93 research outputs found

    On the Efficacy of Live DDoS Detection with Hadoop

    Full text link
    Distributed Denial of Service flooding attacks are one of the biggest challenges to the availability of online services today. These DDoS attacks overwhelm the victim with huge volume of traffic and render it incapable of performing normal communication or crashes it completely. If there are delays in detecting the flooding attacks, nothing much can be done except to manually disconnect the victim and fix the problem. With the rapid increase of DDoS volume and frequency, the current DDoS detection technologies are challenged to deal with huge attack volume in reasonable and affordable response time. In this paper, we propose HADEC, a Hadoop based Live DDoS Detection framework to tackle efficient analysis of flooding attacks by harnessing MapReduce and HDFS. We implemented a counter-based DDoS detection algorithm for four major flooding attacks (TCP-SYN, HTTP GET, UDP and ICMP) in MapReduce, consisting of map and reduce functions. We deployed a testbed to evaluate the performance of HADEC framework for live DDoS detection. Based on the experiments we showed that HADEC is capable of processing and detecting DDoS attacks in affordable time

    Multi-agent-based DDoS detection on big data systems

    Get PDF
    The Hadoop framework has become the most deployed platform for processing Big Data. Despite its advantages, Hadoop s infrastructure is still deployed within the secured network perimeter because the framework lacks adequate inherent security mechanisms against various security threats. However, this approach is not sufficient for providing adequate security layer against attacks such as Distributed Denial of Service. Furthermore, current work to secure Hadoop s infrastructure against DDoS attacks is unable to provide a distributed node-level detection mechanism. This thesis presents a software agent-based framework that allows distributed, real-time intelligent monitoring and detection of DDoS attack at Hadoop s node-level. The agent s cognitive system is ingrained with cumulative sum statistical technique to analyse network utilisation and average server load and detect attacks from these measurements. The framework is a multi-agent architecture with transducer agents that interface with each Hadoop node to provide real-time detection mechanism. Moreover, the agents contextualise their beliefs by training themselves with the contextual information of each node and monitor the activities of the node to differentiate between normal and anomalous behaviours. In the experiments, the framework was exposed to TCP SYN and UDP flooding attacks during a legitimate MapReduce job on the Hadoop testbed. The experimental results were evaluated regarding performance metrics such as false-positive ratio, false-negative ratio and response time to attack. The results show that UDP and TCP SYN flooding attacks can be detected and confirmed on multiple nodes in nineteen seconds with 5.56% false-positive ration, 7.70% false-negative ratio and 91.5% success rate of detection. The results represent an improvement compare to the state-of the-ar

    A Survey on Big Data for Network Traffic Monitoring and Analysis

    Get PDF
    Network Traffic Monitoring and Analysis (NTMA) represents a key component for network management, especially to guarantee the correct operation of large-scale networks such as the Internet. As the complexity of Internet services and the volume of traffic continue to increase, it becomes difficult to design scalable NTMA applications. Applications such as traffic classification and policing require real-time and scalable approaches. Anomaly detection and security mechanisms require to quickly identify and react to unpredictable events while processing millions of heterogeneous events. At last, the system has to collect, store, and process massive sets of historical data for post-mortem analysis. Those are precisely the challenges faced by general big data approaches: Volume, Velocity, Variety, and Veracity. This survey brings together NTMA and big data. We catalog previous work on NTMA that adopt big data approaches to understand to what extent the potential of big data is being explored in NTMA. This survey mainly focuses on approaches and technologies to manage the big NTMA data, additionally briefly discussing big data analytics (e.g., machine learning) for the sake of NTMA. Finally, we provide guidelines for future work, discussing lessons learned, and research directions

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Insight from a Docker Container Introspection

    Get PDF
    Large-scale adoption of virtual containers has stimulated concerns by practitioners and academics about the viability of data acquisition and reliability due to the decreasing window to gather relevant data points. These concerns prompted the idea that introspection tools, which are able to acquire data from a system as it is running, can be utilized as both an early warning system to protect that system and as a data capture system that collects data that would be valuable from a digital forensic perspective. An exploratory case study was conducted utilizing a Docker engine and Prometheus as the introspection tool. The research contribution of this research is two-fold. First, it provides empirical support for the idea that introspection tools can be utilized to ascertain differences between pristine and infected containers. Second, it provides the ground work for future research conducting an analysis of large-scale containerized applications in a virtual cloud

    Content an Insight to Security Paradigm for BigData on Cloud: Current Trend and Research

    Get PDF
    The sucesssive growth of collabrative applications prodcuing Bigdata on timeline leads new opprutinity to setup commodities on cloud infrastructure. Mnay organizations will have demand of an efficient data storage mechanism and also the efficient data analysis. The Big Data (BD) also faces some of the security issues for the important data or information which is shared or transferred over the cloud. These issues include the tampering, losing control over the data, etc. This survey work offers some of the interesting, important aspects of big data including the high security and privacy issue. In this, the survey of existing research works for the preservation of privacy and security mechanism and also the existing tools for it are stated. The discussions for upcoming tools which are needed to be focused on performance improvement are discussed. With the survey analysis, a research gap is illustrated, and a future research idea is presente

    Combating cyber attacks in cloud computing using machine learning techniques.

    Full text link
    An extensive investigative survey on Cloud Computing with the main focus on gaps that is slowing down Cloud adoption as well as reviewing the threat remediation challenges. Some experimentally supported thoughts on novel approaches to address some of the widely discussed cyber-attack types using machine learning techniques. The thoughts have been constructed in such a way so that Cloud customers can detect the cyber-attacks in their VM without much help from Cloud service provide
    corecore