2,345 research outputs found

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    CGAMES'2009

    Get PDF

    Virtual Worlds and Conservational Channel Evolution and Pollutant Transport Systems (Concepts)

    Get PDF
    Many models exist that predict channel morphology. Channel morphology is defined as the change in geometric parameters of a river. Channel morphology is affected by many factors. Some of these factors are caused either by man or by nature. To combat the adverse effects that man and nature may cause to a water system, scientists and engineers develop stream rehabilitation plans. Stream rehabilitation as defined by Shields et al., states that restoration is the return from a degraded ecosystem back to a close approximation of its remaining natural potential [Shields et al., 2003]. Engineers construct plans that will restore streams back to their natural state by using techniques such as field investigation, analytical models, or numerical models. Each of these techniques is applied to projects based on specified criteria, objectives, and the expertise of the individuals devising the plan. The utilization of analytical and numerical models can be difficult, for many reasons, one of which is the intuitiveness of the modeling process. Many numerical models exist in the field of hydraulic engineering, fluvial geomorphology, landscape architecture, and stream ecology that evaluate and formulate stream rehabilitation plans. This dissertation will explore, in the field of Hydroscience , the creation of models that are not only accurate but also span the different disciplines. The goal of this dissertation is to transform a discrete numerical model (CONCEPTS) into a realistic 3D environment using open source game engines, while at the same time, conveying at least the equivalent information that was presented in the 1D numerical model

    Foveated Video Streaming for Cloud Gaming

    Get PDF
    Video gaming is generally a computationally intensive application and to provide a pleasant user experience specialized hardware like Graphic Processing Units may be required. Computational resources and power consumption are constraints which limit visually complex gaming on, for example, laptops, tablets and smart phones. Cloud gaming may be a possible approach towards providing a pleasant gaming experience on thin clients which have limited computational and energy resources. In a cloud gaming architecture, the game-play video is rendered and encoded in the cloud and streamed to a client where it is displayed. User inputs are captured at the client and streamed back to the server, where they are relayed to the game. High quality of experience requires the streamed video to be of high visual quality which translates to substantial downstream bandwidth requirements. The visual perception of the human eye is non-uniform, being maximum along the optical axis of the eye and dropping off rapidly away from it. This phenomenon, called foveation, makes the practice of encoding all areas of a video frame with the same resolution wasteful. In this thesis, foveated video streaming from a cloud gaming server to a cloud gaming client is investigated. A prototype cloud gaming system with foveated video streaming is implemented. The cloud gaming server of the prototype is configured to encode gameplay video in a foveated fashion based on gaze location data provided by the cloud gaming client. The effect of foveated encoding on the output bitrate of the streamed video is investigated. Measurements are performed using games from various genres and with different player points of view to explore changes in video bitrate with different parameters of foveation. Latencies involved in foveated video streaming for cloud gaming, including latency of the eye tracker used in the thesis, are also briefly discussed

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Virtual Heritage

    Get PDF
    Virtual heritage has been explained as virtual reality applied to cultural heritage, but this definition only scratches the surface of the fascinating applications, tools and challenges of this fast-changing interdisciplinary field. This book provides an accessible but concise edited coverage of the main topics, tools and issues in virtual heritage. Leading international scholars have provided chapters to explain current issues in accuracy and precision; challenges in adopting advanced animation techniques; shows how archaeological learning can be developed in Minecraft; they propose mixed reality is conceptual rather than just technical; they explore how useful Linked Open Data can be for art history; explain how accessible photogrammetry can be but also ethical and practical issues for applying at scale; provide insight into how to provide interaction in museums involving the wider public; and describe issues in evaluating virtual heritage projects not often addressed even in scholarly papers. The book will be of particular interest to students and scholars in museum studies, digital archaeology, heritage studies, architectural history and modelling, virtual environments

    Engaging the Virtual Landscape: Toward an Experiential Approach to Exploring Place Through a Spatial Experience Engine

    Get PDF
    The utilization of Geographic Information Systems (GIS) and other geospatial technologies in historical inquiry and the humanities has led to a number of projects that are exploring digital representations of past landscapes and places as platforms for synthesizing and representing historical and geographic information. Recent advancements in geovisualization, immersive environments, and virtual reality offer the opportunity to generate digital representations of cultural and physical landscapes, and embed those virtual landscapes with information and knowledge from multiple GIS sources. The development of these technologies and their application to historical research has opened up new opportunities to synthesize historical records from disparate sources, represent these sources spatially in digital form, and to embed the qualitative data into those spatial representations that is often crucial to historical interpretation.;This dissertation explores the design and development of a serious game-based virtual engine, the Spatial Experience Engine (SEE), that provides an immersive and interactive platform for an experiential approach to exploring and understanding place. Through a case study focused on the late nineteenth-century urban landscape of Morgantown, West Virginia, the implementation of the SEE discussed in this dissertation demonstrates a compelling platform for building and exploring complex, virtual landscapes, enhanced with spatialized information and multimedia. The SEE not only provides an alternative approach for scholars exploring the spatial turn in history and a humanistic, experiential analysis of historical places, but its flexibility and extensibility also offer the potential for future implementations to explore a wide range of research questions related to the representation of geographic information within an immersive and interactive virtual landscape
    corecore