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Abstract 

 
Large-scale adoption of virtual containers has 

stimulated concerns by practitioners and academics 

about the viability of data acquisition and reliability 

due to the decreasing window to gather relevant data 

points. These concerns prompted the idea that 

introspection tools, which are able to acquire data 

from a system as it is running, can be utilized as both 

an early warning system to protect that system and as 

a data capture system that collects data that would be 

valuable from a digital forensic perspective.  

An exploratory case study was conducted utilizing 

a Docker engine and Prometheus as the introspection 

tool. The research contribution of this research is 

two-fold. First, it provides empirical support for the 

idea that introspection tools can be utilized to 

ascertain differences between pristine and infected 

containers. Second, it provides the ground work for 

future research conducting an analysis of large-scale 

containerized applications in a virtual cloud. 

 

 

1. Introduction  

 
The proliferation of cloud computing is rapidly 

expanding into all aspects of society. Investment in 

the public cloud space has gone from 58.6 billion 

dollars in 2009 to 219.6 billion in 2016 according to 

Statista [1]. Gartner’s projections as of October 2017 

have growth set to exceed 411 billion dollars by 2020 

[2]. In 2017, SAP CEO Bill McDermott stated that 

“cloud revenue is expected to overtake license 

revenue for the first time” and that cloud revenue 

would more than double by 2020 to roughly 10 

billion dollars [3]. In support of this prediction, 

Amazon Web Services [4] experienced a 43 percent 

jump in sales from 12 billion dollars in 2016 to 

slightly under 17.5 billion dollars in 2017 [5]. 

Additionally, Rightscale’s 2018 State of the Cloud 

survey reported that the adoption of a public cloud 

rose 3 percent to 92 percent [6]. 

As investments expand and cloud services are 

integrated into all aspects of life, concerns 

surrounding the detection of security problems arise 

from both practitioners and academicians [7-11]. 

Emphasizing these concerns, Alert Logic, a big data 

security-as-a-service company, published a 2015 

report that stated “businesses using cloud 

environments are largely considered a ‘fruit-bearing 

jackpot’ for hackers” [12]. Recent cases surrounding 

breaches Tesla [13] and FedEx [14] have underscored 

Alert Logic’s stance. There was also a container 

specific problem reported by Ars Technica wherein a 

corrupted container was introduced that mined 

cryptocurrency. The malicious container was brought 

to light by a user on the popular programming code 

sharing website GitHub in August 2017 [15]. 

Even in light of recent security events, the use of 

containers is expanding. Containers share smaller 

operating system kernels, allowing faster and more 

efficient use of the hardware than hypervisors, which 

virtualize an entire machine [16]. RightScale 

indicated Docker [17] usage expanded from 35 to 49 

percent [6].  Hortonworks,  which publishes its 

Hortonworks Data Platform based on a distribution of 

Apache Hadoop [18, 19], has adopted Docker 

containers as part of Apache Hadoop YARN 3.1 in 

order to “enable new use cases and improve existing 

capabilities” within their platform [20]. The 

efficiency of a container comes at a cost, which can 

primarily be seen in terms of accessibility. Much like 

virtual machines, when containers are destroyed, 
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those system resources are put back into a resource 

pool. Worse, from a data collection point of view, a 

container’s lifetime, from creation and destruction, 

can be a matter of seconds; this duration is sufficient 

for many to perform their function [21]. Hence, the 

data about containers must be accessed/collected 

while they are executing.  In order to access this data, 

application programming interfaces (APIs) have been 

created and leveraged to create introspection tools 

[22, 23]. These introspection tools have the ability to 

obtain data from a running container environment 

regardless of running time. 

The evolving atmosphere in cloud computing 

encourages organizations to consider cloud 

environments from a security perspective along with 

ways to improve incident response situations [24-27]. 

Trends in adoption of containers and increasing 

security prompts the hypothesis that introspection 

tools can be used as a data collection tool for an early 

warning system, as well as a forensic analysis tool, 

within a containerized system. Subsidiary questions 

identified as part of this research are as follows: 

1. What data does an introspection tool have 

access to in a containerized environment?  

2. How does it and how often does it log 

information?  

3. How persistent is the log information? 

The research contribution of this paper is an 

initial analysis of the viability of introspection tools 

for performing a security analysis of containerized 

software. The paper is structured as follows: Section 

2 discusses the research surrounding cloud 

computing and the challenges presented by the cloud 

for detecting security problems. Section 3 presents 

the experimental methodology and design. Section 4 

examines the results of a series of experiments 

designed to determine if an introspection tool can 

capture data for forensics analysis and early warning 

from a running containerized system. Section 5 draws 

conclusions and presents future work. 

 

2. Related work 

 
The structure of a cloud presents unique 

challenges to practitioners. While primarily focused 

on forensics in a cloud, O’Shaughnessy and Keane 

[28] expanded on several concepts that underpin 

problems in collecting data within a cloud 

environment, particularly with regard to what data is 

accessible to the parties operating a cloud. Two 

highlights of this point are chain of custody and 

multi-jurisdictional-legislation. Chain of custody is 

key in legal proceedings because it proves what 

parties had access to data that will be used as 

evidence in that proceeding [28]. A cloud system 

complicates a chain of custody since evidentiary data 

can be located in a different geographical locations 

and be collocated with other client data on a rack of 

servers. Chain of custody becomes even more 

complicated if the geographical location crosses 

jurisdictions, such as national borders. Depending on 

the jurisdictional change, it could be very difficult to 

even gather data for detecting anomalies either in a 

streaming environment, which is needed for early 

warning systems, or for post hoc analysis of a 

compromised system, which is needed for forensics. 

In response to these realities, recent research focuses 

on (a) building toolkits to circumvent some of the 

issues presented by O’Shaughnessy and Keane or (b) 

analyzing a cloud from the underlying hardware side. 

Dykstra and Sherman [29] built a series of 

analysis tools for OpenStack, a cloud operating 

system [30] that accounts for 24% of private cloud 

adoption in 2017 [6]. Their tools, FROST, allow for a 

user to retrieve an image of virtual disks associated 

with that user’s virtual machines and check both API 

requests and OpenStack firewall logs. These tools 

were built on-top of OpenStack and integrated into 

the Horizon dashboard which serves as the web-

based user interface for OpenStack. The authors ran a 

pair of evaluations on FROST. The first evaluation 

involved 100 fictitious users with five virtual 

machines each; FROST utilized requested logs from 

a subset of those users. The second evaluation was 

based on a twelve-user test with a large private 

government cloud. The second evaluation was 

successful enough that the organization wanted to 

deploy FROST upon this cloud in mid-2013. 

Saibharah and Greethaukumari [31] also used 

OpenStack but eschewed the idea of building tools 

directly into cloud platform; rather, they sought to 

use existing tools built into the platform. They built a 

framework based off of snapshots of both random-

access memory and disk images, as well as working 

through logging systems native to OpenStack. 

Finally, the researchers extended their framework to 

incorporate network forensics. The authors tested this 

framework utilizing Wireshark [32] to gather 

network data and a purpose-built cloud process for 

the framework simulation. The evaluations showed 

that evidence could be obtained for several different 

types of attacks on a cloud environment.  

In contrast to building toolkits, Graziano et al. 

[33] used a physical memory dump of a given system 

to identify if a hypervisor is present as well as 

identifying the type of hypervisor. Hypervisors 

virtualizing memory changes how that memory is 

allocated and accessed by the virtual machines that 

the hypervisor serves. The authors assert the only 
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way to gain access to that virtual memory is through 

analyzing the specific hypervisor, and then 

translating the rest of the memory over based on how 

that hypervisor handles the virtualization. The team 

developed a tool called Actaeon that extended the 

open source memory forensics framework Volatility 

[34]. The authors tested their plugin on a variety of 

hypervisors including Xen [35], KVM [36] and 

VMWare [37] and correctly identify all of the 

hypervisors in under a minute. 

Whereas previous approaches dealt with 

hypervisors and/or underlying systems in cloud 

infrastructure, Casalicchio and Percibali [38] focused 

specifically on containers. In particular, they sought 

to determine if tools collected the same information. 

The researchers tested a battery of traditional Linux 

metrics including iostat and mpstat as well as 

utilizing the container specific cAdvisor [39] and the 

platform specific docker stats command to pipe 

metrics into both Prometheus [22] and Grafana [40] 

for collection. Tests centered upon CPU and Disk I/O 

intensive workloads. They determined different tools 

present similar but not completely equal results. 

Previous approaches assumed there was no 

deliberate tampering, internal contradictions or 

inconsistent entries in their work; however, Thrope et 

al. [41] chose to focus their efforts on these areas.  In 

order to test these issues, the group built a virtual 

machine profiler model and a log auditor to fill in 

potential gaps within the logs themselves. The 

authors tested their model and audit software with a 

series of four experiments that focused on execution 

timelines by a virtual machine on the hypervisor. 

Each timeline was subtly different in order to test 

system times as well as log manipulation. In one 

timeline, a Microsoft Word document’s author was 

misattributed. The variance between execution 

timelines showed that temporal inconsistencies 

within a system, brought on issues such as differing 

system times, as well as log deletions, which could be 

detected by the forensic platform. 

Shropshire [42] approached the problem of 

detecting anomalous behavior within a compromised 

cloud system from a hardware prospective. He 

developed PowerCheck, an application that identifies 

discrepancies by comparing the system state 

parameters reported by software running on a system 

with those parameters which application estimates 

based upon server energy consumption. The 

application predicted results of energy consumption 

on CPU load, memory consumed, and disk 

reads/writes among others. Once those predictions 

were made, PowerCheck analyzes data from a 

running system and does a comparison to determine 

if a cloud system has been compromised. The 

application was tested on VMWare ESXi [37] with 

power measurements made by a Watt’s Up Pro 

Power meter, and performance reports provided to 

vSphere Client. The tests demonstrated the efficacy 

of PowerCheck and validated the idea of secondary 

system measures as legitimate integrity monitors. 

One drawback with the pervious approaches 

seeking evidence of compromise is they assumed the 

operating system was not compromised. This was the 

motivation behind the next study. Zhang et al. [43] 

utilized BIOS level analysis to gain access to, and 

export out through a PCI card, memory contents and 

CPU registers that underpin a Xen hypervisor. Their 

application, HyperCheck, was different in that it does 

not rely on any software running on the target 

machine beyond a trusted BIOS. HyperCheck was 

tested against Xen through four attacks: modifying 

the interrupt descriptor table, the hypercall table, the 

exception table, and the Xen code itself. It was able 

to identify all of those modifications. 

The previous studies concentrated on gathering 

behavior and performance evidence of various types; 

however, the scalability of the approaches was not 

directly assessed. Stelly et al. [44]  dealt with this 

issue via the containerization of the digital forensics 

process with their SCARF toolkit. They focused on 

scalability across large platforms using Docker 

Swarm, and attempted to prove that while the data 

needed for forensic analysis continue to expand as 

cloud adoption increased, their platform could extend 

just as easily by showing high throughput. The group 

ran tests on both a legacy cluster, and a cluster with 

cutting edge hardware and found that several of the 

components of the SCARF system, such as Yahoo’s 

OpenNSFW network [45], had large throughput gains 

comparing the two systems. 

 Cloud computing research on early warning 

systems and forensic data gathering tools currently 

focuses on designing tools that either extend the 

capabilities of the cloud control software such as 

FROST or taking advantage of certain virtualization 

properties to analyze specific virtual components. 

These systems struggle with containerized systems 

since many were focused on hypervisors which 

virtualize at a different level of the cloud, or heavily 

modify an underlying system. There has been 

minimal investigative research into how container 

introspection tools, whose systems only require an 

open port to function, can contribute to both early 

warning systems and forensic data investigation by 

polling and storing data 
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3. Methodology  

 
This research investigates the viability of 

gathering behavioral (performance) data from 

containers using an introspection tool to detect 

problems within the system. This data can be used to 

set up an early warning system or store potential 

forensic evidence depending on the needs of an end 

user. The research according to Oates is classified as 

an exploratory study due to its attempt to understand 

the overall research  problem [46]. 

 
3.1 Experimental testing environment 

 
The experiment is conducted using Ubuntu 16.04 

[47], Docker [17], and Prometheus [22]. The system 

utilizes an Intel Xeon E5 CPU with 16 gigabytes of 

RAM. Docker is open source software that runs on 

top of a host operating system, and as such, has an 

engine associated with it. The engine handles 

communication with repositories to pull container 

images, as well as provides administrative oversight 

to the containers under its control. Figure 1 illustrates 

where Docker, the container engine, is in a virtual 

environment. 

 
Figure 1. Docker location [48] 

 

Prometheus is an open source introspection tool 

that provides the ability to check multiple nodes in a 

containerized architecture through console readouts 

or graphs from several hundred metrics on both the 

Prometheus server, as well as targets that are 

connected to that server. Prometheus utilizes the 

Docker API, which allows Prometheus to access data 

via a well-defined data pipe; this also mitigates the 

amount of stress on the system. In order to use the 

service, ports have to be opened within the Docker 

environment, as well as configured within 

Prometheus to listen and scrape information from the 

Docker environment. The default time between 

information scrapes by Prometheus is fifteen seconds, 

but that can be customized via the modification of 

Prometheus configuration files. Prometheus provides 

a query language to create specific metrics about the 

Docker environment, which can be manually 

reviewed; the same metrics can also be presented via 

a series of graphic functionalities for easier 

infrastructure visualization. Figure 2 shows a list of 

http request metrics that Prometheus gathers when 

running the default configuration; the system will, in 

addition to metrics, print some guiding comments as 

seen in the first two lines of Figure 2. By default, 

Prometheus saves these metrics every two hours in 

data chunks. The data chunks can be stored in a local 

file or into a database server, which can be on another 

server; these options can be configured. Hence, in 

case of an unexpected shutdown, the data that would 

be lost, at most, is the current set of data in memory.  

One final advantage Prometheus has is that it can 

execute on a server other than Docker. 

 

 
Figure 2. Example prometheus metrics 

 
3.2 Experimental methodology 

 

The experiment has three phases: (a) the initial 

setup required to run Prometheus and Docker, (b) 

acquiring data for the baseline, and (c) executing and 

acquiring data when the system is in an infected state. 

A fourth phase is also presented, which describes 

what data will be analyzed. 

 
3.2.1 Initial Setup. To create the data collection 

environment, Ubuntu, Prometheus and Docker have 

to be installed on a machine. The steps for the initial 

setup are as follows. Download the latest Ubuntu 

image from Canonical’s website [47]. This 

experiment utilized Ubuntu image version 16.04.3. 

Load the downloaded image onto a USB Flash drive 

and leave the USB drive plugged into the PC.  

Restart the machine, and, at the BIOS screen, 

press the necessary key to enter the BIOS settings. 

Navigate through BIOS to the boot order screen, and 

make sure that USB drives are checked in the boot 

order ahead of the primary hard drive of the 
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experimental platform. Exit BIOS which will restart 

the machine, and boot into the Ubuntu installation 

suite. At the first screen of the installation process, 

select “Install Ubuntu”. Allow Ubuntu to download 

updates while installing on the next screen. 

The following screen sets installation type, and it 

is at this point where the disk will be formatted. 

Select “Erase disk and install Ubuntu” and then click 

continue in the pop-up window. At this point, the 

installation will shift to configuration details, such as 

time zone, on the next screen. The experiment was 

built in Mobile, Alabama at the University of South 

Alabama, which is in the Central time zone, so 

Chicago is appropriate. Select language and keyboard 

type on the following screen. The platform used 

English (US) as the language, and QWERTY as its 

keyboard. 

Next, set a default username and password that 

will automatically have administrator privileges, and 

Ubuntu will install over the course of several 

minutes, and then restart itself to complete the 

installation. Once Ubuntu has restarted, the first step 

to install Docker from a repository [17] is to update 

apt package index. Enter the command “sudo apt 

update”. Once apt is updated, configure it to be used 

over HTTPS using “sudo apt install apt-transport-

https ca-certificates curl software-properties-

common”. Add Docker’s Gnu Privacy Guard (GPG) 

key using: “curl –fsSL https://download.docker.com 

/linux/ubuntu/gpg | sudo apt-key add-” Build the 

repository for Docker by inputting:“sudo add-apt-

repository” deb [arch= amd64] https://download. 

docker.com/linux/ubuntu $(ls b_release -cs) stable”. 

Given these new packages, update apt again using 

“sudo apt update” and then install Docker with “sudo 

apt install docker-ce”. This will complete the Docker 

installation. 

In order to allow Prometheus to connect to 

Docker, a JSON file has to be added in the 

/etc/docker/ file. Since this is a new installation of 

Docker, this has to be created through a text editor 

such as nano. Open nano using “nano daemon.json” 

and then add “{“metrics-addr” : “127.0.0.1:9323”, 

“experimental” : true }” to this new file. Save this file 

in the /etc/docker/ directory. 

Prometheus provides precompiled binaries on 

their website [22]. These binaries are tarballs, so 

extract it using “tar xvfz prometheus-*.tar.gz” and 

then change into the newly extracted files with “cd 

prometheus-*”. Modify the prometheus.yml to scrape 

Docker by adding “job_name: ‘docker’ and 

static_configs: -targets: [‘localhost:9323] in the 

appropriate sections of the yml file. Alternatively, 

Docker provides an updated yml file within their 

Prometheus documentation [17].  

Next a containerized Apache2 server is obtained 

and deployed on the experimental platform. Apache2 

is obtained from the Docker Hub [45]. The command 

to start Redis is “docker run –dit –name 

apache2testbed –p 8080:80 –v “$PWD”:/usr/ 

loca/apache2/htdocs/ httpd:2.4.”  

Once Apache2 has been installed through Docker, 

navigate a browser to localhost:9323/metrics to get to 

the Prometheus dashboard. Prometheus provides two 

hundred thirty metrics from installation and can be 

configured with additional rules by a user. This 

methodology focused on metrics found at installation. 

In order to simulate traffic on a web server, 

ApacheBench [49], a stress test tool, was used to 

simulate hits on the server. ApacheBench is part of 

the apache2-utils package and is installed with the 

“sudo apt install apache2-utils” command. 

 
3.2.2 Gathering data for the benign scenario. Now 

that Apache2 web server has been installed, 

Prometheus can gather metrics based on user defined 

scrape times.   The collected data is kept in memory 

until written to file every two hours. In order to avoid 

any potential issues, a pristine Apache2 web server 

was run for two hours, and ApacheBench is used to 

push one hundred thousand hits on the server every 

twenty minutes to provide traffic. The ab command is 

“ab –k –c 100 –n 100000 <web server IP>.” The web 

server IP can be found through ifconfig. After two 

hours of collecting metrics, the data is saved for 

comparison against the malware infected web server.  

 
3.2.3 Gathering data for the infected scenario. 

This scenario is similar to the benign scenario with 

the exception that the Apache2 web server is infected 

with malware. The steps in subsection 3.2.1 are 

repeated to reset the testbed, and a Chapro binary, a 

malicious Apache webserver module, is downloaded 

from a malware repository and run on the system. 

The two-hour test is repeated with attendant 

ApacheBench hits every twenty minutes. Metrics are 

pulled to provide comparison between the two 

platforms.  This ends the gathering of the data. 

 
3.2.4 Data analysis from the two scenarios. Once 

the three phases are done, an analysis of the two data 

sets using the metrics provided by Prometheus needs 

to be conducted. As previously stated, Prometheus 

provides two hundred and thirty metrics in its initial 

configuration. The analysis of these metrics is a 

simple comparison between the values given by the 

two testbeds, which is presented in the next section. 
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4. Results and discussion  

 
The results presented below are from multiple 

runs; there is a total of twenty hours of data. The 

tables within this section capture the results of each 

run and the averages of the five separate runs, as well 

as the percentage differences between the clean and 

contaminated versions of the Apache2 web server. 

After an initial examination, nine metrics were 

identified that have utility in detecting the presence 

of malware.  These nine metrics are grouped into 

three categories. The first provides information about 

the underlying engine, the second provides 

information about the memory usage, and the third 

provides information about the process and HTTP 

requests. 

 
4.1. Daemon engine 

 
Prometheus is able to gather data about the 

underlying Docker engine. The first metric that has 

been identified, engine_daemon_engine_info, 

provides specific information on Docker itself and 

demonstrates that the two experiments are performed 

on the same Docker engine. This would be useful for 

a forensic investigation because it would document 

the Docker system information and also aid in 

ensuring any simulations would be performed on the 

correct Docker container engine. 

The other two metrics focused on providing 

information about the Docker engine were identified 

as potentially being useful.  Shown in Table 1 is 

engine_daemon_engine_memory_bytes; this metric 

captures how much memory the Docker container has 

allocated from the host upon which the Docker 

engine sits. As can be seen, the metric indicates that 

the infected containers have been assigned more 

resources from the resource pool.  This makes sense, 

as malware would take additional memory above and 

beyond that needed by the base service. 

 

Table 1. Engine_daemon_engine_memory_bytes  

Experiment Clean  Infected % 

Difference 

1 2985674229 3239857152 9% 

2 3200538134 3511309584 10% 

3 3405294587 3549809237 4% 

4 3009478856 3353498206 11% 

5 3159152434 3419008911 8% 

Average 3152027648 3414696618 8% 

 

The last metric, Engine_daemon_events_total, 

shown in Table 2, describes the number of events that 

the engine handled throughout a test. As can be seen, 

there is a stark difference between the two testbeds 

since it specifically references the number of events 

that are logged by the Docker engine. The extra 

program running within the Apache2 web server on 

the infected container that was deployed had several 

more interactions with the Docker Engine throughout 

the battery of tests.  

 

Table 2. Engine_daemon_events_total  

Experiment Clean  Infected % 

Difference 

1 32 39 21% 

2 33 39 18% 

3 37 45 21% 

4 35 37 5% 

5 33 40 21% 

Average 34 40 17% 

 
4.2. Go memory statistics 

 
Prometheus is written in Go [50] , an open source 

programming language, and one of the modules that 

the Prometheus provides focuses on memory 

allocation. Where the Docker engine metrics shown 

in section 4.1 focus on the engine and how it handles 

events, the three Go metrics focus on how memory is 

allocated within the environment. The first memory 

metric is go_memstats_alloc_bytes_total, which is 

the total count of bytes allocated to a server.  As in 

Table 3, the infected containers use more memory 

than the clean. This is not surprising as the malware 

is conducting additional work, requiring more 

memory. The total difference varies between 

experiments; with experiment 5 having the lowest.  

The average difference overall is fairly high; 

however, the metric may not be sufficient by itself. 

 

Table 3. Go_memstats_alloc_bytes_total  

Experiment Clean  Infected % 

Difference 

1 1314183517 1432935864 9% 

2 1714271435 1944971723 13% 

3 1809472402 2053409271 13% 

4 1455934827 1699468245 16% 

5 1593068259 1633482952 2% 

Average 1577586088 1752873431 11% 

 

The second metric is go_memstats_frees_total, 

which shows the amount of free requests that are 

performed. As seen in Table 4, the memory freed is 

generally greater for the infected container; however, 

similar to the previous metric, the differences vary 

greatly between experiments. It is noteworthy that the 

difference observed are lower than that found in the 
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previous memory metric, go_memstats_alloc_ 

bytes_total. Hence, this metric is unlikely to be 

sufficient by itself to create early warnings.  It would 

be a good indicator in a post forensic analysis for 

detecting when infections began changing the system. 

 

Table 4. Go_memstats_frees_total  

Experiment Clean  Infected % 

Difference 

1 163795705 189523901 15% 

2 206526775 215692761 4% 

3 214580257 224596002 4% 

4 169934501 192180500 13% 

5 164373404 167924960 2% 

Average 183842128 197983614 8% 

 

Table 5 shows the third metric, 

go_memstats_heap_released, which shows how much 

memory is released to the host operating system by 

the Docker processes. Of the three, this shows a clear 

performance difference, with the lowest difference 

being 12%. A simple threshold, assuming a good 

baseline exists, would be sufficient to trigger an 

alarm. However, this assumes no major variations are 

expected; otherwise, this and the other two memory 

statistics would be inputs into a more sophisticated 

analysis system. 

 

Table 5. Go_memstats_released_bytes_total  

Experiment Clean  Infected % 

Difference 

1 3706530 4199240 13% 

2 3852390 4723000 22% 

3 4059500 4855900 19% 

4 3523560 4024010 14% 

5 3290020 3701850 12% 

Average 3686400 4300800 16% 

 
4.3. Process & http requests 

 
The last set of metrics gather data about the 

system running underneath Docker.  The first metric, 

process_max_fds, captures the maximum number of 

open file descriptors.  As seen in Table 6, there is a 

general trend that the infected system has more files 

open; however, this can vary greatly, and, in some 

experiments, the difference is negligible. It is unclear, 

at this time, why there is a wide range of differences. 

Given the difference, this cannot be used by itself as 

an early warning system; however, it could be useful 

when combined with other metrics. A forensics 

analyst could use it as an indicator to detect when 

changes occurred assuming a normal baseline exists. 

The second metric, process_virtual_memory_ 

bytes, refers to how much virtual memory is used by 

the overall Docker containers. As seen in Table 7, the 

underlying system must allocate more memory when 

infected containers are executed.  This indicates that 

the malware is requiring a fair amount of memory to 

be available for use. What is interesting is that 

experiment 5 shows a high virtual memory usage, 

even when some of the more individual memory 

usage in the Docker containers were lower. 

 

Table 6. Process_max_fds  

Experiment Clean  Infected % 

Difference 

1 1091797 1105923 1% 

2 972579 1117239 14% 

3 1095761 1192469 8% 

4 1089851 1180307 8% 

5 992892 1152971 16% 

Average 1048576 1149782 9% 

 

Table 7. Process_virtual_memory_bytes  

Experiment Clean  Infected % 

Difference 

1 560294865 623246092 11% 

2 593261704 683256017 15% 

3 642359760 691269132 7% 

4 602874102 671296123 11% 

5 531242209 616019356 15% 

Average 586006528 657017344 12% 

 

The last metric is the number of HTTP requests 

handled by the system, which is represented by 

http_requests_total. As seen in Table 8, the number 

of HTTP requests are greater for the infected 

containers. This is expected as the malware injects an 

iframe into the content provided by Apache2.  Given 

the general consistency in the numbers, this could be 

a good indicator for an early warning system and 

would be telling for a forensic investigation. 

 

Table 8. Http_requests_total  

Experiment Clean  Infected % 

Difference 

1 731039 799125 9% 

2 779683 852301 9% 

3 802359 882559 10% 

4 650048 772471 18% 

5 752941 827619 9% 

Average 743214 826815 8% 
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4.4. Other Prometheus metrics 

 
The nine metrics in this study looked primarily at 

memory and communication between multiple planes 

of a virtual system. However, Prometheus gathers 

other metrics by default that describe CPU activity, 

IO activity and operating events. Additionally, 

Prometheus is able to obtain metrics from other APIs 

besides those provided by Docker. It can poll metrics 

from entire cloud systems such as Amazon’s Amazon 

Web Services [4] or Microsoft’s Azure [51]. 

Furthermore, system administrators can build custom 

rules for their individual systems. This allows tools 

such as Prometheus to be used to detect multiple 

types of problems in a many various environments.  

Hence, more elaborate data gathering could be 

conducted, as well as the capturing of data relevant 

for detection of other problems and situations. 

 

5. Conclusions and future work  

 
This research proposed three subsidiary questions 

to determine if an introspection tool could serve as an 

early warning system and forensics tool in a virtual 

environment. The first investigates what data an 

introspection tool can access. Prometheus, the chosen 

introspection tool for this study, can capture 

performance information about the containers, the 

Docker Engine, and the host OS.  This includes I/O, 

memory statistics, and operating events. The 

Prometheus documentation indicates that histogram 

information can be generated instead of single 

counters and/or measurements. This information is 

useful for monitoring and early warning systems. For 

forensic investigations, it can confirm when malware 

was running, and when it began; this, would aid in 

determining when the malware was installed. 

The second subsidiary question is how often is the 

data collected? In Prometheus, collecting data is a 

configurable option. By default, it is 15 seconds; this 

can be tuned to ensure that the collection is not 

burdensome upon the system. It collects the data by 

pulling information from the Docker Engine through 

its API, which requires a port for pulling to be 

opened for communication. While opening ports does 

lead to potential risks, this can be mitigated by 

controlling what servers are allowed to access the 

Docker Engine via the known port. 

The final subsidiary question dealt with the 

persistence of the log information. As discussed in 

the methodology, Prometheus can store data as local 

files or in a database, either of which can be on a 

separate server. This does come with a caveat; 

Prometheus does allow for the user to specify how 

long it should run before writing the data to file or to 

a database. Data held solely in memory is subject to 

being lost, if Prometheus is shut down prematurely. 

The answers to the subsidiary questions provide 

support for the hypothesis that introspection tools can 

be used as a data collection tool for an early warning 

system, as well as a forensic analysis tool, within a 

containerized system. Of the default metrics, nine 

metrics were identified as being immediately useful, 

as they provided either human distinguishable 

differences or they provided useful forensics 

information. engine_daemon_engine_info is a metric 

that would be of interest to forensics investigators as 

it would help confirm the exact version of Docker 

engine being executed. The other eight metrics 

permitted the operator to determine if Apache2 was 

corrupted via simple percentage differences. While 

individual metrics may not be sufficient for an early 

alert system, in combination, they tend to compensate 

for when other measures are weak.  

More interesting, the nine metrics captured 

different types of performance: the engine itself, the 

memory usage of the containers, and information of 

the underlying host. Thus, any malware seeking to 

corrupt the Docker Engine to hide its existence would 

need to determine the typical usage patterns; this, in 

turn, leads to other opportunities for the monitoring 

system to detect the malware presence.  

Future work can be split into three major efforts. 

The first effort would be conducting more complex 

studies using Prometheus to detect different types of 

malware and/or system compromises. It is unlikely 

all malware and compromises will be detectable with 

the same nine metrics. Thus, future work will require 

determining what metrics are useful for detecting 

different types of attacks. It will also expand the 

underlying test bed system to utilize larger numbers 

of containers and interactions between containers, 

such as how Apache Hadoop YARN [20] has done to 

streamline some data processing. Determining what 

time intervals would be best for Prometheus to 

collect information would be part of this work. 

The second effort focuses on taking the data from 

Prometheus and creating an alerting system. At 

present, Prometheus can create simple alerting rules, 

which activate when certain thresholds are violated. 

This is often insufficient when determining if a 

system has been compromised. Hence, the data 

would need to be feed into online systems [52], 

where anomaly detection methods could be used to 

detected unexpected behavior. This can be done with 

using methods such as simple learning systems, such 

as the Hierarchical Temporal Memory method [53], 

DBScan [54], or generalized linear models [55].  
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The third effort will develop forensic tools to find 

suspicious behavior within the introspection logs and 

correlate them with other factors. For instance, 

Rightscale’s yearly State of the Cloud surveys [6] 

underscore how necessary it is to provide different 

analytical mechanisms. 
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