

Insight from a Docker Container Introspection

Thomas Watts

Computer Science

School of Computing

University of South Alabama

thw1321@jagmail.southalabama.edu

William Bradley Glisson

Cyber Forensics Intelligence Center

Department of Computer Science

Sam Houston State University

glisson@shsu.edu

Ryan G. Benton

Computer Science

School of Computing

University of South Alabama

rbenton@southalabama.edu

Jordan Shropshire

Information Systems and Technology

School of Computing

University of South Alabama

jshropshire@southalabama.edu

Abstract

Large-scale adoption of virtual containers has

stimulated concerns by practitioners and academics

about the viability of data acquisition and reliability

due to the decreasing window to gather relevant data

points. These concerns prompted the idea that

introspection tools, which are able to acquire data

from a system as it is running, can be utilized as both

an early warning system to protect that system and as

a data capture system that collects data that would be

valuable from a digital forensic perspective.

An exploratory case study was conducted utilizing

a Docker engine and Prometheus as the introspection

tool. The research contribution of this research is

two-fold. First, it provides empirical support for the

idea that introspection tools can be utilized to

ascertain differences between pristine and infected

containers. Second, it provides the ground work for

future research conducting an analysis of large-scale

containerized applications in a virtual cloud.

1. Introduction

The proliferation of cloud computing is rapidly

expanding into all aspects of society. Investment in

the public cloud space has gone from 58.6 billion

dollars in 2009 to 219.6 billion in 2016 according to

Statista [1]. Gartner’s projections as of October 2017

have growth set to exceed 411 billion dollars by 2020

[2]. In 2017, SAP CEO Bill McDermott stated that

“cloud revenue is expected to overtake license

revenue for the first time” and that cloud revenue

would more than double by 2020 to roughly 10

billion dollars [3]. In support of this prediction,

Amazon Web Services [4] experienced a 43 percent

jump in sales from 12 billion dollars in 2016 to

slightly under 17.5 billion dollars in 2017 [5].

Additionally, Rightscale’s 2018 State of the Cloud

survey reported that the adoption of a public cloud

rose 3 percent to 92 percent [6].

As investments expand and cloud services are

integrated into all aspects of life, concerns

surrounding the detection of security problems arise

from both practitioners and academicians [7-11].

Emphasizing these concerns, Alert Logic, a big data

security-as-a-service company, published a 2015

report that stated “businesses using cloud

environments are largely considered a ‘fruit-bearing

jackpot’ for hackers” [12]. Recent cases surrounding

breaches Tesla [13] and FedEx [14] have underscored

Alert Logic’s stance. There was also a container

specific problem reported by Ars Technica wherein a

corrupted container was introduced that mined

cryptocurrency. The malicious container was brought

to light by a user on the popular programming code

sharing website GitHub in August 2017 [15].

Even in light of recent security events, the use of

containers is expanding. Containers share smaller

operating system kernels, allowing faster and more

efficient use of the hardware than hypervisors, which

virtualize an entire machine [16]. RightScale

indicated Docker [17] usage expanded from 35 to 49

percent [6]. Hortonworks, which publishes its

Hortonworks Data Platform based on a distribution of

Apache Hadoop [18, 19], has adopted Docker

containers as part of Apache Hadoop YARN 3.1 in

order to “enable new use cases and improve existing

capabilities” within their platform [20]. The

efficiency of a container comes at a cost, which can

primarily be seen in terms of accessibility. Much like

virtual machines, when containers are destroyed,

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60156
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7194

mailto:thw1321@jagmail.southalabama.edu
mailto:glisson@shsu.edu
mailto:rbenton@southalabama.edu
mailto:jshropshire@southalabama.edu

those system resources are put back into a resource

pool. Worse, from a data collection point of view, a

container’s lifetime, from creation and destruction,

can be a matter of seconds; this duration is sufficient

for many to perform their function [21]. Hence, the

data about containers must be accessed/collected

while they are executing. In order to access this data,

application programming interfaces (APIs) have been

created and leveraged to create introspection tools

[22, 23]. These introspection tools have the ability to

obtain data from a running container environment

regardless of running time.

The evolving atmosphere in cloud computing

encourages organizations to consider cloud

environments from a security perspective along with

ways to improve incident response situations [24-27].

Trends in adoption of containers and increasing

security prompts the hypothesis that introspection

tools can be used as a data collection tool for an early

warning system, as well as a forensic analysis tool,

within a containerized system. Subsidiary questions

identified as part of this research are as follows:

1. What data does an introspection tool have

access to in a containerized environment?

2. How does it and how often does it log

information?

3. How persistent is the log information?

The research contribution of this paper is an

initial analysis of the viability of introspection tools

for performing a security analysis of containerized

software. The paper is structured as follows: Section

2 discusses the research surrounding cloud

computing and the challenges presented by the cloud

for detecting security problems. Section 3 presents

the experimental methodology and design. Section 4

examines the results of a series of experiments

designed to determine if an introspection tool can

capture data for forensics analysis and early warning

from a running containerized system. Section 5 draws

conclusions and presents future work.

2. Related work

The structure of a cloud presents unique

challenges to practitioners. While primarily focused

on forensics in a cloud, O’Shaughnessy and Keane

[28] expanded on several concepts that underpin

problems in collecting data within a cloud

environment, particularly with regard to what data is

accessible to the parties operating a cloud. Two

highlights of this point are chain of custody and

multi-jurisdictional-legislation. Chain of custody is

key in legal proceedings because it proves what

parties had access to data that will be used as

evidence in that proceeding [28]. A cloud system

complicates a chain of custody since evidentiary data

can be located in a different geographical locations

and be collocated with other client data on a rack of

servers. Chain of custody becomes even more

complicated if the geographical location crosses

jurisdictions, such as national borders. Depending on

the jurisdictional change, it could be very difficult to

even gather data for detecting anomalies either in a

streaming environment, which is needed for early

warning systems, or for post hoc analysis of a

compromised system, which is needed for forensics.

In response to these realities, recent research focuses

on (a) building toolkits to circumvent some of the

issues presented by O’Shaughnessy and Keane or (b)

analyzing a cloud from the underlying hardware side.

Dykstra and Sherman [29] built a series of

analysis tools for OpenStack, a cloud operating

system [30] that accounts for 24% of private cloud

adoption in 2017 [6]. Their tools, FROST, allow for a

user to retrieve an image of virtual disks associated

with that user’s virtual machines and check both API

requests and OpenStack firewall logs. These tools

were built on-top of OpenStack and integrated into

the Horizon dashboard which serves as the web-

based user interface for OpenStack. The authors ran a

pair of evaluations on FROST. The first evaluation

involved 100 fictitious users with five virtual

machines each; FROST utilized requested logs from

a subset of those users. The second evaluation was

based on a twelve-user test with a large private

government cloud. The second evaluation was

successful enough that the organization wanted to

deploy FROST upon this cloud in mid-2013.

Saibharah and Greethaukumari [31] also used

OpenStack but eschewed the idea of building tools

directly into cloud platform; rather, they sought to

use existing tools built into the platform. They built a

framework based off of snapshots of both random-

access memory and disk images, as well as working

through logging systems native to OpenStack.

Finally, the researchers extended their framework to

incorporate network forensics. The authors tested this

framework utilizing Wireshark [32] to gather

network data and a purpose-built cloud process for

the framework simulation. The evaluations showed

that evidence could be obtained for several different

types of attacks on a cloud environment.

In contrast to building toolkits, Graziano et al.

[33] used a physical memory dump of a given system

to identify if a hypervisor is present as well as

identifying the type of hypervisor. Hypervisors

virtualizing memory changes how that memory is

allocated and accessed by the virtual machines that

the hypervisor serves. The authors assert the only

Page 7195

way to gain access to that virtual memory is through

analyzing the specific hypervisor, and then

translating the rest of the memory over based on how

that hypervisor handles the virtualization. The team

developed a tool called Actaeon that extended the

open source memory forensics framework Volatility

[34]. The authors tested their plugin on a variety of

hypervisors including Xen [35], KVM [36] and

VMWare [37] and correctly identify all of the

hypervisors in under a minute.

Whereas previous approaches dealt with

hypervisors and/or underlying systems in cloud

infrastructure, Casalicchio and Percibali [38] focused

specifically on containers. In particular, they sought

to determine if tools collected the same information.

The researchers tested a battery of traditional Linux

metrics including iostat and mpstat as well as

utilizing the container specific cAdvisor [39] and the

platform specific docker stats command to pipe

metrics into both Prometheus [22] and Grafana [40]

for collection. Tests centered upon CPU and Disk I/O

intensive workloads. They determined different tools

present similar but not completely equal results.

Previous approaches assumed there was no

deliberate tampering, internal contradictions or

inconsistent entries in their work; however, Thrope et

al. [41] chose to focus their efforts on these areas. In

order to test these issues, the group built a virtual

machine profiler model and a log auditor to fill in

potential gaps within the logs themselves. The

authors tested their model and audit software with a

series of four experiments that focused on execution

timelines by a virtual machine on the hypervisor.

Each timeline was subtly different in order to test

system times as well as log manipulation. In one

timeline, a Microsoft Word document’s author was

misattributed. The variance between execution

timelines showed that temporal inconsistencies

within a system, brought on issues such as differing

system times, as well as log deletions, which could be

detected by the forensic platform.

Shropshire [42] approached the problem of

detecting anomalous behavior within a compromised

cloud system from a hardware prospective. He

developed PowerCheck, an application that identifies

discrepancies by comparing the system state

parameters reported by software running on a system

with those parameters which application estimates

based upon server energy consumption. The

application predicted results of energy consumption

on CPU load, memory consumed, and disk

reads/writes among others. Once those predictions

were made, PowerCheck analyzes data from a

running system and does a comparison to determine

if a cloud system has been compromised. The

application was tested on VMWare ESXi [37] with

power measurements made by a Watt’s Up Pro

Power meter, and performance reports provided to

vSphere Client. The tests demonstrated the efficacy

of PowerCheck and validated the idea of secondary

system measures as legitimate integrity monitors.

One drawback with the pervious approaches

seeking evidence of compromise is they assumed the

operating system was not compromised. This was the

motivation behind the next study. Zhang et al. [43]

utilized BIOS level analysis to gain access to, and

export out through a PCI card, memory contents and

CPU registers that underpin a Xen hypervisor. Their

application, HyperCheck, was different in that it does

not rely on any software running on the target

machine beyond a trusted BIOS. HyperCheck was

tested against Xen through four attacks: modifying

the interrupt descriptor table, the hypercall table, the

exception table, and the Xen code itself. It was able

to identify all of those modifications.

The previous studies concentrated on gathering

behavior and performance evidence of various types;

however, the scalability of the approaches was not

directly assessed. Stelly et al. [44] dealt with this

issue via the containerization of the digital forensics

process with their SCARF toolkit. They focused on

scalability across large platforms using Docker

Swarm, and attempted to prove that while the data

needed for forensic analysis continue to expand as

cloud adoption increased, their platform could extend

just as easily by showing high throughput. The group

ran tests on both a legacy cluster, and a cluster with

cutting edge hardware and found that several of the

components of the SCARF system, such as Yahoo’s

OpenNSFW network [45], had large throughput gains

comparing the two systems.

 Cloud computing research on early warning

systems and forensic data gathering tools currently

focuses on designing tools that either extend the

capabilities of the cloud control software such as

FROST or taking advantage of certain virtualization

properties to analyze specific virtual components.

These systems struggle with containerized systems

since many were focused on hypervisors which

virtualize at a different level of the cloud, or heavily

modify an underlying system. There has been

minimal investigative research into how container

introspection tools, whose systems only require an

open port to function, can contribute to both early

warning systems and forensic data investigation by

polling and storing data

Page 7196

3. Methodology

This research investigates the viability of

gathering behavioral (performance) data from

containers using an introspection tool to detect

problems within the system. This data can be used to

set up an early warning system or store potential

forensic evidence depending on the needs of an end

user. The research according to Oates is classified as

an exploratory study due to its attempt to understand

the overall research problem [46].

3.1 Experimental testing environment

The experiment is conducted using Ubuntu 16.04

[47], Docker [17], and Prometheus [22]. The system

utilizes an Intel Xeon E5 CPU with 16 gigabytes of

RAM. Docker is open source software that runs on

top of a host operating system, and as such, has an

engine associated with it. The engine handles

communication with repositories to pull container

images, as well as provides administrative oversight

to the containers under its control. Figure 1 illustrates

where Docker, the container engine, is in a virtual

environment.

Figure 1. Docker location [48]

Prometheus is an open source introspection tool

that provides the ability to check multiple nodes in a

containerized architecture through console readouts

or graphs from several hundred metrics on both the

Prometheus server, as well as targets that are

connected to that server. Prometheus utilizes the

Docker API, which allows Prometheus to access data

via a well-defined data pipe; this also mitigates the

amount of stress on the system. In order to use the

service, ports have to be opened within the Docker

environment, as well as configured within

Prometheus to listen and scrape information from the

Docker environment. The default time between

information scrapes by Prometheus is fifteen seconds,

but that can be customized via the modification of

Prometheus configuration files. Prometheus provides

a query language to create specific metrics about the

Docker environment, which can be manually

reviewed; the same metrics can also be presented via

a series of graphic functionalities for easier

infrastructure visualization. Figure 2 shows a list of

http request metrics that Prometheus gathers when

running the default configuration; the system will, in

addition to metrics, print some guiding comments as

seen in the first two lines of Figure 2. By default,

Prometheus saves these metrics every two hours in

data chunks. The data chunks can be stored in a local

file or into a database server, which can be on another

server; these options can be configured. Hence, in

case of an unexpected shutdown, the data that would

be lost, at most, is the current set of data in memory.

One final advantage Prometheus has is that it can

execute on a server other than Docker.

Figure 2. Example prometheus metrics

3.2 Experimental methodology

The experiment has three phases: (a) the initial

setup required to run Prometheus and Docker, (b)

acquiring data for the baseline, and (c) executing and

acquiring data when the system is in an infected state.

A fourth phase is also presented, which describes

what data will be analyzed.

3.2.1 Initial Setup. To create the data collection

environment, Ubuntu, Prometheus and Docker have

to be installed on a machine. The steps for the initial

setup are as follows. Download the latest Ubuntu

image from Canonical’s website [47]. This

experiment utilized Ubuntu image version 16.04.3.

Load the downloaded image onto a USB Flash drive

and leave the USB drive plugged into the PC.

Restart the machine, and, at the BIOS screen,

press the necessary key to enter the BIOS settings.

Navigate through BIOS to the boot order screen, and

make sure that USB drives are checked in the boot

order ahead of the primary hard drive of the

Page 7197

experimental platform. Exit BIOS which will restart

the machine, and boot into the Ubuntu installation

suite. At the first screen of the installation process,

select “Install Ubuntu”. Allow Ubuntu to download

updates while installing on the next screen.

The following screen sets installation type, and it

is at this point where the disk will be formatted.

Select “Erase disk and install Ubuntu” and then click

continue in the pop-up window. At this point, the

installation will shift to configuration details, such as

time zone, on the next screen. The experiment was

built in Mobile, Alabama at the University of South

Alabama, which is in the Central time zone, so

Chicago is appropriate. Select language and keyboard

type on the following screen. The platform used

English (US) as the language, and QWERTY as its

keyboard.

Next, set a default username and password that

will automatically have administrator privileges, and

Ubuntu will install over the course of several

minutes, and then restart itself to complete the

installation. Once Ubuntu has restarted, the first step

to install Docker from a repository [17] is to update

apt package index. Enter the command “sudo apt

update”. Once apt is updated, configure it to be used

over HTTPS using “sudo apt install apt-transport-

https ca-certificates curl software-properties-

common”. Add Docker’s Gnu Privacy Guard (GPG)

key using: “curl –fsSL https://download.docker.com

/linux/ubuntu/gpg | sudo apt-key add-” Build the

repository for Docker by inputting:“sudo add-apt-

repository” deb [arch= amd64] https://download.

docker.com/linux/ubuntu $(ls b_release -cs) stable”.

Given these new packages, update apt again using

“sudo apt update” and then install Docker with “sudo

apt install docker-ce”. This will complete the Docker

installation.

In order to allow Prometheus to connect to

Docker, a JSON file has to be added in the

/etc/docker/ file. Since this is a new installation of

Docker, this has to be created through a text editor

such as nano. Open nano using “nano daemon.json”

and then add “{“metrics-addr” : “127.0.0.1:9323”,

“experimental” : true }” to this new file. Save this file

in the /etc/docker/ directory.

Prometheus provides precompiled binaries on

their website [22]. These binaries are tarballs, so

extract it using “tar xvfz prometheus-*.tar.gz” and

then change into the newly extracted files with “cd

prometheus-*”. Modify the prometheus.yml to scrape

Docker by adding “job_name: ‘docker’ and

static_configs: -targets: [‘localhost:9323] in the

appropriate sections of the yml file. Alternatively,

Docker provides an updated yml file within their

Prometheus documentation [17].

Next a containerized Apache2 server is obtained

and deployed on the experimental platform. Apache2

is obtained from the Docker Hub [45]. The command

to start Redis is “docker run –dit –name

apache2testbed –p 8080:80 –v “$PWD”:/usr/

loca/apache2/htdocs/ httpd:2.4.”

Once Apache2 has been installed through Docker,

navigate a browser to localhost:9323/metrics to get to

the Prometheus dashboard. Prometheus provides two

hundred thirty metrics from installation and can be

configured with additional rules by a user. This

methodology focused on metrics found at installation.

In order to simulate traffic on a web server,

ApacheBench [49], a stress test tool, was used to

simulate hits on the server. ApacheBench is part of

the apache2-utils package and is installed with the

“sudo apt install apache2-utils” command.

3.2.2 Gathering data for the benign scenario. Now

that Apache2 web server has been installed,

Prometheus can gather metrics based on user defined

scrape times. The collected data is kept in memory

until written to file every two hours. In order to avoid

any potential issues, a pristine Apache2 web server

was run for two hours, and ApacheBench is used to

push one hundred thousand hits on the server every

twenty minutes to provide traffic. The ab command is

“ab –k –c 100 –n 100000 <web server IP>.” The web

server IP can be found through ifconfig. After two

hours of collecting metrics, the data is saved for

comparison against the malware infected web server.

3.2.3 Gathering data for the infected scenario.

This scenario is similar to the benign scenario with

the exception that the Apache2 web server is infected

with malware. The steps in subsection 3.2.1 are

repeated to reset the testbed, and a Chapro binary, a

malicious Apache webserver module, is downloaded

from a malware repository and run on the system.

The two-hour test is repeated with attendant

ApacheBench hits every twenty minutes. Metrics are

pulled to provide comparison between the two

platforms. This ends the gathering of the data.

3.2.4 Data analysis from the two scenarios. Once

the three phases are done, an analysis of the two data

sets using the metrics provided by Prometheus needs

to be conducted. As previously stated, Prometheus

provides two hundred and thirty metrics in its initial

configuration. The analysis of these metrics is a

simple comparison between the values given by the

two testbeds, which is presented in the next section.

Page 7198

4. Results and discussion

The results presented below are from multiple

runs; there is a total of twenty hours of data. The

tables within this section capture the results of each

run and the averages of the five separate runs, as well

as the percentage differences between the clean and

contaminated versions of the Apache2 web server.

After an initial examination, nine metrics were

identified that have utility in detecting the presence

of malware. These nine metrics are grouped into

three categories. The first provides information about

the underlying engine, the second provides

information about the memory usage, and the third

provides information about the process and HTTP

requests.

4.1. Daemon engine

Prometheus is able to gather data about the

underlying Docker engine. The first metric that has

been identified, engine_daemon_engine_info,

provides specific information on Docker itself and

demonstrates that the two experiments are performed

on the same Docker engine. This would be useful for

a forensic investigation because it would document

the Docker system information and also aid in

ensuring any simulations would be performed on the

correct Docker container engine.

The other two metrics focused on providing

information about the Docker engine were identified

as potentially being useful. Shown in Table 1 is

engine_daemon_engine_memory_bytes; this metric

captures how much memory the Docker container has

allocated from the host upon which the Docker

engine sits. As can be seen, the metric indicates that

the infected containers have been assigned more

resources from the resource pool. This makes sense,

as malware would take additional memory above and

beyond that needed by the base service.

Table 1. Engine_daemon_engine_memory_bytes

Experiment Clean Infected %

Difference

1 2985674229 3239857152 9%

2 3200538134 3511309584 10%

3 3405294587 3549809237 4%

4 3009478856 3353498206 11%

5 3159152434 3419008911 8%

Average 3152027648 3414696618 8%

The last metric, Engine_daemon_events_total,

shown in Table 2, describes the number of events that

the engine handled throughout a test. As can be seen,

there is a stark difference between the two testbeds

since it specifically references the number of events

that are logged by the Docker engine. The extra

program running within the Apache2 web server on

the infected container that was deployed had several

more interactions with the Docker Engine throughout

the battery of tests.

Table 2. Engine_daemon_events_total

Experiment Clean Infected %

Difference

1 32 39 21%

2 33 39 18%

3 37 45 21%

4 35 37 5%

5 33 40 21%

Average 34 40 17%

4.2. Go memory statistics

Prometheus is written in Go [50] , an open source

programming language, and one of the modules that

the Prometheus provides focuses on memory

allocation. Where the Docker engine metrics shown

in section 4.1 focus on the engine and how it handles

events, the three Go metrics focus on how memory is

allocated within the environment. The first memory

metric is go_memstats_alloc_bytes_total, which is

the total count of bytes allocated to a server. As in

Table 3, the infected containers use more memory

than the clean. This is not surprising as the malware

is conducting additional work, requiring more

memory. The total difference varies between

experiments; with experiment 5 having the lowest.

The average difference overall is fairly high;

however, the metric may not be sufficient by itself.

Table 3. Go_memstats_alloc_bytes_total

Experiment Clean Infected %

Difference

1 1314183517 1432935864 9%

2 1714271435 1944971723 13%

3 1809472402 2053409271 13%

4 1455934827 1699468245 16%

5 1593068259 1633482952 2%

Average 1577586088 1752873431 11%

The second metric is go_memstats_frees_total,

which shows the amount of free requests that are

performed. As seen in Table 4, the memory freed is

generally greater for the infected container; however,

similar to the previous metric, the differences vary

greatly between experiments. It is noteworthy that the

difference observed are lower than that found in the

Page 7199

previous memory metric, go_memstats_alloc_

bytes_total. Hence, this metric is unlikely to be

sufficient by itself to create early warnings. It would

be a good indicator in a post forensic analysis for

detecting when infections began changing the system.

Table 4. Go_memstats_frees_total

Experiment Clean Infected %

Difference

1 163795705 189523901 15%

2 206526775 215692761 4%

3 214580257 224596002 4%

4 169934501 192180500 13%

5 164373404 167924960 2%

Average 183842128 197983614 8%

Table 5 shows the third metric,

go_memstats_heap_released, which shows how much

memory is released to the host operating system by

the Docker processes. Of the three, this shows a clear

performance difference, with the lowest difference

being 12%. A simple threshold, assuming a good

baseline exists, would be sufficient to trigger an

alarm. However, this assumes no major variations are

expected; otherwise, this and the other two memory

statistics would be inputs into a more sophisticated

analysis system.

Table 5. Go_memstats_released_bytes_total

Experiment Clean Infected %

Difference

1 3706530 4199240 13%

2 3852390 4723000 22%

3 4059500 4855900 19%

4 3523560 4024010 14%

5 3290020 3701850 12%

Average 3686400 4300800 16%

4.3. Process & http requests

The last set of metrics gather data about the

system running underneath Docker. The first metric,

process_max_fds, captures the maximum number of

open file descriptors. As seen in Table 6, there is a

general trend that the infected system has more files

open; however, this can vary greatly, and, in some

experiments, the difference is negligible. It is unclear,

at this time, why there is a wide range of differences.

Given the difference, this cannot be used by itself as

an early warning system; however, it could be useful

when combined with other metrics. A forensics

analyst could use it as an indicator to detect when

changes occurred assuming a normal baseline exists.

The second metric, process_virtual_memory_

bytes, refers to how much virtual memory is used by

the overall Docker containers. As seen in Table 7, the

underlying system must allocate more memory when

infected containers are executed. This indicates that

the malware is requiring a fair amount of memory to

be available for use. What is interesting is that

experiment 5 shows a high virtual memory usage,

even when some of the more individual memory

usage in the Docker containers were lower.

Table 6. Process_max_fds

Experiment Clean Infected %

Difference

1 1091797 1105923 1%

2 972579 1117239 14%

3 1095761 1192469 8%

4 1089851 1180307 8%

5 992892 1152971 16%

Average 1048576 1149782 9%

Table 7. Process_virtual_memory_bytes

Experiment Clean Infected %

Difference

1 560294865 623246092 11%

2 593261704 683256017 15%

3 642359760 691269132 7%

4 602874102 671296123 11%

5 531242209 616019356 15%

Average 586006528 657017344 12%

The last metric is the number of HTTP requests

handled by the system, which is represented by

http_requests_total. As seen in Table 8, the number

of HTTP requests are greater for the infected

containers. This is expected as the malware injects an

iframe into the content provided by Apache2. Given

the general consistency in the numbers, this could be

a good indicator for an early warning system and

would be telling for a forensic investigation.

Table 8. Http_requests_total

Experiment Clean Infected %

Difference

1 731039 799125 9%

2 779683 852301 9%

3 802359 882559 10%

4 650048 772471 18%

5 752941 827619 9%

Average 743214 826815 8%

Page 7200

4.4. Other Prometheus metrics

The nine metrics in this study looked primarily at

memory and communication between multiple planes

of a virtual system. However, Prometheus gathers

other metrics by default that describe CPU activity,

IO activity and operating events. Additionally,

Prometheus is able to obtain metrics from other APIs

besides those provided by Docker. It can poll metrics

from entire cloud systems such as Amazon’s Amazon

Web Services [4] or Microsoft’s Azure [51].

Furthermore, system administrators can build custom

rules for their individual systems. This allows tools

such as Prometheus to be used to detect multiple

types of problems in a many various environments.

Hence, more elaborate data gathering could be

conducted, as well as the capturing of data relevant

for detection of other problems and situations.

5. Conclusions and future work

This research proposed three subsidiary questions

to determine if an introspection tool could serve as an

early warning system and forensics tool in a virtual

environment. The first investigates what data an

introspection tool can access. Prometheus, the chosen

introspection tool for this study, can capture

performance information about the containers, the

Docker Engine, and the host OS. This includes I/O,

memory statistics, and operating events. The

Prometheus documentation indicates that histogram

information can be generated instead of single

counters and/or measurements. This information is

useful for monitoring and early warning systems. For

forensic investigations, it can confirm when malware

was running, and when it began; this, would aid in

determining when the malware was installed.

The second subsidiary question is how often is the

data collected? In Prometheus, collecting data is a

configurable option. By default, it is 15 seconds; this

can be tuned to ensure that the collection is not

burdensome upon the system. It collects the data by

pulling information from the Docker Engine through

its API, which requires a port for pulling to be

opened for communication. While opening ports does

lead to potential risks, this can be mitigated by

controlling what servers are allowed to access the

Docker Engine via the known port.

The final subsidiary question dealt with the

persistence of the log information. As discussed in

the methodology, Prometheus can store data as local

files or in a database, either of which can be on a

separate server. This does come with a caveat;

Prometheus does allow for the user to specify how

long it should run before writing the data to file or to

a database. Data held solely in memory is subject to

being lost, if Prometheus is shut down prematurely.

The answers to the subsidiary questions provide

support for the hypothesis that introspection tools can

be used as a data collection tool for an early warning

system, as well as a forensic analysis tool, within a

containerized system. Of the default metrics, nine

metrics were identified as being immediately useful,

as they provided either human distinguishable

differences or they provided useful forensics

information. engine_daemon_engine_info is a metric

that would be of interest to forensics investigators as

it would help confirm the exact version of Docker

engine being executed. The other eight metrics

permitted the operator to determine if Apache2 was

corrupted via simple percentage differences. While

individual metrics may not be sufficient for an early

alert system, in combination, they tend to compensate

for when other measures are weak.

More interesting, the nine metrics captured

different types of performance: the engine itself, the

memory usage of the containers, and information of

the underlying host. Thus, any malware seeking to

corrupt the Docker Engine to hide its existence would

need to determine the typical usage patterns; this, in

turn, leads to other opportunities for the monitoring

system to detect the malware presence.

Future work can be split into three major efforts.

The first effort would be conducting more complex

studies using Prometheus to detect different types of

malware and/or system compromises. It is unlikely

all malware and compromises will be detectable with

the same nine metrics. Thus, future work will require

determining what metrics are useful for detecting

different types of attacks. It will also expand the

underlying test bed system to utilize larger numbers

of containers and interactions between containers,

such as how Apache Hadoop YARN [20] has done to

streamline some data processing. Determining what

time intervals would be best for Prometheus to

collect information would be part of this work.

The second effort focuses on taking the data from

Prometheus and creating an alerting system. At

present, Prometheus can create simple alerting rules,

which activate when certain thresholds are violated.

This is often insufficient when determining if a

system has been compromised. Hence, the data

would need to be feed into online systems [52],

where anomaly detection methods could be used to

detected unexpected behavior. This can be done with

using methods such as simple learning systems, such

as the Hierarchical Temporal Memory method [53],

DBScan [54], or generalized linear models [55].

Page 7201

The third effort will develop forensic tools to find

suspicious behavior within the introspection logs and

correlate them with other factors. For instance,

Rightscale’s yearly State of the Cloud surveys [6]

underscore how necessary it is to provide different

analytical mechanisms.

6. Acknowledgements

This material is based upon work supported by

the National Science Foundation under Grant No.

CNS-1726069.

7. References

[1] Statista. Public cloud services: market size 2009-2020 |

Statistic. 2018;

https://www.statista.com/statistics/273818/global-revenue-

generated-with-cloud-computing-since-2009/.

[2] van der Meulen, R. and C. Pettey, Gartner Forecasts

Worldwide Public Cloud Services Revenue to Reach $260

Billion in 2017. 2018.

[3] Evans, B. Inside SAP: As Cloud Surpasses License

Revenue In 2018, 10 Strategic Insights. 2018.

[4] Amazon Web Services (AWS) - Cloud Computing

Services. 2018; https://aws.amazon.com/.

[5] Peterson, B. Amazon Web Services is now a $17.5

billion business. 2018.

[6] Weins, K., Cloud Computing Trends: 2018 State of the

Cloud Survey. 2018.

[7] Ab Rahman, N.H. and K.-K.R. Choo, A survey of

information security incident handling in the cloud.

Computers & Security, 2015. 49: p. 45-69.

[8] Agrawal, B., T. Wiktorski, and C. Rong, Adaptive

real‐time anomaly detection in cloud infrastructures.

Concurrency and Computation: Practice and Experience,

2017. 29(24).

[9] Osanaiye, O., K.-K.R. Choo, and M. Dlodlo,

Distributed denial of service (DDoS) resilience in cloud:

review and conceptual cloud DDoS mitigation framework.

Journal of Network and Computer Applications, 2016. 67:

p. 147-165.

[10] Cahyani, N.D.W., N.H.A. Rahman, W.B. Glisson, and

K.-K.R. Choo, The Role of Mobile Forensics in Terrorism

Investigations Involving the Use of Cloud Storage Service

and Communication Apps. Mobile Networks and

Applications, 2017. 22(2): p. 240-254.

[11] Grispos, G., W.B. Glisson, and T. Storer, Chapter 16 -

Recovering residual forensic data from smartphone

interactions with cloud storage providers, in The Cloud

Security Ecosystem, R.K.-K.R. Choo, Editor. 2015,

Syngress: Boston. p. 347-382.

[12] Palmer, D. Hackers see cloud as 'a fruit-bearing

jackpot' for cyber attacks | Computing. 2015.

[13] Team, R.C.S.I., Lessons from the Cryptojacking Attack

at Tesla. 2018, @Redlockio.

[14] Diachenko, B. FedEx Customer Records Exposed.

2018.

[15] Goodin, D. Backdoored images downloaded 5 million

times finally removed from Docker Hub. 2018;

https://arstechnica.com/information-

technology/2018/06/backdoored-images-downloaded-5-

million-times-finally-removed-from-docker-hub/.

[16] Chae, M., H. Lee, and K. Lee, A performance

comparison of linux containers and virtual machines using

Docker and KVM. Cluster Computing, 2017: p. 1-11.

[17] Docker. 2018.

[18] Backaitis, V., Big Data Crushers Have Peaked For

Now, Regardless Of Hortonworks' Upcoming Earnings.

2018.

[19] Welcome to Apache Hadoop! 2018;

http://hadoop.apache.org/.

[20] Shane Kumpf, V.K.V., Saumitra Buragohain, Trying

out Containerized Applications on Apache Hadoop YARN

3.1 - Hortonworks. 2018.

[21] Vaughan-Nichols, S.J. What is Docker and why is it so

darn popular? 2018; https://www.zdnet.com/article/what-

is-docker-and-why-is-it-so-darn-popular/.

[22] Prometheus - Monitoring system & time series

database. 2018.

[23] Datadog, Infrastructure & Application Monitoring as

a Service | Datadog. 2015.

[24] Grispos, G., W.B. Glisson, and T. Storer, Cloud

security challenges: Investigating policies, standards, and

guidelines in a fortune 500 organization. arXiv preprint

arXiv:1306.2477, 2013.

[25] Grispos, G., W.B. Glisson, and T. Storer, Security

incident response criteria: A practitioner's perspective.

arXiv preprint arXiv:1508.02526, 2015.

[26] Grispos, G., W.B. Glisson, and T. Storer, Enhancing

security incident response follow-up efforts with

lightweight agile retrospectives. Digital Investigation,

2017. 22: p. 62-73.

Page 7202

https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://aws.amazon.com/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
http://hadoop.apache.org/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

[27] Grispos, G., T. Storer, and W.B. Glisson, Calm before

the storm: the challenges of cloud. Emerging digital

forensics applications for crime detection, prevention, and

security, 2013. 4(1): p. 28-48.

[28] O’shaughnessy, S. and A. Keane. Impact of cloud

computing on digital forensic investigations. in IFIP

International Conference on Digital Forensics. 2013.

Springer.

[29] Dykstra, J. and A.T. Sherman, Design and

implementation of FROST: Digital forensic tools for the

OpenStack cloud computing platform. Digital Investigation,

2013. 10: p. S87-S95.

[30] What is OpenStack? 2018;

https://www.openstack.org/software/.

[31] Saibharath, S. and G. Geethakumari. Design and

Implementation of a forensic framework for Cloud in

OpenStack cloud platform. in Advances in Computing,

Communications and Informatics (ICACCI, 2014

International Conference on. 2014. IEEE.

[32] Live View. 2018; http://liveview.sourceforge.net/.

[33] Graziano, M., A. Lanzi, and D. Balzarotti. Hypervisor

memory forensics. in International Workshop on Recent

Advances in Intrusion Detection. 2013. Springer.

[34] The Volatility Foundation - Open Source Memory

Forensics. 2018; http://www.volatilityfoundation.org.

[35] VS16: Video Spotlight with Xen Project's Lars Kurth.

2018; https://www.xenproject.org/.

[36] KVM. 2018; https://www.linux-

kvm.org/page/Main_Page.

[37] VMware – Official Site. 2018;

https://www.vmware.com.

[38] Casalicchio, E. and V. Perciballi. Measuring docker

performance: What a mess!!! in Proceedings of the 8th

ACM/SPEC on International Conference on Performance

Engineering Companion. 2017. ACM.

[39] google/cadvisor - Docker Hub. 2018;

https://hub.docker.com/r/google/cadvisor/.

[40] Grafana - The open platform for analytics and

monitoring. 2018; https://grafana.com/.

[41] Thorpe, S., I. Ray, T. Grandison, A. Barbir, and R.

France. Hypervisor event logs as a source of consistent

virtual machine evidence for forensic cloud investigations.

in IFIP Annual Conference on Data and Applications

Security and Privacy. 2013. Springer.

[42] Shropshire, J. Securing cloud infrastructure:

unobtrusive techniques for detecting hypervisor

compromise. in ICCSM2015-3rd International Conference

on Cloud Security and Management: ICCSM2015. 2015.

Academic Conferences and publishing limited.

[43] Zhang, F., J. Wang, K. Sun, and A. Stavrou,

Hypercheck: A hardware-assistedintegrity monitor. IEEE

Transactions on Dependable and Secure Computing, 2014.

11(4): p. 332-344.

[44] Stelly, C. and V. Roussev, SCARF: A container-based

approach to cloud-scale digital forensic processing. Digital

Investigation, 2017. 22: p. S39-S47.

[45] Docker. Explore - Docker Hub. 2018;

https://hub.docker.com/explore/.

[46] Oates, B.J., Researching information systems and

computing. 2005: Sage.

[47] Ubuntu 16.04.3 LTS. 2018.

[48] Labs, R., Playing Catch-up with Docker and

Containers. 2017, @Rancher_Labs.

[49] ab - Apache HTTP server benchmarking tool - Apache

HTTP Server Version 2.4. 2018;

https://httpd.apache.org/docs/2.4/programs/ab.html.

[50] Donovan, A.A. and B.W. Kernighan, The Go

programming language. 2015: Addison-Wesley

Professional.

[51] Microsoft Azure Cloud Computing Platform &

Services. 2018; https://azure.microsoft.com/en-us/.

[52] Abbady, S., C.-Y. Ke, J. Lavergne, J. Chen, V.

Raghavan, and R. Benton. Online mining for association

rules and collective anomalies in data streams. in Big Data

(Big Data), 2017 IEEE International Conference on. 2017.

IEEE.

[53] Ahmad, S., A. Lavin, S. Purdy, and Z. Agha,

Unsupervised real-time anomaly detection for streaming

data. Neurocomputing, 2017. 262: p. 134-147.

[54] Thang, T.M. and J. Kim. The anomaly detection by

using dbscan clustering with multiple parameters. in

Information Science and Applications (ICISA), 2011

International Conference on. 2011. IEEE.

[55] Behzadi, S., K. Hlavácková-Schindler, and C. Plant.

Dependency anomaly detection for heterogeneous time

series: A Granger-Lasso approach. in Data Mining

Workshops (ICDMW), 2017 IEEE International

Conference on. 2017. IEEE.

Page 7203

https://www.openstack.org/software/
http://liveview.sourceforge.net/
http://www.volatilityfoundation.org/
https://www.xenproject.org/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.vmware.com/
https://hub.docker.com/r/google/cadvisor/
https://grafana.com/
https://hub.docker.com/explore/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://azure.microsoft.com/en-us/

