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ABSTRACT 

 

Many models exist that predict channel morphology. Channel morphology is defined as 

the change in geometric parameters of a river. Channel morphology is affected by many factors.  

Some of these factors are caused either by man or by nature. To combat the adverse effects that 

man and nature may cause to a water system, scientists and engineers develop stream 

rehabilitation plans. Stream rehabilitation as defined by Shields et al., states that “restoration is 

the return from a degraded ecosystem back to a close approximation of its remaining natural 

potential” [Shields et al., 2003]. Engineers construct plans that will restore streams back to their 

natural state by using techniques such as field investigation, analytical models, or numerical 

models. Each of these techniques is applied to projects based on specified criteria, objectives, 

and the expertise of the individuals devising the plan. The utilization of analytical and numerical 

models can be difficult, for many reasons, one of which is the intuitiveness of the modeling 

process. Many numerical models exist in the field of hydraulic engineering, fluvial 

geomorphology, landscape architecture, and stream ecology that evaluate and formulate stream 

rehabilitation plans. This dissertation will explore, in the field of “Hydroscience”, the creation of 

models that are not only accurate but also span the different disciplines. The goal of this 

dissertation is to transform a discrete numerical model (CONCEPTS) into a realistic 3D 

environment using open source game engines, while at the same time, conveying at least the 

equivalent information that was presented in the 1D numerical model. 
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CHAPTER I 

INTRODUCTION 

 

Channel morphology is defined as the change of the shape of an alluvial stream (river) 

over time. Stream restoration, rehabilitation, and reclamation projects are constructed to reverse 

the effects of adverse changes to streams. The two processes that contribute to the changes that 

occur in alluvial streams are water flow and sediment transport. Rapid variations in water flow 

and sediment discharge are caused by either man-made or natural disturbances to the ecosystem. 

Some of the man-made disturbances are deforestation, urbanization, irrigation, and vegetation 

development. The natural changes that arise in the ecosystem are precipitation increase, rainfall, 

and global warming.  

Other common man-made disturbances that cause disruption in stream function that are 

often overlooked are chemical induced disturbances. Chemically defined disturbances can be 

introduced through many activities including agriculture (pesticides and nutrients), urban 

activities (municipal and industrial water contaminants), and mining (acid mine drainage and 

heavy metals)[The Federal Interagency Stream Restoration Working Group (FISRWG), 1998] 

[Wagner, Marsalek, and Ji, 2008]. Chemical disturbances do not just affect the area where they 

are released; their impact can be felt far downstream. Introducing exotic species to a particular 

area is also another common man-made disturbance to the streams ecosystem. The introduction 
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of exotic species, whether intentional or not, can cause disruptions such as predation, 

hybridization, and the introduction of diseases.  

Agricultural overuse of the land is considered a man-made disturbance. For instance, 

overuse of the land by grazing cattle and sheep is universal throughout the country. Excessive 

grazing of livestock poses many problems such as landscape breakage, increased runoff, reduced 

infiltration, and physical damage to a stream corridors’ vegetation.  

Natural disturbances to streams are caused by tornados, hurricanes, flood, fire, lightning, 

volcanic eruptions, earthquakes, insects, diseases, landslides, temperature extremes, and drought. 

Studies have found that nature induced changes seldom need human intervention to restore a 

stream corridor back to its innate state [FISRWG, 1998]. In the case where humans have to 

intervene, stream restoration, rehabilitation and reclamation plans are devised.  

Steam restoration as defined by the Federal Interagency Stream Restoration Working 

Group, is the reestablishment of the structure and function of an ecosystem [National Research 

Council, 1992]. Ecological restoration is the process of returning an ecosystem as closely as 

possible to pre-disturbance conditions and functions. Implicit in this definition is that ecosystems 

are naturally dynamic; it is therefore not possible to recreate them exactly. The restoration 

process reestablishes the general structure, function, and dynamics but permits self-sustaining 

behavior of the ecosystem. 

The Federal Interagency Stream Restoration Working Group defines stream 

rehabilitation as making the land useful again after a disturbance [The Federal Interagency 

Stream Restoration Working Group, 1998]. It involves the recovery of ecosystem functions and 

processes in a degraded habitat.  Stream rehabilitation and stream restoration are used 
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interchangeably; the main goal is always to make the land useful again after disturbances have 

been eliminated. Stream rehabilitation plans are the process and range of action taken to restore 

dynamic equilibrium and function to the stream corridor, which will allow it to be self-

sustaining. Stream reclamation is a series of activities intended to change the biophysical 

capacity of an ecosystem. The main goal of these management methods is to restore the river or 

stream channel back to its self-sustaining ecosystem 

 Individuals from many fields such as ecology, biology, geomorphology, geology, 

landscaping design, hydrology, and hydraulics are all involved in the process of creating and 

implementing stream restoration, rehabilitation, or reclamation plans. The focus of this 

dissertation will be on stream restoration efforts as it pertains to hydrology and hydraulics. 

Hydrology is the study of water and all its complexity. Hydraulics is an area of applied science 

that is concerned with fluid properties and fluid flow. The engineers and researchers involved in 

developing stream restoration plans evaluate how water flows and how sediment transport 

operates on the stream channel. They are concerned with channel morphology and the 

geomorphology process. Many of the plans that hydraulic engineers devise have as an objective 

the stabilization of the banks and beds of a stream. This is achieved by providing the unstable 

bank with native vegetation along the riparian zone of the streams. Another method generally 

used is engineering the stream, either by adding riffles or pools or man-made hydraulic structures 

such as dams, rocks, cobbles, and culverts.  

 Based on research and engineering practices, regardless of the area of discipline, 

successful rehabilitation, restoration, and reclamation plans are derived based on three methods 

identified by Rouse [US Army Corp of Engineers, 1996]. These methods are viewing and 
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collecting past and present data from a stream using gauging stations, construction of physical 

models of a stream, and analysis using numerical models. Benefits and limitations exist for each 

of the methods. 

The oldest technique used for planning and developing stream rehabilitation projects 

requires engineering experience. Field experience is highly important and is an extremely 

valuable tool for any scientist or engineer. Collecting field data is one of the steps in the process 

of devising a stream restoration plan. For stream restoration projects, individuals involved must 

access, analyze, and compare gauging station data and historical data that have been stored in 

repositories on the steam and stream corridor under investigation. The major drawback of this 

technique is that it does not always provide defensible and reproducible results. Another 

disadvantage is that this method often leads to trial-and-error procedures.  Collecting data from 

gauging stations and comparing it with historical data is considered to be a labor intensive 

process. Also the information from these gauging stations is considered to be harder to obtain 

and predict accurately.  

The second technique is based on physical models. These models are constructed to 

replicate rivers or channels being analyzed. Laboratory modeling has been proven to be 

successful and dependable for at least the past 60 years [US Army Corp of Engineers, 1996]. The 

advantage of physical modeling compared to the first technique mentioned is that it is mandatory 

that all physical model procedures be documented. The major drawback of using the laboratory 

or physical modeling technique is that it can become very costly. Because of the many variables 

that exist in open channels, physical models are not considered feasible by many river engineers 

and scientists who practice the first method. Based on their assessment, many plans devised for 
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alluvial channels using physical models for analysis fail, because they are often too costly or 

their results are ineffective.  

The last technique in planning stream rehabilitation projects are analytical procedures 

based on mathematical procedures and numerical models [US Army Corp of Engineers, 1996]. 

Research shows that the most efficient, cost-effective, and stable stream rehabilitation plans were 

devised using results from numerical modeling. Numerical models can be classified as one, two, 

or three-dimensional, and as hybrid models. Users of these models may choose one or a 

combination of models that will yield successful and defensible results at an optimal cost.  

Models that are considered when devising stream or river restoration projects are fluid-

flow models and channel evolution models.  There are many advantages to using these numerical 

models. The mechanics of flow and sediment transport have been studied and investigated in 

many field studies, flume experiments, and theoretical studies. Numerical channel evolution 

models allow researchers to retrieve results of proposed plans quickly. Evaluating project 

alternatives is very cost-effective. These computer models can provide scientists and researchers 

with accurate and quick results on how a river’s morphology will change over time. Not only do 

the models predict the future equilibrium morphology of a channel under evaluation, they also 

show the temporal evolution of the channel morphology. These models allow scientists, 

engineers, and researchers to understand the long-term, broad scale evolution of channels and 

floodplains [Howard, 2008].  

In hydraulic engineering, numerical models have the capability of simulating fluid flow 

processes and channel evolution efficiently and accurately.  Often fluid-flow models, channel 

evolution and sediment transport models are used in combination to form a more powerful 
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computational tool. The results from these multiple models provide greater insight into the 

dynamic channel evolution and fluid-flow processes. These tools provide stream restoration 

developers with information on how fluid flow affects the stream’s geometry (e.g., width/depth 

ratio).  The primary limitation of these tools is that the results from these models may be difficult 

to understand and results are hard to decipher for both expert and novice users.  

Tools created to enhance these scientific models are created with visualization 

capabilities. Research shows visual stimuli provides users with a better perception of the 

simulated scenarios given by computational models. Scientific and information visualization 

have been used for many years in all areas [Schroeder, Martin, and Lorensen, 2004] including 

education, military, industrial, and scientific research. Visualization based on computer graphics 

and interactive simulation techniques was formally defined 20 years ago [Rhyne, 2007]. 

Solutions that exist to enhance numerical models used for stream restoration management 

involve various analytical and visualization technologies. These numerical tools used for 

developing stream restoration plans are combined with GIS analysis tools, powerful Graphic 

Processing Units (GPUs), and innovative gaming engines. Each technique used to enhance the 

numerical model has benefits as well as limitations. 

The most popular techniques among the scientists who devise stream restoration plans are 

the methodologies that combine GIS analysis technology. GIS analysis tools and techniques span 

many areas of environmental and agricultural science. Due to the popularity of these tools there 

are many readily available.  

GIS tools that are combined with numerical models for environmental management are 

found as both proprietary and open source software. Researchers in the field of environmental 
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science have an easy task of using the tools because many tools that exist are domain specific for 

this area of science. Individuals who have neither background knowledge nor experience with 

numerical models nor GIS tools find them difficult to navigate, let alone understand, the valuable 

information provided from these tools. Because of this, the combination of these many tools 

results in an even greater level of difficulty of use.  

Another technique that is used to enhance the numerical models used for stream 

restoration is using powerful supercomputers and GPU technology.  Increasing CPU power and 

using highly effective graphics hardware have always been found to enhance many tools used for 

research purposes. The major drawback with this technique is that funding for projects of this 

caliber are not always feasible and are always costly. Technology, at this level, is expensive and 

requires experts in the field of each technology to design a tool that is effective and domain 

specific but also user friendly.  

The latest technique used to enhance numerical models used for stream restoration 

management is the addition of gaming engines to visualize the data from channel evolution and 

fluid-flow models. Gaming engines are complex software systems designed for creating and 

developing video games. The main function of a gaming engine is to efficiently render 2D and 

3D graphics. According to Lewis and Jacobson, the only way to have the fastest, most realistic 

simulation and sophisticated graphics is to trade down from the expensive hardware to basic PCs 

running game software [Lewis and Jacobson, 2002]. The technique of combining the two 

restoration management tools with a gaming engine combats the issues presented by the first two 

techniques. Although this area of science is new it offers great potential with advancing research 

efforts in the area of stream restoration [Guo et. al, 2008] [Wells, 2005] [He et al., 2006].  
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There are many benefits to be derived from using gaming engines. Most of these options 

are fairly inexpensive. There are primary categories for a gaming engine. Both proprietary and 

open source game engines exist. Choosing one over the other makes little difference but 

increases the potential of developing a great tool within many budget sets for stream restoration 

planning efforts. So, the costs associated with developing tools with the mechanisms that gaming 

engines provide are minimal. The features geared toward visualizing large datasets such as 

terrain data, already exist and are readily available.  Also many projects developed with gaming 

engines have been shown to be easy to navigate and the results from these models are easy to 

understand [Lewis, and Jacobson 27-31]. The major drawback with this technology is that, while 

popular in many other areas of science, it is rarely used in the area of environmental planning for 

stream restoration programs. This limits the documentation available for creating programs that 

are domain specific. Also the implications of developing these tools are unknown. The largest 

drawback known when using this technology is that visualizing or rendering very large terrains 

can cause time and space issues. But as CPU power and storage are increasing this will become 

less of an issue. The possibility of creating tools that are cost effective, domain specific, and user 

friendly will only make the use of gaming engine technology within this area of study more 

promising. 

 This last method, numerical data set rendering using a gaming engine, was the technique 

of choice for this dissertation. This method was chosen because the costs associated with 

producing a tool to enhance the numerical model used for stream restoration planning were free. 

Also, the efficient productivity of creating software with a gaming engine was considered to be 

effective due to the availability of many, open source tools.  Many features for depicting data 
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graphically are already a built-in function of many gaming engine technologies. Basically, time 

and money were the driving factors for considering using open source gaming engines to develop 

a tool that was user friendly and effective for displaying the data from the existing numerical 

model (CONCEPTS)  making it a visual tool that is intuitive, allowing many users to navigate.   

A secondary goal was that visualizing the large data sets resulting from numerical modeling will 

be more understandable thus making the models more effective. 

The objective of this dissertation is to enhance the one-dimensional, numerical model, 

Conservational Channel Evolution and Pollutant Transport System (CONCEPTS) model with 

graphical capabilities provided by a gaming engine [Langendoen, 2000]. The ultimate goal is to 

transform the discrete numerical model into a realistic 3D environment, while at the same time 

conveying the equivalent, accurate information that was presented in the 1D model. 

CONCEPTS is a computer model used to simulate open-channel flow, sediment 

transport, and channel morphology. The primary aim here is to develop an additional 

component/dimension for CONCEPTS that provides users with an intuitive visual, approach to 

evaluate stream restoration projects graphically. Currently, CONCEPTS does not produce an 

intuitive output, its input and output is in the form of text which is imported into an EXCEL 

spreadsheet (see Figure 1). 
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Providing a prototype for real-time, graphical interface feature to CONCEPTS will open 

the door for many more users besides hydro-scientists to understand and use the modeling tool. 

The results from the new model CONCEPTS3D will be easier to understand for both novices 

and experts.  In order to accomplish this goal other objectives of this dissertation must be met. 

These include: 

1. Build a desktop application available for non-sophisticated users, which visualizes 

CONCEPTS data in 3D-CONCEPTS3D. 

 

2. Store and access CONCEPTS XML data through a MySQL database. 

 

3. Develop three parsers to extract appropriate data to model a 3D virtual environment. 

 

a. Parser—XML file 

b. Parser—DEM file-terrain 

c. Parser—Cross-section (X-Section) file-channel 

 

4. Transform DEM and X-Section data into a height-map file format.  

 

5. Develop data interpolation techniques that allow for CONCEPTS data to be available 

for the 3D gaming engine. 

 

 

Figure 1:   Source NSL-Technical Report 16 [Langendoen, 2000] 
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6. Convert interpolated data into gaming engine native file format. 

 

7.  Find and adapt an opened source gaming engine so that it can be repurposed for 

CONCEPTS viewing. 

 

Each component created to achieve the listed objectives will be discussed and reviewed in 

greater detail in the methodology section of this paper. 
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CHAPTER II 

LITERTURE REVIEW 

 

In this Chapter, an assessment of 1D numerical models and enhanced models with 

visualization capabilities is presented. Each of the first set of models discussed is used to analyze 

sediment transport, channel morphology, and fluid flow rate. The numerical models reviewed are 

Generalized Sediment Transport Model (GSTARS), Hydraulic Engineering Center (HEC-

6/HEC-RAS), National Center of Computational Hydroscience and Engineering (CCHE1D), and 

Conservational Channel Evolution and Pollutant Transport System (CONCEPTS). These models 

are limited by the lack of visualization and graphics capabilities they provide. The one model 

enhanced with visualization efforts for stream restoration planning is CCHE1D. This model 

visualizes its data using an ArcView program. Models that incorporate Graphic Processing Units 

(GPUs), GIS, and gaming engines technology to enhance the graphical and visualization 

capabilities of applications and models are assessed.   

GSTARS 

 GSTARS was developed by the United States Bureau of Reclamation [Yang et al.]. 

GSTARS is used by government agencies, researchers, institutions, students as well as engineers 

for the analysis of sediment transport. The model is used for analyzing sediment, erosion, 

morphology, and river restoration [Yang et al.].  
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GSTARS 1-D is a model presented under series GSTARS models. GSTARS 1-D is a 

one-dimensional hydraulic and sediment transport model for use in natural rivers and man-made 

canals. This numerical model is used for steady, unsteady flow analysis, internal boundary 

conditions, looped river networks, cohesive and non-cohesive sediment transport, and lateral 

inflows analysis.   

GSTARS 1-D was applied by Klump (2005) to simulate unsteady sediment transport in 

the California aqueduct [Yang et. al]. The results were significant. It was found that the model 

provided information that the channel had aggraded more than 136 miles downstream.   

GSTARS is a general numerical model and just as other 1-D models, it has its limitations. 

Limitations include:  

1. The model requires expert evaluation of results to certify that the model’s 

predictions are correct. 

2.  Currently the system GSTARS can be executed only on a Windows 2000/XP.  

3. The size of the project evaluated can be limited only to the amount of 

computer memory space available.  

4. It is stated in the manual that the program results are potentially fallible;  

5. The results should be examined by an experienced engineer to determine if 

they are reasonable or accurate.  

 

GSTARS software is available online for download at  

 

http://www.usbr.gov/pmts/sediment/model/srh1d/index.html.  The current model reads input 

files, which are organized as sequential records.  To execute GSTARS1-D, the user is required to 

enter the file name with the extension .srh. During execution of the program the current bed 

profile and user specified cross-section is displayed in real-time. During the simulation process, 

GSTARS’ output allows the user to visualize the results of the input data.  

Currently, GSTARS is known as Sedimentation and River Hydraulics-One Dimension 

http://www.usbr.gov/pmts/sediment/model/srh1d/index.html
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(SRH-1D). 

HEC-6 

HEC-6 is a software package developed by the U.S. Army Corps of Engineers (USACE) 

Hydrologic Engineering Center (HEC) [US Army Corps of Engineers, 2009]. The purpose of 

this one-dimensional sediment transport model is to calculate water surfaces and sediment bed 

surface profiles by computing the interaction between sediment material in the streambed and the 

flowing water-sediment mixture. HEC-6 has the capability of analyzing a network of streams, 

channel dredges, and various levee encroachment plans. This model also provides several 

methods to compute sediment transport rates.  

HEC-6 has been applied by many organizations besides the USACE offices. HEC-6 has 

been used for government, private consultant, university, and foreign projects. One project the 

model was applied to was to predict potential future sedimentation for the Ozark Reservoir on 

the Arkansas River. HEC-6 was also used to predict future water surface elevations for levees at 

Lewiston ID on the Lower Granite Reservoir. HEC-6 was applied to other projects described by 

Thomas and Prasuhn (1977), and other recent projects of HEC (1992). The HEC-6 model has 

been used extensively since the 1970’s for predicting sediment transport rates, dredges and levee 

plans accuracy, as well as channel morphology.  

Although HEC-6 has been used for various reasons, the model does have its limitation. 

HEC-6 model is restricted by the following limitations:  

1. The model has no provisions for simulating the development of meanders.  

2. The model does not provide provision for simulating lateral distribution of sediment 

loads across a cross-section.  
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3. Density and secondary current are not simulated.  

4. Movable beds are constrained within the limits of wetted perimeters. In the case of 

sediment transport HEC-6 is restricted in two ways.  

1. First sediment transport in distributaries is impossible.  

2. Flow in closed loop channels can not be directly accommodated.  

 

5. Only local inflow points are allowed between any two cross-sections for calculating 

sediment transport (US Army Corp of Engineers). 

 

HEC-6 is also available online for download at  

 

www.hec.usace.army.mil/software.legacysoftware/hec6/hec6.htm. 

 

CCHE1D 

  CCHE1D is a model developed at the National Center of Computational Hydro Science 

and Engineering at the University of Mississippi [Vieira and Wu, 2002]. The CCHE1D modeling 

system was created to simulate steady and unsteady flow and sedimentation processes in 

dendritic channel networks. The model has the capability to simulate sediment transport, bed 

aggradation and degradation, bank erosion, and channel morphology. One limitation, however, is 

that the model is restricted to the application of sub-critical flows [Vieira, 2002].  

 The CCHE1D model has been applied to several waterway projects [Vieira, 2002]. 

CCHE1D was applied to East Fork River, Wyoming, a sedimentation project in the Danjiangkou 

Reservoir, Goodwin Creek watershed in Mississippi, and the PA-Chang river flood routing and 

sediment transport project in Taiwan.  

 The features provided by CCHE1D are innovative for 1D models. CCHE1D has an 

ArcView graphical user interface. This feature allows the user of the model to follow a natural 

flow of operation. The CCHE1D ArcView interface also gives users more options for defining 

the simulation domain and input data.  The model includes a “Channel Digitizing Module,” 

http://www.hec.usace.army.mil/software.legacysoftware/hec6/hec6.htm
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which allows the user to sketch channel networks based on maps or photographs. Other features 

are a Landscape Analysis and Channel Network Analysis module. The Landscape Analysis 

module creates a channel network based on digital elevation data. An upgraded version of 

Topographic ParameteriZation (TOPAZ) is integrated in CCHE1D. TOPAZ analyzes a Digital 

Elevation Model (DEM) and extracts the channel networks and corresponding subcatchments.   

 The use of the CHE1D model requires knowledge in the fields of hydrodynamics and 

channel morphology. First, the user must select the StartChannelSimulation from the Simulation 

menu. The model will then analyze the input file. After this step the progress of the simulation is 

displayed. When the simulation has completed, a message indicating the end of the process is 

displayed. The results of a CCHE1D simulation are easily read and displayed, either in a 

visualization, a spreadsheet, or data analysis program.  One of the limitations of this numerical 

model is that it cannot be applied to dam break flow and it is not applicable to dendritic channels 

with more than one outlet. The visual of this program also uses GIS based graphic which limits it 

to 2D flyby image of the area.  

CONCEPTS 

 CONCEPTS was developed at the United States Department of Agriculture (USDA)-

Agricultural Research Service (ARS)-National Sedimentation Laboratory (NSL) in Oxford, 

Mississippi. CONCEPTS is a model in the suite of tools incorporated under Agricultural Non-

Point Source Pollutant Model (AGNPS) [Langendoen, 2000].  

 CONCEPTS was designed as a 1-D numerical model used to simulate open-channel 

hydraulics, bank and bed erosion, and sediment transport. A primary objective of the 

CONCEPTS model is that it is to be used as an assessment evaluation model for proposed stream 
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or corridor rehabilitation plans.    

The advantages of using CONCEPTS are that it can be applied to evaluate the 

effectiveness of instream control structures and stream corridor rehabilitation measures in 

controlling channel erosion. CONCEPTS has been used to study channel evolution in the 

Goodwin Creek, watershed, Mississippi and Little Salt creek of Eastern Nebraska, and TMDL 

studies in James Creek, Mississippi and Shades Creek, Alabama.  

Although CONCEPTS provides scientists and engineers in the hydraulic field the 

necessary capabilities to evaluate and develop stream rehabilitation plans, the model has similar 

limitations as the models above.  

CONCEPTS is freely available and can be downloaded at ftp://solar1.mas-

oxford.ars.usda.gov/pub/outgoing/CONCEPTS. The requirement needed to execute CONCEPTS 

is a computer with Windows XP or later operating system. The CONCEPTS input file requires 1 

to 2 MB of hard disk space. A minimum of 32 MB of Random Access Memory is recommended. 

The results of the model or output vary between 1MB to a couple of gigabytes depending on the 

output options provided by the user.  

To execute CONCEPTS, the user is required to provide two types of input files.  

1.  The description of the channel, run control data, and output options are organized 

into a single XML input file.  

 

2.  Water and sediment discharge rates at the upstream boundary and from tributaries 

are organized into flat ASCII input files.  

 

 CONCEPTS produces three types of output files: 

1. Output at a certain location and for a certain runoff event 
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2. Time-series output at a certain location 

3. Output for a specified runoff event along a section of the evaluated and modeling reach.  

 

Output from CONCEPTS must be imported into a spreadsheet application such as Microsoft 

Excel or Corel Quattro Pro to view the results of the simulation with plots or graphs (See Figure 

2). 

 

 

 

 

 

 

 

 

 

 

To overcome many of the limitations of numerical models, developers, researchers, and 

scientists have created many tools designed to be used with them. These tools utilize different 

technology that has built-in graphics and visualization features to increase usability and 

interpretation of results. Technologies that have been used to produce these tools are Geographic 

Information Systems (GIS), Graphic Processing Units (GPU), and gaming engines. 

 GIS based tools are the most popular enhancement tools used with numerical and 

mathematical models. GIS technology providing visualization capabilities as well as data 

 
 

Figure 2: CONCEPT Output in EXCEL [Langendoen, 2000] 
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management and analysis has been improved for more than 30 years [Berry, 2007]. There are 

many tools that use this technology in many areas of sciences such as disaster and risk analysis 

and management, water quality monitoring and management, and forestry informization. Other 

areas that have also benefited from GIS technology are urban governance, simulation and 

environment modeling, pollution monitoring, traffic and transportation management, 

environmental and ecological marine monitoring and management, and analysis and simulation 

of farmland information systems. A few tools that provide GIS technology to existing 

applications and management systems are GIS for Transportation (GIS-T) [Lu, 2006], marine 

GIS (Chybicki et. al, 2008], 3D GIS and geo-analysis model [Guo et. al, 2008], and GIS-FIMS 

[He et.al, 2006]. 

 GIS-T with web services was created by Xiaolin Lu at the College of Information 

Technology in Zhejiang, China [Lu, 2006]. GIS-T with web services is a distributed, platform 

independent system that can be accessed remotely over the Internet. The application provides 

efficient transportation planning and management formulas.  GIS-T uses the latest in GIS 

technology web services in an effort to allow developers to create customized software. Using 

GIS web services gives developers the advantage of using traditional GIS application features 

without needing many modules or the standalone GIS applications and associated geographic 

data. The GIS web service of the GIS-intelligent transportation application system provides 

spatial data and GIS functionality to integrate the customized ITS applications to perform basic 

geo-processing tasks such as address matching, map image display, and routing [Lu, 2006]. 

 The research performed by Guo, Zang, Zhao, and Ge at the Key Lab of Virtual 

Geographic Environment showed that integrating 3D GIS and geo-analysis was convenient and 
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efficient, and promotes geo-simulation [Guo et. al, 2008]. By using an existing 3D numerical 

model and incorporating 3D visualization of the geospatial (GIS) data permits for the 

contaminants transportation to be displayed and simulated. The application created was designed 

to simulate and visualize the three dimensions water contaminants transportation of the Taihu 

Lake [Guo et al. 2008].  

Another tool that incorporates GIS technology with pre-existing software is Geographic 

Information Systems-Farmland Information Systems (GIS-FIMS) [He et al., 2006]. Created by 

He, Deng, Shao, and Fang at Zhejang University, GIS-FIMS is a tool used to monitor and 

manage farmland. GIS-FIMS uses short message technology to obtain the farmland information. 

The information acquired by the tool is the farmland electronic conductivity, temperature, 

moisture content, global positioning system (GPS) information, and PH levels. In essence the 

system uses GIS technology by integrating a short messaging service with web accessible 

capabilities that provides visualization of geospatial data, maps, and data services to the end-

user.  

The last tool discussed that incorporates GIS technology is marine GIS, and it is used in 

marine pollutant studies [Chybicki et. al., 2008]. This tool was created by Chybicki, Kulawiak, 

Lubniewski, Dabrowsi, Luba, Moszynski, and Stepnowski at Gdarisk University of Technology 

in Gdarisk, Poland. The tool provides remote access to a real-time management tool for 

processing and visualizing data from many sources such as sonar sensors, acoustic sensors and 

echo sounders. It supports instantaneous 2D and 3D visualization. This tool also uses many of 

GIS technology features such as ARCSDE, ARCGIS engine, GlobalControl, and map control 

components for geo-referenced presentation of objects. It also does the traditional features of 
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geo-processing and spatial analyzing. In essence the system was designed using many GIS 

technology features, which permits data to be processed and visualized from different sensors 

and distributed sources. The tool provided is a real-time, remotely accessible marine GIS 

application used for monitoring water pollution compounds and predicting the pollutants 

behavior in the environment.  

 With many of the GIS analysis tools created, providing them with visualization 

capabilities has been the key component that has been shown to increase not only the usability of 

the tools and computational models but also increased the clarity of information produced from 

computational models using the  GIS features.  

Research shows that use of visualization features has improved the decision-making 

process by showing analysis information that will save users effort, time, and money [Henderson 

& Mason, 2010]. The visualization and graphic component of many numerical models is the key 

feature that increases the usability as well as promotes clarity of the data being interpreted. Many 

engineers, researchers, and scientists are turning to incorporating, using, and studying GPUs 

(graphics processing units) and advanced graphics cards to amplify the visualization and imagery 

efforts of many analysis tools.  

Although models that use GPU technology and advanced graphics cards increase 

usability, they are considered to be very computationally intense. Applications or tools created 

that use visualization in conjunction with numerical/simulation models require computationally 

intense programming that must be both stored and computed. To alleviate these constraints 

programmers, scientists, and researchers are looking at the latest technology that offers hope in 

the computer science and graphics industry. This method is co-processing of the central 
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processing units (CPUs) and graphic processing units (GPUs). This innovative technique was 

created to alleviate or offload some of the intense computation calculation to the graphics card 

installed in a user machine. Software engineers are now using Compute Unified Device 

Architecture (CUDA) technology to program scientific research applications on a GPU [“What is 

CUDA”].  

CUDA is a parallel computing architecture developed by NVIDIA [“CUDA in Action”]. 

CUDA is the computing engine in the GPU presented by NVIDIA. This engine provides 

software developers access to the underlying hardware of a machine’s graphic card. CUDA gives 

developers access to the native instruction set and memory of the parallel computation elements 

in the GPU [“CUDA in Action”]. 

GPUs are graphic processing units that use the hardware-video card in addition to 

microprocessors–CPU to perform calculation for graphics, 3D graphic rendering and simulation 

applications. Because of the nature of computer graphics programs, GPUs are very efficient at 

calculating and manipulating parallel programs such as graphic programs, which typically have a 

parallel structure.   

Projects that were created that combined GPU technology and visualization with 

scientific and information research are aquatic-GeoFish [Vance et al., 2009], medical-BartSim 

[Feibush et. al, 1999], and industrial-SeismicCity [“CUDA in Action”], OptiTex [OptiTex], and 

General Mills [“CUDA in Action”] and military-Joint Operations Visualization Environment 

(JOVE) [Feibush et. al, 1999].  

SeismicCity, which uses GPU and CUDA technology, was created to improve the 

chances of finding oil [“CUDA in Action”]. The cost of drilling oil wells is expensive, so 
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researchers and programmers devise a program that was cost-effective. Drilling wells is 

estimated to cost hundreds of millions of dollars. Incorporating depth imaging technology that 

interprets seismic data leads to the faster selection of drilling location-in essence save both time 

and cost for performing the procedure.  

General Mills used simulated data and visualization techniques to optimize their 

technique of cooking frozen pizza in the microwave [“CUDA in Action”]. The idea was to 

discover the effects of microwave radiation on various permutations of pizza elements rather 

than physically creating the different combinations.   General Mills found it less expensive and 

time-consuming to model the pizzas using sophisticated computers. 

BartSim is a program that produces high quality images of macromolecules in real-time. 

JOVE is used by top level military decision makers for situational awareness. Situational 

awareness visualization applications require the representation of large geographic areas and 

thousands of military units [Feibush et. al, 1999].  Visualizing the area and creating scenarios is 

highly useful when devising strategies that will aid in the prevention and combat of enemies 

attacks.  

Currently there are no documented applications that combine GPU technology and 

advance graphics cards with stream restoration planning. However, the documented projects 

have been shown to use this technology for rendering terrain for virtual environments. This lack 

of using the technology may be the expense and the computational intensity involved in 

implementing, storing, and processing these applications using GPU technology. In essence, this 

technology does show promise for this area of study (stream restoration) because it is used for 

virtual and simulation environments. 
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The last method that increases or enhances numerical models with graphical and 

visualization capabilities is using gaming engine technology.  Tools or applications using gaming 

engine technology are in areas such as weather forecasting, terrain rendering, virtual reality 

environment for military strategy assessment and planning, search and rescue planning, real-time 

environmental and interaction infrastructures, architectural design and planning, pollutant and 

environmental simulation and visualization, among many other areas. A few applications created 

that have benefited from the interactive capability and visualization features of gaming engine 

technology are applications such as SIMWIZ3D [Wegner, 2005], GENETICS [Wells, 2005], and 

USARSIMS [Roberts et. al, 2008].  

SIMWIZ3D was created by Katja Wegner at the Bioinformatics and Computation 

Biochemistry EML Research facility using gaming engine technology [Wegner, 2005]. 

SIMWIZ3D is a novel software tool produced to visualize the results of data simulated from 

living cell life processes.  SimWiz3D is an extension or expansion of the previous software 

SIMWIZ. SIMWIZ3D overcome many of the limitations of SIMWIZ. By using gaming engine 

technology, SIMWIZ3D provided the users of the software with many benefits. SIMWIZ3D 

provided users with the ability to visualize continuous time series data. SimWiz3D provided 

users with better interaction with the application. The tool has the capability to be customized 

based on the demands of the users. The tool can also be used to explore local and global data 

views. SIMWIZ3D uses small and large datasets with a large number of reactant and time steps, 

a major difference from existing models and the older model SIMWIZ.  In addition, 

SIMWIZ3Ds display of the results of the simulated data has been found to be clearer and more 

concise.  As a result of these benefits, the software usability and understanding of the process of 
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genetic reactants and living cell networking processes has increased.  

Generating Enhanced Natural Environments and Terrain for Interactive Combat 

Simulations (GENETICS) is another tool using gaming engine technology, developed by Major 

William D. Wells at the MOVES Institute Naval Postgraduate School [Wells, 2005]. 

GENECTICS is a downloadable SOARXTerrain component of the military’s open source game 

engine DELT3D. Used in combat operations this application/tool provides military authorities 

with the ability to devise strategic plans based on different scenarios in a realistic simulated 

training environment.   

The CRYTEC game engine FarCry, is the gaming engine used to develop the Grange 

Gorman hospital site [Mcatmney et. al]. The purpose of using a game engine is to provide the 

developer with consultation and planning scenarios for dynamic and efficient walkthrough with 

interaction capabilities of the space. Using Farcry to render the hospitals terrain topography so 

that objects in the scene will be displayed truthfully within the environment is the primary 

benefit of using CRYTEC gaming engine. 

Another tool created based on gaming engine technology was developed by Cheng et al. 

at Nanjing Normal University in China. This application combines virtual toolkit (VTK) and the 

contaminant dispersion simulation model to visualize the dynamic contaminant process that 

occurs within waterways. This application provides environmentalists with the information 

needed to devise comprehensive solutions and treatment to the Taihu Lakes [Cheng et al., 2010].  

The last tool discussed is USARSIMS. This tool was first developed in 2002 at Carnegie 

Mellon University and later released to the National Institute for Standard Technology (NIST) in 

2005 [Roberts et al.,  2008]. USARSims is a high-fidelity, physic-based simulation environment 
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for robotic development. The primary objective of this tool is to provide a simulated 

environment with realistic terrains and object placement for a simulated complex search and 

rescue environment in disaster areas to help devise plans to recovery lives in these areas. This 

application uses the popular game engine UnReal to render realistic scenes used in the simulated 

search and rescue environment.  

For this dissertation, gaming engine technology will be used to enhance a model used to 

simulate pollutants within streams and channels to help devise stream restoration plans for the 

affected area. The model that will be enhanced using gaming engine technology is CONCEPTS. 

Likewise, for GPU technology, there are no documented applications created using gaming 

engine technology, especially in the area of stream restoration. With the many benefits gaming 

technology provides, this technology shows great promise in this area of research and science. 

Besides the low cost, visualization and the advanced graphics capabilities associated with many 

innovative gaming engine applications many would still ask, “Why use a game engine?”  

So, why use gaming engines? There exist a variety of reasons gaming engines are 

chosen to enhance existing software applications and numerical models. These considerations 

include economical, graphic capabilities, software development efforts and productivity, and 

visualization efficiencies. By definition, gaming engines provide many components needed to 

create innovative tools using the latest in graphic and visualization technology. Gaming engines 

are complex software systems designed for creating and developing video games. The main 

functionality of the gaming engine is the rendering engine for 2D and 3D graphics. According to 

Lewis and Jacobson, the only way to have the fastest, most realistic simulation and sophisticated 

graphics is to trade down from the expensive hardware to basic PCs running game software 
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[Lewis and Jacobson, 2002]. Before gaming engines were written as software many graphics 

were produced from the standard CPU, video card and VRAM components. This method not 

only produced mediocre graphics but also the frames per seconds were slow, and the image 

quality or models produced were not realistic.  

When realistic graphics are produced, several factors must be taken into consideration. 

The amount of data to be rendered and the amount of processing power provided by the CPU, the 

GPU and the memory available to each play a major role in the quality of the graphical models 

created. Therefore, many scientists, researchers, and developers are using graphics processing 

units, video buffering, along with the CPU to offload the computational expenses of graphics 

rendering. As this work is being done, graphical rendering is becoming more and more the 

responsibility of the video card.  As a result of these changes, gaming engines, which are 

designed to exploit these features, can be used for serious analysis and computing and not just 

for game play [Lewis and Jacobson, 2002].  Indeed, the game industry is actually pushing the 

development of visualization hardware. 

Gaming engines can be used for both serious analysis and computing.  The engine is 

considered the core of any game. Gaming engines control many aspects of a game. Most of the 

earlier gaming engines were very simple to develop and program. Gaming engines initially 

consisted of a loop event, state tables, and graphics routines.  Modern games engines are far 

more complex. Today gaming engine are developed to controls the players’ movement, 

navigation, light, visual, sound, screen resolution, and objects displayed.  When creating a 

gaming engine several associated components must be also created.  

From a software engineering perspective, the use of the gaming engine provides many 
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benefits. Gaming engines not only increase productivity when creating 2D and 3D graphics, but 

also they promote code reuse, thus reducing software bugs and limitations.  They also provide 

better, faster graphics. Components of gaming engines include the system, the data/tools, the 

console, support, the rendering tools, and the game interface.  

 Tools, as defined by Hodorowicz, at the very least, include 3D model editors, 

level editors, and graphics programs. [Hodorowicz, 2006] 

 

 The system consists of sub-system such as graphics, input, sound, timer, and 

configuration to communicate with the machine. Systems are responsible for 

initializing, updating, and shutting down the sub-system. Each sub-system of the 

gaming engine plays a vital role in the realism and graphic capability of a virtual 

world’s graphics. 

 

 The graphics sub-system deals with the screen graphics 

 

 The input component manages data sources from the keyboard, mouse, game-pad 

and joystick interfaces. 

 

 The sound system is responsible for loading and playing sounds in the virtual 

world.  

 

 The timer is responsible for time management in real-time gaming environments. 

 

 The configuration subsystem enables users to customize the system. 

 

 The console component of a gaming engine is used for testing and debugging the 

system during the system development phase.  

 

 Support consists of algorithms, memory managers, loaders, and containers.  

 

 

 The renderer with its sub-system is responsible for rendering the 3D graphics. 

[Hodorowicz, 2006] 

 

Each component of the gaming engine is vitally important to the realism displayed in an 

interactive, virtual reality environment.   
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Economically, the use of gaming engines is ideal because of the reduced cost associated 

with creating tools that provides visualization components. There exist different levels for each 

gaming engine. Gaming engines are in the form of proprietary engines, freeware, and open 

source rendering engines. Each has its own benefits. Proprietary gaming engines claim to 

provide users with stability, user and customer support, as well as expert business solutions. 

Freeware, although not free, provides users with a tool that could be bought at a small cost, but 

with some legal restrictions on using the software. The open source gaming engines are free, and 

they give the users benefits that proprietary engines provide but also many benefits that freeware 

does not. Open source gaming engines have the benefit that it costs little to nothing as well as 

allows for customizable applications to be developed. The source code for these gaming engines 

is available to be modified and enhanced for a true customize application. Open source software 

is a better option for a developer working on a tight budget but, who wants the capability of 

creating a customizable, innovative tool that uses the latest in visualization and graphic 

technology.  

For this dissertation open source game engines were chosen because of the major budget 

conscious aspect associated with creating a stream restoration planning tool and the graphic and 

visualization features it provides. The cost of stream restoration planning costs billions of 

dollars. These costs have continued to increase over the past 30 years [Bernhardt et al., 2007].  

The overhead related to the stream restoration projects are staggering. On average, 

according to Palmer et al, the cost for river or stream restoration efforts in the United States is 

more than one billion dollars a year [Palmer et al., 2005].  It has been found that this cost is only 

associated with the requirements needed for assessing the circumstance or the current state of the 
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stream or river and the implementation method that will be used to restore the stream or river. 

This cost does not include future analysis of the river after the plan has been implemented. A 

problem that exists for restoration projects is that they do not budget for post-assessment of the 

plans’ implementation. So creating an economical application that provides graphics and visually 

enhanced tools that can be used for stream restoration planning and monitoring are ideal. Again, 

the tool or software created for this dissertation is created using a free, open source game engine 

and other sources to keep the cost of production down. The implication defined by creating the 

software that uses open source gaming engine technology is defined within this dissertation. 

Developing Computational Models with Visualization  

Depending on the problem size, simulating, and reviewing the results of numerical 

models is known to be time consuming. From a software developer’s perspective, computational 

models have to overcome the common pitfalls of time and space constraints. Time constraints 

relate to the amount of time required for a program to execute. Space constraints relate to the 

amount of memory the executing program requires. For this dissertation project the simulation 

model, CONCEPTS, and a graphics application were combined. Both applications are very 

demanding computationally, requiring substantial time and memory storage.  

For this project, the graphics application components must be written efficiently for 

managing and rendering large terrain datasets. The dataset for CONCEPTS is both large and 

dense.  Algorithms for these problems are computationally intensive, and require developers to 

create efficient programs that will optimize the performance of any CPU. For software engineers, 

creating a program of this nature is challenging, especially when keeping time and space issues 

in the forefront. To alleviate these constraints programmers, scientists, and researchers are 
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looking into GIS, GPU, and gaming engine technology. Each technology have a common or 

underlying similarity, each adds visualization features to enhance the usability and clarity of the 

interpreted data rendered from these innovative tools.  

Research shows visual stimuli provides users with a better perception of the simulated 

scenarios given by computational models [Rhyne, 2007]. Scientific and information visualization 

have been used for many years in the fore mentioned areas- education, military, industrial, and 

scientific research. Visualization has been used since the beginning of time for communicating. 

Visualization based on computer graphics and interactive simulation techniques was formally 

defined 20 years ago. Visualization involves large displays and stereoscopic environments that 

engulf the viewers in the examination and exploration process [Rhyne, 2007]. Visualization is 

defined as any technique for creating images, diagrams, or animation to convey and 

communicate a message. In 2004, visualization was classified as three different, but overlapping, 

areas scientific, information, and analytical visualization. 

Scientific visualization is the process of transforming data into sensory stimuli, usually 

images [Schroeder et. al., 2004]. Scientific visualization uses interactive, sensory representations, 

typically visual, of abstract data to reinforce cognition, hypothesis building, and reasoning.  

Scientific visualization usually involves the transformation, selection or representation of data 

from simulations or experiments. Representing data this way allows the exploration, analysis, 

and understanding of the data.  Scientific visualization produces visual displays of spatial data 

associated with scientific processes, such as the bonding of molecules in computational 

chemistry. Others areas that involves visualization scientific data are flow, medical, and 

chemical visualization. . 
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Information visualization is the visualizing of non-spatial data. Information visualization 

is catered for addressing community planning scenarios that combine diverse data sets from 

geographic information system (GIS), visual impact assessments, and transportation analyses 

[Rhyne, 2007].   

Analytical visualization as defined in the report “Illuminating the Path: The Research and 

Development Agenda for Visual Analytics,” states that, “Visual analytics is the science of 

analytical reasoning facilitated by interactive visual interfaces” [Rhyne, 2007]). Analytical 

visualization is developed to assist in emergency responses and rapid evaluation of 

transportation. This area of visualization focuses on human interaction with visualization systems 

as part of a larger process of data analysis. Visual analytical research concentrates on support for 

perceptual and cognitive operations that enables the users to detect the expected and discover the 

unexpected.  

Today there are other areas of visualization: volume visualization, education 

visualization, knowledge visualization, product visualization, and visual communication.  Each 

field focuses on simulating and visualizing information so that important decisions can be 

evaluated and implemented. Research shows that using visualization tools has improved the 

decision-making process by showing analysis information that will save users effort, time, and 

money [Henderson and Mason, 2010]. 

 The visualization area for the work done here is scientific. The results produced from the 

CONCEPTS simulator will be graphically displayed in a 3D virtual reality environment. 

Visualizing the results of the simulator will aid in the exploration and understanding of different 

stream restoration scenarios. As a result, researchers can choose a restoration plan that can be 
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“seen” to be most successful.   

 Another key component for rendering a realistic 3D model is the data supplied to the 

game/rendering engine. Data poses a challenge to both the rendering engines as well as to the 

central processing unit (CPU). As in all areas of computer science, data management in a gaming 

engine is a balancing act.  Although the more data supplied to the engine the cleaner, sharper, 

and more realistic the 3D models appears, but large amounts of data pose problems for the CPU 

and graphics buffer, tending to slow the whole project down.  

Besides the data supplied to the rendering engine, other factors that affect the 

effectiveness of a tool is the programming language used to create or develop the software. 

Languages that closely resemble machine language are more effective for graphics and hardware 

manipulation than those higher level languages that do not take into consideration memory and 

systems obstacles. Choosing the appropriate language can alleviate many daunting issues relating 

to speed (time) and memory (space).  Programming languages have been found to simplify and 

shorten software development time. The appropriate programming language provides a 

developer with not only a high-level, easy to use language, but, also data structures, and memory 

management features. These attributes allow developers to produce programs that will optimize 

CPU performance.  

Game Engines and Programming Languages 

The languages considered to be used to write the additional components used along with 

a gaming engine for this research project were all are domain-specific. Special-purpose or 

domain-specific languages provide two main advantages over general-purpose languages. One 

advantage is domain specific languages increase productivity because of their higher level of 
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abstraction. Two, domain-specific languages allow developers to express ideas in a notation 

familiar to the developer.  Many domain-specific languages exist. Domain-specific languages are 

categorized as string-manipulating languages, list-processing languages, simulation languages, 

scripting languages, and graphics programming languages.  

The languages discussed in detail for this dissertation are the most popular graphic 

application languages or graphic programming languages. The choices for application 

programming interfaces that support the special purpose languages are: OpenGL and 

DirectX/Direct3D. Languages are categorized as either freestanding or embedded. Freestanding 

graphic programming languages are languages that do not require support from other languages 

such as virtual reality modeling language [VRML]. Embedded languages are those that require 

other language support such as C, C++, Java, Fran, and Cg. A discussion of OpenGL with C++ 

and OpenGL with Java is provided. DirectX application programming and interface will be 

discussed in this section. The advantages and disadvantages of each language will be provided.  

Freestanding Language: VRML 

VRML was created and released by Silicon Graphic Inc (SGI) in 1995 [Yee ]. VRML is a 

3D graphic programming language that allows developers to create 3D scenes that can be 

rendered and manipulated through a web browser. VRML is interpreted by a VRML browser. 

VRML is one of the languages considered to be the international standard for 3D graphics 

modeling. VRML is maintained by the International Organization for Standardization (ISO). 

 The language provides developers with a high-level of abstraction to describe and create 

3D scenes. The data structures that VRML uses to organize the objects or scene render is a 

hierarchical graph. The object vertices in the graphs are called nodes. The scene in VRML is 
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rendered by traversing the graph, performing a breadth-first search. The nodes of the graph 

represent the geometry/shape, property-texture, lighting, color, and material are combined node 

in a 3D scene. VRML provides developers with simple and complex 3D primitives to render 

intricate scenes. 

The designers of VRML had several goals in mind when creating the programming 

language.  

1. VRML was created to unite and standardize the rendering of 3D graphics over the 

Web.  

 

2. VRML was designed to be backward compatible. 

 

3. The language is scalable to support both complex and simple objects and scenes. 

 

4. VRML objects are reusable. 

 

5. VRML allows multi-user interaction over the web. 

 

6. VRML language is extensible.  

 

7. VRML is portable to various platforms. 

 

One drawback mentioned by Yee in the article “A Survey of Graphics Programming Language” 

is performance. This problem is mainly due to rendering of a scene via the Internet [Yee]. In the 

worst-case when scenes are rendered the portability and performance will become slow during 

high traffic.  

Embedded Languages or APIs: DirectX and OpenGL 

DirectX created by Microsoft is a suite of technologies that offers developers an API to 

implement and design Windows-based applications. The suite used for creating 3D graphics is 

called Direct3D. Direct3D is a high-level modeling language with low-level APIs to access 
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graphics hardware. With Direct3D, programmers can compose high-performing graphics on any 

Windows-based system. With Direct3D, programmers have access to the sound card, memory, 

input devices and networking interface of Windows hardware.  

When Microsoft created the DirectX suite, they designed it according to the same design 

objective as OpenGL and VRML.  Direct3D has the features and capabilities listed below:  

1. Direct3D is portable. 

2. The library is backward compatible. 

3. Direct3D is extensible. 

4. Direct3D is easy to use. 

The drawback of using DirectX is that it does not support the use of any other operating 

system (Linux, UNIX, and Mac OS) besides Windows. The Direct3D API does not support the 

Java programming language. Direct3D is a proprietary API.  

OpenGL 

OpenGL, developed in 1992 by Silicon Graphic Inc (SGI), is a cross-platform, cross-

language API that allows developers to write 2D and 3D graphics applications [McReynolds and 

Blythe, 2005]. The API consists of over 250 function calls used to render complex 3D scenes 

from simple primitives ["OpenGL: The Industry's Foundation for High Performance Graphics", 

2000].  

 OpenGL is widely used in computer aided design (CAD), virtual reality, scientific 

visualization, information visualization, and simulation applications [“3D Graphics”, 2011]. To 

support this wide array of applications, OpenGL was designed to support different operating 

systems and to support different languages. OpenGL supports Mac OS, UNIX, Linux, and 
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Windows operating systems. OpenGL provides an API for C, C++, Java, and Ada programming 

languages. By supporting different languages and operating systems, OpenGL has become a 

popular environment for designing and implementing 2D and 3D computer graphic applications 

for the web. 

Other design capabilities that OpenGL possesses are as follows: 

1. OpenGL is a sequential API. New processes only start when the previous process has 

finished. 

2. OpenGL supports many operating systems and programming languages. 

3. OpenGL binds objects on call. 

4. OpenGL is object-oriented. 

5. OpenGL is highly portable. 

6. OpenGL can be executed on many system architectures from supercomputers to small 

portable devices such as cell phones. 

 

7. OpenGL provides an API to interface with new technology, GPUs. 

8. OpenGL is scalable and extensible. 

9. OpenGL is well documented and supported. 

10. OpenGL is open-source. 

The language/graphic library combination that will be taken into consideration for this 

dissertation is OpenGL with Java, C++, and C#. These two languages/APIs are the most 

practiced, supported, and documented environments for creating web-based graphic applications. 

Java and C++ alone also provide programmers with extensive capabilities.  

Java 

The Java programming language first developed to create programs for handheld devices 
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and it has become increasingly popular for developing small games that run on mobile devices 

[Wilson and Clark, 2001]. Java is considered to be a small language that achieves much of its 

power through an extensive and comprehensive standard library, the Java API. Java API 

provides developers with many predefined components to construct programs quickly. The major 

feature of Java is that the same program that executes on one user machine can be executed on 

many machines with different platforms using the concept of a virtual machine. Java is a high-

level, object-oriented language that is known to be platform-independent, portable, and secure. 

Although there are many advantages to the Java programming language and APIs there are some 

major drawbacks when developing gaming engines.   

The Java programming language is not considered a huge contender for programming 

games engines for several reasons. The reasons include: 

1. Java is considered too slow for game engine programming 

2. Java has been found to have memory leaks. 

3. Java is not supported on game consoles. 

4. Java automatic garbage collection feature often runs during inconvenient 

times and detracts from the visualization process. 

 

5. Java is considered too high-level for producing graphics application/gaming 

engines. 

 

For these many reasons the Java programming language was not chosen for this research project 

[Sangappa et al., 2002].  

 

Java with OpenGL 

Java with OpenGL is the language used today for developing rendering engines for 

graphics applications [Wolff]  [Day]. Java OpenGL or JOGL, developed by Kenneth B. Russell 
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and Christopher J. Kline, is a wrapper library that allows OpenGL to be used with the Java 

programming language. After further development of the language, by Sun Microsoft Game 

Technology Group, JOGL is available as an open source project under the BSD license. Many 

benefits of using this particular programming language are established. This language is one of 

the core projects of the Java gaming community at the Sun-sponsored community website 

(Java.NET, 2010). The project is under active development.  

Many graphics application developers claim that Java is not a serious programming 

language for developing serious graphics applications or gaming engines. The drawback of using 

JOGL is that developers find that JOGL has limited technical support; it contains many bugs, 

lacks documentation, and is incomplete when compared with C++ with OpenGL. An alternative 

language that claims to alleviate many of the stated problems is the language called GL4Java. 

GL4Java developed by Jausoft, works with the latest version of OpenGL, Graphic Library Utility 

(GLU), and the Graphic Library Utility Toolkit (GLUT) [Davison, 2005]. 

C/C++ 

C developed by Ritchie and Thompson at Bell Laboratories is a systems programming 

language [Wilson and Clark, 2001]. C was developed and used to implement the UNIX operation 

system. C has several benefits. C provides developers with the advantages of a high-level 

language with the facilities and efficiency of an assembly language. The C++ language, later 

developed by Stroustrups, is the object-oriented extension to C. The advantages of C++ include 

[Wilson & Clark, 2001]:  

1. C++ is safer than C. 

2. C++ supports low-level system programming, which is highly vital for graphics 

programming. 
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3. C++ supports object-oriented programming. C++ is highly portable. 

4. C++ is efficient. 

5. C++ compiler is available on any platform. 

6. C++ is the most widely used programming language for developing gaming 

engines. 

 

The drawbacks of the C++ language are few. C++ is not considered a purely object-

oriented programming language, unlike Java. C++ uses pointer-based arithmetic, which could be 

a challenge for even the most proficient software developer. 

 C++ with OpenGL 

C++ with OpenGL is the preferred programming language environment for developing 

graphic applications [Glaeser and Hellmuth, 1999]. Because of the fact that OpenGL was written 

in C++, it makes OpenGL with C++ programming highly efficient. Therefore, the language that 

will be used for this project is a variation of C++. 

.NET C# with OpenGL 

The .NET framework also created by Microsoft is a platform that provides developers 

with the tools needed to create applications quickly and easily [Miller, 2011]. The .NET 

framework consists of many features and mechanisms. The .NET mechanism tools include 

memory management, code management, a runtime environment, common language runtime, 

and four popular programming languages. .NET features provide a well understood 

programming model and a common set of APIs that allow developers to a create more domain 

specific applications. For graphics applications .NET provides the Direct3D API. The language 

common for graphics application is C#. 
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C#, similar to C++, has many advantages. C# syntax is very similar to C++ syntax but 

does not use pointers. The language also provides a memory management mechanism that 

handles memory allocation and leaks. The language also has automatic garbage collection a very 

popular feature of Java. C# is also a strongly typed language, a feature that reduces coding 

errors. The language has a built-in compiler and debugger. An application written in C# has the 

capabilities that upon deployment it comes equipped with the mechanisms needed to function 

properly. Because of these aforementioned features and mechanisms created for C# this is the 

language of choice for this dissertation [Miller, 2005]. 

Gaming Engines 

A major component of the work done for this dissertation is the gaming engine interface 

that allows users to navigate and interact with CONCEPTS data in a 3D environment. Because of 

the time constraints for this research project only open source gaming engines were considered. 

Using an open-source gaming engine promotes code reuse, increases software development 

productivity and overcomes the many proprietary battles that might otherwise occur. 

Many open-source, as well as proprietary, gaming engines exist. For this project only free 

and open source gaming engines are reviewed and considered. After significant review, the 

gaming engines that show most promising are Unity [“UNITY”], DimensioneX 

[“DimensioneX”], Cafu  [“Cafu Engine”], Panda3D [“Panda3D], Delta3D [GeekLog], NeoAxis  

[NeoAxis Group, 2010] and OpenSimulator [ “OpenSim”]. These free and open source gaming 

engines are considered for several reasons.  

1. They allow games to be created and executed on the web. 

2. These gaming engines are free and open source. 

3. These gaming engines have a large support group. 

4. Tutorials and documentation are available. 
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A comparison chart is given and each is reviewed in detail in figure 3 below. 

 

 

 

 

 

 

 

 

 

 

 

DimensioneX 

DimensioneX is a JavaServer, multiplayer gaming engine that allow developers to create 

games by code reuse [“DimensionX]. DimensioneX runs on many platforms including Windows, 

Linux, and Mac.  Any computer that has the capability of running Java can execute 

DimensioneX.  This gaming engine is available for free and is distributed under the GNU 

General Public License. 

  Games created with DimensioneX are played via the web. DimensioneX allows game 

scenes and sounds to be displayed. The gaming engine allows developers to customize player’s 

avatars. The gaming engine also provides developers with the capability to allow movement and 

navigation of the avatars in a virtual reality environment.   

GAME ENGINE WEB-
BASED 

TERRAIN 
RENDER 

OPEN 
SOURCE 

LICENSE PRICE TUTORIALS/WELL 
DOCUMENTED 

DIMENSIONEX 
(DIMX) 

YES NO FREE-
WARE 

GPL Contact 
DIMX 

NO 

UNITY YES NO FREE-
WARE 

Noncommercial, 
Indie, 
Commercial 

$1200 Yes 

PANDA YES NO YES BSD N/A YES 

DELTA3D YES YES YES LGNU N/A YES 

CAFU YES NO FREE-
WARE 

GPL Contact 
CAFU 

NO 

NEOAXIS YES YES YES Noncommercial, 
Indie, 
Commercial 

Contact 
NEOAXIS 

YES 

OPENSIM YES YES YES BSD N/A YES 
 

Figure 3:  Comparison Chart of Game Engines Evaluated 
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Cafu  

 Cafu, developed by Carsten Fuchs, is a 3D graphic engine and game development kit 

[Carsten Fuchs Software, 2010] Cafu’s source code is available for free under the GNU Public 

License. Features that Cafu provides that make this gaming engine a contender among others are 

the following: 

 High-quality 3D computer graphics 

 High portability 

 Ability for games to be executed over a computer network or Local Area Network 

(LAN) 

 Large terrain renderer for developers 

 Free to use and modify [“Cafu Engine”]. 

Panda3D 

 Another gaming engine considered for this project is Panda3D ["Panda3D-Free 3D 

Gaming engine"]. Panda3D is available for free as open source under the Berkeley Software 

Distribution (BSD licensed). Panda3D features include the following [Panda3D]: 

 Automatic graphic rendering techniques. 

 Performance monitoring, optimization, and debugging tools. 

 Execution on the web. 

 Well documented and has available tutorial online. 

 An active community. 

 The capability to use the graphics API DirectX and OpenGL. 
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 Source code available for free [“Panda3D”]. 

A minor drawback of this gaming engine is the programming language. Developers are required 

to write in the programming language Python. Since much of the provision work done for this 

project was done in Java and C#, a new language seemed inappropriate at this time.  

Delta3D 

Delta3D is an open source game and simulation engine. It provides many of the same 

capabilities and functions as the other gaming engines. Developers are provided with the 

following [GeekLog]: 

 GNU Lesser General Public Licensing making it free and open source 

 

 Ability to be executed on many platforms such as Mac, Windows, and Linux 

 

 A complete 3D editor 

 Access to the Python API 

 A client/server architecture that gives it capabilities to be executed on the web 

 A framework for implementing and rendering terrains  

For the listed reasons Delta3D is considered as a potential engine to be used to meet the 

objectives of this project. 

Unity 

Unity is an integrated authoring tool for creating 3D video games or other interactive 

content such as architectural visualizations or real-time 3D animation [“Unity”] [Craighead et 

al.].  The most prominent features of Unity that makes it highly desirable for this research project 

are the game editor, web player, graphic engine, audio system, and a terrain and vegetation 

engine.  
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NeoAxis 

Neoaxis created by the Neoaxis Group is an integrated development environment and 

gaming engine that allows developers to create games, simulations, and visualization tools 

[NeoAxis Group, 2010] [. Similarily to the aforementioned gaming engines, Neoaxis implements 

many features that promote fast development and graphic rendering. Neoaxis provides 

developers with the following capabilities [NeoAxis Group, 2010]: 

 Neoaxis provides a set of visual tools that enable the developer to build game 

level maps, interactive capability, and management of the 2D interfaces of the 

game.  

 

 Neoaxis provides a height-map based landscape editor. 

 Neoaxis provides a GUI editor for creating GUI Editor that allows developer to 

create end user controls, menus, dialogs, windows, screens, and an in game 3D 

GUI.  

 Neoaxis also provides a terrain editor as a landscaping design tool. It supports 

geometry and painting alpha layers onto the terrain to control blending collision 

data and support of detail and normal maps. 

 From the programming perspective with Neoaxis there is no compile time. 

Runtime simulation is instantaneous to allow interaction within the gaming 

environment and maps. 

 Neoaxis supports 3D packages from different 3D software modeling packages 

such as 3D Studio Max, Maya, and Blender. 

 Neoaxis can be deployed within all major web browsers.  

Neoaxis has many more features that make it a highly favorable gaming engine to 
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consider. One of the most important features that Neoaxis has is its ability to be integrated into 

other applications. This feature is the main feature that made this a great gaming engine 

candidate. Neoaxis allows ease of integration into application frameworks for the creation of 

windows application. It uses WinForms integration as well as providing 3D widgets that are 

useful when creating simulation, graphics, and visualization tools to develop web applications 

projects that are quick and seamless. Neoaxis also uses the powerful .NET based API scripting 

for any .NET language support. It supports rapid development by promoting decoupling 

techniques and code reuse [NeoAxis Group, 2010]. For these many reasons this engine was 

highly considered as a potential candidate for this project. 

OpenSimulator  

OpenSimulator (OpenSim) was the last gaming engine evaluated for this dissertation. In 

2007, Linden Lab open sourced the client software program. Then in 2009 they released the 

server program thus creating the open source version of SecondLife, OpenSim [Fiskwick, 2009]. 

OpenSim is a multi-users and multi-platform 3D web application server. It allows development 

of virtual environments to customized worlds based on technology that is easy for them.  

OpenSim is easily extensible because of the basic approach taken when the application 

was developed. Like Neoaxis, OpenSim is written in C# and has the capability to run on 

Windows and Unix-like machines through the use of the .NET framework and Mono Runtime 

framework. The better feature of OpenSim is that it is truly an open source engine provided by 

Berkley Standard Development (BSD). This license allows developer to create seamlessly 

application by providing an easy way to integrate other modules plug-in to the application with 

source code at their disposal. Because of the many features that allow it to be extended OpenSim 
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was the game engine of choice for this dissertation. 

Game Engines Evaluated and Tested 

The first gaming engine that was used to render or draw the results of the output/height-

map was Unity. As mentioned before, the Unity gaming engine was chosen for several reasons. 

Unity runs on many platforms such as handheld devices, mobile devices, and PCs. It can be 

executed on many operating systems. The main reason Unity was initially considered for this 

project is that it can be executed on the web.  

Although Unity provides many features such as an editor, basic terrain environments and 

vegetation libraries, it had to be modified for this project. The component or code that had to be 

added to Unity is the capability to allow users to create and accept other forms of terrain data. 

The input component created allows the user to create a height-map, which is used as the gaming 

engines input data to render user specified terrain.  

Although the Unity gaming engine provided many features, it had to be abandoned for 

this project. There were costs associated with the main components needed to create a 

customized terrain. Unity provides the functionality that will allow terrains to be imported and 

customized, but other components are not available to be modified. The free, available gaming 

engine, Unity, allows the user to view terrains but customization of textures, vegetation, and 

other objects is not allowed. Developers are not allowed access to the source code. The feature in 

which a user can use native libraries to enhance functionality is available with Unity Pro which, 

is offered at a price of $1200. Two of the main objectives of this project when choosing a 

gaming engine are to allow users to customize objects to be added to a scene of the 3D 

environment and to use free, open source code which allows modification with few stipulations 
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and no fees. The next gaming engine that was tested is the Cafu gaming engine [Carsten Fuchs 

Software, 2010].   

The Cafu gaming engine was initially evaluated for many of the same reasons that Unity 

was evaluated. Cafu provided networking capabilities, large terrain rendering, and great 

documentation as well as had many tutorials, and is open source. One major issue that was found 

with Cafu is that it was not completely open source. Another issue was that designing a web 

application with the gaming engine required that the code be built around the gaming engine 

which leads to tightly coupled code. This makes it hard to reuse code as well as maintain, and 

debug code. Also the gaming engine required addition programming languages to be learned as 

well as additional code to be integrated to use the most important feature, the terrain rendering 

feature.  

Another gaming engine that was used and tested was Neoaxis [NeoAxis Group, 2010]. 

Neoaxis is a proprietary based gaming engine. It comes with different licensing offers. The free, 

noncommercial open- sourced gaming engine promotes object-oriented programming, code reuse 

and loosely coupled programming design. NeoAxis is a windows-based system so each 

individual module can be built and integrated with it seamlessly [ NeoAxis, 2010 ]. Neoaxis uses 

C# that is the language of choice for this dissertation. It has many of the benefits of C++ with the 

advantage of memory management, strong typing, and automatic garbage collection. These are 

only a few features of the many found to be of value. The API used was OpenGL for graphics, 

this allowed rendering to be programmed and provided direct access to features and 

programming of the graphic card. The major drawback with NeoAxis was the cost associated 

with developing a customized graphic application.   
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 The gaming engine that was used for this dissertation provided many benefits that led to 

it being the primary gaming engine of choice for this dissertation. OpenSim lends itself well to 

being extended by allow module plugins. OpenSim is the open source version of the most 

popular virtual world SecondLife [Fishwick, 2009]. Many of the standard features of the gaming 

engine have the same architecture as SecondLife game engine. The physics engine and collision 

detection algorithms are from the well-known engine Havok [Hand] [“Havok”].  The 

communication protocol is the typical internet communication protocol TCP/IP.  The built-in 

capabilities of the OpenSim gaming engine mimic that of SecondLife.  The language that was 

used as the backend for OpenSim is C#. This only increases the probability of ease of integration 

with other components used for this dissertation. 

Details of the implementation/use of the chosen gaming engine will be discussed in the 

methodology section. Each component created, used, and enhanced, in addition to the gaming 

engine itself, are evaluated and documented within a software development lifecycle framework 

section of this dissertation. Applying the SDLC process to develop CONCEPTS3D components 

increased the productivity and the correctness of the design of the entire integrated system.  

Data and Data Processing 

One of the main challenges of this dissertation as well as many other applications that use 

data supplied to the game engine for terrain or environment rendering is the dataset itself. Before 

the data can be used by the gaming engine renderer, many datasets must be created, modified, 

and/or enhanced. The data supplied to the gaming engine in this case comes from various sources 

such numerical models, satellite, DEM, and remotely sensed data, each of which poses additional 

challenges. For this dissertation the data was obtained from either satellite or digital elevation 
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model (DEM), surveys, and the CONCEPTS simulation model data.  

Digital elevation models (DEM) or digital terrain models provide only the height of the 

ground surface being investigated. This is an issue because the data from DEM are not sufficient 

to create a realistic 3D object for displaying the topography of a terrain. Therefore, a data set 

must be created. From the cross-section data file the information was extracted about the channel 

that lies in the terrain. Combining the dataset about both the floodplain and the channel presented 

a representation of the information needed to construct a 3D model of the terrain for the gaming 

engine.  

The problem with the DEM data is that it is in the form of an Environmental Systems 

Research Institute (ESRI) grid file format. This data file and format poses a challenge and 

requires further enhancement. The ESRI file format provides only the z value for the terrain 

topography. The x and y values will have to be calculated based on the z value to obtain the three 

coordinate values to create a 3D model. How this calculation was performed is given in detail in 

the implementation segment of the methodology section. 

The data provided from the XML, DEM, and CONCEPTS cross-section files each 

provide its own obstacles. Within the CONCEPTS DEM and cross-section file there exist data in 

the file that represent the x, y, and z data values of the terrain and the channel being modeled. 

These data values are represented as easting, northing, and elevation respectfully. Both the DEM 

and the CONCEPTS cross-section dataset must be extracted or parsed to extract the correct 

information to supply to the gaming engine. How each challenge is addressed is the subject of 

the methodology section of this dissertation.  

The techniques used to enhance the data set include interpolation and triangulation 
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methods. Interpolation is the method of constructing new data points within the range of a 

discrete set of known data points. There exist many forms of interpolation. While there are many 

interpolation method including piecewise constant interpolation, linear interpolation, polynomial 

interpolation, bilinear, trilinear interpolation, and spline interpolation, the interpolation methods 

used in the work done for this dissertation is bilinear interpolation. The other method that was 

used to enhance the discrete data sets is the triangulation method. Triangulating data is the 

process of determining the location of a point by measuring angles to it by known points at either 

end of a fixed baseline [Rui et. al.]. From the perspective of geometry, triangulation is the 

process of subdividing an object into triangles or tetrahedrons. The triangulation method used 

here is Delaunay triangulation. Details of each of the methods and how and why they are used 

are discussed later in the methodology section of this dissertation.  

To obtain the points necessary for visualization, linear interpolation of the data points 

from two known points is determined. Linear interpolation is the easiest to understand and 

implement when choosing among several interpolation methods. Interpolated data between two 

points is a straight line connecting those two points. Although this method is simple to grasp, it is 

highly error prone especially in terrain models. Another drawback to this method is that it does 

not provide a smooth curve data set. Better interpolation methods to produce continuous, smooth, 

and curvature data set are bilinear interpolation and spline interpolation. 

Spline interpolation also calculates new data values from existing data. Spline 

interpolation, (as it is suggested from modeling objects using the spline technique), is based on 

curve fitting [Ding and Rossiter, 2007]. Spline interpolation is a form of interpolation in which 

the interpolation is a special type of piecewise poloynomial called a spline [Grevera et al., 1998]. 
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Spline is preferred over polynomial interpolation because the interpolation error can be made 

small even when using a low degree polynomial for the spline. Another benefit of spline 

interpolation is that it avoids the problem known as Runge’s phenomenon, which occurs when 

interpolates between points, have equal distance with high degree polynomials.  

Bilinear interpolation was the interpolation method used on the data set for this 

dissertation. Bilinear interpolation is an extension of linear interpolation meaning that instead of 

interpolation done in one direction, interpolation is done in both the x and y direction. Bilinear 

interpolation produces smooth and continuous data, which produces a realistic dataset for 

rendering in 3D visualization. Bilinear interpolation performs interpolation by using four points 

that are known and finds the weighted approximate value of the unknown points to provide an 

additional point for the discrete data set. Because bilinear interpolation is designed for rendering 

3D data this was the interpolation method chosen.  The final method that was used to enhance 

the data set supplied to the gaming engine is a triangulation technique called Delaunay 

triangulation. 

In this case, Delaunay triangulation involves the process of subdividing a polygon (here 

in a 3D terrain) into triangles with the stipulation that any point in the plane does not belong 

within the circumsphere of any other point within the same plane. Remembering that our goal is 

to move from 2-D data to realistic 3D data, it can be seen that the Delaunay triangulation now 

provides a method for increasing the granularity of the data by further subdividing the initial 

triangle into even smaller triangles that meet the criteria of staying within the 2D dataset while at 

the same time providing more information to the rendering engine.  There are many efficient 

algorithms that exist for Delaunay triangulation [Razafindrazaka, 2009]. The drawback of the 
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Delaunay triangulation algorithms is that for some cases it may not be able to produce a 

Delaunay triangle [Daintith , 2004]. Since the focus of this dissertation is the dimension of the 

data, three dimensions, producing triangles using Delaunay triangulation is not an issue. To view 

the object rendered by the Delaunay processing, barycentric interpolation was perform to the 

data.  

From each of the above techniques the positive outcome of the new data set is that it 

produced a better image resulting in a more realistic model. The drawback was the more data 

produced, the slower the processing of the data as well as the increase of space required for 

storing the data.  

For drawbacks of large datasets produced, there are many known techniques used for 

solving the problems related to the visualizing and modeling of larger 3D terrains [Han et. al., 

2003], [Lim and Choi, 2008]. Methods such as using triangle patches and cutting triangles within 

a dataset have been shown to render better 3D models [Lim and Choi, 2008], [Sanders et. al, 

2000]. Cutting triangles based on the level of detail (LOD) is the technique used by the gaming 

engine used within this dissertation. This solution is chosen because it improves the image being 

rendered and stored by eliminating polygons based on what the human eye and brain perceives 

as necessary to view a model or object correctly in 3D.  

The methodology section will discuss the game engine used as well as the data 

enhancement techniques used to render the 3D environment from the CONCEPTS model in 

greater detail. Also each objective and solution for each task for developing CONCEPTS3D is 

given in significant detail in the methodology section.  
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CHAPTER III 

METHODOLOGY 

 

 In this Chapter, a description of the procedures and tools used to develop the 

CONCEPTS3D model are discussed. Several objectives were articulated for this dissertation.  

The main objective was to provide the user with a tool in which the CONCEPTS model data 

could be displayed in a 3D virtual environment using gaming engine technology.  The 

CONCEPTS3D desktop application allows the user to manipulate, store and access CONCEPTS 

data in a database. The CONCEPTS3D model also allows the user to view the topography of the 

terrain and channel being analyzed and modeled in 3D. The procedure and tools used to realize 

each objective will be discussed in detail here (See Figure 4). A map of the procedure is provided 

in Figure 4 on page 54. 

The first objective was creating the database schema based on the XML Scheme 

Definition (XSD) file that provided all the data relating to CONCEPTS. This XSD file provided 

the mechanism to allow the viewing all of possible combinations of XML files of CONCEPTS 

data. The XSD file used to create the XML files provided the relationships to each CONCEPTS 

table in the XML file. After data was parsed from the XML file (A) the data is stored in the 

CONCEPTS MySQL database (G). (See figure 4)  

The second objective was to create three parsers to extract information from the XML 
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(A), DEM (B), and cross-section (X-Section) (C) files. The DEM (B) and X-Section (C) files 

were parsed for 3D information about the terrain being visualized. The DEM (B) file provides 

information about the terrain floodplain of the associated XML (A) file. The cross-section (X-

Section) (C) file contains information about the channel that lies within the terrain. Once 

information was extracted from the DEM (B) and X-Section (C) files, these files were merged to 

create an integrated topography of the terrain under investigation (I) to be visualized in 3D.  

 

 

 

 

 

 

 

 

 

 

 

 

The implementation details of each parser component are given in greater detail in the 

implementation section titled Creating Concepts3D: SDLC section. 

The third objective was to use the information provided from both DEM (B) and X-

Section file (C) to create a HeightMap (H) file. The bitmap file, used for displaying purposes, is 

 

    
 

Figure 4:  Data Processing Map of Extracting, Moving, and Converting CONCEPTS 

Data 
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a visual representation of the HeightMap (H). The selected area of the bitmap image was used to 

create the native file format HeightMap RAW32 (J) file used by the gaming engine 

OpenSimulator (OpenSim) (K). Each objective implementation is given in detail in the 

implementation/code portion of this section.  

The fourth objective was selecting an Open Source gaming engine that will allow the user 

to visualize CONCEPTS data in a 3D virtual world. Among the many gaming engine OpenSim 

was the engine of choice. OpenSim is the open source version of SecondLife, which is the most 

popular gaming engine [Fiskwick, 2009]. OpenSim was created by Linden Labs and available 

through BSD open source license. A few of OpenSim built-in capabilities allow navigation 

within the space, change of scene for clearer visual of the space, snapshot of the area being 

analyzed,  and visualizing on-the-fly terrain updating. Many of the built in features of this 

gaming engine features presented by OpenSim mimics that of SecondLife.  

The final objective was creating the desktop application that will allow the user to 

interface with the underlying components of CONCEPTS3D (E). The desktop application 

provides the ability to select files to visualize in the virtual world. The components are three 

parsers (D, E, and F), a HeightMap (H) generator, and the gaming engine (K). The parser is 

written using a .NET framework programming language - C#.  There were also functions 

developed to enhance the data from CONCEPTS. As discussed earlier, these functions use 

interpolation and triangulation methods. After the data is enhanced, the data is saved as a 

HeightMap Raw32 (J) that was used by the gaming engine. The gaming engine, OpenSim, 

renders the HeightMap Raw32 (J) file into 3D. Some of the file formats that the game engine 

allows for 3D objects in OpenSim are .bmp and .raw for better quality images. Details of the 
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implementation process are given in the implementation/coding section under developing 

CONCEPTS3D software development lifecycle.  

 

Developing CONCEPTS3D 

To build a prototype of the new, innovative tool, CONCEPTS3D, there are many tools 

and techniques used and built to integrate the components for the new model. CONCEPTS3D 

allows the data of CONCEPTS XML, DEM, and cross-section files in a desktop application 

window panel in 3D. The steps to complete these objectives were listed as follows: 

1. Components were written to extract CONCEPTS data that was modeled in 3D. 

2. The data from CONCEPTS was maintained in a MySQL database. Therefore, a 

database schema was written to represent the CONCEPTS/CONCEPTS3D data. 

 

3. The data set was created and enhanced using an interpolation and triangulation 

method. 

 

4. The CONCEPTS model data was available for testing the CONCEPT3D application. 

 

 

5. The data of CONCEPTS was parsed to get the terrain topography for the evaluated 

stream. 

 

6. The two input files DEM-terrain and X-Section file were merged to create a file of 

the full terrain topography under investigation.  

 

7. Code to visualize the data was written to be viewed with the OpenSim gaming 

engine.   

 

8. Each component of the new CONCEPTS3D model was tested.  

 

Each component added to the game engine was evaluated and documented according to 

the software development lifecycle. Applying this process to develop CONCEPTS3D 
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components increased productivity and insured correctness for the design of the entire integrated 

system.  

Creating CONCEPTS3D: Software Development Lifecycle 

 Developing software requires programmers to follow specified steps based on some form 

of software engineering practices and principles. Studies show that following software 

development guidelines shortens the software development time, reduces coding errors, and 

reduces debugging time. Many software development processes and guidelines exist. For this 

dissertation the waterfall model was followed. 

  

 

 

 

 

 

 

 

 

 

The steps that are discussed for the development of CONCEPTS3D are listed as follows: 

1. Specification and Requirement 

2. Design 

3. Implementation/Coding 

 
 

Figure 5:  Waterfall SDLC Model [Gangolly, 2000] 
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4. Testing 

5. Maintenance 

6. Validation and Verification 

7. Acceptance 

Each of these steps is discussed in greater.   

Before the software development lifecycle (SDLC) begins the developer must first 

understand the problem to be solved.  

System engineering and Analysis 

The software engineering SDLC begins. In the system engineering and analysis phase 

begins with the software components that interact with one another are evaluated. System 

engineering and analysis entails gathering requirements at a system level. The developers 

establish what is required for the system elements. For this dissertation research the 

CONCEPTS3D desktop application, data extraction components, database management system 

MySQL, and rendering engine module were integrated.  

Components are required to run on Windows 95 or later operating systems. The amount 

of hard disk and memory space will depend on the size of the problem being calculated. The 

integrated model requires the user to have a minimum of 32 MB of RAM. To use the integrated 

model, the CONCEPTS3D desktop application installed on the user machine, the game engine-

OpenSim will run inside of that CONCEPTS3D desktop application. 

Specification/Requirements  

In the second phase, specification and requirement analysis, developers focus on 

gathering specifications for the software. The developer must understand the domain and all 
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requirements for the software, the function, performance, and interfaces. Requirements for both 

the system and the software are documented and reviewed with the client (USDA).  

Currently, CONCEPTS requires at least four input files created by the user: 

1. one input file with run control data 

2. one input file with discharge data at the upstream boundary of the modeling reach 

3. an input file for each cross-section in the modeling reach 

4. an input file for each hydraulic structure in the modeling reach 

In the integrated model, the CONCEPTS numerical model data is the only information 

used to execute the CONCEPTS3D model. To execute CONCEPTS3D, the user is required only 

to provide a DEM file and an X-Section file, to visualize the terrain in 3D.  Much of the 

conservation measure information required for CONCEPTS is specified by default for the 

CONCEPTS3D application, which is stored in a database. The desktop application that was 

created for CONCEPTS3D requires the user to provide the input file about the terrain 

topography. This information was parsed so that the CONCEPTS3D terrain parser component 

would extract the information required for 3D rendering.  After the CONCEPTS3D parser 

component has executed, the output of the application was made into a HeightMap/bitmap file 

that was used as input to the game engine.   

Figure 6 below shows how the raw data, DEM file (A), is transferred into a bitmap file 

(B), which is used by the OpenSim gaming engine (C) to render a subsection of the bitmap as a 

virtual reality terrain of the DEM information (See Figure 6).  
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Design 

The design phase is a multi-step process that focuses on four distinct attributes of a 

program. These four attributes are the data structures, software architecture, procedural detail, 

and interface characteristics. The architecture of this project is shown in the Figure 7 below.  

  

 

 

 

 

 

 

 

 

 

Figure 6:  File format process before Virtual Environment Rendering by OpenSim 

 
 

 
Figure 7:  Flowchart of CONCEPTS3D Architecture 

 

A B 

C 
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The information from CONCEPTS is inserted, maintained, and accessed from the 

MySQL database (E) (See Figure 7). The desktop application created for CONCEPTS3D allows 

the user to extract certain information from the DEM file (B) and cross-section file (C) - such as 

the terrain topography and channel topography. When executing the CONCEPTS3D model 

desktop application three files are used, the data files DEM (B) and X-Section (C) and XML file 

(A).  Once the XML file is parsed by the parser component (D) the resulting XML (A) 

information is inserted into the MySQL database, the DEM (B) and X-Section file (C) that are 

the associated file of the XML (A) file are used by the parser component. The parser creates a 

HeightMap/bitmap file (G) from the DEM (B) and X-Section (C) files that was used as input for 

the OpenSim game engine (K).  

Once each component was performing as expected, they were combined based on the 

pipeline describe above in Figure 7. The integrated system allows the user to view CONCEPTS 

data in a seamless virtual realty world --CONCEPTS3D. In this environment the user is allowed 

to interact in the 3D space, walk or navigate within the environment, and select a smaller region 

to investigate the topography in the larger terrain.  Figure 8 below shows L of figure 4 the 

prototype opening screen of the entire integrated system. 
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Implementation/Coding 

In the implementation/coding phase, the algorithms developed by the software developer 

or programmer must be translated to machine-readable code.  For this dissertation the .NET 

Framework is the basis for the entire infrastructure of the CONCEPTS3D application. The 

language used for writing the application is C#. The Graphics API used with C# for the graphics 

component was OpenGL. Making the entire system windows based by using the .NET 

framework has proven to have many benefits. One major drawback of using .NET is that it is not 

supported by many operating systems, thus limiting the user to using windows based machines. 

Creating the application based on .NET from a software engineering perspective allows 

the program to be more robust, increases interoperability, permits easy integration with other 

 

Figure 8:  Prototype CONCEPTS3D Desktop Application 

 



 63 

 

 

Windows applications, increases code reuse, reduces bugs, and allows for quick discovery and 

fix of bugs once found. Integrated components are seamlessly merged and were found to work 

correctly because of the common underlying infrastructure available by .NET. .NET uses the 

Common Runtime Language (CRL) as the underlying architecture of the .NET framework. The 

CRL is the virtual machine that manages code and translates code to the native machine 

language for execution. This component allows the user to use the .NET language of choice for 

components developed for any application.   

Experience shows that integrating components can be a difficult task. This is very much a 

factor in integrating applications with a gaming engine. This is because in many applications 

those integrated components are written to be tightly coupled within the application.  It has been 

found that applications have to be hardcoded to work with the gaming engine systems correctly, 

thus creating a tightly coupled application. Maintaining and upgrading these systems is tedious. 

Bug repair is also cumbersome, inevitably requiring the entire system to be rewritten, wasting 

both time and money.  

Developing loosely coupled applications is preferred. Separate modules that work as 

individual components allows the developer to focus on the logic of the application integrated 

with a gaming engine.  This is the primary and valid reason the .NET framework was chosen as a 

basis for the entire CONCEPTS3D application.   

Each component written used the .NET framework language. The desktop application, 

parser component, bitmap, and HeightMap file generators were all written in C#. The gaming 

engine OpenSim’s underlying infrastructure is also written in C#.   

In essence, there are two parsers. The first two parsers takes the DEM file and cross-
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section file, then extracts the appropriate information to create a 3D model.  The second parser 

extracts data from the CONCEPTS XML file to store into the MySQL database. The XML/XSD 

file has tags that describe the input information for CONCEPTS data. See figures 9 and 10 

below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  CONCEPT XML File 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 CONCEPTS SAMPLE XML FILE 

 

 

 

 
 

Figure 10:  CONCEPTS XSD file 

 

Each element Tag of the 

XML file is a field in the 

MySQL database. The value 

between the element tags is 

the information stored for 

each element. 

content 

Element 

start tag 
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XML Parser 

 The XML parser CONCEPTSXMLParser was created to extract information from an 

XML file to be inserted into the MYSQL database. The information that was obtained in the 

XML file is information about the environment being assessed and evaluated to create a 

successful stream restoration plan. Once the information is extracted, it is inserted into a database 

called CONCEPTS. The XML file has much database relational information, which is defined in 

the XSD (XML Schema Definition) file. The structure of each table relationship must be 

maintained so that information in the XML file is extracted and stored in a manner consistent 

with the XSD file.  

The predefined classes used within the parser are the Collections Dictionary class and 

MySQLConnection class. The parser class also has user defined classes XMLLoader, Document, 

and Element. The MySQLConnection class was used to connect to the database.  This class 

allows for many of the database functions such as SQL insert to be performed. The Dictionary 

class was used to maintain all the many-to-many and some of the one-to-many database table 

relationships. The user defined classes XMLLoader, Document, and Element were created to load 

and build the XML data. The Element class is where the majority of the data extraction takes 

place. 

The Element class is used to represent each individual element (or tag) in the XML file. 

This class allows access to the data within the element. It also allows access to the parent and 

children of each element through the getParent, getChild, and getChildren methods defined in the 

Element class. Starting at the root element a depth first search exploration is used to traverse 
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each element listed under the root element and parse through the information. The relationships 

of the elements with each other are defined within the XSD file. Within the XSD file a many-to-

many relationship among the elements is defined by the presence of maxOccurs = “unbounded”, 

ecore: reference = “-“, and type = “xsd:URI” in the tag attributes. See figure 11 below.  

 

 

 

 

 

 

When these elements are encountered in relationships, they are represented by the ecore 

reference id which is a unique identifier within the XML file (shown highlighted in blue in 

Figure 11). These unique identifiers are nested within all of the elements and, within these 

elements have a relationship. Because the relationships in the XML file must be maintained in 

the database and each element’s information is only visited once but may be referenced several 

times, it then becomes necessary to save the element’s primary key after it is inserted in a table 

for later foreign key insertions. 

 

 

Figure 11:  XML Example of Ecore Reference ID located in XML file 
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Each element’s ecore reference ID is mapped to the database table’s primary key and 

maintained by a .NET Dictionary object. The .NET Dictionary class holds the collection of 

key/value pairs where the ecore reference ID is the key and the database primary key is the 

value. When an element’s ecore reference ID is found in the XML file, the primary key is found 

and is easily inserted to indicate the relationship in a table. See figure 13 below for an element 

represented by its ecore reference ID in an XML file. 

 

 

 
 

Figure 12:  XSD with maxOccurs= unbounded for many-to-many relationship 
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This string is used as the key value for the Dictionary key/value pair variables. The 

primary key that was generated when the element was inserted into the database is used as the 

value variable of the Dictionary key/value pair. For example the dictionary [xsid] is equal to a 

primary key that appears as dictionary [#//@conceptsmodel/@data/@reaches/@reaches.0] and is 

equal to primary key 97, this primary key is auto-generated by the database.  Figures 14, 15, and 

16 below show the function used to insert the information into a database, the database table 

definition for the channel model table, and the entities’ relationship. 

 

 

 

 

 

 

Figure 13:  XML File Example of Many-to-Many ChannelModel_Reach 

mailto:#//@conceptsmodel/@data/@reaches/@reaches.0
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Figure 15:  Implementation to store key/value pairs in dictionary class for Many-to-Many 

 

 

 

Figure 14:  Reach-Channel Model Data Definition 
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Storing the information using the Dictionary class allows for faster mapping and lookup 

operations of the XML file many-to-many and some one-to-many relational information. For all 

elements visited within the XML file they are extracted and stored into the database 

CONCEPTS. Again, the XML parser was only created to extract information about the terrain 

being investigated and the database was only created as a repository to house detailed 

information pertaining to the terrain.  

Algorithm for the DEM files Parser 

The second parser extracts data from the DEM file. The DEM file format is based on the 

ERSI file format and contains six fields in its header. The ncols field represents the number of 

columns the image or grid has. In the case of using an array the number of columns the 2D array 

would have. The nrows field represents the number of rows. The xllcorner and yllcorner are 

fields are the easting and northing coordinates of the lowest, leftmost point on the grid. The 

 
 

Figure 16:  EER Diagram Showing the Reach-ChannelModel Relationship 
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cellsize indicates the length of one side a square cell of the grid. The NODATA_VALUE 

indicates a value that is given to cells with no known data.  Figure 17 and 18 shows the DEM file 

format and a 2D array logical data structure representation. 

The DEM file contains z (elevation) values.  From the DEM file the x (easting) and y 

(northing) values are determined by the z value’s position in the DEM file. The natural fit for this 

data is a 2D array. See figures 18 below. The values are used to produce a grayscale bitmap and 

raw HeightMap file from the elevation data. The idea is to use this information from the raw 

HeightMap to create a virtual reality terrain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17:   ERSI Grid File Format 
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The parser is implemented by first reading the ASCII (DEM) file header and extracting 

its field values. After this, the parser searches each individual line and separates the values on the 

lines based on the space delimiter. The native coordinate system of the DEM file is not 

preserved. The native coordinate system is not applicable because the coordinate system for the 

new files created starts in the upper left hand corner and goes rightward and downward. The 

values in the DEM file are read in the same manner.  The values are then placed into a 2D array 

used for creating a grayscale bitmap for display. After the bitmap is displayed a 256 X 256 pixel 

area is selected from the image. Each pixel represents 1 square meter. The 256 X 256 pixel area 

becomes a data subset from which a Raw32 file is created for the gaming engine. 

Algorithm for Creating a BitMap from the DEM File 

For creating a bitmap, the module starts by retrieve the image range, by taking the lowest 

and the highest elevation read. Then dividing the image range by 256 provides the scale factor 

 

 

 

Figure 18:  2D Array of DEM Grid File 
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for the objects in the in the virtual environment. When processing each value in the 2D array, 

each elevation value has lowest elevation in the entire dataset subtracted from it to calculate a 

range starting at 0. Once the lowest elevation is subtracted each value is then multiplied by the 

scale factor. This range value ensures that the value falls in the range of 0-255. This value 

provides the best contrast for a grayscale bitmap. If the values are within a small range it is 

harder to distinguish the different elevations within the bitmap. For example given the smaller 

range 0-20 when all values are close together the contrast between colors is very close where 

distinction could not be made, but when scaled to 0-255 a greater variation of the black and 

white colors are applied.  Therefore, using greater variation, distinction can be better determined 

because the low values are darker and the high values appear lighter.  See figure 19.  

 

 

 

 

 

 

 

 

 

 

Each value calculated is used for pixel color values in the bitmap. The code starts with 

the first cell in the 2D array and applies a grayscale color value to a pixel based on the 0-255 

  

Figure 19:  Resulting BitMap File of DEM Data Using Algorithm Above 
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range value. This scaling operation is done using the equation below. 

pixel value for all the channel = (value in 2d array – lowest elevation) * scale; 

The bitmap is initialized with the same dimensions as the array. The coordinate system is 

the same where the top leftmost pixel is (0,0) and the x values increase to the right and the y 

values increase going down. When there is no data value assigned in a cell the color appears 

black. Once processed the bitmap image appears in a window pane called the Image Viewer.  

See figure 20. At the current time the image viewer renders as a separate window when the 

CONCEPTS3D desktop application is executed. 

 

 

 

  

 

 

 

 

 

 

 

Once the image is in the Image Viewer, the user can click the mouse in the panel. A 256 

x 256 rectangle box will be drawn around a specified area from here, and then a RAW32 image 

is created to be used by the gaming engine. See figure 21 below. 

 

Figure 20:  Grayscale BitMap of the Integrated XSection and 1 Meter Dem File 
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Algorithm for Creating the X-Section Parser 

 The X-Section parser was implemented much like the DEM parser. However, here the 

file format already had x, y, and z, coordinates embedded representing easting, northing, and 

elevation respectfully. (1) The X-Section parser component starts by reading the file and 

extracting each value in the line of the comma separated file. (2) Once this data is extracted, it is 

stored in a list of a user defined Point3D objects. The Point3D class has x (easting), y (northing), 

and z (elevation properties for storing data). (3) This data is merged with the DEM file data by 

looping through the POINT3D list merging the PointList with the DEM information. The x and y 

coordinates tell us where in the 2D array to insert the data value. However, because the gaming 

engine’s coordinate system cannot go lower than a square meter and the X-Section file have 

easting and northing values in fractions of meters there is a significant loss in precision. The 

 

Figure 21:  Selected 256 X 256 Area of the 5 Meter Dem File 
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decimal portion of the easting and northing values is truncated. This loss of precision ultimately 

causes the X-Section data to overwrite existing DEM file data. (This loss of data precision does 

not affect the visualized object.) The z value is scaled down in a similar way to the DEM file 

parser.  Once this elevation value is calculated, it is placed directly in the array, based on the x 

and y value (i.e. elevationData[x,y] = elevationValue).  

Algorithm for Creating the Raw32 File 

The RAW32 file is created from a subset of the 2D array of the DEM file data and is 

based on the location of the 256 X 256 area selected within the bitmap (See Figure 22).  

 

  

 

   

 

 

 

 

 

 

 

  

  

   

 
 

Figure 22:  BitMap 256 X 256 Area Selected 
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The RAW32 file module loops through the subset of the 2D array. Each value is written 

to the RAW32 file as a single precision floating point binary number.  

The proof of concept to visualize CONCEPTS 2D data as a 3D terrain in a virtual world 

began by trying to open the bmp files created by the heightmap generator see figure 7 on page 60 

in the game engine, NeoAxis. There was no success with the NeoAxis gaming engine because 

this particular gaming engine requires an unorthodox file format to render a terrain. This effort 

made clear the fact that a standard file format had to be designed and used throughout the rest of 

this project. So another gaming engine was chosen, which was also based on the .NET 

framework called OpenSim. 

This gaming engine provided a way for the proof of concept to be validated with a variety 

of common image formats. The first format tried was the bmp format because of its ease of use; 

this format worked. Terrain size appeared to be limited to 256X256 pixels. Looking at sample 

data of OpenSim terrain files showed that with the RAW32 file format, the user was allowed to 

load larger terrains and this was desirable.  

Inspection of source code made it clear that the RAW32 format was the native format 

used by the gaming engine to represent terrain height values. Data values in the other file formats 

such as bmp, gif, png, and tiff needed some form of conversion before being used by OpenSim. 

With the RAW32 format, the floating point values are read directly from a byte stream. Each 

value in the RAW32 file is represented by an IEEE 32-bit single precision floating point number.  

Before the above process was completed the first task performed was creating the 

database that was used to maintain CONCEPTS and CONCEPT3D data. The database 

management system used for this project was MySQL. The existing CONCEPTS XSD was used 



 78 

 

 

to create the relational schema, table formats, and queries. 

How CONCEPTS should be executed was the next decision that was made. CONCEPTS 

can be executed in two ways. CONCEPTS can run as a standalone model, which requires the 

user to download CONCEPTS on his or her machine. The second technique was to run 

CONCEPTS via the web. The results from the CONCEPTS simulator are saved in the database. 

Currently, the results produced from the CONCEPTS simulator generate a text file that is saved 

in an SQL database. Currently, the output of the simulator is imported into a spreadsheet 

application. From the spreadsheet application the user can view the results in plot or graph form 

(See Figure 23). 

 

 

 

 

 

 

 

 

 

 

 

 For testing CONCEPTS3D, executing CONCEPTS as a standalone desktop application 

was not required. Much of the data for testing CONCEPTS3D was provided by the researchers at 

 

Figure 23:  CONCEPTS Data Display in Excel 
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the Sedimentation Laboratory. The data provided was an XML file, DEM 1 and 5 meter text file, 

and an EXCEL X-Section file.   

Data Enhancement 

Before rendering the 3D terrain for CONCEPTS 2D 5 meter dataset, the information or 

data supplied to the gaming engine must be modified and enhanced using bilinear interpolation 

and Delaunay triangulation. The first file modified was the CONCEPTS DEM file. This file only 

supplies the z data value for the 3D model to be rendered. The x and y value must be determined 

by the location of the z value within the DEM file, see figure 18, page 72. With the x, y, and z 

values obtained, a 3D model can be created from the available information. From here, data 

enhancement techniques are performed by interpolation and triangulation methods to create a 

continuous dataset from the discrete dataset. Finally, the dataset points and triangles are reduced 

to optimize computing efficiency and visualization refinement. This function is built-in to the 

gaming engine OpenSim and only had to be accessed with correct data formats. The code for 

each module created can be found in the appendix section on page 118 of this dissertation.  

The other files that underwent similar data modifications and enhancement processes are 

CONCEPTS’s X-Section files. So the data supplied to the gaming engine was provided as two 

separate files. One file is information about the terrain floodplain (DEM) and the other file is 

about the channel X-Section that lies within the floodplain. These two files were merged to 

create one complete file about the topography of the terrain under investigation.  The creation of 

this larger dataset required an additional data processing mechanism before being rendered by 

the gaming engine. See figure 30 (small 5 meter data) and 33 (larger 5 meter data) on page 91 

and 93. 
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Enhancing the data set to achieve and visualize a better rendered image is one of the most 

valuable and important components. Enhancing the dataset with interpolation and triangulation 

produced a more realistic image based on the information provided from CONCEPTS simulation 

model and the other various files. The interpolation techniques used were bilinear interpolation, 

which is an extension of linear interpolation and Delaunay triangulation with Barycentric 

interpolation. Each of the module functions created to enhance the dataset is described in detail 

below.  

Linear Interpolation/Bilinear Interpolation 

Linear interpolation is the easiest interpolation method to grasp and implement.  

Linear interpolation is a method of approximating the graph of a function in between two 

points on the graph by the straight line between them. Linear interpolation is defined as  

given two known points of the coordinate system (x0, y0) and (x1, y1), the linear  

interpolation is the straight line between these two points. To calculate the y value from  

existing values to create a continuous data set the equation is provided below. 

Linear interpolation involves estimating a new value by connecting two adjacent known 

values with a straight line. If the two known values are (x0, y0) and (x1, y1), then the y 

value for some point x is:  

          (Blue Leaf Software, 2010) 

 

The interpolation method used for this dissertation is bilinear. Bilinear interpolation is an 

extension of linear interpolation meaning that instead of interpolation done in one direction, 

interpolation is done in both the x and y direction . Bilinear interpolation produces smooth and 
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continuous data, which produces a realistic dataset for rendering in 3D visualization. Bilinear 

interpolation performs interpolation by using four points known and finds the weighted 

approximate value of the unknown points to provide additional points for the discrete data set. 

Delaunay Triangulation with Barycentric Interpolation 

 Delaunay triangulation with barycentric interpolation was the other method used to 

enhance the discrete data set provided by CONCEPTS. Delaunay triangulation is defined as a n-

dimensional triangulation of a set of points P = (p1,p2,p3,….pN). In other words, Delaunay 

triangulation is a collection of n-dimensional simplices whose defining points lie in P. Simplices 

are the convex region defined by a set of n+1 independent points such as a 1D-point, 2D-line, 

3D-triangle, etc. The simplices do not intersect one another and share only boundary features 

such as edges or faces. Delaunay triangulation has the property that the circumsphere of any n-

dimensional simplex contains no other points of P except the n+1 defining points of the simplex. 

The techniques used to compute the Delaunay triangulation of this dissertation were defined by 

Watson and Bowyer. 

 The algorithms begin by constructing an initial Delaunay triangulation that strictly 

bounds the points of P see figure 24 below. Then each point of P is inserted or injected one by 

one into the current triangulation. If the inserted point lies within the circumcircle of any 

simplex, then the simplex was deleted creating a hole in the triangulation. Once simplices were 

deleted the n-1 dimensional faces of the boundary of the hole along with the inserted point were 

used to construct a modified triangulation. This process continues until all the points were 

inserted into the triangulation. The final step was to remove the simplices connecting the points 

forming the initial bounding triangulation creating the Delaunay triangulation [Schroeder, Marin, 
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& Lorensen, 2004].  

 

 

 

 

 

 

 

 

To calculate more data points for an enhanced dataset, interpolation was performed. The 

interpolation method used after Delaunay triangulation was performed is barycentric 

interpolation. The general definition of barycentric interpolation or barycentric coordinates is 

that it is an interpolation method that uses the three defined points that make up a triangle to 

calculate the unknown points within the triangle. A detail definition of barycentric coordinates is 

stated below. 

Given a 2D triangle with vertices p0, p1, p2 € R. Let x € R be any point in the plane.  

The unknown x value is calculated by: x = αp0 + βp1 + γp2 where α + β + γ =1. 

The point lies within the plane if and only if α, β, γ € [0,1] [McAllister, 2007].  The point 

coordinate is calculated based on it relativity to the three points defined within the plane. 

After these functions were implemented a method was developed to reduce the amount of 

data produced by the interpolation and triangulation methods. The goal was to use a level of 

detail technique to reduce the amount of data needed to render an image and to optimize the 
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Figure 24: Delaunay Triangulation Algorithm [Schroeder, Martin, and Lorensen, 2004] 
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entire rendering and visualization process, this mechanism is provided by the gaming engine.  

Each function for enhancing the dataset is provided in the appendix section page 122 of this 

dissertation. 

Testing 

For the purpose of this prototype development project, all testing was focused on “Did it 

work”, not, “How effective was the resulting product”. Did the application provide a way to 

visualize CONCEPTS terrain data as a 3D virtual reality environment? The prototype of this 

dissertation worked as expected. The user of this application can view CONCEPTS data as a 3D 

virtual environment by using the OpenSim’s gaming engine. The question of the effectiveness of 

this application is outside the scope of this dissertation and can be evaluated for further 

knowledge. 

 In the testing phase of the SDLC, the logical internal software is reviewed and evaluated. 

Each module created is thoroughly evaluated and tested using unit testing. After each individual 

module is combined, then the aggregated system is tested as one seamless and complete model. 

For this project the component-CONCEPTS3D desktop application with each parser unit and the 

gaming engine OpenSim were integrated and tested. The CONCEPTS model runs as a desktop 

application. The datasets used for testing the system was the golf course area of Lake Tahoe in 

California (including the 1 meter and 5 meter DEM file, the combined X-Section and 1 meter 

DEM file, and GC_analysis CONCEPTS XML file). The results of each file are discussed in the 

Results section of this dissertation. 

The gaming engine used for testing was NeoAxis and OpenSimulator (OpenSim). 

Because NeoAxis used an unorthodox file format, creating test cases for NeoAxis were not 



 84 

 

 

achievable or obtainable. Eventually, the OpenSim game engine was the engine used for testing 

all test cases. OpenSim is a multi-user and multi-platform 3D web application server 

[“OpenSim”]. The gaming engine accepted many of the files created to be tested with ease. The 

primary reason OpenSim was used because it was easily extensible because of the basic 

approach taken when the application was developed.  Like Neoaxis, OpenSim is written in C# 

and it also has the capability to run on Windows and Unix-like machines through the use of the 

.NET framework and Mono Runtime framework. The better feature of OpenSim is that it is truly 

an open source engine provided by Berkeley Standard Development (BSD). This license allows 

developers to create seamless application by providing an easy way to integrate other modules 

that plug-in to the applications with source code at their disposal. With using OpenSim, many 

implementation details about how the data is processed before and after rendering takes place is 

provided. This was helpful because the file created for the virtual reality terrain was a 

customized environment. The file format used by the gaming engine was an important factor to 

the success of rendering the customized data. Also scaling an object within the virtual 

environment was important information to know. With the engine being open source many 

cumbersome implementation details are available for developers to modify and extend as 

needed.    

Maintenance 

The final step in the SDLC is the maintenance phase. Software inevitably will need to be 

modified either because of system architecture changes or just code redesign.  The reasons 

software undergoes changes are almost innumerable. Therefore, software must be developed in a 

manner that will allow modification effortlessly. Because the software developed for this 
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dissertation was a prototype, maintenance is not a critical issue at this time.  

Limitations of CONCEPTS3D 

 Currently the limitations of CONCEPTS3D are as follows: 

1. CONCEPTS3D is not accessible remotely; it is only available as a standalone desktop  

    application.  

 2. CONCEPTS3D is only available as a Windows application. 

 3. The terrain rendered by CONCEPTS3D is limited to 256 meters x 256 meters. 

 4. No history of previous terrains rendered is maintained by the application. 
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CHAPTER IV 

RESULTS 

 

The primary objective of this dissertation was to determine if graphically visualizing in a 

3D gaming environment using the data provided from CONCEPTS 2D numerical model was 

feasible. One goal was to take the CONCEPTS data, modify and enhance it to produce realistic 

models of the terrain under investigation, all the while maintaining the integrity of the 

information provided from the CONCEPTS numerical model. To test CONCEPTS3D several 

files were tested: 1 meter DEM data, 5 meter DEM data, the X-Section combined with 1 meter 

DEM data, and the CONCEPTS XML file. The data enhancement techniques, bilinear 

interpolation and Delaunay triangulation with Barycentric interpolation, prove to provide much 

needed data points for the 5 meter DEM sample data used to render a terrain. The results 

received by the data enhancement techniques were required to render the terrain by the gaming 

engine. For the 1 meter sample data provided, these techniques proved to be excessive. The 1 

meter data was the highest precision that can be used by the gaming engine to render a model 

effectively. In this case there was no need to enhance the data because the one 1 meter data 

provided adequate granularity.  

Before results can be viewed, several steps were required to prepare the data for 

rendering by the gaming engine.  
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1. Start the gaming engine OpenSim (Figure 25, page 87). 

 

2. Choose a file for rendering (Figures 26 and 27, page 88).  

3. Log into the image viewer located in the bottom portion of the CONCEPTS3D     

      application window pane (Figure 8, page 62).  

4. The user is then asked to select an area from the file for viewing.  

Each step is shown in the figures below.  

1. The user clicks the start button in the right upper portion of the CONCEPTS3D desktop 

application to start the OpenSim gaming engine. 

2.  Step 2 the user selects a file or files for data processing. Here the user chooses to 

process the 1 meter DEM file and X-Section file. The files are displayed in the left portion 

of the CONCEPTS3D desktop application graphical user interface (GUI). The input box 

is filled with the name of the files being processed. The user then clicks “Go” to start 

data processing. (See figures 26 and 27).  

 
 

Figure 25:   Start of the OpenSim Game Engine 
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3. Step 3 the user presses the image viewer button in the bottom portion of the 

 

Figure 27:  Choose files or a file to render 

 

 

 

Figure 26:  Choose a DEM file for Rendering 
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Figure 28:  View the Selected area as a 3D virtual environment 

 

 

CONCEPT3D desktop application. The image viewer allows the user to view the data 

being processed as a 3D virtual terrain.  

4. The OpenSim displays the virtual environment in the image viewer as a 3D virtual 

environment. 

 

 

 

 

 

 

 

 

 

 

The results above figure 28 reflect the outcomes of processing the 1 meter DEM data file 

supplied to the gaming engine before bilinear interpolation and Delaunay triangulation are 

performed to the dataset along with the image/model produced from it. 
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The next figures show the result from testing the 5 meter data set.  

1. The user selects the 5 meter DEM file for processing (See Figure 29).  

    

 

2. The user then clicks “Go” to start data processing. (See Figure 30). 

 

 

Figure 29:  User Selecting a 5 meter Dem file for Viewing 
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3. Step 3 the user presses the image viewer button in the bottom portion of the 

CONCEPT3D desktop application menu selection pane (See Figure 8 and 30). The image 

viewer allows the user to view the data being processed as a 3D virtual terrain.  

4. The OpenSim displays the virtual environment in the image viewer as a 3D  

virtual environment. 

 

 

 

 

 

 

Figure 30:  The Results of a 5 meter Dem file as a BitMap 
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Figure 31:  Results of Dem 5 Meter Data as a VR Terrain After Interpolation 

 

 

 

 

 

    

 

 

 

 

 

 

 

The result of the parsed 5 meter DEM file without further interpolation is not sufficient to 

render a virtual terrain see figure 30 above.  This is due to the lack of data points within the 

dataset to render a 3D model. The number of pixel values that must exist to render the virtual 

terrain is minimally 256 x 256. Consequently, before the results could be rendered by the gaming 

engine, data enhancement was required for the 5 meter data set. The data enhancement technique 

used was bilinear interpolation and Delauney triangulation with Barycentric interpolation. The 

result of each data enhancement technique performed on the rendered image is shown below.  

The user is required to choose the file to parse and visualize as a 3D virtual environment. 

Once the file is chosen, the user selects the Go button, and then the HeightMap is displayed in 

the image viewer pane.  
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Figure 33:  Results of 5 Meter Dem file after Bilinear Interpolation 

 

 

Figure 32:  User Selecting 5 Meter Dem File 
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Figure 34:  A 256 X 256 Selected Area for rendering an object from the 5 Meter Dem 

File 

 

 

 

 

 

 

 

 

 

 

 

 

As the figure 33 shows, for bilinear interpolation creating additional points allowed the 

image to be rendered by the gaming engine. OpenSim requires data to be 256 X 256, without 

data enhancement the data or bitmap created is 256 X 197 (See Figure 30). So after data 

enhancement, the bitmap was created to be of a standard size. Selecting a smaller area of 256 X 

256 allows the image to be rendered by the gaming engine (See Figure 34). In the bitmap where 

data does not exist the image appears jagged. This is because the game engine tries to interpolate 

points that do not exist. In the virtual world where the data was interpolated and no data exists, 

huge spikes in the terrain appear (See Figure 35 below).  
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Figure 35:  Results of Additional Data Points within the 5 meter DEM terrain 

 

 

 

 

 

 

 

 

 

 

 

 

 

To correct this problem, in the data where the values are -99999 these values are set to the lowest 

elevation value within the data set creating a smoother edge to visualize. This resulted in an 

image that appears as a cliff for the edge of the data which is more realistic terrain once 

visualized. (See Figure 36). 
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The next test results are from combining the 1 meter DEM file with the X-Section file.  

The steps to visualize the data are the same as the above-mentioned steps. The user chooses the 

files to merge. In this case, the files are the DEM file and the X-Section file. Once the parsing 

process is complete, the bitmap is created. Just as before, the user is required to choose the area 

to visualize as a 3D virtual terrain. 

 

 

 

 

 

Figure 36:  Smoother Edge Terrain of DEM 5 meter Data 
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Figure 37:  Dem 1 Meter File and X-Section File selected for Data Processing 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 38: Raw32 File Created for the X-Section and 1 Meter Dem File 
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Figure 39:  BitMap Image of Dem file and X-Section File, where X-Section dark lines 

appear within stream 

 

 

 

 

 

 

 

 

 

 

 

 

The result of processing the X-Section and DEM file show in the bitmap image where the X-

Section is inserted into the area. Note that lines appear darker; see figure 39 above, this is due to  

data mapping; the data that exists in the location is overwritten by the new data points. Results 

from processing X-Section and the 1 meter DEM file with the resulting virtual environment are 

shown in the next figures below.  

 

 

 

 

 

 

X-Section 
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Figure 40:  Result of the X-Section and Dem File Rendered 

 

 

Figure 41:  Display of X-Section within the Dem Terrain 
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Figure 43:  Bilinear Interpolation of 1 Meter Dem with X-Section after X-Section Scaling               

 

To resolve the issue of huge unsightly spikes in the 1 meter DEM image with X-Section data 

inserted, data smoothing was done by scaling the X-Section data value with that of the 

corresponding floodplain data to produce a more realistic terrain. (See Figure 42) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42:  Improved Model with Data Smoothing 

 



 101 

 

 

The next figures, 44 and 45 show the results from the Barycentric interpolation method using the  

1 meter data set inserted with the X-Section data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 44:  Barycentric Interpolation BitMap 

 

 

Figure 45:  Virtual Reality Terrain after Barycentric Interpolation 
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The exploration and testing of different gaming engines such as Neoaxis, Cafu, and 

OpenSim shows that the accepted file types and file sizes for each can pose problems. It has also 

been found for many open source engines, no true standards exist for creating graphic 

applications using open source applications. The types of image files with heightmap data for 

terrain rendering that work best for the gaming engines are various raw file formats, .png and 

.bmp. The smallest file size that works for most gaming engines is 256x256 pixels. For gaming 

engines, larger files are optimal when converted into a raw file format.  

Currently, OpenSim’s smallest file accepted is 256x256 pixels in any of the formats .jpg, 

.bmp, .png, .gif, .tif, .tiff, .r32 (RAW32), .ter (Terragen) and .raw (LL/SL RAW) (OpenSim 

2011).  The larger files require the data to be converted into one of the raw formats, and, even 

with this modification, the data must be pieced together in 256x256 tiles. The gaming engine that 

was chosen for this dissertation was OpenSim because it accepts a variety of data file formats, 

the engine performs as expected, and it is written in .NET, permitting easier software integration.  

Testing the XML parsing component of the CONCEPTS3D desktop application requires 

the CONCEPTS XML file. Once the data is extracted from the file this information is inserted 

into the MySQL database CONCEPTS. Some of the one-to-many and many-to-many tables 

found in CONCEPTS XML were saved in a dictionary object. Saving the information in a 

Collection class allowed for faster lookup and load time and efficient data processing of large 

XML documents.  The XML file used for testing the XML parser component was the 

GC_analysis CONCEPTS XML file. The results provided by executing the XML parser 

component is shown next. First the user is prompted to enter an XML file on the home screen of 

the CONCEPT3D application. The question appears because these file are large and take a long 
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Figure 46:  User Selecting XML file for Processing 

 

 

Figure 47:  Message asking users to Insert Data into Database 

 

time to load and process.  

 

 

 

 

 

 

 

 

 

 

 

The option to skip inserting into the database is given. If “Yes” is chosen inserts are performed to 

the database.  
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Figure 48:  Concept MySQL Database 

 

 

Figure 49:  Select query performed to view CONCEPTS conceptsmodel table 
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Figure 50:  Prototype of CONCEPTS3D 

 

If the user chooses “No” the application does not perform any operation and the user is placed 

back at the home screen of the desktop application.  

  Testing the GUI of the desktop application required several files, CONCEPTS 1 and 5 

meter DEM files, X-Section and 1 meter DEM files, and CONCEPTS XML files. All of the files 

were uploaded and processed by the underlying component of the desktop application. A minor 

challenge exists where the gaming engine does not start in the pane of the application this is due 

to the thread and processing timing. Executing the component is not an issue because the user 

views this component as a separate window. Essentially the desktop application performs as 

expected. Producing the desktop application using C# .NET language and framework has made 

integrating components seamless. The application produced is shown below in figure 50.  

 

 

 

 

 

 

 

 

 

 

 

 



 106 

 

 

 

Figure 52:   User select 1 meter DEM file for Processing 

 

 

 

Figure 51:  User starts OpenSim gaming engine 
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Figure 54: Results of 5 meter DEM file as a VR Terrain 

 

 

Figure 53:  Result of 1 Meter DEM as a VR Terrain 
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CHAPTER V 

CONCLUSION 

 The purpose of this study was to provide a bridge between two seemingly disparate 

worlds, the hard science of the numerical modeling of channel morphology and the rapidly 

developing entertainment domain of 3D game development, with a goal of using the 

inexpensive, though very effective, reality tools of gaming technology to visualize the complex 

numerical models in the channel morphology world. While this required some tweaking on both 

sides (standardizing the gaming engine file formats and using further mathematical modeling to 

expand the features of the morphology datasets), the results exceeded all expectations.  

In the efforts of this dissertation there were many challenges. The obstacles of analyzing, 

creating, and implementing a 3D rendering desktop application was one challenge. The other 

major challenge was data refinement. The data that was used as input to the 3D rendering engine 

had to be created, modified, and enhanced in many instances. The techniques used to create, 

modify, and enhance the discrete data set into a continuous data set were bilinear interpolation 

and Delaunay triangulation with Barycentric interpolation. Results from performing these 

functions on the data were found to be worthwhile. Comparing the interpolation techniques, it 

was found that the bilinear interpolation and Barycentric interpolation both produced similarly, 

realistic models. While the bilinear interpolation method yielded a sharper image than 

Barycentric interpolation, this was to be expected since the additional data points created by 
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performing bilinear interpolation uses four known data points as opposed to Barycentric 

interpolation which only uses three. Also bilinear interpolation was an easier algorithm to 

implement and follow, as opposed to Barycentric interpolation which required some additional 

data processing before interpolation could be performed. After the dataset was enhanced with 

more data points and triangles, the technique of triangle cutting and data point reduction was 

performed by the gaming engine method of LOD. This increased the processing speed and the 

quality of the image rendered by the gaming engine.  

The major issue of the dissertation was the data provided to visualize. This issue will 

forever pose a problem for both numerical models and visualization applications. The dataset 

used for many of the channel evolution models are of various granularities. Some datasets 

provided are coarser and some are fine in terms of data precision. The data that worked best for 

visualizing for this dissertation was data that was in meters not fractions of meters. So data 

precision for the X-Section dataset posed a problem. The solution was that the data is truncated. 

But this data did not pose a problem for visualizing the environment as a 3D virtual terrain. 

Because the DEM file provided a dense amount of data, because it was 1 meter, all the details of 

the terrain could be rendered as a 3D virtual terrain that was exact and believable.  

Although it was found that the software development process for this research was 

progressively oscillating, the final product has proven to be beneficial for both novice and expert 

hydraulic engineers. Each goal articulated for this dissertation was successfully accomplished. 

Those objectives were: 
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1. Build a prototype of a desktop application available for non-sophisticated users, 

which visualizes CONCEPTS data in 3D-CONCEPTS3D. 

 

2. Store and access CONCEPTS XML data through a MySQL database. 

 

3. Develop three parsers to extract appropriate data to model a 3D virtual 

environment. 

 

a. Parser—XML file 

b. Parser—DEM file-terrain 

c. Parser—Cross-section (X-Section) file-channel 

 

4. Transform DEM and X-Section data into a height-map file format.  

 

5. Develop data interpolation techniques that allow for CONCEPTS data to be 

available for the 3D gaming engine. 

 

6. Convert interpolated data into gaming engine native file format. 

 

7.  Find and adapt an open source gaming engine so that it can be repurposed for 

CONCEPTS viewing. 

 

The rendering of the 3D virtual terrain was made possible by using the open source gaming 

engine OpenSim. The components within this system architecture are provided in the appendix 

page 122 of this dissertation.  

 Future Work 

For the future, this dissertation is easily adaptable for an enhanced model by adding 

features to insert objects within the terrain. Once the terrain is created the user can modify the 

image by adding objects to the scene. These objects must also be created for the 

CONCEPTS/CONCEPTS3D model. For this project default objects could be created such as 

vegetation, sediment, culvert, and cobbles. These objects can be chosen from a dropdown menu 

and added to the scene. From here the user can re-execute the CONCEPTS model with the new 

conservation measures and see how these additions will affect the channel. The image of each 
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executed scenario is viewed and compared to see which proposed stream restoration solution will 

be a potential success. 

For future endeavors improvement could be made to increase the usability as well as the 

efficiency of the computing and visualization process. To improve the software interface and 

infrastructure, suggestions to create components to communicate and integrate seamlessly could 

be performed. One component that could be integrated into the system infrastructure is the 

CONCEPTS simulation model. Instead of developing this component as a standalone project 

executing on the users machine, this component could be integrated into the 3D rendering 

software.  

From a programming perspective, computing efficiency could be obtained by using 

techniques such as code placement [Tomiyama & Yasuura, 1997].  Code placement techniques 

are performed to reduce the missed rates of instruction caches. From a data storage and retrieval 

perspective the other techniques that could be used to improve performance is image caching. 

Another suggestion to increase performance of processing and visualizing the data, is using the 

GPU to process the data and off load many of the graphics handling tasks from the CPU. The 

final suggestion, which is one obtained to create the entire application as a web application. 

Allowing the user to run both CONCEPTS and CONCEPTS3D from a web browser will 

enhance both accessibility and simultaneous use of the application.  

An advanced application is easily obtainable from this dissertation. The entire system 

could be developed as a web application that will allow remote access to CONCEPTS data and 

CONCEPT3D. Online communication would be an enhanced feature which will allow scientist 

to communicate with others using the system through the chat feature of the web application 
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version. Each integrated component will work independently but will be presented as one 

seamless application. This could also be made possible by using HTML5 [Chan, Holznagel, and 

Krantz, 2010].   
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XMLPARSER 

Written by Chenchutta Denaye Cross Jackson 

October 10, 2010 

Version 1 

Copy write July 20, 2012 

The XML parser was created to extract information from an XML file to be inserted into 

the MYSQL database. 

 

using System; 

using System.Collections; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.IO; 

using System.Xml; 

using MySql.Data.MySqlClient; 

using System.Data.SqlClient; 

using System.Drawing; 

using System.Windows.Forms; 

 

namespace Concepts3D 

{ 

    class ConceptsXMLParser 

    { 

 

 

            /** 

             *  

             * @param args 

             */ 

            private MySqlConnection conn; 

            private Dictionary <String, Int32> xsidMap; //key is xsid and 

value is primary key from database 

 

            private Boolean performInserts = true; 

 

            public ConceptsXMLParser(String inputFile) 

            { 

                DialogResult result = MessageBox.Show("Inserts can be slow 

for large datasets.  Do you want to insert this data into the database?", 

"Database Inserts", MessageBoxButtons.YesNo); 

 

                if (result == DialogResult.Yes) 

                { 

                    performInserts = true; 

                } 

                else 

                { 

                    performInserts = false; 

                } 
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                parse(inputFile); 

                //datacols = (int)(highestEasting - lowestEasting) + 1; 

                //datarows = (int)(highestNorthing - lowestNorthing) + 1; 

                //elevationData = new Single[datarows, datacols]; 

 

                //int listIndex = 0; 

                //for (int y = 0; y < datarows; y++) 

                //{ 

                //    for(int x = 0; x < datacols; x++) 

                //    { 

                //        elevationData[y, x] = 

pointList[listIndex++].getZ(); 

                //    } 

                //} 

 

            } 

 

            private void connectToDB() 

            { 

                //conn = new 

MySqlConnection("jdbc:mysql://localhost:3306/concepts?user=root&password="); 

                conn = new 

MySqlConnection("SERVER=localhost;DATABASE=concepts;UID=root;PASSWORD=;"); 

 

            } 

 

            public String parse(String inputFile) 

            { 

                String result = ""; 

                FileStream input = null; 

                try 

                { 

 

                    this.connectToDB(); 

 

                    conn.Open(); 

                    xsidMap = new Dictionary<String, Int32>(); 

 

                    XMLLoader parser = new XMLLoader(); 

 

                    Document xmlDoc = parser.build(inputFile); 

 

                    // get root element and parse it 

                    Element conceptsModel = xmlDoc.getRootElement(); 

 

                    Console.WriteLine("Parsing concepts xml file...."); 

 

                    this.parseConceptsModel(conceptsModel); 

 

                    Console.WriteLine("Done!"); 

                    result = "Content parsed and inserted into the 

database."; 
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                } 

                catch (Exception e) 

                { 

                    // TODO Auto-generated catch block 

                    Console.WriteLine("Exception: " + e.StackTrace); 

                    MessageBox.Show("Exception: " + e.StackTrace); 

                    result = "An error occurred!"; 

                } 

 

                if (conn != null) 

                    conn.Close(); 

 

                if (input != null) 

                    input.Close(); 

 

                return result; 

            } 

 

 

            private void parseConceptsModel(Element conceptsModel) 

            { 

 

                // COLUMNS SECTION 

 

                String versionText = this.parseString(conceptsModel 

                        .getAttributeValue("version")); 

                String lastVersionText = this.parseString(conceptsModel 

                        .getAttributeValue("lastversion")); 

 

                String name = "TESTModel"; 

 

                // DB INSERT SECTION 

                String query = "INSERT INTO conceptsmodel (name, version, 

lastVersion) " 

                        + "VALUES ('" + name + "'," + versionText + ", " + 

lastVersionText + ")"; 

                int conceptsModelID = this.executeDBUpdate(query); 

 

                // FOREIGN KEY SECTION 

                // get data element and parse it 

                Element data = conceptsModel.getChild("data"); 

                this.parseData(conceptsModelID, data); 

 

                // actually get children of channelModels and parse each one 

of them 

                Element channelModels = 

conceptsModel.getChild("channelModels"); 

                List<Element> channelModelList = channelModels 

                        .getChildren("channelModel"); 

 

                // for (Element channelModel in channelModelList) { 

                // this.parseChannelModel(conceptsModelID, channelModel); 

                // } 

                // Many to many relationships must be handled differently 
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                for (int index = 0; index < channelModelList.Count; index++) 

                { 

                    this.parseChannelModel(conceptsModelID, 

channelModelList[index], index); 

                } 

 

                // get runData element and parse it 

                Element runData = conceptsModel.getChild("runData"); 

                this.parseRunData(conceptsModelID, runData); 

            } 

 

            private void parseData(int conceptsModelID, Element data) 

            { 

 

                String query = "INSERT INTO data (conceptsModelID) " + 

"VALUES (" 

                        + conceptsModelID + ")"; 

                int dataID = this.executeDBUpdate(query); 

 

                Element materials = data.getChild("materials"); 

                this.parseMaterials_Data(dataID, materials); 

 

                Element crossSections = data.getChild("crossSections"); 

                List<Element> crossSectionList = crossSections 

                        .getChildren("crossSection"); 

                for (int i = 0; i < crossSectionList.Count; i++) 

                { 

                    this.parseCrossSections(dataID, crossSectionList[i], i); 

                } 

 

                Element reaches = data.getChild("reaches"); 

                List<Element> reachList = reaches.getChildren("reach"); 

                for (int i = 0; i < reachList.Count; i++) 

                { 

                    this.parseReaches(dataID, reachList[i], i); 

                } 

 

                Element structures = data.getChild("structures"); 

                this.parseStructuresData(dataID, structures); 

 

                Element tributaries = data.getChild("tributaries"); 

                List<Element> tributaryList = 

reaches.getChildren("tributary"); 

                for (int i = 0; i < tributaryList.Count; i++) 

                { 

                    this.parseTributaries(dataID, tributaryList[i], i); 

                } 

 

                Element lateralInflows = data.getChild("lateralInflows"); 

                List<Element> lateralInflowList = lateralInflows 

                        .getChildren("lateralInflow"); 

                for (int i = 0; i < lateralInflowList.Count; i++) 

                { 
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                    this.parseLateralInflows(dataID, lateralInflowList[i], 

i); 

                } 

 

            } 

 

            private void parseChannelModel(int conceptsModelID, Element 

channelModel, 

                    int index) 

            { 

 

                String nameString = this.parseString(channelModel 

                        .getAttributeValue("name")); 

 

                String query = "INSERT INTO channelmodels (conceptsModelID, 

name) " 

                        + "VALUES (" + conceptsModelID + ", " + nameString + 

")"; 

                int channelModelID = this.executeDBUpdate(query); 

 

                mapXSIDString(channelModel, index, channelModelID); 

 

                // INSERT MANY TO MANY RELATIONSHIPS 

                // Reach-ChannelModel 

                foreach (Element reach in 

(List<Element>)channelModel.getChildren("reach")) 

                { 

                    String reachXSID = reach.getText(); 

                    int reachID = xsidMap[reachXSID]; 

                    query = "INSERT INTO reachchannelmodels (reachID, 

channelModelID) VALUES (" 

                            + reachID + ", " + channelModelID + ")"; 

                    this.executeDBUpdate(query); 

                } 

 

                // CulvertSection-ChannelModel 

                foreach (Element culvertSection in 

(List<Element>)channelModel 

                        .getChildren("culvertSection")) 

                { 

                    String culvertSectionXSID = culvertSection.getText(); 

                    int culvertSectionID = xsidMap[culvertSectionXSID]; 

                    query = "INSERT INTO culvertsectionchannelmodels 

(culvertSectionID, channelModelID) VALUES (" 

                            + culvertSectionID + ", " + channelModelID + ")"; 

                    this.executeDBUpdate(query); 

                } 

 

                // BridgeSection-ChannelModel 

                foreach (Element bridgeSection in (List<Element>)channelModel 

                        .getChildren("bridgeSection")) 

                { 

                    String bridgeSectionXSID = bridgeSection.getText(); 

                    int bridgeSectionID = xsidMap[bridgeSectionXSID]; 
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                    query = "INSERT INTO bridgesectionchannelmodels 

(bridgeSectionID, channelModelID) VALUES (" 

                            + bridgeSectionID + ", " + channelModelID + ")"; 

                    this.executeDBUpdate(query); 

                } 

 

                // DropStructure-ChannelModel 

                foreach (Element dropStructure in (List<Element>)channelModel 

                        .getChildren("dropStructure")) 

                { 

                    String dropStructureXSID = dropStructure.getText(); 

                    int dropStructureID = xsidMap[dropStructureXSID]; 

                    query = "INSERT INTO dropstructurechannelmodels 

(dropStructureID, channelModelID) VALUES (" 

                            + dropStructureID + ", " + channelModelID + ")"; 

                    this.executeDBUpdate(query); 

                } 

 

                // GenericStructure-ChannelModel 

                foreach (Element genericStructure in 

(List<Element>)channelModel 

                        .getChildren("genericStructure")) 

                { 

                    String genericStructureXSID = genericStructure.getText(); 

                    int genericStructureID = xsidMap[genericStructureXSID]; 

                    query = "INSERT INTO genericstructurechannelmodels 

(genericStructureID, channelModelID) VALUES (" 

                            + genericStructureID + ", " + channelModelID + 

")"; 

                    this.executeDBUpdate(query); 

                } 

 

                // Tributary-ChannelModel 

                foreach (Element tributary in (List<Element>)channelModel 

                        .getChildren("tributary")) 

                { 

                    String tributaryXSID = tributary.getText(); 

                    int tributaryID = xsidMap[tributaryXSID]; 

                    query = "INSERT INTO tributarychannelmodels (tributaryID, 

channelModelID) VALUES (" 

                            + tributaryID + ", " + channelModelID + ")"; 

                    this.executeDBUpdate(query); 

                } 

 

                // LateralInflow-ChannelModel 

                foreach (Element lateralInflow in (List<Element>)channelModel 

                        .getChildren("lateralInflow")) 

                { 

                    String lateralInflowXSID = lateralInflow.getText(); 

                    int lateralInflowID = xsidMap[lateralInflowXSID]; 

                    query = "INSERT INTO lateralinflowchannelmodels 

(lateralInflowID, channelModelID) VALUES (" 

                            + lateralInflowID + ", " + channelModelID + ")"; 

                    this.executeDBUpdate(query); 
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                } 

            } 

 

            private void parseRunData(int conceptsModelID, Element runData) 

            { 

 

                String query = "INSERT INTO rundata (conceptsModelID) " + 

"VALUES (" 

                        + conceptsModelID + ")"; 

                int runDataID = this.executeDBUpdate(query); 

 

                Element runControlDataSets = 

runData.getChild("runControlDataSets"); 

                List<Element> runControlDataList = 

runControlDataSets.getChildren("runControlData"); 

                for (int i = 0; i < runControlDataList.Count; i++) 

                { 

                    this.parseRunControlData(runDataID, 

runControlDataList[i]); 

                } 

 

                Element outputOptionsSets = 

runData.getChild("outputOptionsSets"); 

                List<Element> outputOptionsList = 

outputOptionsSets.getChildren("outputOptions"); 

                for (int i = 0; i < outputOptionsList.Count; i++) 

                { 

                    this.parseOutputOptions(runDataID, outputOptionsList[i]); 

                } 

 

                Element scenarios = runData.getChild("scenarios"); 

                List<Element> scenariosList = 

scenarios.getChildren("scenario"); 

                for (int i = 0; i < scenariosList.Count; i++) 

                { 

                    this.parseScenarios(runDataID, scenariosList[i]); 

                } 

 

            } 

 

 

            private void parseMaterials_Data(int dataID, Element 

material_data) 

            { 

 

                String query = "INSERT INTO material_data (dataID) " + 

"VALUES (" 

                        + dataID + ")"; 

                int material_DataID = this.executeDBUpdate(query); 

 

                /* 

                 * TODO: sedimentProfile* soilProfile* 

                 */ 

                Element sediments = material_data.getChild("sediments"); 
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                this.parseSediments(material_DataID, sediments); 

 

                Element soils = material_data.getChild("soils"); 

                List<Element> soilsList = soils.getChildren("soil"); 

                for (int index = 0; index < soilsList.Count; index++) 

                { 

                    this.parseSoil(material_DataID, soilsList[index], index); 

                } 

 

                Element sedimentProfiles = 

material_data.getChild("sedimentProfiles"); 

                List<Element> sedimentProfileList = 

sedimentProfiles.getChildren("sedimentProfile"); 

                for (int index = 0; index < sedimentProfileList.Count; 

index++) 

                { 

                    this.parseSedimentProfile(material_DataID, 

sedimentProfileList[index], index); 

                } 

 

                //Soil profile is the same type as sediment profile so we 

treat them the exact same 

                //and we use the same parseSedimentProfile method 

                Element soilProfiles = 

material_data.getChild("soilProfiles"); 

                List<Element> soilProfileList = 

soilProfiles.getChildren("soilProfile"); 

                for (int index = 0; index < soilProfileList.Count; index++) 

                { 

                    this.parseSedimentProfile(material_DataID, 

soilProfileList[index], index); 

                } 

 

 

            } 

 

            private void parseSediments(int material_DataID, Element 

sediments) 

            { 

                // TODO Auto-generated method stub 

 

 

                List<Element> materialsList = 

sediments.getChildren("material"); 

 

                for (int index = 0; index < materialsList.Count; index++) 

                { 

                    Element materials = materialsList[0]; 

                    int materialID = this.parseMaterials(materials, index); 

                    String query = "INSERT INTO sediments (material_DataID, 

materialID) " + "VALUES (" + material_DataID + ", " + materialID + ")"; 

                    this.executeDBUpdate(query); 

                } 
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            } 

 

            private void parseSoil(int material_DataID, Element soil, int 

index) 

            { 

 

                Single? bulkDensity = 

this.parseSingle(soil.getChildTextTrim("bulkDensity")); 

                Single? permeability = 

this.parseSingle(soil.getChildTextTrim("permeability")); 

 

                //Soil element is purposefully passed into parseMaterials 

method because it is an extension of parseMaterials 

                int materialID = this.parseMaterials(soil, index); 

 

                String query = "INSERT INTO soils (material_DataID, 

materialID, bulkDensity, permeability) " + "VALUES (" + material_DataID + ", 

" + materialID + ", " + bulkDensity + ", " + permeability + ")"; 

                int soilID = this.executeDBUpdate(query); 

 

                //mapXSIDString(soil, index, soilID); 

            } 

 

            private void parseSedimentProfile(int material_DataID, Element 

sedimentProfile, int index) 

            { 

                // TODO Auto-generated method stub 

                String id = 

this.parseString(sedimentProfile.getAttributeValue("id")); 

                String query = "INSERT INTO sedimentProfiles 

(material_DataID, id) " + "VALUES (" + material_DataID + ", " + id + ")"; 

                int sedimentProfileID = this.executeDBUpdate(query); 

 

                Element site = sedimentProfile.getChild("site"); 

                this.parseSite(sedimentProfileID, null, site); 

 

                Element materialHorizon = 

sedimentProfile.getChild("materialHorizon"); 

                this.parseMaterialHorizon(sedimentProfileID, 

materialHorizon); 

 

                mapXSIDString(sedimentProfile, index, sedimentProfileID); 

 

            } 

 

            private void parseMaterialHorizon(int sedimentProfileID, Element 

materialHorizon) 

            { 

                Single? topDepth = 

this.parseSingle(materialHorizon.getChildTextTrim("topDepth")); 

                Single? bottomDepth = 

this.parseSingle(materialHorizon.getChildTextTrim("bottomDepth")); 
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                String materialXSID = 

materialHorizon.getChildTextTrim("material"); 

                int materialID = xsidMap[materialXSID]; 

 

                String query = "INSERT INTO material_horizon (topDepth, 

bottomDepth, materialID, sedimentProfileID) VALUES (" + topDepth + ", " + 

bottomDepth + ", " + materialID + ", " + sedimentProfileID + ")"; 

                executeDBUpdate(query); 

            } 

 

 

            private void parseSite(int? sedimentProfileID, int? transectID, 

Element site) 

            { 

                String id = this.parseString(site.getAttributeValue("id")); 

                Single? easting = 

this.parseSingle(site.getChildTextTrim("easting")); 

                Single? northing = 

this.parseSingle(site.getChildTextTrim("northing")); 

                Single? elevation = 

this.parseSingle(site.getChildTextTrim("elevation")); 

                Single? station = 

this.parseSingle(site.getChildTextTrim("station")); 

 

                String query = "INSERT INTO site (id, easting, northing, 

elevation, station, sedimentProfileID, transectID) VALUES " + 

                               "(" + id + ", " + easting + ", " + northing + 

", " + elevation + ", " + station + ", " + sedimentProfileID + ", " + 

transectID + ")"; 

 

                executeDBUpdate(query); 

 

            } 

 

            private int parseMaterials(Element materials, int index) 

            { 

                // TODO Auto-generated method stub 

 

                String name = 

this.parseString(materials.getChildTextTrim("name")); 

                Single? particleDensity = 

this.parseSingle(materials.getChildTextTrim("particleDensity")); 

                Single? porosity = 

this.parseSingle(materials.getChildTextTrim("porosity")); 

                Single? erodibility = 

this.parseSingle(materials.getChildTextTrim("erodibility")); 

                Single? criticalShearStress = 

this.parseSingle(materials.getChildTextTrim("criticalShearStress")); 

                Single? cohesion = 

this.parseSingle(materials.getChildTextTrim("cohesion")); 

                Single? frictionAngle = 

this.parseSingle(materials.getChildTextTrim("frictionAngle")); 

                Single? phiB = 

this.parseSingle(materials.getChildTextTrim("phiB")); 
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                Element grainSizeDistribution = 

materials.getChild("grainSizeDistribution"); 

                int grainSizeDistributionID = 

this.parseGrainSizeDistribution(grainSizeDistribution); 

 

 

                String query = "INSERT INTO materials 

(grainSizeDistributionID, name, particleDensity, porosity, erodibility, 

criticalShearStress, cohesion, frictionAngle, phiB) VALUES (" + 

grainSizeDistributionID + ", " + name + ", " + particleDensity + ", " + 

porosity + ", " + erodibility + ", " + criticalShearStress + ", " + cohesion 

+ ", " + frictionAngle + ", " + phiB + ")"; 

                int materialID = this.executeDBUpdate(query); 

 

                mapXSIDString(materials, index, materialID); 

 

                return materialID; 

 

            } 

 

            private int parseGrainSizeDistribution(Element 

grainSizeDistribution) 

            { 

                Single? clayTotal = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("clayTotal")); 

                Single? siltVeryFine = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltVeryFine")); 

                Single? siltFine = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltFine")); 

                Single? siltMedium = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltMedium")); 

                Single? siltCoarse = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltCoarse")); 

                Single? siltVeryCoarse = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltVeryCoarse")); 

                Single? sandVeryFine = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandVeryFine")); 

                Single? sandFine = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandFine")); 

                Single? sandMedium = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandMedium")); 

                Single? sandCoarse = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandCoarse")); 

                Single? sandVeryCoarse = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandVeryCoarse")); 

                Single? gravelVeryFine = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelVeryFine")); 

                Single? gravelFine = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelFine")); 

                Single? gravelMedium = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelMedium")); 

                Single? gravelCoarse = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelCoarse")); 
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                Single? gravelVeryCoarse = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelVeryCoarse")); 

                Single? cobblesSmall = 

this.parseSingle(grainSizeDistribution.getChildTextTrim("cobblesSmall")); 

 

                String query = "INSERT INTO grainSizeDistribution (clayTotal, 

siltVeryFine, siltFine, siltMedium, siltCoarse, siltVeryCoarse, sandVeryFine, 

sandFine, sandMedium, sandCoarse, sandVeryCoarse, gravelVeryFine, gravelFine, 

gravelMedium, gravelCoarse, gravelVeryCoarse, cobblesSmall) VALUES " + 

                               "(" + clayTotal + ", " + siltVeryFine + ", " + 

siltFine + ", " + siltMedium + ", " + siltCoarse + ", " + siltVeryCoarse + ", 

" + sandVeryFine + ", " + sandFine + ", " + sandMedium + ", " + sandCoarse + 

", " + sandVeryCoarse + ", " + gravelVeryFine + ", " + gravelFine + ", " + 

gravelMedium + ", " + gravelCoarse + ", " + gravelVeryCoarse + ", " + 

cobblesSmall + ")"; 

                //Console.WriteLine(query); 

                int grainSizeDistributionID = this.executeDBUpdate(query); 

 

                return grainSizeDistributionID; 

            } 

 

            private void parseCrossSections(int dataID, Element crossSection, 

int index) 

            { 

 

                String name = crossSection.getChildTextTrim("name"); 

 

                if(name.Equals("7977.576 (EC)")){ 

                    Console.WriteLine(name); 

                } 

                Single? station = this.parseSingle(crossSection 

                        .getChildTextTrim("station")); 

                Int32? leftBankTop = this.parseInt(crossSection 

                        .getChildTextTrim("leftBankTop")); 

                Int32? leftBankToe = this.parseInt(crossSection 

                        .getChildTextTrim("leftBankToe")); 

                Int32? rightBankTop = this.parseInt(crossSection 

                        .getChildTextTrim("rightBankTop")); 

                Int32? rightBankToe = this.parseInt(crossSection 

                        .getChildTextTrim("rightBankToe")); 

                Single? nBed = 

this.parseSingle(crossSection.getChildTextTrim("nBed")); 

                Single? nLeftBank = this.parseSingle(crossSection 

                        .getChildTextTrim("nLeftBank")); 

                Single? nRightBank = this.parseSingle(crossSection 

                        .getChildTextTrim("nRightBank")); 

                Single? nLeftFloodplain = this.parseSingle(crossSection 

                        .getChildTextTrim("nLeftFloodplain")); 

                Single? nRightFloodplain = this.parseSingle(crossSection 

                        .getChildTextTrim("nRightFloodplain")); 

                Single? bedrockElevation = this.parseSingle(crossSection 

                        .getChildTextTrim("bedrockElevation")); 

                Single? leftGroundWaterTable = this.parseSingle(crossSection 

                        .getChildTextTrim("leftGroundwaterTable")); 
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                Single? rightGroundWaterTable = this.parseSingle(crossSection 

                        .getChildTextTrim("rightGroundwaterTable")); 

 

                String bedSediment = crossSection 

                        .getChildTextTrim("bedSediment"); 

                String leftBankSoil = crossSection 

                        .getChildTextTrim("leftBankSoil"); 

                String rightBankSoil = crossSection 

                        .getChildTextTrim("rightBankSoil"); 

 

 

                Int32 bedSedimentID = xsidMap[bedSediment]; 

                Int32 leftBankSoilID = xsidMap[leftBankSoil]; 

                Int32 rightBankSoilID = xsidMap[rightBankSoil]; 

 

                String query = "INSERT INTO crosssection (name, dataID, 

station, leftBankTop, leftBankToe, rightBankTop, rightBankToe, nBed, 

nLeftBank, nRightBank, nLeftFloodplain, nRightFloodplain, bedRockElevation, 

leftGroundwaterTable, rightGroundwaterTable, bedSedimentID, leftBankSoilID, 

rightBankSoilID) " 

                        + "VALUES ('" 

                        + name 

                        + "', " 

                        + dataID 

                        + ", " 

                        + station 

                        + ", " 

                        + leftBankTop 

                        + ", " 

                        + leftBankToe 

                        + ", " 

                        + rightBankTop 

                        + ", " 

                        + rightBankToe 

                        + ", " 

                        + nBed 

                        + ", " 

                        + nLeftBank 

                        + ", " 

                        + nRightBank 

                        + ", " 

                        + nLeftFloodplain 

                        + ", " 

                        + nRightFloodplain 

                        + ", " 

                        + bedrockElevation 

                        + ", " 

                        + leftGroundWaterTable 

                        + ", " 

                        + rightGroundWaterTable 

                        + ", " 

                        + bedSedimentID 

                        + ", " 

                        + leftBankSoilID + ", " + rightBankSoilID + ")"; 
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                // execute query and retrieve the generated key 

                int crossSectionID = this.executeDBUpdate(query); 

 

                mapXSIDString(crossSection, index, crossSectionID); 

                // Place crossSection inside of HashMap using the db primary 

key as the 

                // key and a reference string for the channelModel as the 

value 

 

                Element transect = crossSection.getChild("transect"); 

                if (transect != null) 

                { 

                    parseTransect(crossSectionID, transect); 

                } 

 

            } 

 

            private void parseTransect(int crossSectionID, Element transect) 

            { 

                String id = 

this.parseString(transect.getAttributeValue("id")); 

                String query = "INSERT INTO transect (crossSectionID, id) " + 

"VALUES (" + crossSectionID + ", " + id 

                    + ")"; 

 

                int transectID = this.executeDBUpdate(query); 

 

                List<Element> siteList = transect.getChildren("sites"); 

 

                foreach(Element site in siteList){ 

                    this.parseSite(null, transectID, site); 

                } 

            } 

 

            private void parseReaches(int dataID, Element reach, int index) 

            { 

 

                String name = 

this.parseString(reach.getChildTextTrim("name")); 

 

                String query = "INSERT INTO reaches (dataID, name) " + 

"VALUES (" 

                        + dataID + ", " + name + ")"; 

 

                int reachesID = this.executeDBUpdate(query); 

 

                mapXSIDString(reach, index, reachesID); 

 

                /* 

                 * reach culvertSection bridgeSection dropStructure 

genericStructure 

                 * tributary lateralInflow 

                 */ 
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            } 

 

            private void parseStructuresData(int dataID, Element structure) 

            { 

 

                String query = "INSERT INTO structures_data (dataID) VALUES 

(" + dataID 

                        + ")"; 

 

                int structuresDataID = this.executeDBUpdate(query); 

 

                Element culverts = structure.getChild("culverts"); 

                List<Element> culvertSectionList = culverts 

                        .getChildren("culvertSection"); 

                for (int i = 0; i < culvertSectionList.Count; i++) 

                { 

                    this.parseCulvertSections(structuresDataID, 

                            culvertSectionList[i], i); 

                } 

 

                Element bridgeSections = 

structure.getChild("bridgeSections"); 

                List<Element> bridgeSectionList = bridgeSections 

                        .getChildren("bridgeSection"); 

                for (int i = 0; i < bridgeSectionList.Count; i++) 

                { 

                    this.parseBridgeSections(structuresDataID, 

                            bridgeSectionList[i], i); 

                } 

 

                Element dropStructures = 

structure.getChild("dropStructures"); 

                List<Element> dropStructureList = dropStructures 

                        .getChildren("dropStructure"); 

                for (int i = 0; i < dropStructureList.Count; i++) 

                { 

                    this.parseDropStructures(structuresDataID, 

                            dropStructureList[i], i); 

                } 

 

                Element genericStructures = 

structure.getChild("genericStructures"); 

                List<Element> genericStructureList = genericStructures 

                        .getChildren("genericStructure"); 

                for (int i = 0; i < genericStructureList.Count; i++) 

                { 

                    this.parseGenericStructures(structuresDataID, 

                            genericStructureList[i], i); 

                } 

 

            } 
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            private void parseTributaries(int dataID, Element tributary, int 

index) 

            { 

 

                String name = 

this.parseString(tributary.getChildTextTrim("name")); 

                String dataFile = this.parseString(tributary 

                        .getChildTextTrim("dataFile")); 

 

                String crossSection = tributary 

                        .getChildTextTrim("crossSection"); 

 

                Int32 crossSectionID = xsidMap[crossSection]; 

 

                String query = "INSERT INTO tributaries (name, dataFile, 

dataID, crossSectionID) VALUES (" 

                        + name 

                        + ", " 

                        + dataFile 

                        + ", " 

                        + dataID 

                        + ", " 

                        + crossSectionID + ")"; 

 

                int tributaryID = this.executeDBUpdate(query); 

 

                mapXSIDString(tributary, index, tributaryID); 

            } 

 

            private void parseLateralInflows(int dataID, Element 

lateralInflow, 

                    int index) 

            { 

                String name = 

this.parseString(lateralInflow.getChildTextTrim("name")); 

                String dataFile = this.parseString(lateralInflow 

                        .getChildTextTrim("dataFile")); 

 

                String upCrossSection = lateralInflow 

                        .getChildTextTrim("upCrossSection"); 

 

                Int32 upCrossSectionID = xsidMap[upCrossSection]; 

 

                String downCrossSection = lateralInflow 

                        .getChildTextTrim("downCrossSection"); 

 

                Int32 downCrossSectionID = xsidMap[downCrossSection]; 

 

                String query = "INSERT INTO lateralinflow (name, dataFile, 

upCrossSectionID, downCrossSectionID) VALUES (" 

                        + name 

                        + ", " 

                        + dataFile 

                        + ", " 
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                        + upCrossSectionID 

                        + ", " 

                        + downCrossSectionID + ")"; 

 

                int lateralInflowID = this.executeDBUpdate(query); 

 

                mapXSIDString(lateralInflow, index, lateralInflowID); 

            } 

 

            private void parseCulvertSections(int structuresDataID, 

                    Element culvertSection, int index) 

            { 

 

                int structureID = this.parseStructure(culvertSection); 

                Int32? chartNumber = 

this.parseInt(culvertSection.getChildTextTrim("chartNumber")); 

                Int32? scaleNumber = 

this.parseInt(culvertSection.getChildTextTrim("scaleNumber")); 

                Int32? numberOfBarrels = 

this.parseInt(culvertSection.getChildTextTrim("numberOfBarrels")); 

                Single? span = 

this.parseSingle(culvertSection.getChildTextTrim("span")); 

                Single? rise = 

this.parseSingle(culvertSection.getChildTextTrim("rise")); 

                Single? entranceLossCoefficient = 

this.parseSingle(culvertSection.getChildTextTrim("entranceLossCoefficient")); 

 

                String query = "INSERT INTO culvertSections 

(structures_dataID, structureID, chartNumber, scaleNumber, numberOfBarrels, 

span, rise) VALUES (" + 

                structuresDataID + ", " + structureID + ", " + chartNumber + 

", " + scaleNumber + ", " + numberOfBarrels + ", " + span + ", " + rise + 

")"; 

 

                int culvertSectionID = this.executeDBUpdate(query); 

                this.mapXSIDString(culvertSection, index, culvertSectionID); 

 

            } 

 

            private void parseBridgeSections(int structuresDataID, 

                    Element bridgeSection, int index) 

            { 

 

                int structureID = this.parseStructure(bridgeSection); 

 

 

                Single? width = 

this.parseSingle(bridgeSection.getChildTextTrim("width")); 

                Single? sideslope = 

this.parseSingle(bridgeSection.getChildTextTrim("sideslope")); 

                Single? pierWidth = 

this.parseSingle(bridgeSection.getChildTextTrim("pierWidth")); 

                Single? pierShapeCoefficient = 

this.parseSingle(bridgeSection.getChildTextTrim("pierShapeCoefficient")); 
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                Single? pierLossCoefficient = 

this.parseSingle(bridgeSection.getChildTextTrim("pierLossCoefficient")); 

 

 

                String query = "INSERT INTO bridgeSections 

(structures_dataID, structureID, width, sideslope, pierWidth, 

pierShapeCoefficient, pierLossCoefficient) VALUES (" + 

                structuresDataID + ", " + structureID + ", " + width + ", " + 

sideslope + ", " + pierWidth + ", " + pierShapeCoefficient + ", " + 

pierLossCoefficient + ")"; 

 

 

                int bridgeSectionID = this.executeDBUpdate(query); 

                this.mapXSIDString(bridgeSection, index, bridgeSectionID); 

 

            } 

 

            private void parseDropStructures(int structuresDataID, 

                    Element dropStructure, int index) 

            { 

 

                int structureID = this.parseStructure(dropStructure); 

                Single? width = 

this.parseSingle(dropStructure.getChildTextTrim("width")); 

                Single? sideslope = 

this.parseSingle(dropStructure.getChildTextTrim("sideslope")); 

                Single? energyLossCoefficient = 

this.parseSingle(dropStructure.getChildTextTrim("energyLossCoefficient")); 

 

 

                String query = "INSERT INTO dropStructures 

(structures_dataID, structureID, width, sideslope, energyLossCoefficient) 

VALUES (" + 

                structuresDataID + ", " + structureID + ", " + width + ", " + 

sideslope + ", " + energyLossCoefficient + ")"; 

 

 

                int dropStructureID = this.executeDBUpdate(query); 

                this.mapXSIDString(dropStructure, index, dropStructureID); 

 

            } 

 

            private void parseGenericStructures(int structuresDataID, 

                    Element genericStructure, int index) 

            { 

 

                int structureID = this.parseStructure(genericStructure); 

 

                Single? width = 

this.parseSingle(genericStructure.getChildTextTrim("width")); 

                Single? sideslope = 

this.parseSingle(genericStructure.getChildTextTrim("sideslope")); 

                Single? energyLossCoefficient = 

this.parseSingle(genericStructure.getChildTextTrim("energyLossCoefficient")); 
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                Element ratingCurve = 

genericStructure.getChild("ratingCurve"); 

                int ratingCurveID = this.parseRatingCurve(ratingCurve); 

 

 

                String query = "INSERT INTO genericStructures 

(structures_dataID, structureID, width, sideslope, energyLossCoefficient, 

ratingCurveID) VALUES (" + 

                structuresDataID + ", " + structureID + ", " + width + ", " + 

sideslope + ", " + energyLossCoefficient + ", " + ratingCurveID + ")"; 

 

 

                int genericStructureID = this.executeDBUpdate(query); 

                this.mapXSIDString(genericStructure, index, 

genericStructureID); 

            } 

 

            private int parseRatingCurve(Element ratingCurve) 

            { 

 

                String query = "INSERT INTO ratingCurves() values()"; 

 

                int ratingCurveID = this.executeDBUpdate(query); 

 

                //TODO:  ratingCurveSegments 

 

                return ratingCurveID; 

            } 

 

 

            //this method actually returns the key generated because other 

elements extend from this element 

            private int parseStructure(Element structureType) 

            { 

                String name = 

this.parseString(structureType.getChildTextTrim("name")); 

                Single? station = this.parseSingle(structureType 

                        .getChildTextTrim("dataFile")); 

                Single? manningN = this.parseSingle(structureType 

                        .getChildTextTrim("manningN")); 

                Single? length = this 

                        

.parseSingle(structureType.getChildTextTrim("length")); 

                Single? upstreamInvert = this.parseSingle(structureType 

                        .getChildTextTrim("upstreamInvert")); 

                Single? downstreamInvert = this.parseSingle(structureType 

                        .getChildTextTrim("downstreamInvert")); 

                Single? upstreamDrop = this.parseSingle(structureType 

                        .getChildTextTrim("upstreamDrop")); 

                Single? downstreamDrop = this.parseSingle(structureType 

                        .getChildTextTrim("downstreamDrop")); 
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                String query = "INSERT INTO structure (name, station, 

manningN, length, upstreamInvert, downstreamInvert, upstreamDrop, 

downstreamDrop) VALUES (" 

                        + name 

                        + ", " 

                        + station 

                        + ", " 

                        + manningN 

                        + ", " 

                        + length 

                        + ", " 

                        + upstreamInvert 

                        + ", " 

                        + downstreamInvert 

                        + ", " 

                        + upstreamDrop 

                        + ", " 

                        + downstreamDrop 

                        + ")"; 

 

                int structureID = this.executeDBUpdate(query); 

 

                return structureID; 

 

            } 

 

 

            private void parseRunControlData(int runDataID, Element 

runControlData) 

            { 

                // TODO Auto-generated method stub 

 

                String name = 

this.parseString(runControlData.getChildTextTrim("name")); 

 

                Boolean? doSedimentTransport = 

this.parseBoolean(runControlData.getChildTextTrim("doSedimentTransport")); 

                Boolean? doToeErosion = 

this.parseBoolean(runControlData.getChildTextTrim("doToeErosion")); 

                Boolean? doBankStability = 

this.parseBoolean(runControlData.getChildTextTrim("doBankStability")); 

 

                String simulationStartTime = 

this.parseString(runControlData.getChildTextTrim("simulationStartTime")); 

                String simulationEndTime = 

this.parseString(runControlData.getChildTextTrim("simulationEndTime")); 

 

                Int32? initialTimeStep = 

this.parseInt(runControlData.getChildTextTrim("initialTimeStep")); 

                String upstreamBC = 

this.parseString(runControlData.getChildTextTrim("upstreamBC")); 

                String downstreamBoundaryCondition = 

this.parseString(runControlData.getChildTextTrim("downstreamBoundaryCondition

")); 
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                String downstreamWaterLevelFile = 

this.parseString(runControlData.getChildTextTrim("downstreamWaterLevelFile"))

; 

                String washLoadSizeClass = 

this.parseString(runControlData.getChildTextTrim("washLoadSizeClass")); 

                Single? cohesiveSiltClayFraction = 

this.parseSingle(runControlData.getChildTextTrim("cohesiveSiltClayFraction"))

; 

                Single? upstreamSedimentWeightCoefficient = 

this.parseSingle(runControlData.getChildTextTrim("upstreamSedimentWeightCoeff

icient")); 

                String upstreamSedimentBoundaryCondition = 

this.parseString(runControlData.getChildTextTrim("upstreamSedimentBoundaryCon

dition")); 

 

                Single? downstreamGradeControl = 

this.parseSingle(runControlData.getChildTextTrim("downstreamGradeControl")); 

                Int32? processesAnalyzedByBankStability = 

this.parseInt(runControlData.getChildTextTrim("processesAnalyzedByBankStabili

ty")); 

                Int32? numberOfShearEmergences = 

this.parseInt(runControlData.getChildTextTrim("numberOfShearEmergences")); 

                Single? tensionCrackDepth = 

this.parseSingle(runControlData.getChildTextTrim("tensionCrackDepth")); 

                Int32? numberOfSkippedTimeSteps = 

this.parseInt(runControlData.getChildTextTrim("numberOfSkippedTimeSteps")); 

                Single? blockRetentionTime = 

this.parseSingle(runControlData.getChildTextTrim("blockRetentionTime")); 

                Boolean? doGroundWaterDynamics = 

this.parseBoolean(runControlData.getChildTextTrim("doGroundWaterDynamics")); 

 

                String query = "INSERT INTO runControlData (runDataID, name, 

doSedimentTransport, doToeErosion, doBankStability, simulationStartTime, 

simulationEndTime, initialTimeStep, upstreamBC, downstreamBoundaryCondition, 

downstreamWaterLevelFile, washLoadSizeClass, cohesiveSiltClayFraction, 

upstreamSedimentWeightCoeff, upstreamSedimentBoundaryCond, 

downstreamGradeControl, processesAnalyzedByBankStability, 

numberOfShearEmergences, tensionCrackDepth, numberOfSkippedTimeSteps, 

blockRetentionTime, doGroundWaterDynamics) VALUES (" + runDataID + ", " + 

name + ", " + doSedimentTransport + ", " + doToeErosion + ", " + 

doBankStability + ", " + simulationStartTime + ", " + simulationEndTime + ", 

" + initialTimeStep + ", " + upstreamBC + ", " + downstreamBoundaryCondition 

+ ", " + downstreamWaterLevelFile + ", " + washLoadSizeClass + ", " + 

cohesiveSiltClayFraction + ", " + upstreamSedimentWeightCoefficient + ", " + 

upstreamSedimentBoundaryCondition + ", " + downstreamGradeControl + ", " + 

processesAnalyzedByBankStability + ", " + numberOfShearEmergences + ", " + 

tensionCrackDepth + ", " + numberOfSkippedTimeSteps + ", " + 

blockRetentionTime + ", " + doGroundWaterDynamics + ")"; 

                //Console.WriteLine(query); 

                int runControlDataID = this.executeDBUpdate(query); 

 

                /* TODO 

                 * ratingCurve 

                 * sedimentFraction 
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                 *  

                 *  

                 *  

                 */ 

 

 

            } 

 

            private void parseOutputOptions(int runDataID, Element 

outputOptions) 

            { 

                // TODO Auto-generated method stub 

 

            } 

 

            private void parseScenarios(int runDataID, Element scenario) 

            { 

                // TODO Auto-generated method stub 

 

 

            } 

 

            private int executeDBUpdate(String query) 

            { 

 

                //Only insert if the user requests this 

                if (!performInserts) 

                { 

                    return -1; 

                } 

 

                //Console.WriteLine("Query before replace -  " + query); 

                //REPLACE EMPTY STRINGS WITH NULL keyword 

                //This means that we have to be very careful with spacing in 

database queries 

                query = query.Replace("(,", "(NULL,"); 

                query = query.Replace(" ,", " NULL,"); 

                query = query.Replace(" )", " NULL)"); 

                //Console.WriteLine("Executing -  " + query); 

                int autoIncKey = -1; 

                try 

                { 

                    MySqlCommand sqlComm = new MySqlCommand(query + "; select 

last_insert_id();", conn); 

                    autoIncKey = Convert.ToInt32(sqlComm.ExecuteScalar()); 

 

                    return autoIncKey; 

                } 

 

                catch (Exception e) 

                { 

                    Console.WriteLine(query + "\n" + e.Message); 

                    throw new Exception(query + "\n" + e.Message); 

                } 
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            } 

 

            // Construct the reference string for a given element to map and 

maintain 

            // many to many foreign key relationships 

            // Parameter element is element reference string is being 

constructed for 

            // Index is location of element within parent tag 

            private void mapXSIDString(Element element, int index, int 

dbKeyValue) 

            { 

 

                // Get reference string to maintain proper map of foreign 

keys 

                String referenceKey = "." + index; 

                while (element != null) 

                { 

                    referenceKey = "/@" + element.getName() + referenceKey; 

                    element = element.getParentElement(); 

                } 

 

                referenceKey = "#/" + referenceKey; 

 

                //Console.WriteLine(referenceKey); 

 

                xsidMap.Add(referenceKey, dbKeyValue); 

            } 

 

            private Int32? parseInt(String value) 

            { 

                if (value == null) 

                    return null; 

                else 

                    return Int32.Parse(value); 

            } 

 

            private Single? parseSingle(String value) 

            { 

                if (value == null) 

                    return null; 

                else 

                    return Single.Parse(value); 

            } 

 

            private String parseString(String value) 

            { 

                if (value == null) 

                    return null; 

                else 

                    return "'" + value + "'"; 

            } 

 

            private Boolean? parseBoolean(String value) 
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            { 

                if (value == null) 

                    return null; 

                else 

                    return Boolean.Parse(value); 

            } 

 

            private class XMLLoader 

            { 

 

                private XmlDocument xmlDoc; 

 

                public XMLLoader() 

                { 

                    xmlDoc = new XmlDocument(); 

                } 

 

                public Document build(String xmlFileName) 

                { 

                    //FileStream input = new FileStream(xmlFileName, 

FileMode.Open); 

                    xmlDoc.Load(xmlFileName); 

                    return 

                        new Document(xmlDoc); 

                } 

 

            } 

 

 

            private class Document 

            { 

                private XmlDocument xmlDoc; 

 

                public Document(XmlDocument xmlDoc) 

                { 

                    this.xmlDoc = xmlDoc; 

                } 

 

                public Element getRootElement() 

                { 

                    return new Element(xmlDoc.DocumentElement); 

                } 

            } 

 

            private class Element 

            { 

                private XmlElement xmlElement; 

 

                public Element(XmlElement xmlElement) 

                { 

                    this.xmlElement = xmlElement; 

                } 

 

                public String getName() 
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                { 

                    return xmlElement.LocalName; 

                } 

 

                public Element getParentElement() 

                { 

                    if (xmlElement.ParentNode == null || 

xmlElement.ParentNode.GetType().ToString().Equals("System.Xml.XmlDocument")) 

                        return null; 

                    else 

                        return new 

Element((XmlElement)xmlElement.ParentNode); 

                } 

 

                public List<Element> getChildren(String name) 

                { 

                    List<Element> childList = new List<Element>(); 

 

                    XmlNodeList childNodeList = 

xmlElement.GetElementsByTagName(name); 

 

                    IEnumerator iterator = childNodeList.GetEnumerator(); 

                    while (iterator.MoveNext()) 

                    { 

                        childList.Add(new 

Element((XmlElement)iterator.Current)); 

                    } 

 

                    return childList; 

 

                } 

 

                public String getTextTrim() 

                { 

                    return xmlElement.InnerText.Trim(); 

                } 

 

                public String getText() 

                { 

                    return xmlElement.InnerText; 

                } 

 

 

                public String getChildText(String name) 

                { 

                    IEnumerator elements = 

xmlElement.GetElementsByTagName(name).GetEnumerator(); 

                    elements.MoveNext(); 

 

                    if (elements.Current == null) 

                        return null; 

                    else 

                        return ((XmlElement)elements.Current).InnerText; 



 

149 

                    //return 

((XmlElement)(xmlElement.GetElementsByTagName(name).GetEnumerator().Current))

.Value; 

                } 

 

 

                public String getChildTextTrim(String name) 

                { 

                    IEnumerator elements = 

xmlElement.GetElementsByTagName(name).GetEnumerator(); 

                    elements.MoveNext(); 

 

                    if (elements.Current == null) 

                        return null; 

                    else 

                        return 

((XmlElement)elements.Current).InnerText.Trim(); 

                    //return 

((XmlElement)(xmlElement.GetElementsByTagName(name).GetEnumerator().Current))

.Value.Trim(); 

                } 

 

                public Element getChild(String name) 

                { 

                    IEnumerator elements = 

xmlElement.GetElementsByTagName(name).GetEnumerator(); 

                    elements.MoveNext(); 

 

                    if (elements.Current == null) 

                        return null; 

                    else 

                        return new Element((XmlElement)elements.Current); 

                    //return new 

Element((XmlElement)xmlElement.GetElementsByTagName(name).GetEnumerator().Cur

rent); 

                } 

 

                public String getAttributeValue(String name) 

                { 

                    return xmlElement.GetAttribute(name); 

                } 

 

            } 

 

        } 

} 
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DEMFILEPARSER 

Written by Chenchutta Denaye Cross Jackson 

Version 1 

Copy write July 2012 

The DEM file parser extracts data from the DEM file. The DEM file format is based on the 

ERSI file format and contains six fields in its header. 

The DEM file contains z (elevation) values.  From the DEM file the x (easting) and y 

(northing) values are determined by the z value’s position in the DEM file. 

The idea is to use this information from the raw HeightMap to create a virtual reality 

terrain.  

 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Collections; 

using System.IO; 

using System.Drawing; 

using System.Windows.Forms; 

using System.Drawing.Imaging; 

 

namespace Concepts3D 

{ 

    class GridFileParser 

    { 

 

        private int ncols = 0; 

        private int nrows = 0; 

        private int cellSize = 0; 

        private Single xllcorner = 0.0f; 

        private Single yllcorner = 0.0f; 

        private Single NODATAVALUE = 0.0f; 

 

        private Single highestElevation = -1; 

        private Single lowestElevation = -1; 

        private int datacols = 0; 

        private int datarows = 0; 

        private Single[,] elevationData = null; 

        private List<Point3D> pointList = new List<Point3D>(); 

 

        private Hashtable yAxisMap = new Hashtable(); 

        private Hashtable xAxisMap = new Hashtable(); 

 

        private Single elevationStartRange = -1; 

 

        public GridFileParser(String inputFile) 

        { 

            parse(inputFile); 
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        } 

 

        public void parse(String inputFile) 

        { 

 

            // TODO Auto-generated method stub 

     String[] line; 

 

   if (inputFile == null) { 

                throw new Exception("Input file is null"); 

   } 

 

            StreamReader reader = new StreamReader(inputFile); 

   if (reader.Peek() > -1) { 

    line = reader.ReadLine().Split(new char[] {' '}, 

StringSplitOptions.RemoveEmptyEntries);//.Split(" +"); 

    ncols = Int32.Parse(line[1]); 

   } 

            if (reader.Peek() > -1) 

            { 

    line = reader.ReadLine().Split(new char[] {' '}, 

StringSplitOptions.RemoveEmptyEntries); 

    nrows = Int32.Parse(line[1]); 

   } 

            if (reader.Peek() > -1) 

            { 

    line = reader.ReadLine().Split(new char[] {' '}, 

StringSplitOptions.RemoveEmptyEntries); 

    xllcorner = Single.Parse(line[1]); 

   } 

            if (reader.Peek() > -1) 

            { 

    line = reader.ReadLine().Split(new char[] {' '}, 

StringSplitOptions.RemoveEmptyEntries); 

    yllcorner = Single.Parse(line[1]); 

   } 

            if (reader.Peek() > -1) 

            { 

    line = reader.ReadLine().Split(new char[] {' '}, 

StringSplitOptions.RemoveEmptyEntries); 

    cellSize = Int32.Parse(line[1]); 

   } 

            if (reader.Peek() > -1) 

            { 

    line = reader.ReadLine().Split(new char[] {' '}, 

StringSplitOptions.RemoveEmptyEntries); 

    NODATAVALUE = Single.Parse(line[1]); 

   } 

 

            elevationData = new Single[nrows, ncols]; 

 

            Console.WriteLine("ncols: " + ncols + "\nnrows: " + nrows 

                    + "\nxllcorner: " + xllcorner + "\nyllcorner: " + 

yllcorner 
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                    + "\ncellsize: " + cellSize); 

 

   Single x = xllcorner - cellSize; 

   Single y = yllcorner + nrows - cellSize; 

   Single z = 0.0f; 

    

   int count = 0; 

 

            //Single[] rowMap = new Single[nrows];  //keeps track of row 

order so it can easily be reversed 

            //int rowMapIndex = 0; 

            Single topMostRow = -1.0f; 

 

 

            while (reader.Peek() > -1) 

            { 

    line = reader.ReadLine().Split(new char[] {' '}, 

StringSplitOptions.RemoveEmptyEntries); 

 

    for (int i = 0; i < line.Length; i++) { 

     x = x + cellSize; 

      

 

     if (x % (ncols + xllcorner) == 0) { 

      x = xllcorner; 

      y = y - cellSize; 

     } 

 

                    if (count == 0){ 

                        topMostRow = y; 

                    } 

 

     z = Single.Parse(line[i]); 

                    elevationData[(int)(count / ncols), (int)(count % ncols)] 

= z; 

 

                    if (lowestElevation == -1 && z != -9999) 

                        lowestElevation = z; 

                    else if (z < lowestElevation && z != -9999) 

                        lowestElevation = z; 

 

                    if (z > highestElevation) 

                        highestElevation = z; 

 

                    //rowMap[rowMapIndex++] = y;  

     Point3D point = new Point3D(x, y, z); 

     pointList.Add(point); 

 

                    if (!yAxisMap.ContainsKey((int)y)) 

                    { 

                        yAxisMap.Add((int)y, (int)(count / ncols)); 

                    } 

 

                    if (!xAxisMap.ContainsKey((int)x)) 
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                    { 

                        xAxisMap.Add((int)x, (int)(count % ncols)); 

                    } 

                      

                    //points[y,x] = z; 

                    count++; 

     //Console.WriteLine(point.toString()); 

 

    } 

   } 

 

            reader.Close(); 

 

            datarows = nrows; 

            datacols = ncols; 

 

            //PERFORM INTERPOLATION IF REQUESTED OR NEEDED 

            if (cellSize >= 2) 

            { 

                InterpolationSelectionForm form = new 

InterpolationSelectionForm(cellSize); 

                form.ShowDialog(); 

 

                if (! form.interpolationTechnique.Equals("NONE")) 

                { 

                    datarows = (nrows - 1) * cellSize + 1; 

                    datacols = (ncols - 1) * cellSize + 1; 

                } 

 

                if (form.interpolationTechnique.Equals("BILINEAR")) 

                { 

                    performBilinearInterpolation(); 

                } 

                else if (form.interpolationTechnique.Equals("BARYCENTRIC")) 

                { 

                    performBarycentricInterpolation(); 

                } 

            } 

 

        } 

         

 

         

        //Values must be read in starting at the last row of data values 

because of different coordinate mapping 

        //elevationStartRange indicates whether or not the range of elevation 

values should be modified for better viewing 

        //A value of 25 indicates that the range should start at 25, so if 

values are actually 75-150 they would instead be 

        //25-100 

        //The lower the elevationStartRange, the higher water will appear 

        public void createRaw32File(Rectangle selectedRegion, String 

raw32FileName, Single elevationStartRange) 

        { 
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            this.elevationStartRange = elevationStartRange; 

 

            if (selectedRegion.Top < 0 || selectedRegion.Left < 0) 

            { 

                selectedRegion = new Rectangle(0, 0, selectedRegion.Right, 

selectedRegion.Bottom); 

            } 

 

            try 

            { 

 

                FileInfo file = new FileInfo(raw32FileName); 

                FileStream s = file.Open(FileMode.Create, FileAccess.Write); 

 

                BinaryWriter bs = new BinaryWriter(s); 

 

                Single heightValue = -1.0f; 

 

 

                Bitmap testImage2 = new Bitmap(selectedRegion.Width, 

selectedRegion.Height); 

                int bitMapX2 = -1; 

                int bitMapY2 = -1; 

                for (int y = selectedRegion.Top; y < selectedRegion.Top + 

selectedRegion.Height; y++) 

                { 

                    bitMapY2++; 

                    bitMapX2 = -1; 

                    for (int x = selectedRegion.Left; x < selectedRegion.Left 

+ selectedRegion.Width; x++) 

                    { 

                        //Console.WriteLine("[" + x + ", " + y + "]"); 

                        heightValue = elevationData[y, x]; 

                        if (heightValue > 7000) 

                        { 

                            Console.WriteLine(heightValue); 

                        } 

 

                        if (elevationStartRange != -1) 

                            heightValue = heightValue - lowestElevation + 

elevationStartRange; 

 

                        bs.Write(heightValue); 

 

                        bitMapX2++; 

 

                        if (heightValue < 0) 

                        { 

                            heightValue = 0; 

                        } 

 

                        testImage2.SetPixel(bitMapX2, bitMapY2, 

Color.FromArgb((int)(heightValue), (int)(heightValue), (int)(heightValue))); 
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                    } 

                } 

 

                //testImage2.Save(raw32FileName); 

 

                bs.Close(); 

                s.Close(); 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.ToString()); 

            } 

        } 

 

        public Bitmap getBitmap() 

        { 

            Single imageRange = (highestElevation - lowestElevation);// 

*METERSCALEUP; 

            Console.WriteLine("Highest elevation is " + highestElevation); 

            Console.WriteLine("Lowest elevation is " + lowestElevation); 

            Console.WriteLine("Image range is " + imageRange); 

 

            Single heightMapRange = 255; 

 

            Single heightMapRatio = heightMapRange / imageRange; 

 

            Bitmap image1 = null; 

 

            //try 

            //{ 

 

            image1 = new Bitmap(datacols, datarows); 

            int elevation = -1; 

 

 

            Single value = -1.0f; 

 

            for (int y = 0; y < datarows; y++) 

            { 

 

                for (int x = 0; x < datacols; x++) 

                { 

                    value = elevationData[y, x]; 

                    if (value >= lowestElevation && value <= 

highestElevation) //We attempt to weed out the NO DATA VALUES and possible 

interpolated values influenced by the NO DATA VALUES 

                    { 

                        elevation = (Int32)((value - lowestElevation) * 

heightMapRatio); 

 

                        //int imageX = (Int32)(point.getX() - xllcorner); 

                        //int imageY = (Int32)(point.getY() - yllcorner); 

                        Color newColor = Color.FromArgb(elevation, elevation, 

elevation); 
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                        //if (elevation > 15) 

                        //{ 

                        //    Console.WriteLine(elevation); 

                        //} 

                        image1.SetPixel(x, y, newColor); 

                    } 

                } 

 

 

            } 

 

            return image1; 

        } 

 

 

        public void mergeSecondaryData(List<Point3D> secondaryPointList) 

        { 

            Single elevationValue = -1; 

            int zeroCount = 0; 

            foreach (Point3D point in secondaryPointList) 

            { 

                elevationValue = point.getZ();// -lowestElevation + 

elevationStartRange; 

 

                if (elevationValue != 0) 

                { 

                    if (elevationValue < lowestElevation) 

                    { 

                        lowestElevation = elevationValue; 

                    } 

                    if (elevationValue > highestElevation) 

                    { 

                        highestElevation = elevationValue; 

                    } 

                } 

                else 

                { 

                    zeroCount++; 

                    Console.WriteLine("(" + (int)point.getX() + ", " + 

(int)point.getY() + ")"); 

                } 

 

                int y = (int)yAxisMap[(int)point.getY()]; 

                int x = (int)xAxisMap[(int)point.getX()]; 

                elevationData[y, x] = elevationValue; 

            } 

 

            Console.WriteLine("There was a total of " + zeroCount + " zero 

values found"); 

        } 
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        private void performBilinearInterpolation() 

        { 

 

            Single[,] interpolatedData = new Single[datarows, datacols]; 

 

            //two outer loops are for original data 

 

            Single x0 = -1, y0 = -1, y1 = -1, x1 = -1; 

            Single height00 = -1, height01 = -1, height10 = -1, height11 = -

1; 

 

            for (int datay = 0; datay < nrows - 1; datay++) 

            { 

                //y1 = y0 + 1; 

                for (int datax = 0; datax < ncols - 1; datax++) 

                { 

 

                    height00 = elevationData[datay, datax]; 

                    height01 = elevationData[datay + 1, datax]; 

                    height10 = elevationData[datay, datax + 1]; 

                    height11 = elevationData[datay + 1, datax + 1]; 

 

 

                    //two inner loops are for new created data 

                    //an extra column and row of data will be interpolated 

even though it should already have its values 

                    //this might need to be fixed 

                    y0 = datay * cellSize; 

                    x0 = datax * cellSize; 

                    y1 = (datay + 1) * cellSize; 

                    x1 = (datax + 1) * cellSize; 

                    for (int y = (int)y0; y < y1; y++) 

                    { 

                        for (int x = (int)x0; x < x1; x++) 

                        { 

 

                            Single sum1 = ( ((x1 - x) * (y1 - y)) / ((x1 - 

x0) * (y1 - y0)) ) * height00; 

                            Single sum2 = ( ((x - x0) * (y1 - y)) / ((x1 - 

x0) * (y1 - y0)) ) * height10; 

                            Single sum3 = ( ((x1 - x) * (y - y0)) / ((x1 - 

x0) * (y1 - y0)) ) * height01; 

                            Single sum4 = ( ((x - x0) * (y - y0)) / ((x1 - 

x0) * (y1 - y0)) ) * height11; 

 

                            Single value = sum1 + sum2 + sum3 + sum4; 

 

                            interpolatedData[y, x] = value; 

                             

                        } 

 

                    } 

 

                } 
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            } 

 

            elevationData = interpolatedData; 

 

        } 

 

        private void performBarycentricInterpolation() 

        { 

 

            Single[,] interpolatedData = new Single[datarows, datacols]; 

 

            //two outer loops are for original data 

 

            Single x0 = -1, y0 = -1, y1 = -1, x1 = -1; 

            //Single height00 = -1, height01 = -1, height10 = -1, height11 = 

-1; 

 

            for (int datay = 0; datay < nrows - 1; datay++) 

            { 

                //y1 = y0 + 1; 

                for (int datax = 0; datax < ncols - 1; datax++) 

                { 

                    /*         

                            * a--------------c 

                            * |  \           | 

                            * |     \        | 

                            * |        \ V   | 

                            * |           \  | 

                            * b--------------d  

                            */ 

                    Single heighta = -1, heightb = -1, heightc = -1, heightd 

= -1; 

                    heighta = elevationData[datay, datax]; 

                    heightb = elevationData[datay + 1, datax]; 

                    heightc = elevationData[datay, datax + 1]; 

                    heightd = elevationData[datay + 1, datax + 1]; 

 

 

                    //two inner loops are for new created data 

                    //an extra column and row of data will be interpolated 

even though it should already have its values 

                    //this might need to be fixed 

                    y0 = datay * cellSize; 

                    x0 = datax * cellSize; 

                    y1 = (datay + 1) * cellSize; 

                    x1 = (datax + 1) * cellSize; 

 

                    //This should only need to be calculated once since the 

points for a regular grid 

                    Single entireTriangleArea = Math.Abs((x0 * (y1 - y1) + x0 

* (y1 - y0) + x1 * (y0 - y1)) / 2); 

 

                    int xincrease = 1; 

                    for (int y = (int)y0; y < y1; y++) 
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                    { 

                        for (int x = (int)x0; x < x0 + xincrease; x++) 

                        { 

                            /*  

                             * a--------------c 

                             * |  \           | 

                             * |     \        | 

                             * |        \ V   | 

                             * |           \  | 

                             * b--------------d  

                             */ 

 

                            //Get areas of each individual triangle opposite 

the corresponding vertex (i.e. Ab = area of triangle opposite vertex b) 

                            Single Aa = Math.Abs((x * (y1 - y1) + x0 * (y1 - 

y) + x1 * (y - y1)) / 2); 

                            Single Ab = Math.Abs((x0 * (y - y1) + x * (y1 - 

y0) + x1 * (y0 - y)) / 2); 

                            Single Ad = Math.Abs((x0 * (y1 - y) + x0 * (y - 

y0) + x * (y0 - y1)) / 2); 

 

                            Single value = ( (Aa * heighta) + (Ab * heightb) 

+ (Ad * heightd) ) / entireTriangleArea; 

                            interpolatedData[y, x] = value; 

                        } 

                         

                        xincrease++; 

                    } 

 

                    int xstart = (int)x0; 

                    for (int y = (int)y0; y < y1; y++) 

                    { 

                        for (int x = xstart; x < x1; x++) 

                        { 

                            /*  

                             * a--------------c 

                             * |  \           | 

                             * |     \        | 

                             * |        \ V   | 

                             * |           \  | 

                             * b--------------d  

                             */ 

 

                            //Get areas of each individual triangle opposite 

the corresponding vertex (i.e. Ab = area of triangle opposite vertex b) 

                            Single Aa = Math.Abs((x * (y0 - y1) + x1 * (y1 - 

y) + x1 * (y - y0)) / 2); 

                            Single Ac = Math.Abs((x0 * (y - y1) + x * (y1 - 

y0) + x1 * (y0 - y)) / 2); 

                            Single Ad = Math.Abs((x0 * (y - y0) + x * (y0 - 

y0) + x1 * (y0 - y)) / 2); 

 

                            Single value = ((Aa * heighta) + (Ac * heightc) + 

(Ad * heightd)) / entireTriangleArea; 
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                            interpolatedData[y, x] = value; 

 

                            //Console.WriteLine("(" + x + ", " + y + ")"); 

                        } 

 

                        xstart++; 

                    } 

 

 

                } 

            } 

 

            elevationData = interpolatedData; 

 

        } 

 

 

        private void performTriangulatedInterpolation() 

        { 

 

            Single[,] interpolatedData = new Single[datarows, datacols]; 

 

            //two outer loops are for original data 

 

            Single x0 = -1, y0 = -1, x1 = -1, y1 = -1, x2 = -1, y2 = -1; 

            Single heightA = -1, heightB = -1, heightC = -1;//, height11 = -

1; 

 

            for (int datay = 0; datay < nrows - 1; datay++) 

            { 

                //y1 = y0 + 1; 

                for (int datax = 0; datax < ncols - 1; datax++) 

                { 

 

                    Single determinant; 

                    //two inner loops are for new created data 

                    //an extra column and row of data will be interpolated 

even though it should already have its values 

                    //this might need to be fixed 

                    y0 = datay * cellSize; 

                    x0 = datax * cellSize; 

                    y1 = (datay + 1) * cellSize; 

                    x1 = (datax + 1) * cellSize; 

                    y2 = (datay + 1) * cellSize; 

                    x2 = datax * cellSize; 

 

                    determinant = (x0 * y1) - (x1 * y0) + (x1 * y2) - (x2 * 

y1) + (x2 * y0) - (x0 * y2); 

 

                    heightA = elevationData[datay, datax]; 

                    heightB = elevationData[datay + 1, datax + 1]; 

                    heightC = elevationData[datay + 1, datax]; 

                    //height11 = elevationData[datay + 1, datax + 1]; 
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                    int xFactor = 0; 

                    for (int y = (int)y0; y < y1; y++) 

                    { 

                        xFactor++; 

                        for (int x = (int)x0; x < x0 + xFactor; x++) 

                        { 

                             

                            Single A  = ((y1-y2)*heightA+(y2-

y0)*heightB+(y0-y1)*heightC) / determinant; 

                            Single B  = ((x2-x1)*heightA+(x0-

x2)*heightB+(x1-x0)*heightC) / determinant; 

                            Single C  = ((x1*y2-x2*y1)*heightA+(x2*y0-

x0*y2)*heightB+(x0*y1-x1*y0)*heightC) / determinant; 

                            Single value = (A * x) + (B * y) + C; 

                          

                            interpolatedData[y, x] = value; 

 

 

                        } 

 

                    } 

 

 

                    y2 = datay * cellSize; 

                    x2 = (datax + 1) * cellSize; 

 

                    heightA = elevationData[datay, datax]; 

                    heightB = elevationData[datay + 1, datax + 1]; 

                    heightC = elevationData[datay, datax + 1]; 

                    //height11 = elevationData[datay + 1, datax + 1]; 

 

                    xFactor = cellSize; 

                    for (int y = (int)y0; y < y1; y++) 

                    { 

                        xFactor--; 

                        for (int x = (int)x0 + xFactor; x > 0; x--) 

                        { 

 

            //Single A = ((y1 - y2) * heightA + (y2 - y0) * 

heightB + (y0 - y1) * heightC) / determinant; 

                            //Single B = ((x2 - x1) * heightA + (x0 - x2) * 

heightB + (x1 - x0) * heightC) / determinant; 

                            //Single C = ((x1 * y2 - x2 * y1) * heightA + (x2 

* y0 - x0 * y2) * heightB + (x0 * y1 - x1 * y0) * heightC) / determinant; 

                            //Single value = (A * x) + (B * y) + C; 

                            Single A = ((y1 - y2) * heightA + (y2 - y0) * 

heightB + (y0 - y1) * heightC) / determinant; 

                            Single B = ((x2 - x1) * heightA + (x0 - x2) * 

heightB + (x1 - x0) * heightC) / determinant; 

                            Single C = ((x1 * y2 - x2 * y1) * heightA + (x2 * 

y0 - x0 * y2) * heightB + (x0 * y1 - x1 * y0) * heightC) / determinant; 

                            Single value = (A * x) + (B * y) + C; 

 

                            interpolatedData[y, x] = value; 
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                        } 

 

                    } 

 

                } 

            } 

 

            elevationData = interpolatedData; 

 

        } 

 

 

        public List<Point3D> get3DPointList() 

        { 

            return this.pointList; 

        } 

 

         

    } 

} 
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X-SECTIONPARSER 

Written by: Chenchutta Cross Jackson 

Copy write July 2012 

Version 1 

The X-Section parser component starts by reading the file and extracting each value in the 

line of the comma separated file. Once this data is extracted, it is stored in a list of a user 

defined Point3D objects. The Point3D class has x (easting), y (northing), and z (elevation 

properties for storing data). This data is merged with the DEM file data by looping through 

the POINT3D list merging the PointList with the DEM information. 

 
using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.IO; 

 

namespace Concepts3D 

{ 

    class CrossSectionParser 

    { 

 

        private List<Point3D> pointList = new List<Point3D>(); 

 

        public CrossSectionParser(String inputFile) 

        { 

            parse(inputFile); 

        } 

 

        public void parse(String inputFile) 

        { 

 

            String[] line; 

 

            if (inputFile == null) 

            { 

                throw new Exception("Input file is null"); 

            } 

 

 

            StreamReader reader = new StreamReader(inputFile); 

            int lineCount = -1; 

            int elevationPosition = -1;  //corresponds to the column where 

elevation values are 

            int eastingPosition = -1;  //corresponds to the column where 

easting values are 

            int northingPosition = -1;  //corresponds to the column where 

northing values are 

 

            while (reader.Peek() > -1) 

            { 
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                line = reader.ReadLine().Split(new char[]{','}, 

StringSplitOptions.RemoveEmptyEntries); 

 

                if (line[0].ToUpper().Equals("END")) 

                { 

                    break; 

                } 

 

                lineCount++; 

 

                //READ HEADER AND FIND COLUMN NUMBER FOR EACH VALUE 

                if (lineCount == 0) 

                { 

                    for (int i = 0; i < line.Length; i++)// (String s in 

line) 

                    { 

                        String s = line[i]; 

                        if (s.ToUpper().Equals("ELEV")) 

                        { 

                            elevationPosition = i; 

                        } 

                        else if (s.ToUpper().Equals("EASTING")) 

                        { 

                            eastingPosition = i; 

                        } 

                        else if (s.ToUpper().Equals("NORTHING")) 

                        { 

                            northingPosition = i; 

                        } 

                    } 

 

                }//end if 

                else 

                { 

                    Single x = Single.Parse(line[eastingPosition]); //easting 

                    Single y = Single.Parse(line[northingPosition]); 

//northing 

                    Single z = Single.Parse(line[elevationPosition]);// 

*0.3048f;  //elevation 

 

                    //add to 3D point list 

                    Point3D point = new Point3D(x, y, z); 

                    pointList.Add(point); 

                    //Console.WriteLine(lineCount + ". " + point.toString()); 

                     

                } 

            }//end while 

 

        }//end parse method 

 

        public List<Point3D> getPointList() 

        { 

            return pointList; 

        } 
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    } 

} 

 

CONCEPTS3D 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

using System.Drawing.Imaging; 

using System.Runtime.InteropServices; 

using System.Diagnostics; 

using System.Threading; 

 

 

 

namespace Concepts3D 

{ 

    public partial class MainForm : Form 

    { 

        public MainForm() 

        { 

            InitializeComponent(); 

             

        } 

 

        private const String OPENSIMHOME = @"\Concepts Project\opensim-

0.7.3.1\bin"; 

 

        //private IntPtr viewerHandle, openSimHandle; 

        private Process viewerProcess = null; 

        private Process openSimProcess = null; 

 

        private void btnGo_Click(object sender, EventArgs e) 

        { 

            String primaryInputFile = txtSelectedFile.Text; 

            String secondaryInputFile = txtSelectedCrossSectionFile.Text; 

             

            DateTime oldDate = DateTime.Now; 

 

            //PrimaryParser primaryParser; 

 

            //Select parser based on file extension 

            if(primaryInputFile.EndsWith(".txt", true, null)) 

            { 

                GridFileParser parser = new GridFileParser(primaryInputFile); 
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                CrossSectionParser secondaryParser = null; 

 

                if (secondaryInputFile != null && 

!secondaryInputFile.Equals("")) 

                { 

                    secondaryParser = new 

CrossSectionParser(secondaryInputFile); 

                    

parser.mergeSecondaryData(secondaryParser.getPointList()); 

                } 

 

 

                //Create a bitmap based on loaded data 

                Bitmap bmp = parser.getBitmap(); 

                //Save the bitmap to disk 

                //String outName = "C:\\bmpout3.bmp"; 

                //bmp.Save(@outName, ImageFormat.Bmp); 

 

                DateTime newDate = DateTime.Now; 

                Console.WriteLine("Executed in " + (newDate - 

oldDate).TotalMilliseconds + "ms"); 

 

                //Load the bitmap into the image viewer so user can select 

the region for the raw data file 

                ImageViewer viewer = new ImageViewer(bmp); 

                viewer.ShowDialog(); 

 

                //Get user selected region from viewer 

                Rectangle selectedRegion = viewer.getSelectedRegion(); 

 

                //Create raw file data, we start the range at a number based 

on the water level being 20 meters 

                try 

                { 

                    parser.createRaw32File(selectedRegion, OPENSIMHOME + 

@"\OUTPUT.f32", 5.0f); 

 

                    MessageBox.Show("RAW32 Heightmap File Created!"); 

                } 

                catch (Exception ex) 

                { 

                    throw ex; 

                } 

             

            } 

            else if (primaryInputFile.EndsWith(".xml", true, null)) 

            { 

                ConceptsXMLParser parser = new 

ConceptsXMLParser(primaryInputFile); 

 

            } 

            else 

            { 

                MessageBox.Show("The file extension is not supported."); 
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            } 

 

        } 

 

        private void enableCrossSectionSelection(Boolean enable){ 

            if (enable) 

            { 

 

                lblCrossSection.Enabled = true; 

                txtSelectedCrossSectionFile.Enabled = true; 

                btnCrossSectionBrowse.Enabled = true; 

            } 

            else 

            { 

                lblCrossSection.Enabled = false; 

                txtSelectedCrossSectionFile.Text = ""; 

                txtSelectedCrossSectionFile.Enabled = false; 

                btnCrossSectionBrowse.Enabled = false; 

            } 

        } 

 

        private void btnBrowse_Click(object sender, EventArgs e) 

        { 

            openFileDialog1.Title = "Please select a DEM file or CONCEPTS XML 

file"; 

            openFileDialog1.FileName = @"C:\Concepts 

Project\SampleData\dem_1m.txt"; 

            openFileDialog1.Filter = " DEM File (*.txt)|*.txt|CONCEPTS XML 

File (*.xml)|*.xml"; 

            DialogResult dResult = this.openFileDialog1.ShowDialog(); 

            if (dResult == DialogResult.OK) 

            { 

                txtSelectedFile.Text = openFileDialog1.FileName; 

            } 

 

            btnGo.Enabled = true; 

        } 

 

                

        private void txtSelectedFile_TextChanged(object sender, EventArgs e) 

        { 

            txtSelectedCrossSectionFile.Text = ""; 

 

            if (txtSelectedFile.Text.EndsWith(".txt")) 

            { 

                enableCrossSectionSelection(true); 

            } 

            else if (txtSelectedFile.Text.EndsWith(".xml")) 

            { 

                enableCrossSectionSelection(false); 

            } 

        } 

 

        private void btnCrossSectionBrowse_Click(object sender, EventArgs e) 
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        { 

            openFileDialog2.Title = "Please select a Cross Section File"; 

            openFileDialog2.FileName = @"\SampleData\chat-xs-points.txt"; 

            openFileDialog2.Filter = " Cross Section File (*.txt)|*.txt"; 

            DialogResult dResult = this.openFileDialog2.ShowDialog(); 

            if (dResult == DialogResult.OK) 

            { 

                txtSelectedCrossSectionFile.Text = openFileDialog2.FileName; 

            } 

 

            btnGo.Enabled = true; 

        } 

 

        private void btnStartOpenSim_Click(object sender, EventArgs e) 

        { 

             

            String program = "cmd.exe"; 

            String args = "/k" + " cd " + OPENSIMHOME + " && " + 

"OpenSim.exe"; 

 

            openSimProcess = Process.Start(program, args); 

            Thread.Sleep(100); 

 

            SetParent(openSimProcess.MainWindowHandle, 

panelGameEngine.Handle); 

            MoveWindow(openSimProcess.MainWindowHandle, 0, 0, 

panelGameEngine.Width, panelGameEngine.Height, true);  

        } 

 

        private void btnOpenViewer_Click(object sender, EventArgs e) 

        { 

 

            String program = @"C:\Program Files\Imprudence\imprudence.exe"; 

            String args = "--settings settings_imprudence.xml"; 

 

            viewerProcess = Process.Start(program, args); 

            //Thread.Sleep(20000); // Allow the process to open it's window 

 

            //IntPtr newParent; 

            viewerProcess.WaitForInputIdle(); 

 

            SetParent(viewerProcess.MainWindowHandle, panelViewer.Handle); 

            MoveWindow(viewerProcess.MainWindowHandle, 0, 0, 

panelViewer.Width, panelViewer.Height, true); 

             

            //viewerProcess.WaitForInputIdle(); 

 

        } 

 

        

 

        //WINDOWS API FUNCTIONS 

        [DllImport("user32.dll")] 
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        static extern IntPtr SetParent(IntPtr hWndChild, IntPtr 

hWndNewParent); 

 

        [DllImport("user32.dll", EntryPoint = "SetWindowPos")] 

        public static extern IntPtr SetWindowPos(IntPtr hWnd, int 

hWndInsertAfter, int x, int Y, int cx, int cy, int wFlags); 

 

        [DllImport("user32.dll", SetLastError = true)] 

        private static extern bool MoveWindow(IntPtr hwnd, int x, int y, int 

cx, int cy, bool repaint); 

 

        [DllImport("Kernel32.dll")] 

        static extern Boolean AllocConsole(); 

 

        [DllImport("user32.dll", EntryPoint = "FindWindow")] 

        public static extern IntPtr FindWin(string lpClassName, string 

lpWindowName); 

 

        [DllImport("user32.dll", EntryPoint = "GetParent")] 

        public static extern IntPtr GetParent(IntPtr hWnd); 

 

        [DllImport("user32.dll", CharSet = CharSet.Auto, ExactSpelling = 

true)] 

        public static extern bool IsChild(IntPtr hWndParent, IntPtr hwnd); 

 

        //Clean up processes when the main form closes 

        private void MainForm_FormClosing(object sender, FormClosingEventArgs 

e) 

        { 

            if (viewerProcess != null) 

            { 

                //Make sure the process is stopped and its resources are 

released 

                viewerProcess.CloseMainWindow(); 

                viewerProcess.Kill(); 

                viewerProcess.Dispose(); 

            } 

            if (openSimProcess != null) 

            { 

                //Make sure the process is stopped and its resources are 

released 

                openSimProcess.CloseMainWindow(); 

                openSimProcess.Kill(); 

                openSimProcess.Dispose(); 

            } 

        } 

    

 

    } 

} 
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