
MULTI-AGENT BASED DDoS DETECTION 

ON BIG DATA SYSTEMS 

 

by 

 

SOLOMON OSEI  

 

 

 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements for the award of Doctor 

of Philosophy of Loughborough University 

 

July 2018 

 

© by Solomon Osei, 2018 

 

 

  



I 
 

 

Abstract  
The Hadoop framework has become the most deployed platform for processing Big Data. 

Despite its advantages, Hadoop’s infrastructure is still deployed within the secured 

network perimeter because the framework lacks adequate inherent security 

mechanisms against various security threats. However, this approach is not sufficient 

for providing adequate security layer against attacks such as Distributed Denial of 

Service.  Furthermore, current work to secure Hadoop’s infrastructure against DDoS 

attacks is unable to provide a distributed node-level detection mechanism. This thesis 

presents a software agent-based framework that allows distributed, real-time 

intelligent monitoring and detection of DDoS attack at Hadoop’s node-level. The agent’s 

cognitive system is ingrained with cumulative sum statistical technique to analyse 

network utilisation and average server load and detect attacks from these 

measurements. The framework is a multi-agent architecture with transducer agents 

that interface with each Hadoop node to provide real-time detection mechanism. 

Moreover, the agents contextualise their beliefs by training themselves with the 

contextual information of each node and monitor the activities of the node to 

differentiate between normal and anomalous behaviours. In the experiments, the 

framework was exposed to TCP SYN and UDP flooding attacks during a legitimate 

MapReduce job on the Hadoop testbed. The experimental results were evaluated 

regarding performance metrics such as false-positive ratio, false-negative ratio and 

response time to attack.  The results show that UDP and TCP SYN flooding attacks can 

be detected and confirmed on multiple nodes in nineteen seconds with 5.56% false-

positive ration, 7.70% false-negative ratio and 91.5% success rate of detection. The 

results represent an improvement compare to the state-of–the-art.   

 

 

 

 

 



II 
 

Acronyms and Abbreviations  
 

AS   Attack Sent 

AD    Attack Detected 

AMRL   Agent Management Regulatory Layer 

ARL    Average Running Length 

CUSUM  Cummulative Sum  

DMAL   Data Management and Assurance Layer 

EW FP   False Positive 

EWMA   Exponential Weighted Moving Average 

FN   False Negative 

FPR   False Positive Ratio 

FNR   False Negative Ratio 

LWMA   Lenear Weighted Moving Average 

MA   Exponential Weighted Moving Average 

PMKIL   Policy Management and Knowledge Integration Layer 

SYN    Synchronize 

SVM   Support Vector Machine 

TCP    Transmission Control Protocol 

UDP    User Datagram Protocol 

W   Window                      



I 
 

Acknowledgement  

The journey of a thousand miles indeed begins with a step. I will first of all want to 

express my sincere gratitude to God almighty for the His protection and divine 

provision throughout my academic journey at Loughborough University. l also want to 

thank my parents for their many years of love and enormous support. I can’t thank you 

enough for every single thing you've done for me. I will also take this opportunity to 

thank my PhD supervisors: Professor Ahmet Kondoz, thank you for your leadership and 

guidance. Dr Xiyu Shi, thank you for your excellent research supervision skills, timely 

and constructive feedback and availability. Dr Konstantinos Kyriakopoulos, thank you 

for your excellent research skills, friendship and supervision. I will also want to 

appreciate my wife Elizabeth Andam for your unconditional Love, care and support. 

You've been a pillar in my academic achievements and I will forever be grateful.  I will 

also want to appreciate the team in the signal processing and network research group 

especially Francisco J. Aparicio Navarro for your support when it was needed most. Last 

but not the least; I am grateful to Loughborough University for given me the 

opportunity to make my dream a reality. 

 

 

 

 

 

 

 

 

 

 

 

 



II 
 

Table of Contents 

Abstract ............................................................................................................................................................... I 

Acronyms and Abbreviations .................................................................................................................... II 

Acknowledgement .......................................................................................................................................... I 

List of Tables ............................................................................................................................................... VIII 

List of Figures .................................................................................................................................................. X 

 ........................................................................................................................................................... 1 Chapter 1

Introduction ................................................................................................................................................ 1 

1.1 Background................................................................................................................................. 1 

1.2 Application of multi-agent concepts in automated networked management 

systems 3 

1.3 Big Data technology and security vulnerabilities .................................................................. 5 

1.4 Research problem .............................................................................................................................. 9 

1.4.1 Research Question ................................................................................................................. 10 

1.5 Research Objectives .............................................................................................................. 10 

1.6 Research novelty .............................................................................................................................. 10 

1.7 Research approach .......................................................................................................................... 12 

1.7.1 Conduct literature review to understand current work and also establish the 

research gap in chapter one ........................................................................................................... 12 

1.7.2 Employ an agent-based methodology to design and develop a multi-agent 

framework to detect DDoS attacks in a Hadoop cluster ...................................................... 13 

1.7.3 Deployment of a Hadoop testbed ...................................................................................... 14 

1.7.4 Develop a prototype of the proposed multi-agent framework .............................. 14 

1.7.5 Evaluate the veracity of the prototype ............................................................................ 14 

1.8 Summary ............................................................................................................................................. 15 

 ......................................................................................................................................................... 17 Chapter 2

Literature Review ................................................................................................................................... 17 

2.1 Introduction ....................................................................................................................................... 17 

2.2 Application of software agent concept in network and system management ......... 19 

2.2.1  Application of multi-agent concept in network management .............................. 21 

2.2.2 Multi-Agent based DDoS detection techniques ............................................................ 22 

2.3 The Big Data technologies and security vulnerabilities .................................................... 25 

2.3.1 Current Big Data technologies ............................................................................................ 25 

2.3.2 Current BD security solutions and their challenges .................................................. 27 



III 
 

2.4 Summary ............................................................................................................................................. 38 

Chapter 3 ......................................................................................................................................................... 39 

Overview and Application of Multi-Agent Concepts in Automated Big Data Security 

System Management .............................................................................................................................. 39 

3.1 Introduction ....................................................................................................................................... 39 

3.2 Types of software agents .............................................................................................................. 41 

3.2.1 Interface agent .......................................................................................................................... 41 

3.2.2 Information agent .................................................................................................................... 42 

3.2.3 Collaborative agent ................................................................................................................. 42 

3.2.4 Mobile agents ............................................................................................................................ 42 

3.3 Agent reasoning system ................................................................................................................ 43 

3.4 Agent communication .................................................................................................................... 46 

3.4.1 Agent-to-agent communication ......................................................................................... 46 

3.4.2 Agent communication language......................................................................................... 47 

3.4.3 Description of the FIPA_SL language ............................................................................... 48 

3.4.4 Utilisation of ontology in multi-agent communication ............................................. 50 

3.4.5 Ontology development .......................................................................................................... 51 

3.5 Brief overview of software agents design methodologies ............................................... 52 

3.5.1 Australian artificial intelligent institute methodology ............................................. 52 

3.5.2 Gaia methodology .................................................................................................................... 53 

3.5.3 Tropos methodology .............................................................................................................. 56 

3.6 Application of multi-agent concepts in automated big data security system 

management .............................................................................................................................................. 56 

3.6.1 Network management model and protocol .................................................................. 58 

3.7 Utilisation of software agent concepts in managing BD systems .................................. 60 

3.7.1 Application of mobile agent in automated management solutions in BD cluster

 ................................................................................................................................................................... 60 

3.7.2 Application of interface agent in automated management solutions in BD 

cluster ..................................................................................................................................................... 63 

3.7.3 Application of Collaborative agent in automated management solutions in 

BD cluster .............................................................................................................................................. 63 

3.8 The proposed multi-agent framework approach to automated system 

management task in the BD system ................................................................................................. 63 

3.8.1 Brief description of the proposed multi-agent technique .................................. 64 



IV 
 

Policy Management and Knowledge Integration Layer (PMKIL): ........................................ 67 

3.8.2 Description of the  real-case scenario ............................................................................. 68 

3.9 Summary ............................................................................................................................................. 74 

Chapter 4 ......................................................................................................................................................... 76 

Distributed Denial of Service Attack Classification and State-Of-The-Art Detection 

Techniques ................................................................................................................................................. 76 

4.1 Introduction ....................................................................................................................................... 76 

4.2 Defining DDoS attack ...................................................................................................................... 77 

4.3 Classifications of DDoS attacks ................................................................................................... 77 

4.3.1 Types of DDoS attacks ........................................................................................................... 78 

4.3.2 DDoS attack Victims................................................................................................................ 81 

4.4 State-of-the-Art DDoS defence mechanism ........................................................................... 82 

4.4.1 Artificial intelligence DDoS detection techniques....................................................... 83 

4.4.2 Multi-agent DDoS detection techniques ......................................................................... 85 

4.5 Summary ............................................................................................................................................. 87 

 ......................................................................................................................................................... 88 Chapter 5

Design of Multi-Agent Based Real-Time DDoS Detection Framework on Big Data 

Systems 88 

5.1 Introduction ............................................................................................................................. 88 

5.2 Methodology for the analysis and design of the multi-agent based DDoS detection 

mechanism ................................................................................................................................................. 89 

5.3 Problem Statement .......................................................................................................................... 90 

5.4 Background to use case modelling ............................................................................................ 92 

5.4.1 Application of use case in modelling the functions of the framework .......... 93 

5.5 Gaia analysis.................................................................................................................................... 100 

5.5.1 Transition from use case modelling to Gaia analysis stage ............................ 101 

5.6 Design of the proposed multi-agent framework ............................................................... 104 

5.6.1 A transparent approach to interfacing the DDoS detection framework with the 

Hadoop cluster ................................................................................................................................. 106 

5.6.2 The scalability of the multi-agent DDoS framework ............................................... 107 

5.6.3 Transparency to domain knowledge ............................................................................ 107 

5.6.4 Approach to the design of the agent DDoS attack detection behaviour .......... 107 

5.7 The design of real-time agent based DDoS detection technique using Cumulative 

Sum 108 



V 
 

5.7.1 Background to the CUSUM-Based DDoS detection technique ............................ 109 

5.8 The design of real-time agent based DDoS detection technique using linear 

weighted moving average ................................................................................................................. 118 

5.9 Description of the dynamic training technique ................................................................. 121 

5.9.1 Scenario one – when a node is in an idle state .................................................... 121 

5.9.2 Scenario Two - when normal activity on the node drops for some time .. 122 

5.9.3 Scenario Three: When the normal activity on the server increases ........... 122 

5.10 Implementation of the agent behaviour and interactions .................................. 125 

5.10.1 Transducer agents (Interface with the Hadoop nodes) .............................. 126 

5.10.2 Data Persistent Agent ....................................................................................................... 128 

5.10.3 Policy management agent ............................................................................................... 129 

5.10.4 User interface agent .......................................................................................................... 132 

5.10.5 System registration and management agent ........................................................... 132 

5.10.6 Intelligent controller agent ............................................................................................ 133 

5.11 The final deliverable of the Gaia analysis and design methodology ....................... 136 

5.12 Summary................................................................................................................................. 137 

 ...................................................................................................................................................... 138 Chapter 6

Results and Evaluation ....................................................................................................................... 138 

6.1 Introduction .................................................................................................................................... 138 

6.2 Experiment setup .......................................................................................................................... 139 

6.3 Performance evaluation of the CUSUM and LWMA technique under TCP SYN 

flooding attack ....................................................................................................................................... 142 

6.4 Classification of the evaluation scenarios ........................................................................... 143 

6.5 Offline evaluation of the detection of high-intensity TCP SYN flooding attack. .... 143 

6.5.1 Offline performance  analysis of the CUSUM-based DDoS detection technique

 ................................................................................................................................................................ 148 

6.5.2 Offline performance analysis of the LWMA-Based DDoS detection 

technique ............................................................................................................................................ 151 

6.6 Offline evaluation of the detection of low-intensity UDP flooding attack ............... 156 

6.6.1 Offline performance evaluation of the of the CUSUM DDoS-based technique 

in detecting the low-intensity UDP flooding attack ........................................................... 158 

6.6.2 Offline performance evaluation of the LWMA-based technique in detecting 

low-intensity UDP flooding Attack ........................................................................................... 161 

6.7 Analysis of the effect of the training period on detection accuracy .......................... 166 



VI 
 

6.7.1 Analysing the effect of the training period on the CUSUM-based technique in 

detecting TCP SYN Flooding attack .......................................................................................... 166 

6.7.2 Effect of the training period on the LWMA technique in detecting TCP SYN 

flooding attack .................................................................................................................................. 169 

6.7.3 Analysis of the effect of the training period on the CUSUM-based technique 

in detecting UDP flooding attack ............................................................................................... 172 

6.7.4 Analysis of the effect of the training period on LWMA-based technique in 

detecting UDP flooding attack .................................................................................................... 173 

6.8 Real-time performance evaluation of the framework .................................................... 174 

6.8.1  Criteria of the real-time experiment ....................................................................... 174 

6.8.2 Experiment setup and real case experiment scenarios ................................... 175 

6.9 Comparison of the proposed framework with the state-of-art. .................................. 189 

6.9.1 Comparative result of the performance of the CUSUM, LWMA and EWMA 

detection algorithm in detecting high-intensity attacks (i.e. TCP SYN flooding). .. 190 

6.9.2 Comparative result of the performance of the CUSUM, LWMA and EWMA 

detection algorithm in detecting low-intensity attack (i.e. UDP flooding). ............... 192 

6.10 Summary ........................................................................................................................................ 193 

 ...................................................................................................................................................... 196 Chapter 7

Conclusion and Future Work ........................................................................................................... 196 

7.1 Contribution and achievements .............................................................................................. 196 

7.1.1 Design and implementation of a multi-agent distributed detection mechanism 

 ................................................................................................................................................................ 197 

7.1.2 Design and implementation of a novel statically based DDoS detection 

techniques .......................................................................................................................................... 197 

7.1.3 A novel ontological DDoS attack description and management mechanism that 

report DDoS attacks ....................................................................................................................... 199 

7.1.4 Design and implementation of a novel real-time agent training technique  . 199 

7.1.5 A novel time series data fusion technique  ................................................................. 199 

7.2 Future work .................................................................................................................................... 199 

7.2.1 Application of machine learning algorithm in the dynamic multi-agent 

training technique. .......................................................................................................................... 199 

7.2.2 Integration of intelligent ontological mapping algorithm into multi-agent 

framework, ......................................................................................................................................... 200 

7.2.3 Application of machine learning and data mining algorithms in the multi-

agent framework to detect DDoS attacks. .............................................................................. 201 

Appendix A .................................................................................................................................................. 202 



VII 
 

OFFLINE EVALUATION RESULTS .................................................................................................. 202 

A.1 ADDITIONAL CUSUM ANALYSIS RESULTS OF THE TCP SYN FLOODING ATTACK 

PRESENTED IN CHAPTER SIX ......................................................................................................... 202 

A.2 LWMA ANALYSIS RESULTS OF THE TCP SYN FLOODING ATTACK ......................... 209 

A.3 Additional CUSUM analysis results of the UDP flooding attack .................................. 214 

A.4 LWMA ANALYSIS RESULTS OF THE UDP FLOODING ATTACK .................................. 219 

A.4 Results of The Real-Time Detection Botnet DDoS Attacks ........................................... 224 

CUSUM analysis graph of the TCP SYN Flooding attack ................................................... 224 

Appendix B .................................................................................................................................................. 239 

B.1 Justification of the choice metrics for the real-time analysis of the network 

traffic and average server load ....................................................................................................... 239 

B.2 Confirmation Of The Choice Of Metrics For The Analysis And Detection Of 

Dos Attacks On The Hadoop Node ................................................................................................. 239 

1. The objective of the experiment .................................................................................... 239 

     2. The aim of the experiment ............................................................................................... 240 

3. Experiment Methodology................................................................................................. 240 

4. First experiment scenario - TCP SYN Flooding attack .......................................... 240 

5. Second experiment scenario ........................................................................................... 241 

6. The observations from the experiment ...................................................................... 241 

B.3 Description of the average Server load metrics ...................................................... 245 

References ................................................................................................................................................... 250 

 

 

 

 

 

 

 

 

 



VIII 
 

List of Tables  

TABLE 2-1 EXTENDED CLASSES  [45] ................................................................................................. 28 

TABLE 2-2 ABSTRACT AND CONCRETE CONCEPT [30] .............................................................. 54 

TABLE 2-3 SUMMARY OF THE APPLICATION OF THE SOFTWARE AGENT CONCEPTS IN 

NETWORK MANAGEMENT ............................................................................................................. 62 

TABLE 2-4 ALIGNMENT OF THE FRAMEWORK LAYERS TO THE NETWORK 

MANAGEMENT MODEL.................................................................................................................... 67 

TABLE 2-5 APPLICATION OF THE SOFTWARE AGENT CONCEPT ........................................... 67 

TABLE 5-1 DESCRIPTION OF ALL THE USE CASES IN THE PMKL ........................................... 97 

TABLE 5-2 DESCRIPTION OF ALL THE USE CASES IN THE DMAL ........................................... 98 

TABLE 5-3 BRIEF DESCRIPTIONS OF ALL THE USE CASES IN THE AMRL ........................... 99 

TABLE 5-4 SCHEMA FOR ALL THE ROLES OF PROPOSED SYSTEM ..................................... 102 

TABLE 5-5 A SECTION OF INTERACTION TABLE FOR TRANSDUCER AGENT ................. 127 

TABLE 6-1 HPING3 ATTACK PROPERTIES ..................................................................................... 145 

TABLE 6-2 THE AGENT'S CURRENT BELIEF AS A RESULT OF THE 30 MINUTES CUSUM 

TRAINING ........................................................................................................................................... 146 

TABLE 6-3 THE AGENT'S CURRENT BELIEF BECAUSE OF THE 30 MINUTES LWMA 

TRAINING ........................................................................................................................................... 147 

TABLE 6-4. THE EVALUATION RESULTS OF THE CUSUM TECHNIQUE IN DETECTING

 ................................................................................................................................................................ 147 

TABLE 6-5. THE EVALUATION RESULTS OF THE LWMA-BASED TECHNIQUE ............... 154 

TABLE 6-6 THE AGENT'S CURRENT BELIEF AS A RESULT OF THE CUSUM TRAINING

 ................................................................................................................................................................ 157 

TABLE 6-7 THE EVALUATION RESULTS OF THE CUSUM TECHNIQUE OF IN DETECTING 

UPD ATTACK ..................................................................................................................................... 160 

TABLE 6-8 THE EVALUATION RESULTS OF THE LWMA TECHNIQUE OF IN DETECTING 

UPD ATTACK ..................................................................................................................................... 165 

TABLE 6-9 THE AGENT'S CURRENT BELIEF OF THE ONE-MINUTE AND ONE-HOUR 

CUSUM TRAINING ........................................................................................................................... 167 

TABLE 6-10 CUSUM DETECTION RESULTS WITH ONE-MINUTE AND ONE-HOUR 

TRAINING ........................................................................................................................................... 169 

TABLE 6-11 THE AGENT'S CURRENT BELIEF OF THE LWMA  TRAINING ........................ 170 

TABLE 6-12 LWMA DETECTION RESULTS WITH ONE-MINUTE AND ONE-HOUR 

TRAINING ........................................................................................................................................... 171 

TABLE 6-13 CUSUM DETECTION RESULTS WITH ONE-MINUTE AND ONE-HOUR 

TRAINING ........................................................................................................................................... 173 

TABLE 6-14 LWMA DETECTION RESULTS WITH ONE-MINUTE AND ONE-HOUR 

TRAINING ........................................................................................................................................... 174 

TABLE 6-15 PRESENTS THE EVALUATION RESULT OF NODE 1 (ONE OF THE 

COMPROMISED NODES. 178 

TABLE 6-16 TABLE I: DDOS DETECTION EVALUATION ON NODE 1 .................................. 182 

TABLE 6-17 DDOS DETECTION EVALUATION ON NODE 2 ..................................................... 184 



IX 
 

TABLE 6-18 PRESENTS THE EVALUATION RESULTS OF THE FUSION AND ANALYSIS OF 

THE ATTACK REPORTS,. ............................................................................................................... 185 

TABLE 6-19 RESULT OF THE DATA FUSION ALGORITHM DURING TCP SYN FLOODING 

ATTACK ............................................................................................................................................... 186 

TABLE 6-20 DDOS EVALUATION RESULTS FOR THE UDP FLOODING ATTACK ............. 187 

TABLE 6-21 HIGH-INTENSITY ATTACK DETECTION PERFORMANCE COMPARISON 

WITH ONE-MINUTE AND ONE-HOUR TRAINING............................................................... 190 

TABLE 6-22 LOW-INTENSITY ATTACK DETECTION PERFORMANCE COMPARISON 

WITH ONE-MINUTE AND ONE-HOUR TRAINING............................................................... 192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 
 

LiFst of Figures  

Figure 1.1 HDFS external architecture………………………………………………………………………7. 
Figure 1.2 HDFS internal architecture……………………………………………………………………….8. 
Figure 2.1 Conceptual view of data node and security suite……………………………………...29.  
figure 3.1 Illustration of remote procedure call (RPC) and mobile a..………………………….43. 
Figure 3.2 Example of BDI model…………………………..………………………………………………....45. 
Figure 3.3 Schematic description of KA to read resource utilisation metric………………..45. 
Figure 3.4 application of the communicative act (request performative) in a FIPA-ACL 
message…………………………………………………………………………………………………………………48. 
Figure 3.5 Agent communication model…………………………………………………………………...49. 
Figure 3.6 A model of the network administrator's knowledge of the network 
infrastructure. classes are represented as oval and instances as a rectangle……………...51. 
Figure 3.7 A summary of the AAII methodology……………………………………..………………….53. 
Figure 3.8 GAIA relationship and model transition……………………………….………………..…55. 
Figure 3.9 GAIA analysis concept……………….……...……………………………….……………………56. 
Figure 3.10 a Schematic representation of mobile agent dispatched unto remote 
network elements…………………...…………………………………………………………………..………….61. 
Figure 3.11 Schematic representation of the proposed framework……………………….….65. 
Figure 3.13 Schematic representation of the framework implementation…………..……..66. 
Figure 3.14 Ontology schema of the system review scenario……………………………..……...69. 
Figure 3.15 UML model of the framework implementation……….…………………….………..71. 
Figure 4.6 The implementation results on the hadoop cluster…………………………………...73. 
Fig 5.1  Use case diagram of the DDoS detection implementation…………………………….....94. 
Fig 5.2 A model of the agent types, services and acquaintances……….............................…..104. 
Fig 5.3 Flow chart of the LWMA based DDoS technique………………………….…………...…..118. 
Fig 5.4 Flowchart of the dynamic training technique……………………..………………………...123. 
Fig 5.5 The sequence of the health check process…………………………..………………………..128. 
Fig 5.6 A section of the DDoS  ontology model………………………………...………………….…..130. 
Fig 5.7 A model of the protocol enforcement mechanism…………………..………………….…133. 
Fig 5.8  The final implementation model of the multi-agent-based framework………….134. 
Figure 6.1 The setup of the hadoop test bed……………………………….…………………………...139. 
Figure 6.2 Detection of TCP SYN flooding attack on incoming traffic on first ARL…..…146. 
Fig. 6.3 TCP SYN flooding detection on incoming traffic on second ARL………………........147. 
Figure 6.4 TCP SYN flooding attack minister on the one-minute server load………........149. 
Fig 6.5 LWMA result of the incoming traffic first ARL………………………………………………151. 
Fig 6.6 LWMA result one minute sever load first ARL ……………………..…………………........152. 
Fig 6.7 LWMA result incoming traffic second ARL …………………………………………..........…152. 
Fig 6.8 UDP flooding attack result of in the incoming traffic…..………………………………....156. 
Fig 6.9 UDP flooding attack result outgoing traffic first ARL ……………………………...........157. 
Fig 6.10 UDP flooding attack result one minute load second ARL..……………………...........159. 
Fig 6.11  LWMA result for incoming traffic first ARL …………………………………...…………..161. 
Fig 6.12 LWMA result outgoing traffic first ARL …………………………………..……………….…162. 
Fig 6.13 LWMA result one minute sever load first ARL ………………………….………………..164. 
Fig 6.14 Model of botnet attack scenario……………………………………..…………………………..176. 
Fig 6.15 Model of udp flooding attack scenario………………………………………………………..177. 
Fig 6.16 CUSUM result chart for incoming traffic in the first ARL on node 1……………...179. 
Fig 6.17 CUSUM result chart for outgoing traffic in the first ARL on node 1………...........179. 
Fig 6.18 CUSUM result chart for first one minute load in the first ARL on node 1……....181. 
Fig 6.19 CUSUM result chart for incoming traffic in the second arl on node 1…………..182. 



XI 
 

Fig 6.20 CUSUM result chart for outgoing traffic in the second ARL on node 1………….183. 
Fig 6.21 CUSUM UDP flooding chart for incoming traffic in first ARL……………………....188. 
Fig 6.22 CUSUM UDP flooding chart for outgoing traffic in first ARL……….……………....188. 
Fig A.1 TCP SYN flooding attack on incoming traffic during first ARL…………………...…..201. 
Fig A.2  TCP SYN flooding attack on outgoing during ARL one. The graph shows a normal 
activity in the outgoing traffic during the attack………………………………………………………202. 
Fig A.3  TCP SYN flooding attack on one minute sever load during first ARL. The graph 
shows a gradual built up of load on the server during the attack……………………………...202. 
Fig A.4 TCP SYN flooding five minutes sever load during first ARL. The graph shows a 
gradual built up of load on the server during the attack…………………………………………...203. 
Fig A.5 TCP SYN flooding fifteen minutes sever load during first  ARL  one. The graph 
shows a gradual built up of load on the server during the attack……………………………...203. 
Fig A.6 TCP SYN flooding on incoming traffic during second ARL……………………….….....204. 
Fig A.7 Mmpact of TCP SYN flooding on outgoing traffic during second ARL……….…….204. 
Fig A.8 Impact of the TCP SYN flooding on one minute sever load during second 
ARL…………………………………………………………………………………………………………………...….205. 
Fig A.9 Impact of TCP SYN flooding on five minutes sever load during second ARL….205. 
Fig A.10 Impact of TCP SYN flooding on fifteen minutes sever load during second 
ARL……………………………………………………………………………………………………………………….206. 
Fig A.11 Impact of TCP SYN flooding on incoming traffic during third ARL three. The 
graph shows a normal activity in the traffic and malicious traffic above the upper 
control limit during the attack……………………………………………………………………….……….206. 
Fig A.12 impact of TCP SYN flooding on outgoing traffic during third ARL………………..207. 
Fig A.13 impact of TCP SYN flooding on one minute sever load during 
ARL;…………………………………………………………………………………………….………………………..207. 
Fig A.14 Impact of TCP SYN flooding attack on five minutes sever load during third 
ARL………………………………………………………….……………………………………………………………208. 
Fig A.15 LWMA analysis of the TCP SYN flooding attack on the incoming traffic during 
first ARL………………………………………………………………………………………………………………..208. 
Fig A.16 LWMA analysis of the TCP SYN flooding attack on the outgoing traffic during 
first ARL……………………………………………………………………….……………………………………….209. 
Fig A.17 LWMA analysis of the TCP SYN flooding attack on the one minute load during 
first ARL…………………………………………………………………………………………….…..……………...209. 
Fig A.18 LWMA analysis of the TCP SYN flooding attack on the five minute load during 
first ARL……………………………………………………………………………………..…………………………210. 
Fig A.19 LWMA analysis of the TCP SYN flooding attack on the fifteen minute load 
during first ARL. The graph indicates malicious load on the server during the 
attack…………..210. 
Fig A.20 LWMA analysis of the TCP SYN flooding attack on the incoming traffic during 
second ARL…………………………….……………………………………………………………………………...211. 
Fig A.21 LWMA analysis of the TCP SYN flooding attack on the outgoing traffic during 
second ARL. The graph indicates the normal activity in the traffic……………………………211. 
Fig A.22 LWMA analysis of the TCP SYN flooding attack on the one minute load during 
second ARL. The graph indicates malicious load on the server during the attack……....212. 
Fig A.23 LWMA analysis of the TCP SYN flooding attack on the five minute load during 
second ARL. The graph indicates malicious load on the server during the attack….....212. 
Fig A.24 LWMA analysis of the TCP SYN flooding attack on the fifteen minute load 
during second ARL. The graph indicates malicious load on the server during the 
attack…..………………………………………………………………………………………………………………213. 



XII 
 

Fig A.25 cusum analysis of the UDP flooding attack on the incoming traffic during first 
ARL. The graph indicates the network traffic within the control limit…………………...213. 
Fig A.26 cusum analysis of the UDP flooding attack on the outgoing traffic during first 
ARL……………………………………………………………………………………………………..……..…..…214. 
Fig A.27 cusum analysis of the UDP flooding attack on the one minute load during first 
ARL……………………………..……………………………………………………………………………….…….214. 
Fig A.28 cusum analysis of the UDP flooding attack on the five minutes load during first 
ARL………………………………………………………………………………………………………………………215. 
Fig A.29 cusum analysis of the UDP flooding attack on the fifteen minutes load during 
first ARL………………………………………..…………………………………………………………………......215. 
Fig A.30 cusum analysis of the UDP flooding attack on the incoming traffic during 
second ARL…………………………………………………………………………………………………………216. 
Fig A.31 cusum analysis of the UDP flooding attack on the outgoing traffic during second 
ARL……………………………………………………………..……………………………………..……….………..216. 
fig A.32 cusum analysis of the UDP flooding attack on the one minute load during second 
ARL…………………………………………………………………………………………………………..…………..217. 
Fig A.33 cusum analysis of the UDP flooding attack on the five minutes load during 
second ARL…………………………..……………………………………………..…………….…………………..217. 
Fig A.34 cusum analysis of the UDP flooding attack on the five minutes load during 
second ARL………………………….……………………………………………………………………………….218. 
Fig A.35 LWMA analysis of the UDP flooding attack on the incoming traffic during first 
ARL………………………………………………………………………………………………….……………..……..218. 
Fig A.36 LWMA analysis of the UDP flooding attack on the outgoing traffic during first 
ARL………………………………………………………………………..……………………………………………..219. 
Fig A.37 LWMA analysis of the UDP flooding attack on the one minute load during first 
arl…………………………………………………………………………………………………………………………219. 
Fig A.38 LWMA analysis of the UDP flooding attack on the five minutes load during first 
ARL……………………………………………………………………………………………………..…..……………220. 
Fig A.39 LWMA analysis of the UDP flooding attack on the fifteen minutes load during 
first ARL…………………………………………..……………………………………………………………….…...220. 
Fig A.40 LWMA analysis of the UDP flooding attack on the incoming traffic during 
second ARL………………………………………………………………..…….......………………………………..221. 
Fig A.41 LWMA analysis of the UDP flooding attack on the outgoing traffic during second 
ARL……………………………………………………………………………………………………………………….221. 
Fig A.42 LWMA analysis of the UDP flooding attack on the one minute load during 
second ARL…………………………………………………………………………………………………………....222. 
Fig A.43 LWMA analysis of the UDP flooding attack on the five minutes load during 
second ARL……………………………………………………………………………………………………………222. 
Fig a.44 LWMA analysis of the UDP flooding attack on the fifteen minutes load during 
second ARL…………………………………………….………………………………………………………..…….223. 
Fig A.45 Manifestation of the TCP SYN flooding attack on incoming traffic on node one 
during the first ARL. The graph indicates a normal activity in the traffic and gradual 
build up in the traffic during the attack……………………………………………………..…………….223. 
Fig A.46  manifestation of the TCP SYN flooding attack on outgoing traffic on  node one 
during the first ARL……………………………………………………………………..…………..………….....224. 
Fig A.47 Manifestation of the TCP SYN flooding attack on server load in one minute on 
node one during first ARL. The graph indicates a drop in the server load……………...….224. 
Fig A.48  Manifestation of the TCP SYN flooding attack on server load in five minutes on 
node one during first ARL. The graph indicates a drop in the server load………...……….225. 



XIII 
 

Fig A.49 Manifestation of the TCP SYN flooding attack on server load in fifteen minutes 
on node one during first ARL. The graph indicates a drop in the server load…………..225 
Fig A.50 Manifestation of the TCP SYN flooding attack on incoming traffic on node one 
during the second ARL…………………………………………………………………………….…..………226. 
Fig A.51 Manifestation of the TCP SYN flooding attack on outgoing traffic on node one 
during the second ARL….…………………………………………………….………………………………226. 
Fig A.52 Manifestation of the TCP SYN flooding attack on server load in one minute on 
node one during second ARL…………………………………………………………………………….….226. 
Fig A.53 Manifestation of the TCP SYN flooding attack on server load in five minutes on 
node one during second ARL……………………………………………………………..…………..…….227. 
Fig A.54 Manifestation of the TCP SYN flooding attack on server load in fifteen minutes 
on node one during second ARL. The graph indicates a drop in the server load……..227. 
Fig A.55 Manifestation of the TCP SYN flooding attack on incoming traffic on node one 
during the third ARL…………………………………………………………….……….……………………228. 
Fig A.56 Manifestation of the TCP SYN flooding attack on outgoing traffic on node one 
during the third ARL………………………………………………………………………………….…..……228. 
Fig A.57 Manifestation of the TCP SYN flooding attack on server load in one minute on 
node one during third ARL…………………….………..……………………………………………..…….229. 
Fig A.58 Manifestation of the TCP SYN flooding attack on server load in five minutes on 
node one during third  ARL………………………………..……………………………………………..….229. 
Fig A.59 Manifestation of the TCP SYN flooding attack on server load in fifteen minutes 
on node one during third ARL…………………………………….…………………………………….…...230. 
Fig A.60 Manifestation of the TCP SYN flooding attack on incoming traffic on node two 
during the first ARL………………………………………….………………………………………………..…230. 
Fig A.61 Manifestation of the TCP SYN flooding attack on outgoing traffic on node two 
during the first ARL………………………………………………………….………………………..………..231. 
Fig A.62 Manifestation of the TCP SYN flooding attack on server load in one minute on 
node two during first ARL………………………………………..………………….……………………….231. 
Fig A.63 Manifestation of the TCP SYN flooding attack on server load in five minutes on 
node two during first ARL…………………………………..…………………………………………..…..232. 
Fig A.64 Manifestation of the TCP SYN flooding attack on server load in fifteen minutes 
on node two during first ARL……………..................................……………………………………..…232. 
Fig A.65 Manifestation of the TCP SYN flooding attack on incoming traffic on node two 
during the second ARL..………………………………………………………………………………………..233. 
Fig A.66 Manifestation of the TCP SYN flooding attack on outgoing traffic on node two 
during the second ARKL. ……………………………………………………………………………………..233. 
Fig A.67 Manifestation of the TCP SYN flooding attack on server load in one minute on 
node two during second ARL. ………………………………………………………….……………...…234. 
Fig A.68 Manifestation of the TCP SYN flooding attack on server load in five minutes on 
node two during second ARL. ……………………………………………………………..……………..…234. 
Fig A.69 Manifestation of the TCP SYN flooding attack on server load in fifteen minutes 
on node two during second ARL. …………………………………………………………..…………..…..235. 
Fig A.70 Manifestation of the TCP SYN flooding attack on incoming traffic on node two 
during the third ARL. …………………………………………………………………………….………….…235. 
Fig A.71 Manifestation of the TCP SYN flooding attack on outgoing traffic on node two 
during the third ARL…………………………………………...………………………………………….…...236. 
Fig A.72 Manifestation of the TCP SYN flooding attack on server load in one minute on 
node two during third ARL. ……………………………………………………………………………..….236. 



XIV 
 

Fig A.73 manifestation of the TCP SYN flooding attack on server load in five minutes on 
node two during third ARL……………………………………. …………………………………………..….237. 
Figure A.74 manifestation of the TCP SYN flooding attack on server load in fifteen 
minutes on node two during third ARL. …………………………………………………………...……..237. 
Fig B.1 Impact of the TCP SYN flooding botnet attack on network bandwidth on zombie 
node………………………………………………………………………………………………………………..…….241. 
Fig B.2 Impact of the TCP SYN flooding botnet attack on the server load on zombie 
node…………………………………………………………………….………………………………...……………...242. 
Fig B.3 Impact of the TCP SYN flooding attack on network bandwidth on victim 
node…………....................................................................................................................................................242. 
Fig B.4 Impact of the TCP SYN flooding attack on the server load on victim 
node………243. 
Fig B.5 Impact of the UDP flooding attack on network bandwidth on victim node……..243. 
Fig B.6 Impact of the UDP flooding attack on server load on victim node………..………...244. 
Fig B.7 A sequence diagram depicting the boot sequence. The model explains the 
process involve in the starting and activiating the agents within the frameowrk………246. 
Fig B.8 Flow chart depicting the evolution stages in the GAIA methodology……...………247. 
Fig B.9 Flow chart of the dynamic training technique…………………………………….…...……248. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XV 
 

Publication  

Journal 

S. Osei, X. Shi, K. Kyriakopoulos and A. Kondoz, “Multi-Agent Based Real-Time DDoS 

Detection On Big Data Systems Using CUSUM,” (Submitted to IEEE Intelligence Systems. 

Waiting for reviewers’ comments).  

 

Conferences 

S. Osei, X. Shi, K. Kyriakopoulos and A. Kondoz, “Multi-Agent Based Real-Time DDoS 

Detection On Big Data Systems Using Data Mining” (Presented the poster at the royal 

united services institute (RUSI) resilience conference 2017, London) 

 

S. Osei, X. Shi, K. Kyriakopoulos and A. Kondoz, “Agent-Based Framework for Detecting 

DDoS Attack in Hadoop Cluster” (Presented a poster at the mini-CDT: summer showcase, 

Loughborough) 

 

S. Osei, X. Shi, K. Kyriakopoulos and A. Kondoz, “A Cross Platform Big Data Security 

Framework: leveraging Inherent Operating System Encryption mechanism”(Submitted 

to Wolfson School PhD Research Conference) 

 



1 
 

  Chapter 1

Introduction 

 

1.1 Background 

The increase in the rate at which data is generated daily is staggering [1, 2, 3]. This 

surge is attributed to our technologically entrenched society. The large volumes of data 

that are generated can potentially tell us a lot about our lives, which in many ways can 

contribute to a high socio-economic value if captured, securely stored and analysed to 

infer knowledge. The intrinsic value of this data lies in the ability to collect, securely 

store and process the data to extract the valuable information that is not easily 

obtainable. One can easily recollect the era of structured file and database management 

systems (DBMS) which revolutionised the business and research ecosystem. That 

ecosystem has over the years evolved into Big Data (BD) technologies with the storage 

and processing capacity to manage a variety of large datasets. What drove such 

important evolution in the IT infrastructure space was the fact that the conventional 

database technologies at some point could not meet the storage and processing demand 

of current information management requirements [1, 2, 3]. Even though the concept of 

BD has not been around for long, many technological and research solutions serving 

either generic or security needs in the domain have been proposed. Irrespective of 

these technological advances, security remains fundamental requirements for their 

success.  

 

BD is a variety of data sets that are so huge and complex that the conventional data 

management and processing systems are ineffective to manage them. Consequently, a 

bespoke BD management system was developed to allow the effective management and 

processing of these large volumes of data [2]. One such BD processing platform is the 

Apache Hadoop software framework.  Hadoop is a software framework that allows the 

storage and distributed processing of large datasets across low-commodity computers 

[3]. Hadoop has indeed grown to become the key BD technology for the past years due 

to its efficiency and effectiveness in processing BD sets. However, the platform lacks 

inherent security mechanism to protect itself against cyber-attacks such as Distributed 



2 
 

Denial of Service (DDoS). DDoS is a malicious activity that seeks to prevent its target or 

victim from providing its legitimate service [4].  

 

Information communication technology (IT) is the backbone of data and communication 

management. Indeed, IT has become fundamental to coexistence in society and business 

continuity in the business community. Essentially, we rely on IT solutions such as the 

BD technologies to manage every aspect of our lives; from the storage of confidential 

information to the transmission of time-bound information regardless of the 

geographical locations of the parties involved. 

 

 Undoubtedly, IT platforms are known to be the targets of different kinds of malicious 

activities such as DDoS attacks. Consequently, the Hadoop framework has been 

revamped with some inherent security mechanism to encrypt residential data and also 

authenticate clients and applications to ensure confidentiality and legitimacy. However, 

the current inherent security mechanism of the framework is not sufficient to secure a 

Hadoop cluster against malicious activities such as DDoS attacks. Consequently, Hadoop 

clusters are deployed within a secured perimeter to ensure the safety of confidential 

data and the continuity of the cluster.  

 

Nonetheless, secured network perimeter does not guarantee uncompromising security. 

Thus, the Hadoop framework is still vulnerable to DDoS attacks in an event where the 

secured perimeter is compromised because there is  no inherent mechanism to provide 

secondary detection of DDoS attacks within the framework. As the attacks are getting 

smarter to evade detection and mitigation, a smarter approach to the detection of DDoS 

attacks is required to enhance current work. To address this security gap in the Hadoop 

framework, this work will seek to propose a multi-agent based DDoS detection 

framework that will address the gap.    

 

 

 



3 
 

1.2   Application of multi-agent concepts in automated networked management 

systems 

Network infrastructure is gradually becoming complex as resources are added to meet 

new information delivery demands. Consequently, automated network management 

technologies are introduced to abstract the operational complexity and also automate 

management functionalities to enhance efficiency and reduce the person-hours. The 

introduction of automated network management technologies has indeed contributed 

significantly to the improvement in managing network infrastructure. Nonetheless, 

current technologies proposed to assist the management functionalities are still 

confronted with inherent drawbacks due to their design principles and intrinsic 

protocols [5][6]. The need for the optimisation of these technologies attracted research 

interests from both academia and commercial developers. Researchers, however, took 

different viewpoints or approaches to their proposed solution.  

While some researchers focused on the designs of new networking management models, 

others, on the other hand, concentrated on the development of software-based network 

management framework [7].  The latter, however, has attracted much attention over the 

past years due to their ease of application and adaptation [7][8][9][10].  One of the 

emerging research directions in line with the latter approach of network management is 

the application of software agents’ paradigm [8]. Software agent paradigm has been in 

existence for many years and continues to remain the essential subject of research 

interest in the research community due to its diverse application benefits. Although 

agent-based technologies are still classified as an emerging domain, the concept is 

widely applied to solve complex system management problems on behalf of its owners 

[11].  The term software agent is associated with many definitions, partly because there 

is no universally accepted definition [12]. Consequently, the term assumes different 

definitions depending on the application context and the associated functionalities. 

Thus for some application, agent autonomy could largely influence the definition of 

software agents. Likewise, the cognitive capabilities of the agent may influence the 

definition of the term in other application domains [12].  However, definitions which 

emphasise the main characteristics of the software agent concept is adopted in this 

work [13]. In their work, the authors define a software agent as a “computer system 

situated in some environment, and that is capable of autonomous action in this 



4 
 

environment to meet its delegated objective”. The meaning of software agent can, 

therefore, be inferred from this definition as a system capable (i.e. equipped with skills) 

of effecting changes in its environment autonomously. 

The concept is a software engineering paradigm which develops an intelligent and 

autonomous software module called agents. Unlike the native software modules, 

software agents are: 

a. Autonomous: that is they can take independent actions. 

b. Mobile: that is they can migrate to a remote location to carry out their specified 

functions on behalf of the user. 

c. Can be situated at multiple locations at the same time: Unlike the mobile agent, 

static agents are situated in single or multiple locations to carry out their 

specified functions concurrently.  

d.  Possess cognitive capabilities: that is they can reason about the environment 

and capable of making independent decisions.    

 

 The agent or intelligent software concept has been explored to address different 

network management demands such as data security as a result of the application 

benefits over the conventional software concepts.  

 

As network infrastructures are becoming more complex, the imminent threats to the 

networked elements are also getting smarter and more difficult to detect and mitigate. 

Consequently, a smarter or intelligent detection and mitigation approach need to be 

explored to create the required security against any malicious activities. In the quest for 

a plausible approach to combat, the emerging threats, intelligent network management 

concept has evolved significantly over the past decades [14]. Although, significant 

progress is made in the application of the software agent concept in addressing network 

management challenges. A novel approach to detect DDoS attacks in emerging BD 

technologies such as the Hadoop software framework is still required to further 

improve the current security vulnerabilities in Big Data technologies. 



5 
 

1.3 Big Data technology and security vulnerabilities   

BD technologies span across various institutions; from education to health. Each of 

these technologies features synonymous BD file systems. A study of these technologies’ 

file systems shows the diverse implementation of the design principles as proposed by 

Google [3][15][16]. Though diverse in the developmental approach, the technologies, 

however, share the common aim of storing, processing or facilitating the processing of 

large datasets. Thus each one is a scalable, distributed file system for large data-

intensive applications and delivers high aggregated performance to multiple clients. 

This means BD files are stored across low commodity nodes or servers supported by 

several local disks and can concurrently store and efficiently process high volumes of 

data and requests [17]. However, each implementation is best suited to its ecosystem.  

 

One widely distributed BD technology is the Hadoop software framework or the Hadoop 

distributed file system (HDFS) [18]. Hadoop has indeed become the de-facto in the BD 

ecosystem and hence will be adopted as the case study for this research. Thus the study 

of BD technologies will focus on the Hadoop distributed file system (HDFS) and the 

inherent security vulnerabilities.   

 

HDFS is an open source distributed file system designed to be deployed on low 

commodity hardware. An instance of HDFS can consist of a single node to hundreds of 

nodes. In such a distributed environment, if it is to run on low commodity hardware, 

then hardware failure will be the norm rather than the exception [17]. Given this, HDFS 

is designed to be fault tolerant, by discovering fault and recovering from failure without 

significant down time [19]. Also, the file system is designed with the following goal: 

a. Provide streaming data access: BD application can be single-purpose 

applications, designed to process large datasets, and will, as a result, need 

streaming access to data. So in principle, HDFS is designed with much focus on 

high data throughput rather than low latency [19].  

b. Manages large data sets: HDFS handles file size from gigabytes to terabytes. A 

single instance can process or manage hundreds to millions of files in a single 

cluster, i.e. it is designed to facilitate the storage and processing of large datasets 

and also seamlessly scale from a single node to hundreds of nodes with 

aggregate data bandwidth in a single cluster.  



6 
 

c. Moving computation is cheaper: Computation is moved to the location of the 

data, not vice versa because moving large data sets at regular intervals to 

applications can be very expensive and also congest network bandwidth. Hence 

HDFS moves computation to the data source to improve throughput [19].  

 

The architecture of HDFS consists of a single NameNode and several DataNodes in 

client-server architecture as shown in Figure 1.1. The NameNode manages the entire 

HDFS namespace and also regulates request and flow of data within the cluster. The 

DataNode is also responsible for reading and writing of data blocks to HDFS or the 

attached database, in this case, Apache HBase, which is a NoSQL (i.e. none SQL or No 

relational database) database developed to provide the BD storage facility within HDFS 

[20]. After a successful client authentication (i.e. when a read/write request is first 

received from the client), the file is further divided into blocks and replicated among the 

DataNodes based on a preconfigured write configuration policy. Then DataNode will 

finally commit the blocks in Apache HBase if it is meant for the database else the default 

file storage will be to write the file in the HDFS (Figure 1.2 depicts the internal HDFS 

operations). HDFS creates these replicas for reliability and fault tolerance. However, the 

security flaw in the file system is that there is no mechanism to ensure that DataNodes 

are not subjected to any form of attacks that will deny legitimate read/write requests. 

Thus HDFS lacks DoS detection mechanism to ensure the delivery of undeniable service 

in any Hadoop cluster.  

 

 

 

 



7 
 

HBase 1

1
43

HBase 3

2
3

4

HBase 2

5
6 2

NameNode 

DataNode 1 DataNode 2 DataNode 3

Read/write to DataNodes

HDFS Client

Read Write Request

Reading/Writing to disk
Reading/Writing to disk Reading/Writing to disk

Secondary NameNode
As Back up for main NameNode 

Read/Write Request

Network switch

 

Figure 1.1 HDFS External Architecture 

 

In addition to the user data, there are equally important HDFS systems files which are 

natively unprotected and as a result are exposed to security threats or malicious 

activities. For example, for HDFS to monitor the activities and also restore the cluster in 

the event of NameNode failure, NameNode creates and updates a transactional log 

called EditLog. NameNode uses EditLog to persistently record every activity and any 

change that occurs in the file system metadata, e.g. creating a file [14]. Such important 

file as EditLog is also stored in the HDFS unencrypted. Additionally, the technology lacks 

inherent security mechanism to combat DDoS attacks because Hadoop is designed to be 

deployed in secured network perimeter. Consequently, this work will address the lack 

of DDoS detection mechanism by proposing a mechanism to detect such attacks in the 

Hadoop framework. 

 

 

 



8 
 

NameNode Daemon 

 

Operating System 

 FSImage 

 EditLog 

Back up HDFS  

NameNode Daemon 

 

Operating System 

 FSImage 

 EditLog 

Read/Write  

Request  
Big Data 

application 

Result 

Reply  

Restore HDFS  

DataNode 

Daemon 

Operating system  

1 2 3 

DataNode 

Daemon 

Operating system  

1 2 3 

Replication  

DataNode 

Daemon 

Operating system  

1 2 3 

Replication  

Read/Write Request 
Request Response 

Heart Beat Heart Beat 
Heart Beat 

Data Flow Functional request  Multi Directional Data 

Flow  Figure 1.2 HDFS Internal Architecture 

 

 

 

 

 

 

 

 



9 
 

1.4 Research problem   

The design of the Hadoop framework adopts a centralised network organisational 

model. Thus Hadoop’s elements (for example DataNodes) are managed by dummy 

residents agents who manage each node within the cluster based on the instruction 

received from the manager agent deployed in the NameNode. Furthermore, the load 

sharing technique of HDFS is designed to be intrinsically dynamic at runtime or as 

defined by the system administrator. Thus, each node may assume varied workload 

requirements during data processing and as a result, cause the nodes to exhibit 

unpredictable but legitimate behaviours regarding load and bandwidth utilisation. 

 

In addition to the distributed architecture and unpredictable behaviour of load and 

bandwidth utilisation of the nodes, Hadoop lacks inherent security framework to 

monitor in real time, the behaviour and the network traffic of each node to discriminate 

legitimate behaviour from malicious behaviour (e.g. when a node falls under DDoS 

attack for example).  Essentially, Hadoop is not designed to defend itself against 

different types of attacks such as DDoS without the reliance on secured network 

perimeter [21]. Consequently, multiple autonomous security tool sets are required to 

provide a secure perimeter for the Hadoop cluster against different malicious activities 

[22]. However, the overreliance on perimeter security renders the entire Hadoop 

cluster vulnerable when compromised.  

 

Recent versions of Hadoop have seen significant inherent security mechanisms to 

enhance the security of the framework. However, the mechanisms rather aim at 

providing a secure means to encrypt data at rest and also authenticate clients and 

applications [23][24]. Nonetheless, the lack of an inherent DDoS detection mechanism 

to provide a secondary security layer to the perimeter security still renders Hadoop 

susceptible to DDoS attacks. Moreover, the perimeter-based, DDoS detection techniques 

are not informed by the unique architectural and distributed operational requirements 

of the Hadoop framework. Therefore they are unable to accommodate and monitor the 

behaviour of the Hadoop nodes and also provide distributed DDoS detection in real-

time. Finally, they do not have access to key contextual information such as bandwidth 

utilisation and average server load metrics (peculiar to HDFS) of each Hadoop node to 



10 
 

provide real-time insight into the anomalous behaviour of the hadoop nodes.  Overall, 

the research problem can be summarised as follows: 

a. Hadoop lacks inherent security framework to monitor in real time, the behaviour 

and the network traffic of each node to discriminate legitimate behaviour from 

malicious behaviour.  

b. DDoS detection techniques in current literature are unable to accommodate and 

monitor the unpredictable behaviour of the Hadoop nodes and also provide 

distributed DDoS detection in real-time. 

1.4.1  Research Question  

The research question this work seeks to address is; how do we secure the Hadoop 

framework against DDoS attack by creating a framework that learns the dynamic 

behaviour of the BD cluster and discriminates DDoS attacks from normal behaviour in 

real-time?   

1.5  Research Objectives  

Given the DDoS detection gap in the Hadoop framework, the objective of this research is 

to; 

a. Review current work in the research domain to establish the  state of the art  

b. Design Multi-Agent framework to provide an inherent DDoS detection 

mechanism for the  Hadoop framework 

c. Implement a prototype of the proposed Multi-Agent framework as an inherent  

DDoS detection mechanism for Hadoop cluster  

d. Deploy and evaluate the veracity  of the prototype on a Hadoop testbed   

1.6 Research novelty  

The rapid improvement of security mechanism in Hadoop ideally demonstrates the 

premium interest researchers, and commercial developers attach to the safety of such a 

widely adopted platform. However, lack of internal security framework to provide DDoS 

detection layer in addition to the network perimeter security still renders a critical Big 

Data technology such as Hadoop susceptible to DDoS attacks. Additionally, current work 

to detect DDoS attacks in the Hadoop cluster is perimeter based and external to the 

Hadoop cluster. Incidentally, the external DDoS detection techniques are not informed 

by the unique architectural and distributed operational requirements of the Hadoop 



11 
 

framework. Furthermore, they are autonomous to the Hadoop framework and do not 

have access to the intrinsic behaviour of the cluster to provide internal security layer.   

 

External security in this work is explained as any software framework or third-party 

security elements such as firewall and intrusion detection and prevention systems 

(IDPS) that provide security to the perimeter of the Hadoop cluster from other 

networks. Likewise, inherent security is any software framework or technology that can 

be integrated into the Hadoop software framework to provide an internal security 

mechanism [25].   

 

Contrary to the state-of-the-art multi-agent based detection framework, this work 

proposes a multi-agent framework to provide distributed real-time DDoS detection 

mechanism to detect and report DDoS attack on the Hadoop nodes concurrently. 

Moreover, the agents are engrained with an intelligent training mechanism which 

allows them to build bespoke knowledge of the nodes dynamically. Consequently, the 

proposed framework is viable for detecting DDoS attack within the Hadoop framework.  

Essentially, this work will improve the current internal security mechanism in the 

Hadoop framework by providing a distributed, real-time intelligent DDoS detection 

mechanism to concurrently detect and confirm a DDoS attack on multiple Hadoop nodes 

in real-time.  

 

The operational advantages of the software agent concept have been explored to create 

DDoS detection solutions. Nonetheless, current work does not utilise the multi-agent 

framework which leverages network and server load flow metrics to detect the DDoS 

attack at Hadoop node level [26][4][27][28][29]. The bandwidth utilisation and average 

server load metrics give thoughtful insight into the real-time behaviour of the network 

and the Hadoop nodes. Moreover, the operational advantages of software agent concept 

have not been explored to create Hadoop internal security mechanism in the open 

literature. Consequently, this work will contribute to the current inherent DDoS 

detection gap in the Hadoop framework. The contributions of this work include; 

a. Provide a multi-agent distributed detection mechanism to advance the state of 

the art DDoS detection systems in BD technologies 

 



12 
 

b. A novel statically based DDoS detection technique that allows software agents to 

utilise bandwidth utilisation and average server load flow metrics to detect and 

confirm a DDoS attack in real-time on the Hadoop nodes.  

c. A novel time series data fusion technique that uses ontology description of DDoS 

attack to fuse multiple DDoS attack reports to infer and confirm DDoS attack 

across a Hadoop cluster.  

 

In this direction, this work will also develop a prototype of the multi-agent DDoS 

detection framework. An experiment will be conducted on a live Hadoop cluster to 

ascertain the viability of the proposed framework.  

 

Furthermore, the training technique will allow the agents to adapt to the changes in the 

normal behaviour of each node dynamically. Likewise, the data fusion technique allows 

the aggregation of the attacks reports from the agents assigned to each node to generate 

high-level insight into the anomalous activities in the cluster. 

1.7 Research approach  

The research approach adopted will provide the road-map to address the research 

problem and is presented in the following sub-sections.  

1.7.1 Conduct literature review to understand current work and also establish the 

research gap in chapter one 

An understanding of the research gap is paramount to establishing state of the art in the 

subject area and also making a novel contribution to existing work. Consequently, the 

current work in the research domain shall be reviewed to ascertain the research gap. An 

insight into the gap will inform the novel contribution to current knowledge in the 

research domain. Furthermore, the literature review will aid to achieve the following 

objectives: 

A. Elicit a clear understanding of the area of research 

B. Understand the limitations of current work in addressing the eminent Big Data 

security threat 

C. Inform the objective of a novel contribution to the current work.  



13 
 

D. Provide a summarised survey of current work and their limitations in securing 

the Hadoop framework.   

1.7.2 Employ an agent-based methodology to design and develop a multi-agent 

framework to detect DDoS attacks in a Hadoop cluster 

A novel software multi-agent-based approach to addressing the security gap will be 

proposed. A standardised methodology will be employed to facilitate the design and 

development of the agent-based framework [30].  

 

Software engineering methodology has evolved over the past decade through the 

development of many annotations to assist in the analysis, design and the development 

of software solutions [30]. Conversely, agent-based software engineering is an emerging 

field and therefore lacks a more standardised development life cycle. However, much 

software multi-agent engineering methodologies are proposed to assist in the design 

and development [30][31][11]. In this work, the design and development of the 

proposed framework will adopt the Gaia methodology an agent-based engineering 

methodology [30][32][33][34]. Gaia is an agent-based analysis and design methodology 

which provides significant software agent design concepts to assist with the design and 

development of multi-agent systems (MAS). The methodology is widely adopted in the 

research and commercial development communities as the standard multi-agent 

engineering methodology. Moreover, Gaia will be complemented by an ontology 

development methodology proposed in [35] to model the domain knowledge of the 

framework. Details of current multi-agent based design methodologies are presented in 

Section 4.5.  The methodology will also provide the theoretical demonstration of how 

the final design can contribute to the existing security gap in the research domain.  

 

Two statistical techniques, namely the Cumulative Sum (CUSUM) and the Linear 

Weighted Moving Average (LWMA), are employed to create novel DDoS detection 

techniques to enable the agents to detect and report DDoS attacks on the assigned 

nodes. The novel node-based architectural approach allows the framework to provide a 

real-time distributed DDoS detection mechanism that is feasible to the Hadoop 

environment and also not available in the current literature.   



14 
 

1.7.3 Deployment of a Hadoop testbed  

The proposed framework aims to contribute to enhancing the existing internal security 

mechanism in the Hadoop software framework. Such objectives will require a clear 

understanding of the Big Data computing environment and the internal behaviour of the 

Hadoop framework which is the case study of the research. Furthermore, the computing 

environment will also serve as the evaluation platform for the proposed framework. An 

understanding of the real behaviour of the Hadoop framework is essential to first assess 

the behaviour of the framework during legitimate Big Data activities and also when 

under attack. Such insight will inform the design and implementation of a reflective 

solution which will seek to address the research problem. Consequently, this research 

will deploy a test bed of four-node Hadoop cluster. The cluster will comprise of the core 

of Hadoop components (i.e. HDFS, MapReduce framework, Apache HBase and Apache 

YARN).  

A MapReduce Job will also be deployed on the cluster to create different normal 

behaviour scenarios on the test bed. The normal activity will provide a distinctive 

scenario to discriminate the legitimate activity from malicious activity.  

1.7.4 Develop a prototype of the proposed multi-agent framework  

The adopted methodology will provide the design and the theoretical justification for 

the proposed solution to achieve the research objectives. Further to this, the framework 

will need to be evaluated to establish its efficiency and effectiveness concerning the 

research objectives. As a result, an agent development platform, Java-based Agent 

Development Environment (JADE. [36]) will be employed to develop a prototype of the 

proposed framework. The prototype will then be deployed in the Hadoop cluster where 

the framework will be evaluated.  

1.7.5 Evaluate the veracity of the prototype  

After a prototype of the proposed framework is developed, an evaluation will be 

conducted to ascertain the veracity of the proposed framework. The result of the 

evaluation will be analysed, using conventional key performance metrics to confirm if 

the research objective is achieved. Consequently, the evaluation will be conducted in 

two real case scenarios to detect TCP SYN and UDP flooding attacks in the Hadoop 

testbed. The exposure of the framework to a Hadoop environment will, first of all, 



15 
 

provide the right environment for the agents to build an intelligence of the legitimate 

behaviour of the nodes to discriminate normal behaviour from malicious behaviour 

accurately. Secondly, the accurate prediction of anomalous node behaviour in a Hadoop 

environment will affirm the proposed research novelty intended to fill the security gap 

in the Hadoop framework. The adopted conventional, performance metrics will be used 

as the yardstick to measure the performance of the framework.   

 

The evaluation results will confirm that the novel DDoS detection framework can detect 

DDoS attacks in the Hadoop cluster and hence viable to provide the missing DoS 

detection mechanism.   

1.8 Summary  

The BD computing paradigm has become a significant computing platform for 

businesses and institutions to manage volumes of data in a way that cannot be handled 

by the conventional Data Base Management Systems (DBMS). As organisations turn to 

BD technologies for the computing power to manage a large volume of sensitive 

information, so is will attackers for malicious exploitations. The breach of security 

compliance or denial of legitimate access to cooperate network resources can come 

with a devastating cost to organisations. So it is essential that necessary DDoS detection 

and mitigation measures be put in place to ensure the safety of the data and the 

management platforms. The challenge of ensuring comprehensive security in a BD 

cluster is that the security threats are constantly evolving, and in most cases, it becomes 

difficult to detect and mitigate. Such an unpredictable challenge will equally require a 

solution that can easily evolve and adapt to meet the demands of new threats to the 

network infrastructure or the data that resides in the network. 

Indeed, significant efforts are made to ensure secured perimeter of the BD platform 

because BD technologies such as Hadoop are designed with no security mechanism 

particularly to detect DDoS attacks. Nonetheless, the overreliance on the perimeter 

security creates further vulnerability in the BD infrastructure because comprehensive 

and uncompromising security cannot be guaranteed.  

Consequently, an internal security layer that will serve as the secondary DDoS detection 

mechanism to the perimeter security is essential especially in an event where the 



16 
 

network perimeter is compromised.  Moreover, the Hadoop framework is characterised 

by an unconventional behaviour which makes it impossible to directly employ the 

perimeter based DDoS technologies to create an internal security mechanism for 

Hadoop.  

This work will, therefore, provide a DDoS detection mechanism that will contribute to 

the resolution of the inherent security vulnerabilities in the Hadoop software 

framework.  

The rest of the thesis is organized as follows: Chapter 2 discusses the current literature, 

in Chapter 3 the Multi-Agent paradigm is discussed, application of the Multi-Agent 

concept in BD domain is discussed in Chapter 4, Chapter 5 discuss the methodology and 

design of the proposed framework, the evaluation result and analysis is discussed in 

Chapter 6, Chapter 7 presents the conclusion and future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

  Chapter 2

Literature Review 

 

2.1 Introduction  

Every human activity leaves traces of information being it digital or manual. The 

information in most cases provides a rich revelation of socio-economic activities. 

Nonetheless, the data in its raw state is not useful unless they are processed (that is 

transformed) into a form that provides previously unknown information. Moreover, the 

information must be equally shared or securely distributed among stakeholders to 

provide mutual benefits.  

 

Data processing and transmission are however not possible without the facilitation of 

the appropriate technological infrastructures. Technology provides the means to collect, 

secure, store and transform raw data into usable knowledge. Moreover, it provides the 

means to infer knowledge from the data which in turn influences the very same 

activities that generated the data. For example, sensors can be used to collect the heart 

rate of an athlete to ascertain the health condition and then recommend measures to 

improve the heart conditions. The significance of data is not only informed by the 

technological capabilities to transform it into meaningful information, but also the 

assurance of data security and integrity. Data security is essential to ensure that the 

outcome of the data processing activities truly reflect the ground truth and also genuine. 

Consequently, information technology is not only about harnessing computing and 

communication power to process and transmit data but also determine the means to 

ensure the security of the data, both at rest and in motion. The reason why data security 

is as important as data processing is that cyber threats are inevitable and so every 

necessary measure must be taken to ensure that both the underlying technologies and 

the data itself are secured against any malicious activities.  

  

Indeed data is used to inform different decisions whether for business or health 

purposes. The enormous benefits of valuable information have exponentially escalated 

the quest for the right technological infrastructure that can provide the storage and 

processing capabilities to process and securely transmit the information as required. 



18 
 

The demand for information, however, comes with different kinds of threats. Thus every 

level of demand introduces the data to another level of threats. Consequently, 

information management does not focus on the maintainability and evolution of the 

processing, storage and transmission technologies but also ensure that adequate 

detection and mitigation mechanism are in place to deal with imminent threats. Given 

these requirements, researchers and commercial developers have proposed several 

innovative information management approaches to ensure that existing technologies 

can constantly respond to the growing data processing and security demands. 

Regardless of the progress made in this regards, current security technologies are still 

not sufficient in their capabilities to meet the growing threat to the information and the 

underlying technology. Indeed further innovative approaches to information 

management and data security are still required to enhance the existing solutions.  

 

As a result of the constant demands, researchers and commercial developers have also 

sort innovative ways to improve on the existing technologies to meet the pertinent 

demands of the information users. The research advancement, however, does not only 

focus on enhancing the information management functionalities but also seek for ways 

to improve the security of the underlying infrastructure. Indeed, security management 

is an important subject area for secured collection, storage and processing of 

information. One approach largely adopted to enhance the management activities is via 

automation of the management activities.  

 

Automation of management activities is essentially substituting the human centred 

functions with a computerised module which tends to enhance efficiency and at the 

same time minimising human errors significantly. Consequently, researchers have 

explored various emerging computing concepts to achieve the management automation 

objectives. One emerging paradigm which has also been explored to secure the data and 

the underlying technology particularly is the application of software agents. However, 

current works still have associated challenges concerning current security 

requirements. Consequently, this chapter will present a review of the existing work in 

the area of application of software agents in networks management technologies, 

particularly under the Big Data paradigm. The chapter will also attempt to highlight the 



19 
 

current challenges associated with the current works. Their limitations will also be 

indicated in light of the present security threats to project the gap in the current work.  

 2.2 Application of software agent concept in network and system 

management 

Agent technology has been in existence for many years. It has remained an ample 

subject of research interest and discussion in the research community due to its diverse 

application benefits. Although agent-based technologies are still classified as an 

emerging domain, the concept is widely applied in a domain such as managing complex 

systems, embedded technologies, network and system administration [11].  

The term software agent is associated with many definitions, partly because there is no 

universally accepted definition [12].  However, the importance of the attributes 

associated with the agents in its application domain determines their core definition. 

Thus for some application autonomy largely defined the functional characteristics of the 

agent  

 The term autonomy is very broad and can convey different meaning depending on the 

context of the application. Autonomy from agent’s perspective is delegatory. Thus 

agents excise their autonomy within the confines of the given goal and situated 

environment. Of course, they may have full autonomy to pursue subgoals, but this must 

be carefully considered by the agent developers [12]. An autonomous agent also means 

the agent must be proactive; thus it can predict or infer the required action to take 

based on its domain knowledge and reactive; thus it can respond to a request or a given 

goal. Other general characteristics that pertain to the concept are agent capabilities 

(skills) and actions. Essentially agents are capable of taking actions under the given goal. 

However, the actions are subject to their skills, which is also determined by the 

functional requirement of the agent. For example, a policy management agent designed 

to translate high-level domain policy into low-level machine instructions will be 

endowed with the prerequisite skills to accomplish the desired objectives 

autonomously.  

Software agent skills determine their ability to execute a given action. However, not all 

of the skills will be useful in any instance. Thus the agent is faced with the challenge of 



20 
 

the choice of skills to employ to produce the expected result successfully. Moreover, the 

defined actions also have associated conditions which define its application context [12].  

For example, an action to sell a requested book in a bookshop is only applicable if the 

book is available to the selling agent. Every agent action, as indicated have associated 

conditions which will determine its context of the application. Consequently, a 

functional agent is not only equipped with skills but must equally possess the ability 

(equipped with inherent reasoning system) to reason and decide on the right action to 

take to achieve its given goal. Agent reasoning system is the inherent capabilities that 

allow the agent to make autonomous but intelligible decisions. Additionally, it is capable 

of building sufficient knowledge about its environment to comprehend its domain 

semantics as well as communicate with its domain entities. In essence, the skills and 

inherent reasoning system must seamlessly integrate as a single unit of software to 

have an intelligent agent capable of making autonomous decisions to accomplish a given 

task on behalf of its owner.  

Application of software agents concepts has become one of the emerging research 

approaches in network management because of the intrinsic benefits they provide [2]. 

The growing interest in the concept of network management solutions is attributed to 

the challenges associated with the existing network management models and 

protocols[8][9]. For example, the design of the centralised network management model 

tends to increase bandwidth utilisation as a result of the constant transmission of 

management information to a central source. Software agents, on the other hand, can be 

employed to share network management information with less utilisation impact on the 

bandwidth.  For example, the mobile agent can be dispatched to the remote location to 

carry out the management task without the transmission of the management 

information to a central location for processing. It can also reason about the network 

environment and proactively take the best network management decisions on behalf of 

its user [37][10][38]. 

Indeed the benefits of the application of the software agents in network management 

can be enormous. For example, considering specific network management scenarios;  

a. A mobile agent can be dispatch to carry network administration functions in a 

remote location to minimise network traffic. 



21 
 

b. User interface agent can also be leveraged to provide network usage intelligence 

to assist system administrators in making proactive decisions about their 

network usage.      

The agent concept has proven to be an effective and efficient approach to developing 

distributed and independent network management solutions [10][39][38][40].  

Nonetheless, developing agent-based network management systems requires a holistic 

appreciation of the network management model, protocols and associated challenges. 

Furthermore, understanding of the software agent concepts especially how each agent 

concept can effectively be employed in the intelligent network management domain is 

crucial.   

2.2.1  Application of multi-agent concept in network management 

Intelligent network management concept has evolved significantly over the past 

decades [14]. Researchers and developers have adopted deferent architectural and 

application approaches to address peculiar challenges in the domain. Although 

significant progress is made in the application of the concept in network management, 

novel approach to detect DDoS attacks in BD infrastructure is still required to further 

improve the current knowledge in the domain. This section will consider the current 

work under the application of a software agent in intelligent network management. The 

challenges associated with the approaches will also be highlighted.  

As part of a research effort to enhance existing network management technologies and 

protocols, the authors of [41] presented seaming challenges associated with 

conventional SNMP-based network management protocol. In the same work, the 

authors proposed a mobile agent-based network management framework which 

particularly aimed at improving on network traffic congestion, computing and 

communication overload largely introduced by extraneous transmission of SNMP 

network management information. The proposed framework provided a scalable and 

distributed approach to dispatching mobile agents to conduct network management 

requirements such as diagnostics and network management information gathering on 

remote elements. The framework is multi-agent and hence allows the deployment of 

multiple agents to simultaneously respond to network management needs. Nonetheless, 

the authors make use of one software agent philosophy (i.e. mobile agent). The 

challenge with such a multi-agent framework is that, the entire framework functionality 



22 
 

is limited by the capabilities of the dependant agent concept and as a result limits their 

application. Moreover, the functional requirement of the proposed framework is 

predetermined and cannot be employed for network management functions such as 

network security in a dynamic BD infrastructure.  

 

Autonomic network management is another emerging network management paradigm. 

The paradigm is a network management approach which employs the autonomic 

computing concept in the development of automated or intelligent network 

management systems. Autonomic computing is explained as a development of self-

characterised computing modules that can reorient itself (for example self-trained, self-

configurable) without external support or influence. In this regards Hong Chen [37] 

proposed an agent-based autonomic network architecture which decomposes network 

management functionality into autonomous agent functions and also allows transparent 

distribution of network management information among multiple network elements. 

The proposed architecture employs static wrapper agents which they install in each 

networked elements (the managed resources) to allow the legacy elements to adopt 

intelligent characteristics via the autonomic agents. Consequently, the network 

elements gain the ability to self-govern and share any network management 

information in a format (XML) that can easily be processed by other network 

management modules. A multi-agent approach to transparent distribution of network 

management information is once again utilised in slight different approach particular 

with the choice of agent philosophy employed. The challenge, however, is the 

architecture is designed to provide specific functions such as network information 

management. Further, the installation of wrapper agents in network element makes the 

framework vendor dependent and homogenous and cannot scale to integrate new 

heterogeneous network elements.  Indeed such an approach cannot be applied in BD 

framework which is characterised by multi-layer of autonomous technologies.  

2.2.2 Multi-Agent based DDoS detection techniques  

Different network management activities are required to ensure perpetual network 

infrastructure. Aside other network management functions such as reconfiguration, 

diagnosis or maintenance, network security continue to remain important management 

requirements and hence has not been left out in emerging multi-agent network 



23 
 

management paradigm. Application of multi-agent concept to secure network 

infrastructure from different malicious activities has seen significant research and 

development attention for some time now [28][42][43][14]. Anomaly detection and 

threat mitigation in the network has become a teeming requirement and have 

consequently attracted different multi-agent based network security solutions, 

particularly detection and mitigation of DDoS attacks.  

 

As a contribution to highlighting current anomaly detection techniques in light of 

present security demands, the authors of [14] presented a comprehensive survey of the 

current approach to anomaly and intrusion detection systems. Having given a 

theoretical background to intrusion detection systems, the authors described the 

premise of anomaly detection systems and gave a comprehensive description of the 

various detection techniques employed in developing anomaly detection system. The 

detection techniques the authors considered were statistical-based anomaly detection 

techniques and machine learning-based detection techniques. Regarding the statistical-

based detection technique, their work indicated that the technique is effective in 

instances where prior knowledge is required but also suffers some drawbacks. For 

example, the authors suggested that a statistical anomaly detection technique can be 

trained to accept the abnormal behaviour as normal by skilled attackers. Furthermore, 

the technique lacks an optimised means to set a balance threshold to reduce the 

likelihood of false negatives and the likelihood of false positives.  

 

Additionally, the authors also presented some machine learning-based anomaly 

detection techniques such as Bayesian networks, Markov models and classification-

based intrusion detection techniques. Although the authors confirmed that machine 

learning-based techniques answer the same questions as the statistical based-detection 

techniques, machine learning-based technique relies on previous results to constantly 

improve its performance. Consequently, they have the ability to change the detection 

strategy on the bases of newly acquired information, unlike the statistical-based 

anomaly detection techniques.  

 

Their work also discussed current trends and associated challenges in addressing 

pertinent network security requirements. In essence, it was indicated that current 



24 
 

anomaly and intrusion detection systems are associated with many problems such as 

high false alarm rate and failure to dynamically evolve to address new security threats. 

Further, it was concluded aside other suggestions that current anomaly and intrusion 

detection systems cannot still detect internally imitated network attacks. Their work 

indeed confirmed that current detection and mitigation techniques are still inadequate 

to manage the evolving cyber threats and further novel approaches to deal with 

emerging threats is essential.   

 

Web services which have over the years become a major network infrastructure 

deliverables are equally susceptible to pertinent network attacks. To enhance the 

efficiency and effectiveness of current anomaly detection system, the authors of [42] 

proposed a multi-agent based mechanism to classify SOAP (Simple Object Access 

Protocol) [42] messages to detect Denial of Service (DoS) attacks. A soap message is a 

message protocol that allows autonomous applications to exchange information in a 

service-oriented systems. The contribution presented a two-phase classification 

mechanism incorporated into a software agent to classify and block malicious incoming 

soap messages. The mechanism employs decision tree, fuzzy logic rules and neural 

networks to first analyse some soap message properties such as RoutingTime, 

SubnetMask and then filter malicious messages from the legitimate messages. According 

to the result, the proposed solution attained a high classification rate of 96% relative to 

the number of SOAP message patterns analysed. However, the mechanism is only 

limited to the processing of soap messages. Furthermore, the large numbers of input 

metrics for the detection and mitigation algorithm incur high computational overhead.  

 

From this section, it is observed that multi-agent concept is not new to the network 

management paradigm. Indeed the concept is significantly employed to create different 

intelligent solutions to enhance the management and security of network infrastructure. 

However, it is observed that the existing solutions are also characterised by different 

challenges which hinder their ability to provide adequate network and data security. 

Consequently, more effort will be required to create intelligent solutions that can deal 

with imminent threats in emerging technologies such as the Big Data technology.  



25 
 

2.3 The Big Data technologies and security vulnerabilities   

2.3.1 Current Big Data technologies 

Another buzzword in the domain of network services is BD storage and processing. The 

concept has evolved rapidly and been redefining large-scale data storage and 

processing. One major technology which is driving the BD Paradigm is the Hadoop 

software framework [3]. Although Hadoop has recently been in existence, it has 

provided the storage, processing and data analytic resource to take full advantage of 

large datasets. Nonetheless, the software framework does not come without drawbacks. 

The associated inherent security flaws in Hadoop render the framework susceptible to 

attacks such as DDoS [44]. This section will present an overview of the BD paradigm and 

associated technologies (specifically the Hadoop framework). The security 

vulnerabilities and the challenges with the current effort being made to address the 

challenges will be highlighted. Application of the software agent concept in addressing 

the security challenges in the Hadoop framework will also be presented.  

 

Over the years, different researchers have designed different BD technologies 

implementations of Google File System (GFS) [20][23][2]. Nonetheless, all these 

implementations share the common aim of facilitating the storage and processing of 

large datasets, by being a scalable distributed file system for large data-intensive 

applications. Moreover, the underlying file system also delivers high aggregated 

performance to multiple clients, according to the author of [18]. The deployment of BD 

technologies including Hadoop, span across various institutions, from education to 

health. Each of these technologies features synonymous BD file systems. A study of the 

existing technologies’ file system shows the diverse implementation of the same design 

principles as proposed by Google [3][15][16]. That is, BD files are stored across low 

commodity nodes or servers supported by several local disks and can concurrently 

process high volumes of data and requests efficiently [17].  

 

One widely BD file system is Hadoop [18]. Hadoop is a distributed open-source Java-

based BD framework designed to facilitate the storage and processing of large datasets 

on low commodity hardware. The framework is also designed to be fault tolerant, by 

discovering faults and recovering from failures without significant downtime [19]. The 



26 
 

entire Hadoop technology is centred on the underlying file system called Hadoop 

distributed file system (HDFS).  

An instance of the HDFS consists of a single NameNode and several DataNodes in a 

client-server architecture. The NameNode manages the entire HDFS namespace and 

also regulates requests and flow of data within the cluster. DataNode is also responsible 

for reading and writing of data to the attached database, in this case, HBase, which is a 

NoSQL (originally referring to No SQL or No relational database [18]) database. Hbase is 

developed as part of the Apache HDFS to provide the BD storage facility within HDFS 

[20]. Additionally, DataNode also sends periodic heartbeats messages to NameNode to 

announce its existence within the cluster. Incidentally, NameNode marks the DataNode 

as down or dead and stops sending further requests to it if that DataNode does not send 

out heartbeat for some time. DataNodes also responds to subsequent read/write 

requests directly from external applications. For example, in a written scenario, the 

external application will first send the write request which will include the name of the 

file to NameNode. After a successful client authentication, the file is further divided into 

blocks and replicated among the DataNodes based on a preconfigured write 

configuration policy, then DataNode will finally commit the blocks in HBase if it is meant 

for the database otherwise the default file storage will be the HDFS.  

HDFS creates these replicas for reliability and fault tolerance; however, these blocks of 

user data are stored within the underlying file system unencrypted. Although the recent 

edition of Hadoop came with some transparent encryption solution to remedy the 

security challenge, it is not easily deployable and requires high technical knowledge to 

manage. In addition to the user data, there are equally important HDFS system files 

which are natively unprotected, and as a result, user data are exposed to security 

threats or other potential actions that can cause damage. For example, for HDFS to 

monitor the activities and restore to the point of NameNode failure, NameNode creates 

and updates a transactional log called EditLog. The EditLog file is used by NameNode to 

persistently record every activity and any change that occurs to the file system 

metadata [14].  

Such important file as EditLog is also stored in the NameNode unencrypted. Also, for 

NameNode to monitor and locate each data blog within the cluster, it creates a mapping 



27 
 

of all the data blogs in each DataNode. The entire namespace file, including the data blog 

mappings and any other important system properties, are stored in a single file called 

FsImage. HDFS requires this file to be able to start the entire cluster meaning; if 

FsImage gets corrupted, the cluster cannot start. FsImage is equally stored as part of the 

operating system files locally in the NameNode openly exposed to any security threat. 

Moreover, the framework lacks an internal mechanism to protect itself against attacks 

such as DDoS. Thus the current version of such important BD platform still lacks the 

internal DDoS detection mechanism and as a result, relies on the secured network 

perimeter for protection.   

These inherent security vulnerabilities among others are the security gaps in the BD 

technology file system inspired by the Google file system.   

2.3.2 Current BD security solutions and their challenges 

Current research work on security under the BD domain seeks to mitigate the security 

vulnerabilities in BD data stores. Although considerable advancement is made in this 

regard, Hadoop is not adequately secured against malicious activities within the 

framework. This section will show that despite the progress, Hadoop indeed lacks DoS 

detection mechanism because current security mechanism within the Hadoop domain 

rather focuses on data encryption and application and user authentication solutions.  

A.  A Transparent middleware for encrypting BD in MongoDB  

Under the research interest to secure the Hadoop software framework,  the authors of 

[45]  presented a middleware data encryption solution to improve on the security in 

MongoDB which is a NoSQL database based on HDFS. The work proposed a transparent 

encryption enforcement system that can easily be deployed on existing applications that 

employ MongoDB as its data store. In pursuit of that, the authors extended the core 

read/write objects of MongoDB. Furthermore, they overrode its methods as shown in 

Table 2-1. Since DBObject (the MongoDB object responsible for adding and getting data 

of any type from the data store) can store any object as a key-value pair, the main idea 

was to encrypt the data before passing it to DBObject. The overridden methods allowed 

the system to first decide on the document to encrypt. Documents meant for encryption 

are serialised, flagged and then encrypted and stored via the DBObject.  Conversely, 

flagged documents are first decrypted, un-flagged and then de-serialised.  



28 
 

 

The proposed approach is a simple and straightforward encryption solution. However, 

the solution only provides data encryption mechanism in the NoSQL database.  

Furthermore, it will require application modification at every configuration and change 

of policy and regulatory requirement. It is also product dependent and not easily 

configurable. In a heterogeneous environment like BD, regular modification to 

applications means the solution will be tightly coupled with the application, thereby 

making it not operable and un-scalable. Encryption results are also of generic Java data 

class “byte[]” meaning, without any effective encryption key management and 

authentication mechanism, encrypted data can be reverse engineered by an attacker.  

 

The table below  shows the comparison of the native and extended MongoDB classes 

 

Table 2-1 Extended classes  [45] 

Native MongoDB 

Classes 

Defined Classes 

Mongo EncryptedMongo 

DB EncryptedDB 

DBCollection EncryptedDBCollection 

BasicDBObject EncryptedBasicDBObject 

DBCursor EncryptedDBCursor 

 

B.   A data type classification and sensitive level approach to security to 

unstructured Big Data 

Based on the conjecture that there is no single approach to providing security for BD, 

the authors of [46]  developed a multi-solution approach to providing adequate security 

to big unstructured data by first considering the data types and the assigned sensitive 

levels. The authors are of the view that, classification of data concerning the assigned 

sensitive levels can improve overall system performance by enhancing the security 

system’s overhead. In doing so, some existing BD analytic tools such as Oracle BD 

Appliance [46], IBM’s InfoSphere BigInsight[46][47]  were leveraged to first classify the 

unstructured data into various data types like text, XML (Extensible Markup Language), 



29 
 

e-mail, image, video and audio. Dedicated data nodes were then assigned to store each 

data type. The selected BD analytic tools were further used to assign sensitive levels to 

each of the data types. Their approach was informed by the view that, unstructured data 

are of several types, so a single security solution to secure them will be ineffective or a 

difficult task.  Consequently, they proposed a security suite which contains several 

preselected security services (For example encryption algorithm, authentication 

mechanism and security standards) to provide adequate security to the data types and 

an algorithm which interfaces the data nodes and the security suite as shown in Figure 

2.1.  

 

Data Node

01
02
03

01
02
03

01
02
03

XML Text E-Mail

Interface
Algorithm Security Suite

 

 

 

The principle for data classification and assignment of sensitivity level is based on 

institutional legislation and regulatory requirements about certain data types. Thus 

data which are protected by the government and private regulations and sensitive 

agreement is classified as sensitive data, whereas any data whose alteration or illegal 

destruction only cause the minimal level of risk are classified as confidential data. 

Lastly, data whose unauthorised disclosure, alteration or destruction causes no risk are 

classified as public data.  

 

After data are successfully classified with assigned sensitivity levels, the algorithm 

interface then matches the preselected and pre-configured security solutions to the 

sensitivity level to provide the required security. For example, the algorithm uses the 

strongest security standard or algorithms (such as K-means fuzzy K-means, and logistic 

regression,) to provide the highest level of security to sensitive data. In the end, the 

analysis result mathematically indicated that securing unstructured data in BD stored 

by classification and sensitive level can improve overall system performance.  

Figure 2.1 Conceptual view of Data node and Security Suite 



30 
 

However, the principle of classification is relative because data protection and 

regulatory policies may differ from one organisation to the other or from country to 

country. Furthermore, it was observed that a multi-solution framework, is not easily 

configurable to quickly adapt to changes in policies and regulations, especially in highly 

dynamic ecosystems like BD. Secondly, the idea of dedicating data nodes to specific data 

types means, the BD cluster will scale based on the data types as compared to the 

general architectural principle of scalability based on data size. Incidentally, the 

introduction of a new data type will directly increase DataNodes in the cluster. Although 

the solution may improve on system performance, it is very likely to scale 

infrastructural, security and maintenance cost. Furthermore, the proposed framework 

only accommodates data encryption and user and application authentication tools.   

C.  Data masking approach to enhancing data privacy in BD systems  

Data privacy is also a major security concern in the BD ecosystem. The implications and 

negative impacts of a breach of data privacy can be very significant if necessary 

measures are not deployed to maintain high data privacy. One technique widely used to 

maintain data privacy is data masking [47]. Data masking is the process of replacing 

confidential data such as personal identifiable information (PII)  with operational but 

unrelated data [47]. Data masking is very helpful in an environment where data are 

shared, transferred or distributed for experimental or research purposes. IBM 

Infosphere Data Privacy for Hadoop is a BD security solution, to maintain data privacy 

by masking the data either at the source or in transit [47]. The technology first allows 

for the planning of a Hadoop project or clusters in line with the corporate data policy 

and also defines data sensitivity.  Unlike the pre-configured solution approach in [46], 

[47] adopted a more configurable approach which allows the solution to classify the 

data and its sensitivity based on the corporate data policy and other data regulatory 

acts, making this solution configurable and scalable to dynamically adapt to policy or 

regulatory changes. It also deals with any potential data privacy threats.  

 

The masking technology comprises four components in a layered architecture: 

a. The lower layer provides the algorithm that masks the data through techniques 

such as shuffling, random number generation and lookup tables. 



31 
 

b. On top of the lower layer, users can define masking functions, in line with new 

organisational policy and regulations. The technique then allows the user-

defined functions to be invoked through a standard SQL statement. 

c. The third layer entails the data masking tools which can be used to mask various 

unstructured and structured data such as XML (Extensible Markup Language). 

d. The fourth component is test management, which allows the extraction of data 

from a source database and then masks it purposefully for testing or 

experiment.  

 

The approach aims to provide an easily reconfigurable data masking solution to 

enhance data privacy in a BD cluster. Data masking can be very useful in BD 

infrastructure. However, the technique only satisfies the data privacy concerns and 

therefore will require additional security technologies to provide a comprehensive 

security solution for a BD cluster.  

 

As stated in the above sections, the inherent security mechanism was not considered 

very important in the design of the BD file systems and data stores technologies such as 

HDFS, HBase, and MongoDB. Nonetheless, there has been a clear shift of security focus 

from reliance on network perimeter security to improving inherent security 

mechanisms in BD file systems and storage technologies. Apache Accumulo [48], for 

example, is an open source BD data store technology with an inherent cell-level access 

control mechanism. The approach makes it possible to provide much granular security 

solutions in BD cluster. Thus Accumulo can provide cell level  BD data protection, and it 

also implements authentication techniques easily scalable along BD platform [48]. 

Leveraging the security solutions in Apache Accumulo [48] and other open sources 

technologies such as Apache Shiro, the authors of  adopted a more generic approach to 

their solution. The work rather aimed to provide multi-purpose security solution by 

integrating autonomous policy and security technologies. Coupled with Apache 

Accumulo’s fine grain cell-level access control, the layered solution also provides 

pluggable encryption mechanism to encrypt data at rest and in motion. The idea is to 

leverage Apache Accumulo’s cell labelling and access control capabilities to label each 

data in the database cell, using a predefined labelling scheme. Consequently, Apache 

Accumulo can enforce the right security on all read/write operations by inspecting the 



32 
 

labels attached to the fields in its cells to make sure that data access is restricted to 

authorised users [48].  The proposed approach, therefore, provides some level of 

scalability and interoperability, which gives organisations the flexibility to easily scale 

or complement current encryption solution with third-party solutions. However, the 

solution only provides a data encryption mechanism in BD data stores. 

D.   Application of attribute relationship evaluation methodology to secure data in 

BD systems 

One of the characteristics that produce BD value is volume. Big data comes and is 

processed in large volumes, and therefore any approach to protecting the entire BD can 

be very expensive.  As indicated by [49],  it is also an inefficient way to protect the entire 

BD, because the key deliverables of any BD solution are the value derived, which is the 

result of analytics. From this perspective, one can infer that value is the main asset of 

any BD project or cluster which requires all attention regarding security. The raw or 

unprocessed data itself according to [49] should not be the subject of protection. 

Additionally, the authors share the view that data mining techniques can be leveraged 

to create a solution that can selectively secure the BD value instead of the entire 

datasets in the BD cluster. Consequently, a selective-based security mechanism based 

on a data mining technique was proposed. The proposed technique first all selects the 

attributes of the BD sets meant for analytics.  Thus, the technique considers any 

instance of BD set for analytics as an object and suggests the appropriate security to 

apply to those objects based on their levels of relevance.   

 

The main functionality of the technique is centred on the evaluation of the relationships 

between the attributes of the targeted BD set. The evaluation considers the target BD 

set for analytics as a single object with multiple or various attributes. It also assumes 

that there is an unknown correlation between these attributes which is important in 

determining its relevance. Hence any mutual relationship which can lead to the 

identification of the attributes has to be protected. Before the attributes are evaluated, 

the process identifies and classifies the attribute correlations in three subsets and then 

assigns weight to each set to indicate the level of importance. The three classifications 

used are: 

a. Equivalence relation: meaning two attributes are the same 



33 
 

b. Hierarchical relation: attributes with hierarchical relation 

c. Unknown: attributes with neither of the above relations 

 

After the classification, it assigns the score of a quantitative comparison as the weight 

(indicating the level of importance) of each identified correlation for evaluation. At the 

evaluation stage, the attribute evaluation method first identifies the targeted data set. It 

compares the attributes relations between mutual BD objects using the assigned weight. 

Attributes with equivalence relation are assigned the highest weight, followed by the 

hierarchical and then unknown is assigned the lowest weight. The attribute relations 

between mutual BD objects are compared using the weight in ranking order. Attributes 

with the highest weighted correlations are then selected as the most important 

relationship that needs to be protected. Those responsible can then determine the right 

security technology to be employed to protect the data as the proposed tool does not 

define or provide any security mechanism to secure the BD set. 

 

Even though the proposed solution secures BD in a precise manner, it does not provide 

any comprehensive solution to secure BD at rest. The approach to protecting the value 

cannot be an independent solution in that; values are products of analytics which are 

dependent on the stored unprocessed data.  So if the stored raw data get compromised, 

it is likely to affect the value of the analytics, and therefore, this approach cannot 

provide adequate singleton security solution for a given BD cluster without the 

application of other third-party security tools and policy management tools.  

E.  A triple encryption scheme to secure BD in the cloud  

Towards a more secure means to address the data security issues in Hadoop’s  HDFS,  

and also manage encryption keys, the authors of [50] proposed a triple encryption 

scheme.  The scheme specifically secures BD in a cloud-based Hadoop storage system. 

Both symmetric and asymmetric encryption technique-base algorithms were leveraged 

to encrypt and decrypt data. Symmetric encryption technique encrypts and decrypts 

data with a single key; the key can be shared via a secured network. Asymmetric 

encryption technique, on the other hand, uses a key pair (private and public key) to 

encrypt and decrypt the data. In other words, when the data is encrypted with the 

private key, the data can only be decrypted by using the corresponding public key.  



34 
 

 

The hybrid encryption technique adopted in [50] first uses a symmetric encryption 

algorithm to encrypt the HDFS data. Secondary the encryption method uses RSA (an 

asymmetrically encryption based algorithm) encryption algorithm to encrypt the 

symmetric encryption key (data key), and then the RSA encryption key is also encrypted 

with IDEA (International Data Encryption Algorithm). In principle, the scheme uses DES 

algorithm to encrypt the files, and the RSA encryption algorithm is used to encrypt the 

data key (the secret key to decrypt the file). The user will then keep the private key 

generated by the RSA algorithm to decrypt the data key which will, in turn, be used to 

decrypt the file [50].  The scheme implements a key management module, encryption 

and decryption module, application server and a database to encrypt and decrypt data.  

For example, if a user wants to encrypt a file, the application server first receives the 

encryption request and then generates an RSA key pair (public and private). The private 

key is sent back to the user to keep. Moreover, before each file is encrypted, the user 

first sends a request to the data key management module, which upon successful 

authentication generates a data key (the key to decrypt the encrypted file) for the user. 

The module then links up with the encryption or decryption module, which then 

searches for the user’s ID from the database and then locates the public key of the user 

to encrypt the data key which is subsequently persisted in the database.  

 

Inversely if the user wants to decrypt a file, the application server uses the user’s 

private key and the file ID to find the data key in the database.  The key management 

module uses the user’s private key to decrypt the data key which is used to decrypt the 

file before it is finally sent to the user. Due to the importance and risk associated with 

the private key, the work further provides private key storage management, that 

generates, backups, restores and manages the user’s private key. The key management, 

however, needs to be installed by the user as a dedicated key management system. 

Furthermore, the key management component also uses DES, RSA and IDEA encryption 

algorithms to encrypt and decrypt the private keys.  

 

The approach leverages the strength of both symmetric and asymmetric encryption 

algorithms to provide a robust encryption solution for BD data storage system. The 

scheme also allows the integration of dedicated encryption key management systems to 



35 
 

store and manage encryption keys safely. Nonetheless, such an approach is likely to 

contribute to process overhead. Because data encryption requires much processing 

time, the employment of multiple encryption solutions despite its effectiveness can 

potentially increase the complexity of the implementation as a BD encryption solution 

[51]. 

F.    Multi-solution approach for a multifaceted BD security demand 

An enterprise BD solution is an ecosystem of several technologies [24]. BD technology 

such as Hadoop is made up of several inherent technologies. Additionally, each layer in 

the framework is a conglomeration of autonomous native and third-party technologies 

purposed to deliver specific functionality within the framework [52]. Another challenge 

that BD poses is the storage and management requirements of the large datasets. 

Organisations that deals with data are expected to comply with certain security 

standards and regulations. General Data Protection Regulations (GDPR), for example, is 

EU regulations that ensure that the citizenry of the EU’s data is protected [53]. 

Additionally, there are other institutional or industrial specific regulations such as  

HIPPA (Health Insurance Portability and Accountability Act) compliance for the 

healthcare industry [54],  PCI DSS (Payment Card Industry Data Security Standards) 

compliance for the card payment industries [55].  Besides the external regulations, 

there are security threats that will require regular security interventions to subvert or 

mitigate the threats.  

 

Building and maintaining security infrastructure for a BD cluster is technically and 

economically expensive [56]. To be able to maintain holistic security solutions across all 

layers within the cluster will require the deployment of the right security solution at 

each layer within the cluster. Moreover, each of these technologies will equally need all 

necessary security measures to ensure that both data and the technology are adequately 

protected from any malicious activities.  

G.  Security vulnerabilities in Hadoop-based BD systems  

The premium security interest researchers and developers attached to BD technologies 

have resorted to different solutions all aiming at delivering a peculiar solution to the BD 

eco-system. For example, the authors of [24] presented an analysis of the various 

security solutions implemented in the core Hadoop components. Each security 



36 
 

component, as indicated in their results provides a tailored solution in what is 

summarised as “The 3ADE” representing the security concerns in each layer or platform 

within the Hadoop technology. In total, their work presented thirty-eight autonomous 

security solutions (such as data and user authorisation technologies, technologies for 

encrypting data at rest and in transit, and technologies for security auditing and 

authentication) provided to deal with respective security issues in each Hadoop layer 

[24]. Despite the high number of proposed BD technologies, BD DDoS detection 

mechanism is still not proposed according to the work of [24]. 

 

A significant advancement is made in the area of BD security, particularly securing data 

at rest and in transit. However, it can also be observed from current work that, the state 

of the art security mechanisms in Hadoop only aim to enhance client authentication 

mechanism and to protect data at rest. Consequently, the Hadoop framework is not 

resilient against DDoS attacks due to the lack of research attention in this regard. 

Moreover, although much research effort is committed to enhancing the existing DDoS 

detection techniques and technologies, they are however designed to operate on the 

network perimeter and not within the Hadoop cluster or framework. Incidentally, the 

perimeter based detection mechanisms cannot be directly employed within the Hadoop 

framework as DoS or DDoS detection solutions. The reason is that the framework 

adopts the Centralised organisational model. Thus Hadoop’s elements (for example 

DataNodes) are managed by dummy residents agents who manage each node within the 

cluster based on the instruction received from the manager deployed in the NameNode, 

in a star topology. Moreover, the load sharing technique of Hadoop File System (HDFS is 

designed to be intrinsically distributed at runtime or as defined by the system 

administrator. Essentially, each node may assume varied workload requirements during 

data processing which can cause the nodes to exhibit different characteristics regarding 

load and processing activities. Perimeter-based DDoS detection systems, however, are 

not cognisance of such unique topological and processing characteristics of the Hadoop 

framework [29][26][4][28]. Consequently, they cannot be viable to discriminate the 

normal behaviour of the nodes and then predict the presence of a DDoS attack on each 

node.  



37 
 

H.   Addressing the DDoS security gap in Hadoop framework 

Creating a detection technique that can satisfy the unique topological and operational 

characteristics will demand an unconventional approach to the detection of DDoS 

attacks. Thus, the proposed solutions must be able to dynamically understand the 

normal behaviour of the nodes in the cluster and accurately judge if a node is depicting 

malicious activities. Furthermore, it is equally imperative to consider the operational 

cost to the cluster. Thus, the performance of the Hadoop clusters should not deplete or 

be compromised because of a technique with high computational overhead. 

Consequently, the proposed solution will employ some detection techniques that can 

deliver the expected result with minimal computational cost.  

 

From the understanding of the capabilities of software agents, the concept has the 

intrinsic means to provide an intelligent and dynamic approach to learn the behaviour 

of the nodes and make an accurate judgement about malicious activities on each node 

autonomously. Moreover, the agent concepts provide the means to create a single 

framework that can satisfy the architectural requirements of the Hadoop framework. 

The idea of employing intelligence software agents to create autonomous and intelligent 

security solutions have gain exponential interest in recent years [28][57][58]. However, 

the application of agent-based inherent security techniques to detect DoS attacks in the 

Hadoop framework is still lacking. 

 

Whiles the software agent concepts provide the means to create a framework that can 

seat within the Hadoop cluster; two light weighted statistical techniques, namely the 

Cumulative Sum (CUSUM) and the Linear Weighted Moving Average (LWMA), will be 

employed to create a prerequisite DDoS detection skill for the agents. CUSUM and 

LWMA are significantly adopted by the state of the art DDoS detections technologies 

[59][60][61]. They are largely employed to detect DDoS attacks in unpredictable 

situations because it is non-parametric and does not incur a high computational cost. 

Likewise, variations of the averaged-base statistical techniques such as LWMA and 

Exponential Linear Weighted Moving Average (ELWMA) is utilised in the domain for the 

same reason [62].  

 



38 
 

Contrarily to the current approaches, this work will adopt a multi-disciplinary approach 

that will leverage the software agent concept, and light weighted statistical technique 

(CUSUM and LWMA) to propose a multi-agent framework that will address the DDoS 

detection gap in the Hadoop framework.  

2.4 Summary  

DDoS attacks are known to be very disruptive and dangerous to any computer 

infrastructure. They are designed to explore and bypass existing security structures to 

have direct access to the target victim. As the techniques employed in this kind of 

attacks are getting smarter by the day, the detection and mitigation techniques equally 

need to evolve to avoid the consequences of the attacks. This chapter has presented the 

state of the art and security challenges in the BD technologies particularly about the 

current advancement and the research direction of the internal security mechanism of 

the Hadoop framework. The literature review has confirmed that BD technology such as 

Hadoop has made significant progress in providing an inherent security mechanism to 

encrypt data and also ensures robust client and user authentication. However, the 

current state of the technology still lacks inherent security mechanisms to detect DDoS 

attacks and as a result, relies on a secured network perimeter to protect itself against 

such attacks. The literature review has also shown that the software agent concept has 

been employed in the research community to create smart DDoS detection in a dynamic 

computing environment. However, current work does not utilise a singleton software 

agent-based framework that allows intelligent, real-time distributed monitoring and 

analysis of the network and average server load measurements to detect DDoS within 

the Hadoop framework. Moreover, the operational advantages of a software agent 

concept have not been explored in the Hadoop framework. Consequently, a multi-agent-

based framework to detect DDoS attack within the Hadoop framework is proposed. 

Contrary to existing DDoS detection techniques, the proposed framework is informed 

by Hadoop’s unique design and inherent security requirement to provide internal 

security mechanism within a Hadoop framework. The employment of a software agent 

further introduces intelligent operation into the BD technologies which are currently 

not the case. Thus, a secondary security layer which will ensure the security of the 

cluster against DDoS attacks is available in an event where the network parameter 

security is compromised.  



39 
 

Chapter 3  

Overview and Application of Multi-Agent Concepts in Automated Big Data 

Security System Management 

 3.1 Introduction   

Software agent paradigm has been in existence for many years and continues to remain 

the essential subject of research interest in the research community due to its diverse 

application benefits. Though agent-based technologies are still classified as an emerging 

domain, the concept is widely applied to solve complex problems on behalf of humans 

[11].  

The term software agent is associated with many definitions, partly because there is no 

universally accepted definition [12]. Consequently, the term assumes different 

definitions depending on the application context and the associated functionalities. 

Thus for some application, agent autonomy could largely influence the definition of 

software agents. Likewise, the cognitive capabilities of the agent may influence the 

definition of the term in other application domain [12]. However, more generic 

definitions which emphasise the main characteristics of the software agent concept was 

proposed by the authors of [13]. The authors define a software agent as a “computer 

system situated in some environment, and that is capable of autonomous action in this 

environment to meet its delegated objective”. The meaning of software agent can, 

therefore, be inferred from this definition as a system capable (i.e. equipped with skills) 

of effecting changes in its environment autonomously.   

Software agent skills determine their ability to execute a given action. Howbeit, not all 

of the skills, will be useful in any instance. Thus the agent is faced with the challenge of 

the choice of skills to employ to produce the expected result successfully. Moreover, the 

defined actions also have associated conditions which define its application context [12]. 

Every agent action, have associated conditions which will determine its context of the 

application. 

Consequently, a functional agent is not only equipped with skills but must equally 

possess the ability to reason and decide (i.e. Each agent is equipped with inherent 

reasoning system) on the right action to take to achieve its given goal. Agent reasoning 

system is the inherent capabilities that allow the agent to make autonomous but 



40 
 

intelligible decisions. Additionally, the cognitive system is capable of building sufficient 

knowledge about its environment to comprehend its domain semantics as well as 

communicating with its domain entities.  

The introduction of automated network management technologies has contributed 

significantly to the improvement in managing network infrastructure. Nonetheless, the 

current network management technologies are still confronted with some inherent 

drawbacks due to their underlying management model and intrinsic protocols. The 

need for the optimisation of these management models and technologies consequently 

attracted research interests from both academia and commercial developers. 

Researchers, however, took different viewpoints or approaches to their proposed 

solution. Some researchers focused on the development of new networking 

management models and protocols to optimise existing ones [7]. Others, on the other 

hand, concentrate on the development of software-based network management 

framework to leverage existing network management models and protocols. The latter, 

however, has attracted much attention over the past years due to their ease of 

application and adaptation  [7] [5][9]. 

One of the emerging research approaches in line with the latter approach of network 

management is the application of software agents’ paradigm[5]. The software agent 

concepts have proven to be an effective and efficient approach to developing distributed 

and independent network management solutions [10][39][38][40].  Nonetheless, 

developing agent-based network management systems requires a holistic appreciation 

of the network management model, protocols and associated challenges.  Consequently, 

this chapter will present an overview and state of the art (SOTA) of the software agent 

paradigm. Additionally, a dedicated section will attempt to map each respective agent 

concept to a network management requirement in the BD system (i.e. Hadoop software 

framework). Contrary to current literature the proposed mapping will aim to contribute 

to how various agent concepts can be leveraged to address the class of management 

challenges associated with SOTA BD technologies. Furthermore, the proposed 

framework will be introduced in this chapter and will further be employed to 

demonstrate how the multi-agent concept can be leveraged to address the 

interoperability challenge in a heterogeneous environment such as the Hadoop 



41 
 

framework.  In the end, the chapter will confirm that a software agent is capable of 

addressing the DDoS detection gap in the Hadoop software framework. 

3.2 Types of software agents 

The term agent applies to a wide range of application domains. as indicated in Section 

3.1. However, the application domains differ in their characteristics, operational 

requirements and goals. Essentially, different types of software agents philosophies are 

required to be applicable in the plethora of the application domain. In this section, 

agents type based classification is employed to attempt to create a taxonomy of the 

available philosophies. The classification approach employed will present the types 

based on their functional characteristics, goal and design approach.  

It is essential to adopt a set of criteria to classify software agents. Consequently, the 

classification topology proposed in [63] is employed to classify agents as: functionally   

a. Interface agents 

b. Information agents 

c. Collaborative Agent 

d. Mobile agents 

e. Smart agents 

The rest of this section present briefly introduce the technical functionality of each 

classification. 

3.2.1 Interface agent 

Autonomy and cognitive capabilities are the main characteristics of Interface Agents. 

Essentially, they are designed to create a knowledge model of its user’s activities over 

time by using its cognitive system. The knowledge base then allows it to predict user’s 

activity and also provide proactive assistance to enhance productivity and efficiency.  

For example, the interface agent out of its knowledge base can suggest or provide a 

more efficient way of user’s functional activity. Another functionality of the interface 

agent can be to provide an evaluation report of user activity and also to act as a 

feedback tool. In essence, the concept can be employed to intelligently assist with end-

user performance evaluation and also provide an efficient way to enhance productivity 

by cooperating with other agents and end users [63].  



42 
 

3.2.2 Information agent 

The prevailing challenge of managing heterogeneous information from distributed 

sources necessitated the role of the information agent [63]. The main functional 

requirements, therefore, are collating, managing and analysis of distributed information.  

Information agent can be implemented as mobile, collaborative or static agents and may 

also exhibit some or all of the agent's characteristics depending on the design 

expectation. The aim as suggested in [63] is to provide efficient and intelligent means of 

managing heterogeneous information from distributed sources.  

3.2.3 Collaborative agent  

Collaborative agents are autonomous as the rest of the philosophies but are also 

designed to be social entities.  The concept may to some extent have cognitive 

capabilities, but that is not a key design decision comparative to the ability to effectively 

negotiate with other agents to accomplish the corporate task. Essentially their design 

philosophy is to negotiate with other agents to mutually agree on the subject of interest. 

Consequently, they are mostly situated in high coarse-grain multi-agent systems to act 

rationally and autonomously.  Regarding the operational benefits,  collaborative agents 

are employed to:  

a. Collaborate with other agents to perform a task not achievable by a single 

agent. 

b. Provide aggregated information, especially from heterogeneous systems. 

c. Facilitate the optimisation of systems resource in heterogeneous network 

infrastructure  

3.2.4 Mobile agents 

Mobile agents are endowed with the skills to perform their functions remotely on 

behave of its host (i.e. the mobile agent manager). The elimination of the high 

operational cost associated with remote procedure calls (RPC) (i.e. a conventional 

approach for processes to communicate over network channels – as shown in Figure 3.1. 

largely contributed to the fruition of the mobile agent philosophy [12].  

 

The idea of a mobile agent is to avoid such potential network congestion by sending an 

agent to the remote source to do the computation.  In this case, the store agent will 



43 
 

rather migrate to carry out the transaction remotely. Figure 3.2. depicts the mobile 

agent model.  

 

Application of mobile agents comes with more operational benefits than other agent 

implementations [64]. Thus the concept has the potential to maximise the benefits of 

the multi-agent implementation further if their functional requirements and social 

responsibilities are precisely defined.  

 

 

Client 
process 

Server 
process

Network

Process call

 Process response

 

Figure 3.1 Illustration of  conventional remote procedure call (RPC) [2] 

 

  

client 
process agent

 remote
server

Network
Dispatch 

mobile agent

 process call and 
response

 

Figure 3.2 Illustration mobile agent in remote procedure call (RPC) [2] 

 

3.3 Agent reasoning system 

The reasoning is the act of engaging the mind in processing contextualised information 

to infer knowledge for decision making. Decision making, therefore, can be inferred as a  

(reasoning system) cognitive function. Software agents as mentioned in section 3.1 is 

equally capable of making an autonomous decision to reactively or proactively inform 

their action. To be able to perform such a rational function means the agent will have a 

cognitive system that will enable the whole decision-making process to take place [65]. 

Consequently, the research community has proposed a wide range of software agent’s 



44 
 

cognitive systems [66][65]. Nonetheless, the Procedural Reasoning System(PRS), 

proposed in [66] has become the defacto of software agents reasoning systems due to 

its stability and ease of adapting to various application domains [67][68][69]. For the 

same reason, PRS is adopted in this work as the cognitive model for the proposed multi- 

agent-based framework.  

 

PRS is as reasoning system endowed with the attitude of belief, desire, and intention 

[66]. These attitude at any instance influence the action being considered by PRS. This 

system depends on its beliefs( current domain knowledge) and previous judgement to 

decide on the right course of action under its desires or goals. Also, the reasoning 

system must be reactive and proactive to deal with any arbitrary request or constant 

changing of its environment [66].  The attitude of the PRS which is also referred to as 

BDI (Belief, Desire and Intend) system is further explained in the next section.  

 

Belief: Is the system’s knowledge about its environment persisted in a database. An 

instance of the database represents the current domain knowledge of the software 

agent [66].  

 

Goals: Goals in BDI are intended task that has to be performed by the agent. For 

example, creating and storing new technology profile can be a goal the system must 

achieve. The goal can also involve subgoals such as testing for the network for 

connectivity and storing of the profile in the database.  

 

Knowledge Area (KA): Is a set of procedures describing the sequence of the plan of 

achieving the current goal. Essentially, a set of KA constitutes a procedural description 

of how the agent can accomplish its current goal.  An instance of KA consists of a body 

that is a description of the process and predicate that specifies the condition for 

decisions. Additionally, KA includes meta level KAs, which provide further information 

on the manipulation of the BDI (Belief, Desires and Intentions).  

 

Despite the enormous success in the application of the BDI, the reasoning system is 

equally notable of some challenges, particularly when it comes to the description and 

interpretation of the KAs[70]. In this work, an ontology concept is employed to describe 



45 
 

the agent plans and their skills. The application of the ontological description then 

allowed mapping of the actions to the respective skill required to take action Figure 3.3. 

is a conceptual representation of the implementation of the BDIS system.   

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

         

  

 

           

 

             

 

    

           

Interpreter: The interpreter is the heart of PRS; thus it runs the entire system by 

ensuring the effective execution of its KA under a given goal. Conceptually, at any 

processing time, certain goals will be active with an instance of its beliefs held in the 

Flow of control  

Create and add 

new ontology 

description  

Read 

ontology  

Agent Environment 
Interpreter 

Goals 

stack 

Read or 

add new 

goal 

Underlying 

Technology  

Interact with 

target  

Knowledge 

Area 

Ontology Base 

Belief 

Read/

Add  

Meta_Level 

Data 

Goal and agent skill 

mapping 

Read/Write  

Map goal 

to skills  

Figure 3.3 Example of Belief-Desire-Itend model 

(?(CA $source1, $Source2), (TM $<<tech>>), (CMO $MP)) 

 

Start 

 

N1 

Stop 

(=> (UM $ MP, &DB)) 

 

Figure 3.4 Schematic description of KA to read resource utilisation metrics 



46 
 

database. Given these set of goals and beliefs, the interpreter decides on the KAs 

relevant to achieve these goals and then place them on the process stack one at a time 

base on the description of the body of the KA (a process stack is a temporal storage for 

active KA).   New goals or sub-goals may arrive in the course of execution. When new 

sub-goals are a place on the goals stack, the interpreter will again determine on the 

relevant KAs and execute them by placing them on the process stack sequentially[66].   

 

The interpreter inherently relies on its meta-level data to form its decision on the 

selection and execution path of the KA. For example, a new sub-goal may arrive on the 

process stack which will require a change of execution path or a temporally suspend the 

current goal to deal with a more urgent situation. The meta-level data provide enough 

information on procedural and exertional decision to help the interpreter make inform 

choices in such cases. Figure 3.3. is a schematic model of KA with a goal description to 

read resource utilisation metrics.  

3.4 Agent communication  

3.4.1 Agent-to-agent communication 

Software agent communication remains central to the design and implementation of 

agent-oriented systems.  The reason is, information relay and data sharing among agent 

cohort are achieved via the inherent communication mechanism [36]. Contrarily to 

object-oriented method invocation, software agents communicate their intents to the 

recipient to utilise its inherent skills. In essence, agents use communication to change 

the state of other agents or employ their skills to complete a given task. However, the 

aforementioned does not imply that the communicator has direct control to change the 

internal state or skills of the recipient. On the contrarily, each agent has full control over 

its behaviour or skills. Thus they decide when to apply its skills or can even decide if it is 

appropriate to perform the requested task. In essence, agents cannot be forced to act on 

their wish[12].  

 

Consequently, agent to agent or agent to environment communication needs to take 

place in an instance of data or information sharing. Thus the communicating parties 

must all subscribe to a common language to have meaningful communication.  As a 



47 
 

result, many formalisms which seek to provide multi-agent communication languages 

have been proposed by researchers and commercial developers[12].  

3.4.2 Agent communication language 

Software agents communicate with each other by use of agent communication language, 

a speech act oriented language. Speech acts are performative utterances that aimed to 

influence an action intended by the communicator[12]. This section will seek to present 

current standardised agent communication language and its application in the 

development of software agents. The reader is however referred to [12] for further 

insight into the evolution of the agent communication language.  

 

Knowledge Query and Manipulation Language (KMQL) was the first agent 

communication language developed by the US government under the ARPA knowledge 

sharing initiative [36].  KMQL was an integration of both language and language 

protocols which defines several performative verbs and also represent a message in a 

first-order logic language called KIF [36]. The downside, however, was KMQL vendor 

dependent, making it impossible for agents from different vendors to talk to each other 

due to the language barrier [12]. This barrier subsequently led to the development of a 

more standardised Agent Communication Language (ACL) by FIPA(Foundation for 

Intelligent Physical Agent) which has now become widely adopted agent 

communication language [36].  FIPA-ACL is a speech act based language grounded on 

the notion that utterances or messages are an action [36].  

 

FIPA-ACL provides 22 communicative acts where modal logic is used to describe each 

act in a formal semantics and narrative form. The modal logic formally stipulates the 

intent of sending the message to have the right mental influence on the receiver[36]. 

Examples  of the FIPA-ACL communicative act are:  

 Request: The communicative act is stipulating the intend to request the recipient to act. 

 Query-If: the communicative act used in asking a recipient to confirm or deny a given 

proposition. 

Not understood: the communicative act to indicate that a perceived action performed 

was not understood. The reader is referred to [36] for an extensive representation of 

the FIPA-ACL communicative acts. 



48 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. is a representation of how ACL message is constructed and conveyed by the 

agents. In this instance, the example depicts communication between IC agent and HDFS 

agent. In the message, IC agent is requesting HDFS agent to perform the action 

SystemReview(defined in the SystemReviewOntology model) on the HDFS file systems. 

Additionally, the message contains a set of parameters needed for successful 

communication [36].  Additionally, the actual message the sender wants to convey is 

expressed in a standardised format to ensure proper encoding and decoding. The 

formal definition of the semantic notations for the representation of the message or 

content of the communication is the content language.  

3.4.3 Description of the FIPA_SL language  

In principle, agents communicate by use of mutually understandable language over a 

message transport service without concern of missunderstanding [71]. Communications 

in the multi-agent ecosystem are exchanging of high-level concept between two or more 

agents to accomplish a purported action. The message, however, needs to be encoded in 

a standardised format to convey the mutual semantics of the higher level abstraction.  

 

(Request 

 :sender (agent-identifier :name IC@localhost:111/JADE) 

 :receiver(agent-identifier :name HDFS@localhost:111/JADE) 

 :ontology SystemReviewOntology 

 :language FIPA SL 

 :protocol fipa-request 

 :Content “” 

       ((action 

          (agent-identifier :name HDFS@localhost:111/JADE) 

          (SystemReview : HDFS) 

   

      ))” ” 

   ) 

 

Figure 3.5 Application of the communicative act (request performative) in a FIPA-ACL 
Message 



49 
 

Sender agent

Create 
Message M

Encode 
message M

Receive and 
process 

Message M

Receiver Agent

Create Reply REncode Reply R
Receive and 

process Reply R

Transport 
message M

Transport 
Reply R

 

Figure 3.6 Agent communication model 

Figure 3.6. is a  simplified agent communication model depicting communication 

between two agents (Sender and Receiver). In the model, the sender agent constructs 

an ACL message intended to convey information(i.e. the content of the message) to the 

receiver agent. The content of the message is an expression of the intent of the message, 

properly encoded in a standardised format with content language. Upon receipt, the 

receiving agent will decode the message with the same content language, infer the 

meaning using the content language and carry out the required action. The receiving 

agent may reply by use of the same model.  

 

The content language provides an encoding description of the message content. 

Moreover, it also ensures the actual representation of the ACL message over the 

message transmission medium [71]. The most adopted content language is FIPA 

Semantic Language(SL) specification.  The SL language defines the semantics of the 

message content.  It also specifies the syntax of encoding the content of the ACL Message 

so that the receiver can parse and unequivocally infer the intent of the message[36].  

 

The communication cycle also involves the sharing of complex domain knowledge. Thus 

both the sender and receiver must mutually understand the concept and symbols used 

in expressing the content of any content message to encode and infer the meaning of the 

message.  



50 
 

3.4.4 Utilisation of ontology in multi-agent communication  

Ontology is the specification of concepts and symbols aimed at providing a mutual 

understanding of some domain [12]. The reader is referred to [12] for an extensive 

presentation of the subject area. However, the application of ontology in agent 

communication is briefly presented to provide a further understanding of how the 

ontology is employed to describe and communicate complex objects in the domain.  

 

Unlike ACL message, ontology is domain specific. Thus the aim of providing software 

agents with a common understanding of their domain is achieved by the formal 

definition of the taxonomy of entities and their relationships. Moreover, in any instance, 

an entity of a domain will be described as a class with properties [12]. 

 

Classes:  A group of entities having attributes or properties in common is a class of that 

enetity[12]. A class also has an instance, which is an occurrence or an example of a class. 

MySQL server, for example, is an instance of a server.  

 

Properties: Are the elements which define the entity. Alternatively, it can be termed as 

the standard features of the entity. The server, for example, will have properties of a 

name, IP address, hard disk capacity, operating system.   

 

 For example, if network manager knows that servers have these properties and  MySQL 

server, Apache web server and Hadoop NameNode are instances of servers, then it can 

be inferred that each server instance shares the same properties such as names, IP 

address, operating system and admin accounts [12]. Figure 3.7. a is a model of the 

relations and the class inheritance of the above description.  

 

Another key component of ontology is an axiom. Axiom is a model representation of 

every piece of information(including rules) that constitutes domain knowledge that 

must be well represented in the ontology. Essentially the inherent domain knowledge 

which defines the intelligence of the software agent is the axiom of the ontology and a 

collection of the ontology instances.   

 



51 
 

Infrastructure 

Servers
Regulations

MySQL
Server Apache 

Web server
Hadoop 
Server

PCI_DSS

Client

UK 
Client 

is 
a

is
 a is 

a

In
st

an
ce

 o
f 

In
st

an
ce

 o
f 

In
sta

nce
 o

f 

In
st

an
ce

 o
f 

In
st

an
ce

 o
f 

 

Figure 3.7 A model of the Network administrator's knowledge of the network infrastructure. Classes are 

represented as oval and instances as a rectangle 

3.4.5 Ontology development 

Ontology development is an autonomous discipline not traceable to the software or 

agent engineering paradigm.  The concept requires an ontological methodology to 

knowledge engineer the agents cognitive and information management systems. Thus 

the agent developer at some point in the development cycle may need to employ 

ontology development methodology to create the knowledge model of the agent-based 

system. The reader is referred to [35] for a detail description of the ontology 

methodology. The same methodology is employed to describe the agent’s knowledge of 

DDoS attacks  

 

The general understanding of the software agent paradigm is indeed essential in making 

an informed decision about the application of the concept. Sections 3.1 to 3.5 have 

presented an overview of the paradigm and considered the various agent philosophies, 

operational benefits and application context of the agent types. The cognitive system 

and communication principles have also been presented to affirm to the potential of the 

concept to address the DDoS detection gap in the Hadoop framework. The general 

overview as presented so far indicates that multi-agent concept is viable for the 

proposed solution. However, the background knowledge is not enough to ensure a 

successful implementation of any multi-agent solutions.  Understanding the various 

development methodologies is a fundamental requirement for the design and 



52 
 

development of any multi-agent solution. Consequently, the section will present a brief 

description of the available software agent development methodologies and also adopt 

a methodology for the development of the proposed framework.  

3.5 Brief overview of software agents design methodologies  

Software engineering methodology has evolved over the past decade through the 

development of many annotations to assist in the analysis, design and development of 

software solutions[30]. Conversely, agent-based software engineering is an emerging 

field and therefore lacks a more standardised development life cycle. However, some 

philosophies are proposed to assist in the analysis and development [30][31][11].  

 

Nonetheless,  globally accepted software agent development methodology is still not 

proposed or recommended [12]. This gap is to some extent attributed to the fact that 

the domain is still in the early stage and most development methodologies are still 

maturing through extensive experimentation and application [12].  Consequently, 

specific or group of methodologies will not be recommended in this section but will 

rather present a brief overview of mostly adopted Software agent engineering 

methodology. The feasible development methodology employed for the research will 

also be presented.  

3.5.1 Australian artificial intelligent institute methodology 

The Australian Artificial Intelligent Institute (AAII) methodology [12] was initially 

developed to assist with the development of an agent-based system using the PRS BDI 

(believe-desire-intention) reasoning systems. It, however, evolved to become a 

recognised agent-based development methodology through experimentation. The AAII 

design philosophy employs object-oriented methodology with agent-oriented 

modifications.  It uses an iterative approach to elaborate initially constructed internal 

and external models into a fully defined agent system specification.  Detail description 

of the AAII methodology is presented in. Figure 3.8. is a flows chart summarising the 

AAII methodology and the processes involved [70][12].    

 



53 
 

1. Understand the domain problem,  
identify the roles required to solve the 
problem, developed agent class 
hierarchy based on  the roles

2. Identify and assign responsibilities,  
and the services required by each role 
and the expected goal

3. Determine the plan required to 
achieve each goal in step 2 and the 
condition under which the plan must 
be executed. 

4. determine the believe structure of 
each and the information each agent is 
required to execute its goal. 

Problem well 
modeled

Yes

No

Yes
Further 

elaboration 
required

Process ends with 
Detail system 
specification 

No

Start process

 

Figure 3.8 A summary of the AAII Methodology 

3.5.2 Gaia methodology  

Gaia methodology [30] provides a systematic approach to agent-based system 

development. The methodology encourages a good understanding of the domain 

problem and then translates the identified problem into a requirement statement. The 

requirement statement in principle becomes the guiding document for the next stage of 

the analysis. An abstract model of the system is then produced from the requirement 



54 
 

statement to satisfy the system requirement. The overall system will sequentially evolve 

as salient details are added at each analytical stage [12].   

 

Similar to the AAII methodology, Gaia conceptualises its systems from an organisational 

point of view. Thus each system is perceived as an institution made of departments. 

Each department has been assigned a role and a goal to achieve. Likewise, Gaia views 

each system as a collection of collaborative roles that contribute to the achievement of 

the statement of requirement. The methodology presents two concepts: abstract and 

concrete as depicted in Table 3.1. Entities are used to conceptualise the system during 

the analysis stage without any detail internal specification.  Contrary, the concrete 

entries specify detail functional requirements of the system and each agent in light of 

their defined roles and goals.  

The key focus of Gaia is to identify, define and model the agents, their interactions and 

operational constraints.  

The table presents the two concepts used under the AAII methodology. 

 

Table 3-1 Abstract and concrete concept [30] 

Abstract concept Concrete Concept 

Roles 

Permissions 

Responsiblities 

Protocols 

Activities 

Liveness properties 

Safety 

Agent Types 

Services 

Acquaintances 

 

 

 

There are two key stages involved in the Gaia methodology, i.e. analysis and design. 

a. The analysis stage: The analysis stage aims to understand the structure of the 

proposed system informed by the problem statement. A problem statement is a 

sufficient description of the problem to be addressed by the agent-based system. 

Moreover, it is used to define the scope and objectives of the proposed system and 

hence required to commence the analysis stage. Essentially, the analysis stage does 

not concern with the detail design but rather aims at providing a logical and 



55 
 

structural model of the system to address the problems described in the problem 

statement. Consequently, the deliverable of the analysis stage is a high-level 

conceptual model of the entire system, indicating the inherent component, 

interdependencies and the interaction pattern among the subcomponents. 

Additionally, the outcome of the analysis stage forms the basis for the design stage 

which concentrates on transforming the abstract models into low-level models 

detailed enough to implement as a multi-agent system.  

b. The design stage: The objective of the design stage is to translate the abstract 

models developed during the analysis stage into detail low-level description that can 

easily be implemented with multi-agent development tool. At this stage, the Gaia 

methodology is concerned about how each specific role function identified in the 

analysis stage should be implemented. Thus, the methodology now considers the 

type of agents and levels of interaction needed to realise the proposed system.  

 

The analysis stage is concerned about assisting the developer in gaining understanding 

about the structure of the system.  The identified roles, responsibilities, permission, 

safety properties, liveness properties and their interaction are modelled at this stage as 

depicted in Figure 3.10.  The design stage on the other hand models the concrete 

entities within the systems. These models will involve the agent model, service model 

and acquaintance model. Figure 3.9 depicts the stages, the relationship and model 

transition. 

 

   

 

 

 

 

 

 

 

 

 

 

Requirement 

statement 

Roles model  
Interaction 

model 

Agent model  Service model   Acquaintance 

model   

Figure 3.9 Gaia relationship and model transition   [30] 

 



56 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.3 Tropos methodology 

The Tropos methodology is a hybrid of the AAII methodology and the Gaia methodology 

[12]. Although Tropos is more of agent-centred in the development life cycle, it still 

shares similar concepts such as the identification and definition of agent’s goals, roles 

and plans. Unlike AAII and Gaia methodology, Tropos methodology is a conceptualised 

framework that allows the modelling  of the entities in an agent-based system as Actors, 

Goals, Plan, Resources, Dependencies, Capabilities and Beliefs[12]: 

3.6 Application of multi-agent concepts in automated big data security 

system management   

The introduction of automated network management technologies has contributed 

significantly to the improvement in managing network infrastructure. Nonetheless, the 

current network management technologies are still confronted with some inherent 

drawbacks due to their underlying management model and intrinsic protocols. The 

need for the optimisation of these management models and technologies consequently 

attracted research interests from both academia and commercial developers. 

Researchers, however, took different viewpoints or approaches to their proposed 

solution. Some researchers focused on the development of new networking 

management models and protocols to optimise existing ones [7]. Others, on the other 

hand, concentrate on the development of software-based network management 

framework to leverage existing network management models and protocols. The latter, 

System  

Roles   

Responsibility   

Safety properties   

Interaction    

Permission    

Liveness properties     

Figure 3.10 Gaia analysis concept [30] 



57 
 

however, has attracted much attention over the past years due to their ease of 

application and adaptation  [7] [5][9]. One of the emerging research approaches in line 

with the latter approach of network management is the application of software agents’ 

paradigm [5].  

The growing interest in the application of software agents in the development of 

network management solutions is attributed to the challenges associated with the 

existing network management models and protocols [2][9]. For example, the 

centralised design of the network management model which is adopted by the Hadoop 

framework and their native protocol increases bandwidth utilisation.  

The software agent concepts have proven to be an effective and efficient approach to 

developing distributed and independent network management solutions 

[10][39][38][40].  Nonetheless, developing agent-based network management systems 

requires a holistic appreciation of the network management model, protocols and 

associated challenges. Consequently, an understanding of the software agent concepts, 

especially how each agent concept applies to the network management functionalities 

are equally required.   

Consequently, the remaining part of this section presents a summary of the network 

management model, and the underlying protocol will be presented. Various challenges 

associated with these models and protocols will also be presented; highlighting how the 

challenges introduce complexity into the network management task. Moreover, this 

section will present the state of the art (SOTA) of the software agent paradigm. 

Additionally, a dedicated section will attempt to map each respective agent concept to a 

network management requirement in the BD system (i.e. Hadoop software framework). 

Contrary to current literature the proposed mapping will aim to contribute to how 

various agent concepts can be leveraged to address the class of management challenges 

associated with SOTA BD technologies. The mappings will particularly focus on how the 

concept is applied in the automated network management requirements in the Hadoop 

BD system.  

 

 



58 
 

3.6.1 Network management model and protocol   

The introduction of BD paradigm indeed required a bespoke Information 

Communication Technology (ICT) infrastructure that will facilitate the core objectives 

of the paradigm. Consequently, BD technologies or systems were developed to provide 

the needed computing environment. BD systems are a by-product of ICT, like any other 

information management platforms BD systems are built on the same network 

management models and protocols. Thus, they are developed to store, process and 

transmit BD by use of existing network management models and communication 

protocols. In essence, BD systems have inherited the complexity and management 

challenges associated with underlying models and protocols. Consequently, various 

network management models which allow for the automation of network 

administration functionalities have been proposed [2][8] [9].  

 

The network management models have evolved since the 1980s because of the extreme 

technological advancement and increasing communication demands. The models are 

however characterised by several limitations brought about by the application of 

several vendor-specific technologies and the need to create an interoperable network 

infrastructure [2] [9]. Four of the main state-of-the-art network management are:  

a. Information model 

b. Functional model 

c. Communication model 

d. Organisational model 

Details of the main network management models and their limitations are presented in 

[2].   

A. Information model 

The model is a specification to ensure standardisation of the information exchanged 

between the network elements. The aim is to ensure interoperability between 

autonomous components regarding the creation and sharing of network management 

information. 

 

 

 



59 
 

B.  Functional model 

The functional model defines all the management requirements or functionalities that 

can be enforced on the network elements [5]. The network management functions that 

ensure the continuity of any network infrastructure are; 

a) Fault management 

b) Accounting Management 

c) Configuration management 

d) Performance management 

e) Security management 

f) Quality of service management 

The reader is referred to [72] for a detail description of each network management 

functions. 

C.  Communication model 

The communication model defines the mode of exchange of network management 

information between the agents and their managers. The model is logically constructed 

to operate on the definition of the underlying network infrastructure (i.e. the managed 

objects) [2].  Some of the most employed communication models are: 

a. Simple Network Management Protocol (SNMP): Used to exchange network 

management information in IP-based networks 

b. Common Open Policy Service (COPS): Used to exchange management 

information in a policy-based network management platform. 

c. Common Management Information Protocol (CMIP): Use to exchange 

management information between the network elements in 

telecommunication infrastructure.  

 

Each of these communication models is utilised extensively in their application domains. 

However, the rest of this section will focus on the SNMP which is the adopted 

communication model for BD systems [7][5] 

D.    Organisational model 

Organisational model describes the network management task, the participants in the 

management task and their functionalities. It first describes the entities and also defines 

the management roles of each entity and their relationship. The three most important 



60 
 

organisational models used in network management systems are; the centralised 

organisational model, hierarchical organisational mode and Distributed organisational 

model. For example, current BD systems adopt the centralised model because they are 

easy to design and implement. The downside however is: the constant message passing 

and data sharing between the agents and the manager creates a bottleneck at the 

manager and also impact significantly on the network bandwidth utilisation[10]. 

3.7 Utilisation of software agent concepts in managing BD systems  

Some software agents-concepts have been utilised to promote the benefits of the 

paradigm to addressing different network management challenges such as the detection 

of DDoS in the BD system [26][27][28]. However, existing literature and commercial 

approaches only utilise limited agent types such as mobile agents without much 

consideration of other agent concepts [38], [41]. Essentially, an outline of the benefits of 

various agent types is necessary to: 

a. Increase the knowledge of the application of software agents in the BD domain 

b. To maximise the benefits of utilising different types of software agents in BD 

systems.  

 

Consequently, the rest of the section will present how each agent can be utilised to 

create automated management solutions in BD cluster (i.e. an IP-based network 

infrastructure) or develop an agent-based BD management system. Furthermore, the 

benefits of the agent concepts will be demonstrated in the implementation of the 

proposed multi agent-based BD management framework. Additionally, the section will 

attempt to align each software agent concept with the network management 

requirements of the functional model. The alignment aims to present an understanding 

of how each software agent concept can be employed to address the BD system 

management requirement under the functional model. The alignments are presented as 

follows. 

3.7.1 Application of mobile agent in automated management solutions in BD 

cluster   

A mobile agent is the type of software agent that can migrate to a remote location to 

perform computation at the instruction of its manager (i.e. mobile agents are 

despatched and manage by agent management module). One of the main operational 



61 
 

benefits of Mobile agent is network bandwidth optimisation. According to Figure 3.11, 

network manager through a mobile agent manager can dispatch mobile agents to 

remotely monitor and manage the Hadoop nodes without the need to send regular 

network management information to a centralised or remote machine for further 

analysis [6]. The mobile agents are designed to reside in the mobile agent manager 

(which can be a mobile agent management software module or mobile agent 

application server). The design approach allows the mobile manager to clone and 

dispatch mobile agents to carry out computation remotely nodes such as DataNodes and 

the SQL servers. Once the task is completed, the mobile agent reports on the outcome of 

the assigned task and then reverts to the mobile agent manager where it permanently 

resides.  The benefit is; the network bandwidth can be optimised for faster user and 

application data transmission to improve overall network latency. The specific 

application impacts of the mobile agent are however subject to the application domain 

[6]. 

 

Furthermore, an attempt is made in Table 3-2 to align the benefits of the agent concepts 

with the network management functional model and highlight on areas where the 

mobile agent concept can be employed to manage the network element to reduce traffic 

congestion in a BD system. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.11 A schematic representation of the mobile agent dispatched unto remote network elements 

 

Mobile agent  

Hadoop Cluster 

DataNode 

one 

DataNode 

Two 

Mobile 

agent 

manager  

Network 

Manager 

Database Servers 

  MySQL 
  MS SQL 

 

 

 

 

 



62 
 

Table 3-2 Summary of the application of the software agent concepts in network management 

 Best suited Network management functionality  

Agent 
Concept 

AM FM PM SM CM CMT Functional 
limitation 

 
Interface 
Software 

Agent 

 
√ 

 

× 
 

 

× 
 
 

 
√ 

 

× 
 

 

× 
 

Their functionality is 
only to manage and 
monitor external 
interaction with the 
network 
infrastructure 

Mobile 
Software 

Agent 

 
√ 

 
√ 

 
√ 

 
√ 

 
√ 

 

× 
 

Their total reliance on 
active network link 
makes them 
susceptible to 
network failure  

 
Collaborative 

Software 
Agent 

 
√ 

 
√ 

 
√ 

 
√ 

 
√ 

 
√ 

They are only 
applicable in a multi-
agent environment.  

 
Information 

Software 
Agent 

 

× 
 

 
√ 

 
√ 

 
√ 

 
√ 

 

× 
 

Their functionalities 
are limited.  They are 
only suitable for 
information 
management.   

 
Hybrid 

Software 
Agent 

 
× 

 

 
× 

 

 
× 

 

 
× 

 

 
× 

 

 
√ 

They are a complex 
agent concept, difficult 
to develop and 
maintain. Unless it is 
extremely necessary, 
the Collaborative 
agent should be 
employed to create a 
hybrid solution.  

 

Meaning of column headings  

AM = Accounting management  

FM = Fault management 

PM = Performance management 

SM = Security management 

CMT = Complex Management Task 

CM = Configuration Management 

√ indicates the proposed alignment of the software agent concept to a network management model  

× indicates that the software agent concept is not aligned with the network management model.  
 

 

 



63 
 

3.7.2 Application of interface agent in automated management solutions in BD 

cluster   

Interface agent concept is essentially employed to interface with user’s activities. They 

are static agents and not designed for specific low-level BD system management 

functionalities and hence not ideal for all network management functionality except 

Accounting Management. However, it is very effective in building a good profile and 

predicts user’s activities over time. Consequently, Table 3-2 suggest how the agent 

concept can be leveraged to address the management functions in BD systems.  

3.7.3 Application of Collaborative agent in automated management solutions in 

BD cluster   

The conventional approach to satisfy all management requirements has been, to share 

the requirements among individuals with the prerequisite knowledge or employ a 

dedicated network management tool such as a firewall. However, each functionality 

must be well coordinated and if possible integrated to ensure that the various sub-

management systems work in a collaborated effort to provide a holistic solution. 

Likewise, collaborative agents are employable in the multi-agent system management 

paradigm, especially to take up the role to ensure harmonisation among multi-agent 

software. Although they are operationally autonomous, they are however not the best 

choice to employ to deliver management functionality such as system configuration. 

Notwithstanding their limitations, they are equally essential in creating multi-agent 

based BD system management solutions. 

3.8 The proposed multi-agent framework approach to automated system 

management task in the BD system 

Agent-based network management framework is gradually becoming an important 

research approach to developing network management solution [6][10][38]. 

Consequently, the concept of a multi-agent management framework is significantly 

employed in the BD domain to enhance system management functions in BD systems 

[41]. However, several types of research under the theme turn to focus on the 

application of specific agent concepts (Example mobile agent) in a management 

framework [10],[38],[41],[64]. The downside of this approach, however, is, operational 

benefits of other concepts are ignored and hence limit the capabilities of the entire 

management framework. Contrary to the current multi-agent based techniques, a 



64 
 

transparent agent-based framework that leverages the multiple agent concepts 

presented is proposed. The advantages of the proposed framework are: 

a. It allows integration of multiple agent concepts in a single network management 

framework  

b. Functional capabilities of a single framework can be scaled by plugging in of 

multiple agent concepts. 

 

A standardised methodology and development principles guide the design and 

development of multi-agent systems. This research consequently adopted the standard 

and design principles to design and implement the proposed multi-agent framework. 

Chapter five of this work presents the evolution of the design and implementation of the 

framework. The chapter also provides the theoretical justification of the choice of agent 

concepts and design principles adopted for the proposed multi-agent framework. The 

reader is therefore referred to chapter five for detail explanation on the design and the 

functions of the proposed system on the BD system.  

However, this section aims to demonstrate the benefits of leveraging multi-agent concept 

to managing BD systems contrary to the human centred and single-agent approaches. 

Consequently, this section is devoid of detail explanation of the design choices and 

functions of the framework since that is addressed by chapter five extensively.   

3.8.1 Brief description of the proposed multi-agent technique  

The proposed framework is presented with dedicated static agents who wrap 

technology-based functionalities as agent functionalities for demonstration purposes. 

The framework is schematically represented in Figure 3.12.  and Figure 3.13.  

 

 

 

 

 

 

 



65 
 

      

 Data Persistent Transducer 
Agent

System registration and management agent

Data Management and Assurance Layer (DMAL)

Policy Management Agent User Interaction wrapper Agents

Policy Management and Knowledge Integration Layer (PMKIL)

Communication Protocol and Integration Engine 

Intelligent agent controller  External technology Transducer  agents

 Agent Management Regulatory Layer (AMRL)

 

Figure 3.12 Schematic representation of the proposed framework 

The design aims to allow the separation of related network management functions into 

respective layers, where their functional requirements are implemented by the 

modularised components (the agents). Thus, the architecture allows seamless module 

integration, interoperability, and effective communication across the Hadoop framework 

layers. Interoperability and seamless integration of multiple agent concepts is achieved 

via the module interface and communication protocols, which ensure standardisation on 

the design and development of the modules. Also, there is a dedicated software module 

(Communication Protocol and Integration Engine (CPIE)) that ensures full compliance 

among the modules. CPIE, in addition to its core tasks, is responsible for the deployment 

of the software agent modules. As part of the integration process, it also performs 

module integrity check, which checks (e.g. Interface agent) to make sure each agent is 

designed to interface with the internal structure and design reliably. 

The functional requirements of the proposed layers are aligned with the four network 

management models. The novel alignment allows the framework to be deployed as an 



66 
 

integrated solution for the functional model requirements and also granular scalability 

to adopt new management requirements in the Hadoop framework is possible.   

The alignment of the framework layers and the network management models is 

provided below.  

 

System Adminstration

 Policy 
management Agent

 user Interaction
Agent

Domain Ontology

Policy management and Knowledge
 Integration Layer 

Data management and Assurance 

Layer

Hadoop 
Platform 

Agent management regulatory 
layer (AMRL)

Map request to 

Hbase command

agent register

 

techProfile

Read/Write

Agent 
communication 

 Apache Hbase 

 HDFS

Review 
instruction

Map request to 

HDFS command

 Hbase 

Agent

 HDFS Agent

Intelligent Controller 

Communication protocol 

and integration engine

Map request to 

query language 

MySQL (DP)  

Agent Query
 language

System Registration 
Agent

Cross  layer 
communication and 

messaging 

 MySQL
 Server

Low level Hbase 
commands

Low level HDFS
Commands 

 

Figure 3.13 Schematic representation of the framework implementation 

Figure 3.13 models how the proposed framework is presented in this case to address 

the network management requirements. The model shows that the framework is 

implemented to interface with the key external platforms (i.e. the Hadoop platform, 

MySQL Server and the System administration platform) through its interface agents 

such as user interface Agent, MySQL DP Agent Hbase Agent and HDFS Agent. The model 

also depicts the auxiliary agents and inherent software modules such as the Intelligent 

Controller and the communication protocol and integration engine which regulate and 

enforce the communications protocols among the agents. The agent register, techProfile 

persist in the system and agent profile. The solid and broken arrows also depict the data 



67 
 

flow and the communications among the agent. Moreover, Table 3-3 shows how the 

layers in the framework align with the respective network management models.  

Table 3.4 shows the type of the agent concept employed in the framework 

 

Table 3-3 Alignment of the framework layers to the network management model 

 

 

Table 3-4 Application of the software agent concept 

Software agent  Implemented Software agent concept 

User Interface agent  Interface agent 

Policy management agent Information agent  

System integration and management agent  Information agent  

Data Persistent agent  Information agent  

Intelligent agent controller Collaborative Agent  

External technology agent  Transducer agent with skills of 

information and collaborative agent  

 

An attempt is made in this section to demonstrate how the software agent concepts can 

be leveraged to create a multi-agent-based BD management system. The demonstration 

will employ the proposed framework to deliver a system management requirement in 

the Hadoop framework. The aim of this section, therefore, is not to present the detail 

description and explanation of the framework (detail implementation is presented in 

Framework Layer Network management model 

 

Policy Management and Knowledge 

Integration Layer (PMKIL): 

Information Model 

 

Data Management and Assurance Layer 

(DMAL): 

Information Model 

 

Agent Management Regulatory Layer 

(AMRL): 

Organizational model 

Functional model 

Communication protocol and Integration 

Engine 

Information Model 

Communication model 



68 
 

chapter five). Essentially, the focus is to demonstrate the viability of the multi-agent 

concept in this domain and also provide an alternative approach to the application of 

the multi-agent techniques to BD system management. 

3.8.2 Description of the  real-case scenario  

 The framework (i.e. the multi-agent system) will be demonstrated in an instantiated 

scenario where system administrators periodically conduct system reviews (i.e. 

generate periodic system resource information) within a Hadoop cluster. 

Conventionally, retrieving periodic server resource information or log records could be 

carried out by platform-dependent scripts or administration of native commands on 

each server. The challenge with these conventional approaches resides in the fact that 

changes in resource information requirements would require corresponding updates in 

all the scripts, and system administrators will periodically run separate system 

commands on each platform. The approach may not seem challenging when dealing 

with a cluster of few hardware and application platforms, but it can certainly impact on 

downtime for example, when dealing with a large-scale corporate BD cluster running on 

various autonomous platforms. 

Apache Ambari 2.0.1 is used to deploy a four-node Hadoop 2.0 cluster on Ubuntu 

12.04.2 server running on Dell Power Edge SC 1435.   

The specifications of the servers are: 

a. CPU-Quad-core AMD Opteron 2800 MHZ,  

b.  Memory was of 8049 (UNITS).  

Also, JADE framework 4.4.0 was used to develop the framework using Eclipse MARS .1 

IDE running on Ubuntu 14 desktop edition. 

 

A schematic representation of this framework is shown in Figure 3.12, and Figure 3.13. 

Firstly, all agents have been implemented according to their functional description 

(Figure 3.15 presents the class diagram of the implementation). The class diagram is the 

object model of the implementation of the framework and the agents as depicted in 

Figure 3.15. According to the class diagram, each layer will include a type of agent 

concept, which is assigned a specific function within the framework. The class diagram 

further depicts all the specialise agent concepts that were employed in the 



69 
 

implementation according to Figure 3.14. The class attributes also allow the capturing 

and detail description of each object in the framework. System element (Technologies) 

and their functions are also defined and implemented as a class object in the 

implementation. Thus, multiple instances of the system elements (e.g. Hadoop 

NameNode and DataNodes) can be instantiated in the framework. 

 

Figure 3.14 Ontology schema of the system review scenario 

 

 

    Composite association      Class diagram   Inheritance association       Generic Association  

 

 

Figure 3.14. is the UML model of the ontological description of the system review 

scenario. The UML model is made of up of elements which describe the concepts, 

actions, predicates and their relationship. The class diagram is used to describe the 

-techID : string

-techname : string

-description : string

-<Functionalities> 

-types : string

-type : string

Technology(Concept)

-functionID : string

-functionName : string

-functionaType : string

-functionDescription : string

-functionPurpose : string

-techID : string

Functionalities(Concept)

-policyID : string

-policyName : string

-policyDescription : string

-policyType : string

-policyPurpose : string

SecurityPolicy(Concept)

SystemReviewPolicy(Concept)

«extends»

-layername : string

-category : string

-Layerdescription : string

FrameworkLayer(Concept)

*

*

-Technology

-FrameworkLayer

BelongsTo(Predicate)

-Technology

ReviewTechnology(Action)

1

*

1

*

1

*

*

*

*

*

1



70 
 

Concept which represents the system elements the agents will interact with. 

Furthermore, the class diagram is used to describe the Action (Ontology actions 

describe the task the agent is required to perform ) and Predicates which is the 

expression which enables the agent to determine the status of the associated concepts. 

The UML diagram also employes three associations to model the various relations 

between the UML elements. The composite association represents an inclusive 

relationship between the ontology concept. For example, it can be inferred from Figure 

3.14. that each technology includes or has a set of functions they perform. The 

inheritance association indicates that the sub-concept inherits part or all the elements 

of the main concepts. In this scenario, SystemReviewPolicy concept is an instance of the 

SecurityPolicy concept and as a result inherent the main security elements of the 

SecurityPolicy. The generic association is used to model a general relationship between 

ontology elements.  

 

 

 

 

 

 

 



71 
 

«implementation class»
IntelligentController «implementation class»

PolicyManagement

+setAgentID() : void
+getAgentID() : string
+setAgentType() : void
+getAgentType() : string
+setAgentLayer()
+sendHealthcheck()
+receiveHealthCheck()
+peerHealthCheck()
+registerAgent()

«interface»
AgentInternalProtocol

«implementation class»
SysRegistrationandMngt

«implementation class»
DataPersistent

«implementation class»
VendorTechnology

+setTechID() : void
+setTechName() : void
+setDescription() : void
+setFunctionalities() : void
+setTypes() : void
+setPurpose() : void
+getTechID() : string
+getTechName() : string
+getDescription() : string
+getTypes() : string
+getPurpose() : string

-techID : string
-techname : string
-description : string
-<Functionalities> 
-types : string
-type : string

Technology

Creates and 
manages 

+receiveHeartBeat()
+sendHeartBeat()
+registerAgentService()
+sendPolicyEnforcementRequest()
+validateVendorAgent()

-agentID
-agentType
-agentLayer
-description

Agent

<<Impleme
nts>>

«implementation class»
UserInteraction

End1

End2

1

*

1

*

+setLayername()
+setType()
+setDescription()
+getLayername()
+getType()
+getDescritpion()

-layername
-description
-purpose

Layer

<<includes >>

+setFunctionID()
+getFunctionID()
+setFunctionName()
+getFunctionName()
+setFunctionType()
+getFunctionType()
+setFunctionDescription()
+getfunctionDescription()
+setFunctionPurpose()
+setFunctionPurpose()

-functionID
-functionName
-functionType
-functionDescription
-functionPurpose

TechnolgyFunctionalities

-Includes

1

*

+getAgentRegister() : object
+createAgentRegister() : void

Agentregister

1 *

<<includes >>

 

Figure 3.15 Class diagram of the framework implementation 

 

 

 

 



72 
 

Figure 3.15 is the UML model (i.e. the class diagram) of the implementation of the 

framework. The class diagram models the architecture of the implementation of the 

framework. Each class object describes the various agent implementations. For example, 

it can be inferred from the model that each agent type is a derived concept which 

incorporates the structure and behaviour of the main agent concept. The association 

arrows also depict the relationships between the object implementation.  Auxiliary 

classes such as Technologies were implemented to instantiate the technologies the 

agent will interact within the framework.  

In this case, the administrator needed to execute multiple domain dependent 

commands to achieve the expected outcome. However, the result of the abstraction of 

all these complexities by the application of the framework can be seen in Figure 3.16. 

One non-technical domain language (i.e. system review) produced the same results from 

the abstracted technologies. Assuming that scripting language was used to accomplish 

this task, multiple vendor or domain dependent scripts will be required. 

With the help of the transducer agents, the framework allows the interoperability of 

autonomous technology. The JADE framework adopted for this implementation is FIPA 

compliant framework, meaning vendor agents can readily be available by simply 

plugging and registering their service in Directory Facilitator (DF) agent [73]. 

Consequently, other agents can query the agent and transparently request for their 

services. Also, the standardisation of agent communication in FIPA will allow the 

interoperability of any FIPA compliant Multi-Agent System (MAS) [73]. Domain agent 

knowledge is equally made available by the existence of the ontology. 

 

 

 

 

 

 

 



73 
 

 

Figure 3.16 The implementation results on the Hadoop cluster 

 

 

 

 

 

 

 



74 
 

3.9 Summary 

Software agent development is an emerging development paradigm with many 

development and application potentials worth leveraging. Orchestra of agent-based 

solutions is widely deployed in many industries to deliver intelligent results that cannot 

necessarily be achieved by the conventional software solution. Nonetheless, the 

paradigm has its downside which also requires equal attention, at least for the 

avoidance of development and implementation failures.  An overview of the 

development paradigm is presented in this chapter in an attempt to provide general 

knowledge into the concept. Consequently, an outline of the underlying philosophies of 

the types of software agents is presented and in a characterised manner for further 

appreciation of agents capabilities and limitations. A brief presentation of the 

communication processes and communication languages is also explained as a key 

functional component of software agents, existing development methodologies and 

reasoning systems are presented to broaden the knowledge about the emerging 

software paradigm.  

Software agents have proven to be an effective and efficient approach to developing 

distributed and independent network management solutions [2][4][5][6].  Nonetheless, 

developing agent-based network management systems require a holistic appreciation of 

the network management model, protocols, and associated challenges. An 

understanding of the software agent concepts, especially how each agent concept 

applies to the network management functionalities is equally essential.   

Consequently, this chapter has attempted to provide technical insight into the emerging 

software agent-based network management concept. The chapter seeks to contribute to 

the needed information in making an informed decision on the application of the multi-

agent paradigm to create automation management solutions for BD systems.  

Given the objective, application of the software agents’ taxonomy to the development of 

agent-based BD management technologies was introduced.  Their design and functional 

limitations were highlighted to provide the optimum insight into the paradigm.   

An introduction to the network management model and the underlying protocol were 

presented. The challenges associated with these models and protocols were also 



75 
 

presented; highlighting how the challenges introduce complexity into the network 

management task. 

  A proposed agent-based network management framework was introduced to 

practically demonstrate the application of the agent concepts in the BD management 

domain as well as give rational justification to the proposed framework. The proposed 

framework was implemented to address the management complexity and 

interoperability issues associated with heterogeneity in BD cluster. A specific use case 

scenario has been presented as a proof of concept to demonstrate the viability of the 

framework. The outcome of the demonstration highlighted the technical contribution of 

agent-based network management solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 
 

Chapter 4  

Distributed Denial of Service Attack Classification and State-Of-The-Art 

Detection Techniques 

4.1 Introduction 

The number of threats that confront organisations is staggering and requires every 

feasible measure to ensure uninterrupted business activities. Indeed, the surge of such 

security requirements compels institutions and business organisations to deploy and 

maintain feasible detection and mitigation solutions to avoid the significant cost of 

falling prey to any form of attacks. 

One of such attacks which have the potential to disrupt business activities and 

legitimate access to information resources is the Distributed Denial of Service (DDoS). 

DDoS attacks have evolved over the years to become one of the major threats to the 

information technology (IT) echo system because of the cooperate damage and the 

operating cost they cause. Moreover, they are designed to achieve its aim (i.e. denial 

legitimate access to computing resources) before they are mitigated. To secure any 

computing resources against such DDoS will indeed require efficient and effective 

monitoring solutions to ensure that DDoS attacks are detected at the earliest possible 

time to avoid any colossal damage to the organisation. Consequently, researchers and 

business have developed different monitoring and mitigation techniques to ensure that 

computing resources are available to deliver their mandates.  

Creating an effective DDoS attack detection requires an understanding of the DDoS 

attack and the attacking techniques. Consequently, this chapter will attempt to provide 

an overview and classifications of the DDoS attacks and the state of the art of detection 

and mitigation solutions. 

 

 

 

 



77 
 

4.2 Defining DDoS attack  

DDoS attack is an attempt to disrupt legitimate activities on a targeted network server 

or traffic on the network by flooding the network with malicious traffic, with the aim of 

denying legitimate users access to the networked resources[74]. DDoS is achieved by 

compromising some networked computers to launch intense traffic unto its victim. 

Those compromised computers are referred to as zombies. Zombies are used by the 

attacker to build a high-performance computing resource to generate the volumes that 

can cause a denial of service within the shortest possible time. Zombies are also used by 

the attackers to disguise the source of the attack.  

DDoS attack techniques are good at exploring vulnerabilities to bypass any existing 

security measures to launch the attack. Such malicious activities are made possible by 

the number of technologies designed to create the enabling environment to launch 

different forms of attacks. Ensuring the security of IT resources against these form of 

attacks require a counter DDoS attack techniques or system that can monitor the 

behaviour of the computing systems to detect any abnormal or malicious behaviour at 

the earliest possible time. Consequently, different forms of DDoS attack detections 

solutions have been proposed both in academia and industries, each one aiming to 

provide the required detection and mitigation solutions. Although the proposed 

solutions have succeeded in providing the secure environment to a large extent, they 

are still limited to provide adequate detection and mitigation solution. Essentially, 

further approaches to the detection and mitigation of the DDoS attacks are required to 

provide adequate security against DDoS attacks.  

4.3 Classifications of DDoS attacks 

As described in section 4.2, the DDoS attack occurs when some networked machines are 

infected with malicious software to saturate its victim’s resources to denial legitimate 

access to computing and network resources. Typically, the attacker scans through the 

network for vulnerable access root to install malicious software on all accessible 

machines to form a network of compromised (i.e. zombies) machine to launch the attack 

[75]. Figure 2.17 depicts a scenario of a DDoS attack. According to the diagram, the 

attacker creates the master-slave architecture of the compromised machines. In this 

scenario the attacker manipulates the master zombies through the malicious software 



78 
 

and the master zombies, in turn, manipulate the slave zombies to send the victim large 

volumes of packets to overwhelm its resources.  

 There are various types of DDoS attacks that are being used in the networking domain 

to hamper legitimate usage of the networked resources [75][76]. 

 

Attacker 

Masters or 
zombies

Slaves or 
Zombies 

Victim

M
an

ip
u

latin
g 

m
aster zo

m
b

ies
M

alicio
u

s traffic fro
m

 

slaves o
r zo

m
b

ies

M
aster n

o
d

es m
an

ip
u

latin
g 

slaves n
o

d
es

 

Figure 2.17 Architecture of DDoS attack  

4.3.1 Types of DDoS attacks 

Most often the first step in the DDoS attack is to scan the network for vulnerable 

computers or access root that can be further explored by the attack. Attackers use port 

scanners tools to scan through a target network for susceptible services. Such 



79 
 

vulnerabilities when identified serve as the gateway for the attacker to gain access to 

the networked machines regardless of the type of attack employed.  

Different techniques can be used to cause a denial of service as long they can prevent 

regular service delivery. The number of techniques and tools to launch denial of service 

attacks has grown significantly and have been covered by current literature 

extensively[76]. Nonetheless, this section will briefly describe some of the DDoS attack 

techniques[76]. 

A.  ICMP Flooding attack  

Internet Control Message Protocol (ICMP) is internet layer protocol used by internet 

nodes to communicate or exchange information [4]. For example, ICMP is used by 

network diagnostic tools to diagnose the inactive node in the network by pinging each 

to determine if a node is active or inactive. ICMP flooding attack occurs when an 

attacker forms a botnet (a network of zombies) to send large volumes of the ICMP 

requests to a victim. In this case, the victim is tricked to commit its resources to these 

requests. Essentially, the victim will not be able to keep up with the pace and volume of 

requests and eventually run out of the capacity to respond to any other requests, 

especially from legitimate users.  

B.  TCP SYN Flooding attack  

SYN flooding attack is a form of DDoS attack where the attacker floods the victim’s TCP 

port with successive SYN requests with the aim of overwhelming the victim’s resources 

(e.g. bandwidth or CPU) to the make the victim unresponsive to legitimate requests. The 

SYN flooding attack exploits the handshake process of the TCP connections. Typically, 

TCP uses a three-way process to establish a connection among network nodes [75]. The 

handshake process depicted in Figure 2.18 involves; 

1. The client will send SYN packet to  initiate a connection 

2. The server will then respond to the initiation with SYN/ACK packet to 

acknowledge the communication 

3. The client will send an ACK packet to the server to also acknowledge the 

SYN/ACK packet from the server. After the three-way handshake has been 

completed, TCP connection will be open between the client and the server for the 

client and server to exchange data. 

 



80 
 

TCP SYN flooding attack exploits the fact that when the initial SYN packet is sent, the 

server will always respond with the SYN/ACK packet and wait for the anticipated ACK 

packet from the client. So in the case of a SYN flooding attack, the attacker will flood the 

victim with SYN packets to initiate the handshake process. As a result, the victim will try 

to respond with SYN/ACK packet and leave a port open in anticipation to receive the 

ACK packets from the client (i.e. the attacker), which never arrives. Whiles the victim is 

waiting for the final response, the attacker continues to flood the victim with more SYN 

packets. Eventually, the victim will run out of resources to respond to another request 

from legitimate clients.  

 

 Client sends  SYN packet 

TCP Client TCP server

Step 1

Step 3

 server responds with SYN/ACK packetStep 2

Client responds with ACK packet

 

Figure 2.18 TCP three-way handshake 

Figure 2.18 models the TCP three-way handshake. The diagram shows the three steps 

involved in the process. The first step is where the TCP client initiates the process the 

with SYN request. The TCP server then replies with SYN/ACK responds. Finally (in step 

3) the TCP client ACKs (i.e. acknowledges) the TCP server’s responds.  

C.  UDP Flooding attack 

Unlike TCP, UDP (User Datagram Protocol) is a connectionless protocol. Thus it requires 

no handshake connection process to establish a connection. UDP flooding attack is a 

form DDoS attack where the attacker floods the random ports of the victim with IP 

packets containing UDP datagram. The victim will check for applications that are 

associated with the UDP datagrams packets as it receives the packets from the attacker. 

Where no correlated application is found, the victim responds with ICMP destination 



81 
 

unreachable packet. As the victim responds to the malicious packets, the victim will 

eventually run out of the capacity to meet the demand both from legitimate clients and 

the subsequent malicious packets [75].   

4.3.2 DDoS attack Victims  

The main target for DDoS attack varies, although the attack is generally designed to 

exhaust resources. The target could be any resources that users or applications rely on 

for service. Such resources can be server applications, network access or the entire 

network infrastructure [74].     

A.  Server application attack 

A DDoS attack can target the application to limit the application to deliver its legitimate 

service as expected. Essentially users of such applications are denied access to the 

interested server resources. One approach that attacker use to deny users access to 

server application is to use a DDoS tool or deploy a worm (a malicious computer 

program designed to spread from among computers) to flood the application’s 

resources with unbearable requests until the application finally crushes. Alternatively, 

the worm can clone itself to initiate multiple operations to deny the application 

resources (such as memory, and CPU time) to function. Nevertheless, some new 

application servers are designed to avert such instances with resource optimisation 

technologies which optimise server resources among applications.  However, the 

applications need to implement inherent mitigation measures to ensure operational 

continuity in an event such as application denial of service [76].  

B.  Network access attack 

This attack target and disables the victim’s communication mechanism by flooding it 

with uncontrollable packets.  UDP flooding attacks are typical of targeting and denying 

legitimate access to the network. The high volume of malicious traffic consumes the 

victim’s bandwidth thereby preventing access to the same network resource. Victims of 

network access attacks rely on upstream detection technologies such firewall and 

routers to for security.  

C.  Network infrastructure attack 

These types of attacks are designed to target crucial network resources such as domain 

servers, certificate servers and client authentication server. The key element of t such 



82 
 

attack is not the attack mechanism but the impact. Hence they are deployed to cause 

network-wide havoc by disabling major network element.   

4.4 State-of-the-Art DDoS defence mechanism  

This section will briefly describe some DDoS defence technologies and also indicate how 

they have been utilised. DDoS defence technologies consist of three sub-functions [75]; 

1. Monitoring and detection 

2. Mitigation  

3. IP Traceback  

The monitoring and detection stage is where the defence technologies observe the 

behaviour of the network elements for any malicious activities on the network element 

under observation. An alarm is raised for further action to be taking when malicious 

activity is detected and confirmed. A mitigation step is initiated when an attack is 

confirmed. 

 The detection mechanism is foremost and crucial to the success of any DDoS defence 

technologies. Consequently, the detection mechanism is designed to be intelligent and 

sensitive to malicious activities DDoS. Nevertheless, the large amount of open DDoS 

attack technologies makes it possible for attackers to bypass the detection mechanism 

and even deceive the detection algorithm to classify malicious traffic as legitimate. The 

next stage is to mitigate any attack that is detected in the first stage without causing 

significant disruption to legitimate traffic. Consequently, several mitigation techniques 

have been proposed by researchers and developers to enhance the existing ones. 

However, the state-of-the-art technologies are confronted with the challenge of blocking 

DDoS attacks without affecting the legitimate traffic. 

The last step in the DDoS detection process is to trace back to the source of the attack or 

the attacker to terminate the attack. Thus the DDoS detection technology is endowed 

with an IP Traceback algorithm that can identify the malicious IP address or the device 

attached to the IP address.   

The following sections briefly present some of the academic and industrial state-of-the-

art technologies and techniques which are being used for the detection and mitigation 

of DDoS attacks.  



83 
 

4.4.1 Artificial intelligence DDoS detection techniques  

A significant number of techniques under this theme have been proposed both by 

academics and commercial developers [77]. However, this section will briefly highlight 

some of the state-of-the-art Artificial Intelligence (AI) techniques.  The AI techniques are 

either machine learning-based algorithms or deep learning-based algorithms.  

Machine learning algorithms have been used in recent times for anomaly detection [78]. 

The growing interests in the application of machine learning techniques stem from the 

fact that the technique is accurate in discriminating normal behaviour from abnormal 

behaviour. Some of the machine learning techniques used in recent DDoS detection and 

prevention systems are [79][77]; 

1. Artificial neural networks 

2. Support vector machines  

3. Bayes classification  

An artificial neural network is a pattern recognition technique that is capable of 

learning from normal behaviour to predict or detect abnormal behaviour from the 

abnormal. The neural network is a supervised learning technique. Thus the technique 

needs first to observe training data through the input layer to develop the knowledge of 

normal behaviour. The normal view is then used to match with subsequent data to 

confirm or deny their legitimacy. For example, the authors of [77] presented a DDoS 

detection system based on a neural network that is composed of five modules (i.e. 

packet collector, Hadoop HDFS, format converter, data processor and neural network 

detection module). The neural network detection algorithm detects DDoS attacks with 

seven parameters. Essentially, the neural network input layer has seven nodes and the 

input parameters obtained from the Data processor. The parameters consist of some 

packets, an average of packet size, time interval variance, packet size variance, number 

of bytes, packet rate and bit rate.  Each neuron in the network will multiply the initial 

input values by a predetermined weight, sums the results with other parameters values 

arriving into the same neurons. The neuron will further adjust the value of the 

computation by the neuron’s bias. The output of the adjustment is then normalised with 

an activation function. 

 A key feature of the proposed neural network algorithm is the iterative training process 

which presents the input parameter to the network to train one at a time. The network 



84 
 

which is composed of layers of computational units called neurons, with connections in 

different layers transform the data until they classify it as a trained data of the 

legitimate network behaviour. The authors used a packet collector to capture legitimate 

traffic to train the proposed neural network algorithm before exposing the algorithm to 

malicious traffic. The results of the experiment confirmed that the neural network could 

successfully discriminate the features of legitimate packets from the malicious packets.  

However, neural networks do not perform better with small data sets. Thus they 

require a longer training period to develop knowledge legitimate network behaviour 

[78][80][14]. 

Support vector machine (SVM) is a supervised classification technique formally defined 

by a hyperplane. Similarly, SVM can output optimal classification given a labelled data 

(supervised learning). In the context of the implementation of the DDoS detection 

systems, SVM algorithms are used to analyse network traffic and classify legitimate 

network traffic from malicious network traffic [77]. The algorithm is based on the idea 

of searching a hyperplane that best separates a dataset in two classes. Before then the 

training data must be labelled as belonging to a category. The algorithm will then use 

the labelled dataset to classify the dataset. At this point, the algorithm builds a model 

that classifies subsequent datasets if they fall within the trained category.  

An SVM algorithm that uses packet header statistical information to detect DDoS DNS 

amplification attack was presented by [77]. The algorithm was given labelled packet 

header statistical information which classifies them based on a predetermined 

classification parameters such packets arrival time, the probability of the occurrence of 

one IP address and packet size. The outcome of the proposed algorithm indicated that 

SVM can discriminate legitimate DNS behaviour from DNS amplification attacks.  

However, the SVM algorithm was found shot of choosing appropriate hyperparameters 

that will allow for adequate generalisation performance.  .  

Naive Bayes classification is a probabilistic classifier that is capable of distinguishing the 

occurrence of events. The key strength of these techniques resides in the ability to 

classify the data or events. In the context of DDoS detection, the Bayes classification is 

mostly employed at the anomaly detection stage to classify normal network traffic or 

packets from malicious traffic [77].  The naive Bayes algorithm specifies joint 



85 
 

conditional probability distributions. Thus the algorithm can predict class membership 

probability such as the probability that an identified packet is malicious. naive Bayes 

classification algorithm or Bayesian probabilistic network allows conditional 

independence to be defined between subsets of variables. The naive Bayes classification 

algorithm is based on the assumption that the value of a particular feature is 

independent of the features of other independent values given a classification. For 

example, a packet can be considered to be malicious if the packet size exceeds a given 

threshold and originates from a certain IP address. Essentially naive Bayes classifier 

takes into consideration these features to add to the probability that the packet is 

malicious. This assertion is known as prior probability.  Thus prior probability is based 

on previous experience, in this instance, the legitimate packet sizes and IP addresses 

over time. After the naive Bayes algorithm is trained (i.e. forming the prior probability), 

the experience is used to classify or predict the legitimacy of the subsequent packets.  

Naive Bayes classification-based DDoS detection technique presented in [77] confirmed 

that the technique naive Bayes algorithm is most efficient in classifying malicious traffic 

and normal traffic for their better performance if they are well trained with a larger 

dataset.   

However, the disadvantage of naive Bayes algorithm is that it has strong feature 

independence assumptions and it is unable to classify subsequent data without prior 

knowledge[77].    

4.4.2 Multi-agent DDoS detection techniques  

One of the main characteristics of DDoS attack is that the transmission source can be 

spread over large network nodes to generate disastrous traffic amplitude and also make 

it virtually impossible terminate the source of the malicious traffic before any 

significant impact. Indeed detecting and blocking DDoS attack remains a difficult task, 

especially in a distributed computing environment. In such an environment, the 

attacker can easily leverage any number of networked computers or servers to form a 

widespread botnet to launch a DDoS attack.  Despite the significant improvement in the 

detection accuracy of the detection algorithm, dropping malicious traffic and also 

terminating the transmission source is difficult to achieve with a centralised DDoS 

detection technology.  Consequently, researchers have adopted a more distributed and 



86 
 

intelligent approach such as multi-agent systems to secure large-scale computing 

infrastructure from DDoS attacks [28], [58], [81]. Multi-agent systems are distributed 

and autonomous. Their design principles and operational benefits (such as autonomy 

and collaborative) allowed the creating of real-time and distributed DDoS detection and 

mitigation systems that can detect and mitigate multiple attack sources concurrently 

[57][28][42].  

The rest of the section will highlight some of the approaches adopted by researchers to 

create a multi-agent based DDoS detection system.  

A.   Application of mobile agent concept in DDoS detection system 

The mobile agent philosophy allows the creation of an autonomous and intelligent 

software module that can migrate a computation function to a remote location [32]. The 

benefit of the mobile agent concept is that a mobile agent server can clone multiple 

mobile agents and dispatched to different remote locations to carry out different 

functions concurrently. The concept allows researchers to create DDoS detection 

solutions that can manage multiple compromised networked nodes at the same time. In 

the event of a DDoS attack, multiple mobile agents can be dispatched to the affected 

victims to investigate and mitigate the malicious traffic concurrently [58]. However, 

because the mobile agents require active or available network bandwidth to migrate, 

their movements are greatly restricted by network congestions. Consequently, they are 

unable to migrate effectively to perform DDoS detection functions their path is equally 

congested by the DDoS attack.  Although the mobile agent can reroute if their primary 

route fails, the resulted delays subsequently affect the response time to the attack.  

B.   Application of multi-agent based DDoS detection systems 

To further improve upon the limitation of employing a single agent concept, researchers 

utilise multiple agent concepts (for example mobile agent, collaborative agent and 

wrapper agent) to create a distributed multi-agent DDoS detection system. The 

advantage of this approach is that the function and efficiency of the system are not 

restricted by the limitation of a single software agent concept [7]. Moreover, the entire 

DDoS detection processes can be handled by different agent concepts collaboratively. 

Such approach is indeed not susceptible to a single point of failures such as the 

centralised DDoS detection systems or a single agent-based detection solution such as 

the mobile agent-based approach [82][7][57]. The application of the multi-agent agent 



87 
 

concepts in the development of the DDoS detection system has indeed made a 

significant contribution in improving the existing techniques such as the machine 

learning-based detection systems. Moreover, the concepts provide a distributed and 

autonomous approach to the detection of the of DDoS attacks in a distributed 

computing environment.  

4.5 Summary  

The impact of DDoS attacks are disruptive and also comes with significant economic and 

operation cost. Indeed significant progress is made in the development of detection and 

mitigation technologies. Nevertheless, open technologies have made it possible for 

attackers to create even more complex DDoS and evasive attack techniques. 

Consequently, researchers are exploring state-of-the-art techniques and development 

paradigms to create smarter detection and mitigation technologies that can easily 

evolve and scale to avert the potential threats of DDoS attacks.  

The chapter has presented an overview of the DDoS attack. Some of the existing attack 

techniques employed by attackers have been presented. The understanding of the 

attacking techniques is essential to the development of effective detection and 

mitigation technologies. Some of the state-of-the-art detection and mitigation 

techniques have been presented to highlight the advancement in the DDoS attack 

detection technologies.  

The multi-agent based approach of creating intelligent and distributed solutions 

provides the means to create DDoS attack detection technologies in a distributed 

computing environment such as the Hadoop framework. The advancement made in the 

BD domain particularly in the application of the multi-agent paradigm to detect DDoS 

attacks has been highlighted. Moreover, the chapter has presented some current 

approaches to the development of a multi-agent based DDoS detection system.  



88 
 

  Chapter 5

Design of Multi-Agent Based Real-Time DDoS Detection Framework on Big 

Data Systems 

5.1 Introduction 

As presented and explained in chapter four, the proposed framework aims to provide a 

multi-agent-based approach to the detection DDoS attacks in BD technologies such as 

the Hadoop framework [83][38][10]. The proposed multi-agent approach of real-time 

DDoS detection is viable and novel in that, a single solution which provides the design 

and architectural framework for the implementation of a multi-agent based solution, 

particularly to secure BD technologies is still lacking in the BD domain.  In Chapter Four, 

the philosophies and principles of the multi-agent paradigm were employed to create a 

transparent agent-based framework to provide an intelligent and distributed DDoS 

detection mechanism. Moreover, a real case demonstration justified the proposed 

architecture and design principle as a viable multi-agent design for the BD data domain. 

However, the chapter did not provided detail methodical approach to the design and 

implementation of the multi-agent system.  A systematic and methodical approach to 

the development of the multi-agent system is indeed essential to both the research and 

commercial development community. Consequently, this chapter will employ a 

conventional methodology to evolve the proposed framework into the agent-based 

distributed DDoS detection system.   

 

As a proof of concept, a prototype of the proposed framework will be developed to 

provide a multi-agent based distributed DDoS detection mechanism within the Hadoop 

framework. The implementation is aimed at contributing to the existing inherent 

security vulnerability within the Hadoop software framework, specifically the lack of 

internal security mechanism to detect the DDoS attack. The design and development of 

agent-based systems follow a standardised methodology as explained in Section 4.5 of 

chapter four.  As a result, this chapter will present the evolution of the proposed 

framework based on the employed methodology.  

 



89 
 

5.2 Methodology for the analysis and design of the multi-agent based DDoS 

detection mechanism 

The design and implementation of the proposed framework adopted the Gaia 

methodology, which is an agent-based analysis and design methodology 

[30][32][33][34]. Moreover, Gaia was complimented by an ontology development 

methodology by [35] to model the domain knowledge of the framework.   

 

Before proceeding with the development sequence with Gaia, it is essential to highlight 

the implementation requirement to inform the design and development objectives of 

the framework. As already indicated, the requirement is an implementation of the 

proposed framework to detect DDoS attacks within the Hadoop software framework. 

The stipulated requirement then informed the objective of creating a prototype of a 

multi-agent framework for real-time detection of DDoS within a Hadoop framework. 

Consequently, the adopted methodology is now used to design and realise the 

conceptual model of the framework. 

 

Gaia is an agent-based analysis and design methodology proposed by [30]. Although the 

methodology borrows some terminologies and notations from the object-oriented 

paradigm, Gaia provides significant software agent design concepts which enable 

software engineer to communicate the conceptual model of a multi-agent system. 

Likewise, the ontology development methodology facilitates the modelling of the 

domain knowledge (i.e. the description of the DDoS attack) about the system. In Gaia, 

the agent system is viewed as a human organisation that is composed of related sub-

roles with well-defined unique responsibilities, communication patterns and protocols 

to regulate their functions.  

 

In physical institutions, these defined roles can either be instantiated by the humans or 

computerised systems which assumes and execute those responsibilities accordingly. 

The advantage of using the Gaia methodology to evolve a multi-agent based system is 

that the concept and abstraction provide a natural transition from the problem 

description from the organisational standpoint to multi-agent system models. For 

example, the highest abstraction in the Gaia methodology is the system (i.e. the 

proposed multi-agent DDoS detection framework in this case) which is synonymous 



90 
 

with an organisation. Essentially, if organisations are composed of roles and each role 

have defined functions, interaction pattern and protocols to govern their functions, then 

likewise, the proposed DDoS detection framework will be composed of subsystems or 

roles with defined functions, interaction pattern and protocol to govern the pattern. 

From the multi-agent system perspective, the defined roles will be instantiated by 

agents[33][32][30]. Indeed the approach provides a natural approach to conceptualise 

how the proposed system will achieve its objectives of providing inherent DDoS 

detection mechanism in Hadoop framework.   

 

In this chapter, the Gaia methodology description presented in section 3.5.2 is employed 

to model the implementation of the proposed multi-agent framework to detect DDoS 

attacks in the Hadoop cluster.   

 

Although Gaia acknowledges the requirement of domain knowledge for agents to be 

aware of and respond to the changes in their environment, the methodology is limited 

in its concepts to model the domain knowledge of the system.  Consequently, the  

Ontology development guide by [35] is adopted to model the agent’s domain knowledge 

(the purpose of agent domain knowledge or ontology is described in chapter four). 

Moreover, Gaia is complemented by the use case model to elicit the system’s functional 

requirement and depict the roles and interaction of the framework with external users 

or subsystems. Figure 5.1 is the use case diagram depicting the agent (that is Roles in 

the Gaia terms) responsibilities identified for the implementation. The design and 

implementation process is initiated by a description of the problem the proposed 

system is expected to solve. The description is referred to as the problem statement. In 

this context, the problem statement will present the challenge in the research domain 

and the goal of the proposed framework as identified in chapter one.  

5.3 Problem Statement  

The design of the Hadoop framework adopts the centralised organisational model. Thus 

Hadoop’s elements (For example DataNodes) are managed by dummy residents agents 

who manage each node within the cluster based on the instruction received from the 

manager which is deployed in the NameNode, in a star topology. Moreover, the load 

sharing technique of HDFS is designed to be intrinsically distributed at runtime or as 



91 
 

defined by the system administrator. Essentially, each node may assume varied 

workload requirements during data processing which may cause each node to exhibit 

different characteristics regarding load and processing activities. Current DDoS 

detection systems, however, are not cognisance of such unique topological and 

processing characteristics of the Hadoop framework [29][26][4][28]. Consequently, 

they cannot provide a distributed DDoS attack detection mechanism within the Hadoop 

framework. 

 

 Additionally, Hadoop is designed to be modularised and scalable by allowing for the 

integration of vendor applications in each layer to extend the framework’s functionality. 

Thus the framework is not designed to defend itself against cyber-attacks such as DDoS 

without the reliance on secured network perimeter. Consequently, multiple 

autonomous security tools sets are required to provide a secure perimeter for the 

Hadoop cluster against different types of security threat [22]. However, the overreliance 

on perimeter security renders the entire Hadoop cluster vulnerable ones compromised.   

 

Moreover, the external, generic DDoS detection and mitigation techniques are not 

informed by the unique architectural and distributed operational requirements of the 

Hadoop framework. Furthermore, they do not have access to key performance metrics 

such as bandwidth utilisation and average server load (Peculiar to HDFS) of each 

Hadoop node to provide further insight into anomalies in the cluster.   

 

To address challenges aforementioned, a distributed intelligent monitoring and 

detection approach that is node dependent is required. Thus each Hadoop node is 

interfaced with a dedicated agent type, synonymous with Hadoop’s conventional 

organisational model. Except that, the agents in the framework will be intelligent (i.e. 

they can observe changes in their environments which is the assigned Node and take 

appropriate decisions), and autonomous. Additionally, the agents need to possess 

inherent skills which among another task will allow each agent to collect bandwidth and 

server load flow metrics to analyse for accurate discrimination of legitimate and 

malicious activities in the cluster. An intrinsic dynamic training technique will also be 

required to allow the agents (especially the transducer agents) train themselves to 

detect the random changes in the legitimate behaviour of the Hadoop nodes. 



92 
 

Consequently, a dynamic and distributed DDoS solution that is capable of adapting to 

the volatility of the Hadoop environment is expected at the end of the implementation.  

5.4 Background to use case modelling 

The problem statement describes the requirements of the proposed system and also 

provides sufficient knowledge to proceed with the analysis process which is the first 

step in the Gaia methodology. The merits of the problem description are that it 

describes the problem and the scope in clear and unambiguous terms, devoid of 

technical jargons. Also, the description of the problem in plain terms provides the 

context to tease out, at the preliminary stage the mitigation actions (i.e. the DDoS 

detection mechanism) for the problem. In this context, the problem description has 

provided an understanding and the scope of the problem the proposed framework must 

aim to resolve. Although one can have a good understanding of the problem from the 

problem statement, it does not give any indication of mitigation actions. For example, it 

does not answer questions such as: what actions needs to be taking to detect malicious 

activities on the Hadoop nodes or how will those agents (i.e. the roles in GAIA terms) 

cooperate with each other to detect and confirm DDoS attack in a Hadoop cluster? Thus 

it is observed that the problem statement is generic and will require additional design 

and analysis technique to elicit the functional requirements of the framework. For this 

purpose, the Use Case modelling and analysis technique is employed. The use case 

analysis process will help answer questions such as: 

a. Which functions or operations are required to create the required solution for 

the problem 

b. How will the individual functions interact with other external entities (.i.e. 

human or machines) in their operational domain or vice versa 

c. How will the various functions interact with each other to achieve the cooperate 

objective  

 

Essentially, the use process translates the problem statement into a system structure 

that provides an operational context regarding how the problem can be resolved.  

  

 Use case modelling and analysis is used in the object-oriented engineering domain  [84] 

to model the operational instances and how external entities will engage with the 



93 
 

proposed system (i.e. the proposed framework) to accomplish an intended task. The 

outcome of the use case analysis is a use case model of all the actors (in this case the 

agents), the use cases (functions) and description of the use cases and how they interact 

with each other. The elicitation of the core system functions and their interaction with 

the external entities is crucial to designing a multi-agent system which delivers all user-

defined requirements. Moreover, the model serves as the bases to verify if the core 

functions of the system have been captured. This section presents the use case 

modelling process and demonstrates how the use case is used to elicit the requirements 

(both functional and non-functional) of the proposed implementation.  

5.4.1 Application of use case in modelling the functions of the framework  

The functions required to provide the DDoS detection mechanism were first elicited 

from the problem statement by the application of the requirement elicitation or 

engineering technique proposed in [84]. According to Fig 5.2 the various functions that 

need to be carried to address the intelligent DDoS detection mechanism are instantiated 

as a use case in each layer. Moreover, the main actors that will be interacting with the 

functions in the layers are also depicted. The communication lines also show the main 

line of interaction between the actors and the functions and also show the interaction 

between the use cases.  

 

Use Case is commonly used in the preliminary stage of system requirement elicitation to 

present various ways the system will interact with external entities without 

consideration for implementation details. Many standards are proposed to present use 

case scenarios, but UML (Unified Modelling Language) graphical notation specification 

is the most adopted [85]. The focus of use case modelling, in this case, is to illustrate 

what the proposed framework is going to do to achieve the overall goal (.i.e. the real-

time detection of a DDoS attack) and not how it will be done [84].  

 

Use case diagram comprises three major components [84]: 

a. Actor(s): External entities (E.g. people, hardware or external systems) that 

interact or share information with the system. An actor is represented in Fig 5.1 

as Actor (notation 1).   



94 
 

b. Use Case and communication: a description or abstraction of the functionalities 

of the system. They may also include a description of the interaction between the 

actors.  Use Case is represented Fig 5.1 as the Use Case (notation 2) and 

communications as Communication with Actor or Use case (notation 3).  

c. Complementary information or documentation which further describes the use 

cases and any possible deliverable.  

 

 

 

 

 

 

 

 Figure 5.1   is the UML notations used to depict the elements of the proposed use case 

diagram.  

 

Based on the framework architecture and the description of the domain problem the 

preliminary functional requirements identified for each agent in the framework model 

is presented in a Use Case diagram as showed in Fig 5.2.  The use case analysis provides 

a requirement elicitation process which assists in teasing out the actors, use cases and 

interaction among the use cases from the problem statement. The details of the 

requirement elicitation process itself are not presented in this text. However, the reader 

is referred to [84] for further explanation.  

 

 

Use Case  
Communication with 

Actor or Use case 
1 2 3 

 Actor

Figure 5.1 Example of the use case diagram symbols 



95 
 

PMKIL

DMAL

AMRL

Map user commands to
agent ontologies

Instantiate agent
ontologies

User InterfaceInteface External
UI

Translate User
commands to agent language

Translate ontologies
into UI response

Send heart beat
response

Manage Agent
Register

Create Agent profile
and technology profile

Send heart beat
response

Apache Hbase

Send heart beat
response Interface Apache

Habase

Translate request
into Hbase command

Retrieve and store
ontology instances

Send heart beat
response

Receive and send
agent messages

Receive and send
agent messages

Send heart beat
request

Initialise agents
at Boot up

Receive and
validate agent request

Enforce protocol on
all interaction

Hadoop Cluster

Send Policy
request to IC Agent

Interface Hadoop
Node

Read network and
Load Measurement

Detect and report
DoS

Train agent for DoS

Monitor Node
Activity

send heart beat
response

Aggregate DoS dectection
report and confiim attack

behaviour

Create DDoS
detection report graph

«uses»

«uses»

Policy Management and Knowledge Integration Layer 
(PMKIL)

Data Management and Assurance Layer 
(DMAL) 

Agent Management and Regulatory Layer (AMRL) 

 

Figure 5.2 Use case diagram of the DDoS detection implementation 

 

Sub section A models the main functions required to be carried out in the PMKI layer. 

Sub section B models the main functions required to be carried out in the DMA layer.  

Sub section C models the main functions required to be carried out in the AMRL layer. 

(Subsection A) 

(Subsection B) 

(Subsection C) 



96 
 

 

Consequently, it can be inferred from Figure 5.2 that, the functions of the first layer will 

mainly be interacting with an external entity (i.e. user interface) via the defined 

communication channels. Similar inferences can be made from the representations in 

the next two layers. Furthermore, Table 5-1, Table 5-2 and Table 5-3 present a 

description of the use cases to provide further insight into each use case and how they 

will interact with each other to perform their role.  

 

The outcome of the use case analysis will then serve as the basis for the Gaia analysis 

which involves the identification of the types of agents to rightly instantiate the use 

cases, their responsibilities, operational permission, protocols and activities. 

 

5.4.2 Use case description 

The use case scenarios identified in the use case diagram are briefly described in 

abstract terms. Table 5-1, Table 5-2 and Table 5-3 provide a brief description of the use 

cases in each layer. Thus the functions or operations required in each layer to create the 

real-time multi-agent DDoS detection solution are described in the sub-section tables. 

The required functions were derived from the problem statement after applying the 

requirement elicitation technique proposed in [85].  The description of each use case 

and their interactions are important because it gives further insight into the roles 

identified and also confirms if all functional requirements have been captured at the 

preliminary stage.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

 

 
Table 5-1 Description of all the use cases in the PMKL 

Descriptions of Use cases in PMKL 
Use case Actor Description 

External user 
interface 
Platform 

  User interface 
(UI) 

The user interface agent uses the external 
application API to implement agent behaviours to 
interface with the end user platform and translate 
user-level instructions (e.g. an instruction to 
change the size of the sliding window) into agent 
communication language.  

Send 
heartbeat 
response 

User(UI) Interface 
and policy 
management(PM) 
Agents  

The UI and PM agents response to a heartbeat 
request from Intelligent controller agent to 
indicate the agent’s activeness in the framework 

Map user 
commands to 
agents 
ontologies 

Policy 
management 
Agent 

The use case process involves creating an instance 
of the agent ontologies when a new property is 
received from the user interface in the form of 
agent request. It also translates user-level 
instructions to agent ontology objects and 
forwards it to PM agent  

Send Policy 
request to IC 
Agent  

Policy 
management (PM) 
agent   

The PM, in this case, sends to a policy management 
agent specific request to IC agent to either notify 
other agents about the changes in high-level policy 
(e.g. when the target for the legitimate traffic is 
redefined by the end user) or request to inform 
other agents about the new policy.  

Translate 
ontologies 
into UI 
response 

User interface 
agent  

The UI agent translates domain ontologies 
received in the form of complex agent message 
into end-user information for the consumption of 
the end user.  

Translate 
User 
commands to 
agent 
language 

User interface 
agent 

The use case is a sub-function of the ‘Map user 
commands to agents ontologies’ which specifically 
translates agent ontologies into agent 
communication language   

Create DDoS 
detection 
report graph 

User interface (UI) 
agent 

The UI agent creates an attack graph of the DDoS 
report generated by the transducer agents. 
 

 

 

 

 

 

 

 

 



98 
 

 

 
Table 5-2 Description of all the use cases in the DMAL   

Descriptions of Use cases in DMAL 

Use case Actor Description 
Send heartbeat 
response 

System Registration 
(SR) Agent and Data 
Persistent (DP) 
Agent 

The  SR agents response to heartbeat 
request from Intelligent controller agent to 
signal that the agents are still alive in the 
framework 

Create agent and 
technology profile 

System Registration 
Agent  

The SR agent creates a profile of all the 
agents at startup of the framework and 
persists the profile for future reference.  

Manage Agent 
Register  

SR Agent The SR agent manages the agent register on 
behalf of the other agents (the 
management activities involve adding, 
updating, deleting and searching agent 
profile) 

Receive and send 
agent Messages 

SR and DP Agent  SR and DP Agents receive and send agent 
communication messages in the form of 
information or request for an action to be 
taking.  

Translate agent 
request Into 
Apache Hbase 
command  

DP Agent  DP agent translates agent request into 
HBase command to interact with  the  
HBase database platform 

Interface Apache 
HBase 

DP Agent  DP Agent implements Behaviour with 
Apache HBase API to interface with the 
Hadoop HBase platform.  

Retrieve and 
persist ontology 
instances.  

DP Agent DP Agent receives and persists ontology 
instances in the Apache HBase ontology 
base. It also manages all queries. Instance.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 
 

 
Table 5-3 Brief descriptions of all the use cases in the AMRL 

Descriptions of Use cases in AMRL 
Use Case Actor Description  

Initialise 
agents at 
Bootup  

Intelligent 
Controller (IC) 
Agent 

The case involves the starting and registering of 
the agent at startup 

Send Heartbeat 
request 

IC Agent  The heartbeat is a mechanism to ensure 
availability of Agents. This is done by sending a 
request to all agents to respond to indicate their 
availability.  

Receive and 
validate agent 
request  

IC Agent  All communication meant for another agent 
outside the native layer is received and processed 
by the IC agent.  

Enforce 
protocol on all 
interaction  

IC Agent Each agent communication is subject to the 
scrutiny to ensure adherence to the internal 
protocol. 

Instantiate 
agent 
ontologies  

IC Agent The process is an inclusive function to initialise 
agents and the domain ontology at Boot up.  

Interface 
Hadoop Node  

Hadoop Node 
(Transducer) 
Agent 

The Transducer agent implements behaviour to 
allow it to interface with the Hadoop platform. 
Moreover, it also translates agent request into 
HDFS command.  

Detect and 
Report DoS 
attack  

Hadoop Node 
(Transducer) 
Agent 

The Transducer agent implements a behaviour 
that allows the real-time collection and analysis of 
flow data to detect DoS attack.  

Monitor Node 
Activity  

Hadoop Node 
(Transducer) 
Agent 

The transducer agent monitors the load schedule 
on each interfaced node to determine when 
retraining is required.  

Read network 
and Load 
management  

Hadoop Node 
(Transducer) 
Agent 

The agent collects network and average server 
load metrics in real-time for analysis. 

Aggregate DoS 
detection 
report and 
confirm attack 
behaviour 

IC Agent  IC Agent aggregate DoS reports from Transducer 
agents and confirm DDoS in the Hadoop cluster.  

Send heart 
response  

Hadoop Node 
(Transducer) 
Agent 

Transducer agents response to heartbeat request 
from Intelligent controller agent to signal that the 
agents are still alive in the framework 

 

 

 

 

 



100 
 

5.5 Gaia analysis 

The purpose of the analysis stage is to gain an understanding of the organisation of the 

proposed system[30].  

 

As stated earlier, the use case modelling process does not fall under the Gaia 

methodology but plays an essential role in the methodology. In a top-down order, Gaia 

methodology starts with the analysis stage. The stage, however, relies on requirement 

elicitation methods such as the use case modelling process and detail problem 

description to provide an organisational model of the domain and a detail description of 

the proposed systems requirements. Once the organisational models and problem 

description are provided, the analysis stage will then aim at providing an understanding 

of the system and its structure from the multi-agent system (MAS) standpoint. 

Consequently, the analysis stage provides four sequences of activities, and each activity 

delivers a specific model of the system [30].  

 

The activities are: 

a. Elicitation of the roles in the system:  

Output: The output of the first activity is a role model depicting the key roles that 

will constitute the system with a brief description of each role. 

b. Identification and documentation of protocols. According to Gaia methodology, 

protocols are the definition of the pattern of interaction that will occur between 

the identify roles within the system.  

Output: The output for this activity is the interaction model which presents the 

iterative or sequence of interaction between the roles.  

c. An elaboration of the role description identified in step two. 

Output: a detail description of the role model, describing the major roles of the 

system, their permission and responsibilities, the associated protocols and 

finally the activities the roles are allowed to participate.  

d. The last stage is to iterate stage one to three until the entire systems functions 

are fully captured.  

 



101 
 

5.5.1 Transition from use case modelling to Gaia analysis stage 

The current state of Gaia requires sufficient understanding of what the system is 

required to do before commencing the analysis stage. However, the methodology does 

not provide or suggest any process to migrate from the requirement elicitation stage 

(such as use case analysis and modelling) to the Gaia analysis stage. Consequently, a 

transition process is therefore suggested in this chapter to address the gap in this 

implementation.   

 

As explained earlier, a use case represents a function that has to be performed by a 

system which also represents activities in the context of Gaia. Once the use cases (i.e. 

activities) are identified, the main task during the Gaia analysis stage will be to identify 

the type of agents suitable to carry out those functions and how the agents can 

collaborate to achieve the cooperate aim in each layer. Concerning the proposed 

framework, the model presented in chapter four identifies the types of agents (which 

also represent roles in the context of Gaia) in each layer. Consequently, the analysis will 

then seek to align each agent type with the use cases or the activities and then spell out 

the communication patterns between the agents and across the layers. The alignment 

will then result in an integrated model that represents a high-level abstraction of how 

the multi-agent framework will work collaboratively as an internal DDoS detection 

mechanism for the Hadoop framework.   

 

In this implementation, the preliminary models obtained from the analysis process 

were iteratively refined by comparing the model representations with the problem 

statement to ensure that the final model captures the requirements described in the 

problem statement presented in section 5.3. Table 5-4 is the agent role model for the 

proposed implementation. The table is an integrated representation of all the outcome 

of the three processes in the analysis stage.  Thus the table gives further insight into the 

agents and their responsibilities. It also describes their permission and internal 

protocols.  

 

The definition of internal protocols and permissions are essential in multi-agent 

systems in that, agents are designed to be autonomous entities, and therefore it is 

imperative that their activities or operations be regulated to ensure that they operate 



102 
 

along preferred guidelines. Moreover, the integration of standard protocols also allows 

the owners to redefine their operation by standard regulations or cooperative policies.    

 
Table 5-4 Schema for all the roles of proposed system 

Roles or Agents  Responsibilities Permission or 
Protocols to enforce  

Corresponding Skills 
to execute the 
responsibilities 

User Interface 
agent  

Liveness properties(Main 
Functions): 

 Translate Domain 
command to agent 
language 

 Translate agent language 
into domain response 

 Send heartbeat response 
 Receive and process agent 

messages 
 Create DDoS report graph 
 Send ontology properties to 

PM agent to create ontology 
instance 

Safety properties(Complementary 
Functions): 

 Maintain connection with 
external UI 
 

UI agent accesses and 
interprets the DDoS 
ontology 
 
UI agent can request 
PM agent to create an 
ontology instance  
 
UI agent can receive a 
DDoS attack report 
from IC agent.  

Send and create 
ontology request to PM 
agent  
 
Receive Create DDoS 
attack graph request 
from IC agent 
 
Create an ontology 
report graph 
 
Receive and send 
heartbeat response 

Policy 
management 
agent  

Liveness properties (Main 
Functions): 

 Map domain command to 
agent ontologies 

 Send heartbeat response 
 Send policy request to IC 

agent 
 Receive Ontology 

properties from UI agent 
and create ontology 
instance 

 

PM agent manages the 
DDoS ontology 
instances.  

Receive create ontology 
instance request  
 
Create ontology 
instance 
 
Receive and send 
heartbeat response  

Data persistent 
Agent 

Liveness properties(Main 
Functions): 

 Translate agent request 
into agent apache Hbase 
commands 

 Retrieve and store agent 
ontology instance 

 Send heartbeat response 
 Receive and process agent 

messages  
Safety properties(Complementary 
Functions): 

 Maintain active connection 
with apache Hbase server 

DP agent can access 
apache HBase (the 
OntoBase) 
 
DP agent can Store 
and retrieve ontology 
instance from Apache 
HBase.  
 

Receive and process 
ontology request from 
IC agent 
 
Manage Apache HBase 
connection 
 
Store and retrieve 
ontology instance from 
Apache HBase.  
 
Receive and send 
heartbeat response 



103 
 

System 
registration and 
Management 
Agent  

Liveness properties(Main 
Functions): 

 Create agent and 
technology profile 

 Store and retrieve Agent 
profile from agent register 

 Send heartbeat response 
 Receive and process agent 

messages 
Safety properties(Complementary 
Functions): 

 Maintain active connection 
with agent register 

SRM agent can read 
agent profile from 
agent register 
 
SRM agent can add a 
new agent profile to 
the agent register  

Manage agent profile 
request from the IC 
agent 
 
Read agent profile from 
agent register 
Add new agent profile 
to the agent register  
 
Receive and send 
heartbeat response 

Intelligent 
Controller Agent 

Liveness properties(Main 
Functions): 

 Receive and validate agent 
request 

 Aggregate DDoS detection 
report and confirm attack 
behaviour  

 Initialise Agents and boot 
up 

 Send heartbeat request 
 Receive and process heart 

response 
 Load and initialise System 

and DDoS ontologies  
Safety properties(Complementary 
Functions): 

 Ensure all agents are active 
via the heartbeat  
mechanism  
 

IC agent is permitted 
the following 
activities: 
Read DDoS ontology 
instances  
 
Read agent profile  
 
Read and fuse DDoS 
attack report from the 
transducer agents 
 
Analyse DDoS attack 
report from the 
transducer agents 
 
Request for agent 
health status 
 
Analyse heat beat 
response from agents 
 
Communicate across 
all layers  

Send health check 
request 
 
Manage ontology 
requests with  DP agent 
 
Register domain 
ontology with all agents  
 
Enforce internal 
protocol on agent 
requests.  
 
Receive DDoS attack 
reports from transducer 
agents  
 
Fuse and analyse DoS 
attack reports  
 
Confirm DDoS attack  

Hadoop Node 
Transducer 
agent 

Liveness properties:  
 Collect and analysis 

network and average 
server load metrics 

 Detect and report DoS 
attack to IC Agent 

 Train agent node’s normal 
behaviour for abnormal 
detection 

 Send heartbeat response 
 Translate agent request to 

Hadoop command.  
Safety properties:  

a. Maintain active connection 
with Hadoop nodes.  

Transducer agent is 
permitted the 
following activities: 
 
Analyse network and 
average server load 
metrics. 
 
Communicate with 
Hadoop nodes 
 

Analyse network and 
average server load 
metrics 
 
Detect DoS attack from 
network and average 
server load metrics. 
 
Confirm and 
Send DoS attack report 
to IC agent  
 
Send health check 
response 



104 
 

5.6 Design of the proposed multi-agent framework  

The analysis process aims to elicit the system requirement and also provide a 

preliminary approach to addressing the problem statement. The main focus at this stage 

is to identify the main components of the proposed system, functions of each 

component and also outline how these components will deliver their assigned 

responsibilities. Consequently, Table 5-4 presents the deliverable of the analysis process. 

The models derived from the analysis stage provide a high-level understanding of the 

requirements of the multi-agent framework. Once the functional requirements of the 

framework are established the next step in the development process then establishes 

how those functional requirements will be achieved. In other words, the system design 

stage aims to transform the models obtained during the analysis stage into low-level 

abstractions that can easily be implemented on any agent development platform. 

Consequently, this stage will aim at transforming the analysis model into adequately 

low-level abstractions that classical system design and development techniques (such 

as object-oriented design techniques) can be applied to implement the agents. 

Essentially, the design stage is only interested in modelling how the agent community 

and protocols can be implemented to achieve the ultimate result.   

 

The design process entails three modelling activities.  

a. The agent modelling: which identifies types of agents that will constitute the 

entire system 

b. The service modelling: which will identify the key services required to realise the 

role of the agents 

c. The agent acquaintance modelling process identifies and documents the various 

levels of interaction and communications among the agents.  

Once these models are established, any appropriate development platforms can be 

employed to realise the implementation.  

 

 



105 
 

Hadoop (Transducer Agents)
SRMA (Information Agent)

UI (Transducer Agent) PM (Information Agent)

IC (Collaborative Agent)

DP (Transducer Agent)

Send 
ontology 
properties

Heart beat 
interactions

«subsystem»
«subsystem»
External UI

Maintain active 
connection with 

UI

Create DDoS 
attack graph

Add ontology 
instance to HBase 
OntoBase 

«subsystem»
«subsystem»

Apache HBase

Maintain active 
connection with 
Apache HBase

Add ontology 
instance HBase 
OntoBase 

Send 
ontology 

instance to  
OntoBase 

Create DDoS 
Attack report

Add agent and 
technology profile 

Heart beat 
interactions

«subsystem»
«subsystem»
Agent register

Maintain active 
connection with 
Apache HBase

Create agent and 
technology profile
Add profile to agent 
register 

Translate agent request 
into HBase Command
Read and process agent 
messages

Send DDoS 
attack report 

Heart beat 
interactions

«subsystem»
«subsystem»

Hadoop Nodes

Maintain 
active 

connection 
with Hadoop 

testbed

Safety  properties Liveness properties 
Type of agent concept Flow of interactions 

Heart beat 
interactions

Collect and analysis network 
and average load metrics
Detect DDoS attack
Send heart beat response
Train agent to detect DDoS 

Map domain command to 
ontology description
Send heart response
Create ontology instance 

Enforce system internal protocol
Fused DDoS reports
Receive validate report
Send heart beat request
Receive and process heart beat 
response
Initialise ontologies 

Translate command
Translate response to output
Send heart beat response
Add new agent profile
Add technology
Create DDoS attack report

Agent dependent 
properties 

Request

R
e

q
u

e
st

R
e

q
u

e
st

Request

S
e

n
d

 r
e

p
o

rt
s 

to
 

e
xt

e
rn

a
 U

I

 Send native 
commands

 Send native 
commands

 

 

 

 

 

 

 

 

 

 

Figure 5.3  is an integrated model representing the outcome of all the three design 

processes carried, out at the design stage. In principle, Gaia recommends a separate 

model as the deliverable for each design activity. While such modelling approach 

provides an unambiguous means to present a conceptual model of the design activities; 

the approach can result in volumes of models that require several efforts to navigate. 

Consequently, an integrated approach was adopted to aggregate the three models into a 

single model which is easy to perceive in a single instance.  

 

As it can be observed in Figure 5.3 that, the model entails instances of the types of 

agents employed, the services each agent is expected to provide and the high-level 

interaction or acquaintances required to address the problem collectively (The 

proposed architecture allows the framework to sit on the Hadoop framework or 

deployed within the Hadoop framework). From the figure, each agent type is assigned a 

Figure 5.3  A model of the agent types, services and acquaintances 



106 
 

set of functions (referred to in the figure as liveness properties). The figure also shows 

how the agent will interact with other functions or agents to perform the assigned 

functions. The merit of the model is that it presents a systemic representation of the 

framework and further projects how the functional requirements related to each agent 

in the framework is achieved. At this point, much information about the internal 

structure and the operations of the framework has been elicited and presented in a way 

that can easily be developed or implemented.  

 

Aside from the modelling of the functions and the communication of the agents, any 

non-functional requirements that may not necessarily be considered as specific agent 

service must also be addressed. The non-functional requirements considered are:   

a. Transparent to any vendor technologies 

b. Scalable by the integration of new agents 

c. Transparent to the domain knowledge or semantics 

 

Functional requirements, in this case, are those which directly relate to the core 

functionalities of the software agents. On the other hand, non-functional requirements 

define the backbench that can be used to assess the operation of the system in a given 

scenario.  The subsection below presents how the non-functional requirements for the 

framework were addressed.  

5.6.1 A transparent approach to interfacing the DDoS detection framework with 

the Hadoop cluster 

The transducer agent concept is adapted to interface with the Hadoop nodes and also 

serve as the gateway between the Hadoop platform and the agent community to make 

the framework transparent to the Hadoop cluster. The approaches have proven to be an 

effective way of interfacing a multi-agent based platform with any third party or legacy 

technologies [63]. Nevertheless, the choice of the right agent concept to employ in this 

regard must be made based on efficiency, effectiveness and feasibility of 

implementation. The decision in this instance was largely influenced by the fact that, the 

concept does not require access to the low-level code of the Hadoop kernel as compared 

to the wrapper agent concept. That is, transducer agents can be created with Hadoop’s 

application interface (API) to interface with the nodes in the cluster.  



107 
 

5.6.2 The scalability of the multi-agent DDoS framework  

One of the fundamental attributes of the Hadoop framework is its ability to scale to 

meet any operational demand. Consequently, it was imperative such fundamental 

requirement be addressed in the proposed framework so it can dynamically scale along 

the underlying Hadoop cluster. Address this requirement and an object-oriented 

concept called object interface was employed to ensure that each agent is designed to 

conform to a predetermined standard.  The interface design concept is an object-

oriented design principle that allows the application domain (in this case the 

framework) to each agent be developed with standard interfaces and characteristics 

such as the agent health check behaviour. Consequently, the framework can be scaled 

by the plugin in of new agents without changes to the existing configuration.  

5.6.3 Transparency to domain knowledge 

Lastly, the proposed framework is transparent to domain semantics. Thus, the agents 

must understand and speak a common language which is high-level to specific domain 

instructions. For example, the conventional approach to changing the user login details 

in Hadoop HDFS and MySQL server will require the application of autonomous 

command instructions. Consequently, a homogenous approach was adopted. Ontology, 

in this case, was employed to abstract the low-level domain semantics into standardised 

concept definitions. The approach then allows the gents to register to the same 

ontologies to infer the same meaning. For example, a single instruction to change user 

login details carries the same meaning with all transducer agents who will then use the 

respective low-level commands to enforce the instructions. As a result of the proposed 

approach, autonomous instructions is no more required to enforce action on the 

underlying Hadoop technologies (such as Apache HBase and the HDFS) as a single as 

instruction can get the job done.  

5.6.4 Approach to the design of the agent DDoS attack detection behaviour 

Once the three major requirements of the framework are addressed, a move is made 

from the high-level design to detail designs which will comprise of the identification and 

design of the agent’s behaviour (skills) and communication template to realise their 

functional requirements as presented in Table 5-4. As mentioned in sections 5.6, one 

important thing to establish at the design stage is to identify the type of agent concepts, 

their behaviours (skills) and the level of interaction required to realise the overall 



108 
 

system functions. Once those details are defined enough, the next thing is to design the 

behaviour and the communication templates identified (as modelled in Figure 5.3). At 

this point, the low-level algorithm of the behaviour and the cognitive system of the 

agent is designed in detail enough for implementation.  

 

Because the Gaia methodology does not provide any notation for low-level design and 

modelling of the agent’s behaviour, the algorithm of the techniques employed to realise 

the agent behaviours will be presented. Further, object-oriented tools such as sequence 

diagrams are employed to model the sequence of process execution. The BDI agent 

reasoning technique (BDI is explained in  Chapter 3) is also employed to describe and 

implement the agent’s cognitive systems [70].  Furthermore, a flow-metrics based 

technique was employed in this work to allow the transducer agents to monitor and 

detect DDoS attacks in the Hadoop cluster in real-time. A flow-metrics based technique 

was adopted because flow metrics-based analysis is known to attract a little 

computational cost[86]. The reader is referred to Appendix B for the description and 

justification of the choice of metrics.  

 

The rest of the section presents the agent implementation model in the form of the 

description of the techniques employed to realise key functions such as the detection of 

DDoS attacks.  

5.7 The design of real-time agent based DDoS detection technique using 

Cumulative Sum  

The proposed framework presents two separate DDoS detection behaviours of the 

transducer agents. The first DDoS detection behaviour employs a statistical technique 

called cumulative sum (CUSUM). The second DDoS detection behaviour is based on the 

linear weighted moving average (LWMA) technique. Both techniques detect and 

confirm a DDoS attack in two stages. The first stage involves the detection and 

confirmation of the DDoS attack by the transducer agents. When an attack is confirmed 

on the Hadoop node, the resident agent creates and sends attack report (the report 

properties such as timestamp, CUSUM results, node ID are defined in the attack 

ontology model) to the IC (Intelligent controller) agent for further analysis. In the 

second stage, IC agent then fused all the reports received within a given time frame to 



109 
 

confirm DDoS attack within the cluster and also suggest the attack behaviour. Thus IC 

agent is endowed with a data fusion technique which allows it to aggregate the DDoS 

attack reports it received to create a cluster view of the manifestation of the attacking 

technique. This approach is plausible to create a distributed DDoS detection mechanism 

that is fit for the distributed nature of Hadoop cluster and also presents the chance to 

perceive the attack holistically. For example, IC agent can confirm at the second stage if 

the reported attacks constitute a botnet attack and if the victim is within the cluster. 

Furthermore, malicious software operation activity can be confirmed from the average 

server load reported by the transducer agents. 

5.7.1 Background to the CUSUM-Based DDoS detection technique   

Concerning the real-time analysis of the network utilisation and average server load 

flow metrics, CUSUM is employed in the transducer agent’s cognitive system to realise 

the detection of DDoS attacks. The network utilisation metrics in this work are defined 

as a measure of aggregate bandwidth capacity being consumed every second. Likewise, 

the average server load metrics are defined as a measure of the processor’s capacity 

being consumed per second. In real-time means, the metrics are analysed at the end of 

the collection period (which is user-defined).  These two metrics provide the transducer 

agents with intrinsic real-time updates on the stream of traffic and the average load for 

discriminating between normal and abnormal behaviour on each node. In this case, the 

transducer agent’s belief desire intention (BDI) interpreter activates the metrics 

collection goal to collect the metrics of the sliding window period.    

 

The CUSUM DDoS detection technique involves:  

a. A Training process (i.e. the agent’s skills), which allows each transducer agent to 

be trained on the normal network and average server load behaviour of the 

Hadoop node. Normal behaviour is confirmed when the user-defined training 

period elapses 

b. Monitoring and detecting abnormal network and average server load behaviour 

c. Confirming a DDoS attack on the Hadoop node 

d. Sending CUSUM DDoS attack report to the IC agent for cluster-based analysis  

e. Fusing the CUSUM DDoS attack reports confirming DDoS attack in the cluster  

 



110 
 

CUSUM is a statistical technique typically used for monitoring the deviations of 

individual process measurements from the process target [59]. The target is the 

allowable process aim or the highest operation point of the process. The technique is 

designed to analyse a well-sampled data set to detect changes sequentially. The 

principal objective of the CUSUM is to calculate the cumulative sum of the process data 

to ensure the process activities are within a predetermined process target T and an 

allowable shift S, as shown in (5.1) and (5.2). 

 

𝐻(𝑖) = 𝑀𝑎𝑥[0, 𝐻(𝑖 − 1) + 𝐶(𝑖) − (𝑇 + 𝑆)],   (5.1) 

 

𝐿(𝑖) = 𝑀𝑖𝑛[0, 𝐿(𝑖 − 1) + 𝐶(𝑖) − (𝑇 − 𝑆)],    (5.2) 

 

where H(i) and L(i) are the cumulative sums of high side and low side deviations from 

the process target for ith measurement C(i) of the process, and functions 𝑀𝑎𝑥[∙] and 

𝑀𝑖𝑛[∙] give the maximum and minimum value of their parameters respectively.  

Essentially CUSUM monitors the deviations of process activities over time and indicates 

when the cumulative deviation exceeds the allowable threshold or out of control.  

 

However, real-time monitoring and detection of an attack in Hadoop cluster will require 

that the agents monitor each metrics (in this case the bandwidth utilisation and average 

server load) in real-time for early detection during the attack contrary to the sample 

metrics used in other works[42][86]. Consequently, this research has developed a 

variation of the CUSUM technique to allow the agents to analyse all metrics and detect a 

DDoS attack in real-time. Moreover, the CUSUM as per its sequentially cumulative 

nature can detect changes in continuous flow metrics. However, it is ineffective when it 

comes to detecting an attack that transmits at a different speed, particularly when the 

attacking traffic is designed to be inconsistent to masquerade the legitimate traffic. 

Thus, high false positive detection can be recorded whenever an attack of such nature is 

detected. To further improve the existing CUSUM technique, mainly to detect a DDoS 

attack from network utilisation and average server load metrics, the CUSUM technique 

is optimised with a result validation technique to drop the false-positive ratio (FPR) 

significantly.  

 



111 
 

The variation of the CUSUM-based real-time DDoS detection technique developed in this 

work is based on the following modifications:  

a. Instead of analysing a sample of the metrics, the window (W) concept is 

employed to collect and analyse the sequence of metrics in each window as 

shown in Figure 5.4. This enables the agent to evaluate a set of metrics within 

each window period.  

b. ARL (Average Running Length) is defined in this case as the number of Ws to 

analyse before a decision on the CUSUM result is made. Furthermore, ARL will 

define the number of window anomalies confirmation required before a DDoS 

attack is confirmed on each Hadoop Node.   

 

 

 

 

 

 

 

 

 

 

Figure 5.4 depicts the window-based analysis concept. The outer boxer represents the 

definition of ARL and the two inner boxes represent the windows with the number 

metrics collected and analysed during each window period.  According to the diagram if 

the size of each window is five seconds, the metrics are measured every second, and the 

size of ARL is two, then five samples of the flow metrics will be collected at every 

window to analyse for anomalies, and then two adjacent windows will be analysed for 

anomalies before a confirmation of DDoS attack is made. The benefit of this approach in 

the real-time analysis of the flow metrics is that it allows the agents to manifest dynamic 

response time to attack. However, the downside of using W and ARL is that a new 

training session has to be conducted if the W and ARL values changes.  

 

 

 

Average Running Length (ARL = 2)  

Window 2 (W=5) 

 

 

 

Window 1 (W=5) 

 

 

 

Figure 5.4 Model of the ARL window-based analysis concept 



112 
 

A.   Description of the CUSUM-based DDoS detection algorithm 

The description explains the step by step sequence of the DDoS detection process. 

Figure 5.5 further depicts logical sequence of the technique.   

 

The flow metrics collected on each node are analysed as follows after the values of ARL 

and W size is set. 

 

Step 1. Collect the incoming and outgoing traffic of w period and create a list of the 

average measurement of each window. The average traffic is collected as follows: 

 

µ𝑖𝑛 = ∑ 𝑇𝑖𝑛𝑘/𝑤𝑤
𝑘=0        (5.3) 

 

µ𝑜𝑢𝑡 = ∑ 𝑇𝑜𝑢𝑡𝑘/𝑤𝑤
𝑘=0                   (5.4) 

 

Where µ𝑖𝑛 and µ𝑜𝑢𝑡 are the average incoming and outgoing network traffic of the 

current window respectively, 𝑤 is the size of the sliding window, 𝑇𝑖𝑛𝑘 and 𝑇𝑜𝑢𝑡𝑘 are the 

kth incoming and outgoing traffic measurement in the sliding window. 

                              

Step 2 – Find each sliding window’s standard deviation of the incoming and outgoing 

network traffic, σ𝑖𝑛 andσ𝑜𝑢𝑡, respectively. The standard deviation is used to set the 

allowable shift S from the target measurement and the control limit or threshold. 

 

σ𝑖𝑛 = √   
∑ (𝑇𝑖𝑛𝑖 −µ𝑖𝑛 ) 

𝑤

𝑖=0
 2

𝑤
,                   (5.5) 

 

σ𝑜𝑢𝑡 = √   
∑ (𝑇𝑜𝑢𝑡𝑖 −µ𝑜𝑢𝑡 ) 

𝑤

𝑖=0
 2

𝑤
,                (5.6) 

      

where w is the size of the sliding window, µ𝑖𝑛 and µ𝑜𝑢𝑡 are the average incoming and 

outgoing traffic of the sliding window in (5.3) and (5.4) respectively. 

Step 3 – Set the user-defined network target for legitimate traffic and calculate the 

allowable shift from the target, i.e. T and S in (5.1), respectively. The standard deviation 

σ, i.e. σ𝑖𝑛 or σ𝑜𝑢𝑡, from Step 2 is used as the allowable slack.  



113 
 

 

Step 4 – Find the upper control limit, +𝜆, and the lower control limit, - 𝜆, for the 

legitimate metrics. 𝜆 can be chosen simply as𝜆 = 𝑚𝜎, where m is a constant and 𝜎 is the 

standard deviation of the legitimate metric. In this implementation,  𝜆 = 4𝜎 was chosen.  

 

Step 5 – The CUSUM equations, (5.1) and (5.2), are used to determine if each metric in 

the current sliding window exceeds the upper control limit +𝜆 and lower control limit 

−𝜆. Any cumulative sum of the deviation that exceeds the control limit is classified as 

abnormal.  

 

Step 6 – After the CUSUM exceed +λ in step 5, the algorithm verify (or validate) to check 

whether the real process data (sampled network measurement) are off target (i.e. 

measurement > T+S or < T-S):  

 

               𝛿𝐻(𝑖) =  𝐶(𝑖) − (𝑇 + 𝑆),              (5.7.a) 

 

   𝛿𝐿(𝑖) =  𝐶(𝑖) − (𝑇 − 𝑆),                                       (5.7.b) 

                       

          𝑎𝑏𝑀 = {
𝑇𝑅𝑈𝐸,    𝑖𝑓 (𝛿𝐻(𝑖) > 0||𝛿𝐿(𝑖) < 0),                            

𝐹𝐴𝐿𝑆𝐸,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             
(5.7.c) 

 

 

where 𝛿𝐻(𝑖) > 0 means the ith real process value 𝐶(𝑖) is out of target on the high side, 

𝛿𝐿(𝑖) < 0 means the ith real measured process value 𝐶(𝑖) is out of target on the lower 

side.  

 

Step 7 – Confirm abnormal metrics for ith measurement in a sliding window if the 

following condition is true: 

 

𝑖𝑓 ((𝐻(𝑖) > 𝜆 || 𝐿(𝑖) < −𝜆) & (𝑎𝑏𝑀 ==  𝑇𝑅𝑈𝐸))   (5.8) 

 

Step 8 – DoS attack at Hadoop node level is confirmed if the number of consecutive 

confirmed abnormal metrics in Step 7 is greater than a pre-set threshold G. In this 

implementation, G = 5 was chosen. 



114 
 

For brevity, the average server load version of the CUSUM algorithm is exempted since 

they follow the same logic.  

 

Once an attack is confirmed at the Hadoop node level, the IC agent will receive a DoS 

attack report from the transducer agent. The IC agent uses a data fusing technique to 

analyse the report from the transducer agent first to confirm the DDoS attack within the 

Hadoop cluster and then predict the nature of the attack.   

 

Start 

Set window size = WS
Set Average running length = ARL

Set Upper control limit = UC
Set Lower control limit = LC

 H(i) > UC 

OR

 L(i) < LC

Find CUSUM for current window
H(i) = Max[0,H(i-1)+C(i)-(T+S)]
L(i) = Min[0,L(i-1)+C(i)-(T-S)]

Confirmed attack 

Create and send attack 
report IC agent

Stop  

Yes

W(i) > ARLNo

Yes

No

 ((H(i)>λ || L(i)<-λ) & 
(abM == TRUE))

Yes

Confirm false alarm

No

 

Figure 5.5 Flowchart of the CUSUM-based DDoS detection technique 

 

 



115 
 

Figure 5.5 is the graphic representation of the logical sequence or the process flow of 

the CUSUM-based DDoS technique. Additionally, the figure shows the iterative flow of 

the sequence of CUSUM DDoS detection technique presented.  

The second stage of the DDoS detection technique is to aggregate the DDoS attack 

reports submitted by the transducer agents to create cluster level confirmation of the 

DDoS attack. For example, the IC agent which in this case also assume the additional 

role as the aggregator can conduct time similarity analysis on the time stamps of the 

DDoS attack reports to confirm Botnet DDoS attack. Consequently, the cognitive system 

of IC agent’s DDoS behaviour implements a data fusing technique which allows all DDoS 

report to be fused into a single report to confirm DDoS attack and also create a high-

level knowledge of the attacking technique.  

 

Each node under attack sent CUSUM attack analysis report of w*ARL period to the IC 

agent (w is the size of the sliding window, and ARL is the average running length value). 

The IC agent then conducts out of range analysis on the CUSUM results in the report to 

determine the CUSUM results that are out of the allowable range. Once the out of range 

analysis is completed, the IC agent then fuses the unique ID of the victim, the out of 

range values and the timestamp of each reported CUSUM result into a single report. The 

report provides further information to confirm DDoS attack within the cluster and to 

predict the behaviour of the attack. In implementation the value of w is used as the 

threshold for the number of reports to be analysed at a given instance. If there are n 

transducer agents, there will be (n*ARL)*w number of DDoS attack reports, aggregated 

into an attack report for each reported Hadoop node before confirming the DDoS attack. 

So, to determine Botnet (i.e. when more than one node is compromised to form zombie 

network to launch a DDoS attack) for example, we need to find if the reported zombies 

are more than one and if the reported attacks occurred around the same time.  

B.  The sequence of DDoS report fusion algorithm 

Step 1 – Sort out all high side and low side out-of-range CUSUM result from each report 

received as shown in (5.9). 

 

𝑆𝐻𝑂𝑢𝑡 = {𝐻𝑂𝑢𝑡(𝑖) ∶ 𝐻𝑂𝑢𝑡(𝑖) > 𝜆, ∀𝑖 ∈ [0, 𝑛 ∗ 𝐴𝑅𝐿 ∗ 𝑤]},  (5.9) 

           



116 
 

where 𝐻𝑂𝑢𝑡(𝑖) is a list of CUSUM result being analysed on the high side for outgoing 

traffic, SHOut is the sorted list of out-of-range CUSUM result of 𝐻𝑂𝑢𝑡(𝑖).  

 

The report sorting technique in (5.9) is also applied to the generation of sorted lists of 

the out-of-range CUSUM results on the low side for outgoing traffic, the high side for 

incoming traffic and the low side for incoming traffic, respectively.  

 

Step 2 – Find the period (tp) when all the out of range detection took place in the DoS 

attack report submitted by the transducer agent. The period is defined between the 

early timestamp and later timestamp of the out of range CUSUM results.  

𝑙𝑡 = 𝑀𝑎𝑥_𝑡𝑖𝑚𝑒[𝑆𝐻𝑂𝑢𝑡],    (5.10.a) 

𝑒𝑡 = 𝑀𝑖𝑛_𝑡𝑖𝑚𝑒[𝑆𝐻𝑂𝑢𝑡],    (5.10.b) 

𝑡𝑝 = 𝑙𝑡 − 𝑒𝑡,       (5.10.c) 

where lt is the latest timestamp of the out-of-range CUSUM result per report. et is the 

earliest timestamp of the out-of-range CUSUM result per report. time is the timestamp 

of the out-of-range CUSUM result. 𝑀𝑎𝑥_𝑡𝑖𝑚𝑒[∙] and 𝑀𝑖𝑛_𝑡𝑖𝑚𝑒[∙] give the maximum and 

minimum timestamp of their parameters respectively. SHOut is the sorted list of out of 

range CUSUM result of 𝐻𝑂𝑢𝑡(𝑖) in (5.9). The time sorting technique in (5.10) are  

applied to the sorted lists of the out-of-range CUSUM results generated in Step 1.  

 

Step 3 – Aggregate the total number of out-of-range CUSUM result for both outgoing and 

incoming traffic. OH is used to represent the aggregated number of outgoing out-of-

range CUSUM result on the high side, and IH is used to represent the aggregated number 

of incoming out-of-range CUSUM result on the high side.  

 

Step 4 – Determine the status of the attack by the total out-of-range recorded CUSUM 

result. The two statuses considered are zombie, Z, and victim, V.  

 

Zombie is when the node is compromised to launch an attack or to run malicious 

software to deplete the node’s resource [87]; thus, the total out-of-range CUSUM result 

on the high side is used to determine whether the volume of outgoing traffic exceeds the 

threshold as shown in (5.11). At the same time, the algorithm assesses if the incoming 



117 
 

traffic measuring is depleting or rising.  Likewise, the victim is a node that is under a 

DDoS attack. The total high side out-of-range CUSUM result of incoming traffic is equally 

used to determine if the node is receiving abnormal traffic as shown in (5.12). In the 

same manner, the algorithm assesses if the outgoing traffic measuring is depleting. 

 

𝑍 = 𝑇𝑅𝑈𝐸, IF(𝑂𝐻 ≥ 𝑤)                                      (5.11) 

  𝑉 = 𝑇𝑅𝑈𝐸, IF (𝐼𝐻 ≥ 𝑤)                                   (5.12) 

where OH, and IH represents the total out-of-range CUSUM results obtained in Step 3 of 

the algorithm. The size of the sliding window 𝑤 is used as the threshold to determine 

the status of the attack.   

 

 Botnet in this work is explained as when an attacker forms a network of compromised 

(zombie) Hadoop nodes to launch a DDoS attack from the Hadoop cluster remotely.  

 

Step 5 – Determine whether Botnet attack occurred. Botnet in this work is described as 

when an attacker forms a network of compromised Hadoop nodes to launch a DDoS 

attack from the Hadoop cluster remotely. Botnet attack is confirmed by: 

 

𝐵𝑜𝑡𝑛𝑒𝑡 = 𝑇𝑅𝑈𝐸, 𝑖𝑓 ((𝑁𝑧 > 1)&(𝜎𝑇𝑆 ≤ (𝑤 × 𝐴𝑅𝐿))), (5.13) 

where 𝑁𝑧 denotes the total number of confirmed zombies in a list of fused CUSUM 

result, FR is the length of the lists of the out-of-range CUSUM results generated in Step 1, 

𝜎𝑇𝑆 is the standard deviation of the latest time of reported attacks and is given as 

follows: 

𝜎𝑇𝑆 = ∑
(𝑙𝑡(i)− µ𝑙𝑡 ) 2

𝐹𝑅
 

𝐹𝑅

𝑖=0   

,           (5.14) 

 where µ𝑙𝑡 is the mean of the latest times of the lists of the out-of-range CUSUM results. 

Essentially, Step 5 will confirm that the botnet activities occurred around the same time. 



118 
 

5.8 The design of real-time agent based DDoS detection technique using 

linear weighted moving average  

LWMA is a weighted statistical analytic technique used to detect changes in moving data. 

The technique is mainly used in the financial market to monitor the movement of 

market prices to detect or responds to new price development [88]. LWMA is designed 

to emphasise its latest value by assigning higher weightings to the values as shown in 

(14). For example, given network metrics of 20 seconds, the first measurement read will 

be multiplied by its position or the second(s) it was captured. Thus if the first value is 

100kb/s, then 100kb/s will be multiplied by the first position (i.e. 100 X 1) and 120kbs 

X 2 for the second value until each value is accounted.  Ones each position is accounted 

for, the summation of the values are divided by the sum of the multipliers to obtain the 

recent LWMA value as presented in (15).   

 

𝐿𝑊𝑀𝐴 = ( ∑ 𝑚𝑖 ∗ 𝑖   𝑤
𝑖=1 )/ ∑ 𝑖𝑤

𝑖=1           (5.15) 

 

where 𝐿𝑊𝑀𝐴 is the weighted average of the current window under analysis, 𝑤 is the 

size of the sliding window under analysis, 𝑚 is the ith  measurement being analysed, i is 

the current position of  the sliding window under review.  

 

However, the LWMA technique was optimised by the introduction of additional 

parameters such as window size (WS), average running length (ARL), upper control 

limit and lower control limit. The additional parameters were necessary to allow real-

time monitoring of the network and load behaviours within a predetermined range (i.e. 

upper control limit and lower control Limit) to differentiate normal LWMA values from 

the abnormal LWMA values. Figure 5.6 is the flow chart depicting the LWMA based 

DDoS detection technique developed in this work.      

 

 

 

 

 

 

 



119 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yes 

No 

Yes 

Read new set of metrics 

if ARL has not elapsed.  

Detection process ends 

when ARL elapses  

Figure 5.6 Flow chart of the LWMA based DDoS technique 

Yes 

No 

Step 1 

Let window size == w 

Let Average Running Length == ARL 

Let Upper control limit == U 

Let Lower control limit == L 

Let the multiplier == i 

Let the network/load metric == m 

Let Total number of window analysed == t 

Step 5 

 

t == ARL 

𝐿𝑊𝑀𝐴 = ( ∑ 𝑚𝑖 ∗ 𝑖   

𝑤

𝑖=1

) / ∑ 𝑖
𝑤

𝑖=1
 

Step 3 

Find the LWMA of the current window being 

analysed as: 

 

Step 2 

Read the network and server load i.e. m in   

Step 1 for w period.  

Step 5 

Confirm DoS attack in the window  

 Stop 

Step 6 

Create and send DoS attack report to 

IC agent  

Step 4 

LWMA > U 

|| 

LWMA < L 

No 

Start 

Step 7 

 

t == ARL 

Read new set of 

metrics if ARL 

has not elapsed.  



120 
 

The monitoring and DDoS detection process of LWMA is presented in Figure 5.6. 

According to the figure, the fundamental element of the algorithm is step three, which is 

the determination of the LWMA value of each window. The algorithm then evaluates (i.e. 

Step 4) if the LWMA value is within the control limit or the node is behaving normally. 

An alarm is raised, and the DDoS report is generated if the LWMA of the window being 

analyzed exceeds the control limit. It can also be observed from the technique that, 

LWMA does not confirm DDoS attack based on a set of anomalous results but rather 

used each window’s LWMA value to make the decision. The reason such an approach is 

adopted in this case is that the technique is average based and so each LWMA value 

presents a reflective state of the node within the sliding window period. Essentially, this 

technique reduces the decision-making process of CUSUM and hence has the tendency 

of equally improving on the response time to the attacks (this will be confirmed in 

chapter six where the performance of each technique is evaluated).   

Similar to the sequence of CUSUM DDoS detection algorithm, the LWMA DDoS detection 

algorithm also involves: 

a. A training behaviour (i.e. the agent’s skills) which allows each transducer agent 

to dynamically train on the normal network and average server load behaviour 

of the Hadoop node. Normal behaviour is confirmed when the user-defined 

average running length (ARL) elapses 

b. Monitoring and detecting abnormal network and average server load 

behaviour 

c. Confirming a DDoS attack on the Hadoop node 

d. Sending LWMA DDoS attack report to the IC agent for cluster-based analysis  

 

The role of the window (W) and the Average Running Length (ARL) in the LWMA 

technique is the same as defined in the CUSUM technique. However, one fundamental 

difference is how LWMA determines its upper and lower control limit. Unlike CUSUM, 

LWMA does not make room for allowable slacks, and so the determination of control 

limits is based on the actual measurements used during the training period (the value of 

ARL determines the training period). Essentially, the maximum LWMA of the ARL is 

used as the upper control limit, and the minimum LWMA of the ARL is used as the lower 



121 
 

control limit. Thus an exact range of normal behaviour (for both network and server 

load) is determined without any assumption. The exclusion of assumptions such as the 

allowable slack (used by CUSUM) allows LWMA to avoid any potential human 

misjudgment when it comes to determining the normal and malicious behaviours of the 

Hadoop nodes.   

Despite the differences in the implementation, the technique will share the same aim as 

CUSUM. Thus LWMA is utilised to determine the variation in the bandwidth utilisation 

and server load within a set average running length (ARL).  

The concept of the ARL is adopted from the CUSUM algorithm and hence maintains the 

meaning as defined under the CUSUM algorithm. Consequently, any LWMA value of the 

two metrics which exceeds the upper or lower control limit is confirmed as a DDoS 

attack 

5.9 Description of the dynamic training technique 

The dynamic training behaviour allows the agent to train their knowledge(belief) of the 

normal bandwidth and server load behaviours for the first time at deployment. 

However, the volatility in the Hadoop nodes equally requires the training behaviour to 

observe the node for any significant changes from the previously known normal 

behaviour and then make the appropriate adjustment. The following scenarios explain 

the operation of the training technique.  

5.9.1 Scenario one – when a node is in an idle state 

Retraining is required when the node status changes from active state (i.e. when the 

node is actively processing request) to the idle state (i.e. when there’s no or lesser 

activity). Else the no activity status will manifest in the CUSUM result as a drop in load 

activity and the algorithm will report abnormal behaviour if training is not conducted to 

reflect the change in behaviour. Moreover, it will be difficult to differentiate legitimate 

traffic from a malicious one because a low-intensity attack, for example, can be wrongly 

classified as legitimate because it is transmitting within the previous legitimate range. 

So in such cases, the agent will have to retrain the belief with the traffic in the idle state 

to make accurate analysis and judgement.  



122 
 

A.   How to detect changes in the normal traffic  

To enable effective monitoring of the changes in the behaviour of the nodes, the 

transducer agent keeps periodic updates of the minimum and maximum legitimate 

network traffic in its belief. Subsequently, the agent will do a periodic check to confirm 

if average normal traffic recorded in its belief falls below the minimum measurement of 

the current normal activity traffic. If for example, the previous highest traffic 

measurement is less than the maximum measurement of the current normal activity 

traffic then the node can be considered to be in an idle state.  

5.9.2 Scenario Two - when normal activity on the node drops for some time 

The agents will have to retrain their belief any time there is a drop in legitimate 

activities to reflect the current behaviour of the node. Training in this scenario is 

essential to avoid the wrong classification of malicious activities.  

A.  How to detect a drop in legitimate load activity  

The current normal traffic in the agent’s belief is used to check if the average 

measurement falls within the average range of the current legitimate traffic. If it the 

previous traffic load falls below the current range of legitimate traffic, then retraining 

will be requested.  

5.9.3 Scenario Three: When the normal activity on the server increases 

If normal activity on the server increases then a retrain is required to adapt to the 

change else legitimate outgoing traffic, for example, can be considered as abnormal 

traffic at the CUSUM low side. Because the current normal activity measurement used 

for the previous training will be lesser than the current activity traffic being recorded. 

A.   The sequence of the training technique 

The agent behaviour responsible for the periodic training follows the following 

sequences to maintain up to date knowledge of the node.   

a. Read the most recent normal activity (using the bandwidth utilisation and 

average server load metrics) within a predetermined period from the agent’s 

belief. The period is specified in time and then converted to seconds. So for 

example, a request for a one-minute most recent normal activity on the Hadoop 

node will be converted to 60 s which will correspond to the first sixty records of 

normal metrics in the agent’s belief. Incidentally, the transducer agent keeps 



123 
 

real-time updates of normal traffic and server-load measurements in its belief 

(i.e. the agent collect and stores the normal measurements) for future 

comparison.  

b. Ones the normal measurements are retrieved, the window-based analyses are 

employed to find the average network traffic and server load of each window 

until ARL (average running length) elapses.  

c. Collect measurements of current activities on the Hadoop node within the 

predetermined training period and determine the average traffic and server load 

of each window, using the window-based analyses.  

d. Then compare the average current traffic and server load with the previous 

average traffic and server load (the previous average is based on the normal 

activity measurements retrieved from the agent’s belief). If the previous average 

traffic or server load is less than the average of current traffic or server load, 

then confirm upwards changes in the Hadoop node load or bandwidth activities. 

Likewise, if the previous average traffic or server load is greater than the average 

of the current normal metrics then confirm downwards changes in the node’s  

load or traffic activities  

e. Retrained agent with the current normal measurement. Figure 5.7 is the 

flowchart depicting the logic of the training technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

                   Previous Average                       Previous average 
           >      < Current average  
         Current average  

 

 

 

 

 

 

 

    Stop 

 

 

 

 

 

 

 

 

Yes 

Yes 

No 

Read and store normal traffic and server 

load measurements in agent belief. 

Read normal traffic and load measurements 

from agent belief where total 

measurements to read = TP 

Get the maximum average of the normal 

metrics  

Read current traffic and server load of 

window size until TP elapse  

Get the maximum average of the current 

metrics  

Confirm Upwards changes 

in node behaviour  

Retrain Agent belief with 

current metrics  

Confirm Downwards changes in 

node behaviour  

Retrain Agent belief with current 

metrics  

No 

Figure 5.7 Flowchart of the dynamic training technique 

Set Training period (TP) as Time 

in seconds   

Start 

Repeat the 

process on the 

next training 

session 



125 
 

5.10 Implementation of the agent behaviour and interactions 

Once the three major requirements of the framework are addressed, a move is made 

from the high-level design to detail designs. The detail design will comprise of the 

identification and design of the agent’s behaviour and communication template to 

realise their functional requirements as presented in Table 5-4. As mentioned in the 

previous sections, one important thing to establish at the design stage is to identify the 

type of agent concepts, their functions (behaviours) and the level of interaction required 

to realise the overall system functions. Once those details are defined enough, the next 

thing is to design the behaviour and the communication templates identified (as 

modelled in Figure 5.3). At this point, the low-level algorithm of the behaviour and the 

cognitive system of the agent is designed in detail enough for implementation.  

 

Because the Gaia methodology does not provide any notation for low-level design and 

modelling of the agent’s behaviour, the algorithm of the techniques employed to realise 

the agent behaviours will be presented. Further, object-oriented tools such as class 

diagrams and sequence diagrams are employed to model the sequence of process 

execution. The BDI agent reasoning technique (BDI is explained in  Chapter 3) is also 

employed to describe and implement the agent’s cognitive systems [70].   

 

The rest of the section presents the agent implementation model in the form of the 

description of the agent’ cognitive systems, and the algorithm of the techniques employ 

to realise key functions such the detection of DDoS attacks.  

 

It was established in chapter three that agents are autonomous and intelligent software 

modules in other words;  

a. They have skills or behaviour which allow them to perform their assigned tasks,  

b. They can communicate or share information with other agents based on defined 

internal protocol,  

c. They possess knowledge which allows them to understands the events in their 

domain 

d. They possess a cognitive system that allows them to reason and makes decisions 

autonomously. 



126 
 

 Consequently, the next sections will present how these key characteristics were 

realised for agent concept identified at the analysis stage (Refer to Table 5-4 for a 

summary of the agent types and their functional requirements) 

5.10.1 Transducer agents (Interface with the Hadoop nodes)  

According to Figure 5.3, the proposed solution will implement three different instances 

of the transducer agent type. One of the instances is the Hadoop node transducer agents 

which directly interfaced with all the nodes within the Hadoop cluster. From the 

proposed design, each node is assigned a dedicated agent who localises the detection 

technique to the assigned node. The one to one approach is ideal for a small node 

cluster. However, a similar design for a Hadoop cluster of about a hundred plus (which 

is usually the case for a commercial cluster) will mean over a hundred transducer 

agents will be required to interface each node. Indeed the resulted implementation 

could be a complex and complicated solution which may be difficult to maintain. In such 

instances, the design can be optimised by assigning the transducer agents to a 

subcluster of a manageable number of nodes. Thus one agent-to-many nodes approach 

can be employed to simplify the implementation.  

A.   A brief description of the adopted Communication template of the transducer 

agents 

 As defined in the agent service and acquaintance model, the agents use common 

language to exchange of messages with each other. Agent communication language is a 

standardised language which allows the exchange or sharing of information in an agent 

community as explained in chapter three. In this implementation, the FIPA SL language 

was adopted as the communication language. At this point, the acquaintance relation of 

the transducer agent with other agents (Reference the services and acquaintance model) 

are considered, and a corresponding interaction template is produced. A section of the 

interaction is presented in Table 5-5.  The table consists of a role, the originator of the 

interaction, the recipient and the internal protocol which define the mode and type of 

interaction. The standard FIPA interaction protocol was adopted as the interaction 

protocol. Chapter three gives a summary of the standard FIPA interaction protocol.  

 

 

 



127 
 

Table 5-5 A section of interaction table for transducer agent 

Interaction Initiator Recipient Interaction 
Protocol 

When 

Send health 
check response 

Transducer 
agent  

Intelligent 
Controller 
Agent 

FIPA 
Request 

When a health 
check request 
is received 

Send DDoS 
attack report  

Transducer 
agent 

Intelligent 
Controller 
Agent 

FIPA  
Inform 

When 
anomalies are 
detected, and 
DDoS attack is 
confirmed  

 

B.   List of the required behaviours of the transducer agents  

The main functional requirement for the Hadoop node transducer agents is to detect 

and report DDoS attack in real time. To deliver such requirements within the 

framework would mean that: 

a. The agent should first understand the normal behaviour of the node 

b.  Monitor the behaviour of the node in real time 

c. Dynamically adapt its knowledge of the normal behaviour as and when required.  

d. Detect abnormal behaviour from the normal behaviour  

e. Confirm if the abnormal behaviour constitute a DDoS attack 

f. Create and send a report of the attack if confirmed  

 

Consequently, the following was developed to create a behaviour which will allow the 

agent achieve the functional requirements.  

a. A dynamic training technique which will allow the agent to train its knowledge of 

the normal behaviour and also detect and retrain the knowledge when normal 

behaviour changes. The technique should work autonomously without human 

intervention. 

b. A technique to collect relevant metrics from the node for real-time analysis of the 

behaviour  

c. A technique to differentiate the normal behaviour from abnormal behaviour and 

also confirm if the anomalous behaviour constitutes a DDoS attack.  

d. A reporting mechanism to create and send a report of the attack once confirmed.  

 



128 
 

5.10.2 Data Persistent Agent  

Data persistent agent is defined in this work as a type of transducer agent that mainly 

interfaced with third-party database management system. In the general network 

management context, DP agent’s functional requirement can be defined to manage (i.e. 

store, retrieve, search and update) the network management information in a third 

party database. However, in this implementation, the DP agent’s functional requirement 

is defined to manage the domain knowledge (ontology) in third-party ontology database 

(i.e. OntoBase).  

 

Concerning the choice of the OntoBase, Apache HBase [20] is adopted as the OntoBase 

to manage the domain knowledge as defined in the ontology schema. HBase no-schema 

design makes it possible to implement an ontological model. The employment of Apache 

HBase to host ontology is novel in essence that HBase is not considered as a 

conventional OntoBase technology and hence has not been explored to manage 

ontology.  

A.    A brief description of the Ontology management behaviour of DP agent  

Essentially the design and implementation of DP agent mainly focused on the 

translation of agent requests into HBase native command to execute the request on the 

Apache HBase server. The result of the execution is subsequently instantiated as 

ontology concept and then wrapped in ACL message object that can be consumed by 

other agents particularly the IC Agent. Concerning ontology mapping of the HBase low-

level commands, a one to one mapping technique is employed. Thus each ontology 

action concept defined in the ontology model is mapped to a specific apache HBase 

native command. In this manner, the DP agent can easily map any request to low-level 

commands to carry out specific (e.g. store or retrieve ontology objects) task on HBase. A 

predefined static ontology mapping technique was employed in this implementation as 

a proof of concept. However, such an approach may not be the best choice for a large 

scale implementation. In such situation, a dynamic ontology mapping technique (which 

is outside the scope of this work) is recommended. The general ontology 

implementation concept is further explained in the ontology section.  



129 
 

B.   A brief description of the Health Check Behaviour of DP agent 

The health check behaviour of DP agent response to all health check requests from the 

IC agent. The content of the response will include the agent name and the unique ID to 

indicate the current status (i.e. active or inactive) of the agent. The health check 

response process is presented in the health check sequence diagram in Figure 5.8.  

 

 
Figure 5.8 The sequence of the health check process 

 

5.10.3 Policy management agent  

The policy management (PM) agent is the type of the information agent concept with a 

functional requirement to map high-level domain instructions it receives from UI agent. 

PM agent first maps the domain instruction from the UI agent to an instance of the 

domain ontology concept and then encapsulates the ontology in agent message for IC 

agent.  

A.   A brief description of the Ontology mapping behaviour of PM agent 

PM agent serves as the main point of contact for the UI agent by mapping the domain 

instructions from the UI agent to the domain ontology instances. For example, consider 

a scenario where system administrators periodically conduct system reviews (i.e. 

generate periodic system resource information) within a Hadoop cluster. 

Conventionally, retrieving periodic server resource information or log records from the 

Send Health check request
Test inherent 
connections 

Report status 

 agent register 

Check reported agent against registered agents 

Report failed agents

IC

All 
Agents 

UI 
Agent

Build alert 
profile for 
attention 



130 
 

Hadoop file system (HDFS), Apache HBase server could be carried out by platform-

dependent scripts or administration of native commands on each server.  

 

The challenge with these conventional approaches resides in the fact that changes in 

resource information requirements would require corresponding updates in all the 

scripts or system administrators will periodically run separate native commands to 

retrieve the required information. The process may not seem challenging when dealing 

with a cluster of few hardware and application platforms but is certainly a tedious task 

when dealing with a large-scale corporate IT infrastructure running on various 

platforms. On the other hand, Ontologies can be employed in software agents to 

perform the same function autonomously as demonstrated in chapter four. 

 

Consequently, the same technique is employed to build an ontological description of the 

attack detection techniques (CUSUM and LWMA), to allow the agents to communicate 

the semantics of any attack report. Figure 5.9 is a section of the ontological model of the 

domain knowledge of the DDoS attack presented.  

 

The high-level definition of the components of the ontology is presented below: 

a. Concepts: Are definition of entities in a domain. In this scenario, the concepts are 

represented as CUSUM, NetworkCUSUMResultes, ServerLoadCusumResult, 

CUSUMResult and MeasurementProfile, LWMA.  

b. Predicates: These are expressions that say something about the domain or their 

entities. In this scenario, BelongsTo is defined as the predicate of the ontology.  

c. Agent Actions: These are dedicated concepts that show actions the domain 

agents can perform. 

The definition and implementation of concepts, predicates, action and relationships of 

the ontology provide the agents with a shared understanding of the domain. The use of 

ontologies, therefore, enables the agents to share, communicate, interpret and translate 

the DDoS attack reports from the transducer agents and IC agent respectively.  

Figure 5.9 is the domain ontology modelled. For a further understanding of the 

application of ontological concepts in multi-agent systems, the reader is referred to 

chapter four.  



131 
 

The design concept and the implementation of the PM agent allow the transparent 

approach to interacting with the low-level elements (e.g. Hadoop nodes) in the Hadoop 

cluster. For example changes in the CUSUM, parameters can be enforced on all nodes via 

the UI agent without concern for low-level implementation.   

-Technologies
-MeasurementProfile
-name

TakeMeasurement<<Action>>

-ProfileType
-timeFrame
-name 

MeasurementProfile<<concept>>

-listCUSUMResult<<Concept>>

SendAlertReport<<Action>>

-Technology
-RaiseAlert

Associated_With<<Predicate>>

*

1

*
1

1..*

-MeasurementProfile<<Concept>>
-CUSUM<Concept>>

StartCUSUMAnalysis<<Action>>
1

1

-MeasurementProfile<<Concept>>
-TraininPeriod

TrainAgent<<Action>>

1

1

-name
-MeasurementProfile<<Concept>>

TakenetworkMeasurement<<Action>>

-name 
-MeasurementProfile<<Concept>>

TakeSeverLoadeasurement<<Action>>

-ARL
-windowsize
-uperControlLimit
-lowerControlLimit
-target
-allowableSlack

CUSUM<<Concept>>

1

1

-abName
-date
-ListTime

Measurement<<Concept>>

-ListOutTraffic
-ListInTraffic

NetworkMeasurement<<Concept>>

-ListFifteenMinuteLoad
-................

ServerLoadMeasurement<<Concept>>

-Measurement<<Concept>>
-

UpdateMeasurement<<Action>>

1

1

1

1

1

*

-lstInCUSUMHighSide
-lstInCUSUMHighSide
-..............

NetworkCUSUMResult<<Concept>>

-includes 1

-CSResult1

-date
-listTimeseries
-Technology

CUSUMResult<<Concept>>

-lstOneMinuteCUSUMHighSide
-listOneMinuteCUSUMResultLowside
-..........................

ServerLoadCUSUMResult<<Concept>>

 
Figure 5.9 A section of the DDoS Ontology model 

 

 
Inclusive relationship Inheritance relationship General relationship Class/Entity Diagram 

 

1 *

Class



132 
 

B.   A brief description of the Health Check Behaviour of PM agent 

The PM health check equally response to the IC agent health check request by 

responding to the requester with the identification details such as the agent ID and 

agent name. The response of the health check behaviour implementation follows the 

same implementation process as shown in Figure 5.8.  

5.10.4 User interface agent  

The user interface agent is an implementation of the UI agent concept with the 

functional requirements to interface with the end-user platform and wraps high-level 

domain commands in a message that can be consumed by the agent community 

particularly PM agent. As proof of concept, custom user-admin interface was developed 

to interface with the UI agent to allow the ender user to interact with the agent 

community through a set of predetermined domain vocabulary. Through these set of 

vocabularies, the end user can interact with the agent community via some activities 

such as adding technology to the framework and changing the DDoS detection algorithm 

parameters.  

A.    A brief description of the vocabulary mapping behaviour of user interface agent 

The set of domain vocabulary used, which also doubles as the instruction on the user 

interface is directly mapped to a corresponding agent action defined in the ontology. UI 

agent equally employs the one-to-one mapping technique to wrap and communicates 

the high-level commands to the agent community. Likewise, any agent output meant for 

the end user goes through an inverse process to translate it to user understandable 

information (e.g. converting the ontology DDoS report into a graph that can be easily 

understood by the end user).  

The UI agent equally implements its health check behaviour to respond to the health 

check request as already explained.  

5.10.5 System registration and management agent 

The SRM agent is an implementation of the information agent concept with the 

functional requirement to manage the profiles of all agents in the framework. The 

profiles are essential to identify each agent and also understand the role and the 

operational restrictions. SRM agent manages the profiles by keeping a regular update of 



133 
 

the register (which is implemented as an XML file) via a management behaviour which 

allows activities such as adding, searching, deleting and updating of the agent’s profile.  

The register is essential because it provides IC agent in particular with up to date 

information of each agent. The register is also used to confirm active agents during the 

health check process.  

5.10.6 Intelligent controller agent 

The IC agent is an implementation of the collaborative agent concept with the functional 

requirements to: 

a. Coordinate and validate the operational activities of all the agents by ensuring 

that each agent complies with all user-defined protocols. The internal protocols 

are implemented as agent ontologies to allow multiple instantiations of the 

protocols concepts. 

b. Fuse and analyse DDoS reports from transducer agents to confirm a DDoS attack 

in the Hadoop cluster.  

c. Ensure agent availability through the health check mechanism.  

A.   A brief description of the DDoS Report fusing Behaviour of intelligent controller 

agent 

The DDoS detection mechanism is in two stages. The first stage (which is the DDoS 

detection) takes place at the Hadoop node level by the transducer agent. The detection 

on each node is carried out by the interfaced agent without any knowledge of the events 

on the other nodes. So at the DDoS detection stage, it is impossible to get a cluster-level 

view of the anomalies. Nonetheless, the framework should be able to detect when 

multiple attacks occur and also create a better knowledge of the behaviour of the attack.  

B.   A brief description of the Protocol Behaviour of intelligent controller agent 

Agents are autonomous entities, but they operate according to predetermined protocols. 

As observed in Table 5-4, each of the identified agents is equally assigned permissions 

and protocols which defined the conditions of their operations. Consequently, a star 

topology communication technique was adopted to ensure full compliance with the 

protocol. Thus each agent communication is routed through the IC agent who ensures 

that each protocol as defined by the end user is complied with. For example, the agents 

are only allowed to communicate with other agents in the same layer. However, the 



134 
 

agents are only allowed to communicate across layers via IC agent. Figure 5.10 is a 

model of the protocol enforcement mechanism. From the figure, it is observed that the 

communication protocol engine is used to manage the instances of protocol ontology. 

Moreover, the protocol engine is implemented as a native class object which provides 

the prerequisite interface for IC agent to add, update search and remove the protocol 

instances. Furthermore, the protocols are enforced as and when messages or request 

are received by the IC agent.  

 

Read/Write 
protocols Add/Update agent 

protocol

Add/
Update 

Protocols

User

Add/
Update

 Protocols

UI Agent IC Agent
All Agents

Agent protocol
Engine 

Enforce protocol

Protocol 

Ontology

 
Figure 5.10 A model of the protocol enforcement mechanism 

 

C.   A brief description of the Health Check Behaviour of intelligent controller agent 

The health check behaviour implements a mechanism to ensure agents availability. The 

mechanism works by sending periodic (the end user defines the time interval via UI 

agent) request to all agents to respond with their profile. Furthermore, the behaviour 

tracks all responses received and match with the number of agents in the agent register 

to ascertain if all agents have responded. Agents who fail to respond to the health check 

request within a defined time frame are considered as dead or inactive, and a 

notification is sent to UI agent to raise the alarm to restart the agent (The restart 

mechanism is outside the scope of this work and hence not considered).  

 



135 
 

 

Agent Management Regulatory Layer (AMRL)

 Agent
A

IC Agent

 Agent
B

 Agent
C

 Agent 
D

Believe Engine

Tech Interface

Believe Engine

Tech Interface
Believe Engine Believe Engine

Tech InterfaceTech Interface

Stage 1

Stage 2

H
a
d

o
o
p

 

C
lu

ster NameNode  Data Node Data Node  Data Node

 

Policy Management and 

Knowledge Integration Layer 

(PMKIL) System 
Administration

 Policy 
management 

Agent
 User Interaction 

Agent

Believe Engine Believe Engine
UI Interface

Communication 

Data Management and 

Assurance Layer (DMAL)
Data Persistence 

Agent 
System Registration

 Agent

 

Believe Engine Believe Engine

HBase Interface 

Communication

HBase
Ontology

 
TechProfile

 
AgentRegiste

r

 
Figure 5.11  The final Implementation model of the multi-agent-based framework. 

Agents A, B, C, and D are the transducer agents that interface with the Hadoop nodes 

 

 

 

 

 

 

 

 

 



136 
 

5.11 The final deliverable of the Gaia analysis and design methodology 

The Analysis and design methodology aims to systematically translate a problem 

statement or system requirements into a multi-agent system that is capable of 

delivering the expected results. In this work, Gaia methodology was adopted to design 

and describe the model of the proposed DDoS detection framework that can easily be 

developed on any multi-agent development platform. The systematic approach allowed 

for detail design and description of each component of the proposed framework and 

how they can seamlessly operate to provide the real-time distributed DDoS detection 

mechanism. Figure 5.11 is the final model which illustrates the architecture of the 

proposed framework. The model illustrates the deployment of the adopted agent 

concepts in the respective layers and also shows how the layers are organised to 

provide separation of concern in the proposed framework. According to Figure 5.11, the 

PMKIL layer will mainly address all information and policy management task via the UI 

and PM agents. Additionally, the layer will directly interface with external management 

platform via a bespoke interface. The double arrows also depict the flow of 

communication among the agents, between the layers or with an external platform (i.e. 

either with an external management platform or the Hadoop testbed).   

 

In addition to information management task, the DMAL layer also hosts two important 

files (i.e. AgentRegiste and TechProfile) which allow the framework to manage all the 

agents and the external technologies. According to the model, DMAL is also designed to 

interface with third-party data repository which serves as the data repository for some 

information management functions, via a bespoke interface. The layer achieves its 

functional requirements via the System Registration Agent and Data Persistence Agent       

The next layer of the framework is designed to host all the transducer agents which will 

directly interface with the external technologies (in this case the Hadoop nodes) they 

are assigned to manage. The collaborative agent (IC agent) is also located in AMRL to 

manage all the agent operations and also to enforce all internal protocols and policies.  

The layered architecture also depicts how each agent will sit and interact in the 

framework to achieve the individual functions. Moreover, the model depicts how the 

entire framework will interface and interact with the Hadoop cluster (which is the four-

node Hadoop testbed). The internal behaviours and communication patterns described 



137 
 

at the design stage will now be developed with a preferred multi-agent development 

platform.  

5.12 Summary 

Application of software agent paradigm in network management has evolved 

significantly [29][37][89][38]. The progressive research and commercial development 

interest mostly stem from the intelligent and autonomous capabilities of the concept.  

However, the domain is still emerging and hence is not extensively explored in other 

domains such as the Big Data security. Consequently, the Gaia methodology is employed 

to evolve the implementation of the multi-agent based framework to detect DDoS attack 

within a Hadoop cluster. The DDoS detection mechanism based on two statistical 

techniques (Cumulative Sum (CUSUM) analysis, and Linear Weighted Moving Average 

(LWMA) analysis) are presented to demonstrate a novel approach to creating 

lightweight and efficient DDoS detection techniques. In Chapter six, the evaluation 

result and analysis of the prototype of the proposed framework are presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

  Chapter 6

Results and Evaluation 

6.1 Introduction 

As presented in chapter five, the CUSUM DDoS detection mechanism is in two stages. 

The first stage involves detection and confirmation of a DDoS attack by the transducer 

agents on the interfaced node(s). Once the attack is confirmed on the node, the 

transducer agents create (according to the description of the ontology) and send an 

attack report to the IC agent. IC agent then fuses the attack reports received within a 

given time frame to confirm DDoS attack in the Hadoop cluster and also suggest the 

attack behaviour. Consequently, IC agent is endowed with a data fusion technique which 

allows it to aggregate the DDoS attack reports it received from the transducer agents to 

create a cluster view of the manifestation of the attacking technique. This approach is 

vital in getting a holistic view of an attack in a Hadoop cluster. For example, IC agent can 

confirm the reports if the nodes have been compromised (i.e. when the nodes are used 

as zombies) to launch a DDoS attack from the cluster. Furthermore, malicious software 

activities can be confirmed from the average server load reported by the transducer 

agents.  

 

Consequently, a prototype of the multi-agent framework was developed and 

experimented on the Hadoop testbed to confirm the effectiveness of the proposed 

framework. The results of the experiments will prove that the proposed framework is 

effective. Moreover, the novel DDoS detection techniques employed in the transducer 

agents are indeed efficient and can leverage the bandwidth utilisation and average 

server load flow metrics to detect TCP SYN flooding and UDP flooding attacks. 

Moreover, the evaluation results will confirm that the proposed framework can provide 

intelligent, real-time node-level DDoS detection mechanism in a Hadoop cluster with 

less than 20 s response time. 

 

 

 



139 
 

6.2 Experiment setup  

A test bed of the proposed framework was implemented to simulate the framework’s 

ability to provide Hadoop internal DDoS detection mechanism. The experiment setups 

are depicted in Figure 6.1 and Figure 6.2.  

 

Hardware Setup 

1. Dell Power Edge SC 1435 servers [90] were used to create a four-node network as 

shown in Figure 6.1. 

2. The servers have Quad-core AMD Opteron 2800 MHZ and the RAM of 8049 MB. 

3. A 64-bit PC with 3.7 GB memory and i5 Core processor was used to host and deploy 

the MapReduce Jobs to the Hadoop cluster. 

4. A 64-bit PC with 3.7 GB memory and i5 Core processor was used to deploy the 

prototype of the multi-agent framework to monitor and analyse the behaviours 

of the Hadoop nodes.  

Software Setup  

1. Apache Ambari 2.0.1 was used to deploy a four-node Hadoop 2.0 cluster on Linux 

Ubuntu 12.04.2 servers which are running on the Dell Power Edge SC 1435 [90]. 

2. Ubuntu desktop 15.0 were deployed as the underlying operating system for the 

Desktop PCs. 

3. JADE, a multi-agent development software framework with agent development 

libraries and tools was used to develop the proposed multi-agent framework 

(including all the agents, the protocol and ontology management engines) [12].  

4. The step-by-step deployment guide employed to deploy the Hadoop Big Data 

framework is excluded from this section for brevity. However, the reader is 

referred to [90] for comprehensive information on the deployment of the 

Hadoop 2.0 framework in the Ubuntu environment.  

 

 

 

 

 

 
 



140 
 

 
 

Node 3

Node 2

Node 1

Node 4

MapReduce Client 
deploying MapReduce jobs

 on the Hadoop cluster

Legitimate 
MapReduce Job

Ubuntu Desktop Running 
The prototype Multi-agent

 Framework

Reading Network  
and Server Load 

Hadoop Cluster
 

Figure 6.1 The setup of the Hadoop testbed 

 

The Figure 6.1 is the set diagram of the Hadoop and the multi-agent systems testbed.  

The Hadoop cluster comprises the four Hadoop nodes in a star network. The cluster has 

one client which creates and sends MapReduce jobs to the cluster and a PC hosting the 

prototype of the multi-agent framework. They are both connected to the Hadoop cluster 

via local area network 

 

NameNode

DataNode 1

DataNode 2

DataNode 3

Agent framework analysing
Load and traffic for DDoS attack

MapReduce Client

Attacker

Agents reading server load 
and network measurements

Streaming of MapReduce 
jobs and data

Malicious activities 
including exploiting vulnerabilities and 

launching attacks

Hadoop Cluster

100% 90% 80% 70%

DDoS attack Results

Agent framework produces analytic results 
to confirm or deny DDoS attack

 
 

Figure 6.2 A model of the experiment setup 



141 
 

Figure 6.2 is a model depicting the software and hardware setup of the evaluations. The 

model shows that the framework prototype is deployed in a client machine to interface 

with the Hadoop nodes to read and analyse the network traffic and server load in real-

time. The results of the analysis are also generated to confirm or deny the existence of a 

DDoS attack. The MapReduce application (referred to as MapReduce client) is deployed 

to generate activities on the Hadoop cluster by sending live MapReduce job requests to 

the Hadoop cluster and stream live data from the Hadoop cluster.  The attacker 

represents the nodes used to create the botnet and launch the TCP SYN flooding and 

UDP flooding attacks.  

 

Firstly, all agents in the proposed framework have been implemented according to their 

functional description presented in chapter five. Transducer agents in this work are A, 

B, C and D (Interfacing the respective Hadoop nodes in the cluster). The transducer 

agents are designed to interface between the networked nodes (i.e. Hadoop nodes) and 

the agent community in the framework (see Figure 5.11).  Moreover, they are 

implemented to collect and analyse the network and average server load flow metrics to 

detect the DDoS attack. The agent’s interface capabilities are implemented with the 

respective APIs of the node they interface. For example, the HDFS API was used to 

develop the interface and command mapping functionalities for the Hadoop node 

transducer agents. Likewise, the native JADE ontological libraries were used to 

implement the DP agent with an additional role as the ontology management engine for 

the agent community. The ontological model is used to describe the domain properties, 

types and entity relationships as presented in Figure 5.9. The definition and 

implementation of ontology concepts, predicates, action and relationships of the 

ontology provide the agents with a shared understanding of the domain semantics. The 

use of ontologies makes the agents able to share the DDoS attack reports, communicate 

operational information and interpret and translate domain vocabulary into agent 

messages or low-level commands (if it is transducer agent) without low-level 

knowledge of the intended technology. 



142 
 

6.3 Performance evaluation of the CUSUM and LWMA technique under TCP 

SYN flooding attack  

The functional capabilities of the software agents are dependent on the inherent skills. 

Agent skills are functional components or modules which allow the performance of 

specific task as defined by the owner. In Section 5.10 the skills or behaviours of the 

proposed agents were designed according to their functional requirements. Specifically, 

the proposed framework was designed to provide an inherent DDoS detection 

mechanism for the Hadoop software framework. Consequently, two statistical 

techniques (CUSUM and LWMA) were used to develop DDoS detection skills that will 

enable the transducer agents to use bandwidth utilisation and server load flow metrics 

to monitor and detect DDoS attacks on the nodes.   

The aim of this section, therefore, is to evaluate the performance of the transducer 

agents in detecting DDoS attacks. Two DDoS attacks (i.e. TCP SYN flooding and UDP 

flooding) were unleashed on the Hadoop test bed to generate malicious traffics in the in 

the experiment.  

 

The performance of the framework in all scenarios was evaluated regarding total attack 

detected (AD), response time (RT), false positive ratio (FPR) and false negative ratio 

(FNR).  

1. AD is defined as the total malicious measurement detected. Number of false 

positives (FP) is defined as the total number of legitimate measurement detected 

as malicious.  

2. Number of false negatives (FN) is defined as the total number of malicious 

measurements failed to be detected. 

3. FPR and FNR are defined as follows: 

𝐹𝑃𝑅 = 𝐹𝑃/𝐴𝐷,         (6.1) 

𝐹𝑁𝑅 = 𝐹𝑁/𝐴𝐷,      (6.2) 

4. Response Time (RT) is defined as the elapsed time from when the first anomaly is 

detected to when the attack is confirmed.  

5. Total attack sent (AS) is defined as the total number of malicious requests sent from 

the attacker. 



143 
 

6.4 Classification of the evaluation scenarios   

Two evaluation methods (i.e. Offline and real-time) were employed to evaluate the 

performance of the framework. The offline method provides a controlled environment 

for testing the framework with predetermine sets of measurements to predictably 

confirm the accuracy and efficiency of the framework. The data used in the offline 

evaluation were collected from the Hadoop test bed during legitimate activities and an 

attack. Thus the UDP and TCP SYN flooding attacks were launched on the test bed 

during which the measurements (i.e. network utilisation and average server load) were 

collected. The measurements were then fed into the framework in a controlled manner, 

first of all, to observe if the agents will be able to accurately detect all attack instances 

on the test bed and also discriminate the normal behaviour from the malicious 

behaviour. The offline analysis aims to validate the efficiency of the DDoS techniques 

employed in the transducer agents.     

While the offline evaluation method establishes the framework’s ability to detect UDP 

and TCP SYN flooding attacks; the real-time evaluation method will aim to evaluate the 

framework’s ability to detect the attacks in real Hadoop environment. In the real-time 

instance, the agents are deployed to sit on the Hadoop cluster to observe and learn the 

legitimate behaviour of the nodes for a predetermined training period and also monitor 

the behaviours to detect and confirm DDoS attack when present. Thus the framework’s 

ability to protect a Hadoop cluster in a real environment is evaluated.  

In the next section, the results from the offline and real-time evaluations will be 

presented and analysed.  

 6.5 Offline evaluation of the detection of high-intensity TCP SYN flooding 

attack. 

The experiment for this evaluation was conducted in a controlled environment or 

offline on the Hadoop testbed. Thus the performances of the agents were observed 

when they were exposed to a controlled size of normal and malicious traffic and server 

load measurements collected from the Hadoop testbed. Firstly, the agents were trained 

with legitimate measurements collected during a MapReduce job. The size of the 

training measurements constituted eight hours of normal activity. Furthermore, a DDoS 

attacking tool called hping3 was used to launch a DDoS attack on the live Hadoop test 



144 
 

bed during which the bandwidth utilisation and average server load measurements 

were collected. Hping3 is a security auditing and testing tool used to audit and test 

network security systems such as firewall [91].  Hping3 is also used to explore and 

highlight vulnerabilities in networks and security systems for the necessary security 

attention.  Likewise, another DDoS attack tool called Low Orbit Cannon (LOIC) was used 

to launch a UDP flooding attack in the Hadoop cluster at a separate instance. LOIC is an 

open-source network stress testing and DDoS attack tool. LOIC was initially developed 

by praetox technologies but later released under the open source license.  The 

experiments were conducted in two attacking scenarios.  

In the first scenario, the hping3 tool was used to form a botnet of two Hadoop nodes to 

remotely launch TCP SYN flooding attack from the cluster [27] (it is assumed that the 

Hadoop nodes are exposed to the attacker because the testbed perimeter security is 

already compromised). The first scenario aims to evaluate the agent's ability to detect 

when a Haddop node is compromised to launch a DDoS attack from within a Hadoop 

cluster. The Low Orbit Cannon tool was used in the second scenario to launch low-

intensity UDP flooding attack on victim within the cluster. Likewise, the second 

attacking scenario is aimed at detecting when a Hadoop node fall victim of the low-

intensity DDoS attack. The victim in the second scenario is the Hadoop NameNode.   

The malicious traffic was generated regarding the hping3 attack properties presented in  

Table 6-1 to simulate fluctuating traffic and to test the agent’s ability to discriminate 

random anomalous behaviours from the legitimate MapReduce activities actively 

running in the Hadoop cluster.  

This section presents a comparative analysis of the performance of the agents when 

exposed to the high-intensity TCP SYN flooding attack. In this experiment, the agents 

were tasked to use relevant flow metrics and then employ the novel detections 

technique to analyse and report on the behaviour of a victim of a TCP SYN flooding 

attack. Thus incoming traffic and average server load are the main point of analysis for 

the agent although both incoming and outgoing traffic is analysed in a live environment. 

The performance of the two techniques (i.e. CUSUM and LWMA) are analysed regarding 

the performance evaluation metrics. The objective here is to understand how the two 

techniques will perform under the given situation. The results will, therefore, be 



145 
 

presented in the same order of consideration. Each detection technique was evaluated 

under the same condition but in separate instances. Additionally, both techniques were 

exposed to thirty minutes training period, which constitutes 1800 legitimate network 

traffic and average server load measurements to ensure the same level of intelligence of 

the legitimate behaviour of the Hadoop nodes. Also, the same values for the following 

CUSUM and LWMA tuning parameters were used for both techniques to ensure 

consistency in the evaluation. The values for the tuning parameters during the training 

period were: 

ARL == 360 

SW == 5 

 

Thus 360 windows of five measurements constitute 1800 seconds of network traffic 

and server load measurements.  

The tuning parameters values for the monitoring and analysis period were: 

ARL == 20  

SW == 5 

Thus twenty windows of five measurements will be analysed in each running period. 

The SW value of five was adopted to accommodate any legitimate spike that may occur 

during the analysis.  

 

The table below presents the hping3 parameters used to launch the TCP SYN flooding 

attack.  Some of the parameters did not require values. 

 
Table 6-1 hping3 attack properties 

hping3 
flag 

Meaning values 

-c Number of packets to send  60,000 
-d Size of packets 120 
-s Sending TCP SYN packets  

- 
-w Window size 64 
-p Destination port  80 
--flood Flooding mode - 
--rand Generating random source IP - 
--source  Initial source IP Address - 

 



146 
 

The table below presents the legitimate behaviour and the control limits obtained when 

the transducer agents conducted thirty minutes of training with the CUSUM techniques.  

 

The values in the tables are the output of the CUSUM detection technique after the 

agents have analysed the network and the average server load measurements collected 

from the Hadoop nodes. Thus the variations in similar results in subsequent tables are 

legitimate and a reflection of the dynamic behaviour of the Hadoop nodes. Essentially 

because the agents collect and analyse the network and server load measurements in 

real time, any change in behaviour will reflect in these metrics (i.e. network traffic and 

average server load) which will, in turn, reflect in the outcome of the CUSUM output 

when processed by the agents in the framework.  

 

The table below presents the legitimate behaviour (i.e. the output of the CUSUM 

detection algorithm ) and the control limits obtained when  the transducer agents 

conducted thirty minutes long training with the CUSUM technique. 

 

Table 6-2 The Agent's current belief as a result of the 30 minutes CUSUM training 

Agent’s current 
belief 

Upper control limit 
 

Lower control limit 
Target 

 
Incoming traffic 
KB/s 

80976  -80976 5000 

Outgoing traffic 
KB/s 

78688 -78688 5000 

One minute load % 1.11 
-1.11 

 
1.0 

Five minutes load % 0.25 -0.25 
1.5 

 
Fifteen minutes 
load  % 

0.1 -0.1 1.5 



147 
 

 

The table below presents the legitimate behaviour(i.e. the output  of the LWMA 

detection algorithm or technique)   and the control limits obtained when  the transducer 

agents conducted thirty minutes long training with the LWMA technique. 

 

 

Table 6-3 The Agent's current belief because of the 30 minutes LWMA training 

Agent’s current 
belief 

Upper control limit 
 

Lower control limit 

Incoming traffic 
KB/s 

889 1 

Outgoing traffic 
KB/s  

2588 0 

One minute 
load % 

0.42 0.1 

Five minutes 
load % 

0.2 

 
0.1 

Fifteen minutes 
Load % 

0.21 0.1 

 

The table below presents the performance evaluation results when the framework was 

exposed to detect a high-intensity TCP SYN Flooding attack. 

 
Table 6-4. The Evaluation results of the CUSUM technique in detecting 

high-intensity TCP SYN Flooding attack 

ARL Traffic 
Source 

AS AD FP 
 

FN FPR 
% 

FNR 
% 

First Incoming  
20 

18 1 2 5.56 11.12 

Outgoing 0 0 0 0 0 

Second Incoming 
 

 
28 
 

26 0 2 0 7.70 

Outgoing 0 0 0 0 0 

Third Incoming  
35 

32 0 3 0 8.58 

Outgoing 0 0 0 0 0 

   

 

The graph below presents how the CUSUM technique detected the TCP SYN flooding 

attack in the incoming traffic during the first ARL period. The corresponding graph for 

the outgoing traffic presented in Appendix A 



148 
 

 

 

Figure 6.3 Detection of TCP SYN Flooding attack on incoming traffic on first ARL 
 

 

6.5.1 Offline performance  analysis of the CUSUM-based DDoS detection technique 

According to the CUSUM evaluation results in Table 6-4, the technique can detect high-

intensity DDoS attack with less than 12% false negative ratio and less than 6% false 

positive ratio.  The cause of the false positive and false negative is indeed attributed to 

the cumulative approach used by the CUSUM technique. Figure 6.3 is the detection 

result on the incoming traffic during the first ARL.  In this instance, it is observed from 

Figure 6.3 that the first ARL analysis of the incoming traffic flagged anomalous traffic 

from the twenty-first second. However, the cumulated results of the twenty-first and 

twenty-second traffic deviation were not significantly high enough to exceed the upper 

control limit although the deviation exceeds the traffic target of 5000 KB/s as presented 

in  Table 6-2. Consequently, the technique falsely classified traffic deviations as 

legitimate traffic despite them being malicious. Likewise, the technique falsely classified 

the forty-fifth CUSUM deviation as malicious traffic when the traffic had returned to 

normal activity (i.e. the network traffic is now behaving within the target) at that point. 

The observations indicate that the CUSUM-based technique can’t detect sudden changes 

in the network traffic or the server load graph unless the deviation is progressive over 

some time or the difference between the current and previous sum is far greater than 

the previous sum. That is why the technique failed to precisely acknowledge the forty-

-200000

0

200000

400000

600000

800000

1000000

0 5 10 15 20 25 30 35 40 45 50

N
et

 T
ra

ff
ic

 C
U

SU
M

 (
K

B
/s

) 

Time  
From 11:03:00  to  11:03:43 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



149 
 

fifth results in Figure 6.3 as the sharp fall of the malicious traffic into the legitimate 

traffic range.  

The graph below presents how the CUSUM technique detected the TCP SYN flooding 

attack in the incoming traffic during the second ARL period. The corresponding graph 

for the outgoing traffic presented in Appendix A 

 

 

 

However, according to Fig. 6.4 which present the detection result on the incoming traffic 

during the second ARL the technique rightfully judged the first two traffic deviations in  

Fig. 6.4 as legitimate as the trend progresses.  The same observations were made during 

the second and third ARL analysis (the rest of the graphs are shown in Appendix A Fig. 2 

to Fig. 14), particularly of the false negative classification. According to the evaluation 

results, false classification only occurs at the sudden change in the traffic amplitude.  As 

a result, it can be inferred that the technique is slow in detecting sudden fluctuations in 

the network traffic and hence can incur high false negative ratio if the attacking 

technique is designed to fluctuate the malicious traffic during transmission.  

Despite the limitations, it can also be observed from the evaluation results that the 

CUSUM technique is sensitive and can accurately detect a high-intensity DDoS attack 

from the network flow measurements. According to the evaluation results, the 

technique can confirm a DDoS attack in less than ten seconds as shown in Figure 6.3. 

-200000

0

200000

400000

600000

800000

1000000

0 5 10 15 20 25 30 35 40 45 50

N
et

w
o

rk
 T

ra
ff

ic
  C

U
SU

M
 K

B
/s

  

Time   
From 11:03:44 to  11:04:29 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

Fig. 6.4 TCP SYN Flooding detection on incoming traffic on second ARL 



150 
 

According to Figure 6.3, the attack begun in the twentieth seconds and was confirmed 

(i.e. when it exceeded the upper control limit) within the first five seconds. Moreover, 

the traffic fluctuations were detected near 100% accuracy as shown in Figure 6.3 and 

Fig. 6.4. Ten seconds response time to attack is indeed fast and can provide enough time 

for mitigation the risk of the attack.  

The graph below presents how the CUSUM technique confirmed the demand of TCP SYN 

flooding attack in average load of the victim. The figure shows how the node is 

consuming its process resource whiles under TCP SYN Flooding attack. 

 

Figure 6.5 TCP SYN Flooding attack minister on the one-minute server load 

 

In addition to the traffic analysis, the technique equally reported the impact of the 

anomalous activity in the server load during the attack. The server load CUSUM graph 

provides additional information about the malicious activities as detected and reported 

by the detection technique. More specifically, the server load reports on the demand on 

the server in three different time instances (i.e. one minute, five minutes and fifteen 

minutes). Figure 6.5 represents the progressive build-up of the malicious load or the 

impact of the attack on the server load. As shown in Figure 6.5 it can be observed that 

the process demand on the server exceeded the control limit during the attack. As the 

incoming network chart reveals malicious network traffic; the server load analysis gives 

insight into how fast the server is heading into the denying of service mode. Contrarily 

-2

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

  C
U

SU
M

 o
f 

Se
rv

er
 L

o
ad

 %
 

Ttime  
From 11:02:58 to 11:03:48 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



151 
 

to the existing denying of service detection techniques [61][92][29], the dual analysis of 

both network traffic and server load behaviour provides comprehensive insight into the 

malicious activities and the lifespan of the server in the Hadoop cluster. Thus the 

technique provides the transducer agents with the prerequisite skill for monitoring the 

behaviour of the Hadoop nodes and makes a comprehensive judgement of any malicious 

activities that can prevent legitimate access with further insight into the depleting 

lifespan of the node under attack. Such insightful information can further be leveraged 

to speed up mitigation decisions in response to the attack.     

From the evaluation results, it can be confirmed that the proposed CUSUM technique 

can detect high-intensity attack in less than ten seconds with minimal room for 

misjudgement which in this case did not have any significant impact on the detection 

accuracy. The results also reveal that the CUSUM technique is not swift enough to detect 

fluctuations in the traffic and hence it is likely to misjudge initial results after any 

fluctuation. However, as shown in Table 6-4, Figure 6.3, Fig. 6.4 and Figure 6.5 the 

technique nonetheless, provides a novel approach to leveraged flow metrics to detect 

DDoS attacks at Hadoop node-level with high response time.  

6.5.2 Offline performance analysis of the LWMA-Based DDoS detection technique 

Because LWMA is an average based analysis technique, the detection approach is more 

high-level than the CUSUM technique. Unlike CUSUM-based technique which takes a 

granular look at every measurements, LWMA conducts a snapshot analysis of the 

network traffic and the server load. Thus LWMA reports on the state of the network and 

the server load within a given period (e.g. the sliding window).  As explained in Section 

6.3, the sliding window concept was employed in this implementation to serve as a 

window of analysis. The technique considers the volume of each measurements in the 

current window under analysis and determines if the weighted average measurement 

exceeds the control limit (i.e. if it is malicious). Additionally, LWMA considers the 

positions of the metrics to determine their weight before finding the average 

measurements. Essentially, high malicious network traffic or server load measurements 

in a window will subsequently produce malicious window average. Also, the position or 

the time the measurement was captured has a significant impact on the outcome of the 

analysis. For example, if the last three measurements of the current window represents 

normal behaviour, then that will take precedence in the overall judgement for that 



152 
 

period. Consequently, the FNR and FPR evaluation will consider the window that failed 

to report an attack as false negative and the window that wrongly reported attack as 

false positive. The merit of such periodic analyses is that it produces snapshot 

behaviour of the network and the server load and hence informed faster response to 

attacks without further analysis of the result compare to the CUSUM technique. The 

assertion is confirmed in the next section which analyses the performance of the LWMA 

technique.  

 

The graph presents the detection result of the LWMA technique during the first ARL. 

The figure indicates a snapshot of legitimate activity until the fifth window when the 

TCP SYN Flooding attack occurred. The fluctuations in the malicious traffic represent 

the impact of the attack. 

 

Fig 6.6 LWMA Result of the incoming traffic First ARL 

 

 

 

 

 

 

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 A
ve

ra
ge

  N
e

tw
o

rk
 T

ra
ff

ic
 K

B
/s

 

Window Postions 

Average Network Traffic Upper control limit Lower control limit

detection of the malicious traffic during the first ARL 

legitimate traffic 



153 
 

The graph below presents the detection result of the LWMA technique during the first 

ARL. The figure indicates that the load on the victim exceeded the control limit or the 

legitimate range during the TCP SYN Flooding attack period. 

 

Fig 6.7 LWMA Result One Minute Sever Load First ARL 

The figure below presents the detection result of the LWMA technique during the 

second ARL. The figure indicates that the malicious activity in the incoming traffic 

continued into the second ARL analysis until window 11, 17, 18, 19 and 20 which 

reported the network around the time was legitimate. The corresponding analysis in the 

outgoing traffic is presented in Appendix A. 

 

Fig 6.8 LWMA Result Incoming Traffic Second ARL 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

  S
er

ve
r 

Lo
ad

 %
  

Window Position  

Average Server load Upper control limit Lower control limit

detection of anomolous load on the server 

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

   
A

ve
ra

ge
 N

et
w

o
rk

 T
ra

ff
ic

 K
B

/s
 

Window Position 

Average Network Traffic Upper control limit Lower control limit



154 
 

The table presents the evaluation results of how the LWMA technique performed when 

exposed to detect TCP SYN Flooding attack on the Hadoop.  

Table 6-5. The Evaluation results of the LWMA-Based technique 
in detecting TCP SYN Flooding attack 

ARL Traffic 

Source 

AS AD FP 

 

FN FPR 

% 

FNR 

% 

First Incoming 

 

 

44 

13 0 0 0.0 0.0 

 

Outgoing 

0 0 0 0.0 0.0 

Second Incoming 

 

 

 

39 

12 0 0 0.0 0.0 

Outgoing 

 

0 0 0 0.0 0.0 

 

Regarding the response time to TCP SYN Flooding attack, LWMA detected and reported 

the attack in the fourth window which represents the first to fifth seconds after the 

attack was launched. Thus, LWMA also detected and confirmed the attack in five 

seconds according to Fig 6.6. Furthermore, it can be observed from window position 

four that the technique accurately and timely reported the sudden changes in the 

network traffic. In this instance, the notification of the malicious traffic was immediate 

compared to the progressive approach of the CUSUM technique.  According to Table 6-5, 

44 malicious requests were sent during the first ARL. In response, LWMA reported 13 

instances (i.e. windows) where significant malicious metrics were detected. This 

indicates that LWMA captured the 44 malicious network activities in thirteen instances 

during the first ARL. Moreover, Fig 6.6 and Fig 6.8 equally reported fluctuations in the 

network traffic during the attack period.  

Moreover, it can be observed from Fig 6.6 that window 9 and 12 reported a drop in the 

network amplitude during the attack. However, the drop was not significant enough to 

return the traffic to reflect a change from malicious traffic to the legitimate traffic range.  

What the drop indicates is that only a few metrics within the window were considered 

to be normal, but enough malicious measurements were captured during that period, so 

the average traffic within the period was malicious. Incidentally what LWMA is saying in 

this instance is that significant numbers of malicious traffic were captured though there 

was little legitimate traffic during the period under analysis. However, Windows 17, 19 

and 20 in Fig 6.6 reported normal network activities during that period.  Likewise, 



155 
 

windows 11 to 14 and 17 to 19 in Fig 6.8 equally reported normal activities in the 

network traffic during those periods which indeed reflects the state of the Hadoop node 

at the time. It can, therefore, be inferred from the result that the LWMA-based technique 

can project more reflective activities within that period and confirm the overall 

behaviour which was alarming or malicious in this instance.  Regarding the response 

time to attack, it can be inferred from the result that the LWMA-based technique can 

equally detect high-intensity TCP SYN flooding attacks in 5 seconds with 0% FNR and 

FPR.  

A.   Determination of the FPR and FNR under the LWMA technique 

The determination of FNR and FPR in LWMA takes a different viewpoint than the 

CUSUM technique. In the LWMA technique, the determination is made based on the 

reported windows rather than the individual measurements which constitute the 

window. Thus because LWMA evaluates and reports on the weighted average of the 

window, the final determination ( the weighted average) is rather considered to be 

either true or false positive or false negative.  For example, if the LWMA-based 

technique reports malicious weighted average during a period of normal activity, then 

that will be classified as FN or vice versa. According to Table 6-5, the 13 anomalous 

windows reported in the first ARL and 12 anomalous windows reported in the second 

ARL were both accurate periodic analysis based on the FNR and FPR results. The results 

also confirmed the LWMA-based technique as sensitive to high-intensity TCP SYN 

flooding attack. Furthermore, the technique accurately reported the behaviour in the 

outgoing traffic during the first and second ARL results as legitimate. Thus the result is 

consistent with the outcome of the CUSUM results which also reported zero anomalous 

traffic in all the three ARLs.   

B.    Analysis of the effect of the TCP SYN Flooding attack on server load  

Regarding the effect of the malicious activities on the server load, the LWMA-based 

technique rather reported abnormal average load in all the windows according to 

Fig 6.7. Unlike the CUSUM one minute server load graph, the LWMA one minute server 

load graph projects a more reflective impact regarding how much the server is affected 

by the attack over time and also provide a substantial indication to predict the eventual 

consequences within a time frame easily.    



156 
 

Overall, it has been proven that the CUSUM-based and the LWMA-based techniques can 

detect TCP SYN flooding attacks from the bandwidth utilisation and average server load 

metrics with less than 20 seconds response time. Contrary to other current detection 

approaches [60], the novel techniques employ a dual analytical approach to observing 

both the network traffic and the server load at the same time. As a result, they provide 

more insightful information about the attack with a good indication of the lifespan of the 

victim. The approach will not only improve mitigation time to DDoS attack but will also 

assist decision making by indicating the lifespan (i.e. deterioration effect on the 

processor) of the victim. 

6.6 Offline evaluation of the detection of low-intensity UDP flooding attack 

The UDP Flooding attack was set up to simulate a low-intensity attack in the cluster. The 

aim is to transmit malicious traffics alongside legitimate traffic.  Consequently, the UDP 

attack traffic transmitted within the range of 600 KB/s and 8000 KB/s which are similar 

to legitimate traffic range according to the legitimate behaviour values presented in 

Table 6-2. According to the training results as presented in Table 6-2, the transducer 

agent is trained to use a legitimate traffic target of 5000 KB/s for both the outgoing and 

the incoming traffic. Furthermore, the agent has been trained to believe that any traffic 

within the upper and lower control range should be classified as legitimate and should 

not raise the alarm. Essentially, the attack is set up to transmit malicious traffic at a rate 

lower than the legitimate behaviour. In this case, it is expected that the CUSUM-based 

technique will detect this low-intensity attack, particularly at the lower control limit. 

The attack started transmitting from 10:15:50. 

 

 

 

 

 

 

 

 



157 
 

The table below presents the knowledge (i.e. belief) of the normal behaviour obtained 

from the CUSUM algorithm at   the end of the training period on the node. 

Table 6-6 The Agent's Current belief as a result of the CUSUM training 

Agent’s Current 
belief 

Upper control limit 
 

Lower control limit Target 
 

Incoming Traffic 
KB/s 

80976 -80976 5000 

Outgoing Traffic 
KB/s 

78688 -78688 5000 

One Minute Load % 1.11 -1.11 

 
1.0 

Five Minutes Load % 0.25 -0.25 1.5 

 
Fifteen Minutes 
Load %  

0.1 -0.1 1.5 

 

The graph presents the result of the CUSUM technique after analysing the incoming 

traffic to detect low-intensity UDP flooding attack. 

 

Fig 6.9 UDP flooding attack result of in the incoming traffic 

 

 

 

 

 

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

10:15:10 10:15:27 10:15:45 10:16:02 10:16:19 10:16:36 10:16:54

N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 K

B
/s

 

Time series  

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



158 
 

The graph below presents the result of the CUSUM algorithm after analysing the 

outgoing traffic to detect low-intensity UDP Flooding attack. 

 

 

6.6.1 Offline performance evaluation of the of the CUSUM DDoS-based technique 

in detecting the low-intensity UDP flooding attack  

According to the Fig 6.9 all malicious traffic from 10:15:50 to 10:16:00 were within the 

legitimate range, and so the technique did not flag them as malicious. Indeed, the 

decision unveils a limitation with the CUSUM-based technique, which is the technique is 

sensitive to high-intensity attacks, according to the TCP SYN flooding attack evaluation 

results. However, this result shows that the CUSUM-based technique is ineffective in 

detecting low-intensity attacks. The reason for such performance is attributed to the 

fact that the deviation of each CUSUM analysis is not added to the high side unless it 

exceeds the target on the high side. Likewise, the deviation will not be added to the low 

side unless the outcome is far from the target on the low side. Consequently, the further 

the measured network metrics are from the target (i.e. the belief), the higher the high 

side or low side CUSUM builds up until it exceeds the upper or lower control limit to 

confirm anomalous activities. Additionally, the technique returns the deviation to zero if 

the outcome of the CUSUM-based analysis is on target. So what Fig 6.10 also indicates is 

that the results from all the malicious traffic analysed during the attack period were on 

target, and so the high side and the low side deviation returned to zero. Thus, the 

CUSUM-based technique confirmed the network traffic to be within the legitimate range. 

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

10:15:10 10:15:27 10:15:45 10:16:02 10:16:19 10:16:36 10:16:54

 N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/s
) 

Time series  

CUSUM High Side CUSUM Low Side

Upper control limit Lower control limit

Fig 6.10 UDP flooding attack result outgoing traffic First ARL 



159 
 

However, it can be observed from 10:16:02 to 10:16:05 that the measured traffic 

exceeded the target significantly, but that was not high enough to cause the CUSUM of 

the deviation to exceed the upper control limit to raise the alert, so it was still classified 

as legitimate. At this point, although the traffic has exceeded the target the upper 

control limit (upper control limit are determined during the training period) from the 

normal behaviour was also further to detect the low, malicious traffic.  

The result further reveals another challenge regarding the definition of the CUSUM 

upper and lower control limit, particularly in this context. The challenge is because the 

control limits are based on the normal behaviour and also set during the training period 

they remain static during the detection stage until new training is conducted. Not only 

that the values of the control limits also depend on the actual traffic and server load 

behaviour of the node. So even if another training is conducted the result will end up the 

same if there’s no behavioural change on the node. To improve the setup of the control 

limit, a more dynamic approach that is based on the target can be employed. For 

example, a threshold to measure the number of metrics that exceed the target can be set. 

The threshold can then be used to flag the measurements that exceed the target but not 

significant enough to add to the CUSUM. Thus if the value of five is defined as a target 

threshold, then an alert will be raised if such results are detected.  

According to Fig 6.10, the outgoing CUSUM result equally reported false negative results 

during the attack. Because the technique failed to detect the malicious TCP SYN ACK  in 

the victim’s outgoing traffic.  The server load analysis in Fig 6.11  did not report any 

significant change in the server during the attack. The server load result can, however, 

be inferred as accurate because the traffic request was largely within the normal 

behaviour. So it is expected that not much will change on the server load ultimately.  

The Evaluation of the performance of the CUSUM-based technique in the experiment 

has revealed that the technique is very ineffective when it comes to detection low-

intensity attack. That means the CUSUM-based technique is unlikely to be effective in 

detecting masqueraded attacks. According to Table 6-7, the ineffectiveness is confirmed 

by the 100% false positive ratio reported by the evaluation results.   

 

 



160 
 

The graph below presents the result of the CUSUM technique after analysing the 

outgoing traffic to detect low-intensity UDP Flooding attack. 

 

Fig 6.11 UDP Flooding attack result one minute load Second ARL 

 

The table presents the evaluation results for the CUSUM algorithm when exposed to 

detect UDP Flooding attack on the victim. 

Table 6-7 The Evaluation results of the CUSUM technique of in detecting UPD attack 

ARL Traffic 

Source 

AS AD FP 

 

FN FPR 

% 

FNR 

% 

S 

 

First Incoming 

 

 

87 

0 0 87 0.0 100 1 

 

Outgoing 

0 0 0 0.0 0.0 0 

Second Incoming 

 

 

79 

0 0 79 0.0 100 1 

Outgoing 

 

0 0 0 0.0 0.0 0 

 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

10:16:36 10:16:54 10:17:11 10:17:28 10:17:46 10:18:03 10:18:20 10:18:37

Se
rv

er
 lo

ad
 L

o
ad

 C
U

SU
M

 (
%

) 

Time Series  

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



161 
 

6.6.2 Offline performance evaluation of the LWMA-based technique in detecting 

low-intensity UDP flooding Attack  

 The LWMA-based technique was evaluated under the same experimental set up as the 

CUSUM-based technique. Moreover, the same training period was maintained for both 

techniques to ensure equal exposure to the experiment set up and training conditions. 

Because LWMA only decides on the weighted average of the sliding window, a longer 

ARL value (i.e. 20) was used in this experiment to allow a broader coverage of the 

normal behaviour of the node. However, the SW value of 5 (i.e. measurements per each 

window) was maintained for the analysis and detection section. One significant 

difference between the CUSUM and LWMA technique is the definition of the upper and 

lower control limits.  CUSUM defines the control limits as a product of σ(sigma) of the 

normal measurement. However, the LWMA-technique defines the control limits as the 

maximum and minimum average traffic or server load obtained during the training 

period. Thus the LWMA-technique sets the control limits based on the exact average 

values without making provision for any predetermined targets and allowable slacks 

from the target. Unlike CUSUM-based technique, the LWMA-based technique 

determines the legitimate behaviour based on a more reflective behaviour of the nodes 

(i.e. the technique does not make room for any assumptions). The current knowledge of 

the normal behaviour in  

 

Table 6-3 is maintained in this experiment for the analysis and detection of the UDP 

flooding attack. 

 

  

 

 

 

 

 



162 
 

 

 

The graph below presents the detection of the UDP flooding attack in the incoming 

traffic during the first ARL analysis. The traffic above the upper control limit represents 

the malicious traffic detected 

 

 

Fig 6.12  LWMA Result for Incoming Traffic First ARL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
ve

ra
ge

 T
ra

ff
ic

 (
K

B
/s

) 

Window postion 
10:15:17 to 10:17:02 

Average Traffic Upper control limit Lower control limit



163 
 

The graph below presents the detection results of the UDP flooding attack in the 

outgoing traffic during the first ARL analysis. The traffic above the upper control limit 

represents the malicious traffic detected 

 

 

Fig 6.13 LWMA Result Outgoing Traffic First ARL 
 

The performance evaluation results of the LWMA technique is present in Fig 6.12 and 

Fig 6.13. From Fig 6.13 the MapReduce activities were accurately captured by the 

LWMA technique from the first window to the sixth window; representing the first 

thirty-two seconds of the legitimate activities. The manifestation of the malicious traffic 

started from window seven (i.e. from 10:15:50). Furthermore, it can be noted that 

window seven registered a drop and then a gradual rise of the traffic activities until the 

traffic amplitude exceeded the control limit. Ones again the LWMA technique precisely 

captured the malicious traffic from the seventh window and discriminated the sturdy 

malicious network behaviour during that period. Furthermore, the technique 

responded to the attack within five seconds range. 

According to the performance, the LWMA technique has maintained consistent 

response time over two different types of DDoS attacks (i.e. UDP and TCP SYN flooding).  

Moreover, Fig 6.12 and Fig 6.13 reported all the fluctuations in the traffic and also 

indicated them as instances of malicious activities in the traffic. Comparatively, window 

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 T
ra

ff
ic

 (
K

B
/s

) 

Window Position 
10:15:17 to 10:17:02  

Average traffic Upper control limit Lower control limit



164 
 

7 to 12 reported the same malicious manifestation in the network traffic as reported by 

the CUSUM technique except that the LWMA technique provides consistent accuracy in 

detecting either UDP flooding or TCP SYN flooding attacks.    

Concerning the impact of the malicious incoming traffic on the outgoing traffic, Fig 6.12 

reports that the node equally exhibited abnormal outgoing traffic during the attack. This 

indicates that the server can exceed the legitimate threshold and eventually 

overwhelms its process capacity whiles responding to the excessive UDP requests from 

the attacker. The observation further reveals the importance of the dual analysis of the 

network traffic to detect anomalous activities. Furthermore, the performance evaluation 

results presented in Table 6-8 indicates that 87 malicious packets were sent during the 

first ARL and the LWMA technique confirmed DDoS attacks in 13 windows. Likewise, 

105 malicious packets were sent during the second ARL which DDoS attacks were 

confirmed in 19 windows. All the malicious windows equally represent all the periods 

the attacks occurred. Concerning the results, it can be concluded that the LWMA-based 

technique is sensitive to low-intensity attacks contrary to the CUSUM-based technique.  

Regarding the impact on the server load, Fig 6.14 reports that the load consistently 

exceeded its normal threshold as it responds to the UDP packets from the attacker. The 

result also indicates that the server is being overwhelmed by the demands it is receiving, 

and hence it can run out of capacity to meet further requests.  

From the outcome of the evaluation, it can be inferred that the LWMA-based technique 

is more sensitive to low-intensity attacks than the CUSUM-based.  While the CUSUM-

based technique failed to maintain consistent accuracy across these two attacks, the 

LWMA-based technique has been consistent both in the response time and sensitivity to 

TCP SYN flooding and UPD flooding attacks.   

 

 

 

 

 



165 
 

The graph below presents the impact of the UDP flooding attack on the node during the 

first ARL analysis. The average measurement above the upper control limit represents 

the malicious load detected. The impact analysis result of the five and fifteen minutes’ 

measurements are presented in Appendix A 

 

 

Fig 6.14 LWMA Result One Minute Sever Load First ARL 

 

The table shows the performance of the LWMA technique when exposed to 

detect the low-intensity UDP flooding attack.  

Table 6-8 The Evaluation results of the LWMA technique of in detecting UPD attack 

ARL Traffic 

Source 

AS AD FP 

 

FN FPR 

% 

FNR 

% 

S 

 

First Incoming 

 

 

87 

13 0 0 0.0 0.0 0 

 

Outgoing 

2 0 0 0.0 0.0 0 

Second Incoming 

 

 

105 

19 0 0 0.0 0.0 0 

Outgoing 

 

0 0 0 0.0 0.0 0 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 

Window Position  
10:15:17 to 10:17:02  

 

CUSUM High Side Upper control limit Lower control limit



166 
 

 

6.7 Analysis of the effect of the training period on detection accuracy 

In Section 6.5.1, it was confirmed that the CUSUM technique is ineffective when it comes 

to detecting low-intensity UDP flooding attacks. Moreover, one of the key reasons was 

attributed to the fact that the training period adopted for that experiment resulted in 

setting the control limits significantly high to detect when an attack is transmitting with 

low intensity. Consequently, the CUSUM technique recorded high false positive ratios.  

Given such observation, this section of the experiment will investigate the effect of the 

training period on the detection accuracy of the two detection techniques by 

considering the false positive and false negative rates. The evaluation of the training 

period is indeed essential to establish if the training period has an effect on the 

detection accuracy and also ascertain the best training periods for both CUSUM and 

LWMA techniques in terms of the detection accuracy.  

 In this experiment, the ARL and SW values for the analysis and detection stages remain 

constant. Moreover, the value of the target traffic and the average server values are also 

kept constant during the training periods.   

6.7.1 Analysing the effect of the training period on the CUSUM-based technique in 

detecting TCP SYN Flooding attack 

This section will analyse the effect of the training period on the performance of the 

DDoS detection algorithm. The aim is to suggest the best training period for effective 

performance.  

A.   Comparing the effect of the training period on the determination of the control 

limits 

Two training periods (i.e. one minute long and one hour long) were adopted.  The first 

experiment was conducted with transducer agent trained with one-minute long 

measurements (i.e. 60 samples of network traffic and load measurements) representing 

one-minute long metrics collected during legitimate MapReduce job. Likewise, the 

second experiment was conducted with a transducer agent trained with one hour long 

(i.e. 3600 samples network traffic and server load measurements) of legitimate 

MapReduce job. Table 6-9 presents the comparative values of the tuning parameters for 

both one minute and one-hour training periods.  



167 
 

 

The table compares the outcome of one minute and one-hour training period. 

The outcome represents the agent’s current knowledge of the normal behaviour 

of the interfaced Hadoop node. 

Table 6-9 The Agent's Current belief of the one-minute and one-hour CUSUM training 

One-minute Training One-hour Training 

Agent’s Current 
belief 
(output of  the 
CUSUM analysis) 

Upper  
control 
limit 
 

Lower 
control 
limit 

Target 
 

Upper 
control 
limit 
 

Lower 
control 
limit 

Target 
 

Incoming Traffic 
KB/s 

1053 -1053 5000 80976 -80976 5000 

Outgoing Traffic 
KB/s 

46138 
 

-46138 5000 84443 -84443 5000 

One Minute Load 4.44 
 

-4.44 
 

1.0 1.1 -1.1 1.0 
 

Five Minutes 
Load 

1.11 -1.11 1.5 0.24 -0.24 1.5 
 
 

Fifteen Minutes 
Load  

1.11 
 

-1.11 1.5 0.1 -0.1 1.5 

 

Essentially, the training period has a great effect on the upper and lower control limit of 

the CUSUM technique. According to the control limits for the network traffics, longer 

training period will result in high upper and lower control limits. Likewise, a shorter 

training period (in this case one minute) equally reduces the upper and lower control 

limit. However, the results of one-minute average server loads for both training periods 

give a different view of the theory. In this instant, the one-minute training period set 

higher and lower control limits than the one-hour training period.  The occurrence can 

be explained as the effect of the behaviour of the load during the one-minute period. 

Thus, the upper and lower control limits are the product of standard deviation σ of the 

load and traffic over time according to the CUSUM technique. So, the one-minute period 

presented high variation in behaviour which subsequently affected the upper and lower 

control limits for the CUSUM of server load. By comparing the one minute and one hour 

upper and lower control limits, it can be inferred that the control limits are largely 



168 
 

determined by the manifestation of the activities (i.e. variations in the measurement 

captured) rather than the length of the training period.  

The same outcome is confirmed by comparing the one hour control limit value of the 

incoming traffic in Table 6-9 with the 30 minutes control limit value of the incoming 

network value in Table 6-2. Although the one-hour training period used 1800 additional 

measurements to train the agent about the incoming traffic, it produced the same result 

as the thirty minutes of training.  It can, therefore, be concluded from the comparative 

analysis of the control limit values that, a Hadoop node with high volumes of traffic or 

activities is likely to set a higher control limit by use of the CUSUM technique than the 

node with fewer activities or traffic. Indeed the control limit has the direct effect on the 

ability to detect malicious activities.  

B.    Effect of the training period on the detection accuracy 

Regarding how the technique performed with one-minute long training, Table 6-10 

presents the performance evaluation results. According to the results, the CUSUM 

technique is ineffective in detecting DDoS attack with a short training period, and the 

reason is manifested in the false positive rates for both ARL analyses. Thus, the 

technique falsely classified legitimate traffics as malicious due to the significant drop in 

the control limit according to Table 6-9. It is therefore inferred from the results that, 

unlike the one-minute server load control limit, there was less volume of traffic in the 

incoming network traffic hence the lower control limit. The same can be said of the 

outcome of the second ARL analyses.  

However, the performance of the one-hour training period produced equal accurate 

results as the thirty minutes training period (see Table 6-4). According to the 

performance evaluation results in Table 6-10, the technique is more accurate and 

sensitive to DDoS attack with a one-hour training period. Even though the evaluation 

results registered 6.7% and 10.26% false negative rates, the cause is rather attributed 

to the swiftness in responding to variation in the traffic rather than the effect of the 

training period. Nonetheless, the technique is confirmed accurate and sensitive to DDoS 

attacks with a one-hour training period.  

 

 



169 
 

The table below compares the detection results based on the current belief of the 

normal behaviour of the node presented in Table 6-9. 

Table 6-10 CUSUM detection results with one-minute and one-hour training 

 CUSUM detection results with a 

one-minute training period 

CUSUM detection results with a one-

hour training period  

ARL Traffic 
Source 

AS AD FP 
 

FN FPR 
% 

FNR 
% 

AS AD FP FN FPR 

% 

FNR 

% 

 

 
First 

Incoming 
 

 
48 

69 22 0 31.89 0 48 

 

45 0 3 0 6.7 

 
Outgoing 

0 0 0 0 0 0 0 0 0 0 

 
Second 

Incoming 
 

 
43 

64 19  29.69 0 43 

 

39 0 4 0 10.26 

Outgoing 
 

0 0 0 0 0 0 0 0 0 0 

. 

6.7.2 Effect of the training period on the LWMA technique in detecting TCP SYN 

flooding attack 

This section of the experiment seeks to investigate how training period affects the 

performance of LWMA in detecting TCP SYN flooding attack. The same experimental 

setup was maintained for both the CUSUM and LWMA techniques to expose the two 

techniques to the same conditions. The experiment aims to establish the trade-offs 

between the training period and detection accuracy.  Consequently, the FNR and FPR 

values are used to evaluate the performance of the technique. The experiment was 

conducted in two different instances as explained earlier.  

A.   Comparing the effect of the training period on the determination of the control 

limits 

Table 6-11 presents the training effects of the one minute and the one hour training 

periods. Contrary to the CUSUM technique it is observed from the results that both one 

minute and one-hour long training set the same upper control limit for the incoming the 

and outgoing traffic. This is an apparent indication that the Hadoop node maintained a 

consistent periodic behaviour on the traffic for the entire one hour. However, the same 

cannot be said of the lower control limits for both traffics. Whiles the one-minute 

training maintains a high lower control limit; the one-hour training settled on a much 



170 
 

lower control limit. Apparently, the network traffic experienced much lower activities 

after the first one minute hence the difference. However, the behaviour of the server 

load presented a consistent behaviour for both the one minute and one-hour training 

periods. Consequently, it can be inferred that the changes in the network behaviour 

after the first one minute was not significant enough to cause any significant shift in the 

server load.  Another consistent inference is that shorter training period is unlikely to 

capture the substantial behaviour of the server (as confirmed by the lower control limit 

values) and can, as a result, affect the detection accuracy.  The observation (particularly 

on the lower control limit) is consistent with the training behaviour of the training 

result of the CUSUM technique.  

The table below compares the training outcome of the one-minute and one-hour 

training periods under the LWMA technique. The outcome represents the agent’s 

current belief of the normal behaviour of the node.    

Table 6-11 The Agent's Current belief of the LWMA  training 

One-minute Training 
One-hour Training 

Agent’s Current belief 
(Output of LWMA 
analysis) 

Upper control 
 limit 
 

Lower control  
limit 

Upper control 
 limit 
 

Lower control  
limit 

 Incoming Traffic KB/s 889 73 889 1 
Outgoing Traffic KB/s 2588 28 2588 1 
One Minute Load 0.42 0.05 0.42 0.1 

Five Minutes Load 0.2 0.2 0.2 

 
0.1 

Fifteen Minutes Load  0.2 0.1 0.3 0.1 

 

B.   Effect of the training period on the detection accuracy 

Concerning how the two training sessions affected the performance of the LWMA 

technique, no significant effect was observed. According to the one-minute training 

result in Table 6-12, the LWMA technique classified thirteen windows as malicious (i.e. 

containing high malicious measurements) during the first ARL analyses for incoming 

traffic. In the same manner, twelve windows were classified as malicious during the 

second ARL.  Incidentally, the one hour-based performance results in Table 6-12, 

confirms that the agent performed with the same level of accuracy when trained for 

one-hour long. According to the two results, the LWMA technique is accurate and 



171 
 

sensitive to detect DDoS attack with both short and long-term training. The observation 

is consistent with the upper control values of both training periods. Thus, the LWMA 

technique was less affected by the training period compared with CUSUM, particular 

when judging malicious activities based on the incoming traffic.  It can, therefore, be 

confirmed from the results that, accurate periodic analysis of Hadoop node behaviour is 

not significantly affected by the training period. That means LWMA technique will be 

quicker in retraining its knowledge to adapt to changes in behaviour contrary to the 

CUSUM technique which requires longer training to be more accurate in its decisions. 

Consequently, the LWMA technique is considered to be more dynamic regarding 

adaptation to changes in the behaviour of the Hadoop node than the CUSUM technique. 

Because it requires less training period to adapt its belief to change in node behaviour.  

 The table below compares the detection results based on the current belief of the 

normal behaviour of the node presented in Table 6-11. 

Table 6-12 LWMA detection results with one-minute and one-hour training 

 Impact of one minute 

training period  

Impact of one hour 

training period 

 
 

 

 

 

ARL Traffic 
Source 

AS AD FP 
 

FN FPR 
% 

FNR 
% 

AS AD FP FN FPR 
% 

FNR 
% 

First Incoming 
 

 
44 

13 0 0 0.0 0.0 44 

 

13 0 0 0.0 0.0 

Outgoing 
 

0 0 0 0.0 0.0 0 0 0 0.0 0.0 

Second Incoming 
 

 
 
39 

12 0 0 0.0 0.0 39 

 

12 0 0 0.0 0.0 

Outgoing 
 

0 0 0 0.0 0.0 0 0 0 0.0 0.0 

 

From the performance results of the CUSUM technique shown in Table 6-10, it is 

confirmed that a longer training period (i.e. above thirty minutes) is ideal if high 

accuracy is expected. It is also observed that a one-hour training period does not make 

much difference in the detection accuracy when compared with the detection accuracy 

of the thirty minutes training period shown in Table 6-4. So, if possible, the training 

should be conducted within the range of thirty minutes to one hour, especially with the 

CUSUM technique. However, the LWMA technique has shown to be effective even with 

one-minute training.  Consequently, it is suggested that the LWMA technique should be 



172 
 

considered when faster adaptation to changes in behaviour is required. On the other 

hand, the CUSUM technique should be considered if granular analyses and classification 

of the behaviour of the node are required.  

The next section will also consider how the two techniques also perform when exposed 

to low intensity (UDP flooding) attack in the same experimental setup.  

6.7.3 Analysis of the effect of the training period on the CUSUM-based technique 

in detecting UDP flooding attack 

This section will analyse the effect of the training period on the performance of the 

DDoS detection algorithm. The aim is to suggest the best training period for effective 

performance.  

A.    Effect of the training period on the detection accuracy 

Relatively, the CUSUM technique has maintained the same ineffective performance 

under low-intensity attack (UDP flooding in this instance). When CUSUM was exposed 

to the low-intensity attack, it was observed, according to Table 6-13 that, the technique 

is first of all not effective when tasked to detect low-intensity attacks. Secondly, the 

significant drop in the upper control limit further incurred higher false positive ratio as 

presented in Table 6-13 predictably; shorter training period contributed to the high 

false positive ratio. Likewise, in the one-minute training in Table 6-13, no significant 

improvement was noted when the same experiment was conducted with an hour 

training belief. It was observed from that; there was an improvement in the FPR 

however; the longer training period did not improve the performance anymore better 

than reported in the thirty minutes training period in Section 6.4.1.  What has further 

confirmed in this case was that thirty minutes and a one-hour training period could 

produce the same level of detection accuracy.   

 

 

 

 



173 
 

The table below compares the CUSUM technique’s results of detecting UDP flooding 

attack with one-minute training period and the detection results with a one-hour 

training period. 

Table 6-13 CUSUM detection results with one-minute and one-hour training 

 Detection results with one-

minute training 

Detection results with one-hour 

training 

ARL Traffic 
Source 

AS AD FP 
 

FN FPR 
% 

FNR 
% 

AS AD FP 
 

FN FPR 
% 

FNR 
% 

First Incoming 
 

 
87 

110 29 6 26.37 5.46  

87 

0 0 87 0 100 

 
Outgoing 

1 0 0 0.0 0.0 0 0 0 0 0 

Second Incoming 
 

 
79 

88 5 4 5.67 4.55  

79 

0 0 79 0 100 

Outgoing 
 

0 0 0 0 0 0 0 0 0 0 

 

6.7.4 Analysis of the effect of the training period on LWMA-based technique in 

detecting UDP flooding attack 

A.   Effect of the training period on the detection accuracy 

The evaluation results under this experiment also confirm the consistency in the 

performance of the LWMA technique regarding the impact of the training period on the 

detection accuracy. From Table 6-14, it is observed that LWMA maintained the same 

level of accuracy regardless of the type of attack and training period. Compared with the 

performance under the TCP SYN flooding attack, the results confirm that the LWMA 

technique will produce the same result even with a shorter training period. Overall, it is 

inferred that the technique can produce a consistent level of accuracy regardless of the 

volatility in the Hadoop cluster.  

 

 

 

 



174 
 

The table below compares the LWMA technique’s results of detecting UDP flooding 

attack with one-minute training period and the detection results with a one-hour 

training period.  

Table 6-14 LWMA detection results with one-minute and one-hour training 

 Detection results with one-

minute training 

Detection results with one-hour 

training 

ARL Traffic 
Source 

AS AD FP 
 

FN FPR 
% 

FNR 
% 

AS AD FP FN FPR 
% 

FNR 
% 

First Incoming 
 

 
87 

13 0 0 0.0 0.0  

87 

13 0 0 0.0 0.0 

 
Outgoing 

2 0 0 0.0 0.0 2 0 0 0.0 0.0 

Second Incoming 
 

 
105 

19 0 0 0.0 0.0  

105 

19 0 0 0.0 0.0 

Outgoing 
 

0 0 0 0.0 0.0 0 0 0 0.0 0.0 

 

6.8 Real-time performance evaluation of the framework 

The performances of the transducer agent’s DoS detection skills or techniques have 

been evaluated in previous sections (see Sect. 6.3, Sect. 6.4, Sect. 6.5 and Sect. 6.6) to 

establish their effectiveness. The first evaluation adopted a controlled methodology 

which allowed for the evaluation and performance analysis in a controlled manner. 

According to the evaluation results, the proposed DoS detection skills are effective and 

able to detect DDoS attacks (i.e. UPD and TCP SYN flooding attacks). However, the 

methodology does not expose the framework to real Hadoop environment conditions, 

and thereby the results are exclusive of any operational or environmental impact on the 

performance. Essentially, any potential operational or environmental impact must be 

considered in the evaluation to establish how the framework will perform in a real 

Hadoop environment. Consequently, this section of the evaluation will seek to 

understand how the proposed framework will perform in a real Hadoop environment 

amidst any potential impact.   

6.8.1  Criteria of the real-time experiment  

A live experiment gives the agents full exposure to the Hadoop environment and also 

allows a holistic evaluation of the framework. Furthermore, the collective performance 

of each layer is assessed regarding the overall response time to DDoS attack in the 



175 
 

Hadoop cluster. In this experiment, the agents are deployed to interface with the 

Hadoop nodes to monitor the behaviour and report anomalous behaviour in real time. 

Thus as the transducer agents are observing each node, IC agent will also be monitoring 

its message queue to analyse and respond to the reports from the transducer agents.  

The real-time experiment was set up to model a live DDoS attack on a Hadoop cluster. 

The objective of the experiment is to; 

1. Evaluate the overall performance of the framework in the event of an attack in a live 

Hadoop cluster. 

2. Evaluate the response time to DDoS attack at the node level in a real Hadoop 

environment. 

3. Evaluate how long it takes the IC agent to confirm DDoS attack in a real Hadoop 

environment.  

4. Evaluate the effect of the framework in detecting a DDoS attack on live Hadoop 

cluster.  

6.8.2 Experiment setup and real case experiment scenarios 

Given the objectives listed above, the framework was fully deployed to sit on the 

Hadoop cluster via the UI agent. The UI agent was used to create the description of the 

Hadoop nodes and DDoS attack according to the ontological model presented in Chapter 

5. The framework was evaluated in two real case scenarios to detect TCP and UDP 

flooding attacks on the four-node Hadoop testbed.  

A.   First scenario: real-time detection of botnet attack in Hadoop cluster  

1. Description of the experiment 

In the first attack scenario, the attacker used hping3 to form a botnet of two nodes to 

remotely launch TCP SYN flooding attack from the cluster as depicted in Fig 6.15 [27]. 

 The figure describes the experiment set up and the attacking technique employed to 

carry out a TCP SYN flooding attack experiment. According to Fig 6.15, the secured 

perimeter of the Hadoop cluster was compromised to create the botnet of Node1 and 

Node 2 to launch the TCP SYN flooding attack from the Hadoop cluster.  

 

 The first scenario aims to evaluate the framework’s ability to detect a DDoS attack on 

the compromised nodes and also confirm the attack behaviour when a Hadoop cluster 



176 
 

fall victim of a Botnet attack. A MapReduce job was executed on the testbed during the 

attack and also for eight hours to establish legitimate activity on the Hadoop cluster. 

The legitimate period allows the transducer agents ample time to train their beliefs of 

all possible normal behaviour of the Hadoop nodes. For real-time and distributed 

analysis of the proposed mechanism, an extended period of training is recommended to 

establish substantial intelligence of the normal behaviours of the Hadoop node 

particularly in a volatile environment such as the Hadoop framework.   

 

The Botnet attack scenario models a real case where the attack is launched from 

multiple zombies (in this case node 1 and node 2) within the Hadoop cluster at a single 

victim outside the network. The intent is to increase the attack traffic intensity to attain 

DDoS attack on the target within shortest a possible time minute. In this experiment, the 

attack is launched during legitimate MapReduce activity to allow realistic evaluation of 

the framework’s ability to discriminate between normal and abnormal traffic.  The 

scenario assumes both zombies will be transmitting at a high rate to generate sufficient 

traffic to crash the victim in one minute. Therefore the intent is to evaluate the 

framework’s ability to detect high-intensity attack in one minute concerning the 

evaluation criteria.  

A Botnet activity denies legitimate access and at the same time overwhelm server’s 

processor’s queue with an excessive demand that can eventually crash the zombie 

machine if not mitigated on time. An ARL > 1 was chosen to allow sufficient period to 

not misconstrue a legitimate peak activity (particularly during Hadoop backup) as 

malicious measurements. Additionally, three ARL decisions were evaluated in the 

Botnet DDoS attack scenario to ascertain how the framework performed against the 

performance evaluation criteria used. The performance was evaluated in both detection 

stages; the DDoS detection by the transducer agents and the DDoS report fusing 

technique to confirm DDoS by IC agent.    

 

 

 

 



177 
 

The botnet model describes the experiment set up and the attacking technique 

employed for the experiment. The secured perimeter of the Hadoop cluster was 

compromised to create the botnet of Node1 and Node 2 to launch the TCP SYN flooding 

attack from the Hadoop cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.15 Model of Botnet attack scenario 

 

 

 

 

 

 

 

 

 

 

MapReduce Client

 

Malicious ssh 

access to create 

BotNet

Malicious traffic to 

victim

Legitimate 

MapReduce Job

Attacker

                                                              

Compromised  Hadoop Test Bed with 

Transducer Agents

Remote 

Victim

Node
 1

Node
 2

Node
 3

Node 
4



178 
 

The model describes the experiment set up and the attacking technique employed for 

the experiment. The attacker first compromised the secured perimeter of the Hadoop 

cluster to have access to the victim and then launch a UDP flooding attack from outside 

the cluster to the victim which Node 3 in the model.   

 

MapReduce Client

Legitimate 
MapReduce Job

Attacker

                                                              
Victim of the DDoS attack in in the 

cluster 

Malicious UDP 
traffic to victim

node
 2

node 
1

node
 3

node
 4

 

Fig 6.16 Model of UDP flooding attack scenario 

 

2. Performance Evaluation Criteria  

The performance of the implementation in both scenarios was evaluated regarding the 

same criteria presented in Section 6.3.  

3. Analysis of how the framework performed in detecting and confirming a DDoS 

attack on the Hadoop node 

Table 6-15 presents the evaluation result of node 1 (one of the compromised nodes). 

According to the result, the framework can confirm a DDoS attack on node 1 in 19 s. A 

response time of 19 s to attack indeed provides significant time for mitigation before 

the node gets into a critical stage. What the result also indicates is that a high-intensity 

attack capable of crushing a Hadoop node in one minute can be detected with enough 

elapse time for mitigation.   

 



179 
 

The detection result for the first ARL analysis if showed in Fig 6.17 and Fig 6.18 showed 

the impact of the attack on the incoming traffic and how the CUSUM detected and 

confirmed the anomalies in the incoming traffic. Likewise, Fig 6.18 present the impact of 

the attack on the outgoing traffic. Furthermore, Fig 6.18 shows how the CUSUM 

technique detected anomalies and also confirmed the attack on the outgoing traffic.  

 

According to Fig 6.17, the first anomaly was detected on node 1 in the incoming traffic 

four seconds after the attack was launched and this occurred at 11:59:42. Under the 

similar circumstance, it will be expected that the malicious activities on the outgoing 

traffic, first exceed the control limit but that was not the case in this experiment.  

 

According to Fig 6.18, the attack (i.e. the malicious TCP SYN requests) manifested in the 

outgoing traffic from 11:59:40. However, Fig 6.17  also shows that node 1 experienced 

malicious response from the victim during the attack, so much to flag anomalous 

network activities before the outgoing request exceeded the control limit. The 

observation indeed confirms that real-time analysis of both outgoing and incoming 

network traffic can increase the response time to attack.  In this scenario, the agent 

flagged rather the anomalous activity on the incoming traffic when it exceeded the 

upper control limit before outgoing traffic exceeded the control limit.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



180 
 

The graph below depicts hoe the CUSUM analysed and judge the incoming traffic during 

the first ARL analysis.  

 

-1500

-1000

-500

0

500

1000

1500

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 11:59:42

N
e

tw
o

rk
 t

ra
ff

ic
 C

U
S
U

M
 (

K
B

/s
)

Time 

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

out of control traffic

 

Fig 6.17 CUSUM result chart for incoming traffic in the first ARL on node 1 

 

The graph below depicts hoe the CUSUM analysed and judge the outgoing traffic during 

the first ARL analysis.  

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 11:59:42

N
e

tw
o

rk
 t

ra
ff

ic
 C

U
S
U

M
 (

K
B

/s
)

Time  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

 
 Fig 6.18 CUSUM result chart for outgoing traffic in the first ARL on node 1 

 

 

 



181 
 

As the attack continued, constant buildups of anomalies were also detected in the 

incoming traffic during the second and third ARL analysis. It was also observed that the 

agent also reported abnormal behaviour in the incoming traffic which also confirmed 

the characteristics of a TCP SYN flooding attack. 

Fig 6.19 presents the impact on the TCP SYN flooding attack on the server load for the 

first one minute. The figure depicts how the CUSUM technique analysed the impact and 

the detection of the anomalous load on the victim. According to Fig 6.18, the agent 

reported constant drops in the outgoing network activity on the node before the attack 

was launched. The drop in the outgoing traffic equally reflects the drop in the first one-

minute load activity presented in Fig 6.19. It can, therefore, be inferred from the 

observation that, there was a change (a drop in the process demands) on the normal 

activity before the attack occurred. The effect of the drop in the load equally affected 

how the malicious activities quickly manifested in the average server load. Nonetheless, 

the benefits of analysing the server load and the network traffic at the same time are 

confirmed by the timely detection of the anomalous activities and sudden change of the 

node’s behaviour.  

 

The graph below depicts how the CUSUM technique accessed the first one minute load 

of the load during the first ARL analysis. The observation made indicates a drop in the 

load which is generally a reflection of a drop of activities on the Hadoop node. 

 

-20

-15

-10

-5

0

5

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 11:59:42

S
e

rv
e

r 
lo

a
d

 C
U

S
U

M
 (

%
) 

Time 

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

 

 Fig 6.19 CUSUM result chart for first one minute load in the first ARL on node 1 

 



182 
 

 
The table presents the evaluation results of the real-time detection of the TCP SYN 

flooding attack with the CUSUM technique on Node 1.  

 
Table 6-16 Table I: DDoS detection evaluation on node 1 

Attack launch time = 11:59:38 First Anomaly detected time: 11:59:42 

Response Time: 00:19   Attack confirmed Time 12:00:01 

ARL Traffic Source AS AD FP 

 

FN FPR 

% 

FNR 

% 

First Incoming  

0 

1 0 0 0 0 

Outgoing 0 0 0 0 0 

Second Incoming 

 

 

8 

 

8 0 0 0 0 

Outgoing 8 0 0 0 0 

Third Incoming  

8 

6 0 0 0 0 

Outgoing 8 0 0 0 0 

 

Regarding the detection accuracy of the CUSUM technique, the agent detected attack 

accurately with both FPR and FNR reporting 0% as showed in Table 6-16. The eight 

anomalies reported in Table 6-16 is equally captured by Fig 6.21 which represents the 

second ARL outgoing traffic CUSUM result charts of node 1.   

 

Fig 6.20 which represents the second ARL incoming traffic CUSUM result charts of node 

1, the technique can also capture the fluctuations in the traffic in real time.  

Fig 6.20 captures the gradual build of the attack intensity on the node and the eight 

anomalies reported in the incoming traffic due to the intense TCP SYN requests 

transmitting from the zombie (i.e. the compromised node).  Similarly, Fig 6.21 also 

proves continues transmission of abnormal traffic during the attack. Furthermore, both 

outgoing and incoming traffic analysis confirmed attack to provide further intrinsic 

insight into the behaviour of the attack.   

The graph below depicts the outocome of  the CUSUM analysis of the incoming traffic 

during the second ARL analysis.  

 



183 
 

-1500

-1000

-500

0

500

1000

1500

2000

2500

11:59:43 :44 :45 :46 :47 :48 :49 :50 :51 11:59:52

N
e

tw
o

rk
 t

ra
ff

ic
 C

U
SU

M
 (

K
B

/s
)

Time  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

ICMP SYN Flooding attack period 

 
Fig 6.20 CUSUM result chart for incoming traffic in the second ARL on node 1 

 

The graph below depicts the outocome of  the CUSUM analysis of the outgoing traffic 

during the second ARL analysis.  

 

-100000

-50000

0

50000

100000

150000

200000

250000

300000

350000

11:59:43 :44 :45 :46 :47 :48 :49 :50 :51 11:59:52

N
e

tw
o

rk
 t

ra
ff

ic
 C

U
SU

M
 (

K
B

/s
) 

Time  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

 
Fig 6.21 CUSUM result chart for outgoing traffic in the second ARL on node 1 

 

Table 6-17  presents the performance results from the second compromised zombie or 

Node 2. According to the evaluation results, the agent is equally able to detect an attack 

when present and also report attacks from both the outgoing and incoming traffic. 

However, the results reported one anomaly on the first ARL incoming traffic which was 

classified as FP which constitutes 10% FPR of the overall performance. Nonetheless, the 

second and third ARL decisions were evaluated as accurate and sensitive. Regarding 

real-time and distributed detection of a DDoS attack in the Hadoop framework, the 



184 
 

evaluation results confirmed that the proposed architecture is a viable DDoS detection 

model for a Hadoop cluster.   

 

The table below presents the evaluation results of the real-time detection of the TCP 

SYN flooding attack with the CUSUM technique on Node 2. The graphs of the detection 

evaluation results on Node 2 are presented in appendix A. 

 

Table 6-17 DDoS detection evaluation on node 2 
Attack launch time = 11:59:40 First Anomaly detected time: 11:59:45 

Response Time: 00: 05   Attack confirmed Time 11:59:45 

ARL Traffic Source AS AD FP 

 

FN FPR 

% 

FNR 

% 

First Incoming  

6 

1 1 0 10 0 

 

Outgoing 

6 0 0 0 0 

Second Incoming  

10 

0 0 0 0 0 

Outgoing 10 0 0 0 0 

Third Incoming  

10 

0 0 0 0 0 

Outgoing 10 0 0 0 0 

 

 

Concerning the performance of the framework in a real Hadoop environment, 

evaluation results have confirmed that the transducer agents are still sensitive to TCP 

SYN Flooding attacks and can provide DDoS protection to the Hadoop node by use of the 

bandwidth utilisation and average server load metrics. Regardless of the predictable 

and the unpredictable operational impact, the result confirmed that TCP SYN flooding 

attacks can be confirmed on multiple Hadoop nodes in less than twenty seconds. Thus 

the framework can provide significant response time to attack with high detection 

accuracy in a Hadoop cluster.     

 

The second stage of the distributed DDoS detection is the fusion of the DDoS attack 

reports confirming a DDoS attack within the cluster. The report fusion technique elicits 

and aggregates the out of range metrics of each DoS CUSUM reports received from the 

transducer agents and then classify the status of the node based on the aggregated 

metrics. In essence, the IC agent monitors its message queue to receive attack reports 



185 
 

from the transducer agents. The reports are picked up by the agent for further analysis 

and aggregation as and when they arrive. The value of 5 was used in this case as the 

threshold to determine the status of the DataNode in a given instance. Thus the data 

fusion skill will, for example, confirm a DataNode to be a zombie if five out of range 

outgoing traffic is detected within the reported period.  

Table 6-18 presents the evaluation results of the fusion and analysis of the attack 

reports, where nodes 1 and 2 were predictably classified as zombies during the TCP 

SYN flooding attack. For example, IC agent received a report of malicious activities 

which spanned from 11:59:41 to 11:59:50. According to the results, the agent then 

confirmed node 1 as a zombie as a result of the six malicious outgoing traffic 

measurements detected within that space of time. Indeed IC agent’s accession confirms 

the transducer agent’s reports in Fig 6.22, Fig 6.23, Fig 6.24, Fig 6.259, Fig 6.26.   It can 

be noted from Fig 6.20 in particular that malicious activities were confirmed on the 

node around the same period, so the conclusion made by IC agent is accurate and 

timely. The first reported from node 2 however, confirmed normal activities on the 

network. The conclusion in this instance also confirms an accurate judgment because 

the attack started at 11:59:40.  

The table below presents the evaluation result of the data fusing technique. The table 

shows how the IC agent confirmed the botnet attack in real-time. UoR in: is the high side 

out of range CUSUM in the incoming traffic. LoR in: is the low side out of range CUSUM 

in the incoming traffic. UoR out: is the high side out of range CUSUM in the outgoing 

traffic. LoR out: is the low side out of range CUSUM in the outgoing traffic. 

 

 

 

 

 

 



186 
 

 

Table 6-19 Result of the data fusion algorithm during TCP SYN flooding attack 

 

However, the second reports from node 1 and 2 confirmed that both nodes were 

compromised around the same time (i.e. from 11:59:51 to 12:00:00).  Moreover, it was 

observed from the results that both nodes also became victims during the attack which 

was due to the abnormal incoming TCP SYN-ACK responses from the victim. The 

observation indicates that zombies can equally be overwhelmed by the response of TCP 

SYN requests. Furthermore, the BotNet DDoS attack was confirmed within the cluster 

between 12:00:01 to 12:00:13 based on the outcome of the time series analysis.  

 

The attack confirmation period, therefore, indicates that the multi-agent distributed 

DDoS detection technique can detect and confirmed DDoS attacks on multiple Hadoop 

nodes in approximately thirty-five seconds. The high response rate in search distributed 

environment is first attributed to the fact that the detection technique is lightweight and 

therefore does not incur high computational time. Secondly, multi-agent allows 

concurrent operation by a single agent so process times can be reduced by tasking an 

agent to carry out the dual operation with less computational cost.  Unlike a 

conventional software application, it is observed from this approach that software 

agents can also reduce code and application complexity by performing concurrent tasks. 

 

Based on the outcome of the real-time experiment, it can be inferred that the proposed 

framework can be leveraged to provide a distributed, real-time multi-stage DDoS 

detection mechanism within the Hadoop framework. The novel approach can provide a 

tailored and intelligent approach to detecting DDoS attacks at Hadoop node level with 

Node 
 

Early 
Time 

Later 
Time 

UoR 
in 

LoR 
in 

UoR 
out 

LoR 
out 

zombie victim 

1 11:59:41 11:59:50 1 0 6 0 true false 

2 11:59:33 11:59:42 1 0 0 0 false false 

1 11:59:51 12:00:00 0 0 9 0 true false 

2 11:59:43 11:59:52 8 0 8 0 true true 

1 12:00:01 12:00:11 0 5 8 0 true true 

2 12:00:04 12:00:13 6 0 8 0 true true 



187 
 

high response time, the centralised data fusion technique also provides high-level 

insight into anomalous activities within the cluster.  

B.   Second Scenario: real-time detection of UDP flooding attack in a Hadoop cluster  

A second attacking tool, Low Orbit Cannon, is used in the second scenario to launch low-

intensity UDP flooding attack on victim within the cluster as shown in Fig 6.16. The 

victim in the second scenario is the Hadoop NameNode. The second attacking scenario 

is aimed at detecting when a Hadoop node fall victim of the low-intensity DDoS attack. 

Likewise, the experiment (UDP flooding attack) is aimed to determine the elapsed time 

to detect a DDoS attack on a victim within the Hadoop cluster. The experiment used SW 

value = 5 and ARL value = 2 the value for the CUSUM tuning parameters. Thus, the 

transducer agents will observe two SWs before making a decision. 

The table below presents the evaluation results of the real-time detection of UDP 

flooding attack using the CUSUM technique. 

 

Table 6-20 DDoS evaluation results for the UDP Flooding attack 

 

 

 

 

 

 

 

 Table 6-20 presents the evaluation results from the second scenario (the UDP flooding 

attack). Here again, the framework demonstrated high sensitivity to detect when a node 

falls victim to UDP flooding attack. This indicates that the framework is sensitive and 

able to use flow metrics to discriminate between regular Hadoop activity from 

anomalous activity accurately (thus TCP SYN flooding and UDP flooding attacks) when 

present.   

     

Furthermore, Contrary to the manifestation of the TCP SYN flooding attack, it was 

observed in the second scenario evaluation results that the node depleted significantly 

ARL Traffic Source AS AD FP 
 

FN FPR 
% 

FNR 
% 

First Incoming  
5 

5 0 0 0 0 

 
Outgoing 

0 0 0 0 0 

Second Incoming  
1 

1 0 0 0 0 

Outgoing 0 0 0 0 0 



188 
 

in the outgoing traffic while under UDP flooding attack (as shown in Fig 6.27 and 

Fig 6.28). This indicates that UDP flooding attack can prevent two-way traffic by 

saturating the network bandwidth with the malicious request. 

The graph below presents the result of the detection of the UDP flooding attack on the 

incoming network during the ARL analysis.  

-10000

-5000

0

5000

10000

15000

20000

15:40:28 :29 :30 :31 :32 :33 :34 :35 :36 15:40:37

N
e

tw
o

rk
 t

ra
ff

ic
 C

U
S

U
M

 (
K

B
/s

)

Time  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

UDP Flooding attack period 

 

Fig 6.27 CUSUM UDP flooding chart for incoming traffic in first ARL 

 

The graph below presents the result of the detection of the UDP flooding attack on the 

outgoing network during the ARL analysis.  



189 
 

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

15:40:28 :29 :30 :31 :32 :33 :34 :35 :36 15:40:37

N
e

tw
o

rk
 t

ra
ff

ic
 C

U
S

U
M

 (
K

B
/s

)

Time Series 

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

UDP Flooding attack period

 

Fig 6.28 CUSUM UDP flooding chart for outgoing traffic in first ARL 

 

6.9 Comparison of the proposed framework with the state-of-art. 

This section will compare the performance of the cumulative sum and linear weighted 

moving average based DDoS detection technique proposed in this work with the 

exponential weighted moving average (EWMA) DDoS detection algorithm proposed 

by[62]. In their work, the authors employed the EWMA technique to detect high-

intensity TCP SYN flooding attacks. Details of the proposed algorithm are presented in 

[62]. The authors used actual network traffic data from the MIT Lincoln Laboratory. The 

network data contains a trace of network activities collected during legitimate activities. 

The experiment investigated the performance of EWMA algorithm in detecting low and 

high-intensity attacks. The experiment results concluded that the EWMA algorithm 

performed well for high rate attack with detection rate between 30% - 100% while 

having a false positive rate between 30%-60%. However, the experiment was not 

conducted within a big data environment such as the Hadoop cluster.  

 Consequently, the EWMA based DDoS detection technique was implemented in the 

proposed framework as an agent behaviour which to allowed the agents employ the 

behaviour to detect the both high-intensity and low-intensity DDoS attacks in a live 

Hadoop node. The node in this experiment was the victim of the TCP SYN flooding and 

UDP Flooding attacks. The aim is to expose the proposed EWMA-based DDoS detection 



190 
 

technique to big data environment to compare the performance with the CUSUM and 

LWMA based DDoS detection techniques proposed in this work. 

The same experimental setup and scenarios were maintained to expose the EWMA 

technique to the same conditions as CUSUM and LWMA. The experiment aims to 

establish the efficiency of the EWMA DDoS detection technique on a big data system.   

Consequently, the False Negative Ratio (FNR) and False Positive Ratio FPR metrics are 

used to evaluate the performance of the detection techniques, given the same conditions 

and training period.  The next section will present the comparative results of the 

experiment.  

6.9.1 Comparative result of the performance of the CUSUM, LWMA and EWMA 

detection algorithm in detecting high-intensity attacks (i.e. TCP SYN flooding).  

The table below compares the performance of the proposed CUSUM-based LWMA-

based detection technique with the state-of-the-art EWMA-based detection technique.  

Table 6-21 High-intensity attack detection Performance comparison with one-minute and one-hour training 

 
Detection results with one-

minute training 

Detection results with one-hour 

training 

 
Traffic 

Source 
CUSUM LWMA EWMA CUSUM LWMA EWMA 

AS 48 44 21 48 44 21 

AD 
Incoming 69 13 6 45 13 6 

Outgoing 0 0 10 0 0 0 

FPR % 
Incoming 31.89 0.0 0.0 0.0 0.0 0.0 

Outgoing 0.0 0.0 19.1 0.0 0.0 16.7 

FNR % 
Incoming 0.0 0.0 0.0 6.7 0.0 0.0 

Outgoing 0.0 0.0 0.0 0.0 0.0 0.0 

 

The table shows how the EWMA-based DDoS detection technique performed in 

comparison with CUSUM and LWMA based techniques when exposed to detect a high-



191 
 

intensity TCP SYN flooding attack in a live Hadoop environment. According to the 

results, the LWMA-based detection algorithm is more efficient in detecting high-

intensity TCP SYN flooding attack with a one-minute training period, when compared 

with the CUSUM-based and the EWMA-based detection techniques. Although the 

EWMA-based technique detected attacks in six windows in the incoming traffic, it 

reported 19.1% false positive ratio in the outgoing traffic. The high FPR in this instance 

can be attributed to the fact the technique was not designed to train on the different 

behaviours of the incoming and outgoing traffic.  Consequently, the technique as 

proposed by [62]  is unable to make an accurate judgement on incoming and outgoing 

traffic in real-time.  However, the EWMA-based technique is confirmed to be efficient in 

detecting high-intensity attack than the CUSUM-based technique. The observation 

further confirms that the average based-based techniques can detect attacks with a 

short training period.  

Similarly, the LWMA-based technique is confirmed to be efficient in detecting high-

intensity attacks when the techniques were trained for a one-hour. The result indicated 

a marginal improvement in efficiency when the EWMA technique was trained for one-

hour. However, the improvement was not significant enough to outperform the LWMA-

based technique. It can, therefore, be inferred from the result that the EWMA-based 

technique is more efficient with a longer training period. However, it has been 

confirmed in this work that a technique that requires a longer training period will not 

be effective in detecting DDoS attacks in dynamic environments such as the Hadoop.   

 

 

 

 

 

 



192 
 

6.9.2 Comparative result of the performance of the CUSUM, LWMA and EWMA 

detection algorithm in detecting low-intensity attack (i.e. UDP flooding).  

The table below compares the performance of the proposed CUSUM-based LWMA-

based detection technique with the state-of-the-art EWMA-based detection technique 

Table 6-22 Low-intensity attack detection Performance comparison with one-minute and one-hour training 

 
Detection results with one-

minute training 

Detection results with one-hour 

training 

 
Traffic 

Source 
CUSUM LWMA EWMA CUSUM LWMA EWMA 

AS 87 87 40 87 87 40 

AD 
Incoming 110 13 3 0 13 0 

Outgoing 1 2 10 0 0.0 0 

FPR % 
Incoming 26.37 0.0 100 0.0 0.0 0.0 

Outgoing 0.0 0.0 20 0.0 0.0 0.0 

FNR % 
Incoming 5.46 0.0 0.0 100 0.0 100 

Outgoing 0.0 0.0 0.0 0.0 0.0 0.0 

 

In the second experiment the EWMA-based detection technique was exposed to a live 

low-intensity UDP flooding attack as was done with the CUSUM-based and the LWMA-

based techniques. The table compares the performance of the three techniques 

regarding efficiency. The result indicates that the EWMA-based DDoS detection 

technique proposed by [62] is ineffective in detecting a low-intensity DDoS attack in a 

live Hadoop environment. However, the LWMA-based technique is confirmed to be 

more efficient in detecting a DDoS attack in the Hadoop environment when compared 

with the CUSUM-based technique and the EWMA-based technique. Moreover, the result 

indicates that the CUSUM-based technique is even more efficient in detecting low-

intensity UDP flooding attack in a Hadoop environment than the EWMA-based 

technique. The inefficiency in the EWMA-based technique can be attributed to the fact 

that EWMA is designed to give more weight to the last value captured in the period of 



193 
 

analysis (in this case the analysis window). Essentially, EWMA is designed to detect and 

report changes in a stream of data easily. While such design principle is efficient in the 

financial market where the technique originally emanated from, further mechanisms to 

confirm or deny if the fluctuations constitute malicious activities will be required in a 

network security environment.  

Given limitations in the EWMA, the authors of [62] optimised the original EWMA 

technique to make more the technique efficient in detecting DDoS attacks.  However, the 

optimisation technique was not designed for the dynamic and unpredictable 

environment such as the Hadoop cluster.  

The comparative results presented in this section confirms that the proposed 

framework more efficient in detecting a DDoS attack in a Hadoop environment than the 

state-of-the-art EWMA-base detection technique.   Although, in the high-intensity attack 

scenario the CUSUM-based technique is indicated to be less effective than the EWMA-

based detection technique, EWMA is average-based and as a result cannot perform 

detail analysis as CUSUM technique.  

6.10 Summary 

Despite the significant progress made in securing the framework, Hadoop still lacks 

adequate inherent security mechanism to protect the valuable data against DDoS 

attacks.  In this chapter, we have deployed a four-node Hadoop cluster to experiment 

with the proposed multi-agent based DDoS detection framework. The experiment 

results show that the proposed framework can detect DDoS attacks on multiple Hadoop 

nodes with less than twenty seconds response time and 10% false positive ratio. Two 

methods (i.e. offline and real-time) were used to experiment and evaluate the 

performance of the framework. While the offline evaluation method took an intrinsic 

approach to evaluate the detection techniques, the real-time method evaluated the 

overall performance of the framework in a real live Hadoop environment.  

The results of the offline evaluation have confirmed that both DoS techniques (i.e. 

CUSUM-based and LWMA-based) can detect DoS attack in the Hadoop cluster by 

analysing the network and average server load flow metrics. The respond time to detect 

and confirm a TCP SYN flooding attack on the Hadoop node for both techniques is less 

than ten seconds. However, the CUSUM-based technique is confirmed to have 



194 
 

drawbacks in using flow metrics to detect low-intensity attack (i.e. UDP flooding attack) 

effectively. It has also been proven that the CUSUM-based technique requires longer 

training period (that is more metrics covering the larger scope of activities on the node) 

to make accurate discrimination of normal and anomalous activities on the Hadoop 

node. On the other hand, the LWMA-based technique can make accurate discrimination 

even with shorter training. Consequently, it has been concluded that the proposed DoS 

detection techniques are viable to detect DoS attacks on Hadoop nodes.  

Regarding the real-time analysis, the evaluation result has confirmed that the 

transducer agents can dynamically detect the volatility in the Hadoop nodes in the 

framework.  Moreover, the framework also provided a mechanism which allowed the 

transducer agents to dynamically contextualise their belief of normal behaviour and 

hence, can detect attacks with accuracy and high sensitivity to attacks. It is confirmed 

from the results that network flow metrics provide contextual insight into the 

behaviour of the network traffic and can, therefore, be leveraged to detect TCP SYN 

flooding and UDP flooding attacks. Moreover, the distributed multi-agent framework 

also serves as a viable means to provide distributed real-time, a DDoS detection 

mechanism for the Hadoop framework which is currently unavailable within the 

Hadoop framework. The experiment results also revealed that high and low-intensity 

DDoS attacks targeting a Hadoop cluster could be detected and confirmed from network 

and average server load flow measurements in less than 12s. This means high-intensity 

DDoS attacks designed to cause a denial of service in one minute can be detected with 

enough time for mitigation. Likewise, low-intensity attacks design to disrupt the 

operations (especially the response to a request) can be detected.  

The data fusion technique analyses and fuses the values of the DoS reports including the 

time stamps and the out of range measurements to create a cluster-level report to 

confirm DDoS the attack.  

Contrary to current multi-agent based DDoS detection mechanism, the proposed 

framework is an intelligent inherent DDoS detection mechanism that is adaptable to the 

architecture and operational behaviour of the Hadoop framework. From the results, it 

has been confirmed that the proposed framework can improve on the existing inherent 



195 
 

security vulnerabilities in the Hadoop framework, by providing intelligent, distributed 

DDoS attack mechanism that is cognisance of the Hadoop framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



196 
 

  Chapter 7

Conclusion and Future Work 

7.1 Contribution and achievements 

DDoS attacks are known to be very disruptive and dangerous to any computer 

infrastructure. They are designed to explore and bypass existing security structures to 

have direct access to the target victim. As the techniques employed in this kind of 

attacks are getting smarter by the day, the detection and mitigation techniques equally 

need to evolve to avoid the consequences of the attacks. This work has presented the 

state of the art and security challenges in the BD technologies particularly about the 

current advancement and the research direction of the internal security mechanism of 

the Hadoop framework. The literature review has confirmed that BD technology such as 

Hadoop has made significant progress in providing an inherent security mechanism to 

encrypt data and also ensures robust client and user authentication. However, the 

current state of the technology still lacks inherent security mechanisms to detect DDoS 

attacks and as a result, relies on a secured network perimeter to protect itself against 

such attacks. The literature review has also shown that the software agent concept has 

been employed in the research community to create smart DDoS detection in a dynamic 

computing environment. However, current work does not utilise a singleton software 

agent-based framework that allows intelligent, real-time distributed monitoring and 

analysis of the network and average server load measurements to detect DDoS within 

the Hadoop framework. Moreover, the operational advantages of a software agent 

concept have not been explored in the Hadoop framework. Consequently, a multi-agent-

based framework to detect DDoS attack within the Hadoop framework was proposed. 

Contrary to existing DDoS detection techniques, the proposed framework is informed 

by Hadoop’s unique design and inherent security requirement to provide internal 

security mechanism within a Hadoop framework. The employment of a software agent 

further introduces intelligent operation into the BD technologies which are currently 

not the case. Thus, an internal security layer that will serve as the secondary DDoS 

detection mechanism to the perimeter security is essential especially in an event where 

the network perimeter is compromised.  Moreover, the Hadoop framework is 

characterised by an unconventional behaviour which makes it impossible to directly 



197 
 

employ the perimeter based DDoS technologies to create an internal security 

mechanism for the Hadoop framework.  

Consequently, this work has proposed a DDoS detection mechanism that will contribute 

to the resolution of the inherent security vulnerabilities in the Hadoop software 

framework.  The contributions achieved under this work include; 

7.1.1 Design and implementation of a multi-agent distributed detection 

mechanism  

An outline of the underlying philosophies of the types of software agents was 

acknowledged and employed to create a distributed multi-agent detection system. The 

multi-agent system is capable of learning (i.e. increasing in domain knowledge) and 

making an intelligent decision about anomalous behaviours in the Hadoop cluster and 

the right course of action on behave of its users. Moreover, the distributed multi-agent 

mechanism has proven as a viable means to provide distributed real-time, a DDoS 

detection mechanism for the Hadoop framework which is currently unavailable within 

the Hadoop framework. Contrary to current multi-agent based DDoS detection 

mechanism, the proposed distributed approach is an intelligent inherent DDoS 

detection mechanism that is adaptable to the architecture and operational behaviour of 

the Hadoop framework. From the results, it has been confirmed that the proposed 

framework can improve on the existing inherent security vulnerabilities in the Hadoop 

framework, by providing intelligent, distributed DDoS attack mechanism that is 

cognisance of the Hadoop framework.  

7.1.2 Design and implementation of a novel statically based DDoS detection 

techniques  

A novel DDoS detection mechanism based on two statistical techniques (Cumulative 

Sum (CUSUM) analysis, and Linear Weighted Moving Average (LWMA) analysis) were 

presented to demonstrate a novel approach to creating lightweight and efficient DDoS 

detection techniques. The experiment results show that the proposed framework can 

detect DDoS attacks on multiple Hadoop nodes with less than twenty seconds response 

time and 10% false positive ratio. Two methods (i.e. offline and real-time) were used to 

experiment and evaluate the performance of the framework. While the offline 

evaluation method took an intrinsic approach to evaluate the detection techniques, the 



198 
 

real-time method evaluated the overall performance of the framework in a real live 

Hadoop environment.  

 

The results of the offline evaluation have confirmed that both DDoS techniques (i.e. 

CUSUM-based and LWMA-based) can detect a DDoS attack in the Hadoop cluster by 

analysing the network and average server load flow metrics. The respond time to detect 

and confirm a TCP SYN flooding attack on the Hadoop node for both techniques is less 

than ten seconds. However, the CUSUM-based technique is confirmed to have 

drawbacks in using flow metrics to detect low-intensity attack (i.e. UDP flooding attack) 

effectively. It has also been proven that the CUSUM-based technique requires longer 

training period (that is more metrics covering the larger scope of activities on the node) 

to make accurate discrimination of normal and anomalous activities on the Hadoop 

node. On the other hand, the LWMA-based technique can make accurate discrimination 

even with shorter training. Consequently, it has been concluded that the proposed DDoS 

detection techniques are viable to detect DDoS attacks on Hadoop nodes.  

 

Regarding the real-time analysis, the evaluation result has confirmed that the 

transducer agents can dynamically detect the volatility in the Hadoop nodes in the 

framework.  Moreover, the framework also provided a mechanism which allowed the 

transducer agents to dynamically contextualise their belief of normal behaviour and 

hence, can detect attacks with accuracy and high sensitivity to attacks. It is confirmed 

from the results that network flow metrics provide contextual insight into the 

behaviour of the network traffic and can, therefore, be leveraged to detect TCP SYN 

flooding and UDP flooding attacks. The experiment results also revealed that high and 

low-intensity DDoS attacks targeting a Hadoop cluster could be detected and confirmed 

from network and average server load flow measurements in less than 12s. This means 

high-intensity DDoS attacks designed to cause a denial of service in one minute can be 

detected with enough time for mitigation. Likewise, low-intensity attacks design to 

disrupt the operations (especially the response to a request) can be detected. 

 

 

 

 



199 
 

 

7.1.3 A novel ontological DDoS attack description and management mechanism 

that report DDoS attacks  

This work has designed and implemented multi-agent based DDoS attack ontological 

model based on the CUSUM and LWMA technique. The description allows the agents to 

share information or reports about the DDoS attack in real-time.  

 

7.1.4 Design and implementation of a novel real-time agent training technique   

The real-time training technique proposed in this work allowed the transducer agents 

to dynamically train their knowledge to adapt to the legitimate change in the behaviours 

of the Hadoop nodes. The periodic training allowed the transducer agents to accurate 

discriminate normal behaviour from anomalous behaviour at any point in time.  

 

7.1.5 A novel time series data fusion technique  

The data fusion technique analyses and fuses the values of the DDoS reports including 

the time stamps and the out of range measurements to create a cluster-level report to 

confirm DDoS the attack. 

 

7.2 Future work 

7.2.1 Application of machine learning algorithm in the dynamic multi-agent 

training technique. 

In this work, a dynamic training technique which allows the agents to adapt to 

legitimate behaviours of the Hadoop nodes has been implemented. The current training 

mechanism is not predictive. Essentially, the technique is unable to analyse patterns in 

historical data to predict possible change in legitimate behaviours. Although the current 

dynamic training technique allows the dynamic training as proposed in this work, it is 

not proactive to changes and tends to fail to detect malicious activities during the 

training section. In the future, an intelligent technique that analyses the changes in the 

bandwidth utilisation and average server load, retrains the agent's beliefs to adapt to 

the changes and detects DDoS attacks in real-time will be implemented. Thus the 

training technique will be enhanced with a machine learning algorithm such as neural 

networks [77] [80]. The integration of machine learning will allow the software agents 



200 
 

to analyse historical data to predict the possible changes in on the nodes and then train 

the agents accordingly in advance. This work will be achieved by extending the 

capabilities of the current training technique with a neural network-based algorithm 

that allows the transducer agents to analyse historical data and train the agents in 

advance. The application of the machine learning algorithms in the multi-agent system 

has attracted research and commercial interests in recent times [32][6]. The integrating 

of the two paradigms allows the development of intelligent and distributed systems that 

are capable of executing the required functions autonomously.  

7.2.2 Integration of intelligent ontological mapping algorithm into multi-agent 

framework,  

One fundamental characteristic of the software agents is the ability to communicate and 

exchange relevant information autonomously [93][7]. The agents rely on the domain 

ontological description to interpret the information they receive. The integration of the 

ontological description and mapping mechanism also allows the agent to map the high-

level domain semantics to agent performative dynamically. This work proposed a novel 

ontological mapping mechanism which allows the multi-agent to map the ontological 

description of the DDoS attacks to their communication performative. The mapping 

mechanism allowed them to interpret the attack reports sent by the transducer agents 

and map the high-level user commands to machine-level commands. However, the 

proposed mapping mechanism employs a one-to-one static mapping technique. A static 

mapping technique is not scalable and does allow the agents to extend their domain 

vocabulary dynamically [6]. 

Consequently, the future work will employ a dynamic ontology mapping techniques to 

implement a dynamic ontological mapping technique that allows the agents to map the 

communication performative to ontological description dynamically. Furthermore, a 

technique to dynamically map high-level user commands instances to the machine-level 

commands will be implemented. This work will be achieved by extending the current 

one-to-one mapping technique with a BDI-based technique that will allow the dynamic 

mapping of new domain language to machine-level commands and the communication 

performative.   



201 
 

 7.2.3 Application of machine learning and data mining algorithms in the multi-

agent framework to detect DDoS attacks.  

The proposed multi-agent DDoS detection framework employs statistical-based DDoS 

detection techniques as agent behaviours to analyse network and server load flow data 

to detect DDoS attacks. In the future, the application of machine learning-based DDoS 

detection algorithm and data mining-based DDoS detection algorithm will be 

investigated and implemented. The implementation will further be experimented in the 

Hadoop environment to evaluate and compare the performance with the existing 

statistical-based technique which will lead to further publications.  

 

 

 

   

.  

 

 

 

 

 

 

 

 

 

 

 



202 
 

Appendix A 

OFFLINE EVALUATION RESULTS 

A.1 ADDITIONAL CUSUM ANALYSIS RESULTS OF THE TCP SYN FLOODING 

ATTACK PRESENTED IN CHAPTER SIX  

The figures provided are additional results of the performance of the CUSUM technique 

when detecting TCP SYN flooding attacks on the victim node. The test conditions are 

presented in chapter six where the performance of the technique was evaluated.   

A. The additional detection result of the first ARL of the CUSUM TCP SYN 

flooding  results presented in chapter six 

 

Fig A.0.1 TCP SYN Flooding attack on Incoming Traffic during first ARL 
The graph shows a normal activity in the incoming traffic and  malicious traffic above the upper control 

limit during the attack  

 

-200000

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 5 10 15 20 25 30 35 40 45 50

  N
e

tw
o

rk
 T

ra
ff

ic
 C

U
SU

M
 K

B
/S

 

Time Series  
From 11:03:00  to  11:03:43 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



203 
 

 

Fig A.0.2  TCP SYN Flooding attack on Outgoing during ARL ONE. The graph shows a normal activity in 
the outgoing traffic during the attack   

 

 

 

Fig A.0.3  TCP SYN Flooding ATTACK on One minute sever load during the first ARL. The graph shows a 
gradual built up of load on the server during the attack.  

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

0 5 10 15 20 25 30 35 40 45 50

N
e

tw
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

 

Time Series  
From 11:03:00  to  11:03:43 

CUSUM traffic on High Side CUSUM traffic Low Side Upper control limit Lower control limit

-2

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

 S
e

rv
e

r 
Lo

ad
 C

U
SU

M
 (

%
) 

Ttime Series  
From 11:02:58 to 11:03:48 

 CUSUM load on High Side CUSUM load on Low Side Upper control limit Lower control limit



204 
 

 

Fig A.0.4 TCP SYN Flooding Five minutes sever load during the first ARL. The graph shows a gradual 
built up of load on the server during the attack.  

 

 

Fig A.0.5 TCP SYN Flooding Fifteen minutes sever load during first  ARL ONE. The graph shows a 
gradual built up of load on the server during the attack.  

 

-5

0

5

10

15

20

0 10 20 30 40 50 60Se
rv

e
r 

lo
ad

 C
U

SU
M

 (
%

) 
 

Time Series  
From 11:02:58 to 11:03:48 

CUSUM load on High Side load CUSUM load on Low Side load

Upper control limit Lower control limit

-80

-60

-40

-20

0

20

40

60

0 10 20 30 40 50 60

Se
rv

e
r 

Lo
ad

 C
U

SU
M

 (
%

) 

Time Series  
From 11:02:58 to 11:03:48 

 

CUSUM load on High Side load CUSUM load on Low Side load

Upper control limit Lower control limit



205 
 

B. The additional detection result of the second ARL of the CUSUM TCP SYN 

flooding  results presented in chapter six 

 

Fig A.0.6 TCP SYN Flooding on Incoming Traffic during the second ARL.  
The graph shows a normal activity in the traffic and malicious traffic above the upper control limit during 

the attack  
 

 

Fig A.0.7 impact of TCP SYN Flooding on Outgoing Traffic during the second ARL. 
The graph shows a normal activity in the traffic during the attack   

 

-200000

0

200000

400000

600000

800000

1000000

0 5 10 15 20 25 30 35 40 45 50 N
e

tw
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

 

Time series  
From 11:03:44 to  11:04:29 

CUSUM traffic on High Side CUSUM traffic on Low Side Upper control limit Lower control limit

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

0 5 10 15 20 25 30 35 40 45 50

N
e

tw
o

rk
 T

ra
ff

ci
 C

U
SU

M
 (

K
B

/S
) 

Time series  
From 11:03:44 to  11:04:29 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



206 
 

 

Fig A.0.8 Impact of the TCP SYN Flooding on One minute sever Load during the second ARL. 
The graph shows a gradual built up of load on the server during the attack.  

  

 

Fig A.0.9 Impact of TCP SYN Flooding on Five minutes sever Load during the second ARL.  
The graph shows a gradual built up of load on the server during the attack.  

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

  A
ve

ra
ge

 S
e

rv
e

r 
Lo

ad
 C

U
SU

M
 (

%
) 

Time Series  
From 11:03:49 to  11:04:38 

 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

A
ve

ra
ge

 S
e

rv
e

r 
Lo

ad
 C

U
SU

M
 (

%
) 

Time Series  
From 11:03:49 to  11:04:38 

CUSUM  High Side CUSUM  Low Side Upper control limit Lower control limit



207 
 

 

Fig A.0.10 Impact of TCP SYN Flooding on Fifteen minutes sever Load during the second ARL.  
The graph shows a gradual drop of load on the server during the attack.  

 

C. The additional detection result of the third ARL of the CUSUM TCP SYN 

flooding  results presented in chapter six 

 

Fig A.0.11 Impact of TCP SYN Flooding on Incoming Traffic during the third ARL THREE. The graph 
shows a normal activity in the traffic and malicious traffic above the upper control limit during the attack  

 

 

-80

-60

-40

-20

0

20

0 10 20 30 40 50 60

A
ve

ra
ge

 S
e

rv
e

r 
Lo

ad
 (

%
) 

Time Series  
From 11:03:49 to  11:04:38 

 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 5 10 15 20 25 30 35 40 45 50

N
e

tw
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

 

Time series  
11:04:30  to 11:05:15 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



208 
 

 

Fig A.0.12 impact of TCP SYN Flooding on outgoing Traffic during the third ARL.  
The graph shows a normal activity in the traffic during the attack   

 

 

 

 

Fig A.0.13 Impact of TCP SYN Flooding on One minute sever Load during ARL.  
The graph shows a gradual built up of load on the server during the attack.  

 

 

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

0 5 10 15 20 25 30 35 40 45 50

N
e

tw
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

Time series  
11:04:30  to 11:05:15 

 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60

A
vv

e
ra

ge
 S

e
rv

e
r 

lo
ad

 C
U

SU
M

 (
%

) 
 

Time series  
from 11:04:39 to 11:05:28 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



209 
 

 

Fig A.0.14 Impact of TCP SYN Flooding attack on Five minutes sever Load during third ARL.  
The graph shows a gradual built up of load on the server during the attack.  

 

A.2 LWMA ANALYSIS RESULTS OF THE TCP SYN FLOODING ATTACK 

The figures provided are additional results of the performance of the LWMA technique 

when detecting TCP SYN flooding attacks on the victim node.  The test condition is 

presented in chapter six where the performance of the technique was evaluated. 

A. The detection result of the first ARL of the CUSUM TCP SYN flooding  results 

presented in chapter six 

 

Fig A.0.15 LWMA analysis of the TCP SYN flooding attack on the Incoming Traffic during First ARL. 
The traffic below the upper control limit indicates a normal activity in the normal, traffic above the upper 

control limit indicate malicious activity in the network. 

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60

A
ve

ra
ge

 S
e

rv
e

rl
o

ad
  C

U
SU

M
 (

%
) 

Time series  
from 11:04:39 to 11:05:28 

 

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 A
ve

ra
ge

 T
ra

ff
ic

  (
K

B
/S

) 

Window Postions 

Average Network Traffic Upper control limit Lower control limit



210 
 

 

 

Fig A.0.16 LWMA analysis of the TCP SYN flooding attack on the Outgoing Traffic during First ARL. 
The graph indicates the normal activity in the traffic. 

 

 

Fig A.0.17 LWMA analysis of the TCP SYN flooding attack on the one minute load during First ARL.  
The graph indicates the malicious load on the server during the attack. 

 

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 A
ve

ra
ge

 T
ra

ff
ic

 (
K

B
/s

) 

Window Postions 

Network traffic Upper control limit Lower control limit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 L
o

ad
 (

%
) 

 

Window Position  

Server load Upper control limit Lower control limit



211 
 

 

Fig A.0.18 LWMA analysis of the TCP SYN flooding attack on the five-minute load during First ARL. 
 The graph indicates the malicious load on the server during the attack. 

 

   

 

Fig A.0.19 LWMA analysis of the TCP SYN flooding attack on the fifteen-minute load during First ARL. 
The graph indicates the malicious load on the server during the attack. 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 L
o

ad
 (

%
) 

Window Position  

Server load Upper control limit Lower control limit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 L
o

ad
 (

%
) 

Window position  

Server load Upper control limit Lower control limit



212 
 

B. The detection result of the second ARL of the CUSUM TCP SYN flooding  results 

presented in chapter six 

 

 

Fig A.0.20 LWMA analysis of the TCP SYN flooding attack on the Incoming Traffic during the second ARL. 
The traffic below the upper control limit indicates a normal activity in the normal, traffic above the upper 

control limit indicate malicious activity in the network. 
 

 

 

Fig A.0.21 LWMA analysis of the TCP SYN flooding attack on the Outgoing Traffic during the second ARL. 
The graph indicates the normal activity in the traffic. 

 

 

 

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 N
et

w
o

rk
 t

ra
ff

ic
  (

K
B

/s
) 

Window Position 

Average Network Traffic Upper control limit Lower control limit

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

/s
) 

Window position   

Average Network Traffic Upper control limit Lower control limit



213 
 

 

Fig A.0.22 LWMA analysis of the TCP SYN flooding attack on the one minute load during the second ARL. 
The graph indicates the malicious load on the server during the attack. 

 

 

 

 

Fig A.0.23 LWMA analysis of the TCP SYN flooding attack on the five-minute load during the second ARL. 
The graph indicates the malicious load on the server during the attack. 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 L
o

ad
 (

%
) 

 

Window Position  

Server load Upper control limit Lower control limit

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 L
o

ad
 (

%
) 

 

Window poition  

LWMA Result Five Minutes Sever Load Second ARL  

Server load Upper control limit Lower control limit



214 
 

 

Fig A.0.24 LWMA analysis of the TCP SYN flooding attack on the fifteen-minute load during the second 
ARL. The graph indicates the malicious load on the server during the attack. 

 

A.3 Additional CUSUM analysis results of the UDP flooding attack 

The figures provided are additional results of the performance of the CUSUM technique 

when detecting UPD flooding (low intensity) attacks on the victim node.  The test 

condition is presented in chapter six where the performance of the technique was 

evaluated. 

The network traffic or the server load that exceeds the control limits indicate malicious 

activity on the network or the server load.  

A. The additional detection result of the first ARL of the CUSUM UDP flooding  

results presented in chapter six 

 

Fig A.0.25 CUSUM analysis of the UDP flooding attack on the Incoming Traffic during the first ARL. The 
graph indicates the network traffic within the control limit. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 L
o

ad
 (

%
) 

Window Position 

Server load Upper control limit Lower control limit

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

10:15:10 10:15:27 10:15:45 10:16:02 10:16:19 10:16:36 10:16:54

 N
et

w
o

rk
  T

ra
ff

ic
 C

U
SU

M
 (

 K
B

/S
) 

Time series  

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit



215 
 

 

Fig A.0.26 CUSUM analysis of the UDP flooding attack on the outgoing Traffic during the first ARL.  
The graph indicates the network traffic within the control limit. 

 

 

 

Fig A.0.27 CUSUM analysis of the UDO flooding attack on the one minute load during the first ARL.  
The graph indicates a normal load behaviour on the server.  

 

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

10:15:10 10:15:27 10:15:45 10:16:02 10:16:19 10:16:36 10:16:54

 N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

Time series  

CUSUM High Side CUSUM Low Side

Upper control limit Lower control limit

-1.5

-1

-0.5

0

0.5

1

1.5

10:15:10 10:15:27 10:15:45 10:16:02 10:16:19 10:16:36 10:16:54 10:17:11

Se
rv

er
  L

o
ad

 C
U

SU
M

 (
K

B
/s

) 

Time Series  

CUSUM High Side CUSUM Low Side

Upper control limit Lower control limit



216 
 

 

Fig A.0.28 CUSUM analysis of the UDO flooding attack on the five minutes load during the first ARL.  
The graph indicates a normal load behaviour on the server.  

 

 

 

 

Fig A.0.29 CUSUM analysis of the UDO flooding attack on the fifteen minutes load during the first ARL. 
The graph indicates a drop in the load on the server. 

 
 
 
 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

10:15:10 10:15:27 10:15:45 10:16:02 10:16:19 10:16:36 10:16:54 10:17:11

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 

Time series  

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

-160

-140

-120

-100

-80

-60

-40

-20

0

20

10:15:10 10:15:27 10:15:45 10:16:02 10:16:19 10:16:36 10:16:54 10:17:11

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 

Time Series  

CUSUM High Side CUSUM Low Side

Upper control limit Lower control limit



217 
 

B. The additional detection result of the second ARL of the CUSUM UDP flooding  

results presented in chapter six 

 

Fig A.0.30 CUSUM analysis of the UDP flooding attack on the Incoming Traffic during the second ARL.  
The graph indicates the network traffic within the control limit. 

 

 

 

Figure A.0.31 CUSUM analysis of the UDP flooding attack on the outgoing Traffic during the second ARL.  
The graph indicates the network traffic within the control limit. 

 

 

-100000

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

10:16:36 10:16:54 10:17:11 10:17:28 10:17:46 10:18:03 10:18:20 10:18:37

 N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

Time Series  

CUSUM High Side CUSUM Low Side

Upper control limit Lower control limit

-100000

-50000

0

50000

100000

10:16:36 10:16:54 10:17:11 10:17:28 10:17:46 10:18:03 10:18:20 10:18:37

N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

Time Series  

CUSUM High Side CUSUM traffic Side

Upper control limit Lower control limit



218 
 

 

Fig A.0.32 CUSUM analysis of the UDP flooding attack on the one minute load during the second ARL.  
The graph indicates a normal load behaviour on the server.  

 

 

 

Fig A.0.33 CUSUM analysis of the UDP flooding attack on the five minutes load during the second ARL.  
The graph indicates a normal load behaviour on the server.  

 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

10:16:36 10:16:54 10:17:11 10:17:28 10:17:46 10:18:03 10:18:20 10:18:37

Se
ve

r 
Lo

ad
 C

U
SU

M
 (

%
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

10:16:36 10:16:54 10:17:11 10:17:28 10:17:46 10:18:03 10:18:20 10:18:37

Se
rv

er
  L

o
ad

 C
U

SU
M

 (
%

) 

Time series  

CUSUM High Side CUSUM Low Side

Upper control limit Lower control limit



219 
 

 

Fig A.0.34 CUSUM analysis of the UDP flooding attack on the five minutes load during the second ARL.  
The graph indicates a spike in the load on the server and a sharp drop in the load on the server. 

 

 

A.4 LWMA ANALYSIS RESULTS OF THE UDP FLOODING ATTACK 

The figures provided are additional results of the performance of the LWMA 

technique when detecting UPD flooding (low intensity) attacks on the victim node 

presented in chapter six.  The test condition is presented in chapter six where the 

performance of the technique under the UDP flooding attack was evaluated.  

A. The additional detection result of the first ARL of the LWMA UDP flooding  

results presented in chapter six 

 

Fig A.0.35 LWMA analysis of the UDP flooding attack on the Incoming Traffic during the first ARL.  
The graph indicates a normal activity in the traffic and then rise above the control limit which indicates 

malicious activities in the traffic 

 

-200

-150

-100

-50

0

50

100

10:16:36 10:16:54 10:17:11 10:17:28 10:17:46 10:18:03 10:18:20 10:18:37 10:18:55

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 

Time Series  

CUSUM High Side CUSUM Low Side Upper control limit Lower control limit

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

A
ve

ra
ge

 T
ra

ff
ic

 (
K

B
/s

) 

Window postion 
10:15:17 to 10:17:02 

LWMA Upper control limit Lower control limit



220 
 

 

Fig A.0.36 LWMA analysis of the UDP flooding attack on the Outgoing Traffic during the first ARL.  
The graph indicates a normal activity in the traffic and then rise above the control limit which indicates 

malicious activities in the traffic 

 

 

 

 

Fig 0A.0.37 LWMA analysis of the UDP flooding attack on the one minute load during the first ARL.  
The graph indicates the malicious load on the server.  

 

 

 

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ve

ra
ge

 T
ra

ff
ic

 (
K

B
/s

) 

Window Position 
10:15:17 to 10:17:02  

LWMA Upper control limit Lower control limit

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

A
ve

ra
ge

 L
o

ad
 (

%
) 

Window Position  
10:15:17 to 10:17:02  

Average Load Upper control limit Lower control limit



221 
 

 

Fig 0A.0.38 LWMA analysis of the UDP flooding attack on the five minutes load during the first ARL.  
The graph indicates the malicious load on the server.  

 

 

 

 

Fig 0A.0.39 LWMA analysis of the UDP flooding attack on the fifteen minutes load during the first ARL.  
The graph indicates the malicious load on the server.  

 

 

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

A
ve

ra
ge

 L
o

ad
 (

%
) 

Window Position  
10:15:17 to 10:17:02  

 

Average Load Upper control limit Lower control limit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

A
ve

ra
ge

 L
o

ad
 (

%
) 

 

Window Position 
10:15:17 to 10:17:02  

 

Average Load Upper control limit Lower control limit



222 
 

B. The additional Detection result of the second ARL of the LWMA UDP flooding  

results presented in chapter six 

 

Fig 0A.0.40 LWMA analysis of the UDP flooding attack on the Incoming Traffic during the second ARL.  
The graph indicates a rise above the control limit which indicates malicious activities in the traffic 

 

 

 

Fig A.0.41 LWMA analysis of the UDP flooding attack on the Outgoing Traffic during the second ARL.  
The graph indicates a normal activity in the traffic and then rise above the control limit which indicates 

malicious activities in the traffic 
 

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20A
ve

ra
ge

 N
et

w
o

rk
 T

R
af

fi
c 

(K
B

/s
) 

 

Window position 
10:17:03 to 10:18:42  

Average Traffic Upper control limit Lower control limit

0

2000

4000

6000

8000

10000

0 5 10 15 20 25A
ve

ra
ge

 N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

/s
) 

Window Position 
10:17:03 to 10:18:42  … 

Average Traffic Upper control limit Lower control limit



223 
 

 

Fig A.0.42 LWMA analysis of the UDP flooding attack on the one minute load during the second ARL.  
The graph indicates the malicious load on the server.  

 

 

Fig  A.0.43 LWMA analysis of the UDP flooding attack on the five minutes load during the second ARL.  
The graph indicates the malicious load on the server.  

 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

A
ve

ra
ge

 L
o

ad
 (

%
) 

window position 
10:17:03 to 10:18:42  

  … 

LWMA Upper control limit Lower control limit

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

A
ve

ra
ge

 L
o

ad
 (

%
) 

 

Window Position 
10:17:03 to 10:18:42  

  

 LWMA Upper control limit Lower control limit



224 
 

 

Fig A.0.44 LWMA analysis of the UDP flooding attack on the fifteen minutes load during the second ARL.  
The graph indicates the malicious load on the server.  

 

A.4 Results of The Real-Time Detection Botnet DDoS Attacks 

The figures provided are additional evidence of the TCP  SYN flooding attacks on the 

zombie nodes (i.e. node One and node Two). The graphs are the detection performance 

during the botnet attack.  

CUSUM analysis graph of the TCP SYN Flooding attack 

A) An additional result from node one - First ARL Analysis graph 

 

Fig A.0.45 Manifestation of the TCP SYN flooding attack on Incoming Traffic on node one during the First 
ARL. The graph indicates a normal activity in the traffic and gradual build-up in the traffic during the 

attack.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

A
ve

ra
ge

 L
o

ad
 (

%
) 

Window Position 
10:17:03 to 10:18:42  

  

LWMA Upper control limit Lower control limit

-1500

-1000

-500

0

500

1000

1500

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 11:59:42

N
et

w
o

rk
 t

ra
ff

ic
 C

U
SU

M
 (

%
) 

Time series 

CUSUM High Side CSUM Low Side

Upper Control Limit  Lower Control Limit



225 
 

 

Fig A.0.46  Manifestation of the TCP SYN flooding attack on Outgoing Traffic on node one during the First 
ARL. The graph indicates a drop in the traffic activity and gradual build-up in the traffic during the attack.  

 

 

Fig A.0.47 Manifestation of the TCP SYN flooding attack on server load in One Minute on node one during 
First ARL. The graph indicates a drop in the server load  

 

Fig A.0.48  Manifestation of the TCP SYN flooding attack on server load in Five Minutes on node one 
during First ARL. The graph indicates a drop in the server load  

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 11:59:42

N
et

w
o

rk
 t

ra
ff

ic
 C

U
SU

M
 (

%
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-20

-15

-10

-5

0

5

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 11:59:42

Se
rv

er
 L

o
ad

 (
%

) 

Time Series  

Load High Side Load Low Side Upper Control Limit  Lower Control Limit

-10

-8

-6

-4

-2

0

2

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 :42

Se
rv

er
 lo

ad
 (

%
) 

Time Series  

Load High Side Load Low Side Upper Control Limit  Lower Control Limit



226 
 

 

 

Fig 0A.0.49 Manifestation of the TCP SYN flooding attack on server load in Fifteen Minutes on node one 
during First ARL. The graph indicates a drop in the server load  

 

B) An additional result from node one - Second ARL Analysis graph 

 

Fig A.0.50 Manifestation of the TCP SYN flooding attack on Incoming Traffic on node one during the 
Second ARL. The graph indicates normal traffic below the control limit and malicious traffic above the 

control limit.  

-12

-10

-8

-6

-4

-2

0

2

11:59:33 :34 :35 :36 :37 :38 :39 :40 :41 :42

Se
rv

er
 lo

ad
 (

%
) 

Time Series  

 Load High Side  Load minute Low Side Upper Control Limit  Lower Control Limit

-1500

-1000

-500

0

500

1000

1500

2000

2500

11:59:43 :44 :45 :46 :47 :48 :49 :50 :51 11:59:52

 N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/s
) 

Time Series  

CSUUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit



227 
 

 

Fig A.0.51 Manifestation of the TCP SYN flooding attack on Outgoing Traffic on node one during the 
Second ARL. The graph indicates malicious traffic above the control limit.  

 

 

Fig A.0.52 Manifestation of the TCP SYN flooding attack on server load in One Minute on node one during 
Second ARL 

 

Fig 0A.0.53 Manifestation of the TCP SYN flooding attack on server load in Five Minutes on node one 
during Second ARL 

 

-100000

0

100000

200000

300000

400000

11:59:43 :44 :45 :46 :47 :48 :49 :50 :51 11:59:52N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

%
) 

 

Time Series  

CUSUM High Side CSUUM Low Side

Upper Control Limit  Lower Control Limit

-20

-15

-10

-5

0

5

11:59:43 :44 :45 :46 :47 :48 :49 :50 :51 :52

Se
rv

er
 lo

ad
 C

U
SU

M
 (

%
) 

Time Series  

One minute High Side One minute Low Side Upper Control Limit  Lower Control Limit

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

11:59:43 :44 :45 :46 :47 :48 :49 :50 :51 :52

Se
ve

r 
Lo

ad
 C

U
SU

M
 (

%
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit



228 
 

 

Fig A.0.54 Manifestation of the TCP SYN flooding attack on server load in Fifteen Minutes on node one 
during Second ARL. The graph indicates a drop in the server load.  

C) An additional result from node One Third ARL Analysis graph 

 

Fig A.0.55 Manifestation of the TCP SYN flooding attack on Incoming Traffic on node one during the 
Third ARL. The graph indicates a normal activity and malicious traffic above the control limit 

  

-12

-10

-8

-6

-4

-2

0

2

11:59:43 :44 :45 :46 :47 :48 :49 :50 :51 :52

Se
ve

r 
Lo

ad
 C

U
SU

M
 (

%
) 

 

Time Series  

CUSUM load on High Side CUSUM load on Low Side

Upper Control Limit  Lower Control Limit

-10000

0

10000

20000

30000

40000

50000

60000

N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/s
) 

 

Time Series  

CUSUM High Side CUSUM Low Side

Upper Control Limit  Lower Control Limit



229 
 

 

Fig A.0.56 Manifestation of the TCP SYN flooding attack on Outgoing Traffic on node one during the 
Third ARL. The graph indicates a normal activity and malicious traffic above the control limit 

 

 

 

Fig A.0.57 Manifestation of the TCP SYN flooding attack on server load in One Minute on node one during 
Third ARL. The graph indicates a drop in the server load  

 

-100000

-50000

0

50000

100000

150000

200000

250000

300000

350000

12:00:04 :05 :06 :07 :08 :09 :10 :11 :12 :13N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/s
) 

 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-14

-12

-10

-8

-6

-4

-2

0

2

12:00:04 :05 :06 :07 :08 :09 :10 :11 :12 :13

Se
ve

r 
lo

ad
 C

U
SU

M
 (

%
) 

TIme Series  

CUSUM High Side CUSUM Low Side

Upper Control Limit  Lower Control Limit



230 
 

 

Fig A.0.58 Manifestation of the TCP SYN flooding attack on server load in Five Minutes on node one 
during Third  ARL. The graph indicates a drop in the server load 

 

Fig A.0.59 Manifestation of the TCP SYN flooding attack on server load in Fifteen Minutes on node one 
during Third ARL. The graph indicates a drop in the server load 

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

12:00:04 :05 :06 :07 :08 :09 :10 :11 :12 :13

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 

Time Series  

CUSUM High Side CUSUM Low Side

Upper Control Limit  Lower Control Limit

-12

-10

-8

-6

-4

-2

0

2

12:00:04 :05 :06 :07 :08 :09 :10 :11 :12 :13

Se
ve

r 
Lo

ad
 C

U
SU

M
 (

%
) 

Time Series  

CUSUM High Side CUSUM Low Side

Upper Control Limit  Lower Control Limit



231 
 

 A) Additional Detection result from node two - first ARL analysis graph 

 
Fig A.0.60 Manifestation of the TCP SYN flooding attack on Incoming Traffic on node two during the first 

ARL. The graph indicates a normal activity on the network traffic.  

 

 

 

 

 

Fig A.0.61 Manifestation of the TCP SYN flooding attack on Outgoing Traffic on node two during the first 
ARL. The graph indicates a normal activity and malicious traffic which is showing as above the control 

limit   

 

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

11:59:41 :42 :43 :44 :45 :46 :47 :48 :49 :50

  N
et

w
o

rk
 t

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-50000

0

50000

100000

150000

200000

11:59:41 :42 :43 :44 :45 :46 :47 :48 :49 :50

  N
et

w
o

rk
 T

ra
ff

ci
 C

U
SU

M
 (

K
B

/S
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit



232 
 

 

 

Fig A.0.62 Manifestation of the TCP SYN flooding attack on server load in One Minute on node two during 
first ARL. The graph indicates a drop in the server load  

 

 

 

 

 

 

Fig 0A.0.63 Manifestation of the TCP SYN flooding attack on server load in five Minutes on node two 
during first ARL. The graph indicates the malicious load on the server. The load above the control limit is 

malicious.  

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

11:59:41 :42 :43 :44 :45 :46 :47 :48 :49 :50

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

11:59:41 :42 :43 :44 :45 :46 :47 :48 :49 :50

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit



233 
 

 

 

Fig A.0.64 Manifestation of the TCP SYN flooding attack on server load in fifteen Minutes on node two 
during first ARL. The graph indicates a drop in the server load 

 

 

 

 

 

B) Additional Result from node one-second ARL analysis graph 

 

Fig A.0.65 Manifestation of the TCP SYN flooding attack on Incoming Traffic on node two during the 
second ARL. The Graph indicates normal activity in the traffic  

 

-12

-10

-8

-6

-4

-2

0

2

11:59:41 :42 :43 :44 :45 :46 :47 :48 :49 :50

S

e

r

v

e

r

 

l

a

o

d

 
Time Series  

CUSUM load on High Side CUSUM load on Low Side

Upper Control Limit  Lower Control Limit

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

11:59:51 :52 :53 :54 :55 :56 :57 :58 :59 :00

N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
  (

K
B

/S
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit



234 
 

 

Fig A.0.66 Manifestation of the TCP SYN flooding attack on Outgoing Traffic on node two during the 
second ARL. The graph indicates malicious activity in the traffic.  

 

 

 

 

 

Fig A.0.67 Manifestation of the TCP SYN flooding attack on server load in one Minute on node two during 
the second ARL. The graph indicates a drop in the server load  

 

-50000

0

50000

100000

150000

200000

250000

300000

350000

11:59:51 :52 :53 :54 :55 :56 :57 :58 :59 :00

 N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-7

-6

-5

-4

-3

-2

-1

0

1

2

11:59:51 :52 :53 :54 :55 :56 :57 :58 :59 :00

Se
rv

er
 L

o
ad

 C
U

SU
M

 (
%

) 
  

Time Series  

CUSUM High Side CUSUM Low Side

Upper Control Limit  Lower Control Limit



235 
 

 

Fig A.0.68 Manifestation of the TCP SYN flooding attack on server load in five minutes on node two 
during the second ARL. The graph indicates the malicious load on the server because the load exceeds 

the control limit.  

 

 

 

 

 

 

 

Fig A.0.69 Manifestation of the TCP SYN flooding attack on server load in fifteen minutes on node two 
during the second ARL. The graph indicates a drop in the server load. 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

11:59:51 :52 :53 :54 :55 :56 :57 :58 :59 :00

Se
rv

er
 lo

ad
 C

U
SU

M
 (

%
) 

Time series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-12

-10

-8

-6

-4

-2

0

2

11:59:51 :52 :53 :54 :55 :56 :57 :58 :59 :00

Se
ve

r 
lo

ad
 C

U
SU

M
 (

%
) 

Time series  

CUSUM High Side CUSUM Low Side

Upper Control Limit  Lower Control Limit



236 
 

C) An additional result from node one - third ARL analysis graph 

 

Fig A.0.70 Manifestation of the TCP SYN flooding attack on Incoming Traffic on node two during the third 
ARL. The graph indicates normal activities in the traffic 

 

 

 

 

 

 

Fig A.0.71 Manifestation of the TCP SYN flooding attack on Outgoing Traffic on node two during the third 
ARL. The graph indicates malicious activities in the traffic  

 

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

12:00:01 :03 :04 :05 :06 :07 :08 :09 :10 :11

Se
rv

er
 lo

ad
 C

U
SU

M
 (

%
) 

Time series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-50000

0

50000

100000

150000

200000

250000

300000

350000

12:00:01 :03 :04 :05 :06 :07 :08 :09 :10 :11

N
et

w
o

rk
 T

ra
ff

ic
 C

U
SU

M
 (

K
B

/S
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit



237 
 

 

Fig A.0.72 Manifestation of the TCP SYN flooding attack on server load in one Minute on node two during 
third ARL. The graph indicates a drop in the server load  

 

 

 

 

 

 

 

 

Fig A.0.73 Manifestation of the TCP SYN flooding attack on server load in five Minutes on node two 
during third ARL. The graph indicates the malicious load on the server  

-6

-5

-4

-3

-2

-1

0

1

2

12:00:01 :03 :04 :05 :06 :07 :08 :09 :10 :11

Se
rv

er
 lo

ad
 C

U
SU

M
 (

%
) 

Time Series  

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

12:00:01 :03 :04 :05 :06 :07 :08 :09 :10 :11

A
ve

ra
ge

 lo
ad

 C
U

SU
M

 (
%

) 

Ttime Series 

CUSUM High Side CUSUM Low Side Upper Control Limit  Lower Control Limit



238 
 

 

 

Fig A.0.74 Manifestation of the TCP SYN flooding attack on server load in fifteen Minutes on node two 
during third ARL. The graph indicates a drop in the server load  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-12

-10

-8

-6

-4

-2

0

2

12:00:01 :03 :04 :05 :06 :07 :08 :09 :10 :11

Se
ve

r 
lo

ad
 C

U
SU

M
 (

%
) 

 

Time series  

CUSUM High Side CUSUM Low Side

Upper Control Limit  Lower Control Limit



239 
 

Appendix B 

B.1 Justification of the choice metrics for the real-time analysis of the 

network traffic and average server load 

Distributed Denial of Service (DDoS) is a well-known attacked and hence has attracted 

significant detection techniques [26][4][27][29][42]. However, current packet-based 

analysis detection techniques are characterised by high computational overhead. 

Consequentially such detection techniques will not be an ideal choice if the aim is to 

create internal DDoS detection mechanism for the Hadoop framework. Essentially, high 

computational overhead as a result of the detection activities tends degrading overall 

system performance on the Hadoop node. However, a flow-metrics based technique was 

adopted because flow metrics-based analysis is known to attract a little computational 

cost [86].  

 

The next design consideration was the choice of metrics which will provide reflective 

insight into the network and server load behaviour of the node having established the 

detection approach. A DDoS attack experiment was conducted on the internally 

deployed Hadoop test bed to ascertain the right metrics to use to establish such 

behavioural metrics, particularly during normal and abnormal instances. DDoS attack is 

known to deny legitimate access to network resources by overwhelming the victim with 

the malicious request until the victim become unresponsive [94]. Based on these 

characteristics, TCP SYN and UDP flooding attack were launched to attack a node in the 

cluster to observe how the attack manifest in the bandwidth utilisation and the server 

load metrics when a node fall victim of the TCP SYN Flooding attack. Secondly, the 

attacking tool (i.e. hping3) was used to create a botnet with two Hadoop nodes to 

launch a DDoS attack to ascertain the behaviour when the nodes are compromised as 

zombies to launch DDoS attacks. The results of the experiment are presented in the next 

section.  

B.2 Confirmation Of The Choice Of Metrics For The Analysis And 

Detection Of Dos Attacks On The Hadoop Node 

1. The objective of the experiment  

The objective is to find out how TCP SYN and UDP Flooding attack manifest themselves 

in a Hadoop cluster and how they impact on network traffic and the average server load. 

 



240 
 

2. The aim of the experiment  

The aim is to ascertain the manifestation of these attacks in the bandwidth utilisation 

and the server load within the Hadoop cluster. An understanding of these attack 

manifestation can then be used to develop BDI-based detection techniques to 

intelligently detect UDP and TCP SYN Flooding attacks in a Hadoop cluster. 

 

3. Experiment Methodology 

A MapReduce job was developed to process and anonymised the source IP address in a 

NetFlow data on the Hadoop cluster to create legitimate activities on the cluster. The 

MapReduce job deployed on the cluster was left running for five hours to determine all 

possible legitimate bandwidth and server load utilisation. The average and maximum 

bandwidth and server load utilisation measurements were then used as the threshold to 

determine any malicious impact during the attack. hping3 [91]was used to inject TCP 

SYN attack into the cluster during the legitimate MapReduce activity. Likewise, low 

orbit cannon (LOIC) DDoS tool was used to inject UDP flooding attack into the cluster 

during the legitimate MapReduce activities.   

 

Understanding how each attack manifests itself in these identified metrics is essential to 

building a distinctive manifestation profile of each attack. Consequently, each attack 

was launched alongside the normal MapReduce job activity for one minute.  Two native 

Linux utilities (i.e. ifstat and uptime) were then used to collect real-time measurement of 

the bandwidth and server load utilisation from the victim machines. The utilisation was 

measured every second to provide the most granular view of the attack impact. 

 

4. First experiment scenario - TCP SYN Flooding attack  

The attacker in this scenario used the fping3 tool to compromised two data nodes and 

used them as zombies to launch TCP SYN Flooding attack from within the cluster. The 

victim was the NameNode. The following properties were used to define the attack 

intensity in the hping3 tool: 

Number of packets: 300000 

Size of packets sent to the target machine: 120 

Type of packets: TCP SYN packets 

Type of attack: flooding  



241 
 

TCP window: 64 

Total packet transmitted: 16,399,882 

 

5. Second experiment scenario  

The attacker in this scenario used the LOIC tool to launch a UDP flooding attack into the 

Hadoop cluster. Two machines were used to constitute the attack machine or the 

attackers. Each one has installed the LOIC tool to launch a simultaneous UDP Flooding 

attack from outside the Hadoop cluster to the victim (i.e. Hadoop NameNode) in the 

cluster. The following properties were used to define the attack intensity in each LOIC 

tool: 

Type of Packets UDP 

Target port: 22 

Threads: 1000 

Total request sent: 179,121,117 

 

6. The observations from the experiment  

According to Fig B.1, Fig B.2, Fig B.3, Fig B.4, Fig B.5 and Fig B.6, the result from the 

attack experiment confirmed the bandwidth utilisation and average server load as the 

potential metrics to provide reflective insight into the real-time behaviour of network 

bandwidth and the server load. In this experiment, the highest bandwidth utilisation 

and average server load in one hour of legitimate MapReduce activities are used to 

compare with the same metrics during the attacks. The impact of TCP SYN and UDP 

flooding were observed from two perspectives. The first one observed how the impact 

manifest in these metrics when the node fell victim to these two attacks. Moreover, the 

second instance also observed how the impact is manifested when the node is 

compromised (i.e. becomes a zombie) to launch TCP SYN flooding attacks from the 

Hadoop cluster.  

 

Fig B.1 and Fig B.2 show the attack manifestation on both the network traffic and the 

server load during the TCP SYN Flooding botnet attack. While the node was registering 

abnormal traffic, the server load was equally registering abnormal load during the 



242 
 

attack. Likewise, Fig B.3, Fig B.4 registered abnormal traffic volume and abnormal load 

when the node fell victim to the TCP SYN flooding attack.  

However even though the UDP flooding attack equally registered abnormal incoming 

traffic manifestation (shown in Fig B.5), it was observed from Fig B.6 that the impact on 

the server load was not as significant as registered during the TCP attack. Nonetheless, 

the one-minute server load metrics recorded an abnormal behaviour during the attack. 

  

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

 1
3

:0
0

:0
0

:0
5

:1
0

:1
5

:2
0

:2
5

:3
0

:3
5

:4
0

 :
4

5

:5
0

:5
5

:0
1

:0
0

:0
5

:1
0

 :
1

5

:2
0

:2
5

:3
0

:3
5

 :
4

1

:4
6

:5
1

:5
6

:0
2

:0
7

:1
2

:1
7

:2
2

:2
7

:3
2

:3
7

:4
2

:4
7

:5
2

:5
7

Network Traffic
KB/s

Time Series  

Malicious in traffic KB/s Malicious out traffic KB/s Normal in traffic KB/s Normal out traffic KB/s

  

Fig B.1 Impact of the TCP SYN Flooding botnet attack on network bandwidth on zombie node 

 

Fig B.1  shows the impact of the TCP SYN flooding attack on the network bandwidth of 

the victim. The malicious traffic manifested in the outgoing traffic because the victim 

node was used to launch the attack.  

 

 

Malicious traffic 



243 
 

0

0.5

1

1.5

2

2.5

3

3.5
:0

2

:0
5

:0
9

:1
2

:1
6

:1
9

:2
2

:2
5

:2
8

:3
1

:3
4

:3
7

:4
0

:4
3

:4
6

:4
9

:5
2

:5
5

:5
8

:0
1

:0
4

:0
7

:1
1

:1
4

 :
1

7

:2
0

:2
4

:2
7

:3
0

:3
3

:3
6

:3
9

:4
2

:4
5

:4
8

:5
1

:5
4

:5
7

:0
2

:0
0

:0
3

:0
6

:0
9

:1
2

:1
5

:1
8

:2
2

:2
5

:2
8

:3
1

:3
4

:3
8

:4
1

:4
4

:4
7

:5
0

:5
3

1
3

:0
2

:5
6

A
v

e
r
a

g
e

 l
o

a
d

 

Time series 

Malicious one minute load Malicious five minutes load Malicious fifteen minutes load

Normal highest one minute load Normal Highest one minute load

  

Fig B.2 Impact of the TCP SYN Flooding botnet attack on the server load on zombie node 

 

Fig B.2  shows the impact of the TCP SYN flooding attack on the average load of the 

victim.  

 

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

 1
3

:0
0

:0
0

:0
4

:0
8

:1
2

:1
6

:2
0

:2
4

:2
8

:3
2

:3
6

:4
0

:4
4

:4
8

:5
2

:5
6

:0
0

:0
4

:0
8

:1
2

:1
6

:2
0

:2
4

:2
8

:3
2

:3
6

:4
1

:4
5

:4
9

:5
3

:5
7

:0
2

:0
6

:1
0

:1
4

:1
8

:2
2

:2
6

:3
0

:3
4

:3
8

:4
2

:4
6

:5
0

:5
4

:5
8

Network
Traffic 
KB/s 

Time Series 

Malisious incoming traffic KB/s Malicious outgoinf traffic KB/s

Normal highest incoming traffic KB/s Normal highest outgoing traffic KB/s

  

Fig B.3 Impact of the TCP SYN Flooding attack on network bandwidth on victim node 

 

Fig B.3 shows the impact of the TCP SYN flooding attack on the network bandwidth of 

the victim. The malicious traffic manifested in the incoming traffic because the second 

victim node was the recipient of the malicious TCP SYN request from the attacker 

(which was the first victim node). 

 

Malicious 

traffic 

Malicious load  



244 
 

0

0.5

1

1.5

2

2.5

3
 1

3
:0

0
:0

0

:0
4

:0
8

:1
2

:1
6

:2
0

:2
4

:2
8

:3
2

:3
6

:4
0

:4
4

:4
8

:5
2

:5
6

:0
1

:0
0

:0
4

:0
8

:1
2

:1
6

:2
0

:2
4

:2
8

:3
2

:3
6

:4
1

:4
5

:4
9

:5
3

:5
7

:0
2

:0
6

:1
0

:1
4

:1
8

:2
2

:2
6

:3
0

:3
4

:3
8

:4
2

:4
6

:5
0

:5
4

:5
8

A
v

e
a

r
a

g
e

 s
e

r
v

e
r
 l
o

a
d

 

Time Series 

Malicious load one minute Malicious load five minutes Malicious load fifteen minutes Normal load Normal load

  

Fig B.4 Impact of the TCP SYN flooding attack on the server load on victim node 

Fig B.4  shows the impact of the TCP SYN flooding attack on the average load of the 

second victim. 

 

 

0

5000

10000

15000

20000

25000

30000

35000

1
5

:4
7

:2
0

:2
2

:2
4

:2
6

:2
8

:3
0

:3
2

:3
4

:3
6

:3
8

:4
0

:4
2

:4
4

:4
6

:4
8

:5
0

:5
2

:5
4

:5
6

:5
8

:4
8

:0
0

:0
2

:0
4

:0
6

:0
8

:1
0

:1
2

:1
4

:1
6

:1
8

:2
0

:2
2

:2
4

:2
6

:2
8

:3
0

:3
2

:3
4

1
5

:4
8

:3
6

Network

Traffic 
KB/s

Time series 

Malicious incoming traffic KB/s Malicious outgoing traffic KB/s highest normal traffic KB/s highest normal traffic KB/s

  

Fig B.5 Impact of the UDP flooding attack on network bandwidth on victim node 

 

Fig B.5  shows the impact of the UDP flooding attack on the network bandwidth of the 

victim node. The malicious traffic manifested in the incoming traffic because the victim 

node was the recipient of the malicious UDP packets from the attacker.  

 

Malicious traffic 

Malicious load  



245 
 

0

1

2

3

4

5

6

7

8

9

1
5

:4
7

:2
0

 :
2

2

 :
2

4

:2
6

:2
8

:3
0

:3
2

:3
4

:3
6

:3
9

:4
1

:4
3

:4
5

:4
7

:4
9

:5
1

:5
3

:5
5

:5
7

:5
9

:0
1

:0
3

:0
5

:0
7

:0
9

:1
1

:1
3

:1
5

:1
7

:1
9

:2
1

:2
3

:2
5

:2
7

:2
9

:3
1

:3
3

:3
5

Average load

Time Series 

Malicious load one minute Malicious load Five minute Malicious load Fifteen minute Highest load with activity Highest load with activity

  

Fig B.6 Impact of the UDP Flooding attack on server load on victim node 

Fig B.6  shows the impact of the UDP flooding attack on the average load of the victim 

node. 

 

Indeed the low impact can be attributed to the fact that the traffic intensity of the UDP 

flooding attack is lower than the TCP SYN flooding attack.  Consequently, it is assumed 

that significant impact will equally be registered on the server load if the Node falls 

victim to high-intensity UDP flooding attack. The network traffic metrics both provide 

real-time manifestation or insight into the activities of both the outgoing and the 

incoming traffic. The dual metrics (i.e. observing both incoming and outgoing network 

metrics) is significant because it will provide the agent with the means to observer 

traffic in both ways at the same time. 

 

B.3 Description of the average Server load metrics 

 The underlying Linux Ubuntu operating system on which the Hadoop software was 

deployed captures the Node’s average server load behaviour in three instances.  Thus a 

snapshot of the load behaviour for the past one minute, five minutes and fifteen minutes. 

Essentially, the one minute indicates how fast the server is responding to the process 

request arriving in the process queue. Consequentially, a rise in the one minute load 

indicates that the server is responding to requests more than expected. However, the 

rise in the one-minute load metrics alone should not be a cause of alarm because the 

five minutes metrics will indicate if the incoming requests in the process queue are 

Malicious load  



246 
 

taking longer to respond or not. Even at this point, it cannot be considered as the server 

is on the verge of giving up on responding to request until the fifteen minutes load 

metrics also start rising. 

 

 Likewise, it was observed from Fig B.2, Fig B.4 and Fig B.6that, the three average 

server load metrics registered progressive rise during the attacks. Indications that the 

server is being overwhelmed by the request and can lead to a crash if nothing is done to 

mitigate the problem. The HDFS equally relies on the operating system’s load 

measurements to determine the load of each node.  

 

Based on the outcome of the DDoS attack experiments, the network traffic and average 

server load metrics were employed by the DoS detection techniques to monitor and 

detect DoS attacks on the Hadoop nodes.   

 

 

 

 

 

 

 

 



247 
 

Register service

 IC

 start IC

 start all agents 

Register services

Start-up agent All agents

Test connection with vendor tools

Vendor agents

Agent register 

 Register all agents in agent 
register 

Report connection status

UI Agent

Set agent status

Report agent status

 

Fig B.7 A sequence diagram depicting the boot sequence. The model explains the process involve in the 
starting and activating the agents within the framework.  

 

 

 

 

 

 

 

 

 



248 
 

1. Preliminary Planning

Not Formally addresses in the 
methodology 

Decide if gent-
based solution the 

best alternative

Use another 
development 

concept

1. System requirement elicitation 
with  Use Case Modelling 

2. Initial Agent identification

3. Agent responsibility Identification 

5. Agent refinement 

6. Agent deployment information

Not formally Addressed in the 
methodology 

4. Agent Acquaintances 
identification 

1. Agent Splitting margin/Renaming

2. Agent Interaction specification 

3. Ad-Hoc Interaction Protocol 
Definition

4. Agent Messaging template

5. Description of the agent search 
technique 

6. Agent-resource Interaction 

7. Agent-User Interaction

8. Internal Agent behaviours

9.Defining an ontology

10. Content Language Selection

No

Yes 

2. Analysis

3. Design

4. Implementation and 
testing

 

Fig B.8 Flow chart depicting the evolution stages in the GAIA methodology 

Fig B.8 presents all the stages involved in the GAIA methodology. According to the 

flowchart, GAIA is a sequential methodology which evolves the multi-agent agent design 

process from the preliminary planning stage (i.e. stage 1) to the design stage (i.e. stage 3). 

The three main stages in GAIA are labelled as 1. Preliminary planning, 2. Analysis and 3. 

Design. 

 



249 
 

 

Start

Set training Period as time 

Convert period period to seconds

Read previous normal metrics of the training period size

Get the list of sliding window averages of the metrics retrieved 

Collect current metrics of the training period 

Get the list of sliding window averages of the current metrics 

 Previous maximum  normal 
Average < Current maximum 

Average

Confirm UPwards 
Changes in Node 

Behaviour

Update Agent’s 
knowledge with current 

metrics 

 Previous maximum  
normal Average > Current 

minimum Average

Stop

Yes

YesNo

Update Agent’s knowledge 
with current metrics 

Confirm Downwards 
Changes in Node Behaviour

 

Fig B.9 Flowchart of the dynamic training technique 

Fig B.9 is the flow chart depicting the sequence of the novel dynamic training technique 

which allows the transducer agents to dynamically update their knowledge when the 

legitimate behaviour of the Hadoop nodes changes. 

 



250 
 

References 
[1] B. Geerdink, “A Reference Architecture for Big Data Solutions,” 8th Int. Conf. 

Internet Technol. Secur. Trans., pp. 71–76, 2013. 

[2] Z. Liu, P. Yang, and L. Zhang, “A sketch of big data technologies,” Proc. - 2013 7th 

Int. Conf. Internet Comput. Eng. Sci. ICICSE 2013, pp. 26–29, 2013. 

[3] D. Borthakur, “The hadoop distributed file system: Architecture and design,” 2007. 

[4] S. Hameed and U. Ali, “Efficacy of Live DDoS Detection with Hadoop,” Proc. NOMS 

2016 - 2016 IEEE/IFIP Netw. Oper. Manag. Symp., no. Noms, pp. 488–494, 2016. 

[5] S. M. Moindze and K. Konate, “A survey of the distributed network management 

models and architectures: Assessment and challenges,” in 2014 IEEE 6th 

International Conference on Adaptive Science & Technology (ICAST), 2014, pp. 1–8. 

[6] G. Tonti, R. Montanari, J. M. Bradshaw, L. Bunch, R. Jeffers, N. Suri, and A. Uszok, 

“Automated Generation of Enforcement Mechanisms for Semantically-rich 

Security Policies in Java-based Multi-Agent Systems,” in Multi-Agent Security and 

Survivability, 2004 IEEE First Symposium on, 2004, pp. 11–20. 

[7] S. Chadli, M. Saber, M. Emharraf, and A. Ziyyat, “A new model of IDS architecture 

based on multi-agent systems for MANET,” 2014 Second World Conference on 

Complex Systems (WCCS). pp. 252–258, 2014. 

[8] S. M. Moindze and K. Konate, “A Survey of the distributed network management 

models and architectures: Assessment and Challenges,” in IEEE, 2014, pp. 1–8. 

[9] S. Znaty, “Two Taxonomies of Distributed Network and Systems Management 

Paradigms,” Citeseer, pp. 1–32, 2000. 

[10] J. Lefebvre, S. Chamberland, and P. Samuel, “A Network Management Framework 

Using Mobile Agents,” Electr. Comput. Eng. IEEE CCECE 2003., vol. 2, no. 8, pp. 

737–740, 2003. 

[11] F. Bellifemine, G. Caire, and G. Dominic, Developing Multi-Agent systems with JADE, 

1st ed. Chichester, West Sussex, 2007. 

[12] W. Michael, An Introduction to Multi-Agent Systems, Second. John Wley &Sons Ltd, 

2009. 

[13] M. Wooldridge, N. R. Jennings, Q. Mary, and W. College, “Intelligent Agents : 

Theory and Practice,” Knowl. Eng. Rev., vol. 10:2, pp. 115–152, 1995. 

[14] A. Patcha and J. M. Park, “An overview of anomaly detection techniques: Existing 

solutions and latest technological trends,” Comput. Networks, vol. 51, no. 12, pp. 



251 
 

3448–3470, 2007. 

[15] A. Lane, “Securing Big Data : Security Recommendations for Hadoop and NoSQL 

Environments,” Carefree Blvd., 2012. 

[16] P. Murugesan and I. Ray, “Audit Log Management in MongoDB,” 2014 IEEE World 

Congr. Serv., pp. 53–57, 2014. 

[17] B. Bockelman, “Using Hadoop as a grid storage element,” J. Phys. Conf. Ser., vol. 

180, p. 12047, 2009. 

[18] R. Winter, “Big Data: Business Opportunities, Requirements and Oracle’s 

Approach,” Cambridge, MA, 2011. 

[19] D. Borthakur, “The hadoop distributed file system: Architecture and design,” 

Hadoop Proj. Website, pp. 1–14, 2007. 

[20] D. Carstoiu, A. Cernian, and A. Olteanu, “Hadoop Hbase-0.20.2 performance 

evaluation,” in New Trends in Information Science and Service Science (NISS), 2010 

4th International Conference on, 2010, pp. 84–87. 

[21] C. Tankard, “Big data security,” Netw. Secur., vol. 2012, no. 7, pp. 5–8, 2012. 

[22] G. Lafuente, “The big data security challenge,” Netw. Secur., vol. 2015, no. 1, pp. 

12–14, 2015. 

[23] J. Zhao, L. Wang, J. Tao, J. Chen, W. Sun, R. Ranjan, J. Kołodziej, A. Streit, and D. 

Georgakopoulos, “A security framework in G-Hadoop for big data computing 

across distributed Cloud data centres,” J. Comput. Syst. Sci., vol. 80, no. 5, pp. 994–

1007, 2014. 

[24] S. Priya and C. Navdeti, “Securing Big Data Hadoop : A Review of Security Issues , 

Threats and Solution,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 2, p. 1, 2015. 

[25] D. E. Denning, D. E. Denning, P. J. Denning, and P. J. Denning, “Data Security,” ACM 

Comput. Surv., vol. 11, no. 3, pp. 227–249, 1979. 

[26] Y. Lee and Y. Lee, “Detecting DDoS attacks with Hadoop,” Proc. ACM Conex. Student 

Work. - Conex. ’11 Student, vol. 12, pp. 1–2, 2011. 

[27] S. Tripathi, B. Gupta, A. Almomani, A. Mishra, and S. Veluru, “Hadoop Based 

Defense Solution to Handle Distributed Denial of Service (DDoS) Attacks,” J. Inf. 

Secur., vol. 4, no. 3, pp. 150–164, 2013. 

[28] G. Preetha, B. S. K. Devi, and S. M. Shalinie, “Autonomous agent for DDoS attack 

detection and defense in an experimental testbed,” Int. J. Fuzzy Syst., vol. 16, no. 4, 

pp. 520–528, 2014. 



252 
 

[29] T. Zhao, D. C. T. Lo, and K. Qian, “A neural-network based DDoS detection system 

using hadoop and HBase,” Proc. - 2015 IEEE 17th Int. Conf. High Perform. Comput. 

Commun. 2015 IEEE 7th Int. Symp. Cybersp. Saf. Secur. 2015 IEEE 12th Int. Conf. 

Embed. Softw. Syst. H, pp. 1326–1331, 2015. 

[30] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for 

AgentOriented Analysis and Design. Autonomous Agents and Multi-Agent 

Systems 3(3): 285–312,” Auton. Agent. Multi. Agent. Syst., no. 3, pp. 285–312, 2000. 

[31] E. Sanchis, “Designing new agent-based applications architectures with the AGP 

methodology,” Proc. Work. Enabling Technol. Infrastruct. Collab. Enterp. WETICE, 

vol. 2003–Janua, pp. 395–400, 2003. 

[32] S. Iqbal, W. Altaf, M. Aslam, W. Mahmood, and M. U. G. Khan, “Application of 

intelligent agents in health-care: review,” Artif. Intell. Rev., vol. 46, no. 1, pp. 1–30, 

2016. 

[33] A. V. Sandita and C. I. Popirlan, “Developing A Multi-Agent System in JADE for 

Information Management in Educational Competence Domains,” Procedia Econ. 

Financ., vol. 23, no. October 2014, pp. 478–486, 2015. 

[34] F. D. Samirmi, “Power Transformer Condition Monitoring and Fault Diagnosis 

with Multi-agent System based on Ontology Reasoning,” 2013. 

[35] N. F. Noy and D. L. McGuinness, “Ontology Development 101: A Guide to Creating 

Your First Ontology,” Stanford Knowl. Syst. Lab., p. 25, 2001. 

[36] F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent with JADE 

Systems. west sussex: John Wley &Sons Ltd, 2007. 

[37] H. Chen, W. Zhou, and L. Liu, “An approach of agent-based architecture for 

autonomic network management,” Proc. - 5th Int. Conf. Wirel. Commun. Netw. Mob. 

Comput. WiCOM 2009, 2009. 

[38] A. . Sharma, “An Intelligent Mobile-Agent Based Scalable Network Management 

Architecture for Large-Scale Enterprise System,” Int. J. Comput. Networks 

Commun., vol. 4, no. 1, pp. 79–95, 2012. 

[39] B. Liu, W. Li, and J. Luo, “Agent cooperation in multi-agent based network 

management,” … Support. Coop. Work Des. …, 2004. 

[40] J. Yang and S. J. Ben Yoo, “An intelligent network management system with multi-

tier distributed intelligence for optical packet-agile transport networks,” 2006 Int. 

Conf. Photonics Switch. Proceedings, PS, pp. 197–199, 2006. 



253 
 

[41] T. A. Shu, C. A. Yang, Y. I. N. Jianhua, and X. U. Ning, “A Mobile Agent Based 

Approach for Network Management,” IEEE, no. 69983005, 2000. 

[42] C. I. Pinz??n, J. F. De Paz, S. Rodr??guez, J. Bajo, and J. M. Corchado, “A hybrid 

agent-based classification mechanism to detect denial of service attacks,” J. Phys. 

Agents, vol. 3, no. 3, pp. 11–18, 2009. 

[43] J. B. Kim, “A Study on the Development of Next Generation Intelligent Integrated 

Security Management Model using Big Data Technology,” Int. J. Secur. Its Appl., vol. 

9, no. 6, pp. 217–226, 2015. 

[44] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” ACM SIGOPS 

Oper. Syst. Rev., vol. 37, p. 29, 2003. 

[45] X. Tian, “2014 IEEE Workshop on Electronics , Computer and Applications A 

Transparent Middleware for Encrypting Data in MongoDB Abstract-Due,” 2014 

IEEE Work. Electron. , Comput. Appl. A Transparent Middlew. Encrypting Data 

MongoDB Abstr., pp. 906–909, 2014. 

[46] M. R. Islam and M. E. Islam, “An approach to provide security to unstructured Big 

Data,” 8th Int. Conf. Software, Knowledge, Inf. Manag. Appl. (SKIMA 2014), pp. 1–5, 

2014. 

[47] IBM, “Data masking everywhere,” White Paper. Somers, New York, pp. 3–7, 2014. 

[48] Sqrrl Data Inc, “White Paper Big Data and Data- Centric Security,” White Paper. 

Cambridge, Ma 02140, pp. 4–15, 2014. 

[49] S. H. Kim, N. U. Kim, and T. M. Chung, “Attribute relationship evaluation 

methodology for big data security,” 2013 Int. Conf. IT Converg. Secur. ICITCS 2013, 

pp. 1–4, 2013. 

[50] C. Yang, W. Lin, and M. Liu, “A novel triple encryption scheme for hadoop-based 

cloud data security,” Proc. - 4th Int. Conf. Emerg. Intell. Data Web Technol. EIDWT 

2013, pp. 437–442, 2013. 

[51] Vormetric, “Vormetric Encryption Architecture Overview,” white paper. CA 95131, 

pp. 1–12, 2012. 

[52] Y. Demchenko, C. De Laat, and P. Membrey, “Defining Architecture Components of 

the Big Data Ecosystem,” Collaboration Technologies and Systems (CTS), 2014 

International Conference on. pp. 104–112, 2014. 

[53] A. Murphy, “Stroing Data In the Cloud Raises Compliance Challenges,” F5 

Networks, 2012. [Online]. Available: 



254 
 

http://www.forbes.com/sites/ciocentral/2012/01/19/storing-data-in-the-

cloud-raises-compliance-challenges/. [Accessed: 25-Sep-2015]. 

[54] B. H. Brinkmann, M. R. Bower, K. a. Stengel, G. a. Worrell, and M. Stead, “Large-

scale electrophysiology: Acquisition, compression, encryption, and storage of big 

data,” J. Neurosci. Methods, vol. 180, no. 1, pp. 185–192, 2009. 

[55] DELL, “Mnaged Security Services and Compliance Solutions,” Secure Works, 2015. 

[Online]. Available: http://www.secureworks.com/compliance/industries/. 

[Accessed: 25-Sep-2015]. 

[56] I. Ponemon, “The true cost of compliance A benchmark Study of Multinational 

Organizations,” Computer Fraud & Security, no. 2. Traverse City, Michogan, pp. 2–5, 

2011. 

[57] M. Duraipandian and C. Palanisamy, “An intelligent agent based defense 

architecture for DDoS attacks,” 2014 Int. Conf. Electron. Commun. Syst. ICECS 2014, 

pp. 1–7, 2014. 

[58] M. Shajari and A. A. Ghorbani, “Application of Belief-Desire-Intention Agents in 

Intrusion Detection & Response,” Inst. Inf. Technol. - E-bus. Natl. Res. Counc. 

Canada, no. January, pp. 181–191, 2004. 

[59] A. G. Fragkiadakis, V. A. Siris, and A. P. Traganitis, “Effective and Robust Detection 

of Jamming Attacks,” Futur. Netw. MobileSummit 2010 Conf. Proc., pp. 1–8, 2010. 

[60] M. Alenezi and M. J. Reed, “Denial of service detection through TCP congestion 

window analysis,” World Congr. Internet Secur., pp. 145–150, 2013. 

[61] Y. Chen, K. Hwang, and W.-S. Ku, “Distributed change-point detection of DDoS 

attacks: experimental results on DETER testbed,” Proc. DETER Community Work. 

Cyber Secur. Exp. Test DETER Community Work. Cyber Secur. Exp. Test 2007, pp. 7–

7, 2007. 

[62] P. Machaka, A. Bagula, and F. Nelwamondo, “Using exponentially weighted moving 

average algorithm to defend against DDoS attacks,” 2016 Pattern Recognit. Assoc. 

South Africa Robot. Mechatronics Int. Conf. PRASA-RobMech 2016, 2017. 

[63] H. S. Nwana, “Software Agents : An Overview,” Knowl. Eng. Rev., vol. 11, no. 3, pp. 

205–244, 1996. 

[64] B. Pagurek and T. White, “Mobile Agent For Network Management,” IEEE 

Commun., vol. 1, no. 1, pp. 2–9, 1998. 

[65] A. Ion, M. Patrascu, and V. Constantinescu, “Genetic decision mechanism for 



255 
 

reasoning and behaviour generation in adaptive intelligent agents,” 2015 IEEE Int. 

Conf. Evol. Adapt. Intell. Syst. EAIS 2015, 2015. 

[66] M. P. Georgeff and  a. L. Lansky, “Reactive reasoning and planning,” Proc. sixth Natl. 

Conf. Artif. Intell., pp. 677–682, 1987. 

[67] F. F. Ingrand, M. P. Georgeff, and A. S. Rao, “An architecture for real-time 

reasoning and system control,” IEEE Expert. Syst. their Appl., vol. 7, no. 6, pp. 34–

44, 1992. 

[68] D. Singh, L. Padgham, and B. Logan, “Integrating BDI Agents with Agent-Based 

Simulation Platforms,” Auton. Agent. Multi. Agent. Syst., vol. 30, no. 6, pp. 1–22, 

2016. 

[69] M. S. Fagundes, R. M. Vicari, and H. Coelho, “Deliberation process in a BDI model 

with bayesian networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes 

Artif. Intell. Lect. Notes Bioinformatics), vol. 5044 LNAI, pp. 207–218, 2009. 

[70] A. S. Rao and M. P. Georgeff, “BDI agents: From theory to practice.,” Icmas, vol. 95, 

pp. 312–319, 1995. 

[71] S. Khalique, M. Jamshed, H. Suguri, H. F. Ahmad, A. Ali, and M. S. Awan, 

“Assessment of OWL and FIPA-SL as semantic language,” Proc. - IEEE 2005 Int. 

Conf. Emerg. Technol. ICET 2005, vol. 2005, pp. 536–541, 2005. 

[72] M. Li and K. Sandrasegaran, “Network Management Challenges for Next 

Generation Networks,” pp. 0–5, 2005. 

[73] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “Jade - a white paper,” EXP search 

Inov., vol. September, no. 3, pp. 6--19, 2003. 

[74] A. Chadd, “DDoS attacks: past, present and future,” Netw. Secur., vol. 2018, no. 7, 

pp. 13–15, 2018. 

[75] P. Kamboj, M. C. Trivedi, V. K. Yadav, and V. K. Singh, “Detection techniques of 

DDoS attacks: A survey,” 2017 4th IEEE Uttar Pradesh Sect. Int. Conf. Electr. 

Comput. Electron. UPCON 2017, vol. 2018–January, pp. 675–679, 2018. 

[76] Q. Gu and P. Liu, “Denial of Service Attacks,” Handb. Comput. Networks, vol. 3, pp. 

454–468, 2012. 

[77] B. Zhang, T. Zhang, and Z. Yu, “DDoS detection and prevention based on artificial 

intelligence techniques,” 2017 3rd IEEE Int. Conf. Comput. Commun. ICCC 2017, vol. 

2018–January, pp. 1276–1280, 2018. 

[78] D. Perakovic, M. Perisa, I. Cvitic, and S. Husnjak, “Artificial neuron network 



256 
 

implementation in detection and classification of DDoS traffic,” 24th Telecommun. 

Forum, TELFOR 2016, 2017. 

[79] P. Kaur, M. Kumar, and A. Bhandari, “A review of detection approaches for 

distributed denial of service attacks,” Syst. Sci. Control Eng., vol. 5, no. 1, pp. 301–

320, 2017. 

[80] C. Siaterlis and V. Maglaris, “Detecting incoming and outgoing DDoS attacks at the 

edge using a single set of network characteristics,” Proc. - IEEE Symp. Comput. 

Commun., no. Iscc, pp. 469–475, 2005. 

[81] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mechanisms: A 

classification,” Proc. 3rd IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2003, 

vol. 44, pp. 190–193, 2003. 

[82] S. Chadli, M. Saber, and M. Emharraf, “A new model of IDS architecture based on 

multi  agent systems for MANET,” no. ii, 2014. 

[83] F. Maturana, L. Mann, J. Asenjo, S. Chatrola, R. Staron, and B. Data, “Information 

Framework for Energy Systems Using Agent-based Cloud Computing Technology.” 

[84] L. K. Y. Tsang HK. Curtis, Lau SW. Clarencel, Object-Oriented Technology from 

Diagram to Code with Visual Paradigm for UML, Na. Singapore: McGraw-Hill 

Education (Asia), 2005. 

[85] G. Brusa, M. Caliusco, and O. Chiotti, “A process for building a domain ontology: an 

experience in developing a government budgetary ontology,” Proc. Second 

Australas. Work. Adv. Ontol., vol. 72, no. c, pp. 7–15, 2006. 

[86] J. Steinberger, B. Kuhnert, A. Sperotto, H. Baier, and A. Pras, “Collaborative DDoS 

defense using flow-based security event information,” Proc. NOMS 2016 - 2016 

IEEE/IFIP Netw. Oper. Manag. Symp., pp. 516–522, 2016. 

[87] J. Jabez and B. Muthukumar, “Intrusion detection system (ids): Anomaly detection 

using outlier detection approach,” Procedia Comput. Sci., vol. 48, no. C, pp. 338–

346, 2015. 

[88] H. Marcus, “Technical Analysis - ‘Linear Weighted Moving Average’ (LWMA) :: The 

Market Oracle ::,” ANON, 2017. [Online]. Available: 

http://www.marketoracle.co.uk/Article38383.html. [Accessed: 03-Nov-2017]. 

[89] M. Khemakhem and  a Belghith, “Identity federation based on agent technology 

for secure large scale data storage and processing over volunteer grids,” Comput. 

Syst. Appl. 2009. AICCSA 2009. IEEE/ACS Int. Conf., pp. 11–14, 2009. 



257 
 

[90] “Automated Install with Ambari,” non, 2015. 

[91] S. Sanfilippo, “Hping Documnetation,” 2004. [Online]. Available: 

http://www.hping.org/manpage.html. [Accessed: 24-May-2018]. 

[92] Y. Chen, K. Hwang, and W. S. Ku, “Collaborative detection of DDoS attacks over 

multiple network domains,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 12, pp. 

1649–1662, 2007. 

[93] O. O. Ugwu, C. J. Anumba, and  a. Thorpe, “Ontology development for agent-based 

collaborative design,” Eng. Constr. Archit. Manag., vol. 8, no. 3, pp. 211–224, 2001. 

[94] A. Dovhan and M. Grabar, “Analysis of the Implementation Characteristics of 

DDoS Attacks on Wi-Fi Networks,” IEEE PIC S&T, pp. 180–181, 2014. 

 

 

 


