then it has a minimum 2-dom that is fully expansive.

1As defined, D can contain multiple edges between the same pair of vertices (Figure 3). Moreover, some results hold only
if D contains these repeated edges. Yet, for simplicity, we restricted our terminology to simple digraphs. This is not an issue,
though, as all the results can be easily adapted to the case in which D is simple, by ignoring the heavier repeated edges. Is for
this reason that we ignore the fact that D is a multidigraph.

4

Proof. Suppose v1 < . . . < vn are the vertices of G, and let π(vi) = i, 1 ≤ i ≤ n. For W ⊆ V , let
π(W) =

∑

w∈W π(w). We shall prove that every minimum 2-dom W with maximum π is fully expansive.
Consider any block B of W with vertices w1 < . . . < wj and let u3 = fr(w1), ui = fr(wj−1) for

4 ≤ i ≤ j − 2, uj = fr(wj−2), and uj−1 = ℓ(wj) if j ≥ 5. Following the same pattern as in Theorem 2, it
is not hard to see that Wi = (W \ {wi}) ∪ {ui}, 3 ≤ i ≤ j, is a 2-dom of G. Moreover, since |W | ≤ |Wi| it
follows that ui 6∈ W \ {wi}, hence π(Wi) = π(W) + π(ui) − π(wi) ≥ π(W). Consequently, ui = wi by the
maximality of π(W). That is, B satisfies (exp1) and (exp2) and, thus, W satisfies (exp3).

Suppose now that wj is not the maximum of W . Then, some expansive block B′ represented by an edge
vw appears immediately after B in W . Let u = fr(ur(wj−1)) and z = fr(ur(wj)), and note that ur(wj) ≤ v

because B ∪B′ is not connected. Since ur(wj−1) has at most one neighbor in B and ur(wj) has no neighbors
in B, it follows that (a) v ≤ u and (b) w ≤ z. Moreover, (c) fr(v) ∈ B′ by (exp1). Suppose that (d) B′ does
not extend B, and consider the following cases.

Case 1: u = z and d+(ℓ(u)) = 1. Since d+(v) ≥ 2, then v 6= ℓ(u). Then, by (a) and (b), it follows that
v ≤ ℓ(ℓ(u)). Moreover, as v has at least two neighbors in W , it follows that w ≤ ℓ(u). Note that
W \ {v, w} ∪ {ℓ(ℓ(u)), ℓ(u)} is a 2-dom by (c) that, by (d) and (1), has π > π(W).

Case 2: u = z and d+(ℓ(u)) > 1. In this case, v ≤ ℓ(u) by (a) and (b), while (c) implies that W \
{v, w, fr(v)} ∪ {ℓ(u), u, fr(ℓ(u))} is a 2-dom that, by (d) and (1), has π > π(W).

Case 3: u 6= z and d+(u) = 1. Since d+(v) ≥ 2, then v 6= u. Then v ≤ ℓ(u) by (a), while w ≤ u because v

has at least two neighbors in W . Then, (W \ {v, w}) ∪ {ℓ(u), u} is a 2-dom by (c) that has π > π(W) by
(d) and (1).

Case 4: fr(u) = z and d+(u) > 1. Since v has at least two neighbors in W , (b) implies w ≤ ℓ(z). Then,
(W \ {v, w}) ∪ {u, ℓ(z)} is a 2-dom by (c) that has π > π(W) by (d) and (1).

Case 5: u < z < fr(u). In this final case, W \ {v, w, fr(v)} ∪ {u, z, fr(u)} is a 2-dom by (a)–(c) that, by (d)
and (1), has π > π(W).

As all the cases are impossible, B′ extends B. Hence, (exp4) holds as well.

Theorems 1–3 imply that a minimum 2-dom can be obtained by computing a path of minimum weight
from the source of D(G) to its sink. By Theorem 1, this algorithm requires O(nm) time once D(G) is given.
We remark that D(G) can be generated in O(nm) time, although the details are omitted as they are similar
to those discussed in the next section for R(G).

4 Computing a minimum 2-dom in O(m) time

The idea to accelerate the algorithm is to compress D(G) in a reduced graph R(G) that uses two vertices
per edge of G. For the sake of notation, let

¯
Ē(G) =

¯
E(G) ∪ Ē(G) for

¯
E(G) = {

¯
e | e ∈ E(G)} and

Ē(G) = {ē | e ∈ E(G)}. Define the width of vw ∈ E(G) as the minimum κ ≥ 1 such that d+(fκ
r (v)) ≥ 2;

when no such κ exists, the width of vw is κ = ∞.
Let s and e be the source and pre-sink of G, respectively, and t 6∈ E(G). As D(G), the digraph R(G) is

obtained by inserting an edge
¯
et of weight ω(

¯
et) = 3 in a digraph R that, this time, has vertex set

¯
Ē(G).

The vertices
¯
s and t are the source and sink of R(G). For each e ∈ E(G) and j ∈ {3, 4}, R has regular edges

¯
e
¯
g and

¯
eḡ of weight j for each j-extension g of e. Similarly, if e has width κ < ∞, then R has regular edges

ē
¯
g and ēḡ of weight κ + 4 when e has a (κ + 4)-extension g. This time, however, the j-extensions of e for

j > κ + 4 are compacted in a single edge. Specifically, if e = vw, fr(v) 6= w, and z = fκ
r (v), then R has a

compact edge ēḡ of weight κ for g = zr(z). Figure 4 depicts R(G) for the straight graph G in Figure 3.
The main feature of R(G) is that it preserves the adjacencies and distances of D(G). To make this

assertion explicit, say that a path P = ¯
¯
e1, . . . , ¯

¯
eh+1 of R(G) is a D-path when ¯

¯
eh¯

¯
eh+1 is regular, while it

is a D-edge when it is a D-path and ¯
¯
ei¯¯

ei+1 is compact for 1 ≤ i < h. Clearly, any D-path P is equal
to P1, . . . , Pk, where Pi is a D-edge from ¯

¯
ei to ¯

¯
ei+1, for 1 ≤ i ≤ k. By definition, ¯

¯
ei ∈ {

¯
ei, ēi} for some

ei ∈ E(G). Following the terminology for D(G), we say that P encodes the expansive set W with blocks

5

01

34

45

56

67

68

78

89

9|10

10|11 13|14
t

3

3

4,5
1

3,4

1

3

1

5

1

5

15

1

4,5
1

3,4

3
3

Figure 4. R(G ∪ S ∪ T) for G in Figure 3. For simplicity,
¯
e and ē are depicted as one vertex e for every

e ∈ E(G). The edges of weight 3 and 4 are from
¯
e and those of weight 1 and 5 are from ē. Compact edges

correspond to those of weight 1 and go to ē. Again, bold edges belong to paths of minimum weight from the
source

¯
01 to the sink t. The three fully expansive sets encoded by R(G) are the same as those in Figure 3.

B1 < . . . < Bk such that Bi is represented by ei and |Bi| = ω(Pi), for 1 ≤ i ≤ k. Theorem 5 below is the
translation of Theorem 1 to R(G), that shows that R(G) is actually a compact version of D(G).

Theorem 4. Let G be a straight graph, e, g ∈ E(G), ¯
¯
g ∈ {

¯
g, ḡ}, and j ∈ N. If j < 5, let ¯

¯
e =

¯
e; otherwise,

let ¯
¯
e = ē. Then, g is the j-extension of e if and only if there exists a D-edge from ¯

¯
e to ¯

¯
g of weight j in R(G).

Proof. Suppose first that g is the j-extension of e, and let κ be the width of e. We prove by induction on j

that R(G) has a D-edge of weight j from ¯
¯
e to ¯

¯
g. The base case, in which j ∈ {3, 4, κ + 4}, is trivial as ¯

¯
e¯
¯
g

is a regular edge of R(G) with weight j. For the inductive step, let B = w1 < . . . < wj be the expansive
connected set of size j ≥ 5 that is represented by e = w1w2. Note that B exists because otherwise e would
have no j-extension. By (exp1), wj−2 = f j−4

r (v), thus κ < j − 4 as d+(wj−2) ≥ 2 and j 6= κ + 4. By
definition, R(G) has a compact edge from ¯

¯
e to ēκ, for eκ = wκ+2r(wκ+2), because wκ+2 = fκ

r (v) by (exp1).
Moreover, by (exp1) and (exp2), B′ = wκ+2, r(wκ+2), wκ+3, . . . , wj is an expansive connected set with at
least five vertices. By definition, g is the (j − κ)-extension of eκ, thus, by induction, there is a D-edge P

from ēκ to ¯
¯
g in R(G) with ω(P) = j − κ. Hence, ¯

¯
eP is a D-edge of R(G) from ¯

¯
e to ¯

¯
g with ω(¯

¯
eP) = j.

For the converse, suppose that R(G) has a D-edge P = ¯
¯
e0, . . . , ¯

¯
eh from ¯

¯
e0 = ¯

¯
e to ¯

¯
eh = ¯

¯
g whose weight is

j. Note that, by definition, ¯
¯
ei = ēi for every 1 < i < h. We prove by induction on h that g is the j-extension

of e. The base case h = 1 is trivial, because ¯
¯
e¯
¯
g is a regular edge of R(G) only if g is the j-extension of e. For

the inductive step, let κ be the width of e = w1w2 and recall that e1 = wκ+2r(wκ+2), where wκ+2 = fκ
r (w1).

By definition, ¯
¯
e1, . . . , ¯

¯
eh is a D-edge of R(G) with weight (j −κ), which implies that g is the (j −κ)-extension

of e1 by induction. Note that j − κ ≥ 5 because ¯
¯
e1 = ē1. Thus, by (exp1) and (exp2), e1 represents an

expansive connected set B′ = wκ+2 < r(wκ+2) < wκ+3 < . . . < wj such that wi = f i−κ
r (wκ+2) = f i−2

r (w1)
for every κ ≤ i ≤ j − 2, wj = fr(wj−2), and wj−1 = ℓ(wj). Therefore, by (exp1) and (exp2), B = w1, . . . , wj

is an expansive connected set with |B| = j when wi = f i−2
r (w1) for 3 ≤ i ≤ κ. Consequently, by (1), e has

g as its j-extension.

Theorem 5. If G is a straight graph, then R(G) is an acyclic digraph that has O(m) vertices and edges.
Furthermore, W ⊆ V (G) is (resp. fully) expansive if and only if W is encoded by a D-path of R(G) (resp.
from the source to the sink) whose weight is |W |.

Proof. By Theorem 1, any expansive set W is encoded by a path P = e1, . . . , ek+1 of D(G). Let h = k if ek+1

is the sink of D(G) and h = k +1 otherwise. For 1 ≤ i ≤ h, let ¯
¯
ei =

¯
ei if ω(eiei+1) < 5 and ¯

¯
ei = ēi otherwise.

By Theorem 4, there is a D-edge Pi from ¯
¯
ei to ¯

¯
ei+1 of weight ω(eiei+1) for every 1 ≤ i < h. If h = k,

then ¯
¯
ek =

¯
ek because the unique edge form the pre-sink of G in D(G) has weight 3. Thus, regardless of the

value of h, the edge of R(G) from ¯
¯
ek to ¯

¯
ek+1 is a D-edge of weight ω(ekek+1). Consequently, P1, . . . , Pk is a

6

D-path of R(G) that encodes W . Moreover, if e1 is the source edge of G, then ω(e1e2) = 3 and, therefore,
¯
¯
e1 =

¯
e1 is the source of R(G) by Theorem 4. Hence, by Theorem 1, P1, . . . , Pk goes from the source of R(G)

to its sink when W is fully expansive.
The converse is similar: if P1, . . . , Pk is a D-path of R(G) that encodes a set W , then P = e1, . . . , ek+1

is a path of D(G) by Theorem 4, where ei ∈ E(G) is the edge corresponding to the first edge of Pi for
1 ≤ i ≤ k, and ek+1 corresponds to last edge of Pk that happens to be the sink of D(G) when Pk ends at
the sink of R(G). Moreover, ω(Pi) = ω(eiei+1). Thus, P encodes W which, by Theorem 1, implies that W

is an expansive set of G with ω(P1, . . . , Pk) vertices. Moreover, W is fully expansive when P1, . . . , Pk goes
from the source to the sink of R(G).

The algorithm to compute a minimum 2-dom of a given straight graph G has three main steps. Steps 1
and 2 compute R(G) and a path P of minimum weight from the source to the sink of R(G), respectively.
By Theorems 2–4, P encodes a minimum 2-dom W of G; the set W is found in Step 3. The algorithm runs
in O(m) time when implemented as described below, where we write [n] = [1, n] ∩ N.

Input: G is implemented with the sequence v1 < . . . < vn of its vertices and a function f̂r : [n] → [n] such

that f̂r(i) = j when fr(vi) = vj . Both V (G) and f̂r are implemented with vectors, thus traversing V (G)

requires O(n) time, whereas querying f̂r(i) costs O(1) time. Note that d̂+(i) = d+(vi) = f̂r(i) − i can be
answered in O(1) time as well. We assume that G contains the source and pre-sink blocks, as O(n) time
suffices to insert them into the structure.

Step 0: before computing R(G), we build the map κ̂ : [n] → [n + 1] × [n] such that: if vi has width κ < ∞,
then κ̂(i) = (κ, fκ

r (vi)); otherwise, κ̂(i) = (n + 1, i). A single backward traversal of V (G) suffices to
compute κ̂ in O(n) time because, by definition,

κ̂(i) =

(n + 1, i) if d̂+(f̂r(i)) = 0

(1, f̂r(i)) if d̂+(f̂r(i)) ≥ 2

(1 + min{κ, n}, w) otherwise, for (κ, w) = κ̂(f̂r(i)).

Step 1: to compute R(G), first two vertices (i, j, 0) and (i, j, 1) representing
¯
e and ē are created, for e =

vivj ∈ E(G), i ∈ [n], and j ∈ (i, f̂r(i)]. This step consumes O(m) time. Then, for i ∈ [n] and j ∈ (i, fr(i)),

the edges of R(G) from (i, j, 1) are inserted. Let (κ, a) = κ̂(i) and b = f̂r(a); suppose κ ≤ n as no edge
from (i, j, 1) has to be inserted otherwise. First, the edge from (i, j, 1) to (a, a + 1, 1), representing the
compact edge ēḡ for e = vivj and g = var(va), is inserted in O(1) time. To create the regular edges,
note that, by (exp1), vb−1 and vb are the last two vertices of the expansive connected set of size (κ + 4)
that is represented by vivj . Clearly, the indices x, y such that vxvy is the edge defined by (1), when

applied to vb−1 and vb, can be obtained in O(1) time with a few applications of f̂r. By definition, vxvy

is the (κ + 4)-extension of vivj if and only if vbvx 6∈ E(G) and vxvy represents an expansive connected

set. These facts that can be determined in O(1) time by observing whether f̂r(b) < x and d̂+(x) ≥ 2. If
affirmative, then the edges from (i, j, 1) to (x, y, •) of weight κ + 4 are inserted in O(1) time. Therefore,
the edges from (i, j, 1) are created in O(1) time. Each regular edge from (i, j, 0) is inserted O(1) time
with a similar procedure. Therefore, this step consumes O(m) total time.

Step 2: since R(G) is acyclic (Theorem 4), P can be computed in O(m) time.

Step 3: traversing P once, we can split P into D-edges P1, . . . , Pk while ω(Ph) is computed for h ∈ [k]. Let

(i, j, •) be the first vertex of Ph. By (exp1) and (exp2), O(ω(Ph)) applications of f̂r from i are enough to
find all the vertices of the expansive connected set Bh of size ω(Ph) that is represented by vivj . Then,
the output W = B1 ∪ . . . ∪ Bk can be computed in O(ω(P)) = O(n) time.

Note that G can be encoded in O(n) space, thus the algorithm is quadratic in the worst case. We remark that

many algorithms exist to compute a straight orientation ~G of a PIG graph G in O(m) time. In particular,

the algorithm in [3] outputs ~G as required by the algorithm above. Thus, when G is a PIG graph represented
with adjacency lists, a 2-dom can be computed in linear time.

7

5 Concluding remarks

In this note we developed an O(m) time algorithm for the total 2-dominating set problem on proper interval
graphs, improving the previous O(n6) time algorithm by Chiarelli et al. [2]. Both of these algorithms work
by finding a shortest path on a weigthed digraph D. The main difference between them is that in our model
the edges of D represent connected sets with a large diameter. The actual connected set represented by
e ∈ D is the one that reaches farther in the input (model of the) graph G. One of the consequences defining
the edges of D in this way is that some connected sets that can be a part of the solution when G is weighted
are not considered. Therefore, on the contrary to the algorithm by Chiarelli et al., our algorithm does not
solve the problem when G is weighted.

Our algorithm provides more evidence that the time required to solve problem of finding a total k-
dominating set on a (proper) interval graph, for k > 2, is o(n3k). In our digraph D, each edge goes from a
pair vw to the another pair uz. Certainly, we can extend this model to k-tuples; the idea would be to have
an edge from a k-tuple v to a k-tuple w of weight j when w is the further tuple that can be reached with a
“block” having j vertices. Intuitively, such a k-tuple w should exist: if B and B′ are two “blocks” of a total
k-dominating set that begin with v and neither of them is lexicographically larger than the other, then it
should be possible to combine B and B′ into a new block beginning with v that is lexicographically larger
than both B and B′. Thus, the tuple w reaching further should exist. The problem, however, is how to
compute w when building D. The case k = 2 is easy because all the blocks have a peculiar structure. We
conjecture that, by following these ideas, the problem can be solved in O(nkkk) time.

References

[1] M.-S. Chang. Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM
J. Comput., 27(6):1671–1694, 1998. doi:10.1137/S0097539792238431.

[2] N. Chiarelli, T. R. Hartinger, V. A. Leoni, M. I. L. Pujato, and M. Milanic. Improved algorithms
for k-domination and total k-domination in proper interval graphs. In J. Lee, G. Rinaldi, and A. R.
Mahjoub, editors, Combinatorial Optimization. ISCO 2018, vol. 10856 of Lecture Notes in Comput. Sci.,
pp. 290–302. Springer, Cham, 2018. doi:10.1007/978-3-319-96151-4_25.

[3] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper circular-arc graphs
and proper interval graphs. SIAM J. Comput., 25(2):390–403, 1996. doi:10.1137/S0097539792269095.

[4] D. Y. Kang, O.-j. Kwon, T. J. F. Strø mme, and J. A. Telle. A width parameter useful for chordal and
co-comparability graphs. Theoret. Comput. Sci., 704:1–17, 2017. doi:10.1016/j.tcs.2017.09.006.

[5] J. K. Lan and G. J. Chang. On the algorithmic complexity of k-tuple total domination. Discrete Appl.
Math., 174:81–91, 2014. doi:10.1016/j.dam.2014.04.007.

[6] R. Laskar, J. Pfaff, S. M. Hedetniemi, and S. T. Hedetniemi. On the algorithmic complexity of total
domination. SIAM J. Algebraic Discrete Methods, 5(3):420–425, 1984. doi:10.1137/0605040.

[7] D. Pradhan. Algorithmic aspects of k-tuple total domination in graphs. Inform. Process. Lett., 112(21):
816–822, 2012. doi:10.1016/j.ipl.2012.07.010.

8

http://dx.doi.org/10.1137/S0097539792238431
http://dx.doi.org/10.1007/978-3-319-96151-4_25
http://dx.doi.org/10.1137/S0097539792269095
http://dx.doi.org/10.1016/j.tcs.2017.09.006
http://dx.doi.org/10.1016/j.dam.2014.04.007
http://dx.doi.org/10.1137/0605040
http://dx.doi.org/10.1016/j.ipl.2012.07.010

	1 Introduction
	2 Preliminaries
	3 Computing a minimum 2-dom in O(nm) time
	4 Computing a minimum 2-dom in O(m) time
	5 Concluding remarks

