
Foveated Video Streaming for Cloud
Gaming

Gazi Karam Illahi

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 22.8.2017

Thesis supervisors:

Prof. Antti Ylä-Jääski

Thesis advisor:

D.Sc. (Tech.) Matti Siekkinen

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Gazi Karam Illahi

Title: Foveated Video Streaming for Cloud Gaming

Date: 22.8.2017 Language: English Number of pages: 8+63

Department of Communications and Networking

Professorship: Data Communication Software

Supervisor: Prof. Antti Ylä-Jääski

Advisor: D.Sc. (Tech.) Matti Siekkinen

Video gaming is generally a computationally intensive application and to provide
a pleasant user experience specialized hardware like Graphic Processing Units may
be required. Computational resources and power consumption are constraints
which limit visually complex gaming on, for example, laptops, tablets and smart
phones. Cloud gaming may be a possible approach towards providing a pleasant
gaming experience on thin clients which have limited computational and energy
resources. In a cloud gaming architecture, the game-play video is rendered and
encoded in the cloud and streamed to a client where it is displayed. User inputs
are captured at the client and streamed back to the server, where they are relayed
to the game. High quality of experience requires the streamed video to be of high
visual quality which translates to substantial downstream bandwidth requirements.
The visual perception of the human eye is non-uniform, being maximum along the
optical axis of the eye and dropping off rapidly away from it. This phenomenon,
called foveation, makes the practice of encoding all areas of a video frame with the
same resolution wasteful.
In this thesis, foveated video streaming from a cloud gaming server to a cloud
gaming client is investigated. A prototype cloud gaming system with foveated
video streaming is implemented. The cloud gaming server of the prototype
is configured to encode gameplay video in a foveated fashion based on gaze
location data provided by the cloud gaming client. The effect of foveated encoding
on the output bitrate of the streamed video is investigated. Measurements
are performed using games from various genres and with different player
points of view to explore changes in video bitrate with different parameters
of foveation. Latencies involved in foveated video streaming for cloud gam-
ing, including latency of the eye tracker used in the thesis, are also briefly discussed.

Keywords: Foveated Video Streaming, Cloud Gaming, Real Time Foveated En-
coding

iii

Preface
I want to thank Almighty Allah for His benevolence and grace.

I want to thank my instructor Dr. Matti Siekkinen for all the invaluable guidance
and encouragement during this thesis, Professor Antti Ylä-Jääski for allowing me to
work in his group, and Teemu Kämäräinen for his help in understanding the test
bed cloud gaming platform.

I want to pay gratitude to my parents for their kindness, unflailing love and faith
in me. Last, but not the least, I want to thank all my friends and family for being
there for me.

Otaniemi, 22.8.2017

Gazi Karam Illahi

iv

Contents
Abstract ii

Preface iii

Contents iv

Abbreviations vi

1 Introduction 1
1.1 Motivation . 2
1.2 Research Objectives . 3
1.3 Research Outcomes . 3
1.4 Structure . 3

2 Cloud Gaming 5
2.1 Overview . 5
2.2 Architecture . 6
2.3 Benefits and Challenges . 7
2.4 Literature Review . 9

3 Video Streaming 13
3.1 Overview . 13
3.2 Video Capture and Representation 15
3.3 Video Coding . 16
3.4 Streaming protocols . 19

3.4.1 HTTP Adaptive Streaming 20
3.4.2 Stateful Streaming . 21

4 Foveated Streaming 22
4.1 Human Visual System . 23

4.1.1 Foveation . 23
4.1.2 Eye Movements . 23

4.2 Gaze Detection and Tracking . 24
4.3 Foveated Video Coding . 27
4.4 Related Work . 28

5 Design and Implementation 30
5.1 Prototype Components . 31

5.1.1 Gaming Anywhere . 31
5.1.2 X264 Encoder . 32
5.1.3 Tobii 4C Gaze Tracker . 33

5.2 Prototype . 33
5.2.1 Server and Client . 33
5.2.2 Quantization Offset Calculation 35

v

6 Evaluation 39
6.1 Experimental Setup . 39

6.1.1 Encoding parameters . 39
6.1.2 Traffic Capture . 40
6.1.3 Game Specific Experimental Procedure 41

6.2 Throughput Reduction . 42
6.3 Gaze and Latency . 45

6.3.1 Gaming and Gaze Location 45
6.3.2 Gaze Tracker Latency . 49

7 Discussion 52
7.1 Future Work . 52
7.2 Limitations . 53

8 Conclusion 55

References 56

vi

Abbreviations
CPU Central Processing Unit
GPU Graphics Processing Unit
QoS Quality of Service
QoE Quality of Experience
DASH Dynamic Adaptive Streaming over HTTP
SMPS Switch Mode Power Supply
HLS HTTP live streaming
RTSP Real Time Streaming Protocol
RTP Real Time Protocol
TCP Transport Control Protocol
UDP User Datagram Protocol
IP Internet Protocol
AMD Advanced Micro Devices
SMG Stream My Game
POV Point Of View
MOS Mean Opinion Score
EC2 Elastic Compute Cloud
CDN Content Delivery Network
GaaS Gaming as a Service
fps Frames Per Second
CMOS Complementary Metal Oxide Semiconductor
CCD Charge Coupling Device
ITU International Telecommunication Union Telecommunication Standardization Sector
ISO International Organization for Standardization
IEC International Electrotechnical Commission
VCEG Video Coding Experts Group
MPEG Moving Picture Experts Group
FPS First Person Shooter
LRS Little Racers Street
GbE Gigabit Ethernet
HVS Human Visual System
POV Point Of View
AVC Advanced Video Codig Standard(MPEG-4 AVC)
HEVC High Efficiency Video Coding
OS Operating System
CCD Charge Coupled Device
CMOS Complementary Metal Oxide Semi-Conductor
JVT Joint Video Team
RoI Region of Interest

vii

List of Figures
1 Cloud gaming architecture [1]. 6
2 Video Streaming . 13
3 Video Encoding . 17
4 Concentration of cone cells in human eye. 22
5 Generalized computer vision based gaze tracker [2] 25
6 Foveated Video Coding. The user gaze is at the overlay bubble. . . . 28
7 Cloud gaming with foveated video prototype. 30
8 GamingAnywhere architecture [3]. 31
9 Architecture of the prototype . 34
10 Visual acuity of the human eye . 36
11 Foveation and QO calculation. FW is the width of the output frame

in pixels. 37
12 Heatmap of QOs for a 1280x1280px image, the gaze location being at

the center and QOmax=10,W= Frame Width/4 37
13 Throughput at different values of QOmax and W for AssaultCube . . 43
14 Throughput at different values of QOmax and W for Trine2 43
15 Throughput at different values of QOmax and W for LRS 44
16 Average throughput without foveated encoding and with foveated

encoding at QOmax = 10 and W = FW/8 for AssaultCube, Trine2
and LRS . 44

17 Screen Captures of Trine2 without and with offsets. The overlay
bubble indicates the gaze location. 46

18 Gaze tracking heatmaps from 15 minute gameplay sessions. The color
scale is normalized. 48

19 CDF plots of the duration of gaze moments with different sizes of
foveated regions. 49

20 CDF of rate of gaze shifting. 49
21 Gaze tracker latency. The y-coordinates of the stimuli and hence the

gaze locations reported by the gaze tracker are constant(within a range). 50

viii

List of Tables
1 Delay Tolerance in traditional games [4]. 8
2 Color subsampling schemes with 8 bit color depth [5] 16
3 Table of parameter of Equation 1 . 35

1 Introduction
More and more rich media and interactive applications are becoming common place.
Many of these application require intensive computing power, in particular graphics
rendering power. Processing and graphics rendering power is expensive and in many
cases it is advantageous to do the processing and rendering remotely. This could
be either due to constraints on space available in the device, expense of hardware
required, efficient use of resources or a combination of these. In some cases intellectual
property, license management and content distribution may be factors that necessitate
remote rendering. In any case, cloud based processing and rendering of interactive
and rich media applications may reap the same benefits as cloud computing in general.
Cloud computing has been studied extensively for quite some time, for example, [6]
and [7] discuss the benefits and challenges of cloud computing.

Gaming is a multi-billion dollar business, expected to grow further [8]. Gaming
as an industry segment is not only growing vertically but also horizontally. New
technologies like virtual and augmented reality are expanding the sensory avenues
of immersive gaming while mobile consoles, smart phones and tablets provide new
devices for gaming. Graphics intensive games need size-able computing and electrical
power to be rendered properly. Games with good graphics require state of the
art central processing units (CPU) and graphics processing units (GPU) for good
quality of experience (QoE). A GPU is used to carry out the parallel computing
needed to render the video output of a game. Further, such intensive computing
and graphics rendering operations are power consuming. In mobile devices, both
processing resources and power storage come at a premium. Graphics intensive
gaming on low end computing devices or mobile devices is a good use case for remote
rendering, for example, in a cloud gaming scenario.

In cloud gaming, a server executes the game logic, renders the game-play video,
encodes it and then streams it to a thin client. The thin client receives the game
video over the Internet, decodes it and plays it on a display. The thin client also
captures user control actions, such as key-board presses, and forwards them to the
cloud server. The cloud server replays these control inputs to the game logic [4].
Cloud gaming is illustrated in Figure. 1[1, 4]. Games being interactive applications
require very low latency and considerable downstream bandwidth for good QoE.
The downstream bandwidth is needed for high quality video streaming. The more
graphics intensive the game is, the more down-link bandwidth it requires if the game
video rendered by the game is to be transmitted faithfully to the client. These
constraints are even more pronounced when a wireless telecommunication network is
in the path between the server and client.

When streaming any kind of video, provided the source video has high enough
quality, the bandwidth available dictates the quality of video streamed. The higher
the available bandwidth, the higher the number of bits that can be allocated to each
frame of the video and hence the better the quality of stream-able video. Traditional

2

streaming solutions deal with changes or constraints in the available bandwidth by
adapting the quality of the streamed video on the fly. This is typically achieved by
temporal adaptation of the streamed video quality. The quality of each frame is
dictated by the instantaneous available bandwidth.This is called adaptive bitrate
streaming and DASH [9] is widely deployed standard. Typically in such solutions
the visual quality is uniform across a frame, that is there is little spatial variation in
quality in a frame.

The human eye has a distinctly non-uniform distribution of cone cells which are
responsible for vision in bright light. The distribution of cone cells is highest at the
back of the eye in a region called the fovea and it drops off quickly with distance from
the fovea. This region occupies about 2o of the human visual field [10]. Consequently,
the human eye perceives an image with varying visual quality. The region directly
in front of the fovea is perceived with the highest acuity and the acuity decreases
with the angle of eccentricity from the fovea. This phenomenon is called foveation.
Encoding a video with uniform quality across the frame is wasteful considering the
visual acuity of the eye.

A video that is encoded such that the region of each frame which will be directly
in front of the fovea is encoded with better quality, while other regions are encoded
with lesser quality would theoretically be smaller in size and consequently bandwidth
efficient in streaming applications. This is called foveated video encoding and has
been studied thoroughly [11]. Foveated video encoding, although bandwidth and
storage size efficient, is difficult to achieve. The encoder must have information
about the region of interest in each frame where the viewers’ gaze is likely to point.
This can be achieved by analysis of the video before hand, for example, using image
processing. However, that may be very difficult for live streaming scenarios where
each frame is generated in real time. Another approach of determining regions of
interest for each frame is by tracking the gaze of a viewer in real time and providing
it to the encoder. This approach, although well known, was not usable outside of
research laboratory because of computing and monetary expense of gaze tracking.
Recently, with the availability of relatively cheap consumer grade gaze trackers, gaze
tracking for real time foveated encoding has become more feasible. This approach
is more suited to real time streaming but might not be scalable as a new encoder
instance may be needed for each viewer.

1.1 Motivation
This work is motivated by the need to lower bandwidth requirements for high QoE
cloud gaming. As mentioned earlier, cloud gaming requires significant downstream
bandwidth in order to deliver game play video of sufficient quality to cloud gaming
clients. Keeping in view the non uniform acuity of the human visual system, there
is scope for reduction of video bitrate without affecting the percieved quality of
the video. This provides motivation to explore foveated video streaming in a cloud

3

gaming context.

1.2 Research Objectives
Cloud gaming is an exciting new paradigm which leverages cloud computing to
provide graphics intensive gaming on devices with low compute power. However, for
satisfying QoE, low latency and high bandwidth are required. Video rendered by
graphics intensive games can be very large in size and streaming it over networks
with limited bandwidth may result in poor QoE. This thesis attempts to reduce the
bandwidth requirements of high quality video streaming for cloud gaming. Inspired
by the non-uniformity of human visual system, the reduction is to be achieved by
foveated encoding of game play video, using a gaze tracker at the cloud gaming client
to track the user’s gaze. The gaze location data is to be sent to the cloud gaming
server and which will use it to encode the video with spatially non-uniform quality
which corresponds to the acuity of Human Visual System (HVS). Other objectives
of the thesis include evaluating the prototype cloud gaming system in terms of video
throughput reduction with varying parameters of foveation and a basic feasibility
study in terms of latency.

1.3 Research Outcomes
The primary research outcome of this thesis work is a prototype cloud gaming system
with foveated video streaming capabalities. The system is based on an open source
cloud gaming platform and comprises a modified cloud gaming server of the platform
which receives gaze location data from the client and encodes gameplay video with a
quality corresponding to the gaze location. The client of the prototype integrates
an eye tracker which reports the current gaze location to the server as soon as it is
available. The prototype is parametrizable and the area as well as degree of foveation
can be controlled.
Other research outcomes of this thesis include measurements of video throughput
for different games at various foveation parameters and experiments to characterize
latency of the eye tracker used in the prototype.

1.4 Structure
This thesis is further structured into Chapters 2, 3,4, 5,6, 7 and 8. In Chapter 2,
the background for this work, i.e cloud gaming, is discussed. In Chapter 3, Video
coding and streaming is discussed as video streaming is a primary enabler of cloud
gaming. In Chapter 4, Foveated Video Streaming is discussed exploring aspects like
physiology of foveation, gaze tracking needed to implement foveated streaming and
encoding methodology used.

4

In Chapter 5 the design and implementation of the foveated video streaming for
cloud gaming is described along with the various tools and components used used in
the implementation. The tools and components used are introduced, design of the
prototype is discussed and design choices are highlighted. In Chapter 6, the prototype
is evaluated. The measurement setup is described and the results of measurements
are analyzed. Some conclusions are drawn and discussed in Chapter 7 and the thesis
is concluded in Chapter 8.

5

2 Cloud Gaming

2.1 Overview
Video game is a burgeoning industry, with revenues in the year 2016 exceeding 91
billion dollars [12]. The revenue comprises both hardware and game software sales,
with software like game executables and add-ons leading the way. The industry
is predicted to grow in year 2017 as well [13]. Typically dedicated gamers use
high-end hardware or specialized gaming consoles on which the game software is
installed. These devices have higher than average computational resources and
consume considerable power. A game might be an off-line game or an on-line one,
depending on whether or not it needs an Internet connection to be played. In both
cases typically the game software is downloaded to the gaming machine and installed
thereon. An off-line game can be played without an Internet connection. All of
the game logic is executed locally and the game video is also rendered locally. In
online multi-player games, the game is installed on the gaming machine but also
connects to either peers playing the game or a server. Typically the server, or one
of the peers, executes the master version of the game and all other players’ actions
are forwarded to it, based on which it calculates new game states and instructs the
clients or peers to render the same [14]. Rendering, which is computationally quite
intensive, is always done locally and thus necessitates use of high end hardware.

Recent trends, however, point to a paradigm shift. More and more gaming is
taking place on portable devices like smartphones [12] .For example, the revenue of
mobile gaming sector was 41 billion dollars in 2016 out of the 91 billion dollars for
the entire gaming industry. Smartphones are quite attractive as gaming devices as
they are ubiquitous and make gaming anywhere an achievable vision. Furthermore,
smartphones are becoming increasingly powerful in terms of computing power. For
example a top of the line Android smartphone in 2017, comprises an Octa-core
(2.35GHz Quad + 1.9GHz Quad), 64 bit, 10nm ARM RISC processor [15]. Although
these numbers appear competitive with a modern desktop class CPU [16], the
performance in terms of raw processing is not comparable [17].Similar is the case with
GPUs for desktop and smartphone platforms particularly considering the rendering
power needed by modern high end games [18]. From a performance point of view,
smartphones suffer from inherent disadvantages. They are constrained by both the
available printed circuit board (PCB) real estate as well as the available power
budget. Based on a typical battery capacity of 3500 mAh at a voltage of 3.5 V the
power budget available to a smartphone processor is of the order a few (about 12)
Watts. On the other hand, a standard desktop computer simple switch mode power
supply (SMPS), can output anything from 200 to 800 watts. These limitations in
smartphone and even mobile computers make remote rendering of graphics intensive
applications a feasible and attractive proposition. Modern high-end games can be so
compute intensive that they require very-high end hardware components for a good
quality of experience. A good gaming computer may cost upwards of 1000 Euros. So
remote execution and rendering of games may be a inexpensive and viable, rather

6

compelling, option for even desktop gaming.

Cloud gaming implements the idea of remote rendering and execution. In cloud
gaming, a gamer can play the game on a thin client, such as, a smartphone or a
netbook with relatively weak compute power. The execution of the actual game and
the rendering of the game play video is done in the cloud by a cloud gaming server.
The server encodes this video and streams it to the thin client over the Internet.
The client receives this video, decodes it and plays it for the player. The client also
captures user inputs and transmits them to the cloud gaming server which replays
the inputs to the game as if the user was playing there at the server. With proper
availability of network and server resources, the process can be seamless enough that
the player does not notice any difference between local gaming and cloud gaming.

Cloud gaming as a commercial segment is in an evolutionary phase. There are
many active and under-development cloud services and platforms like GameFly
[19], Loud Play [20], Utomik [21], Nvidia Grid [22], Nvidia GeForce Now [23] and
PlayStation Now [24]. Sony, which owns PlayStation Now, has also acquired cloud
gaming startups like Gaikai [25].

Figure 1: Cloud gaming architecture [1].

2.2 Architecture
Figure 1 illustrates high level cloud gaming architecture. An end user plays a game
on a thin client connected to a cloud gaming server over a network, typically over
the Internet. In practice a cloud gaming client is installed on a thin client hardware
device while the cloud gaming server is run in a virtual instance of an Operating
System (OS), suited for the game running in a cloud environment.

7

• Cloud Gaming Client: The client software has at least two components. One
for capturing user inputs, such as key presses or mouse clicks and sending them
to the cloud gaming server using a suitable protocol. The second component is
for receiving game play video (and audio) from the cloud gaming server over
the Internet. A streaming client may be used to receive and play the game-play
video.

• Cloud Gaming Server: The core of a cloud gaming server software consists
of three components: one to execute a game, one to receive user inputs from
the client, replay them to the game, and one to capture the game-play video
generated by the game, encode it and transmit it to the client. The component
to receive user inputs receives user input messages from the client, decodes
them and replays them to the game logic, mimicking local user action. The
component to capture the video may either hook into the GPU operations
and get the game play video frames as soon as they are rendered or it may
periodically capture video frames from the video buffers of the server. It further
encodes the video using an encoder and streams the encoded video using a
streaming server. Game-play audio is similarly processed, concurrently with
the video.

Figure 1 shows only one client connected to a client. In practice, depending on the
nature of the game or the use case, there can be multiple clients connected to the
server. Some clients may be regular playing clients of a multi-player game whereas
some clients may be viewing clients which view the game play without participating
in the game itself.

The architecture Figure 1 is the architecture considered in this thesis. It is game
agnostic and works directly with off-the shelf games. Other architectures are also
possible. In one alternative architecture rendering load may be shared between the
thin client and the server [26]. In another alternative architecture, the rendering
may be done at the server, but instead of video, objects are streamed to the client
[27]. Both these alternative architectures need modifications to the game engine or
ground up design of game engines according to these architectures.

2.3 Benefits and Challenges
Cloud gaming is a natural extension of cloud computing. Cloud computing refers to
remote computing on server farms provided as a service. Gaming, as mentioned earlier,
is resource intensive and cloud computing provisions resources and ensures their fair
usage. Cloud gaming ensures far more intensive usage of hardware resources than
when installed on an individual’s computer. Cloud gaming offers many advantages
for both game developers as well as game players, colloquially called "gamers". Cloud
gaming can save the game players from investing in expensive hardware required for
high-end gaming. Since hardware development is cyclical, gamers typically invest
in new hard ware iteratively with each cycle or every alternate cycle to be able to

8

enjoy the latest games. This is because game developers develop games keeping
in mind the latest hardware to allow their games maximum compute and graphics
power. Cloud gaming may ameliorate this need for iterative investment in high end
hardware by the end users, instead expediting centralized hardware upgrades by
cloud gaming service providers. It can also expedite high-end gaming on portable
clients which typically have access to lesser computing resources and smaller power
reserves as discussed earlier. For game developers/publishers, games can be valuable
pieces of intellectual property and distributing them to end users opens up avenues
of piracy, while cloud gaming patches that vulnerability. Further game developers
can focus on developing for a single platform and explore new business models [28].
Tradionally, a player has to buy a license to each game they like or would like to
try. Cloud gaming may change that by making subscription based services possible.
For example, both GeForce Now [23] and PlayStation Now [24], two leading cloud
gaming services, have a subscription based business model.

However, for all the advantages of cloud gaming, there remain some key constraints
holding back its wide spread adoption, and these are latency and downstream
bandwidth requirements. Latency, or more specifically end to end latency, affects
QoE profoundly. Higher the latency between user action and resulting game play
scene, lower the QoE of game play [29]. In some games even the in-game performance
of game player can be affected considerably. The tolerable delay depends on game
genre and point of view of the player in conventional online games [30] as shown in
Table 1. Theoretically, these latency thresholds should hold for cloud gaming as well.

Game Type Perspective Tolerable delay
FPS First Person 100ms
RPG Third Person 500ms
RPS Omni-Present 1000ms

Table 1: Delay Tolerance in traditional games [4].

The latency between user input and visible effect in game play frame at the cloud
gaming client—response delay in cloud gaming is due to multiple factors. These
are: the latency at the cloud gaming server in processing an input instruction and
rendering a corresponding video, the network latency and latency in the client device.
These may be respectively called processing delay, network delay and device delay
[3]. Device delay occurs in two dimensions, once in taking user input and getting
it ready to be transmitted to the server and once in decoding and playing a video
frame. These delays may be reduced by using optimized hardware, for example, for
encoding at the cloud gaming server and for receiving user input at the client. With
development in cloud infrastructure (for example, optimally located edge servers and
accessible cloud GPU resources) and advancements in input technologies (USB and
touch controllers) sub 100ms latency in cloud gaming may be achievable, even in
some wireless network scenarios [1].

9

In addition to latency, downstream bandwidth requirements for cloud gaming
are challenging. High-end and graphics intensive games generate game-play videos
which have complex and high graphical detail. Streaming such high quality video
requires sizeable bandwidth. Lower available bandwidth can result in frame loss, lower
quality per frame and even increase in latency, affecting QoE negatively. Encoding
with aggressive compression is a possible solution but higher compression results
in lower quality of the decoded video at the client which might be unacceptable
for a good QoE. Depending on the game genre and game play pace, the effect of
low available bandwidth and the resulting packet loss on QoE may be higher than
latency [31]. Current cloud gaming services require high downstream bandwidth for
even standard definition video. For example, GeForce Now requires a minimum link
capacity of 10 Mbps for the service to even work [32] and PlayStation Now requires a
minimum of 5 Mbps to work [33]. Keeping in view the world wide average broadband
bandwidth of 7.2 Mbps in 2017 [34], GeForce Now is unplayable for an average global
broadband user, while PlayStation Now is somewhat playable, provided the network
conditions are constant and no other applications are communicating on the same
broad band connection. Considering the above, cloud gaming may become more
feasible if downstream bandwidth requirements can be reduced without sacrificing
QoE significantly.

2.4 Literature Review
Cloud gaming is an actively researched topic as there are substantial commercializa-
tion avenues. The earliest literature in this direction is by Ross [35], in which the idea
of remote rendering on powerful cloud resources and use of thin clients for gaming is
illustrated. The case for cloud gaming is made on the basis of advancements in GPU
technology and a prototype remote rendering technology by AMD and Otoy.

Lee et. al. [29] investigate the cloud-gaming friendliness of various genres of games
from a playability perspective, playability being characterized in terms of response
latency. Electromyography is used to analyze the players quality of experience. It is
verified that all games may not be cloud friendly and cloud friendliness is dictated
by a game’s real-time strictness. The authors also develop a model to objectively
compute the cloud friendliness of a game without doing a QoE user study. This
model may be useful to cloud gaming service providers.

Shea et. al. in [4] discuss a generic cloud gaming framework applicable to the
cloud gaming service Onlive. The challenges involved, particularly, interaction delay
and video quality are enumerated. Interaction delays for Onlive are measured at
different network parameters. A comparison is made between local gaming and cloud
gaming. The results show that in addition to network latency, the processing time
in cloud plays an important part in interaction delay. The processing time in the
cloud is needed to execute game logic and to encode the resulting game play video.
Further the authors objectively compare video quality of game-play video streamed
from cloud servers with locally rendered game play. It is observed that video quality

10

suffers even with best case scenario of network latency and with increasing latency,
the quality deteriorates further.

Claypool et al. in [36] consider the cloud gaming service Onlive from a network
turbulence perspective. They observe that Onlive games have a high downlink
data rate of 5 Mb/s with packet size around 1000 bytes, while the uplink data
rate is much lower at 100 Kb/s with packet sizes around 100 bytes. Further they
notice that downlink traffic characteristics do not depend on game genre, but uplink
characteristics do. Further they notice downlink traffic of Onlive to be similar to
downlink traffic of traditional online games, while the uplink traffic is somewhat
similar. Lastly the authors find that the Onlive cloud gaming service adapts downlink
data rate to link capacity but not to latency or packet loss and frame rate to link
capacity and packet loss, but not latency.

Chen et al. in [37] compare latency performance of Onlive with StreamMyGame
(SMG). Onlive, as mentioned earlier was a pioneering cloud gaming service, while
SMG provides a server software for the user to install on their own hardware. The
work is followed by [38], in which the authors consider Onlive and SMG again and
explore which systems provide better Quality of Service (QoS) and which elements
constitute a good cloud gaming system by considering network traffic, latency and
video quality in more detail. Different games and game genres are considered for
measurements.The authors decompose the latency into network delay, processing
delay at the game server and play out delay incurred by the video player at the
client. It is found that processing delays at Onlive are half of that of SMG. The
authors speculate that this is due to extra compute power of Onlive servers and use
of hardware encoders by Onlive. The authors also note that Onlive uses differential
resource provisioning depending on the game genre. It is also observed that the
uplink data rate is game dependent, while downlink data rate is not. Further, the
total response delay is found to be dependent on scene complexity and size of the
update region in a game scene and processing power of the server and resolution of
output video. The authors note the similarity of their results with another study
done by Claypool et al. [36] discussed above.

Jarschel et al. in [31] investigate user perceived QoE of cloud gaming. A represen-
tative group of casual and leisure gamers are asked to play games of different genres
with different points of view (POV) over an emulated cloud gaming platform. The
authors consider packet delay and packet loss as relevant parameters in cloud gaming
QoE. The test subjects play the games on the emulated cloud gaming platform with
different combinations of packet delay and loss introduced in the network path, after
which they are asked about their QoE which is expressed as a mean opinion score
(MOS). It is observed that with increase in delay, the user QoE decreases, although
the decrease depends on the pace of the gameplay. Similar results are observed for
packet delay, although for fast paced gameplay, the decrease in QoE with increase in
packet loss is somewhat slower and lesser than in medium or slow paced gameplay. It
is observed that packet loss affects user perceived QoE substantially more than packet

11

delay in medium paced games, while delay is more important for fast paced games.
For slow paced games, there is no clear tendency as to which is more important:
packet loss or delay, apart from content dependency. Further, it is observed that
downlink packet loss affect QoE for all games more than uplink packet loss. An
important metric observed is that a 120 ms delay may be tolerable.

Choy et al. in [39] study end user latency from a cloud gaming perspective in
commercial clouds like Amazon EC2 by sending TCP measurement probes to a
sample of users using BitTorrent. It is observed that 70% users within USA suffer a
latency of 80ms which the authors deem unacceptable for cloud gaming, considering
that latency affects QoE very adversely and that for gaming applications, there will
be an inherent processing delay at the server. It is observed that with a considerable
number of distributed, rather than centralized, datacenters 90% of the US population
may be covered with a latency less than 80ms. The authors propose a hybrid cloud
architecture of cloud gaming in which existing cloud data centers are integrated with
Content Delivery Network(CDN) edges modified to provide compute resources.

Cai et al. in [26] interpret cloud gaming as gaming as a service (GaaS) and
consider different architectures with respect to where the graphics rendering takes
place. In remote rendering GaaS, the rendering takes place in the cloud or edge
and the gameplay video is streamed to a thin client where the player interacts with
the game. This is the cloud gaming architecture generally considered in this thesis.
In local rendering GaaS, game logic is executed remotely but gameplay rendering
instructions are sent to the client. This architecture is more akin to online gaming.
It is observed by the authors that for such an architecture to be truly scalable and
platform independent an instruction set has to be developed for remote rendering.
In cognitve rendering GaaS, rendering load is distributed between the cloud and the
client depending upon various parameters. This architecture is considered by the
authors to be most suitable for cloud gaming.

Manzano et al. in [40] analyse traffic characteristics of two cloud gaming platforms
active at the time: OnLive and Gaikai. It is observed that OnLive has a higher
packet rate than Gaikai, particularly when considering graphics intensive games. The
packet size of OnLive traffic is also larger than Gaikai. These observations indicate
that OnLive requires higher network performance than Gaikai. They also observe
that downstream packet size distributions of both platforms are bimodal with the
minor modes being at 250 bytes and 1480 bytes for OnLive and Gaikai respectively.
The major modes are found to be at 1400 bytes and 150 bytes respectively. From
downstream inter-arrival times, it is observed that in OnLive while 40% packets have
an inter-arrival time within micro-seconds, it may reach upto 5 milliseconds (ms). In
Gaikai, 20% of the packets have inter-arrival times within microseconds and 50%
packets have inter-arrival times around 1ms but it may be as high as 4ms. Upstream
traffic from client to server traffic is also analyzed. From the cdf of packet sizes, it
is observed that OnLive traffic has modes at 100 bytes, 140 bytes and 240 bytes.
Gaiki traffic has modes between 50 bytes to 100 bytes. From inter-arrival times, it is

12

observed that inter-departure times show a mode at below 1 ms and then a uniform
distribution ranging to 12 ms, for Gaikai and between 0ms to 8 ms with a uniform
distribution and a mode at 9 ms.

Chuah et al. in [41] discuss cloud gaming from an energy and environmental
conservation perspective. It is argued that cloud gaming accrues the green benefits
of cloud computing, for example, economy of scale, better provisioning of resources
etc. Energy conservation measures possible in the cloud gaming pipeline, like GPUs,
encoders, energy optimizing the delivery networks etc. are enumerated. Further
some cloud gaming platforms are discussed and a novel cloud gaming architecture is
proposed. The novel architecture takes advantage of the GPU capabilities of current
mobile devices, sharing rendering load between the cloud and the client.

Semsarzadeh et al. in [42] propose an approach to reduce latency in encod-
ing of game play video in cloud gaming servers. It is proposed to analyze game
engines/objects and enable information exchange to the encoder to make motion
estimation faster.

Kämäräinen et al. in [1] investigate the possibility of achieving imperceptible
latency in mobile cloud gaming. It is observed, by way of thorough measurements,
that device based delays play a more important role in total response delay than
network delay and placement of cloud gaming servers. The authors conclude that
with well provisioned severs and a a short network path, delay below a threshold delay
of about 100ms can be achieved even with current (top of the line) smart-phones
and predict that device delays will shorten in near future.

Cloud gaming is a field of active research and there are many other publications in
the field like: [43] which analyses performance of cloud gaming services from a QoE
perspective, [44] which proposes an QoE optimization for cloud gaming using adhoc
cloud-lets, [45] which analyses performance of popular thin client platforms in an
online gaming context, [46] which discusses the future of cloud gaming and research
avenues, [47] which introduces a cognitive platform for mobile cloud gaming which
performs flexible resource allocation for improved efficiency of resource usage while
delivering on QoS requirements and [28] which is a survey on recent publications in
cloud gaming.

13

3 Video Streaming

3.1 Overview
A stream can be variously defined, but in the context of multimedia communications,
it generally refers to a flow of data (e.g., audio and/or video) from a server to one or
more clients. Video streaming refers to sending video over a packet network from a
server to one or more clients where it is played progressively and concurrently with
the data download. It is different from a video file download as at the client device
the video is playing as chunks of it are being downloaded. Most of the cloud gaming
platforms available today, including the platform used in this thesis, comprise of
servers in the cloud which execute game logic, render game play video, encode the
game play video and stream it to the cloud gaming client. Video streaming, as such,
plays a critical role in cloud gaming.

Figure 2: Video Streaming

Raw video, as captured by a capture device, has a large data size. For example, a
raw uncompressed video of length one minute at a resolution of 1920x1080 pixels at
30 frames per second (fps) may occupy about 10 Giga-Bytes of storage. Such data
sizes are too large for storage or streaming. To make processing video files more
feasible, they are encoded. Encoding reduces the file size by representing the video
in fewer bits than in its raw size. Encoding achieves this by exploiting spatial and
temporal redundancies in the video. Encoding and the resulting compression can
be either lossless or lossy. In lossless compression, no information of the video is
lost during encoding. In lossy compression some information is lost during encoding.
The process and system of streaming is illustrated in Figure 2. The capture device

14

captures the video and passes it over to the encoder. The encoder compresses the
video to reduce its size and adds meta-data like time stamps and decoding parameters
to it. The video is then sent to the stream server which breaks down the video into
a stream of packets which are sent to the stream client over a packet based network
as a stream of packets. The client receives the video stream, arranges the packets in
order, and forwards the reconstructed data to the decoder. The decoder attempts to
decode the streamed data into raw video frames which are played by the playback
device.

The packetization of the video at the stream server and its reconstruction at the
stream client is dictated by the streaming protocol stack used. The stream server
sends the video over a network to one or more stream clients for playback. The
key difference between a simple file transfer and streaming a video is that video is
played in real time at the client while it is being sent over by the server. The stream
server breaks down the video into packets to be sent over a transport protocol like
TCP or UDP. On top of the transport protocol the stream server uses a streaming
protocol which enables the streaming client to put back the video together properly.
There are various protocols that can be used by the stream server, including but not
limited to HTTP Live Streaming (HLS), DASH, RTSP, etc. The protocol dictates
the arrangement of video frames into the data packets of the transport layer protocol
and adds meta-data, for example the sequence numbers of data packets. These data
packets are then sent over a network to the client.

The video is streamed to the client over a packet data network. In practice it is
the Internet which comprises disparate networks with disparate physical technologies
like Ethernet, wireless, fiber etc. As such the conditions and capacities of the network
in between the server and the client are non-deterministic. These conditions dictate
the quality of the video streamed as well as the QoE of the user. For good QoE, the
encoder, the stream server, or the stream client must take the network conditions
into account. The stream client receives the video from the stream server over the
network. Typically the client initiates the stream session and asks the server to
stream the video. The server transmits the necessary information needed to receive
and rearrange the data packets into a decodable video.

The decoder receives the reconstructed video and decodes it. Typically, meta-data
needed to decode the video is included at the start of the video. The decoder uses
this information to decode the encoded video into a format that can be displayed on
a screen. Video playback is done typically on a screen where each pixel is reproduced
as it is represented by the data received from the decoder. Screen resolution is
the number of independently controllable hardware image elements (screen pixels)
comprised in the screen. Another related factor is the pixel density of the screen
typically expressed as pixels per inch (ppi). The screen resolution is different from
the video resolution which is the number of picture samples (video pixels) in a frame
of the video. The resolution of a video and resolution of the screen on which it is
displayed and also the pixel density of the screen all play an important role in QoE

15

of the viewer. A video of high resolution displayed on a screen with low resolution or
ppi, a video of low resolution played on a screen with high resolution, or ppi both
may result in unsatisfactory QoE.

Video capture is done typically by a video capture device, for example a camera.
In scenarios, where the video is computationally rendered, e.g by a game engine,
the video capture may be done by hooking into the GPU doing the rendering or by
copying the rendering devices’ fame buffers periodically. The encoder is, for example,
installed on a work station or a cloud server and the stream server is a web server,
while the stream client is a web client on a consumer computer, and the decoding
and playback happen on the same device. In some cases encoding and decoding
may either entirely or partially be done by specialized hardware, however, software
implementations of the encoders and decoders are very common. The boundaries
between the image capture device, encoder and web server are blurring with services
like Facebook Live, Twitch etc coming into vogue. With such services, cloud based
servers replay (sometimes also transcode) the content as captured and encoded by a
consumer grade device like a smart-phone or a gaming computer. The concepts and
stages involved in video streaming, like video capture, video coding and streaming
protocols are explained in more details in subsequent subsections.

3.2 Video Capture and Representation
Video capture is essentially capturing a series of images in quick succession which
when played back in the same sequence and a similar pace are perceived by the human
eye as moving scenes. Video is captured using a camera. The camera shutter speed
is set to the desired capture frame rate and the sensor captures images at that rate.
The shutter may be a physical shutter or a virtual one, in either case its frequency
decides at what rate images are captured by the sensor. The sensor may be a Charge
coupled device (CCD) Sensor or a Complementary Metal Oxide (CMOS) Sensor.
These sensors comprise an array like arrangement of sensor elements which generate
an electric response when light falls on them. This response is representative of the
image from which the light is falling on the sensor. In the array of sensor elements,
each sensor element captures a part of the image or a "picture element"—pixel in
short. Greater the number of these sensor elements, higher the resolution of the
captured image and hence the video. These sensor elements are also called pixels
(camera pixels) because each sensor element captures a pixel of the image. In color
cameras, which is majority of consumer cameras, each sensor corresponding to a
pixel may further comprise more than one pixel, each designed to capture a different
color. A typical pixel may comprise a sub-pixel for red component of the light and
a sub-pixel for blue and one or more sub-pixels to capture the incident green light.
The electric response of these small sensors are sampled, quantized and digitized.
The quantization and digitization depends on the format in which the raw image
is to be converted. The format defines the number of bits used for each pixel and
hence the need for quantization and digitization. However, initially the capture

16

may be made in a format which retains the most information and from which other
formats can be obtained by down scaling/sampling. The capture device uses a color
space to represent the image captured by the sensor. A color space is a specific
organization scheme of colors to allow representation and reproduction of the color
gamut perceived by the human eye. Two popular color spaces are the RGB (Red
Green Blue) and YCrCb (Luma, Chroma red, Chroma blue). RGB preserves image
quality while YCrCb takes less storage space. Color space conversion between the
two is easy, however, the reproducibility depends on absoluteness of the base color
space (usually RGB). It should be noted that although, color space is different from
the format in which a raw video or image is stored, in practice they are somewhat
linked. In RGB color space, a color is represented as a combination of levels of red,
blue and green in it. While in YCrCb, a color is represented as a combination of
levels of brightness (Y), and two chrominance values, Cr and Cb. YCrCb color space
is commonly used for digital applications. To represent an image digitally color
sub-sampling may be used. Color sub-sampling refers to using fewer samples for color
information than luminance information. This is possible because the human eye is
more sensitive to brightness than to color. Some commonly used color sub-sampling
schemes are given in Table 2. YUV is an older color space used in analog systems.
It is close to the YCbCr color space and the terms tend to be used interchangeably,
particularly given that many raw formats for image or video use YUVxxx as the file
extension, where xxx is the subsampling used.

YUV 4:4:4 YUV 4:2:2 YUV 4:2:0
Typically 8 bits per Y,
U, V plane

4Y samples for every 2U
and 2V

4Y samples for every 2U

No horizontal subsam-
pling

2:1 horizontal subsam-
pling

2:1 horizontal subsam-
pling

No vertical subsampling No vertical subsampling 2:1 vertical subsampling
24 bits/pixel 16 bits/pixel 12 bits/pixel
8 bits/sample 8 bits/luma sample 8 bits/luma sample

Table 2: Color subsampling schemes with 8 bit color depth [5]

3.3 Video Coding
Raw video, as captured by a camera is quite large in size. Raw video sizes are
increasing with the increase in resolution of professional, even consumer grade
cameras. To make video sizes manageable for storage and streaming, the videos are
encoded before storage or streaming, and decoded before playback. This encoding
and decoding process constitutes the area of image and video coding. There are
many image and video coding standards and schemes. Some encoding standards just
specify the syntax of the data while others also define compression algorithms or
targets. Some of the standards are H262, H264 and H265 which have been developed
by joint video team (JVT) of ITU-T Video Coding Experts Group (VCEG) and

17

ISO/IEC JTC1 Moving Picture Experts Group (MPEG). Some other encoding
schemes have been developed by private organizations, for example VP9 and VP10
by Google.

A video coding scheme includes an encoder and a decoder. A video encoded by a
particular encoder should be decode-able by the corresponding decoder. Encoding
is able to compress the file size of a video by exploiting similarity or correlation of
samples within an image or within multiple images. Even though the actual algorithms
of compression differ between encoding standards, there are some broad common
operations involved. At a high level these steps are: analyzing spatial similarities
between the samples of an individual frame and temporal similarities between frames
of different times for example consecutive frames. These similarities are expressed
as differences mathematically and transformed into a more compact form. The
transforms are then quantized and digitized. The resolution of quantization typically
depends on a parameter called quantization parameter. The digital representation
is further reduced in size using entropy coding. The resulting data is then filtered
and put in a "container" files. Video decoding typically includes the reverse of these
steps to extract raw video from encoded video. These steps are discussed in some
detail below, particularly with reference to x264, an open source implementation of
the H264 video standard.

Figure 3: Video Encoding

Figure 3 illustrates the high level steps involved in encoding a video.

1. Picture Partitioning: At the start of the encoding process, each picture is
divided up into groups of samples(pixels) on which encoding operations take

18

place. These groups are called blocks and typically a few blocks together are
called macroblocks. Macroblocks are the fundamental units of pictures for the
purpose of encoding in H264. As an example, a macroblock for H264 may be
16x16 samples of luma and, if 4:2:0 sampling is used, 8x8 samples of chroma.
In modern encoders like H264 and H265, the size of the basic coding block may
be adjusted. A picture may be partitioned into a few slices each consisting of
some macro-blocks. Each slice can be encoded independent of other slices, thus
enabling parallel encoding and decoding. In H265, the concept of macroblocks
is replaced by Coding Tree Units, which may be up-to 64 x 64 samples in size. A
coding tree unit is further divided into coding tree blocks which can be divided
into coding units. The coding unit may be further divided into prediction units.
This hierarchical partitioning of coding blocks results in higher compression,
but the fundamentals of coding mentioned here still apply. H265 also allows
partitioning a picture into tiles, which are rectangular groups of macroblocks
for even more parallelism.

2. Prediction Coding: Prediction coding is at the heart of data compression in
video encoding. The core idea is to store/transmit only differential information,
rather than all the information representing a picture. In prediction coding a
mathematical error is calculated between the original signal and a predicted
signal. The error is called the residual. Prediction coding of two types is con-
currently used in modern encoders:spatial and temporal. In spatial prediction
correlation between samples in the same frame/picture is exploited, for example
macroblocks within a frame (or a slice or tile) are represented as a residual
between each original macroblock and a corresponding predicted macroblock.
The predicted macroblock is one which is already available to the decoder and
is usually a previously decoded macroblock. In temporal prediction correlation
between samples/macroblocks of different frames is exploited to reduce the
amount of data required to represent the current macroblock. For example,
in many situations, the difference between the current frame and previous
frame may be only that of a few macroblocks changing or some macroblocks
"moving" corresponding to the movement of a subject in the video. Instead of
re-representing the whole frame only the samples that changed may be encoded,
or the macroblocks which have moved may be represented as "motion vectors".
Based on the prediction coding used, a frame may be an I type frame, a P
type frame or a B type frame. An I frame is an intra coded frame. It can be
reconstructed only from the data present frame. A P frame (predicted frame)
is more compressed as it is represented on the basis of previous frames as well.
A B frame (bi-directional predicted frame) is predicted both from previous
frames as well as future frames, as such it is the most compressed.

3. Transform Coding: The residuals of original macroblocks and predicted
macroblocks are representable as a matrix of coefficients for each frame.This
matrix is transformed mathematically to be represented in a more compact form.

19

Various transforming techniques have been explored including discrete Fourier
transform and discrete cosine transforms. Currently x264 based encoders use
an arithmetic transform which closely resembles discrete cosine transform.

4. Quantization: The transformed matrix is quantized to further represent it
in a compact form. This step is where information loss takes place. The
granularity of quantization decides how much information is kept and how
much is discarded. In x264, a parameter "Quantization Parameter" QP decides
the granularity of quantization. QP may be either set by the user or the encoder
may set it automatically depending upon other parameters. Higher the QP,
more information is lost irreversibly and higher the compression. There is a
trade-off between quality and compression efficiency which dictates QP.

5. Entropy Coding: Entropy coding further reduces the data size by exploiting
the correlation between binary data obtained after quantization. Repeating
patterns are represented in terms of symbols. This step is a loss less step of
video coding.

6. Loop Filter: Since the unit of video coding is a macroblock, adjacent mac-
roblocks may have somewhat different values of luma and chroma and the
decoded image may appear "blocky". To prevent this a loop filter is applied
at the end to "smoothen" these transitions across macroblock borders, in the
process further compressing the video.

Video encoding is a very mature field and as such is not discussed in depth here.
For more information the reader is referred to [5] and [48] among many other excellent
books. An excellent overview of H264 is presented in [49] and H265 is over-viewed in
[50]. Xu et, al survey state of the art video coding approaches in [51].

3.4 Streaming protocols
Video streaming has evolved from simple but sparsely used file download based
streaming to adaptive bitrate streaming which constitutes more than 70 percent of
the global Internet traffic [52]. The most primitive methods to view video stored at
a remote location, typically a web server, were file download methods. In such a
system the client, a web browser, requests the media object, downloads it completely
and hands it over to a media player. An improvement over this is the progressive
download method, wherein the web browser downloads a meta file which it passes
to the media player, the media player orchestrates a TCP connection with the web
server and starts the download of the media object. As soon as a part of the playable
media is downloaded, the media player starts playing it. The download continues
concurrently with the media being played. This method has some shortcomings:
there is not rate adaption which may cause frequent stalls, control over playback is

20

limited and the download continues progressively without regard to the fact that the
viewer may not consume the complete media object. Current HTTP based streaming
technologies are more intelligent and can adapt to network conditions and have richer
control gamut for the viewer.

Adaptive bitrate streaming refers to streaming video content while adapting to
changing network conditions to provide a smooth viewing experience. In adaptive
streaming the quality of video is changed with change in network conditions.Typically
the change in video quality is temporal and reactive to network conditions such
that the output video bitrate provides the best possible viewing experience at those
network conditions. For example a video stream may begin with low quality to
provide a fast playback start-up at the client. If the network conditions are right,
for example, the link capacity is high and the delay is low, progressive frames may
be sent with higher quality. The quality of streamed video may reach a plateau
wherein the highest quality video for given network conditions is streamed. The
quality may lowered when there are instances of delay and/or congestion. This is
temporal adaptive streaming. In spatial adaptive streaming, the quality of certain
regions of the frames is reduced or increased as the network conditions change. For
example at lower link capacities, pre-determined regions of interest (RoI) may be
kept at a higher quality while other regions are streamed at a lower quality to make
the best use of available network resources while maintaining an acceptable viewing
experience.

3.4.1 HTTP Adaptive Streaming

Adaptive streaming puts constraints on encoding. Typically, for adaptive streaming,
the video is encoded as multiple streams, each having a different resolution. Each
stream consists of chunks of the video. These chunk boundaries as well as identifiers
are synchronized. This allows chunks of one quality to be played followed by chuck
of different quality without affecting the linearity of play back—only quality changes.
There are several HTTP based propriety adaptive streaming protocols, such as
Apple HLS, Adobe HTTP Dynamic streaming and Microsoft Smooth Streaming.
These protocols are very similar in that the server stores multiple resolution versions
of the same video wherein each version is stored as a series of HTTP compatible
chunks(smaller files) which are interchangeable. These protocols are stateless on the
server side, but the client maintains the session state. At the start of a streaming
session and sometimes also subsequently, the client receives a meta data file which
describes the available resolutions (streams) of the video, the arrangement and
location of HTTP chunk files for each stream etc. Based on this meta data and the
rate adaption method in use, the client decides what resolution chunk to request next
from the server. These protocols, although similar are not inter-operable. MPEG-
DASH [9] is a standard which attempts to provide an inter-operable standardized
streaming mechanism. MPEG-DASH specifies only format of the meta data file called
media presentation description, leaving the rate adaptation and codec implementation
open to service providers. HTTP based adaptive streaming has the benefit that

21

existing web infrastructure can be leveraged for video streaming. Also HTTP traffic
is generally allowed through firewalls and does not raise any red flags compared to, for
example, UDP traffic. The encoding requirements of HTTP based adaptive encoding
may be challenging in live streaming scenarios. In live streaming scenarios, this
entails re-encoding the video generated by a capture device at multiple resolutions
which introduces delay in the whole process. This delay may be acceptable in passive
viewing use case scenarios such as watching a sports event or an entertainment
event. However, in real time interactive applications, such as cloud gaming, the delay
involved in DASH and DASH like standards and protocols is unacceptable and hence
these standards can not be used.

3.4.2 Stateful Streaming

For low latency interactive applications, like cloud gaming, session based stateful
protocols are more suited. In such protocols, the control and data connections are
separated. An example of such a protocol stack, used in the cloud gaming platform
this thesis uses, is Real Time Streaming Protocol (RTSP) with Real Time Transport
Protocol (RTP) and RTP Control Protocol (RTCP). RTSP sets up the connection
and is used for control of the streaming session, such as start, pause, rewind etc. but
does not itself perform transport functions [53]. RTP [54] is the transport protocol
which carries the audio and video streams. RTCP, used in conjunction with RTP,
is used to monitor the stream and its QoS and is also used to synchronize multiple
streams if present. Adaptive rate adaptation can be added to RTSP/RTP/RTCP
based streaming at the encoder level using for example Scalable Video Coding (SVC)
extension of H.264 standard [55]. RTSP/RTP/RTMP can use either TCP or UDP
as the underlying transport protocol. When using UDP, there may be issues with
traversing firewalls. For low latency applications, RTSP with RTP/RTCP is more
desirable as playable video can be transmitted in (play out) lengths smaller than the
HTTP file chunks used in HTTP based adaptive bitrate streaming methods.

Another classic stateful streaming protocol is the Real-Time Messaging Protocol
(RTMP) [56]. RTMP is a partly proprietary protocol developed by Macromedia now
part of Adobe which supports multiple parallel streams of audio, video, data and
associated meta-data. It was widely used before HTTP based protocols like HLS
took over. RTMP uses a persistent TCP connection to establish a streaming link
between a Flash player and a video server. The client and server dynamically decide
the size of stream fragments. Stream fragments from different streams, like audio and
video, may be interleaved. RTMP has a low packet overhead and multiple versions
which extend its functionality. There are versions for security, tunneling over HTTP
and for using UDP as the transport protocol.

22

4 Foveated Streaming
Foveated streaming in this thesis is implemented using gaze location data. Gaze
location data is obatined using an eyetracker. In this chapter eye and gaze tracking
are discussed from a foveated video coding and streaming perspective, followed by a
discussion on foveated video streaming.

Human eye is responsible for the human sense of vision. It is the interface between
the the physical world of light and the neurological perception of it by the human
brain as images. The eye has five main components which help in imaging: the lens,
the cornea, the iris and the retina and the optic nerve. The cornea and lens collect
the light reflected from physical objects with the iris controlling the amount of light
entering the optical cavity inside the eye. The retina contains photo-receptors which
receive this light and generate a corresponding neural response which is sent to the
brain for processing via the optic nerve.

Figure 4: Concentration of cone cells in human eye.

23

4.1 Human Visual System
Human eye perceives visual scenes with different acuity depending on where it is
focused. The eye senses light with the help of the retina which covers the back of
the eye. The retina is covered with two types of light sensitive cells, the rods and
the cones. The rods are responsive at low light levels while the cones are responsive
at higher light levels. Cone cells are also responsible for chromatic vision. The
distribution of cones in the retina is not uniform. The center of the retina, which
is opposite to the lens has the highest density of cones. This region of the retina
is called the fovea centralis or fovea in short. The density of cone cells decreases
exponentially with distance from the fovea [57].

4.1.1 Foveation

Figure 4 illustrates the concentration of cone cells in the human eye relative to the
angular distance from the fovea centralis. The concentration of cone cells drops
exponentially with the angular distance from the fovea, as such human vision exhibits
non uniform acuity. The visual acuity corresponds to the concentration of cone cells
in the retina. Consequently, parts of a scene directly in front of the fovea, that is at
an angular distance of 0o from it are sampled and therefore perceived with the highest
acuity by the human eye. The more the angular distance of a part of a scene from
the fovea, the lesser is the visual acuity with which it is perceived. This phenomenon
is called foveated vision or foveation. One can observe foveation by focusing their
gaze at a word straight ahead in a document covering a substantial portion of their
visual field and trying to read from the periphery. As can be noticed, the peripheral
region appears blurred and therefore illegible. The foveal region occupies an angular
region of 2o of the human visual field [10]. Thus only a small part of the human
visual field is sampled and perceived with high acuity. The area of the region which
is perceived with the highest acuity depends upon the viewing distance. At a viewing
distance of d, an approximately circular region with diameter of d = 2 x π/180 is
perceived with the highest acuity.

4.1.2 Eye Movements

To process a visual scene, our eyes move around a visual field. This is because
of foveation [58]. To process an entire visual field, the fovea (more precisely the
visual axis) has to be moved around the field, so that salient parts of the scene may
be fixated upon by the fovea for sampling. Eye movements are also necessary for
cognition and attention, so to perceive new scenes, the the head and eyes move. In
addition to using the head to orient the visual axis coarsely, there are four types of
eye movements. These are saccades, smooth pursuit movements, vergence movements
and vestibulo-ocular movements [59]. Saccades are quick ballistic movements that
the eye makes in between fixation periods. Sampling takes place during the fixation
periods wherein the eye stays stationary. Saccades occur when the point of visual
attention, for example a visual stimulus, changes location in a scene. For example,

24

while reading, the eye constantly makes saccadic movements to the next word. It
should be noted that during fixation periods, the eye is not completely steady and
minor eye movements called micro-saccades occur. In smooth pursuit eye movements,
the eye smoothly follows a visual stimulus. This occurs when the target of visual
attention is moving. Vergence movements occur when the eyes adjust their fovea
with targets at different distances from the eyes. Such movements are different in
that the eyes may move independently during such movements. Vestibulo-ocular
movements serve to stabilize the eyes, more specifically the retina, with respect to
the external world, for example by compensating for head movements. This prevents
images from sliding on the retina as the head moves. Of these saccadic and smooth
pursuit movements are of interest for foveated video streaming.

4.2 Gaze Detection and Tracking
Eyes are one of the main sensory input organs in humans. Eyes are also a powerful
medium of emotive and cognitive expressions in humans, ranging from expressing
needs and desires to cognitive processes. Study of eye and gaze behavior is therefore
important from multiple perspectives, including psychological, neurological and opto-
neurological etc. Therefore tracking eye and gaze has numerous applications, for
example: assitive technologies for the differently abled, e-learning, driver-assistance,
security, authentication and for human computer interaction.

Human gaze has been studied and tracked as early as 1908 [60], but reliable
non-intrusive and cheap gaze tracking solutions have only recently begun to emerge.
Various techniques of gaze detection and eye tracking have been tried over the years
which can be broadly divided into two categories: sensor based and computer vision
based [61]. Sensor based gaze detection typically involves sensors on the users body
(head or eye) to detect changes in electric fields with eye movement. Computer
vision based detection is non-intrusive and typically even non-contact. Current gaze
tracking hardware, particularly consumer grade hardware, is computer vision based.
In computer vision based tracking a real time video of the users’ eye or eyes is
analyzed using image processing techniques to detect or localize the eye and deduce
gaze information.

Figure 5 illustrates a generalized computer vision based gaze tracker. The gaze
tracker takes continuous image data (video) and detects the eyes which are then
tracked. Simultaneously the head pose is estimated. From the estimated head pose
and the tracked eyes, the gaze location/orientation can be calculated. Applications
may use the eye and gaze location to provide services depending on the use case.

Computer vision based eye detection may use different models of the eye to detect
eyes in an image. The models may be simple elliptical models to complex 3-D models.
Further, models may be based on features of the eyes, rather than the shape. One
common approach is using pupil detection. Pupil detection is attractive because
pupils and iris are typically darker than the surrounding regions. Eye models for

25

Figure 5: Generalized computer vision based gaze tracker [2]

detection may also be appearance based, wherein appearance is the photometric
appearance characterized by color distributions and filter responses. There are hybrid
models which combine features of one or more of the previously mentioned models.
By far the most common method of eye detection and gaze tracking in modern day
is using active IR illumination and pupil detection. [2].

IR illumination based eye detection and gaze tracking works by using one or more
IR or near-IR light sources to illuminate the subject, while one or more cameras
sensitive to that range record video of the scene. Depending upon the position of
the light source(s) with respect to the camera, the pupil either appears darker than
its surroundings or brighter than its surroundings, making detection easier. Changes
in head pose change the reflection pattern and brightness of the pupil. Often this
method of detection may incorporate features of other models and also head pose
estimation for more robust eye tracking [61] [2].

Gaze estimation incorporates eye tracking to provide an estimate of where a
subject is looking. Gaze refers to the direction in which the eyes are looking.
Assuming the subject is looking at a screen, a gaze location on the screen may
be estimated. Eye movements can be divided into fixations, saccades and smooth

26

pursuit. In fixations, the gaze lingers at a small area for a threshold of time typically
80-100 ms [2]. Saccades are sudden jump like motions of the eyes, consequently the
gaze, typically between fixations. In smooth pursuit, the eyes and consequently the
gaze follows a moving object. A subject may change the direction of their gaze by
moving their head as well. Hence, in addition to tracking eyes, head pose estimation
is necessary to obtain a sufficiently accurate estimate of the the gaze direction. Head
pose information is typically used implicitly by gaze tracking models. State of the
art gaze tracking solutions overwhelmingly use active IR illumination to illuminate
the eyes of a subject whose gaze is being tracked.

Gaze tracking may be feature based wherein gaze estimate is obtained from
features of the eye like contours, corners and the features of eye image captured
by the gaze tracking camera. Feature based models may use an eye model or they
may be regression based. When an eye model is used, gaze direction is calculated
from a geometric model of the eye. The location of gaze is then estimated from the
intersection of gaze direction and the object in view. Regression based models map
image features to gaze using some parametric or non parametric function.

Gaze tracking may also be appearance based which use image contents, rather
than extracted features, to estimate screen co-ordinates of the gaze location. Gaze
tracking may also employ natural light illumination rather than IR illumination.
Such approaches can be prone to error as conditions of natural illumination change
and visible light sources may shine directly into the detection camera.

In IR illumination based eye tracking, the light reflected by cornea, called the
corneal reflection, is primarily used to estimate the gaze location with the help of an
eye model. This approach, called Pupil Central Corneal Reflection (PCCR), is the
most widely used remote and non intrusive method of gaze tracking at present. In
PCCR, the eyes of the eye tracking subject are illuminated with IR or near IR light
and a bright pupil or a dark pupil is used to detect the eye. Bright pupil and dark
pupil refer to the IR illumination setup used. If the IR illuminator is placed close to
the image sensor, the pupil image appears bright–hence bright pupil. On the other
hand, if the IR illuminator is placed away from the image sensor, the pupil image is
dark—hence dark pupil. In addition to extracting the pupil image, the reflection of
the IR light from the cornea, called glint, is also extracted. The eye axis, i.e. gaze
location, is estimated based on the relative position of the pupil center with respect
to the glint. The pupil center and glint provide a pupil-glint vector which with the
help of a calibrated gaze mapping function and an eye model gives the fixation point
or gaze location. PCCR based methods may use head compensation to take head
pose into account as seen in commercially available gaze trackers [62].

All IR illumination based eye tracking solutions need calibration for each subject.
During calibration, a subject is prompted to fix their gaze at pre-specified calibration
points on a screen while images of the eye are continuously collected. From the
images pupil-glint vectors are extracted and together with the known location of

27

calibration points a pupil-glint vector to gaze location mapping is developed [63].
More information like size and color of subject’s pupil, shape of the eye, distance
between eyes etc. may also be collected during calibration to improve or customize
the eye model used [62].

4.3 Foveated Video Coding
Foveation can be exploited to reduce bitrate of encoded video. If video is encoded
such that the quality of the video matches the sampling acuity of the human eye,
considerable savings in video bitrate can be made. However, there are considerable
challenges. The encoder must know where the location of the viewers’ gaze. This is
challenging in applications like video broadcasting and streaming where the number
of viewers can be large and also the video content may be precoded. If the video
content is precoded, it is resource intensive and counter-productive to re-encode it
for each viewer. A proposed solution to the issue is region of interest (RoI) encoding
wherein the video is pre-analyzed, for example with image processing techniques,
to identify regions of interest in each frame where the viewer is likely to focus their
gaze. These RoIs in each frame may then be encoded with higher quality. In case
of live streaming video, there are two challenges for foveated video encoding: gaze
information of the viewer and scalability. In a live stream scenario the number
of clients may range from zero to thousands. Gaze information of a viewer is not
tracked by state of art viewing clients for example desktop/laptop computers, TVs
and mobile devices. This however is a surmountable challenge as commodity eye
trackers are becoming cheaper with time due to advancements in chip technology
and computer vision techniques. Even commodity cameras, like web-cameras may be
used to track gaze location of the viewer [10]. The accuracy of dedicated IR based
eye trackers is better as of present. Solutions like Microsoft’s Windows Hello [64]
[65] which require advanced camera hardware may support eye tracking applications
as well. The main challenge in live streaming is again scalability, as each viewers’
gaze may be focused differently, needing one encoder instance per viewer. Figure 6
illustrates a screen capture of a game video encoded with quality corresponding to
foveation. The user’s gaze is fixated around the in-game avatar.

In real time foveated video encoding where the RoI is unknown or un-extractable,
real time gaze location is a critical parameter as the region around the gaze location
is encoded with high quality/bit rate. Real time gaze location has two aspects, the
extraction of gaze location information should be real time as should be the delivery
of gaze location data to the encoder. In a cloud gaming context, the delay challenge
is to be addressed for game play video delivered to the cloud gaming client and
control information delivered to the cloud gaming server as well.

28

(a) Normal Encoding

(b) Foveated Encoding

Figure 6: Foveated Video Coding. The user gaze is at the overlay bubble.

4.4 Related Work
Foveated video coding has been researched for quite some time. In fact there have
been surveys on the proposed techniques as early as 2006 [11] while techniques
for foveated video coding have been suggested as early as 1980s and 1990s [66],
[67]. Although actively researched upon, there have been few implementations of
foveated encoding beyond research labs in part due to lack of commodity eye tracking
hardware. There has been a renewed interest in foveated video coding in recent years
due to ubiquity of mobile devices , explosive growth of video streaming on them and
the bandwidth constraints of telecom networks.

29

Itti in [68] proposes a neuro-biological model of visual attention for compressed
video encoding. In the proposed scheme, the whole video to be encoded is analyzed
for "salient pixels". Wang et al. in [69] propose a foveation scalable video coding
algorithm which aims to provide the best possible quality at any arbitrary bitrate
in terms of foveated visual quality. The same authors had earlier, in [69] proposed
an optimized rate control scheme which maximized foveal signal to noise ratio—a
metric which measures quality taking foveation into consideration introduced by the
same lab in [70].

A foveated video streaming implementation is introduced in [10] by Ryoo et. al.
A tile based approach is used wherein each frame is divided into multiple tiles and
the tiles are assigned quality on a three tiered system. Each frame is divided into
three concentric regions centered around the current gaze location. The innermost
region is assigned the highest quality, the middle region is assigned a middle quality
level and the outermost region, which is the largest region is assigned the lowest
quality. This implementation uses commodity web cameras to detect gaze.

Foveated video streaming for cloud gaming has been investigated earlier as well.
Ahmadi et. al in [71] propose video encoding based on a game attention model to
reduce video bitrate without significant perceivable quality loss. The game attention
model estimates the importance of each macroblock in a video frame which the
encoder uses to allocate bits to the macroblock (in other words, control the value
of QP for the macroblock). The authors use a Support Vector Machine trained on
database of eye tracking data to develop their game attention model. This method,
needs eye tracking data for each game before being deployed and can reduce video
bitrate by 25%.

Mohammadi et. al in [27] propose an object based coding approach of game play
scenes, using the MPEG 4 Part 2 Binary Format for Scenes (BiFS), instead of image
based coding. The fact that game engines render scenes object-wise is leveraged. The
implementation uses a gaze tracker, as used in this thesis, to gauge which objects
are in a players center of attention and the server sends a high quality version of the
object. This implementation requires the game engine to be able to output objects
to the video encoder (BiFS capable), which would mean either ground up design
with this capability in mind or modifications after development. Consequently, this
approach may not be feasible for off the shelf games.

30

5 Design and Implementation
In this thesis a prototype of cloud gaming with foveated video encoding is designed
and implemented. An off the shelf gaze tracker is used in the prototype. It is
integrated with an open source cloud gaming platform. In addition to control data,
the client is configured to forward the gaze data obtained from the gaze tracker to
the cloud gaming server. The cloud gaming server is configured to encode game play
video in a foveated manner with the foveated area being defined according to the gaze
data. The prototype is shown in Figure 7. The prototype consists of a generic laptop
with Microsoft Windows running on it as the client and a Linux workstation as the
cloud gaming server connected with GbE link. A consumer gaze tracker—Tobii 4C
eye tracker is installed on the client machine. GamingAnywhere (GA) is used as the
cloud gaming platform. GA is an open source cloud gaming platform which provides
client and server software for various operating systems and has support for different
encoders and decoders. For the prototype the x264 encoder, which is an open source
implementation of the H264 standard, is used. These tools are further described
below.

Figure 7: Cloud gaming with foveated video prototype.

31

5.1 Prototype Components
5.1.1 Gaming Anywhere

GA is an open source cloud gaming system. It is modular, extensible, customizable,
multi-platform and portable [3],[72]. The system provides cloud gaming clients for
Microsoft Windows, Linux, Mac OS X and Android operating systems. Further it
provides cloud gaming servers for Microsoft Windows, Linux and Mac OS X. At
the time of its launch GA surpassed commercial cloud gaming service providers
operating at the time (Onlive and StreamMyGame) in latency and network load
metrics [3]. Another attractive feature is that it can stream/cloudify any off the shelf
game without requiring any customizations to the game engine. Figure 8 illustrates
the GA architecture at a high level. It shows a GA client connected to a GA server
over the Internet.

Figure 8: GamingAnywhere architecture [3].

The GA server comprises of modules for capturing audio and video of the gameplay,
encoder modules for encoding the audio and video captured and streaming modules
to stream the encoded gameplay. Further, there are modules for control information
flow parallel and concurrent to the gameplay stream. A module receives and decodes
input events as sent by the client and a module replays the input events to the game
execution logic. In GA server, gameplay video can be captured in two modes, either
event driven or in a periodic fashion. In event driven mode, the capture module
hooks into the rendering output of the games, as rendered by the GPU, capturing a
gameplay video frame as soon as it is available. In the event driven mode, a user
chosen fps may be maintained by using a token bucket rate controller. In periodic
mode, the capture module captures a gameplay video periodically by copying video

32

buffers of the server with a user specified period. The event driven mode is a more
attractive design option but depends upon the rendering platform used by the game
engine. The encoder module of the GA server is swappable and there is support
for many encoders like X264, VP8 and planned support for X265 and VP9. The
encoded video is streamed to the client using RTSP and RTP/RTCP. The number
of flows depends on the transport protocol used, which again is configurable. If TCP
is used, the encoded gampeplay and commands are all sent over RTSP. If UDP is
used, the audio and video frames are transported with the RTP over UDP. The
gameplay audio capture module captures audio from the gameplay using the ALSA
library in Linux and Windows Audio Session API in windows. GA server maintains
a shared buffer which the capture module, audio and video encoder modules and the
streaming module can access, reducing delay due to memory access operations.

The GA client comprises an RTSP/RTP client-audio/video player module, a
user-input capture module and a module which encodes and streams the user input
to the server. The multimedia player receives the encoded audio/video gameplay,
decodes and plays it. The user input capture module is a key and mouse logger
which captures each input event. The captured events, like keystrokes, mouse motion
or mouse clicks are encoded in a custom protocol and sent to the server. For a low
latency QoE, the the client does not buffer any video frames.

GA uses a multi-threading approach to enable low latency cloud gaming. For
example, the RTSP server, the audio and capture modules, and user input replay
modules each have their own threads. The encoder modules also have separate
threads which, depending upon configuration, can spawn more threads. Since the
architecture is modular, modules can be extended or swapped. This design modularity
is leveraged in implementing the prototype for cloud gaming.

5.1.2 X264 Encoder

The X264 encoder is an open source implementation of the H.264/MPEG-4 AVC
standard. It is one of the most feature packed implementations of the popular
standard. It provides support for multiple reference frames, CABAC entropy coding,
interlaced coding, custom quantization, adaptive mode selection, psycho-visual rate
distortion optimizations and arbitrary bitrate distribution etc [73]. X264 is used in
many other video encoding softwares and GA utilizes x264 via the ffmpeg library
[74]. In addition to a CLI, ffmpeg provides an API with which options can be set for
the x264 encoder. Among a size-able number of other customizable options is rate
control. In one pass mode, relevant for streaming applications where future frames
are unknown, x264 can be configured to maintain: a constant bit rate for encoded
video, an average bit rate, a constant quantizer or attempt to maintain a constant
visual quality at the lowest possible bit-rate (constant rate factor) [75]. Among these
constant bit rate is suitable for real time applications as a user can specify a constant
bit rate depending upon the available bandwidth. However, from a QoE perspective

33

constant quality as achieved by the constant rate factor (CRF) mode is better suited.

Further, x264 supports adaptive quantization. The default adaptive quantization
mode in x264 is variance based adaptive quantization which allocates more bits
to macroblocks with less detail (flatter areas), that is the quantization step size is
decreased. However it also enables an application to manipulate the quantization
parameter (QP), i.e. the quantization step size, on a frame to frame basis as well
as macro-block to macroblock basis. In practice this is implemented by allowing
an application to add an offset to the QP calculated by x264 algorithms [76]. This
functionality is leveraged to implement real time foveated video encoding in this
thesis. The QP offsets are calculated for each macroblock based on the current gaze
location.

5.1.3 Tobii 4C Gaze Tracker

A Tobii 4C gaze tracker from Tobii Eye Tracking [77] is used in the prototype. The
Tobii 4C eye tracker is a consumer grade eye tracking device directed towards gaming
and interactive applications. It has an on board eye tracking ASIC, near IR (850nm)
illuminators and sensors. The Tobii 4C gaze tracker claims to use an enhanced version
of PCCR gaze tracking technique with proprietary algorithms in a multi-illuminator
multi-sensor setup. The eye tracking computation is done in the on board ASIC chip.
It has also head tracking support, but the head tracking computations are done in
the host computer. During callibration, the gaze tracker analyses the user’s eyes to
choose the best method, between bright pupil and dark pupil, for eye tracking of that
particular user. The gaze tracker is capable of providing individual eye, gaze, gaze
fixation and head location data as a data stream. The eye tracker comes with an
SDK which allows extraction of the data. The SDK allows the developer to set filters
on the data stream from the eye tracker. In the prototype, the "light" filter is used.
The light filtering smoothens out sudden eye movements, such as micro-saccadic
movements and noise based on current and past data points as well as velocity of
eye movements [78].

5.2 Prototype
The prototype as mentioned earlier comprises of a Windows client on which the gaze
tracker and a GA client is installed and the server comprises of a Linux workstation
on which a GA server module is installed. Both the GA client and GA server are
modified to enable foveation. Figure 9 illustrates the various modules and data flows
between the server and the client and the modules therein.

5.2.1 Server and Client

The client sets up a connection over RTSP with the server, which responds with game
play audio-video stream, the encoding parameters being dictated by the configuration
in the server. Before receiving a connection request from a client, the server keeps the
encoders and user input relay modules on standby. GA also supports view only mode

34

where the user input relay modules are not activated for a client. On the receipt of a
client request, the server activates the the encoder modules and if the client is an
active player, also the user input receive and replay modules. The client receives the
audio video stream, decodes it and plays it on a display. Further, it captures user
input, encodes it and sends it to the server. In the prototype, simultaneous with the
client sending a request to the server, a gaze tracker module is also started. The
gaze tracker module extracts lightly filtered gaze location data from the Tobii 4C
gaze tracker. The gaze location data, obtained in the form of co-ordinates (in pixels)
on the client display, is encoded into a light weight data format and transmitted to
the server. The design decision to use a separate data stream and a light weight
data format is made to ensure that gaze location is available at the server with
the lowest possible delay. The data format comprises of just three fields to avoid
processing and network overhead, the x and y coordinates of the gaze and a relative
timestamp. The gaze location is sent to the server as soon as available from the gaze
tracker over a TCP or UDP connection. Although UDP can be faster, TCP is used
during evaluation experiments to circumvent firewalls. The GA server has modules
to work on the video pipeline and transmit the encoded audio video stream and
modules to handle user interactions. In the prototype the video pipeline is modified
to receive gaze data and to encode foveated video. In the module feeding frames to
the encoder for encoding, a new component is added to receive the gaze location
data and to decode it in an independent thread. The gaze data is used to calculate
the quantization offsets for each frame

Figure 9: Architecture of the prototype

35

5.2.2 Quantization Offset Calculation

As discussed in Chapter 3, macroblocks are typically the smallest image units for video
encoding. The x264 encoder allows an application to alter quantization parameter at
the granularity level of a 16 x 16 pixel macroblock. An application can do this by
specifying a quantization offset (QO) for each macroblock of an image. The x264
encoder then adds this offset to the QP it has calculated for each macroblock based
on its own algorithms. The offset calculating module in the prototype checks the
dimension of each incoming frame in pixels and calculates the dimensions in terms
of macroblocks. Further, it takes the latest available gaze location in pixels and
translates it to a location in terms of macro-blocks. Then it calculates an array of
quantization offsets according to Equation 1.

QO(i, j) = QOmax

(
1 − exp((i− x)2 + (j − y)2

2(W)2)
)

(1)

Parameter Description
i, j Indicies of a macroblock

QO(i, j) Quantization offset for the (i,j)th macroblock
Q0max Maximum possible value of quantization offset
x, y Indicies of the macroblock where gaze is located

parameter to control the spread/width of the high quality region.
W At a distance of W from the gaze location,

the value of QO is about 40 % of QOmax

Table 3: Table of parameter of Equation 1

In Equation 1, QOmax is the maximum offset which may be added to a QP for a
macroblock, i and j are indices of the matrix of macroblocks comprising the frame,
x and y are the indices of the macroblock where the center of the gaze is, and W
controls the width of the foveal region (as dictated by width of the 2d Gaussian
curve of Equation 1). Since W corresponds to the standard deviation of a Gaussian
curve, it is the radius of a circular region around the gaze location within which
the QO values are less than about 40% of QOmax [79]. In this thesis, foveal region,
as controlled by W , refers to the region which is encoded with high quality. The
parameters of the equation are summarized in Table 3.

The human visual system (HVS) has a non uniform acuity, as discussed in Chapter
4, which corresponds to the density of photreceptors in the eye. The acuity of HVS
is illustrated in Figure 10. As can be seen, the region of highest acuity occupies
a very narrow angular region, around 2o and drops exponentially with the angular
eccentricity from the fovea.

36

-10 -8 -6 -4 -2 0 2 4 6 8 10

Distance from fovea(Degree)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 v

is
u
a
l
a
c
u
it
y

Figure 10: Visual acuity of the human eye

Equation 1 calculates QOs in according to a two dimensional Gaussian curve
whose "width" can be changed. The Gaussian curve is chosen because the drop of
the Gaussian curve is not as steep as the approximately quadratic nature of the HVS
acuity. It is assumed that this spread and comparatively gradual drop somewhat
compensates for any minor inaccuracies in the gaze location data.

The normalized QOs generated by Equation 1 for various values of W expressed
in terms of frame width FW are illustrated in Figure 11. Figure 12 illustrates the
offsets calculated by Equation 1 for a 1280 by 1280 pixel (80 by 80 macroblocks,
each macroblock of 16px x 16px) image as a heat-map, with the gaze location at
the center of the image(at the macroblock 40,40), QOmax set as 10 and W set as
FW/4 (320pixels, 20 macro blocks). It is clear that the quantization offset for a
macro-block increases as with its distance from the gaze location. The macroblocks
at and around the gaze location have 0 or low quantization (lesser than 1) offsets.
At even a very generous value of W , it can be seen that a majority of macroblocks
have a quantization offset of more than 5, substantially reducing the bitrate needed
to encode the frame. At an average viewing distance of 50 cms, the area subtended
by the foveal region is nearly 2 cms in diameter which on a 34.5 cm screen of 1366
px resolution— a typical laptop configuration, corresponds to about 80 pixels or 5
macroblocks of 16 x 16 px.

37

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Distance from gaze location(pixels)

0

1

2

3

4

5

6

7

8

9

10

Q
O

FW/4

FW/8

FW/12

FW

Figure 11: Foveation and QO calculation. FW is the width of the output frame in
pixels.

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80 0

1

2

3

4

5

6

7

8

9

Figure 12: Heatmap of QOs for a 1280x1280px image, the gaze location being at the
center and QOmax=10,W= Frame Width/4

38

Ideally, the width of the foveal region should correspond exactly to the region
of an image perceived with the highest visual acuity by the human eye. However,
there are many factors that affect the size of the region perceived with the highest
acuity by the human eye, for example visual stimuli and their motion. Further, the
gaze tracker may not be accurate enough or there may be latency in the calculation
and reporting of gaze location. Another aspect that affects the decision of size of the
foveal region is how fast a players gaze moves in a game. These aspects are explored
in the experiments reported in Section 6.

39

6 Evaluation
Here the effect of foveated encoding on game play video bitrate is investigated. Video
games of different genres present different POVs for the player. POV of a game affect
the graphical details of the gameplay video generated and it is expected that foveated
video encoding will have different characteristics and constraints for each genre and
also the throughput will be reduced to different degrees once these constraints are
taken into account. Three video games, AssaultCube, Trine2 and Little Racers Street
(LRS) are considered in the bandwidth measurements, representing three different
genres of video games. AssaultCube is an open source first person shooter game
(FPS) similar to a very popular FPS game Counter Strike. Trine2 is a side-scrolling
action platform and puzzle game with fairly complex graphics. LRS is a birds eye
view racing game where the scene and players’ gaze location changes frequently.
Gaze data of these and an additional game Formula Fusion is also studied later to
analyze latency feasibility of foveated video streaming for cloud gaming. Formula
fusion is futuristic racing game with a traditional behind the car POV for the driver.

6.1 Experimental Setup
The client and server are setup as illustrated in Figure 7. They are connected over
the campus GbE network with negligible latency to remove any network related bias
in the results. Network latencies in cloud games and their effects have been well
studied as discussed in Section 2.4 and Section 6.3. Further, the client and server
are configured to use TCP for audio/video data, control data and gaze data.

6.1.1 Encoding parameters

The x264 encoder is set with the following parameters based, in part, on the recom-
mendations in [3]:

--profile main --preset ultrafast --tune zerolatency --crf 28
--ref 1 --me_method dia --me_range 16 --keyint 48 --intra-refresh
--threads 4

The parameters are explained below:

• profile indicates the profile of the H264 standard to be used for encoding.
It is set to main as recommended by [3].main profile is suited for standard
definition video.

• preset indicates the the preset speed of encoding, which is set to ultrafast
keeping in view the real-time nature of the application, although slower encod-
ing may result in better compression

40

• tune is an optional parameter which specifies the quality of input video. It is
set to zerolatency to correspond to cloud gaming.

• crf indicates the constant rate factor to be used. crf is a measure of "constant
quality" which the encoder aims to achieve. It can be set to values between 0-51
for 8 bit color depth, 0 being lossless encoding and 51 being the worst. When
crf based rate control is used, QPs for each macroblock are adaptively chosen
frame by frame. Higher the crf, higher the quantization step size, higher the
quantization loss introduced and hence lower the bitrate. The crf is set to 28
in the measurements as 28 provides reasonable quality of experience in real
time streaming scenarios. Note that on top of the QPs calculated by the crf
algorithms, quantization offsets are added for foveated encoding in the protoype.

• ref indicates the size of Decoded Picture Buffer. It indicates the number of
decoded pictures that a predicted frame can reference. The decoder has to
store as many decoded pictures as indicated in ref. It is set as 1 to keeping
in view that higher values typically mean more time needed to encode and
decode, although there might be gains with respect to compression.

• me_method indicates the method of motion estimation to be used. The value
set in the experiments dia refers to diamond motion search which, being the
simplest motion estimation method is the fastest. Again, possible compression
gains are sacrificed for low latency.

• me_range indicates the range of motion estimation in terms of pixels. It is set
to 16 which is the maximum possible value when me_method is set to dia.

• keyint indicates the frequency of picture refresh. It can either be by inserting
I-frames or by periodic intra-refresh. It is set at 48 so that the picture refreshes
approximately every second when the streaming frame rate is 40-45fps.

• --intra-refresh enables the use of periodic intra refresh, instead of key frame
or I- frame insertion. Periodic intra refresh inserts a column of intra coded
macroblocks in each encoded picture. This ensures robustness when dealing
with for example frame loss as I frame as a single point of failure in a Group
of Pictures is eliminated . Also a more uniform frame size is achieved with
intra-refresh.

• threads specifies the number of threads to be used during encoding. It is set
to 4 to improve speed of encoding.

6.1.2 Traffic Capture

The data flow between the cloud gaming server and the cloud gaming client of the
prototype of Figure 7 is captured using tcpdump [80]. Tcpdump is started on the

41

server with a filter to capture traffic only coming from and going to the client. Both
upstream and downstream traffic between the server and the client are captured, but
the upstream data stream contains only the control (user control) data and gaze data.
Thus reduction, if any, in throughput are a direct result of foveated encoding. The
throughput per second is extracted from the capture files using Wireshark [81]. For
each game multiple iterations of the experiment are conducted over the same period
of time, varying parameters QOmax, and W . W is varied in terms of the output
frame width FW . For each iteration of the experiment for a game, the gameplay
is kept as identical as possible both in terms of actions of the player’s actions and
length.

6.1.3 Game Specific Experimental Procedure

The games and the corresponding game specific measurement setups are described
below.

AssaultCube:

AssaultCube is a FPS game. FPS games are very popular and other game genres,
like action adventure, horror games etc. tend to use the same point of view. In
AssaultCube, the player holds and controls a weapon. There is a cross-hair projected
for the weapon indicating where the weapon targets, if used. The player can move
the character and the weapon as well. Movement of the player is executed as steps,
jumps, crawling and climbing, while movement of the weapon is executed either as
arm movement or rotation of feet. The scene is displayed the same way it would
appear if the player was part of the scene. In other words, the view displayed is
eponymous to the genre.

For the experiment, the prototype cloud gaming server is started in event driven
mode and the gameplay resolution is set at 1366x768 to be able to play it at full
resolution on the prototype cloud gaming client (FW = 1366pixels). To keep the
gameplay consistent in each measurement, an AssaultCube tutorial in which the
player actions are predefined is played for a preset length of time, instead of an active
player game. The player, however tries to focus on the action in the game in each
measurement.

Trine2:

Trine2 is a "platformer" game with a side scrolling gameplay. The player looks at
their in-game avatar which it controls, traversing platforms and solving puzzles. The
game play is two dimensional, in that the action moves sideways or up and not down
not into the depth of the scene. Trine2 is a representative of modern platformer
games in graphics complexity.

For the experiment, the prototype cloud gaming server is started in periodic mode

42

and the gameplay resolution is set at 1366x768 to be able to play it at full resolution
on the prototype cloud gaming client (FW = 1366pixels). To keep the gameplay
consistent in each iteration of the experiment, the same level of the game is played
with the player making an effort to replicate the actions of the in game avatar.

LRS:

LRS is a racing game with a with a birds eye POV. The player looks at a car which
the control from the above, racing other cars. The underlying map of the track moves
predictively only to accommodate the cars, because the map is typically bigger than
the screen. The birds eye point of view is common in other games, like strategy
games.

For the experiment, the prototype cloud gaming server is started in periodic
mode and the gameplay resolution is set at 1366x768px to be able to play it at full
resolution on the prototype cloud gaming client (FW = 1366pixels). To keep the
gameplay consistent in each iteration of the experiment, the same race of the game
is played on the same race track with the player making an effort to replicate the
actions of the steering the car.

6.2 Throughput Reduction
Figure 13 shows box plots of bandwidth measurements for the game AssaultCube.
There is a dramatic reduction in video bit rate when the parameter W is set to
1/8th of the screen size and QOmax is set to 5. With QOmax at 10, the video bitrate
reduces even further. The reduction in bitrate is not as significant when QOmax is
set lower. When QOmax is set constant at 10, and W is varied, the drop in video
bitrate is less steep with smaller W , but significant when compared to no foveation.
With W decreasing below FW/8, the gains in bit rate reduction are smaller. This
may be due to the fact that with FW becoming smaller, relatively few macroblocks
have high quality. However, it should be noted that the bitrate reduction depends
on the size of the output frame.

Figure 14 shows box plot for throughput of Trine2. Similar pattern of video
bitrate reduction with varying QOmax and W . Trine2 being more graphics intensive,
the highest bitrate without foveated encoding is higher than the highest bitrate
without foveated encoding in AssaultCube. However, when foveated encoding is
used, the highest bitrate is also reduced.

Figure 15 shows box plot for throughput of LRS. The median throughput without
using foveated encoding is the highest in LRS in spite of the fact that graphical
complexity of an average scene in LRS may not be as high as Trine2.This can be
explained by the fact that even though the scene is not complex, it changes omni-
directionally (in four directions on a 2-d plane) at a high frequency with almost every
control input of the user, courtesy of the birds eye view. It can be also noticed that

43

0 5 10 15 FW/4 FW/6 FW/8 FW/10 FW/12

 QO
max

,(W=FW/8) W,(QO
max

=10)

0

2

4

6

8

10
M

B
it

s
/s

e
c
o
n
d

Mean value of throughput

Figure 13: Throughput at different values of QOmax and W for AssaultCube

0 5 10 15 FW/4 FW/6 FW/8 FW/10 FW/12

 QO
max

,(W=FW/8) W,(QO
max

=10)

0

2

4

6

8

10

M
B

it
s
/s

e
c
o
n
d

Mean value of throughput

Figure 14: Throughput at different values of QOmax and W for Trine2

there a quite a few outliers below the minimum throughput. These occur when the
a control input results in change of the position of the car in the game, but not a
displacement of the map.

In all the three measurements illustrated in Figures 13,14, 15, it is noticeable that

44

0 5 10 15 FW/4 FW/6 FW/8 FW/10 FW/12

 QO
max

,(W=FW/8) W,(QO
max

=10)

0

2

4

6

8

10
M

B
it

s
/s

e
c
o
n
d

Mean value of throughput

Figure 15: Throughput at different values of QOmax and W for LRS

 QO
max

=0 W=FW/8,(QO
max

=10

0

1

2

3

4

5

6

7

M
B

it
s
/s

e
c
o
n
d

AssaultCube

Trine2

LRS

Figure 16: Average throughput without foveated encoding and with foveated encoding
at QOmax = 10 and W = FW/8 for AssaultCube, Trine2 and LRS

QOmax affects bit rate more than W . The reduction in video bitrate is lower as W is
reduced beyond FW/10 the reduction in video bitrate becomes flatter. This is due
to the fact that at the current FW (1366pixels), the number of macroblocks kept at
high resolution is very small beyond FW/8. At higher screen sizes this will change.

45

It can also be noticed, that for the three games considered here, the average
video bitrate without foveated encoding and with foveated encoding with identical
parameters is in the same ball park range. This is further illustrated in Figure 16
where average throughput of the three games without foveated encoding and with
foveated encoding at QOmax = 10 and W = FW/8. With these parameters, it is
also noticeable that video bit rate is reduced by up-to 50%.

The region of an image perceived with highest acuity by the HVS depends on
viewing distance as discussed in Chapter 4. At a viewing distance of 50cm, considering
a 2o angle of foveation, the region of highest perceived visual acuity is a region with
diameter d = 2×π/180×50cm which comes out as 1.745 cms ≈ 2cm. AtW = FW/8,
for a screen width of 34.5 cm, (equal to frame width in full screen mode), the W
value is 4.3 cms. This means a circular region of diameter 4.3 cm around the gaze
location is encoded with QO ≤ 40% of QOmax. Figure 17 shows screen captures of the
game Trine2 as seen on the cloud gaming client with no foveated encoding, foveated
encoding at QOmax=10,W=FW/8 and foveated encoding at QOmax=30,W=FW/8.
The players’ gaze is indicated by the overlay bubble in each screen grab. From visual
inspection, it is hard to distinguish the quality of picture within the overlay bubbles
in the three cases. Farther from the overlay bubble, some loss of quality in Figure 17
b compared to Figure 17 a can be observed. Comparing Figure 17 c with Figure 17 a,
significant loss of quality occurs away from the overlay bubble. However, it should be
noted that these screen captures have been taken when the in game avatar is actively
moving, to accentuate the loss of quality further from the gaze location in foveated
encoding. When the in game avatar is stationary, the video frames from the first two
cases illustrated here look identical to the naked eye. Further, it is imperative to
note that user experience and QoE are highly subjective, and this parameterization
i.e. QOmax=10 and W=FW/8 may not be universal.

6.3 Gaze and Latency
Latency is one of the main challenges of cloud gaming. Game QoE is highly dependent
on responsiveness of the game play, i.e. the delay between a player input and on screen
action. In a desktop gaming setup, the only factors affecting the responsiveness of
the game are latency between the user input device to game engine and the latency of
game engine itself. However, in cloud gaming additional compute and transport steps
are introduced which exacerbate the latency. Latency in gaming is being studied
actively and there have been many publications on the subject, some of which are
briefly discussed in Section 2.4.

6.3.1 Gaming and Gaze Location

To investigate gaze movement characteristics and their effect on foveated encoding,
gaze of a player is tracked while playing different games. Each gaming session lasts
about 15 minutes and the games played are of different genres. The games for which
gaze is tracked are AssacultCube, Trine2, LRS (bandwidth measurements are also

46

(a) QOmax=0 (normal encoding)

(b) QOmax=10,W=FW/8

(c) QOmax=30,W=FW/8

Figure 17: Screen Captures of Trine2 without and with offsets. The overlay bubble
indicates the gaze location.

47

done for these three games) and Formula Fusion. Formula Fusion is a futuristic
racing game, but the POV is that of a conventional racing game i.e. behind the
vehicle. Figure 18 illustrates the heatmaps of gaze locations for each game. The
heatmaps are computed by bivariate Gaussian kernel estimation. It can be observed
that for all games, the gaze is mostly targeted towards the center of the screen.
Glances to the periphery are so small in number, that if they show up in the heat
map, the color intensity/heat is low. This is to be expected as typically, the center
of the action in a game is in and around the center of the screen. The heatmap
of AssaultCube is clustered around the centre of the screen with very little spread.
This is because AssaultCube is an FPS and typically the player is looking at, and
hence the gaze location is fixed at, the crosshairs of their weapon. The updates to
game video and state happen such that the crosshairs are always at the center of
the screen. In Trine2, the gaze locations, although clustered around the center, have
a broader spread. This is due to the exploratory nature of the game. The player
may focus their gaze at the in-game avatar most of the time, but there are enough
exploratory glances to objects around the center and even at the bottom left of the
screen to register on the heatmap. In LRS, the focal area for the player is larger,
even though centered. This is due to the birds eye view nature of the game. In LRS
the player controlled vehicle as well as the map of the game move (laterally) with
user input, resulting in a broader cluster of gaze locations. In Formula Fusion, the
gaze locations show a tight grouping around the center as well. This is again due to
somewhat first person view of the game. The game keeps the track and the player
controlled car in the center of the screen. It is evident from the gaze heat maps
that the game characteristics will dictate the quality and seamlessness of foveated
video for cloud gaming. To illustrate how long the player gaze stays stationary, gaze
moments are calculated from the gaze data. Gaze moments are defined as periods of
time during which the gaze stays within a circular region of a particular size (D).
CDFs of gaze moments with D = FW/8 and D = FW/4 are shown in Figure 19. It
can be seen that the vast majority of gaze moments —upto 90%,even when the size
of localization is small (FW/8), last more than 100ms. Gaze moments are longer in
Assault Cube and Formula Fusion, expectedly given the gaze heatmaps in Figure 18.

Rate of change of gaze is also calculated by taking the distance between subsequent
gaze locations, as reported by the eye tracker, and dividing it by the time difference
between the two samples. The CDFs of rate of change of gaze are shown in Figure
20. Again it can be seen that the majority of changes in gaze location are slow,more
than 90% of gaze changes translate to 100px per 100ms. Some trans-screen glances,
where the player gaze moves across the screen, do cross 1Kpx per second that is about
100px in 100ms. These are probably the most challenging instances for foveated
encoding. Further it can be observed that the rate of change of gaze is higher in LRS
than in other games.

Latencies of 100ms to 300ms are considered viable depending upon the genre of
the game [4]. The Tobii eye tracker samples eye locations at 90Hz and outputs gaze
location coordinates at nearly the same frequency, that is every 11.11 ms. Although

48

(a) AssaultCube
0

0.2

0.4

0.6

0.8

1

(b) Trine 2

(c) Little Racers STREET (d) Formula Fusion

Figure 18: Gaze tracking heatmaps from 15 minute gameplay sessions. The color
scale is normalized.

this delay occurs parallel to other device related delays, even adding this delay to
the achievable delays investigated, in for example, [1], a delay of 110ms is achievable.
This would be the delay between eye movement and resulting change in video at the
client, assuming the delay in Tobii tracker corresponds to its sampling rate and is
11.11ms. Looking at Figure 20, vast majority of gaze changes take more than 110ms
which means the gaze location is still at the point around which the encoded video
quality is highest.

The challenge of latency can also be addressed in a game specific manner. Based
on the player gaze characteristics of a game the parameterW can be set. For example,
if in a game the gaze rate of change is high, for example more than 200px per 100ms,
the W can be set so that a region of 200px around the gaze location is encoded with
high quality. For the games considered here, played on the prototype of Figure 7,
with majority of gaze changes at a rate below 100ms/100 pxs, W = FW/8 translates
approximately to a region of diameter 170 pix with quality offset of 0 to 4, which can
be considered high quality. So majority of gaze changes still occur within a region
which is encoded with high quality.

49

gaze duration (s)
0.01 0.1 1 10 100

fra
ct

io
n

of
 g

az
e

m
om

en
ts

0

0.2

0.4

0.6

0.8

1

Trine 2
AssaultCube
Little Racers
Formula Fusion

(a) W = FW/8
gaze duration (s)

0.01 0.1 1 10 100

fra
ct

io
n

of
 g

az
e

m
om

en
ts

0

0.2

0.4

0.6

0.8

1

Trine 2
AssaultCube
Little Racers
Formula Fusion

(b) W = FW/4

Figure 19: CDF plots of the duration of gaze moments with different sizes of foveated
regions.

gaze change rate (pixels/s)
101 102 103 104 105

fra
ct

io
n

of
 g

az
e

sa
m

pl
es

0

0.2

0.4

0.6

0.8

1

Trine 2
AssaultCube
Little Racers
Formula Fusion

Figure 20: CDF of rate of gaze shifting.

6.3.2 Gaze Tracker Latency

To calculate the end to end latency between gaze location change and play out of
accordingly foveated video, the latency of the gaze tracker is needed. The latency of
the gaze tracker is the time between the moment the gaze tracker receives an image
of the eyes and the moment the gaze tracker reports the co-ordinates of user’s gaze
corresponding to that image at its API. To measure the gaze tracker latency this
thesis conducts two experiments. In the first experiment the gaze tracker is installed
as recommended by the vendor on a laptop and it is configured to track a user’s gaze
by following a set of calibration instructions displayed by the gaze tracker software.
For the experement, the user is instructed to fixate on a visual stimulus as soon as

50

it appears on the screen of the laptop. Each round of the experiment consisted of
generating 5 visual stimuli at known locations. As a stimulus is generated, its location
is stored with a system time-stamp. Concurrently gaze is recorded by the gaze tracker
and the gaze data points available at the gaze tracker API with corresponding system
timestamps are stored.It should be noted that the Tobii EyeTracker 4C provides a
timestamp with each reported gaze location, however, this timestamp is relative to
an arbitrary point in time and hence does not carry any latency information. The
latency is measured as the difference between the time stamp of a visual stimulus
and the time stamp of the first gaze location reported by the gaze tracker within
100 px of the visual stimulus. From multiple rounds of measurements, latencies of
260-400ms are measured. Subtracting the average saccade latency of 200ms [82]
from this latency, we get latencies of 60-200ms for the gaze tracker. However, this
experiment has mulitple limitations from a statistical, physiological and cognitive
point of view. First, human saccade latency is highly variable and depends upon
the type, nature and number of stimuli presented [83]. Second, there is delay in
detecting a stimulus and firing neurons to cause muscles to move the eye in that
direction. Third, the test subject may be subconciously biased and may move their
eyes too fast or too slow.

Figure 21: Gaze tracker latency. The y-coordinates of the stimuli and hence the gaze
locations reported by the gaze tracker are constant(within a range).

To overcome some of these challenges, particularly the variability of saccade
latency, a second experiment is designed. In the second experiment, an attempt is
made to use smooth pursuit movements of the human eye to measure the latency of
the gaze tracker. In smooth pursuit eye movement, as the name suggests, the eye
smoothly follows a visual stimulus. The experiment comprises of generating a growing
horizontal line on the screen of a laptop on which the gaze tracker is appropriately

51

configured (calibrated and positioned as per vendor instructions). The test subject is
asked to follow the tip of the line. The stimulus line grows at about 10cm/sec on a
34.5 cm screen which corresponds to an angular speed of about 10.4o/sec which should
be a low enough speed to ensure smooth pursuit [84]. The line is grown by adding a
new stimulus at the edge of the previous stimulus. Each stimulus location, along
with its system time-stamp is logged as is the gaze location from the gaze tracker
and its corresponding system time stamp. The difference between the time-stamp
of a gaze location and the corresponding stimulus at the same location, should in
theory provide a measure of latency of the gaze tracker. Figure 21 illustrates one
such measurement. It can be noticed that after the initial delay of finding the target,
the latency is highly variable. It ranges from 0 ms to 200ms. There are occasions
where the gaze reaches a point even before the stimulus is shown. This may be due to
the eye overshooting or other oculo-muscular movements, investigating which are out
of the scope of this thesis. Further, this may be due to the test subject not following
instructions or getting over-zealous. In short, there are variables and phenomenon
involved which are not in the scope of this work.

From Figure 21, a conservative conclusion can be made that gaze tracker la-
tency is highly variable, difficult to condense into a single representative number
and will depend upon multiple factors, such as the velocity of the eye. Design and
implementation of experiments to meaure latencies of eye trackers, which involve
multiple physiological, neurological, cognitive and psychological variables is challeng-
ing. Methodologies for robust and accurate measurements of gaze tracker latency
are a field of their own. Researchers have suggested such methodologies as well as
conducted some measurements. Gibaldi et. al. in [85] conduct a thorough study of
Tobii EyeX gaze tracker which is a predecessor of the Tobii Eye Tracker 4C used
in this thesis. The methodology used in [85] for measuring gaze tracker latency is
based on end to end latency measurements of a gaze contingent display suggested by
Suanders et. al in [86]. For the Tobii EyeX gaze tracker, the latency measure in [85]
is less than 50ms. As Tobii Eye Tracker 4C is supposed to be an improvement over
the Tobii EyeX gaze tracker [87], this latency figure is encouraging. Indeed, Tobii
Eye Tracker 4C has a sampling frequency of 90Hz compared to Tobii EyeX gaze
tracker’s 60Hz. Assuming Tobii Eye Tracker 4C has a sub 50ms latency and this
latency occurs in parallel to other device latencies, a sub 110ms-150ms e2e latency
is still achievable, which is optimisitic considering the discussion in Section 6.3 and
measurements in [1]. However, this optimism must be taken with caution as a reliable
and accurate latency figure for Tobii Eye Tracker 4C is not available.

52

7 Discussion
Cloud gaming provides a green and cost effective solution for video gaming. It
also makes possible the paradigm of gaming anywhere, which entails playability of
high graphics games across platforms and across hardware. This is prima- facie an
enticing proposition. However latency, device and network, and high bandwidth
network requirements are challenges which need to be addressed. There have been
various studies on latency and low latency is becoming more and more achievable
with improvements in device technology and with strategic placement of servers
[1]. This thesis investigates a possible solution to the bandwidth challenge without
affecting the quality of experience by leveraging the phenomenon of foveated vision.
From Section 5.2 and Chapter 6 it can be concluded that cloud gaming with foveated
encoding is achievable and accrues sizeable reduction in video bit rate. Depending
on parametrization, the gameplay video bitrate can be reduced by more than 50%.
In the prototype, a 150$ gaze tracker is used together with an average net-book
for playing games, the total cost being still much lower than a "gaming laptop".
It is conceivable that the price of consumer gaze trackers will drop further with
advancements in gaze tracking and commoditazion of gaze trackers. Latency is
also affected by the reduced bitrate and network delays might be shortened by this
approach.

7.1 Future Work
Quality of service and foveated encoding can be improved if game specific RoIs
are incorporated. For example many games have ’meters’ or status bars or small
navigational maps whose position is typically the same in all the frames. These
widgets are generally small in size relative to the frame size and can therefore be
encoded at high quality, without the use of gaze tracking and without affecting the
bitrate too adversely. In such an encoding scheme, occasional glances towards these
regions can be left out of the gaze tracker based foveated encoding, improving overall
QoE. For better latency performance of foveated encoding, a combination of game
attention/location patterns and real time gaze tracking can be used to predict gaze
movements and ameliorate delay in gaze tracking and gaze tracking reporting. For
some games, for example FPS games, the gaze location is stationary for most of the
time. In such games, a gaze tracking may not be needed at all.

New encoders, like x265—an open source implementation of the HEVC standard,
support macroblock level tuning of quantization as well and thus can be used in
cloud gaming for even more bitrate savings as HEVC provides more compression
compared to AVC. Such implementations, with two pronged bitrate reduction, will
be particularly useful where network conditions are poor with only sub-broadband
bandwidth available, enabling "pro" gaming experiences on low end or mobile com-
puters with poor connectivity, for example in aspirational developing economies.
HEVC also supports tiling of the video, which can also be leveraged to implement
foveated encoding in a cloud gaming application.

53

Another important implementation avenue is using hardware already present in
consumer devices for eye tracking instead of a dedicated eye tracker. Advancements in
computer vision have made web camera based eye tracking possible even extending it
to tablets and smart-phones [88], [89], [90], [91]. Since integrated front facing cameras
are ubiquitous in laptops, tablets, and smart-phones, web-cam based eye tracking can
enable foveated video and cloud gaming with foveated video on millions of devices.
Further, modern devices are starting to incorporate infrared cameras typically for
authentication applications, can also be used to track gaze, thus eliminating the need
for separate eye trackers.

Careful parametrization of Equation 1 can improve QoE. Parameters like QO and
W should be chosen according to the game to be played. In evaluation experiments
Chapter 6, W is chosen in terms of output frame/screen width to implement a degree
of scalablity with screen size. Since screen size usually dictates viewing distance, the
actual size of foveal region is automatically changed with viewing distance. A more
active approach where the viewing distance is actively measured, for example, at
the start of the gaming session, the client reports the viewing distance. The Tobii
gaze tracker used in the prototype in Section 5.2 is capable of detecting the viewing
distance as well.This can be leveraged to initially or continually re-parameterize
Equation 1 at the cloud gaming server. There are many improvements that can be
incorporated in the server and client of the prototype to improve latency and QoE
performance. On the client side, gaze location data may be sent in a non-continuous
fashion, forwarding gaze location only when gaze location changes by a predefined
threshold, which may be defined for example in relation to W . On the server side,
gaze location data may be further filtered such that gaze location changes within a
certain threshold distance or time are discarded. This can improve speed of encoding.
Also the algorithm can be modified such that sudden gaze changes across longer
distances do not affect QoE by, for example, triggering non-foveated video streaming
till the gaze settles.

Future work should include studying foveated video streaming for cloud gaming
from a QoE perspective. This would include user studies for a variety of game genres.
Further the nature of gamers should be taken into account, the QoE can vary from
an enthusiast gamer to a casual gamer. Although gaze tracking and latency is briefly
considered here and the results look optimistic, this is an aspect that needs to be
investigated in deeper detail. Another promising direction as mentioned earlier, is
leveraging components like web cameras and IR cameras already present in state of
the art devices for gaze tracking.

7.2 Limitations
This work does not investigate QoE of the prototype, which is necessary to validate
foveated video streaming for cloud gaming. Foveated video streaming for cloud gaming
is desirable only if QoE is at most slightly lower than QoE with un-foveated video
streaming. As such, carefully designed user studies with replicable conditions and

54

standardized testing methodologies are imperative to validate the foveation encoding
technique used, the end to end latency of foveation as well as the parametrization
chosen.

Another limitation of the work is it uses AVC coding standard. The newer
and more efficient HEVC standard should be more efficient in terms of bandwidth
requirement reduction. The most feasible option would be integrating x265, an open
source implementation of HEVC, with GamingAnywhere. There is some work being
done by the developers of GA in that direction. x265 API is similar to x264 API, so
integrating the solution presented in this thesis should not be complicated.

The analysis of latency in Section 6.3 is not very rigorous and may suffer from
inaccuracies in that the latency of Tobii Eye Tracker 4C is assumed to be same as
its sampling frequency. A more rigorous approach would consider the latency of
the eye tracker and even physiological latencies. Another significant limitation of
this work that the latency of the eye tracker is not (accurately) measured. Tobii
Eye Tracker 4C SDK is quite opaque about how the gaze location is calculated and
what light filtering–used in the prototype, entails. Further, the experiments designed
for measuring the latency of the Eye Tracker have too many unknowns and involve
neurological delays, such as saccade delays and cognitive delay between registering a
visual stimulus and actual eye movements, which makes the measurements inaccurate.
However, latency measurements of a previous generation Tobii eye tracker (EyeX)
conducted in [85] are encouraging.

55

8 Conclusion
In this thesis a prototype for foveated video streaming for cloud gaming is developed
and evaluated. The background of and motivation for cloud gaming is introduced.
The need for video throuhput reduction is established and foveated video streaming
is introduced as a possible solution. The non uniform acuity of the HVS is discussed
with respect to the phenomenon of foveation. Then gaze tracking and its need in
foveated video encoding and streaming is introduced. Other elements of a cloud
gaming system like video streaming, encoding etc are also discussed.

The elements of the prototype are introduced and discussed. The protype
consisting of a gaze tracker and modified GA client and server software which also
includes an x264 encoder installed respectively on a Windows laptop and a Linux
tower server is discussed. The client software is modified to include a TCP client
which sends gaze location data to the server as soon as possible. In the server an
additional TCP server is introduced which recieves the gaze data from the gaze
tracker. The gaze data is fed into an module which calculates quantization offsets
for each macroblock of the currently available game play frame. These offsets are
applied to the QP parameters which the X264 computes for each macroblock. This
gameplay video is then streamed to the client.

Gaze location is briefly studied for some games to establish latency feasiblity of
foveated video streaming for cloud gaming. The analysis shows that gaze location
tends to be within small regions for most of the time and that rate of change of gaze
is below 100px or 100 ms for vast majority of gaze locations which is encouraging
from a latency point of view. Considering achievable latency in cloud gaming, as
explored in other works, it is concluded that cloud gaming with foveated streaming
is feasible.

The effect of foveation on video bitrate and network throughput is studied by
capturing the traffic between the protoype client and the prototype server while
playing a few test games with and without foveated encoding enabled. Foveated
encoding is implemented at different parameters with each game. The results show
video bandwidth reduction by more than 50% depending on the parametrization
used. Some optimal parameters are suggested for the test games which show promise
in terms of QoE as observed from visual inspection of the gameplay video at the
prototype client.

56

References
[1] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and P. Hui, “A

measurement study on achieving imperceptible latency in mobile cloud gaming,”
in To Appear in the Proceedings of the ACM Multimedia Systems Conference,
ser. MMSys ’17. New York, NY, USA: ACM, 2017. [Online]. Available:
https://users.aalto.fi/~siekkine/pub/kamarainen17mmsys.pdf

[2] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models for eyes
and gaze,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 3, pp. 478–500, March 2010.

[3] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen, “Gaminganywhere:
An open cloud gaming system,” in Proceedings of the 4th ACM Multimedia
Systems Conference, ser. MMSys ’13. New York, NY, USA: ACM, 2013, pp.
36–47. [Online]. Available: http://doi.acm.org/10.1145/2483977.2483981

[4] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: architecture and
performance,” IEEE Network, vol. 27, no. 4, pp. 16–21, 2013.

[5] B. Bing, Next-generation video coding and streaming. Wiley, 2015.

[6] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-
of-the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7–18, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s13174-010-0007-6

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud
computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online].
Available: http://doi.acm.org/10.1145/1721654.1721672

[8] D. Takahashi, “Pwc: Game industry to grow nearly 5Jun
2016. [Online]. Available: https://venturebeat.com/2016/06/08/
the-u-s-and-global-game-industries-will-grow-a-healthy-amount-by-2020-pwc-forecasts/

[9] I. 23009, “Dynamic adaptive streaming over HTTP (DASH),” 2012.

[10] J. Ryoo, K. Yun, D. Samaras, S. R. Das, and G. Zelinsky, “Design and
evaluation of a foveated video streaming service for commodity client devices,”
in Proceedings of the 7th International Conference on Multimedia Systems, ser.
MMSys ’16. New York, NY, USA: ACM, 2016, pp. 6:1–6:11.

[11] Z. Wang and A. C. Bovik, “Foveated image and video coding,” Digital Video,
Image Quality and Perceptual Coding, pp. 431–457, 2006.

[12] “Games data and market research, market brief - year in review
2016.” [Online]. Available: https://www.superdataresearch.com/market-data/
market-brief-year-in-review/

https://users.aalto.fi/~ siekkine/pub/kamarainen17mmsys.pdf
http://doi.acm.org/10.1145/2483977.2483981
http://dx.doi.org/10.1007/s13174-010-0007-6
http://doi.acm.org/10.1145/1721654.1721672
https://venturebeat.com/2016/06/08/the-u-s-and-global-game-industries-will-grow-a-healthy-amount-by-2020-pwc-forecasts/
https://venturebeat.com/2016/06/08/the-u-s-and-global-game-industries-will-grow-a-healthy-amount-by-2020-pwc-forecasts/
https://www.superdataresearch.com/market-data/market-brief-year-in-review/
https://www.superdataresearch.com/market-data/market-brief-year-in-review/

57

[13] “Pwc predicts moderate growth for u.s. video games, fast growth for vr and
esports,” Jun 2017. [Online]. Available: https://venturebeat.com/2017/06/06/
pwc-predicts-moderate-growth-for-u-s-video-games-but-fast-growth-for-vr-and-esports/

[14] Y. W. Bernier, “Latency compensating methods in client/server
in-game protocol design and optimization,” 2001. [On-
line]. Available: https://developer.valvesoftware.com/wiki/Latency_
Compensating_Methods_in_Client/Server_In-game_Protocol_Design_
and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game

[15] “Specifications | samsung galaxy s8 and s8,” 2017. [Online]. Available:
http://www.samsung.com/global/galaxy/galaxy-s8/specs/

[16] “Intel R© coreTM i7-7700t processor,” 2017. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/products/processors/core/
i7-processors/i7-7700t.html

[17] E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting the risc
vs. cisc debate on contemporary arm and x86 architectures,” in 2013 IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA),
Feb 2013, pp. 1–12.

[18] S. Wang and S. Dey, “Adaptive mobile cloud computing to enable rich mobile
multimedia applications,” IEEE Transactions on Multimedia, vol. 15, no. 4, pp.
870–883, June 2013.

[19] “Gamefly,” 2017. [Online]. Available: https://www.gamefly.com/#!/streaming

[20] “Loud play.” [Online]. Available: http://www.loud-play.com/

[21] “Utomik.” [Online]. Available: https://www.utomik.com/

[22] “Nvidea grid.” [Online]. Available: http://www.nvidia.com/object/
cloud-gaming.html

[23] “Geforce now.” [Online]. Available: https://www.nvidia.com/en-us/shield/
games/#geforcenow/

[24] “Playstation now – ps now subscription for ps3 games.” [Online]. Available:
https://www.playstation.com/en-us/explore/playstationnow/

[25] “Gaikai.com :: History.” [Online]. Available: https://www.gaikai.com/#!
/history

[26] W. Cai, M. Chen, and V. C. M. Leung, “Toward gaming as a service,” IEEE
Internet Computing, vol. 18, no. 3, pp. 12–18, May 2014.

[27] I. S. Mohammadi, M. R. Hashemi, and M. Ghanbari, “An object-based
framework for cloud gaming using player’s visual attention,” in 2015 IEEE
International Conference on Multimedia Expo Workshops (ICMEW), June 2015,
pp. 1–6.

https://venturebeat.com/2017/06/06/pwc-predicts-moderate-growth-for-u-s-video-games-but-fast-growth-for-vr-and-esports/
https://venturebeat.com/2017/06/06/pwc-predicts-moderate-growth-for-u-s-video-games-but-fast-growth-for-vr-and-esports/
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization#Basic_Architecture_of_a_Client_.2F_Server_Game
http://www.samsung.com/global/galaxy/galaxy-s8/specs/
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-7700t.html
https://www.intel.com/content/www/us/en/products/processors/core/i7-processors/i7-7700t.html
https://www.gamefly.com/#!/streaming
http://www.loud-play.com/
https://www.utomik.com/
http://www.nvidia.com/object/cloud-gaming.html
http://www.nvidia.com/object/cloud-gaming.html
https://www.nvidia.com/en-us/shield/games/#geforcenow/
https://www.nvidia.com/en-us/shield/games/#geforcenow/
https://www.playstation.com/en-us/explore/playstationnow/
https://www.gaikai.com/#!/history
https://www.gaikai.com/#!/history

58

[28] W. Cai, R. Shea, C. Y. Huang, K. T. Chen, J. Liu, V. C. M. Leung, and C. H.
Hsu, “A survey on cloud gaming: Future of computer games,” IEEE Access,
vol. 4, pp. 7605–7620, 2016.

[29] Y.-T. Lee, K. T. Chen, H.-I. Su, and C. L. Lei, “Are all games equally
cloud-gaming-friendly? an electromyographic approach,” in 2012 11th Annual
Workshop on Network and Systems Support for Games (NetGames), Nov 2012,
pp. 1–6.

[30] M. Claypool and K. Claypool, “Latency and player actions in online games,”
Commun. ACM, vol. 49, no. 11, pp. 40–45, Nov. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1167838.1167860

[31] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “An evaluation of qoe in
cloud gaming based on subjective tests,” in 2011 Fifth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing, June 2011,
pp. 330–335.

[32] Geforce now system requirements. [Online]. Available: http://shield.nvidia.
com/support/geforce-now/system-requirements

[33] Playstation now on pc. [Online]. Available: https://www.playstation.com/
en-gb/get-help/help-library/services/playstation-now/playstation-now-on-pc/

[34] “State of the internet report | akamai,” 2017. [Online]. Available: https:
//www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/

[35] P. E. Ross, “Cloud computing’s killer app: Gaming,” IEEE Spectrum, vol. 46,
no. 3, pp. 14–14, March 2009.

[36] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to win? network
performance analysis of the onlive thin client game system,” in 2012 11th
Annual Workshop on Network and Systems Support for Games (NetGames),
Nov 2012, pp. 1–6.

[37] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proceedings of
the 19th ACM International Conference on Multimedia, ser. MM ’11.
New York, NY, USA: ACM, 2011, pp. 1269–1272. [Online]. Available:
http://doi.acm.org/10.1145/2072298.2071991

[38] K. T. Chen, Y. C. Chang, H. J. Hsu, D. Y. Chen, C. Y. Huang, and C. H.
Hsu, “On the quality of service of cloud gaming systems,” IEEE Transactions
on Multimedia, vol. 16, no. 2, pp. 480–495, Feb 2014.

[39] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm in cloud
gaming: A measurement study on cloud to end-user latency,” in 2012 11th
Annual Workshop on Network and Systems Support for Games (NetGames),
Nov 2012, pp. 1–6.

http://doi.acm.org/10.1145/1167838.1167860
http://shield.nvidia.com/support/geforce-now/system-requirements
http://shield.nvidia.com/support/geforce-now/system-requirements
https://www.playstation.com/en-gb/get-help/help-library/services/playstation-now/playstation-now-on-pc/
https://www.playstation.com/en-gb/get-help/help-library/services/playstation-now/playstation-now-on-pc/
https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/
https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-report/
http://doi.acm.org/10.1145/2072298.2071991

59

[40] M. Manzano, J. A. Hernández, M. Urueña, and E. Calle, “An empirical study of
cloud gaming,” in 2012 11th Annual Workshop on Network and Systems Support
for Games (NetGames), Nov 2012, pp. 1–2.

[41] S. P. Chuah, C. Yuen, and N. M. Cheung, “Cloud gaming: a green solution
to massive multiplayer online games,” IEEE Wireless Communications, vol. 21,
no. 4, pp. 78–87, August 2014.

[42] M. Semsarzadeh, M. Hemmati, A. Javadtalab, A. Yassine, and S. Shirmoham-
madi, “A video encoding speed-up architecture for cloud gaming,” in 2014 IEEE
International Conference on Multimedia and Expo Workshops (ICMEW), July
2014, pp. 1–6.

[43] Z. Y. Wen and H. F. Hsiao, “Qoe-driven performance analysis of cloud gaming
services,” in 2014 IEEE 16th International Workshop on Multimedia Signal
Processing (MMSP), Sept 2014, pp. 1–6.

[44] W. Cai, Z. Hong, X. Wang, H. C. B. Chan, and V. C. M. Leung, “Quality-
of-experience optimization for a cloud gaming system with ad hoc cloudlet
assistance,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 25, no. 12, pp. 2092–2104, Dec 2015.

[45] Y. C. Chang, P. H. Tseng, K. T. Chen, and C. L. Lei, “Understanding
the performance of thin-client gaming,” in 2011 IEEE International Workshop
Technical Committee on Communications Quality and Reliability (CQR), May
2011, pp. 1–6.

[46] K. T. Chen, C. Y. Huang, and C. H. Hsu, “Cloud gaming onward: research op-
portunities and outlook,” in 2014 IEEE International Conference on Multimedia
and Expo Workshops (ICMEW), July 2014, pp. 1–4.

[47] W. Cai, C. Zhou, V. C. M. Leung, and M. Chen, “A cognitive platform for
mobile cloud gaming,” in 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, vol. 1, Dec 2013, pp. 72–79.

[48] M. Wien, High efficiency video coding: coding tools and specification. Springer,
2015.

[49] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
h.264/avc video coding standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[50] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high
efficiency video coding (hevc) standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[51] M. Xu, Y. Liang, and Z. Wang, “State-of-the-art video coding approaches: A
survey,” in 2015 IEEE 14th International Conference on Cognitive Informatics
Cognitive Computing (ICCI*CC), July 2015, pp. 284–290.

60

[52] (2016) Cisco visual networking index: Forecast and methodology,
2016–2021 - cisco. [Online]. Available: https://www.cisco.com/c/
en/us/solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html#_Toc484531491

[53] H. Schulzrinne, “Real time streaming protocol (rtsp),” 1998.

[54] V. Jacobson, R. Frederick, S. Casner, and H. Schulzrinne, “Rtp: A transport
protocol for real-time applications,” 2003.

[55] S. Wenger, Y.-K. Wang, T. Schierl, and A. Eleftheriadis, “Rtp payload format
for scalable video coding,” Tech. Rep., 2011.

[56] H. Parmar and M. Thornburgh, “Adobe’s real time messaging protocol,” Copy-
right Adobe Systems Incorporated, pp. 1–52, 2012.

[57] B. Wandell, Foundations of vision. Sinauer Associates, 1995.

[58] K. Rayner and M. Castelhano, “Eye movements,” Scholarpedia, vol. 2, no. 10, p.
3649, 2007, revision #126973.

[59] D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. LaMantia, J. O.
McNamara, and S. M. Williams, “Neuroscience. sunderland,” MA: Sinauer
Associates, 2001.

[60] E. B. Huey, The psychology and pedagogy of reading. The Macmillan Company,
1908.

[61] A. Al-Rahayfeh and M. Faezipour, “Eye tracking and head movement detection:
A state-of-art survey,” IEEE Journal of Translational Engineering in Health
and Medicine, vol. 1, pp. 2 100 212–2 100 212, 2013.

[62] “An introduction to eye tracking and tobii eye trackers,” 2010. [Online].
Available: http://www.acuity-ets.com/downloads/Tobii%20Eye%20Tracking%
20Introduction%20Whitepaper.pdf

[63] Z. Zhu and Q. Ji, “Eye gaze tracking under natural head movements,” in 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, June 2005, pp. 918–923 vol. 1.

[64] “Windows hello | windows 10.” [Online]. Available: https://www.microsoft.com/
en-us/windows/windows-hello

[65] J. Baxter, “Windows hello face authentication.” [On-
line]. Available: https://docs.microsoft.com/en-us/windows-hardware/design/
device-experiences/windows-hello-face-authentication

[66] E. L. Schwartz, “Computational anatomy and functional architecture of
striate cortex: A spatial mapping approach to perceptual coding,” Vision
Research, vol. 20, no. 8, pp. 645 – 669, 1980. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0042698980900905

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484531491
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484531491
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484531491
http://www.acuity-ets.com/downloads/Tobii%20Eye%20Tracking%20Introduction%20Whitepaper.pdf
http://www.acuity-ets.com/downloads/Tobii%20Eye%20Tracking%20Introduction%20Whitepaper.pdf
https://www.microsoft.com/en-us/windows/windows-hello
https://www.microsoft.com/en-us/windows/windows-hello
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-face-authentication
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/windows-hello-face-authentication
http://www.sciencedirect.com/science/article/pii/0042698980900905

61

[67] C. F. R. Weiman, “Video compression via log polar mapping,” pp. 266–277,
1990. [Online]. Available: http://dx.doi.org/10.1117/12.21244

[68] L. Itti, “Automatic foveation for video compression using a neurobiological
model of visual attention,” IEEE Transactions on Image Processing, vol. 13,
no. 10, pp. 1304–1318, Oct 2004.

[69] Z. Wang, L. Lu, and A. C. Bovik, “Foveation scalable video coding with
automatic fixation selection,” IEEE Transactions on Image Processing, vol. 12,
no. 2, pp. 243–254, Feb 2003.

[70] S. Lee, M. S. Pattichis, and A. C. Bovik, “Foveated video quality assessment,”
IEEE Transactions on Multimedia, vol. 4, no. 1, pp. 129–132, Mar 2002.

[71] H. Ahmadi, S. Zad Tootaghaj, M. R. Hashemi, and S. Shirmohammadi, “A game
attention model for efficient bit rate allocation in cloud gaming,” Multimedia
Syst., vol. 20, no. 5, pp. 485–501, Oct. 2014.

[72] Gaminganywhere - an open source cloud gaming system. [Online]. Available:
http://gaminganywhere.org/

[73] x264. [Online]. Available: http://www.videolan.org/developers/x264.html

[74] Ffmpeg. [Online]. Available: http://ffmpeg.org/

[75] L. Merritt and R. Vanam, “x264: A high performance h. 264/avc encoder,”
[online] http://neuron2.net/library/avc/overview_x264_v8_5.pdf, 2006.

[76] git.videolan.org git - x264.git/blob - x264.h. [Online]. Available: http:
//git.videolan.org/?p=x264.git;a=blob;f=x264.h

[77] Tobii eye tracking. [Online]. Available: https://www.tobii.com/

[78] Tobii, “Developer’s Guide tobii EyeX SDK for C/C++,” 2015. [On-
line]. Available: http://developer-files.tobii.com/wp-content/uploads/2016/03/
Developers-Guide-C-Cpp.pdf

[79] W. R. Leo, “The gaussian or normal distribution.” [Online]. Available:
https://ned.ipac.caltech.edu/level5/Leo/Stats2_3.html

[80] tcpdump. [Online]. Available: http://www.tcpdump.org/

[81] “Wireshark.” [Online]. Available: https://www.wireshark.org/

[82] R. Carpenter, “Movements of the eyes 2nd edition (london: Pion),” 1988.

[83] J. Findlay and R. Walker, “Human saccadic eye movements,” Scholarpedia,
vol. 7, no. 7, p. 5095, 2012, revision #122018.

[84] C. H. Meyer, A. G. Lasker, and D. A. Robinson, “The upper limit of human
smooth pursuit velocity,” Vision research, vol. 25, no. 4, pp. 561–563, 1985.

http://dx.doi.org/10.1117/12.21244
http://gaminganywhere.org/
http://www.videolan.org/developers/x264.html
http://ffmpeg.org/
http://git.videolan.org/?p=x264.git;a=blob;f=x264.h
http://git.videolan.org/?p=x264.git;a=blob;f=x264.h
https://www.tobii.com/
http://developer-files.tobii.com/wp-content/uploads/2016/03/Developers-Guide-C-Cpp.pdf
http://developer-files.tobii.com/wp-content/uploads/2016/03/Developers-Guide-C-Cpp.pdf
https://ned.ipac.caltech.edu/level5/Leo/Stats2_3.html
http://www.tcpdump.org/
https://www.wireshark.org/

62

[85] A. Gibaldi, M. Vanegas, P. J. Bex, and G. Maiello, “Evaluation of the
tobii eyex eye tracking controller and matlab toolkit for research,” Behavior
Research Methods, vol. 49, no. 3, pp. 923–946, Jun 2017. [Online]. Available:
https://doi.org/10.3758/s13428-016-0762-9

[86] D. R. Saunders and R. L. Woods, “Direct measurement of the system latency
of gaze-contingent displays,” Behavior Research Methods, vol. 46, no. 2, pp. 439–
447, Jun 2014. [Online]. Available: https://doi.org/10.3758/s13428-013-0375-5

[87] “What’s the difference between tobii eye tracker 4c and to-
bii eyex?” [Online]. Available: https://help.tobii.com/hc/en-us/articles/
212814329-What-s-the-difference-between-Tobii-Eye-Tracker-4C-and-Tobii-EyeX-

[88] E. Wood and A. Bulling, “Eyetab: Model-based gaze estimation on unmodified
tablet computers,” in Proceedings of the Symposium on Eye Tracking Research
and Applications, ser. ETRA ’14. New York, NY, USA: ACM, 2014, pp.
207–210. [Online]. Available: http://doi.acm.org/10.1145/2578153.2578185

[89] “Gazepointer.” [Online]. Available: https://sourceforge.net/projects/
gazepointer/

[90] “openeyes - open source software.” [Online]. Available: http://thirtysixthspan.
com/openEyes/software.html

[91] E. Miluzzo, T. Wang, and A. T. Campbell, “Eyephone: Activating mobile
phones with your eyes,” in Proceedings of the Second ACM SIGCOMM
Workshop on Networking, Systems, and Applications on Mobile Handhelds,
ser. MobiHeld ’10. New York, NY, USA: ACM, 2010, pp. 15–20. [Online].
Available: http://doi.acm.org/10.1145/1851322.1851328

https://doi.org/10.3758/s13428-016-0762-9
https://doi.org/10.3758/s13428-013-0375-5
https://help.tobii.com/hc/en-us/articles/212814329-What-s-the-difference-between-Tobii-Eye-Tracker-4C-and-Tobii-EyeX-
https://help.tobii.com/hc/en-us/articles/212814329-What-s-the-difference-between-Tobii-Eye-Tracker-4C-and-Tobii-EyeX-
http://doi.acm.org/10.1145/2578153.2578185
https://sourceforge.net/projects/gazepointer/
https://sourceforge.net/projects/gazepointer/
http://thirtysixthspan.com/openEyes/software.html
http://thirtysixthspan.com/openEyes/software.html
http://doi.acm.org/10.1145/1851322.1851328

	Abstract
	Preface
	Contents
	Abbreviations
	Introduction
	Motivation
	Research Objectives
	Research Outcomes
	Structure

	Cloud Gaming
	Overview
	Architecture
	Benefits and Challenges
	Literature Review

	Video Streaming
	Overview
	Video Capture and Representation
	Video Coding
	Streaming protocols
	HTTP Adaptive Streaming
	Stateful Streaming

	Foveated Streaming
	Human Visual System
	Foveation
	Eye Movements

	Gaze Detection and Tracking
	Foveated Video Coding
	Related Work

	Design and Implementation
	 Prototype Components
	Gaming Anywhere
	X264 Encoder
	Tobii 4C Gaze Tracker

	Prototype
	Server and Client
	Quantization Offset Calculation

	Evaluation
	Experimental Setup
	Encoding parameters
	Traffic Capture
	Game Specific Experimental Procedure

	Throughput Reduction
	Gaze and Latency
	 Gaming and Gaze Location
	Gaze Tracker Latency

	Discussion
	Future Work
	Limitations

	Conclusion
	References

