
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2012

Virtual Worlds and Conservational Channel Evolution and Virtual Worlds and Conservational Channel Evolution and

Pollutant Transport Systems (Concepts) Pollutant Transport Systems (Concepts)

Chenchutta Denaye Jackson

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Jackson, Chenchutta Denaye, "Virtual Worlds and Conservational Channel Evolution and Pollutant
Transport Systems (Concepts)" (2012). Electronic Theses and Dissertations. 147.
https://egrove.olemiss.edu/etd/147

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=egrove.olemiss.edu%2Fetd%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/147?utm_source=egrove.olemiss.edu%2Fetd%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

VIRTUAL WORLDS AND CONSERVATIONAL CHANNEL EVOLUTION AND

POLLUTANT TRANSPORT SYSTEMS (CONCEPTS)

A Dissertation

Submitted to the Faculty of the University of Mississippi

 in partial fulfillment of the requirements

 for the Degree of Doctor of Philosophy in the School of Engineering

The University of Mississippi

by

CHENCHUTTA DENAYE CROSS JACKSON

July 2012

Copyright © 2012 by Chenchutta Cross Jackson

All rights reserved

ii

ABSTRACT

Many models exist that predict channel morphology. Channel morphology is defined as

the change in geometric parameters of a river. Channel morphology is affected by many factors.

Some of these factors are caused either by man or by nature. To combat the adverse effects that

man and nature may cause to a water system, scientists and engineers develop stream

rehabilitation plans. Stream rehabilitation as defined by Shields et al., states that “restoration is

the return from a degraded ecosystem back to a close approximation of its remaining natural

potential” [Shields et al., 2003]. Engineers construct plans that will restore streams back to their

natural state by using techniques such as field investigation, analytical models, or numerical

models. Each of these techniques is applied to projects based on specified criteria, objectives,

and the expertise of the individuals devising the plan. The utilization of analytical and numerical

models can be difficult, for many reasons, one of which is the intuitiveness of the modeling

process. Many numerical models exist in the field of hydraulic engineering, fluvial

geomorphology, landscape architecture, and stream ecology that evaluate and formulate stream

rehabilitation plans. This dissertation will explore, in the field of “Hydroscience”, the creation of

models that are not only accurate but also span the different disciplines. The goal of this

dissertation is to transform a discrete numerical model (CONCEPTS) into a realistic 3D

environment using open source game engines, while at the same time, conveying at least the

equivalent information that was presented in the 1D numerical model.

iii

DEDICATION

First, I would like to give all honor and glory to my Almighty God. He has made all my

impossible possible. I dedicate this paper to my supportive family Marlon, Kentarvis, Christopher,

and Aiden. You guys have made this journey worthwhile. Also I dedicate this to my grandmother

Rosie Lee Cross. Without your faith and love for me, I would not be who I am today.

iv

ACKNOWLEDGMENTS

 I would like to take the time to express my deepest appreciation to my advisor, Dr.

Pamela Lawhead and my committee members, Dr. Dawn Wilkins, Dr. Yixin Chen, Dr. Conrad

Cunningham, and Dr. Eddy Langendoen. I would like to also express my gratitude to the

University of Mississippi Graduate School for patience and funding as well as the United States

Department of Agriculture for their commitment and involvement. I would like to thank my

friend Doris Turnage for her support and advice throughout this entire process. Lastly, I would

not have gotten this far without the support and help of my loving husband Marlon Jackson. You

have stood by my side and loved me through it all.

v

 TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………..……….ii

DEDICATION ………………………………………………………………..…………iii

ACKNOWLEDGEMENTS……………………………………………………………...iv

TABLE OF CONTENTS…………………………………………………………………v

LIST OF FIGURES………………… ………………………………………..…………vi

INTRODUCTION ...………1

LITERATURE REVIEW ..11

METHODOLOGY ..53

RESULTS ..86

CONCLUSION………………………………………………………………………....108

BIBLIOGRAPHY ..113

APPENDIX……………………………………………………………………….…… 123

VITA……………………………………………………………………………………170

vi

LIST OF FIGURES

FIGURE PAGE

Figure 1: Source NSL-Technical Report 16 [Langendoen, 2000] ... 9

Figure 2: CONCEPT Output in EXCEL [Langendoen, 2000] .. 17

Figure 3: Comparison Chart of Game Engines Evaluated ... 41

Figure 4: Data Processing Map of Extracting, Moving, and Converting CONCEPTS Data 54

Figure 5: Waterfall SDLC Model [Gangolly, 2000] .. 57

Figure 6: File format process before Virtual Environment Rendering by OpenSim 60

Figure 7: Flowchart of CONCEPTS3D Architecture .. 60

Figure 8: Prototype CONCEPTS3D Desktop Application .. 62

Figure 9: CONCEPT XML File ... 64

Figure 10: CONCEPTS SAMPLE XML FILE ... 64

Figure 11: XML Example of Ecore Reference ID located in XML file 66

Figure 12: XSD with maxOccurs= unbounded for many-to-many relationship 67

Figure 13: XML File Example of Many-to-Many ChannelModel_Reach 68

Figure 14: Reach-Channel Model Data Definition .. 69

Figure 15: Implementation to store key/value pairs in dictionary class for Many-to-Many 69

Figure 16: EER Diagram Showing the Reach-ChannelModel Relationship 70

Figure 17: ERSI Grid File Format ... 71

Figure 18: 2D Array of DEM Grid File ... 72

Figure 19: Resulting BitMap File of DEM Data Using Algorithm Above.................................. 73

Figure 20: Grayscale BitMap of the Integrated XSection and 1 Meter Dem File 74

Figure 21: Selected 256 X 256 Area of the 5 Meter Dem File .. 75

Figure 22: BitMap 256 X 256 Area Selected... 76

Figure 23: CONCEPTS Data Display in Excel ... 78

Figure 24: Delaunay Triangulation Algorithm [Schroeder, Martin, and Lorensen, 2004] 82

Figure 25: Start of the OpenSim Game Engine ... 87

Figure 26: Choose a DEM file for Rendering .. 88

Figure 27: Choose files or a file to render ... 88

Figure 28: View the Selected area as a 3D virtual environment .. 89

Figure 29: User Selecting a 5 meter Dem file for Viewing ... 90

Figure 30: The Results of a 5 meter Dem file as a BitMap ... 91

Figure 31: Results of Dem 5 Meter Data as a VR Terrain After Interpolation 92

Figure 32: User Selecting 5 Meter Dem File ... 93

Figure 33: Results of 5 Meter Dem file after Bilinear Interpolation ... 93

Figure 34: A 256 X 256 Selected Area for rendering an object from the 5 Meter Dem File 94

Figure 35: Results of Additional Data Points within the 5 meter DEM terrain 95

file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489411
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489412
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489413
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489414
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489415
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489416
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489417
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489418
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489419
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489420
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489421
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489422
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489423
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489424
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489425
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489426
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489427
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489428
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489429
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489430
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489431
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489432
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489433
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489434
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489435
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489436
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489437
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489438
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489439
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489440
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489441
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489442
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489443
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489444
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489445

vii

Figure 36: Smoother Edge Terrain of DEM 5 meter Data ... 96

Figure 37: Dem 1 Meter File and X-Section File selected for Data Processing 97

Figure 38: Raw32 File Created for the X-Section and 1 Meter Dem File 97

Figure 39: BitMap Image of Dem file and X-Section File, where X-Section dark lines appear

within stream ... 98

Figure 40: Result of the X-Section and Dem File Rendered ... 99

Figure 41: Display of X-Section within the Dem Terrain ... 99

Figure 42: Improved Model with Data Smoothing .. 100

Figure 43: Bilinear Interpolation of 1 Meter Dem with X-Section after X-Section Scaling 100

Figure 44: Barycentric Interpolation BitMap .. 101

Figure 45: Virtual Reality Terrain after Barycentric Interpolation .. 101

Figure 46: User Selecting XML file for Processing .. 103

Figure 47: Message asking users to Insert Data into Database .. 103

Figure 48: Concept MySQL Database ... 104

Figure 49: Select query performed to view CONCEPTS conceptsmodel table 104

Figure 50: Prototype of CONCEPTS3D .. 105

Figure 51: User starts OpenSim gaming engine .. 106

Figure 52: User select 1 meter DEM file for Processing ... 106

Figure 53: Result of 1 Meter DEM as a VR Terrain.. 107

Figure 54: Results of 5 meter DEM file as a VR Terrain .. 107

file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489446
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489447
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489448
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489449
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489449
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489450
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489451
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489452
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489453
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489454
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489455
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489456
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489457
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489458
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489459
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489460
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489461
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489462
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489463
file:///C:/Users/Chenchutta/Desktop/ChenchuttaJacksonDissertationGraduateSchoolRevisions.doc%23_Toc331489464

 1

CHAPTER I

INTRODUCTION

Channel morphology is defined as the change of the shape of an alluvial stream (river)

over time. Stream restoration, rehabilitation, and reclamation projects are constructed to reverse

the effects of adverse changes to streams. The two processes that contribute to the changes that

occur in alluvial streams are water flow and sediment transport. Rapid variations in water flow

and sediment discharge are caused by either man-made or natural disturbances to the ecosystem.

Some of the man-made disturbances are deforestation, urbanization, irrigation, and vegetation

development. The natural changes that arise in the ecosystem are precipitation increase, rainfall,

and global warming.

Other common man-made disturbances that cause disruption in stream function that are

often overlooked are chemical induced disturbances. Chemically defined disturbances can be

introduced through many activities including agriculture (pesticides and nutrients), urban

activities (municipal and industrial water contaminants), and mining (acid mine drainage and

heavy metals)[The Federal Interagency Stream Restoration Working Group (FISRWG), 1998]

[Wagner, Marsalek, and Ji, 2008]. Chemical disturbances do not just affect the area where they

are released; their impact can be felt far downstream. Introducing exotic species to a particular

area is also another common man-made disturbance to the streams ecosystem. The introduction

 1

of exotic species, whether intentional or not, can cause disruptions such as predation,

hybridization, and the introduction of diseases.

Agricultural overuse of the land is considered a man-made disturbance. For instance,

overuse of the land by grazing cattle and sheep is universal throughout the country. Excessive

grazing of livestock poses many problems such as landscape breakage, increased runoff, reduced

infiltration, and physical damage to a stream corridors’ vegetation.

Natural disturbances to streams are caused by tornados, hurricanes, flood, fire, lightning,

volcanic eruptions, earthquakes, insects, diseases, landslides, temperature extremes, and drought.

Studies have found that nature induced changes seldom need human intervention to restore a

stream corridor back to its innate state [FISRWG, 1998]. In the case where humans have to

intervene, stream restoration, rehabilitation and reclamation plans are devised.

Steam restoration as defined by the Federal Interagency Stream Restoration Working

Group, is the reestablishment of the structure and function of an ecosystem [National Research

Council, 1992]. Ecological restoration is the process of returning an ecosystem as closely as

possible to pre-disturbance conditions and functions. Implicit in this definition is that ecosystems

are naturally dynamic; it is therefore not possible to recreate them exactly. The restoration

process reestablishes the general structure, function, and dynamics but permits self-sustaining

behavior of the ecosystem.

The Federal Interagency Stream Restoration Working Group defines stream

rehabilitation as making the land useful again after a disturbance [The Federal Interagency

Stream Restoration Working Group, 1998]. It involves the recovery of ecosystem functions and

processes in a degraded habitat. Stream rehabilitation and stream restoration are used

 2

interchangeably; the main goal is always to make the land useful again after disturbances have

been eliminated. Stream rehabilitation plans are the process and range of action taken to restore

dynamic equilibrium and function to the stream corridor, which will allow it to be self-

sustaining. Stream reclamation is a series of activities intended to change the biophysical

capacity of an ecosystem. The main goal of these management methods is to restore the river or

stream channel back to its self-sustaining ecosystem

 Individuals from many fields such as ecology, biology, geomorphology, geology,

landscaping design, hydrology, and hydraulics are all involved in the process of creating and

implementing stream restoration, rehabilitation, or reclamation plans. The focus of this

dissertation will be on stream restoration efforts as it pertains to hydrology and hydraulics.

Hydrology is the study of water and all its complexity. Hydraulics is an area of applied science

that is concerned with fluid properties and fluid flow. The engineers and researchers involved in

developing stream restoration plans evaluate how water flows and how sediment transport

operates on the stream channel. They are concerned with channel morphology and the

geomorphology process. Many of the plans that hydraulic engineers devise have as an objective

the stabilization of the banks and beds of a stream. This is achieved by providing the unstable

bank with native vegetation along the riparian zone of the streams. Another method generally

used is engineering the stream, either by adding riffles or pools or man-made hydraulic structures

such as dams, rocks, cobbles, and culverts.

 Based on research and engineering practices, regardless of the area of discipline,

successful rehabilitation, restoration, and reclamation plans are derived based on three methods

identified by Rouse [US Army Corp of Engineers, 1996]. These methods are viewing and

 3

collecting past and present data from a stream using gauging stations, construction of physical

models of a stream, and analysis using numerical models. Benefits and limitations exist for each

of the methods.

The oldest technique used for planning and developing stream rehabilitation projects

requires engineering experience. Field experience is highly important and is an extremely

valuable tool for any scientist or engineer. Collecting field data is one of the steps in the process

of devising a stream restoration plan. For stream restoration projects, individuals involved must

access, analyze, and compare gauging station data and historical data that have been stored in

repositories on the steam and stream corridor under investigation. The major drawback of this

technique is that it does not always provide defensible and reproducible results. Another

disadvantage is that this method often leads to trial-and-error procedures. Collecting data from

gauging stations and comparing it with historical data is considered to be a labor intensive

process. Also the information from these gauging stations is considered to be harder to obtain

and predict accurately.

The second technique is based on physical models. These models are constructed to

replicate rivers or channels being analyzed. Laboratory modeling has been proven to be

successful and dependable for at least the past 60 years [US Army Corp of Engineers, 1996]. The

advantage of physical modeling compared to the first technique mentioned is that it is mandatory

that all physical model procedures be documented. The major drawback of using the laboratory

or physical modeling technique is that it can become very costly. Because of the many variables

that exist in open channels, physical models are not considered feasible by many river engineers

and scientists who practice the first method. Based on their assessment, many plans devised for

 4

alluvial channels using physical models for analysis fail, because they are often too costly or

their results are ineffective.

The last technique in planning stream rehabilitation projects are analytical procedures

based on mathematical procedures and numerical models [US Army Corp of Engineers, 1996].

Research shows that the most efficient, cost-effective, and stable stream rehabilitation plans were

devised using results from numerical modeling. Numerical models can be classified as one, two,

or three-dimensional, and as hybrid models. Users of these models may choose one or a

combination of models that will yield successful and defensible results at an optimal cost.

Models that are considered when devising stream or river restoration projects are fluid-

flow models and channel evolution models. There are many advantages to using these numerical

models. The mechanics of flow and sediment transport have been studied and investigated in

many field studies, flume experiments, and theoretical studies. Numerical channel evolution

models allow researchers to retrieve results of proposed plans quickly. Evaluating project

alternatives is very cost-effective. These computer models can provide scientists and researchers

with accurate and quick results on how a river’s morphology will change over time. Not only do

the models predict the future equilibrium morphology of a channel under evaluation, they also

show the temporal evolution of the channel morphology. These models allow scientists,

engineers, and researchers to understand the long-term, broad scale evolution of channels and

floodplains [Howard, 2008].

In hydraulic engineering, numerical models have the capability of simulating fluid flow

processes and channel evolution efficiently and accurately. Often fluid-flow models, channel

evolution and sediment transport models are used in combination to form a more powerful

 5

computational tool. The results from these multiple models provide greater insight into the

dynamic channel evolution and fluid-flow processes. These tools provide stream restoration

developers with information on how fluid flow affects the stream’s geometry (e.g., width/depth

ratio). The primary limitation of these tools is that the results from these models may be difficult

to understand and results are hard to decipher for both expert and novice users.

Tools created to enhance these scientific models are created with visualization

capabilities. Research shows visual stimuli provides users with a better perception of the

simulated scenarios given by computational models. Scientific and information visualization

have been used for many years in all areas [Schroeder, Martin, and Lorensen, 2004] including

education, military, industrial, and scientific research. Visualization based on computer graphics

and interactive simulation techniques was formally defined 20 years ago [Rhyne, 2007].

Solutions that exist to enhance numerical models used for stream restoration management

involve various analytical and visualization technologies. These numerical tools used for

developing stream restoration plans are combined with GIS analysis tools, powerful Graphic

Processing Units (GPUs), and innovative gaming engines. Each technique used to enhance the

numerical model has benefits as well as limitations.

The most popular techniques among the scientists who devise stream restoration plans are

the methodologies that combine GIS analysis technology. GIS analysis tools and techniques span

many areas of environmental and agricultural science. Due to the popularity of these tools there

are many readily available.

GIS tools that are combined with numerical models for environmental management are

found as both proprietary and open source software. Researchers in the field of environmental

 6

science have an easy task of using the tools because many tools that exist are domain specific for

this area of science. Individuals who have neither background knowledge nor experience with

numerical models nor GIS tools find them difficult to navigate, let alone understand, the valuable

information provided from these tools. Because of this, the combination of these many tools

results in an even greater level of difficulty of use.

Another technique that is used to enhance the numerical models used for stream

restoration is using powerful supercomputers and GPU technology. Increasing CPU power and

using highly effective graphics hardware have always been found to enhance many tools used for

research purposes. The major drawback with this technique is that funding for projects of this

caliber are not always feasible and are always costly. Technology, at this level, is expensive and

requires experts in the field of each technology to design a tool that is effective and domain

specific but also user friendly.

The latest technique used to enhance numerical models used for stream restoration

management is the addition of gaming engines to visualize the data from channel evolution and

fluid-flow models. Gaming engines are complex software systems designed for creating and

developing video games. The main function of a gaming engine is to efficiently render 2D and

3D graphics. According to Lewis and Jacobson, the only way to have the fastest, most realistic

simulation and sophisticated graphics is to trade down from the expensive hardware to basic PCs

running game software [Lewis and Jacobson, 2002]. The technique of combining the two

restoration management tools with a gaming engine combats the issues presented by the first two

techniques. Although this area of science is new it offers great potential with advancing research

efforts in the area of stream restoration [Guo et. al, 2008] [Wells, 2005] [He et al., 2006].

 7

There are many benefits to be derived from using gaming engines. Most of these options

are fairly inexpensive. There are primary categories for a gaming engine. Both proprietary and

open source game engines exist. Choosing one over the other makes little difference but

increases the potential of developing a great tool within many budget sets for stream restoration

planning efforts. So, the costs associated with developing tools with the mechanisms that gaming

engines provide are minimal. The features geared toward visualizing large datasets such as

terrain data, already exist and are readily available. Also many projects developed with gaming

engines have been shown to be easy to navigate and the results from these models are easy to

understand [Lewis, and Jacobson 27-31]. The major drawback with this technology is that, while

popular in many other areas of science, it is rarely used in the area of environmental planning for

stream restoration programs. This limits the documentation available for creating programs that

are domain specific. Also the implications of developing these tools are unknown. The largest

drawback known when using this technology is that visualizing or rendering very large terrains

can cause time and space issues. But as CPU power and storage are increasing this will become

less of an issue. The possibility of creating tools that are cost effective, domain specific, and user

friendly will only make the use of gaming engine technology within this area of study more

promising.

 This last method, numerical data set rendering using a gaming engine, was the technique

of choice for this dissertation. This method was chosen because the costs associated with

producing a tool to enhance the numerical model used for stream restoration planning were free.

Also, the efficient productivity of creating software with a gaming engine was considered to be

effective due to the availability of many, open source tools. Many features for depicting data

 8

graphically are already a built-in function of many gaming engine technologies. Basically, time

and money were the driving factors for considering using open source gaming engines to develop

a tool that was user friendly and effective for displaying the data from the existing numerical

model (CONCEPTS) making it a visual tool that is intuitive, allowing many users to navigate.

A secondary goal was that visualizing the large data sets resulting from numerical modeling will

be more understandable thus making the models more effective.

The objective of this dissertation is to enhance the one-dimensional, numerical model,

Conservational Channel Evolution and Pollutant Transport System (CONCEPTS) model with

graphical capabilities provided by a gaming engine [Langendoen, 2000]. The ultimate goal is to

transform the discrete numerical model into a realistic 3D environment, while at the same time

conveying the equivalent, accurate information that was presented in the 1D model.

CONCEPTS is a computer model used to simulate open-channel flow, sediment

transport, and channel morphology. The primary aim here is to develop an additional

component/dimension for CONCEPTS that provides users with an intuitive visual, approach to

evaluate stream restoration projects graphically. Currently, CONCEPTS does not produce an

intuitive output, its input and output is in the form of text which is imported into an EXCEL

spreadsheet (see Figure 1).

 9

Providing a prototype for real-time, graphical interface feature to CONCEPTS will open

the door for many more users besides hydro-scientists to understand and use the modeling tool.

The results from the new model CONCEPTS3D will be easier to understand for both novices

and experts. In order to accomplish this goal other objectives of this dissertation must be met.

These include:

1. Build a desktop application available for non-sophisticated users, which visualizes

CONCEPTS data in 3D-CONCEPTS3D.

2. Store and access CONCEPTS XML data through a MySQL database.

3. Develop three parsers to extract appropriate data to model a 3D virtual environment.

a. Parser—XML file

b. Parser—DEM file-terrain

c. Parser—Cross-section (X-Section) file-channel

4. Transform DEM and X-Section data into a height-map file format.

5. Develop data interpolation techniques that allow for CONCEPTS data to be available

for the 3D gaming engine.

Figure 1: Source NSL-Technical Report 16 [Langendoen, 2000]

 10

6. Convert interpolated data into gaming engine native file format.

7. Find and adapt an opened source gaming engine so that it can be repurposed for

CONCEPTS viewing.

Each component created to achieve the listed objectives will be discussed and reviewed in

greater detail in the methodology section of this paper.

 11

CHAPTER II

LITERTURE REVIEW

In this Chapter, an assessment of 1D numerical models and enhanced models with

visualization capabilities is presented. Each of the first set of models discussed is used to analyze

sediment transport, channel morphology, and fluid flow rate. The numerical models reviewed are

Generalized Sediment Transport Model (GSTARS), Hydraulic Engineering Center (HEC-

6/HEC-RAS), National Center of Computational Hydroscience and Engineering (CCHE1D), and

Conservational Channel Evolution and Pollutant Transport System (CONCEPTS). These models

are limited by the lack of visualization and graphics capabilities they provide. The one model

enhanced with visualization efforts for stream restoration planning is CCHE1D. This model

visualizes its data using an ArcView program. Models that incorporate Graphic Processing Units

(GPUs), GIS, and gaming engines technology to enhance the graphical and visualization

capabilities of applications and models are assessed.

GSTARS

 GSTARS was developed by the United States Bureau of Reclamation [Yang et al.].

GSTARS is used by government agencies, researchers, institutions, students as well as engineers

for the analysis of sediment transport. The model is used for analyzing sediment, erosion,

morphology, and river restoration [Yang et al.].

 12

GSTARS 1-D is a model presented under series GSTARS models. GSTARS 1-D is a

one-dimensional hydraulic and sediment transport model for use in natural rivers and man-made

canals. This numerical model is used for steady, unsteady flow analysis, internal boundary

conditions, looped river networks, cohesive and non-cohesive sediment transport, and lateral

inflows analysis.

GSTARS 1-D was applied by Klump (2005) to simulate unsteady sediment transport in

the California aqueduct [Yang et. al]. The results were significant. It was found that the model

provided information that the channel had aggraded more than 136 miles downstream.

GSTARS is a general numerical model and just as other 1-D models, it has its limitations.

Limitations include:

1. The model requires expert evaluation of results to certify that the model’s

predictions are correct.

2. Currently the system GSTARS can be executed only on a Windows 2000/XP.

3. The size of the project evaluated can be limited only to the amount of

computer memory space available.

4. It is stated in the manual that the program results are potentially fallible;

5. The results should be examined by an experienced engineer to determine if

they are reasonable or accurate.

GSTARS software is available online for download at

http://www.usbr.gov/pmts/sediment/model/srh1d/index.html. The current model reads input

files, which are organized as sequential records. To execute GSTARS1-D, the user is required to

enter the file name with the extension .srh. During execution of the program the current bed

profile and user specified cross-section is displayed in real-time. During the simulation process,

GSTARS’ output allows the user to visualize the results of the input data.

Currently, GSTARS is known as Sedimentation and River Hydraulics-One Dimension

http://www.usbr.gov/pmts/sediment/model/srh1d/index.html

 13

(SRH-1D).

HEC-6

HEC-6 is a software package developed by the U.S. Army Corps of Engineers (USACE)

Hydrologic Engineering Center (HEC) [US Army Corps of Engineers, 2009]. The purpose of

this one-dimensional sediment transport model is to calculate water surfaces and sediment bed

surface profiles by computing the interaction between sediment material in the streambed and the

flowing water-sediment mixture. HEC-6 has the capability of analyzing a network of streams,

channel dredges, and various levee encroachment plans. This model also provides several

methods to compute sediment transport rates.

HEC-6 has been applied by many organizations besides the USACE offices. HEC-6 has

been used for government, private consultant, university, and foreign projects. One project the

model was applied to was to predict potential future sedimentation for the Ozark Reservoir on

the Arkansas River. HEC-6 was also used to predict future water surface elevations for levees at

Lewiston ID on the Lower Granite Reservoir. HEC-6 was applied to other projects described by

Thomas and Prasuhn (1977), and other recent projects of HEC (1992). The HEC-6 model has

been used extensively since the 1970’s for predicting sediment transport rates, dredges and levee

plans accuracy, as well as channel morphology.

Although HEC-6 has been used for various reasons, the model does have its limitation.

HEC-6 model is restricted by the following limitations:

1. The model has no provisions for simulating the development of meanders.

2. The model does not provide provision for simulating lateral distribution of sediment

loads across a cross-section.

 14

3. Density and secondary current are not simulated.

4. Movable beds are constrained within the limits of wetted perimeters. In the case of

sediment transport HEC-6 is restricted in two ways.

1. First sediment transport in distributaries is impossible.

2. Flow in closed loop channels can not be directly accommodated.

5. Only local inflow points are allowed between any two cross-sections for calculating

sediment transport (US Army Corp of Engineers).

HEC-6 is also available online for download at

www.hec.usace.army.mil/software.legacysoftware/hec6/hec6.htm.

CCHE1D

 CCHE1D is a model developed at the National Center of Computational Hydro Science

and Engineering at the University of Mississippi [Vieira and Wu, 2002]. The CCHE1D modeling

system was created to simulate steady and unsteady flow and sedimentation processes in

dendritic channel networks. The model has the capability to simulate sediment transport, bed

aggradation and degradation, bank erosion, and channel morphology. One limitation, however, is

that the model is restricted to the application of sub-critical flows [Vieira, 2002].

 The CCHE1D model has been applied to several waterway projects [Vieira, 2002].

CCHE1D was applied to East Fork River, Wyoming, a sedimentation project in the Danjiangkou

Reservoir, Goodwin Creek watershed in Mississippi, and the PA-Chang river flood routing and

sediment transport project in Taiwan.

 The features provided by CCHE1D are innovative for 1D models. CCHE1D has an

ArcView graphical user interface. This feature allows the user of the model to follow a natural

flow of operation. The CCHE1D ArcView interface also gives users more options for defining

the simulation domain and input data. The model includes a “Channel Digitizing Module,”

http://www.hec.usace.army.mil/software.legacysoftware/hec6/hec6.htm

 15

which allows the user to sketch channel networks based on maps or photographs. Other features

are a Landscape Analysis and Channel Network Analysis module. The Landscape Analysis

module creates a channel network based on digital elevation data. An upgraded version of

Topographic ParameteriZation (TOPAZ) is integrated in CCHE1D. TOPAZ analyzes a Digital

Elevation Model (DEM) and extracts the channel networks and corresponding subcatchments.

 The use of the CHE1D model requires knowledge in the fields of hydrodynamics and

channel morphology. First, the user must select the StartChannelSimulation from the Simulation

menu. The model will then analyze the input file. After this step the progress of the simulation is

displayed. When the simulation has completed, a message indicating the end of the process is

displayed. The results of a CCHE1D simulation are easily read and displayed, either in a

visualization, a spreadsheet, or data analysis program. One of the limitations of this numerical

model is that it cannot be applied to dam break flow and it is not applicable to dendritic channels

with more than one outlet. The visual of this program also uses GIS based graphic which limits it

to 2D flyby image of the area.

CONCEPTS

 CONCEPTS was developed at the United States Department of Agriculture (USDA)-

Agricultural Research Service (ARS)-National Sedimentation Laboratory (NSL) in Oxford,

Mississippi. CONCEPTS is a model in the suite of tools incorporated under Agricultural Non-

Point Source Pollutant Model (AGNPS) [Langendoen, 2000].

 CONCEPTS was designed as a 1-D numerical model used to simulate open-channel

hydraulics, bank and bed erosion, and sediment transport. A primary objective of the

CONCEPTS model is that it is to be used as an assessment evaluation model for proposed stream

 16

or corridor rehabilitation plans.

The advantages of using CONCEPTS are that it can be applied to evaluate the

effectiveness of instream control structures and stream corridor rehabilitation measures in

controlling channel erosion. CONCEPTS has been used to study channel evolution in the

Goodwin Creek, watershed, Mississippi and Little Salt creek of Eastern Nebraska, and TMDL

studies in James Creek, Mississippi and Shades Creek, Alabama.

Although CONCEPTS provides scientists and engineers in the hydraulic field the

necessary capabilities to evaluate and develop stream rehabilitation plans, the model has similar

limitations as the models above.

CONCEPTS is freely available and can be downloaded at ftp://solar1.mas-

oxford.ars.usda.gov/pub/outgoing/CONCEPTS. The requirement needed to execute CONCEPTS

is a computer with Windows XP or later operating system. The CONCEPTS input file requires 1

to 2 MB of hard disk space. A minimum of 32 MB of Random Access Memory is recommended.

The results of the model or output vary between 1MB to a couple of gigabytes depending on the

output options provided by the user.

To execute CONCEPTS, the user is required to provide two types of input files.

1. The description of the channel, run control data, and output options are organized

into a single XML input file.

2. Water and sediment discharge rates at the upstream boundary and from tributaries

are organized into flat ASCII input files.

 CONCEPTS produces three types of output files:

1. Output at a certain location and for a certain runoff event

 17

2. Time-series output at a certain location

3. Output for a specified runoff event along a section of the evaluated and modeling reach.

Output from CONCEPTS must be imported into a spreadsheet application such as Microsoft

Excel or Corel Quattro Pro to view the results of the simulation with plots or graphs (See Figure

2).

To overcome many of the limitations of numerical models, developers, researchers, and

scientists have created many tools designed to be used with them. These tools utilize different

technology that has built-in graphics and visualization features to increase usability and

interpretation of results. Technologies that have been used to produce these tools are Geographic

Information Systems (GIS), Graphic Processing Units (GPU), and gaming engines.

 GIS based tools are the most popular enhancement tools used with numerical and

mathematical models. GIS technology providing visualization capabilities as well as data

Figure 2: CONCEPT Output in EXCEL [Langendoen, 2000]

 18

management and analysis has been improved for more than 30 years [Berry, 2007]. There are

many tools that use this technology in many areas of sciences such as disaster and risk analysis

and management, water quality monitoring and management, and forestry informization. Other

areas that have also benefited from GIS technology are urban governance, simulation and

environment modeling, pollution monitoring, traffic and transportation management,

environmental and ecological marine monitoring and management, and analysis and simulation

of farmland information systems. A few tools that provide GIS technology to existing

applications and management systems are GIS for Transportation (GIS-T) [Lu, 2006], marine

GIS (Chybicki et. al, 2008], 3D GIS and geo-analysis model [Guo et. al, 2008], and GIS-FIMS

[He et.al, 2006].

 GIS-T with web services was created by Xiaolin Lu at the College of Information

Technology in Zhejiang, China [Lu, 2006]. GIS-T with web services is a distributed, platform

independent system that can be accessed remotely over the Internet. The application provides

efficient transportation planning and management formulas. GIS-T uses the latest in GIS

technology web services in an effort to allow developers to create customized software. Using

GIS web services gives developers the advantage of using traditional GIS application features

without needing many modules or the standalone GIS applications and associated geographic

data. The GIS web service of the GIS-intelligent transportation application system provides

spatial data and GIS functionality to integrate the customized ITS applications to perform basic

geo-processing tasks such as address matching, map image display, and routing [Lu, 2006].

 The research performed by Guo, Zang, Zhao, and Ge at the Key Lab of Virtual

Geographic Environment showed that integrating 3D GIS and geo-analysis was convenient and

 19

efficient, and promotes geo-simulation [Guo et. al, 2008]. By using an existing 3D numerical

model and incorporating 3D visualization of the geospatial (GIS) data permits for the

contaminants transportation to be displayed and simulated. The application created was designed

to simulate and visualize the three dimensions water contaminants transportation of the Taihu

Lake [Guo et al. 2008].

Another tool that incorporates GIS technology with pre-existing software is Geographic

Information Systems-Farmland Information Systems (GIS-FIMS) [He et al., 2006]. Created by

He, Deng, Shao, and Fang at Zhejang University, GIS-FIMS is a tool used to monitor and

manage farmland. GIS-FIMS uses short message technology to obtain the farmland information.

The information acquired by the tool is the farmland electronic conductivity, temperature,

moisture content, global positioning system (GPS) information, and PH levels. In essence the

system uses GIS technology by integrating a short messaging service with web accessible

capabilities that provides visualization of geospatial data, maps, and data services to the end-

user.

The last tool discussed that incorporates GIS technology is marine GIS, and it is used in

marine pollutant studies [Chybicki et. al., 2008]. This tool was created by Chybicki, Kulawiak,

Lubniewski, Dabrowsi, Luba, Moszynski, and Stepnowski at Gdarisk University of Technology

in Gdarisk, Poland. The tool provides remote access to a real-time management tool for

processing and visualizing data from many sources such as sonar sensors, acoustic sensors and

echo sounders. It supports instantaneous 2D and 3D visualization. This tool also uses many of

GIS technology features such as ARCSDE, ARCGIS engine, GlobalControl, and map control

components for geo-referenced presentation of objects. It also does the traditional features of

 20

geo-processing and spatial analyzing. In essence the system was designed using many GIS

technology features, which permits data to be processed and visualized from different sensors

and distributed sources. The tool provided is a real-time, remotely accessible marine GIS

application used for monitoring water pollution compounds and predicting the pollutants

behavior in the environment.

 With many of the GIS analysis tools created, providing them with visualization

capabilities has been the key component that has been shown to increase not only the usability of

the tools and computational models but also increased the clarity of information produced from

computational models using the GIS features.

Research shows that use of visualization features has improved the decision-making

process by showing analysis information that will save users effort, time, and money [Henderson

& Mason, 2010]. The visualization and graphic component of many numerical models is the key

feature that increases the usability as well as promotes clarity of the data being interpreted. Many

engineers, researchers, and scientists are turning to incorporating, using, and studying GPUs

(graphics processing units) and advanced graphics cards to amplify the visualization and imagery

efforts of many analysis tools.

Although models that use GPU technology and advanced graphics cards increase

usability, they are considered to be very computationally intense. Applications or tools created

that use visualization in conjunction with numerical/simulation models require computationally

intense programming that must be both stored and computed. To alleviate these constraints

programmers, scientists, and researchers are looking at the latest technology that offers hope in

the computer science and graphics industry. This method is co-processing of the central

 21

processing units (CPUs) and graphic processing units (GPUs). This innovative technique was

created to alleviate or offload some of the intense computation calculation to the graphics card

installed in a user machine. Software engineers are now using Compute Unified Device

Architecture (CUDA) technology to program scientific research applications on a GPU [“What is

CUDA”].

CUDA is a parallel computing architecture developed by NVIDIA [“CUDA in Action”].

CUDA is the computing engine in the GPU presented by NVIDIA. This engine provides

software developers access to the underlying hardware of a machine’s graphic card. CUDA gives

developers access to the native instruction set and memory of the parallel computation elements

in the GPU [“CUDA in Action”].

GPUs are graphic processing units that use the hardware-video card in addition to

microprocessors–CPU to perform calculation for graphics, 3D graphic rendering and simulation

applications. Because of the nature of computer graphics programs, GPUs are very efficient at

calculating and manipulating parallel programs such as graphic programs, which typically have a

parallel structure.

Projects that were created that combined GPU technology and visualization with

scientific and information research are aquatic-GeoFish [Vance et al., 2009], medical-BartSim

[Feibush et. al, 1999], and industrial-SeismicCity [“CUDA in Action”], OptiTex [OptiTex], and

General Mills [“CUDA in Action”] and military-Joint Operations Visualization Environment

(JOVE) [Feibush et. al, 1999].

SeismicCity, which uses GPU and CUDA technology, was created to improve the

chances of finding oil [“CUDA in Action”]. The cost of drilling oil wells is expensive, so

 22

researchers and programmers devise a program that was cost-effective. Drilling wells is

estimated to cost hundreds of millions of dollars. Incorporating depth imaging technology that

interprets seismic data leads to the faster selection of drilling location-in essence save both time

and cost for performing the procedure.

General Mills used simulated data and visualization techniques to optimize their

technique of cooking frozen pizza in the microwave [“CUDA in Action”]. The idea was to

discover the effects of microwave radiation on various permutations of pizza elements rather

than physically creating the different combinations. General Mills found it less expensive and

time-consuming to model the pizzas using sophisticated computers.

BartSim is a program that produces high quality images of macromolecules in real-time.

JOVE is used by top level military decision makers for situational awareness. Situational

awareness visualization applications require the representation of large geographic areas and

thousands of military units [Feibush et. al, 1999]. Visualizing the area and creating scenarios is

highly useful when devising strategies that will aid in the prevention and combat of enemies

attacks.

Currently there are no documented applications that combine GPU technology and

advance graphics cards with stream restoration planning. However, the documented projects

have been shown to use this technology for rendering terrain for virtual environments. This lack

of using the technology may be the expense and the computational intensity involved in

implementing, storing, and processing these applications using GPU technology. In essence, this

technology does show promise for this area of study (stream restoration) because it is used for

virtual and simulation environments.

 23

The last method that increases or enhances numerical models with graphical and

visualization capabilities is using gaming engine technology. Tools or applications using gaming

engine technology are in areas such as weather forecasting, terrain rendering, virtual reality

environment for military strategy assessment and planning, search and rescue planning, real-time

environmental and interaction infrastructures, architectural design and planning, pollutant and

environmental simulation and visualization, among many other areas. A few applications created

that have benefited from the interactive capability and visualization features of gaming engine

technology are applications such as SIMWIZ3D [Wegner, 2005], GENETICS [Wells, 2005], and

USARSIMS [Roberts et. al, 2008].

SIMWIZ3D was created by Katja Wegner at the Bioinformatics and Computation

Biochemistry EML Research facility using gaming engine technology [Wegner, 2005].

SIMWIZ3D is a novel software tool produced to visualize the results of data simulated from

living cell life processes. SimWiz3D is an extension or expansion of the previous software

SIMWIZ. SIMWIZ3D overcome many of the limitations of SIMWIZ. By using gaming engine

technology, SIMWIZ3D provided the users of the software with many benefits. SIMWIZ3D

provided users with the ability to visualize continuous time series data. SimWiz3D provided

users with better interaction with the application. The tool has the capability to be customized

based on the demands of the users. The tool can also be used to explore local and global data

views. SIMWIZ3D uses small and large datasets with a large number of reactant and time steps,

a major difference from existing models and the older model SIMWIZ. In addition,

SIMWIZ3Ds display of the results of the simulated data has been found to be clearer and more

concise. As a result of these benefits, the software usability and understanding of the process of

 24

genetic reactants and living cell networking processes has increased.

Generating Enhanced Natural Environments and Terrain for Interactive Combat

Simulations (GENETICS) is another tool using gaming engine technology, developed by Major

William D. Wells at the MOVES Institute Naval Postgraduate School [Wells, 2005].

GENECTICS is a downloadable SOARXTerrain component of the military’s open source game

engine DELT3D. Used in combat operations this application/tool provides military authorities

with the ability to devise strategic plans based on different scenarios in a realistic simulated

training environment.

The CRYTEC game engine FarCry, is the gaming engine used to develop the Grange

Gorman hospital site [Mcatmney et. al]. The purpose of using a game engine is to provide the

developer with consultation and planning scenarios for dynamic and efficient walkthrough with

interaction capabilities of the space. Using Farcry to render the hospitals terrain topography so

that objects in the scene will be displayed truthfully within the environment is the primary

benefit of using CRYTEC gaming engine.

Another tool created based on gaming engine technology was developed by Cheng et al.

at Nanjing Normal University in China. This application combines virtual toolkit (VTK) and the

contaminant dispersion simulation model to visualize the dynamic contaminant process that

occurs within waterways. This application provides environmentalists with the information

needed to devise comprehensive solutions and treatment to the Taihu Lakes [Cheng et al., 2010].

The last tool discussed is USARSIMS. This tool was first developed in 2002 at Carnegie

Mellon University and later released to the National Institute for Standard Technology (NIST) in

2005 [Roberts et al., 2008]. USARSims is a high-fidelity, physic-based simulation environment

 25

for robotic development. The primary objective of this tool is to provide a simulated

environment with realistic terrains and object placement for a simulated complex search and

rescue environment in disaster areas to help devise plans to recovery lives in these areas. This

application uses the popular game engine UnReal to render realistic scenes used in the simulated

search and rescue environment.

For this dissertation, gaming engine technology will be used to enhance a model used to

simulate pollutants within streams and channels to help devise stream restoration plans for the

affected area. The model that will be enhanced using gaming engine technology is CONCEPTS.

Likewise, for GPU technology, there are no documented applications created using gaming

engine technology, especially in the area of stream restoration. With the many benefits gaming

technology provides, this technology shows great promise in this area of research and science.

Besides the low cost, visualization and the advanced graphics capabilities associated with many

innovative gaming engine applications many would still ask, “Why use a game engine?”

So, why use gaming engines? There exist a variety of reasons gaming engines are

chosen to enhance existing software applications and numerical models. These considerations

include economical, graphic capabilities, software development efforts and productivity, and

visualization efficiencies. By definition, gaming engines provide many components needed to

create innovative tools using the latest in graphic and visualization technology. Gaming engines

are complex software systems designed for creating and developing video games. The main

functionality of the gaming engine is the rendering engine for 2D and 3D graphics. According to

Lewis and Jacobson, the only way to have the fastest, most realistic simulation and sophisticated

graphics is to trade down from the expensive hardware to basic PCs running game software

 26

[Lewis and Jacobson, 2002]. Before gaming engines were written as software many graphics

were produced from the standard CPU, video card and VRAM components. This method not

only produced mediocre graphics but also the frames per seconds were slow, and the image

quality or models produced were not realistic.

When realistic graphics are produced, several factors must be taken into consideration.

The amount of data to be rendered and the amount of processing power provided by the CPU, the

GPU and the memory available to each play a major role in the quality of the graphical models

created. Therefore, many scientists, researchers, and developers are using graphics processing

units, video buffering, along with the CPU to offload the computational expenses of graphics

rendering. As this work is being done, graphical rendering is becoming more and more the

responsibility of the video card. As a result of these changes, gaming engines, which are

designed to exploit these features, can be used for serious analysis and computing and not just

for game play [Lewis and Jacobson, 2002]. Indeed, the game industry is actually pushing the

development of visualization hardware.

Gaming engines can be used for both serious analysis and computing. The engine is

considered the core of any game. Gaming engines control many aspects of a game. Most of the

earlier gaming engines were very simple to develop and program. Gaming engines initially

consisted of a loop event, state tables, and graphics routines. Modern games engines are far

more complex. Today gaming engine are developed to controls the players’ movement,

navigation, light, visual, sound, screen resolution, and objects displayed. When creating a

gaming engine several associated components must be also created.

From a software engineering perspective, the use of the gaming engine provides many

 27

benefits. Gaming engines not only increase productivity when creating 2D and 3D graphics, but

also they promote code reuse, thus reducing software bugs and limitations. They also provide

better, faster graphics. Components of gaming engines include the system, the data/tools, the

console, support, the rendering tools, and the game interface.

 Tools, as defined by Hodorowicz, at the very least, include 3D model editors,

level editors, and graphics programs. [Hodorowicz, 2006]

 The system consists of sub-system such as graphics, input, sound, timer, and

configuration to communicate with the machine. Systems are responsible for

initializing, updating, and shutting down the sub-system. Each sub-system of the

gaming engine plays a vital role in the realism and graphic capability of a virtual

world’s graphics.

 The graphics sub-system deals with the screen graphics

 The input component manages data sources from the keyboard, mouse, game-pad

and joystick interfaces.

 The sound system is responsible for loading and playing sounds in the virtual

world.

 The timer is responsible for time management in real-time gaming environments.

 The configuration subsystem enables users to customize the system.

 The console component of a gaming engine is used for testing and debugging the

system during the system development phase.

 Support consists of algorithms, memory managers, loaders, and containers.

 The renderer with its sub-system is responsible for rendering the 3D graphics.

[Hodorowicz, 2006]

Each component of the gaming engine is vitally important to the realism displayed in an

interactive, virtual reality environment.

 28

Economically, the use of gaming engines is ideal because of the reduced cost associated

with creating tools that provides visualization components. There exist different levels for each

gaming engine. Gaming engines are in the form of proprietary engines, freeware, and open

source rendering engines. Each has its own benefits. Proprietary gaming engines claim to

provide users with stability, user and customer support, as well as expert business solutions.

Freeware, although not free, provides users with a tool that could be bought at a small cost, but

with some legal restrictions on using the software. The open source gaming engines are free, and

they give the users benefits that proprietary engines provide but also many benefits that freeware

does not. Open source gaming engines have the benefit that it costs little to nothing as well as

allows for customizable applications to be developed. The source code for these gaming engines

is available to be modified and enhanced for a true customize application. Open source software

is a better option for a developer working on a tight budget but, who wants the capability of

creating a customizable, innovative tool that uses the latest in visualization and graphic

technology.

For this dissertation open source game engines were chosen because of the major budget

conscious aspect associated with creating a stream restoration planning tool and the graphic and

visualization features it provides. The cost of stream restoration planning costs billions of

dollars. These costs have continued to increase over the past 30 years [Bernhardt et al., 2007].

The overhead related to the stream restoration projects are staggering. On average,

according to Palmer et al, the cost for river or stream restoration efforts in the United States is

more than one billion dollars a year [Palmer et al., 2005]. It has been found that this cost is only

associated with the requirements needed for assessing the circumstance or the current state of the

 29

stream or river and the implementation method that will be used to restore the stream or river.

This cost does not include future analysis of the river after the plan has been implemented. A

problem that exists for restoration projects is that they do not budget for post-assessment of the

plans’ implementation. So creating an economical application that provides graphics and visually

enhanced tools that can be used for stream restoration planning and monitoring are ideal. Again,

the tool or software created for this dissertation is created using a free, open source game engine

and other sources to keep the cost of production down. The implication defined by creating the

software that uses open source gaming engine technology is defined within this dissertation.

Developing Computational Models with Visualization

Depending on the problem size, simulating, and reviewing the results of numerical

models is known to be time consuming. From a software developer’s perspective, computational

models have to overcome the common pitfalls of time and space constraints. Time constraints

relate to the amount of time required for a program to execute. Space constraints relate to the

amount of memory the executing program requires. For this dissertation project the simulation

model, CONCEPTS, and a graphics application were combined. Both applications are very

demanding computationally, requiring substantial time and memory storage.

For this project, the graphics application components must be written efficiently for

managing and rendering large terrain datasets. The dataset for CONCEPTS is both large and

dense. Algorithms for these problems are computationally intensive, and require developers to

create efficient programs that will optimize the performance of any CPU. For software engineers,

creating a program of this nature is challenging, especially when keeping time and space issues

in the forefront. To alleviate these constraints programmers, scientists, and researchers are

 30

looking into GIS, GPU, and gaming engine technology. Each technology have a common or

underlying similarity, each adds visualization features to enhance the usability and clarity of the

interpreted data rendered from these innovative tools.

Research shows visual stimuli provides users with a better perception of the simulated

scenarios given by computational models [Rhyne, 2007]. Scientific and information visualization

have been used for many years in the fore mentioned areas- education, military, industrial, and

scientific research. Visualization has been used since the beginning of time for communicating.

Visualization based on computer graphics and interactive simulation techniques was formally

defined 20 years ago. Visualization involves large displays and stereoscopic environments that

engulf the viewers in the examination and exploration process [Rhyne, 2007]. Visualization is

defined as any technique for creating images, diagrams, or animation to convey and

communicate a message. In 2004, visualization was classified as three different, but overlapping,

areas scientific, information, and analytical visualization.

Scientific visualization is the process of transforming data into sensory stimuli, usually

images [Schroeder et. al., 2004]. Scientific visualization uses interactive, sensory representations,

typically visual, of abstract data to reinforce cognition, hypothesis building, and reasoning.

Scientific visualization usually involves the transformation, selection or representation of data

from simulations or experiments. Representing data this way allows the exploration, analysis,

and understanding of the data. Scientific visualization produces visual displays of spatial data

associated with scientific processes, such as the bonding of molecules in computational

chemistry. Others areas that involves visualization scientific data are flow, medical, and

chemical visualization. .

 31

Information visualization is the visualizing of non-spatial data. Information visualization

is catered for addressing community planning scenarios that combine diverse data sets from

geographic information system (GIS), visual impact assessments, and transportation analyses

[Rhyne, 2007].

Analytical visualization as defined in the report “Illuminating the Path: The Research and

Development Agenda for Visual Analytics,” states that, “Visual analytics is the science of

analytical reasoning facilitated by interactive visual interfaces” [Rhyne, 2007]). Analytical

visualization is developed to assist in emergency responses and rapid evaluation of

transportation. This area of visualization focuses on human interaction with visualization systems

as part of a larger process of data analysis. Visual analytical research concentrates on support for

perceptual and cognitive operations that enables the users to detect the expected and discover the

unexpected.

Today there are other areas of visualization: volume visualization, education

visualization, knowledge visualization, product visualization, and visual communication. Each

field focuses on simulating and visualizing information so that important decisions can be

evaluated and implemented. Research shows that using visualization tools has improved the

decision-making process by showing analysis information that will save users effort, time, and

money [Henderson and Mason, 2010].

 The visualization area for the work done here is scientific. The results produced from the

CONCEPTS simulator will be graphically displayed in a 3D virtual reality environment.

Visualizing the results of the simulator will aid in the exploration and understanding of different

stream restoration scenarios. As a result, researchers can choose a restoration plan that can be

 32

“seen” to be most successful.

 Another key component for rendering a realistic 3D model is the data supplied to the

game/rendering engine. Data poses a challenge to both the rendering engines as well as to the

central processing unit (CPU). As in all areas of computer science, data management in a gaming

engine is a balancing act. Although the more data supplied to the engine the cleaner, sharper,

and more realistic the 3D models appears, but large amounts of data pose problems for the CPU

and graphics buffer, tending to slow the whole project down.

Besides the data supplied to the rendering engine, other factors that affect the

effectiveness of a tool is the programming language used to create or develop the software.

Languages that closely resemble machine language are more effective for graphics and hardware

manipulation than those higher level languages that do not take into consideration memory and

systems obstacles. Choosing the appropriate language can alleviate many daunting issues relating

to speed (time) and memory (space). Programming languages have been found to simplify and

shorten software development time. The appropriate programming language provides a

developer with not only a high-level, easy to use language, but, also data structures, and memory

management features. These attributes allow developers to produce programs that will optimize

CPU performance.

Game Engines and Programming Languages

The languages considered to be used to write the additional components used along with

a gaming engine for this research project were all are domain-specific. Special-purpose or

domain-specific languages provide two main advantages over general-purpose languages. One

advantage is domain specific languages increase productivity because of their higher level of

 33

abstraction. Two, domain-specific languages allow developers to express ideas in a notation

familiar to the developer. Many domain-specific languages exist. Domain-specific languages are

categorized as string-manipulating languages, list-processing languages, simulation languages,

scripting languages, and graphics programming languages.

The languages discussed in detail for this dissertation are the most popular graphic

application languages or graphic programming languages. The choices for application

programming interfaces that support the special purpose languages are: OpenGL and

DirectX/Direct3D. Languages are categorized as either freestanding or embedded. Freestanding

graphic programming languages are languages that do not require support from other languages

such as virtual reality modeling language [VRML]. Embedded languages are those that require

other language support such as C, C++, Java, Fran, and Cg. A discussion of OpenGL with C++

and OpenGL with Java is provided. DirectX application programming and interface will be

discussed in this section. The advantages and disadvantages of each language will be provided.

Freestanding Language: VRML

VRML was created and released by Silicon Graphic Inc (SGI) in 1995 [Yee]. VRML is a

3D graphic programming language that allows developers to create 3D scenes that can be

rendered and manipulated through a web browser. VRML is interpreted by a VRML browser.

VRML is one of the languages considered to be the international standard for 3D graphics

modeling. VRML is maintained by the International Organization for Standardization (ISO).

 The language provides developers with a high-level of abstraction to describe and create

3D scenes. The data structures that VRML uses to organize the objects or scene render is a

hierarchical graph. The object vertices in the graphs are called nodes. The scene in VRML is

 34

rendered by traversing the graph, performing a breadth-first search. The nodes of the graph

represent the geometry/shape, property-texture, lighting, color, and material are combined node

in a 3D scene. VRML provides developers with simple and complex 3D primitives to render

intricate scenes.

The designers of VRML had several goals in mind when creating the programming

language.

1. VRML was created to unite and standardize the rendering of 3D graphics over the

Web.

2. VRML was designed to be backward compatible.

3. The language is scalable to support both complex and simple objects and scenes.

4. VRML objects are reusable.

5. VRML allows multi-user interaction over the web.

6. VRML language is extensible.

7. VRML is portable to various platforms.

One drawback mentioned by Yee in the article “A Survey of Graphics Programming Language”

is performance. This problem is mainly due to rendering of a scene via the Internet [Yee]. In the

worst-case when scenes are rendered the portability and performance will become slow during

high traffic.

Embedded Languages or APIs: DirectX and OpenGL

DirectX created by Microsoft is a suite of technologies that offers developers an API to

implement and design Windows-based applications. The suite used for creating 3D graphics is

called Direct3D. Direct3D is a high-level modeling language with low-level APIs to access

 35

graphics hardware. With Direct3D, programmers can compose high-performing graphics on any

Windows-based system. With Direct3D, programmers have access to the sound card, memory,

input devices and networking interface of Windows hardware.

When Microsoft created the DirectX suite, they designed it according to the same design

objective as OpenGL and VRML. Direct3D has the features and capabilities listed below:

1. Direct3D is portable.

2. The library is backward compatible.

3. Direct3D is extensible.

4. Direct3D is easy to use.

The drawback of using DirectX is that it does not support the use of any other operating

system (Linux, UNIX, and Mac OS) besides Windows. The Direct3D API does not support the

Java programming language. Direct3D is a proprietary API.

OpenGL

OpenGL, developed in 1992 by Silicon Graphic Inc (SGI), is a cross-platform, cross-

language API that allows developers to write 2D and 3D graphics applications [McReynolds and

Blythe, 2005]. The API consists of over 250 function calls used to render complex 3D scenes

from simple primitives ["OpenGL: The Industry's Foundation for High Performance Graphics",

2000].

 OpenGL is widely used in computer aided design (CAD), virtual reality, scientific

visualization, information visualization, and simulation applications [“3D Graphics”, 2011]. To

support this wide array of applications, OpenGL was designed to support different operating

systems and to support different languages. OpenGL supports Mac OS, UNIX, Linux, and

 36

Windows operating systems. OpenGL provides an API for C, C++, Java, and Ada programming

languages. By supporting different languages and operating systems, OpenGL has become a

popular environment for designing and implementing 2D and 3D computer graphic applications

for the web.

Other design capabilities that OpenGL possesses are as follows:

1. OpenGL is a sequential API. New processes only start when the previous process has

finished.

2. OpenGL supports many operating systems and programming languages.

3. OpenGL binds objects on call.

4. OpenGL is object-oriented.

5. OpenGL is highly portable.

6. OpenGL can be executed on many system architectures from supercomputers to small

portable devices such as cell phones.

7. OpenGL provides an API to interface with new technology, GPUs.

8. OpenGL is scalable and extensible.

9. OpenGL is well documented and supported.

10. OpenGL is open-source.

The language/graphic library combination that will be taken into consideration for this

dissertation is OpenGL with Java, C++, and C#. These two languages/APIs are the most

practiced, supported, and documented environments for creating web-based graphic applications.

Java and C++ alone also provide programmers with extensive capabilities.

Java

The Java programming language first developed to create programs for handheld devices

 37

and it has become increasingly popular for developing small games that run on mobile devices

[Wilson and Clark, 2001]. Java is considered to be a small language that achieves much of its

power through an extensive and comprehensive standard library, the Java API. Java API

provides developers with many predefined components to construct programs quickly. The major

feature of Java is that the same program that executes on one user machine can be executed on

many machines with different platforms using the concept of a virtual machine. Java is a high-

level, object-oriented language that is known to be platform-independent, portable, and secure.

Although there are many advantages to the Java programming language and APIs there are some

major drawbacks when developing gaming engines.

The Java programming language is not considered a huge contender for programming

games engines for several reasons. The reasons include:

1. Java is considered too slow for game engine programming

2. Java has been found to have memory leaks.

3. Java is not supported on game consoles.

4. Java automatic garbage collection feature often runs during inconvenient

times and detracts from the visualization process.

5. Java is considered too high-level for producing graphics application/gaming

engines.

For these many reasons the Java programming language was not chosen for this research project

[Sangappa et al., 2002].

Java with OpenGL

Java with OpenGL is the language used today for developing rendering engines for

graphics applications [Wolff] [Day]. Java OpenGL or JOGL, developed by Kenneth B. Russell

 38

and Christopher J. Kline, is a wrapper library that allows OpenGL to be used with the Java

programming language. After further development of the language, by Sun Microsoft Game

Technology Group, JOGL is available as an open source project under the BSD license. Many

benefits of using this particular programming language are established. This language is one of

the core projects of the Java gaming community at the Sun-sponsored community website

(Java.NET, 2010). The project is under active development.

Many graphics application developers claim that Java is not a serious programming

language for developing serious graphics applications or gaming engines. The drawback of using

JOGL is that developers find that JOGL has limited technical support; it contains many bugs,

lacks documentation, and is incomplete when compared with C++ with OpenGL. An alternative

language that claims to alleviate many of the stated problems is the language called GL4Java.

GL4Java developed by Jausoft, works with the latest version of OpenGL, Graphic Library Utility

(GLU), and the Graphic Library Utility Toolkit (GLUT) [Davison, 2005].

C/C++

C developed by Ritchie and Thompson at Bell Laboratories is a systems programming

language [Wilson and Clark, 2001]. C was developed and used to implement the UNIX operation

system. C has several benefits. C provides developers with the advantages of a high-level

language with the facilities and efficiency of an assembly language. The C++ language, later

developed by Stroustrups, is the object-oriented extension to C. The advantages of C++ include

[Wilson & Clark, 2001]:

1. C++ is safer than C.

2. C++ supports low-level system programming, which is highly vital for graphics

programming.

 39

3. C++ supports object-oriented programming. C++ is highly portable.

4. C++ is efficient.

5. C++ compiler is available on any platform.

6. C++ is the most widely used programming language for developing gaming

engines.

The drawbacks of the C++ language are few. C++ is not considered a purely object-

oriented programming language, unlike Java. C++ uses pointer-based arithmetic, which could be

a challenge for even the most proficient software developer.

 C++ with OpenGL

C++ with OpenGL is the preferred programming language environment for developing

graphic applications [Glaeser and Hellmuth, 1999]. Because of the fact that OpenGL was written

in C++, it makes OpenGL with C++ programming highly efficient. Therefore, the language that

will be used for this project is a variation of C++.

.NET C# with OpenGL

The .NET framework also created by Microsoft is a platform that provides developers

with the tools needed to create applications quickly and easily [Miller, 2011]. The .NET

framework consists of many features and mechanisms. The .NET mechanism tools include

memory management, code management, a runtime environment, common language runtime,

and four popular programming languages. .NET features provide a well understood

programming model and a common set of APIs that allow developers to a create more domain

specific applications. For graphics applications .NET provides the Direct3D API. The language

common for graphics application is C#.

 40

C#, similar to C++, has many advantages. C# syntax is very similar to C++ syntax but

does not use pointers. The language also provides a memory management mechanism that

handles memory allocation and leaks. The language also has automatic garbage collection a very

popular feature of Java. C# is also a strongly typed language, a feature that reduces coding

errors. The language has a built-in compiler and debugger. An application written in C# has the

capabilities that upon deployment it comes equipped with the mechanisms needed to function

properly. Because of these aforementioned features and mechanisms created for C# this is the

language of choice for this dissertation [Miller, 2005].

Gaming Engines

A major component of the work done for this dissertation is the gaming engine interface

that allows users to navigate and interact with CONCEPTS data in a 3D environment. Because of

the time constraints for this research project only open source gaming engines were considered.

Using an open-source gaming engine promotes code reuse, increases software development

productivity and overcomes the many proprietary battles that might otherwise occur.

Many open-source, as well as proprietary, gaming engines exist. For this project only free

and open source gaming engines are reviewed and considered. After significant review, the

gaming engines that show most promising are Unity [“UNITY”], DimensioneX

[“DimensioneX”], Cafu [“Cafu Engine”], Panda3D [“Panda3D], Delta3D [GeekLog], NeoAxis

[NeoAxis Group, 2010] and OpenSimulator [“OpenSim”]. These free and open source gaming

engines are considered for several reasons.

1. They allow games to be created and executed on the web.

2. These gaming engines are free and open source.

3. These gaming engines have a large support group.

4. Tutorials and documentation are available.

 41

A comparison chart is given and each is reviewed in detail in figure 3 below.

DimensioneX

DimensioneX is a JavaServer, multiplayer gaming engine that allow developers to create

games by code reuse [“DimensionX]. DimensioneX runs on many platforms including Windows,

Linux, and Mac. Any computer that has the capability of running Java can execute

DimensioneX. This gaming engine is available for free and is distributed under the GNU

General Public License.

 Games created with DimensioneX are played via the web. DimensioneX allows game

scenes and sounds to be displayed. The gaming engine allows developers to customize player’s

avatars. The gaming engine also provides developers with the capability to allow movement and

navigation of the avatars in a virtual reality environment.

GAME ENGINE WEB-
BASED

TERRAIN
RENDER

OPEN
SOURCE

LICENSE PRICE TUTORIALS/WELL
DOCUMENTED

DIMENSIONEX
(DIMX)

YES NO FREE-
WARE

GPL Contact
DIMX

NO

UNITY YES NO FREE-
WARE

Noncommercial,
Indie,
Commercial

$1200 Yes

PANDA YES NO YES BSD N/A YES

DELTA3D YES YES YES LGNU N/A YES

CAFU YES NO FREE-
WARE

GPL Contact
CAFU

NO

NEOAXIS YES YES YES Noncommercial,
Indie,
Commercial

Contact
NEOAXIS

YES

OPENSIM YES YES YES BSD N/A YES

Figure 3: Comparison Chart of Game Engines Evaluated

 42

Cafu

 Cafu, developed by Carsten Fuchs, is a 3D graphic engine and game development kit

[Carsten Fuchs Software, 2010] Cafu’s source code is available for free under the GNU Public

License. Features that Cafu provides that make this gaming engine a contender among others are

the following:

 High-quality 3D computer graphics

 High portability

 Ability for games to be executed over a computer network or Local Area Network

(LAN)

 Large terrain renderer for developers

 Free to use and modify [“Cafu Engine”].

Panda3D

 Another gaming engine considered for this project is Panda3D ["Panda3D-Free 3D

Gaming engine"]. Panda3D is available for free as open source under the Berkeley Software

Distribution (BSD licensed). Panda3D features include the following [Panda3D]:

 Automatic graphic rendering techniques.

 Performance monitoring, optimization, and debugging tools.

 Execution on the web.

 Well documented and has available tutorial online.

 An active community.

 The capability to use the graphics API DirectX and OpenGL.

 43

 Source code available for free [“Panda3D”].

A minor drawback of this gaming engine is the programming language. Developers are required

to write in the programming language Python. Since much of the provision work done for this

project was done in Java and C#, a new language seemed inappropriate at this time.

Delta3D

Delta3D is an open source game and simulation engine. It provides many of the same

capabilities and functions as the other gaming engines. Developers are provided with the

following [GeekLog]:

 GNU Lesser General Public Licensing making it free and open source

 Ability to be executed on many platforms such as Mac, Windows, and Linux

 A complete 3D editor

 Access to the Python API

 A client/server architecture that gives it capabilities to be executed on the web

 A framework for implementing and rendering terrains

For the listed reasons Delta3D is considered as a potential engine to be used to meet the

objectives of this project.

Unity

Unity is an integrated authoring tool for creating 3D video games or other interactive

content such as architectural visualizations or real-time 3D animation [“Unity”] [Craighead et

al.]. The most prominent features of Unity that makes it highly desirable for this research project

are the game editor, web player, graphic engine, audio system, and a terrain and vegetation

engine.

 44

NeoAxis

Neoaxis created by the Neoaxis Group is an integrated development environment and

gaming engine that allows developers to create games, simulations, and visualization tools

[NeoAxis Group, 2010] [. Similarily to the aforementioned gaming engines, Neoaxis implements

many features that promote fast development and graphic rendering. Neoaxis provides

developers with the following capabilities [NeoAxis Group, 2010]:

 Neoaxis provides a set of visual tools that enable the developer to build game

level maps, interactive capability, and management of the 2D interfaces of the

game.

 Neoaxis provides a height-map based landscape editor.

 Neoaxis provides a GUI editor for creating GUI Editor that allows developer to

create end user controls, menus, dialogs, windows, screens, and an in game 3D

GUI.

 Neoaxis also provides a terrain editor as a landscaping design tool. It supports

geometry and painting alpha layers onto the terrain to control blending collision

data and support of detail and normal maps.

 From the programming perspective with Neoaxis there is no compile time.

Runtime simulation is instantaneous to allow interaction within the gaming

environment and maps.

 Neoaxis supports 3D packages from different 3D software modeling packages

such as 3D Studio Max, Maya, and Blender.

 Neoaxis can be deployed within all major web browsers.

Neoaxis has many more features that make it a highly favorable gaming engine to

 45

consider. One of the most important features that Neoaxis has is its ability to be integrated into

other applications. This feature is the main feature that made this a great gaming engine

candidate. Neoaxis allows ease of integration into application frameworks for the creation of

windows application. It uses WinForms integration as well as providing 3D widgets that are

useful when creating simulation, graphics, and visualization tools to develop web applications

projects that are quick and seamless. Neoaxis also uses the powerful .NET based API scripting

for any .NET language support. It supports rapid development by promoting decoupling

techniques and code reuse [NeoAxis Group, 2010]. For these many reasons this engine was

highly considered as a potential candidate for this project.

OpenSimulator

OpenSimulator (OpenSim) was the last gaming engine evaluated for this dissertation. In

2007, Linden Lab open sourced the client software program. Then in 2009 they released the

server program thus creating the open source version of SecondLife, OpenSim [Fiskwick, 2009].

OpenSim is a multi-users and multi-platform 3D web application server. It allows development

of virtual environments to customized worlds based on technology that is easy for them.

OpenSim is easily extensible because of the basic approach taken when the application

was developed. Like Neoaxis, OpenSim is written in C# and has the capability to run on

Windows and Unix-like machines through the use of the .NET framework and Mono Runtime

framework. The better feature of OpenSim is that it is truly an open source engine provided by

Berkley Standard Development (BSD). This license allows developer to create seamlessly

application by providing an easy way to integrate other modules plug-in to the application with

source code at their disposal. Because of the many features that allow it to be extended OpenSim

 46

was the game engine of choice for this dissertation.

Game Engines Evaluated and Tested

The first gaming engine that was used to render or draw the results of the output/height-

map was Unity. As mentioned before, the Unity gaming engine was chosen for several reasons.

Unity runs on many platforms such as handheld devices, mobile devices, and PCs. It can be

executed on many operating systems. The main reason Unity was initially considered for this

project is that it can be executed on the web.

Although Unity provides many features such as an editor, basic terrain environments and

vegetation libraries, it had to be modified for this project. The component or code that had to be

added to Unity is the capability to allow users to create and accept other forms of terrain data.

The input component created allows the user to create a height-map, which is used as the gaming

engines input data to render user specified terrain.

Although the Unity gaming engine provided many features, it had to be abandoned for

this project. There were costs associated with the main components needed to create a

customized terrain. Unity provides the functionality that will allow terrains to be imported and

customized, but other components are not available to be modified. The free, available gaming

engine, Unity, allows the user to view terrains but customization of textures, vegetation, and

other objects is not allowed. Developers are not allowed access to the source code. The feature in

which a user can use native libraries to enhance functionality is available with Unity Pro which,

is offered at a price of $1200. Two of the main objectives of this project when choosing a

gaming engine are to allow users to customize objects to be added to a scene of the 3D

environment and to use free, open source code which allows modification with few stipulations

 47

and no fees. The next gaming engine that was tested is the Cafu gaming engine [Carsten Fuchs

Software, 2010].

The Cafu gaming engine was initially evaluated for many of the same reasons that Unity

was evaluated. Cafu provided networking capabilities, large terrain rendering, and great

documentation as well as had many tutorials, and is open source. One major issue that was found

with Cafu is that it was not completely open source. Another issue was that designing a web

application with the gaming engine required that the code be built around the gaming engine

which leads to tightly coupled code. This makes it hard to reuse code as well as maintain, and

debug code. Also the gaming engine required addition programming languages to be learned as

well as additional code to be integrated to use the most important feature, the terrain rendering

feature.

Another gaming engine that was used and tested was Neoaxis [NeoAxis Group, 2010].

Neoaxis is a proprietary based gaming engine. It comes with different licensing offers. The free,

noncommercial open- sourced gaming engine promotes object-oriented programming, code reuse

and loosely coupled programming design. NeoAxis is a windows-based system so each

individual module can be built and integrated with it seamlessly [NeoAxis, 2010]. Neoaxis uses

C# that is the language of choice for this dissertation. It has many of the benefits of C++ with the

advantage of memory management, strong typing, and automatic garbage collection. These are

only a few features of the many found to be of value. The API used was OpenGL for graphics,

this allowed rendering to be programmed and provided direct access to features and

programming of the graphic card. The major drawback with NeoAxis was the cost associated

with developing a customized graphic application.

 48

 The gaming engine that was used for this dissertation provided many benefits that led to

it being the primary gaming engine of choice for this dissertation. OpenSim lends itself well to

being extended by allow module plugins. OpenSim is the open source version of the most

popular virtual world SecondLife [Fishwick, 2009]. Many of the standard features of the gaming

engine have the same architecture as SecondLife game engine. The physics engine and collision

detection algorithms are from the well-known engine Havok [Hand] [“Havok”]. The

communication protocol is the typical internet communication protocol TCP/IP. The built-in

capabilities of the OpenSim gaming engine mimic that of SecondLife. The language that was

used as the backend for OpenSim is C#. This only increases the probability of ease of integration

with other components used for this dissertation.

Details of the implementation/use of the chosen gaming engine will be discussed in the

methodology section. Each component created, used, and enhanced, in addition to the gaming

engine itself, are evaluated and documented within a software development lifecycle framework

section of this dissertation. Applying the SDLC process to develop CONCEPTS3D components

increased the productivity and the correctness of the design of the entire integrated system.

Data and Data Processing

One of the main challenges of this dissertation as well as many other applications that use

data supplied to the game engine for terrain or environment rendering is the dataset itself. Before

the data can be used by the gaming engine renderer, many datasets must be created, modified,

and/or enhanced. The data supplied to the gaming engine in this case comes from various sources

such numerical models, satellite, DEM, and remotely sensed data, each of which poses additional

challenges. For this dissertation the data was obtained from either satellite or digital elevation

 49

model (DEM), surveys, and the CONCEPTS simulation model data.

Digital elevation models (DEM) or digital terrain models provide only the height of the

ground surface being investigated. This is an issue because the data from DEM are not sufficient

to create a realistic 3D object for displaying the topography of a terrain. Therefore, a data set

must be created. From the cross-section data file the information was extracted about the channel

that lies in the terrain. Combining the dataset about both the floodplain and the channel presented

a representation of the information needed to construct a 3D model of the terrain for the gaming

engine.

The problem with the DEM data is that it is in the form of an Environmental Systems

Research Institute (ESRI) grid file format. This data file and format poses a challenge and

requires further enhancement. The ESRI file format provides only the z value for the terrain

topography. The x and y values will have to be calculated based on the z value to obtain the three

coordinate values to create a 3D model. How this calculation was performed is given in detail in

the implementation segment of the methodology section.

The data provided from the XML, DEM, and CONCEPTS cross-section files each

provide its own obstacles. Within the CONCEPTS DEM and cross-section file there exist data in

the file that represent the x, y, and z data values of the terrain and the channel being modeled.

These data values are represented as easting, northing, and elevation respectfully. Both the DEM

and the CONCEPTS cross-section dataset must be extracted or parsed to extract the correct

information to supply to the gaming engine. How each challenge is addressed is the subject of

the methodology section of this dissertation.

The techniques used to enhance the data set include interpolation and triangulation

 50

methods. Interpolation is the method of constructing new data points within the range of a

discrete set of known data points. There exist many forms of interpolation. While there are many

interpolation method including piecewise constant interpolation, linear interpolation, polynomial

interpolation, bilinear, trilinear interpolation, and spline interpolation, the interpolation methods

used in the work done for this dissertation is bilinear interpolation. The other method that was

used to enhance the discrete data sets is the triangulation method. Triangulating data is the

process of determining the location of a point by measuring angles to it by known points at either

end of a fixed baseline [Rui et. al.]. From the perspective of geometry, triangulation is the

process of subdividing an object into triangles or tetrahedrons. The triangulation method used

here is Delaunay triangulation. Details of each of the methods and how and why they are used

are discussed later in the methodology section of this dissertation.

To obtain the points necessary for visualization, linear interpolation of the data points

from two known points is determined. Linear interpolation is the easiest to understand and

implement when choosing among several interpolation methods. Interpolated data between two

points is a straight line connecting those two points. Although this method is simple to grasp, it is

highly error prone especially in terrain models. Another drawback to this method is that it does

not provide a smooth curve data set. Better interpolation methods to produce continuous, smooth,

and curvature data set are bilinear interpolation and spline interpolation.

Spline interpolation also calculates new data values from existing data. Spline

interpolation, (as it is suggested from modeling objects using the spline technique), is based on

curve fitting [Ding and Rossiter, 2007]. Spline interpolation is a form of interpolation in which

the interpolation is a special type of piecewise poloynomial called a spline [Grevera et al., 1998].

 51

Spline is preferred over polynomial interpolation because the interpolation error can be made

small even when using a low degree polynomial for the spline. Another benefit of spline

interpolation is that it avoids the problem known as Runge’s phenomenon, which occurs when

interpolates between points, have equal distance with high degree polynomials.

Bilinear interpolation was the interpolation method used on the data set for this

dissertation. Bilinear interpolation is an extension of linear interpolation meaning that instead of

interpolation done in one direction, interpolation is done in both the x and y direction. Bilinear

interpolation produces smooth and continuous data, which produces a realistic dataset for

rendering in 3D visualization. Bilinear interpolation performs interpolation by using four points

that are known and finds the weighted approximate value of the unknown points to provide an

additional point for the discrete data set. Because bilinear interpolation is designed for rendering

3D data this was the interpolation method chosen. The final method that was used to enhance

the data set supplied to the gaming engine is a triangulation technique called Delaunay

triangulation.

In this case, Delaunay triangulation involves the process of subdividing a polygon (here

in a 3D terrain) into triangles with the stipulation that any point in the plane does not belong

within the circumsphere of any other point within the same plane. Remembering that our goal is

to move from 2-D data to realistic 3D data, it can be seen that the Delaunay triangulation now

provides a method for increasing the granularity of the data by further subdividing the initial

triangle into even smaller triangles that meet the criteria of staying within the 2D dataset while at

the same time providing more information to the rendering engine. There are many efficient

algorithms that exist for Delaunay triangulation [Razafindrazaka, 2009]. The drawback of the

 52

Delaunay triangulation algorithms is that for some cases it may not be able to produce a

Delaunay triangle [Daintith , 2004]. Since the focus of this dissertation is the dimension of the

data, three dimensions, producing triangles using Delaunay triangulation is not an issue. To view

the object rendered by the Delaunay processing, barycentric interpolation was perform to the

data.

From each of the above techniques the positive outcome of the new data set is that it

produced a better image resulting in a more realistic model. The drawback was the more data

produced, the slower the processing of the data as well as the increase of space required for

storing the data.

For drawbacks of large datasets produced, there are many known techniques used for

solving the problems related to the visualizing and modeling of larger 3D terrains [Han et. al.,

2003], [Lim and Choi, 2008]. Methods such as using triangle patches and cutting triangles within

a dataset have been shown to render better 3D models [Lim and Choi, 2008], [Sanders et. al,

2000]. Cutting triangles based on the level of detail (LOD) is the technique used by the gaming

engine used within this dissertation. This solution is chosen because it improves the image being

rendered and stored by eliminating polygons based on what the human eye and brain perceives

as necessary to view a model or object correctly in 3D.

The methodology section will discuss the game engine used as well as the data

enhancement techniques used to render the 3D environment from the CONCEPTS model in

greater detail. Also each objective and solution for each task for developing CONCEPTS3D is

given in significant detail in the methodology section.

 53

CHAPTER III

METHODOLOGY

 In this Chapter, a description of the procedures and tools used to develop the

CONCEPTS3D model are discussed. Several objectives were articulated for this dissertation.

The main objective was to provide the user with a tool in which the CONCEPTS model data

could be displayed in a 3D virtual environment using gaming engine technology. The

CONCEPTS3D desktop application allows the user to manipulate, store and access CONCEPTS

data in a database. The CONCEPTS3D model also allows the user to view the topography of the

terrain and channel being analyzed and modeled in 3D. The procedure and tools used to realize

each objective will be discussed in detail here (See Figure 4). A map of the procedure is provided

in Figure 4 on page 54.

The first objective was creating the database schema based on the XML Scheme

Definition (XSD) file that provided all the data relating to CONCEPTS. This XSD file provided

the mechanism to allow the viewing all of possible combinations of XML files of CONCEPTS

data. The XSD file used to create the XML files provided the relationships to each CONCEPTS

table in the XML file. After data was parsed from the XML file (A) the data is stored in the

CONCEPTS MySQL database (G). (See figure 4)

The second objective was to create three parsers to extract information from the XML

 54

(A), DEM (B), and cross-section (X-Section) (C) files. The DEM (B) and X-Section (C) files

were parsed for 3D information about the terrain being visualized. The DEM (B) file provides

information about the terrain floodplain of the associated XML (A) file. The cross-section (X-

Section) (C) file contains information about the channel that lies within the terrain. Once

information was extracted from the DEM (B) and X-Section (C) files, these files were merged to

create an integrated topography of the terrain under investigation (I) to be visualized in 3D.

The implementation details of each parser component are given in greater detail in the

implementation section titled Creating Concepts3D: SDLC section.

The third objective was to use the information provided from both DEM (B) and X-

Section file (C) to create a HeightMap (H) file. The bitmap file, used for displaying purposes, is

Figure 4: Data Processing Map of Extracting, Moving, and Converting CONCEPTS

Data

 55

a visual representation of the HeightMap (H). The selected area of the bitmap image was used to

create the native file format HeightMap RAW32 (J) file used by the gaming engine

OpenSimulator (OpenSim) (K). Each objective implementation is given in detail in the

implementation/code portion of this section.

The fourth objective was selecting an Open Source gaming engine that will allow the user

to visualize CONCEPTS data in a 3D virtual world. Among the many gaming engine OpenSim

was the engine of choice. OpenSim is the open source version of SecondLife, which is the most

popular gaming engine [Fiskwick, 2009]. OpenSim was created by Linden Labs and available

through BSD open source license. A few of OpenSim built-in capabilities allow navigation

within the space, change of scene for clearer visual of the space, snapshot of the area being

analyzed, and visualizing on-the-fly terrain updating. Many of the built in features of this

gaming engine features presented by OpenSim mimics that of SecondLife.

The final objective was creating the desktop application that will allow the user to

interface with the underlying components of CONCEPTS3D (E). The desktop application

provides the ability to select files to visualize in the virtual world. The components are three

parsers (D, E, and F), a HeightMap (H) generator, and the gaming engine (K). The parser is

written using a .NET framework programming language - C#. There were also functions

developed to enhance the data from CONCEPTS. As discussed earlier, these functions use

interpolation and triangulation methods. After the data is enhanced, the data is saved as a

HeightMap Raw32 (J) that was used by the gaming engine. The gaming engine, OpenSim,

renders the HeightMap Raw32 (J) file into 3D. Some of the file formats that the game engine

allows for 3D objects in OpenSim are .bmp and .raw for better quality images. Details of the

 56

implementation process are given in the implementation/coding section under developing

CONCEPTS3D software development lifecycle.

Developing CONCEPTS3D

To build a prototype of the new, innovative tool, CONCEPTS3D, there are many tools

and techniques used and built to integrate the components for the new model. CONCEPTS3D

allows the data of CONCEPTS XML, DEM, and cross-section files in a desktop application

window panel in 3D. The steps to complete these objectives were listed as follows:

1. Components were written to extract CONCEPTS data that was modeled in 3D.

2. The data from CONCEPTS was maintained in a MySQL database. Therefore, a

database schema was written to represent the CONCEPTS/CONCEPTS3D data.

3. The data set was created and enhanced using an interpolation and triangulation

method.

4. The CONCEPTS model data was available for testing the CONCEPT3D application.

5. The data of CONCEPTS was parsed to get the terrain topography for the evaluated

stream.

6. The two input files DEM-terrain and X-Section file were merged to create a file of

the full terrain topography under investigation.

7. Code to visualize the data was written to be viewed with the OpenSim gaming

engine.

8. Each component of the new CONCEPTS3D model was tested.

Each component added to the game engine was evaluated and documented according to

the software development lifecycle. Applying this process to develop CONCEPTS3D

 57

components increased productivity and insured correctness for the design of the entire integrated

system.

Creating CONCEPTS3D: Software Development Lifecycle

 Developing software requires programmers to follow specified steps based on some form

of software engineering practices and principles. Studies show that following software

development guidelines shortens the software development time, reduces coding errors, and

reduces debugging time. Many software development processes and guidelines exist. For this

dissertation the waterfall model was followed.

The steps that are discussed for the development of CONCEPTS3D are listed as follows:

1. Specification and Requirement

2. Design

3. Implementation/Coding

Figure 5: Waterfall SDLC Model [Gangolly, 2000]

 58

4. Testing

5. Maintenance

6. Validation and Verification

7. Acceptance

Each of these steps is discussed in greater.

Before the software development lifecycle (SDLC) begins the developer must first

understand the problem to be solved.

System engineering and Analysis

The software engineering SDLC begins. In the system engineering and analysis phase

begins with the software components that interact with one another are evaluated. System

engineering and analysis entails gathering requirements at a system level. The developers

establish what is required for the system elements. For this dissertation research the

CONCEPTS3D desktop application, data extraction components, database management system

MySQL, and rendering engine module were integrated.

Components are required to run on Windows 95 or later operating systems. The amount

of hard disk and memory space will depend on the size of the problem being calculated. The

integrated model requires the user to have a minimum of 32 MB of RAM. To use the integrated

model, the CONCEPTS3D desktop application installed on the user machine, the game engine-

OpenSim will run inside of that CONCEPTS3D desktop application.

Specification/Requirements

In the second phase, specification and requirement analysis, developers focus on

gathering specifications for the software. The developer must understand the domain and all

 59

requirements for the software, the function, performance, and interfaces. Requirements for both

the system and the software are documented and reviewed with the client (USDA).

Currently, CONCEPTS requires at least four input files created by the user:

1. one input file with run control data

2. one input file with discharge data at the upstream boundary of the modeling reach

3. an input file for each cross-section in the modeling reach

4. an input file for each hydraulic structure in the modeling reach

In the integrated model, the CONCEPTS numerical model data is the only information

used to execute the CONCEPTS3D model. To execute CONCEPTS3D, the user is required only

to provide a DEM file and an X-Section file, to visualize the terrain in 3D. Much of the

conservation measure information required for CONCEPTS is specified by default for the

CONCEPTS3D application, which is stored in a database. The desktop application that was

created for CONCEPTS3D requires the user to provide the input file about the terrain

topography. This information was parsed so that the CONCEPTS3D terrain parser component

would extract the information required for 3D rendering. After the CONCEPTS3D parser

component has executed, the output of the application was made into a HeightMap/bitmap file

that was used as input to the game engine.

Figure 6 below shows how the raw data, DEM file (A), is transferred into a bitmap file

(B), which is used by the OpenSim gaming engine (C) to render a subsection of the bitmap as a

virtual reality terrain of the DEM information (See Figure 6).

 60

Design

The design phase is a multi-step process that focuses on four distinct attributes of a

program. These four attributes are the data structures, software architecture, procedural detail,

and interface characteristics. The architecture of this project is shown in the Figure 7 below.

Figure 6: File format process before Virtual Environment Rendering by OpenSim

Figure 7: Flowchart of CONCEPTS3D Architecture

A B

C

 61

The information from CONCEPTS is inserted, maintained, and accessed from the

MySQL database (E) (See Figure 7). The desktop application created for CONCEPTS3D allows

the user to extract certain information from the DEM file (B) and cross-section file (C) - such as

the terrain topography and channel topography. When executing the CONCEPTS3D model

desktop application three files are used, the data files DEM (B) and X-Section (C) and XML file

(A). Once the XML file is parsed by the parser component (D) the resulting XML (A)

information is inserted into the MySQL database, the DEM (B) and X-Section file (C) that are

the associated file of the XML (A) file are used by the parser component. The parser creates a

HeightMap/bitmap file (G) from the DEM (B) and X-Section (C) files that was used as input for

the OpenSim game engine (K).

Once each component was performing as expected, they were combined based on the

pipeline describe above in Figure 7. The integrated system allows the user to view CONCEPTS

data in a seamless virtual realty world --CONCEPTS3D. In this environment the user is allowed

to interact in the 3D space, walk or navigate within the environment, and select a smaller region

to investigate the topography in the larger terrain. Figure 8 below shows L of figure 4 the

prototype opening screen of the entire integrated system.

 62

Implementation/Coding

In the implementation/coding phase, the algorithms developed by the software developer

or programmer must be translated to machine-readable code. For this dissertation the .NET

Framework is the basis for the entire infrastructure of the CONCEPTS3D application. The

language used for writing the application is C#. The Graphics API used with C# for the graphics

component was OpenGL. Making the entire system windows based by using the .NET

framework has proven to have many benefits. One major drawback of using .NET is that it is not

supported by many operating systems, thus limiting the user to using windows based machines.

Creating the application based on .NET from a software engineering perspective allows

the program to be more robust, increases interoperability, permits easy integration with other

Figure 8: Prototype CONCEPTS3D Desktop Application

 63

Windows applications, increases code reuse, reduces bugs, and allows for quick discovery and

fix of bugs once found. Integrated components are seamlessly merged and were found to work

correctly because of the common underlying infrastructure available by .NET. .NET uses the

Common Runtime Language (CRL) as the underlying architecture of the .NET framework. The

CRL is the virtual machine that manages code and translates code to the native machine

language for execution. This component allows the user to use the .NET language of choice for

components developed for any application.

Experience shows that integrating components can be a difficult task. This is very much a

factor in integrating applications with a gaming engine. This is because in many applications

those integrated components are written to be tightly coupled within the application. It has been

found that applications have to be hardcoded to work with the gaming engine systems correctly,

thus creating a tightly coupled application. Maintaining and upgrading these systems is tedious.

Bug repair is also cumbersome, inevitably requiring the entire system to be rewritten, wasting

both time and money.

Developing loosely coupled applications is preferred. Separate modules that work as

individual components allows the developer to focus on the logic of the application integrated

with a gaming engine. This is the primary and valid reason the .NET framework was chosen as a

basis for the entire CONCEPTS3D application.

Each component written used the .NET framework language. The desktop application,

parser component, bitmap, and HeightMap file generators were all written in C#. The gaming

engine OpenSim’s underlying infrastructure is also written in C#.

In essence, there are two parsers. The first two parsers takes the DEM file and cross-

 64

section file, then extracts the appropriate information to create a 3D model. The second parser

extracts data from the CONCEPTS XML file to store into the MySQL database. The XML/XSD

file has tags that describe the input information for CONCEPTS data. See figures 9 and 10

below.

Figure 9: CONCEPT XML File

Figure 10 CONCEPTS SAMPLE XML FILE

Figure 10: CONCEPTS XSD file

Each element Tag of the

XML file is a field in the

MySQL database. The value

between the element tags is

the information stored for

each element.

content

Element

start tag

 65

XML Parser

 The XML parser CONCEPTSXMLParser was created to extract information from an

XML file to be inserted into the MYSQL database. The information that was obtained in the

XML file is information about the environment being assessed and evaluated to create a

successful stream restoration plan. Once the information is extracted, it is inserted into a database

called CONCEPTS. The XML file has much database relational information, which is defined in

the XSD (XML Schema Definition) file. The structure of each table relationship must be

maintained so that information in the XML file is extracted and stored in a manner consistent

with the XSD file.

The predefined classes used within the parser are the Collections Dictionary class and

MySQLConnection class. The parser class also has user defined classes XMLLoader, Document,

and Element. The MySQLConnection class was used to connect to the database. This class

allows for many of the database functions such as SQL insert to be performed. The Dictionary

class was used to maintain all the many-to-many and some of the one-to-many database table

relationships. The user defined classes XMLLoader, Document, and Element were created to load

and build the XML data. The Element class is where the majority of the data extraction takes

place.

The Element class is used to represent each individual element (or tag) in the XML file.

This class allows access to the data within the element. It also allows access to the parent and

children of each element through the getParent, getChild, and getChildren methods defined in the

Element class. Starting at the root element a depth first search exploration is used to traverse

 66

each element listed under the root element and parse through the information. The relationships

of the elements with each other are defined within the XSD file. Within the XSD file a many-to-

many relationship among the elements is defined by the presence of maxOccurs = “unbounded”,

ecore: reference = “-“, and type = “xsd:URI” in the tag attributes. See figure 11 below.

When these elements are encountered in relationships, they are represented by the ecore

reference id which is a unique identifier within the XML file (shown highlighted in blue in

Figure 11). These unique identifiers are nested within all of the elements and, within these

elements have a relationship. Because the relationships in the XML file must be maintained in

the database and each element’s information is only visited once but may be referenced several

times, it then becomes necessary to save the element’s primary key after it is inserted in a table

for later foreign key insertions.

Figure 11: XML Example of Ecore Reference ID located in XML file

 67

Each element’s ecore reference ID is mapped to the database table’s primary key and

maintained by a .NET Dictionary object. The .NET Dictionary class holds the collection of

key/value pairs where the ecore reference ID is the key and the database primary key is the

value. When an element’s ecore reference ID is found in the XML file, the primary key is found

and is easily inserted to indicate the relationship in a table. See figure 13 below for an element

represented by its ecore reference ID in an XML file.

Figure 12: XSD with maxOccurs= unbounded for many-to-many relationship

 68

This string is used as the key value for the Dictionary key/value pair variables. The

primary key that was generated when the element was inserted into the database is used as the

value variable of the Dictionary key/value pair. For example the dictionary [xsid] is equal to a

primary key that appears as dictionary [#//@conceptsmodel/@data/@reaches/@reaches.0] and is

equal to primary key 97, this primary key is auto-generated by the database. Figures 14, 15, and

16 below show the function used to insert the information into a database, the database table

definition for the channel model table, and the entities’ relationship.

Figure 13: XML File Example of Many-to-Many ChannelModel_Reach

mailto:#//@conceptsmodel/@data/@reaches/@reaches.0

 69

Figure 15: Implementation to store key/value pairs in dictionary class for Many-to-Many

Figure 14: Reach-Channel Model Data Definition

 70

Storing the information using the Dictionary class allows for faster mapping and lookup

operations of the XML file many-to-many and some one-to-many relational information. For all

elements visited within the XML file they are extracted and stored into the database

CONCEPTS. Again, the XML parser was only created to extract information about the terrain

being investigated and the database was only created as a repository to house detailed

information pertaining to the terrain.

Algorithm for the DEM files Parser

The second parser extracts data from the DEM file. The DEM file format is based on the

ERSI file format and contains six fields in its header. The ncols field represents the number of

columns the image or grid has. In the case of using an array the number of columns the 2D array

would have. The nrows field represents the number of rows. The xllcorner and yllcorner are

fields are the easting and northing coordinates of the lowest, leftmost point on the grid. The

Figure 16: EER Diagram Showing the Reach-ChannelModel Relationship

 71

cellsize indicates the length of one side a square cell of the grid. The NODATA_VALUE

indicates a value that is given to cells with no known data. Figure 17 and 18 shows the DEM file

format and a 2D array logical data structure representation.

The DEM file contains z (elevation) values. From the DEM file the x (easting) and y

(northing) values are determined by the z value’s position in the DEM file. The natural fit for this

data is a 2D array. See figures 18 below. The values are used to produce a grayscale bitmap and

raw HeightMap file from the elevation data. The idea is to use this information from the raw

HeightMap to create a virtual reality terrain.

Figure 17: ERSI Grid File Format

 72

The parser is implemented by first reading the ASCII (DEM) file header and extracting

its field values. After this, the parser searches each individual line and separates the values on the

lines based on the space delimiter. The native coordinate system of the DEM file is not

preserved. The native coordinate system is not applicable because the coordinate system for the

new files created starts in the upper left hand corner and goes rightward and downward. The

values in the DEM file are read in the same manner. The values are then placed into a 2D array

used for creating a grayscale bitmap for display. After the bitmap is displayed a 256 X 256 pixel

area is selected from the image. Each pixel represents 1 square meter. The 256 X 256 pixel area

becomes a data subset from which a Raw32 file is created for the gaming engine.

Algorithm for Creating a BitMap from the DEM File

For creating a bitmap, the module starts by retrieve the image range, by taking the lowest

and the highest elevation read. Then dividing the image range by 256 provides the scale factor

Figure 18: 2D Array of DEM Grid File

 73

for the objects in the in the virtual environment. When processing each value in the 2D array,

each elevation value has lowest elevation in the entire dataset subtracted from it to calculate a

range starting at 0. Once the lowest elevation is subtracted each value is then multiplied by the

scale factor. This range value ensures that the value falls in the range of 0-255. This value

provides the best contrast for a grayscale bitmap. If the values are within a small range it is

harder to distinguish the different elevations within the bitmap. For example given the smaller

range 0-20 when all values are close together the contrast between colors is very close where

distinction could not be made, but when scaled to 0-255 a greater variation of the black and

white colors are applied. Therefore, using greater variation, distinction can be better determined

because the low values are darker and the high values appear lighter. See figure 19.

Each value calculated is used for pixel color values in the bitmap. The code starts with

the first cell in the 2D array and applies a grayscale color value to a pixel based on the 0-255

Figure 19: Resulting BitMap File of DEM Data Using Algorithm Above

 74

range value. This scaling operation is done using the equation below.

pixel value for all the channel = (value in 2d array – lowest elevation) * scale;

The bitmap is initialized with the same dimensions as the array. The coordinate system is

the same where the top leftmost pixel is (0,0) and the x values increase to the right and the y

values increase going down. When there is no data value assigned in a cell the color appears

black. Once processed the bitmap image appears in a window pane called the Image Viewer.

See figure 20. At the current time the image viewer renders as a separate window when the

CONCEPTS3D desktop application is executed.

Once the image is in the Image Viewer, the user can click the mouse in the panel. A 256

x 256 rectangle box will be drawn around a specified area from here, and then a RAW32 image

is created to be used by the gaming engine. See figure 21 below.

Figure 20: Grayscale BitMap of the Integrated XSection and 1 Meter Dem File

 75

Algorithm for Creating the X-Section Parser

 The X-Section parser was implemented much like the DEM parser. However, here the

file format already had x, y, and z, coordinates embedded representing easting, northing, and

elevation respectfully. (1) The X-Section parser component starts by reading the file and

extracting each value in the line of the comma separated file. (2) Once this data is extracted, it is

stored in a list of a user defined Point3D objects. The Point3D class has x (easting), y (northing),

and z (elevation properties for storing data). (3) This data is merged with the DEM file data by

looping through the POINT3D list merging the PointList with the DEM information. The x and y

coordinates tell us where in the 2D array to insert the data value. However, because the gaming

engine’s coordinate system cannot go lower than a square meter and the X-Section file have

easting and northing values in fractions of meters there is a significant loss in precision. The

Figure 21: Selected 256 X 256 Area of the 5 Meter Dem File

 76

decimal portion of the easting and northing values is truncated. This loss of precision ultimately

causes the X-Section data to overwrite existing DEM file data. (This loss of data precision does

not affect the visualized object.) The z value is scaled down in a similar way to the DEM file

parser. Once this elevation value is calculated, it is placed directly in the array, based on the x

and y value (i.e. elevationData[x,y] = elevationValue).

Algorithm for Creating the Raw32 File

The RAW32 file is created from a subset of the 2D array of the DEM file data and is

based on the location of the 256 X 256 area selected within the bitmap (See Figure 22).

Figure 22: BitMap 256 X 256 Area Selected

 77

The RAW32 file module loops through the subset of the 2D array. Each value is written

to the RAW32 file as a single precision floating point binary number.

The proof of concept to visualize CONCEPTS 2D data as a 3D terrain in a virtual world

began by trying to open the bmp files created by the heightmap generator see figure 7 on page 60

in the game engine, NeoAxis. There was no success with the NeoAxis gaming engine because

this particular gaming engine requires an unorthodox file format to render a terrain. This effort

made clear the fact that a standard file format had to be designed and used throughout the rest of

this project. So another gaming engine was chosen, which was also based on the .NET

framework called OpenSim.

This gaming engine provided a way for the proof of concept to be validated with a variety

of common image formats. The first format tried was the bmp format because of its ease of use;

this format worked. Terrain size appeared to be limited to 256X256 pixels. Looking at sample

data of OpenSim terrain files showed that with the RAW32 file format, the user was allowed to

load larger terrains and this was desirable.

Inspection of source code made it clear that the RAW32 format was the native format

used by the gaming engine to represent terrain height values. Data values in the other file formats

such as bmp, gif, png, and tiff needed some form of conversion before being used by OpenSim.

With the RAW32 format, the floating point values are read directly from a byte stream. Each

value in the RAW32 file is represented by an IEEE 32-bit single precision floating point number.

Before the above process was completed the first task performed was creating the

database that was used to maintain CONCEPTS and CONCEPT3D data. The database

management system used for this project was MySQL. The existing CONCEPTS XSD was used

 78

to create the relational schema, table formats, and queries.

How CONCEPTS should be executed was the next decision that was made. CONCEPTS

can be executed in two ways. CONCEPTS can run as a standalone model, which requires the

user to download CONCEPTS on his or her machine. The second technique was to run

CONCEPTS via the web. The results from the CONCEPTS simulator are saved in the database.

Currently, the results produced from the CONCEPTS simulator generate a text file that is saved

in an SQL database. Currently, the output of the simulator is imported into a spreadsheet

application. From the spreadsheet application the user can view the results in plot or graph form

(See Figure 23).

 For testing CONCEPTS3D, executing CONCEPTS as a standalone desktop application

was not required. Much of the data for testing CONCEPTS3D was provided by the researchers at

Figure 23: CONCEPTS Data Display in Excel

 79

the Sedimentation Laboratory. The data provided was an XML file, DEM 1 and 5 meter text file,

and an EXCEL X-Section file.

Data Enhancement

Before rendering the 3D terrain for CONCEPTS 2D 5 meter dataset, the information or

data supplied to the gaming engine must be modified and enhanced using bilinear interpolation

and Delaunay triangulation. The first file modified was the CONCEPTS DEM file. This file only

supplies the z data value for the 3D model to be rendered. The x and y value must be determined

by the location of the z value within the DEM file, see figure 18, page 72. With the x, y, and z

values obtained, a 3D model can be created from the available information. From here, data

enhancement techniques are performed by interpolation and triangulation methods to create a

continuous dataset from the discrete dataset. Finally, the dataset points and triangles are reduced

to optimize computing efficiency and visualization refinement. This function is built-in to the

gaming engine OpenSim and only had to be accessed with correct data formats. The code for

each module created can be found in the appendix section on page 118 of this dissertation.

The other files that underwent similar data modifications and enhancement processes are

CONCEPTS’s X-Section files. So the data supplied to the gaming engine was provided as two

separate files. One file is information about the terrain floodplain (DEM) and the other file is

about the channel X-Section that lies within the floodplain. These two files were merged to

create one complete file about the topography of the terrain under investigation. The creation of

this larger dataset required an additional data processing mechanism before being rendered by

the gaming engine. See figure 30 (small 5 meter data) and 33 (larger 5 meter data) on page 91

and 93.

 80

Enhancing the data set to achieve and visualize a better rendered image is one of the most

valuable and important components. Enhancing the dataset with interpolation and triangulation

produced a more realistic image based on the information provided from CONCEPTS simulation

model and the other various files. The interpolation techniques used were bilinear interpolation,

which is an extension of linear interpolation and Delaunay triangulation with Barycentric

interpolation. Each of the module functions created to enhance the dataset is described in detail

below.

Linear Interpolation/Bilinear Interpolation

Linear interpolation is the easiest interpolation method to grasp and implement.

Linear interpolation is a method of approximating the graph of a function in between two

points on the graph by the straight line between them. Linear interpolation is defined as

given two known points of the coordinate system (x0, y0) and (x1, y1), the linear

interpolation is the straight line between these two points. To calculate the y value from

existing values to create a continuous data set the equation is provided below.

Linear interpolation involves estimating a new value by connecting two adjacent known

values with a straight line. If the two known values are (x0, y0) and (x1, y1), then the y

value for some point x is:

 (Blue Leaf Software, 2010)

The interpolation method used for this dissertation is bilinear. Bilinear interpolation is an

extension of linear interpolation meaning that instead of interpolation done in one direction,

interpolation is done in both the x and y direction . Bilinear interpolation produces smooth and

 81

continuous data, which produces a realistic dataset for rendering in 3D visualization. Bilinear

interpolation performs interpolation by using four points known and finds the weighted

approximate value of the unknown points to provide additional points for the discrete data set.

Delaunay Triangulation with Barycentric Interpolation

 Delaunay triangulation with barycentric interpolation was the other method used to

enhance the discrete data set provided by CONCEPTS. Delaunay triangulation is defined as a n-

dimensional triangulation of a set of points P = (p1,p2,p3,….pN). In other words, Delaunay

triangulation is a collection of n-dimensional simplices whose defining points lie in P. Simplices

are the convex region defined by a set of n+1 independent points such as a 1D-point, 2D-line,

3D-triangle, etc. The simplices do not intersect one another and share only boundary features

such as edges or faces. Delaunay triangulation has the property that the circumsphere of any n-

dimensional simplex contains no other points of P except the n+1 defining points of the simplex.

The techniques used to compute the Delaunay triangulation of this dissertation were defined by

Watson and Bowyer.

 The algorithms begin by constructing an initial Delaunay triangulation that strictly

bounds the points of P see figure 24 below. Then each point of P is inserted or injected one by

one into the current triangulation. If the inserted point lies within the circumcircle of any

simplex, then the simplex was deleted creating a hole in the triangulation. Once simplices were

deleted the n-1 dimensional faces of the boundary of the hole along with the inserted point were

used to construct a modified triangulation. This process continues until all the points were

inserted into the triangulation. The final step was to remove the simplices connecting the points

forming the initial bounding triangulation creating the Delaunay triangulation [Schroeder, Marin,

 82

& Lorensen, 2004].

To calculate more data points for an enhanced dataset, interpolation was performed. The

interpolation method used after Delaunay triangulation was performed is barycentric

interpolation. The general definition of barycentric interpolation or barycentric coordinates is

that it is an interpolation method that uses the three defined points that make up a triangle to

calculate the unknown points within the triangle. A detail definition of barycentric coordinates is

stated below.

Given a 2D triangle with vertices p0, p1, p2 € R. Let x € R be any point in the plane.

The unknown x value is calculated by: x = αp0 + βp1 + γp2 where α + β + γ =1.

The point lies within the plane if and only if α, β, γ € [0,1] [McAllister, 2007]. The point

coordinate is calculated based on it relativity to the three points defined within the plane.

After these functions were implemented a method was developed to reduce the amount of

data produced by the interpolation and triangulation methods. The goal was to use a level of

detail technique to reduce the amount of data needed to render an image and to optimize the

Boundary

triangulation
Inject point Create

new Triangulation

Remove

Boundary

Points

circumcircle

repeat

Boundary

triangulation
Inject point Create

new Triangulation

Remove

Boundary

Points

circumcircle

repeat

Figure 24: Delaunay Triangulation Algorithm [Schroeder, Martin, and Lorensen, 2004]

 83

entire rendering and visualization process, this mechanism is provided by the gaming engine.

Each function for enhancing the dataset is provided in the appendix section page 122 of this

dissertation.

Testing

For the purpose of this prototype development project, all testing was focused on “Did it

work”, not, “How effective was the resulting product”. Did the application provide a way to

visualize CONCEPTS terrain data as a 3D virtual reality environment? The prototype of this

dissertation worked as expected. The user of this application can view CONCEPTS data as a 3D

virtual environment by using the OpenSim’s gaming engine. The question of the effectiveness of

this application is outside the scope of this dissertation and can be evaluated for further

knowledge.

 In the testing phase of the SDLC, the logical internal software is reviewed and evaluated.

Each module created is thoroughly evaluated and tested using unit testing. After each individual

module is combined, then the aggregated system is tested as one seamless and complete model.

For this project the component-CONCEPTS3D desktop application with each parser unit and the

gaming engine OpenSim were integrated and tested. The CONCEPTS model runs as a desktop

application. The datasets used for testing the system was the golf course area of Lake Tahoe in

California (including the 1 meter and 5 meter DEM file, the combined X-Section and 1 meter

DEM file, and GC_analysis CONCEPTS XML file). The results of each file are discussed in the

Results section of this dissertation.

The gaming engine used for testing was NeoAxis and OpenSimulator (OpenSim).

Because NeoAxis used an unorthodox file format, creating test cases for NeoAxis were not

 84

achievable or obtainable. Eventually, the OpenSim game engine was the engine used for testing

all test cases. OpenSim is a multi-user and multi-platform 3D web application server

[“OpenSim”]. The gaming engine accepted many of the files created to be tested with ease. The

primary reason OpenSim was used because it was easily extensible because of the basic

approach taken when the application was developed. Like Neoaxis, OpenSim is written in C#

and it also has the capability to run on Windows and Unix-like machines through the use of the

.NET framework and Mono Runtime framework. The better feature of OpenSim is that it is truly

an open source engine provided by Berkeley Standard Development (BSD). This license allows

developers to create seamless application by providing an easy way to integrate other modules

that plug-in to the applications with source code at their disposal. With using OpenSim, many

implementation details about how the data is processed before and after rendering takes place is

provided. This was helpful because the file created for the virtual reality terrain was a

customized environment. The file format used by the gaming engine was an important factor to

the success of rendering the customized data. Also scaling an object within the virtual

environment was important information to know. With the engine being open source many

cumbersome implementation details are available for developers to modify and extend as

needed.

Maintenance

The final step in the SDLC is the maintenance phase. Software inevitably will need to be

modified either because of system architecture changes or just code redesign. The reasons

software undergoes changes are almost innumerable. Therefore, software must be developed in a

manner that will allow modification effortlessly. Because the software developed for this

 85

dissertation was a prototype, maintenance is not a critical issue at this time.

Limitations of CONCEPTS3D

 Currently the limitations of CONCEPTS3D are as follows:

1. CONCEPTS3D is not accessible remotely; it is only available as a standalone desktop

 application.

 2. CONCEPTS3D is only available as a Windows application.

 3. The terrain rendered by CONCEPTS3D is limited to 256 meters x 256 meters.

 4. No history of previous terrains rendered is maintained by the application.

 86

CHAPTER IV

RESULTS

The primary objective of this dissertation was to determine if graphically visualizing in a

3D gaming environment using the data provided from CONCEPTS 2D numerical model was

feasible. One goal was to take the CONCEPTS data, modify and enhance it to produce realistic

models of the terrain under investigation, all the while maintaining the integrity of the

information provided from the CONCEPTS numerical model. To test CONCEPTS3D several

files were tested: 1 meter DEM data, 5 meter DEM data, the X-Section combined with 1 meter

DEM data, and the CONCEPTS XML file. The data enhancement techniques, bilinear

interpolation and Delaunay triangulation with Barycentric interpolation, prove to provide much

needed data points for the 5 meter DEM sample data used to render a terrain. The results

received by the data enhancement techniques were required to render the terrain by the gaming

engine. For the 1 meter sample data provided, these techniques proved to be excessive. The 1

meter data was the highest precision that can be used by the gaming engine to render a model

effectively. In this case there was no need to enhance the data because the one 1 meter data

provided adequate granularity.

Before results can be viewed, several steps were required to prepare the data for

rendering by the gaming engine.

 87

1. Start the gaming engine OpenSim (Figure 25, page 87).

2. Choose a file for rendering (Figures 26 and 27, page 88).

3. Log into the image viewer located in the bottom portion of the CONCEPTS3D

 application window pane (Figure 8, page 62).

4. The user is then asked to select an area from the file for viewing.

Each step is shown in the figures below.

1. The user clicks the start button in the right upper portion of the CONCEPTS3D desktop

application to start the OpenSim gaming engine.

2. Step 2 the user selects a file or files for data processing. Here the user chooses to

process the 1 meter DEM file and X-Section file. The files are displayed in the left portion

of the CONCEPTS3D desktop application graphical user interface (GUI). The input box

is filled with the name of the files being processed. The user then clicks “Go” to start

data processing. (See figures 26 and 27).

Figure 25: Start of the OpenSim Game Engine

 88

3. Step 3 the user presses the image viewer button in the bottom portion of the

Figure 27: Choose files or a file to render

Figure 26: Choose a DEM file for Rendering

 89

Figure 28: View the Selected area as a 3D virtual environment

CONCEPT3D desktop application. The image viewer allows the user to view the data

being processed as a 3D virtual terrain.

4. The OpenSim displays the virtual environment in the image viewer as a 3D virtual

environment.

The results above figure 28 reflect the outcomes of processing the 1 meter DEM data file

supplied to the gaming engine before bilinear interpolation and Delaunay triangulation are

performed to the dataset along with the image/model produced from it.

 90

The next figures show the result from testing the 5 meter data set.

1. The user selects the 5 meter DEM file for processing (See Figure 29).

2. The user then clicks “Go” to start data processing. (See Figure 30).

Figure 29: User Selecting a 5 meter Dem file for Viewing

 91

3. Step 3 the user presses the image viewer button in the bottom portion of the

CONCEPT3D desktop application menu selection pane (See Figure 8 and 30). The image

viewer allows the user to view the data being processed as a 3D virtual terrain.

4. The OpenSim displays the virtual environment in the image viewer as a 3D

virtual environment.

Figure 30: The Results of a 5 meter Dem file as a BitMap

 92

Figure 31: Results of Dem 5 Meter Data as a VR Terrain After Interpolation

The result of the parsed 5 meter DEM file without further interpolation is not sufficient to

render a virtual terrain see figure 30 above. This is due to the lack of data points within the

dataset to render a 3D model. The number of pixel values that must exist to render the virtual

terrain is minimally 256 x 256. Consequently, before the results could be rendered by the gaming

engine, data enhancement was required for the 5 meter data set. The data enhancement technique

used was bilinear interpolation and Delauney triangulation with Barycentric interpolation. The

result of each data enhancement technique performed on the rendered image is shown below.

The user is required to choose the file to parse and visualize as a 3D virtual environment.

Once the file is chosen, the user selects the Go button, and then the HeightMap is displayed in

the image viewer pane.

 93

Figure 33: Results of 5 Meter Dem file after Bilinear Interpolation

Figure 32: User Selecting 5 Meter Dem File

 94

Figure 34: A 256 X 256 Selected Area for rendering an object from the 5 Meter Dem

File

As the figure 33 shows, for bilinear interpolation creating additional points allowed the

image to be rendered by the gaming engine. OpenSim requires data to be 256 X 256, without

data enhancement the data or bitmap created is 256 X 197 (See Figure 30). So after data

enhancement, the bitmap was created to be of a standard size. Selecting a smaller area of 256 X

256 allows the image to be rendered by the gaming engine (See Figure 34). In the bitmap where

data does not exist the image appears jagged. This is because the game engine tries to interpolate

points that do not exist. In the virtual world where the data was interpolated and no data exists,

huge spikes in the terrain appear (See Figure 35 below).

 95

Figure 35: Results of Additional Data Points within the 5 meter DEM terrain

To correct this problem, in the data where the values are -99999 these values are set to the lowest

elevation value within the data set creating a smoother edge to visualize. This resulted in an

image that appears as a cliff for the edge of the data which is more realistic terrain once

visualized. (See Figure 36).

 96

The next test results are from combining the 1 meter DEM file with the X-Section file.

The steps to visualize the data are the same as the above-mentioned steps. The user chooses the

files to merge. In this case, the files are the DEM file and the X-Section file. Once the parsing

process is complete, the bitmap is created. Just as before, the user is required to choose the area

to visualize as a 3D virtual terrain.

Figure 36: Smoother Edge Terrain of DEM 5 meter Data

 97

Figure 37: Dem 1 Meter File and X-Section File selected for Data Processing

Figure 38: Raw32 File Created for the X-Section and 1 Meter Dem File

 98

Figure 39: BitMap Image of Dem file and X-Section File, where X-Section dark lines

appear within stream

The result of processing the X-Section and DEM file show in the bitmap image where the X-

Section is inserted into the area. Note that lines appear darker; see figure 39 above, this is due to

data mapping; the data that exists in the location is overwritten by the new data points. Results

from processing X-Section and the 1 meter DEM file with the resulting virtual environment are

shown in the next figures below.

X-Section

 99

Figure 40: Result of the X-Section and Dem File Rendered

Figure 41: Display of X-Section within the Dem Terrain

 100

Figure 43: Bilinear Interpolation of 1 Meter Dem with X-Section after X-Section Scaling

To resolve the issue of huge unsightly spikes in the 1 meter DEM image with X-Section data

inserted, data smoothing was done by scaling the X-Section data value with that of the

corresponding floodplain data to produce a more realistic terrain. (See Figure 42)

Figure 42: Improved Model with Data Smoothing

 101

The next figures, 44 and 45 show the results from the Barycentric interpolation method using the

1 meter data set inserted with the X-Section data.

Figure 44: Barycentric Interpolation BitMap

Figure 45: Virtual Reality Terrain after Barycentric Interpolation

 102

The exploration and testing of different gaming engines such as Neoaxis, Cafu, and

OpenSim shows that the accepted file types and file sizes for each can pose problems. It has also

been found for many open source engines, no true standards exist for creating graphic

applications using open source applications. The types of image files with heightmap data for

terrain rendering that work best for the gaming engines are various raw file formats, .png and

.bmp. The smallest file size that works for most gaming engines is 256x256 pixels. For gaming

engines, larger files are optimal when converted into a raw file format.

Currently, OpenSim’s smallest file accepted is 256x256 pixels in any of the formats .jpg,

.bmp, .png, .gif, .tif, .tiff, .r32 (RAW32), .ter (Terragen) and .raw (LL/SL RAW) (OpenSim

2011). The larger files require the data to be converted into one of the raw formats, and, even

with this modification, the data must be pieced together in 256x256 tiles. The gaming engine that

was chosen for this dissertation was OpenSim because it accepts a variety of data file formats,

the engine performs as expected, and it is written in .NET, permitting easier software integration.

Testing the XML parsing component of the CONCEPTS3D desktop application requires

the CONCEPTS XML file. Once the data is extracted from the file this information is inserted

into the MySQL database CONCEPTS. Some of the one-to-many and many-to-many tables

found in CONCEPTS XML were saved in a dictionary object. Saving the information in a

Collection class allowed for faster lookup and load time and efficient data processing of large

XML documents. The XML file used for testing the XML parser component was the

GC_analysis CONCEPTS XML file. The results provided by executing the XML parser

component is shown next. First the user is prompted to enter an XML file on the home screen of

the CONCEPT3D application. The question appears because these file are large and take a long

 103

Figure 46: User Selecting XML file for Processing

Figure 47: Message asking users to Insert Data into Database

time to load and process.

The option to skip inserting into the database is given. If “Yes” is chosen inserts are performed to

the database.

 104

Figure 48: Concept MySQL Database

Figure 49: Select query performed to view CONCEPTS conceptsmodel table

 105

Figure 50: Prototype of CONCEPTS3D

If the user chooses “No” the application does not perform any operation and the user is placed

back at the home screen of the desktop application.

 Testing the GUI of the desktop application required several files, CONCEPTS 1 and 5

meter DEM files, X-Section and 1 meter DEM files, and CONCEPTS XML files. All of the files

were uploaded and processed by the underlying component of the desktop application. A minor

challenge exists where the gaming engine does not start in the pane of the application this is due

to the thread and processing timing. Executing the component is not an issue because the user

views this component as a separate window. Essentially the desktop application performs as

expected. Producing the desktop application using C# .NET language and framework has made

integrating components seamless. The application produced is shown below in figure 50.

 106

Figure 52: User select 1 meter DEM file for Processing

Figure 51: User starts OpenSim gaming engine

 107

Figure 54: Results of 5 meter DEM file as a VR Terrain

Figure 53: Result of 1 Meter DEM as a VR Terrain

 108

CHAPTER V

CONCLUSION

 The purpose of this study was to provide a bridge between two seemingly disparate

worlds, the hard science of the numerical modeling of channel morphology and the rapidly

developing entertainment domain of 3D game development, with a goal of using the

inexpensive, though very effective, reality tools of gaming technology to visualize the complex

numerical models in the channel morphology world. While this required some tweaking on both

sides (standardizing the gaming engine file formats and using further mathematical modeling to

expand the features of the morphology datasets), the results exceeded all expectations.

In the efforts of this dissertation there were many challenges. The obstacles of analyzing,

creating, and implementing a 3D rendering desktop application was one challenge. The other

major challenge was data refinement. The data that was used as input to the 3D rendering engine

had to be created, modified, and enhanced in many instances. The techniques used to create,

modify, and enhance the discrete data set into a continuous data set were bilinear interpolation

and Delaunay triangulation with Barycentric interpolation. Results from performing these

functions on the data were found to be worthwhile. Comparing the interpolation techniques, it

was found that the bilinear interpolation and Barycentric interpolation both produced similarly,

realistic models. While the bilinear interpolation method yielded a sharper image than

Barycentric interpolation, this was to be expected since the additional data points created by

 109

performing bilinear interpolation uses four known data points as opposed to Barycentric

interpolation which only uses three. Also bilinear interpolation was an easier algorithm to

implement and follow, as opposed to Barycentric interpolation which required some additional

data processing before interpolation could be performed. After the dataset was enhanced with

more data points and triangles, the technique of triangle cutting and data point reduction was

performed by the gaming engine method of LOD. This increased the processing speed and the

quality of the image rendered by the gaming engine.

The major issue of the dissertation was the data provided to visualize. This issue will

forever pose a problem for both numerical models and visualization applications. The dataset

used for many of the channel evolution models are of various granularities. Some datasets

provided are coarser and some are fine in terms of data precision. The data that worked best for

visualizing for this dissertation was data that was in meters not fractions of meters. So data

precision for the X-Section dataset posed a problem. The solution was that the data is truncated.

But this data did not pose a problem for visualizing the environment as a 3D virtual terrain.

Because the DEM file provided a dense amount of data, because it was 1 meter, all the details of

the terrain could be rendered as a 3D virtual terrain that was exact and believable.

Although it was found that the software development process for this research was

progressively oscillating, the final product has proven to be beneficial for both novice and expert

hydraulic engineers. Each goal articulated for this dissertation was successfully accomplished.

Those objectives were:

 110

1. Build a prototype of a desktop application available for non-sophisticated users,

which visualizes CONCEPTS data in 3D-CONCEPTS3D.

2. Store and access CONCEPTS XML data through a MySQL database.

3. Develop three parsers to extract appropriate data to model a 3D virtual

environment.

a. Parser—XML file

b. Parser—DEM file-terrain

c. Parser—Cross-section (X-Section) file-channel

4. Transform DEM and X-Section data into a height-map file format.

5. Develop data interpolation techniques that allow for CONCEPTS data to be

available for the 3D gaming engine.

6. Convert interpolated data into gaming engine native file format.

7. Find and adapt an open source gaming engine so that it can be repurposed for

CONCEPTS viewing.

The rendering of the 3D virtual terrain was made possible by using the open source gaming

engine OpenSim. The components within this system architecture are provided in the appendix

page 122 of this dissertation.

 Future Work

For the future, this dissertation is easily adaptable for an enhanced model by adding

features to insert objects within the terrain. Once the terrain is created the user can modify the

image by adding objects to the scene. These objects must also be created for the

CONCEPTS/CONCEPTS3D model. For this project default objects could be created such as

vegetation, sediment, culvert, and cobbles. These objects can be chosen from a dropdown menu

and added to the scene. From here the user can re-execute the CONCEPTS model with the new

conservation measures and see how these additions will affect the channel. The image of each

 111

executed scenario is viewed and compared to see which proposed stream restoration solution will

be a potential success.

For future endeavors improvement could be made to increase the usability as well as the

efficiency of the computing and visualization process. To improve the software interface and

infrastructure, suggestions to create components to communicate and integrate seamlessly could

be performed. One component that could be integrated into the system infrastructure is the

CONCEPTS simulation model. Instead of developing this component as a standalone project

executing on the users machine, this component could be integrated into the 3D rendering

software.

From a programming perspective, computing efficiency could be obtained by using

techniques such as code placement [Tomiyama & Yasuura, 1997]. Code placement techniques

are performed to reduce the missed rates of instruction caches. From a data storage and retrieval

perspective the other techniques that could be used to improve performance is image caching.

Another suggestion to increase performance of processing and visualizing the data, is using the

GPU to process the data and off load many of the graphics handling tasks from the CPU. The

final suggestion, which is one obtained to create the entire application as a web application.

Allowing the user to run both CONCEPTS and CONCEPTS3D from a web browser will

enhance both accessibility and simultaneous use of the application.

An advanced application is easily obtainable from this dissertation. The entire system

could be developed as a web application that will allow remote access to CONCEPTS data and

CONCEPT3D. Online communication would be an enhanced feature which will allow scientist

to communicate with others using the system through the chat feature of the web application

 112

version. Each integrated component will work independently but will be presented as one

seamless application. This could also be made possible by using HTML5 [Chan, Holznagel, and

Krantz, 2010].

113

BIBLIOGRAPHY

114

BIBLIOGRAPHY

"3D Graphics." MorpZone. http://library.morphzone.org/3D_graphics (accessed December

 2011).

Angel, Edward. "Teaching a Three-Dimensional Computer Graphics Class Using

OpenGL." Computer Graphics. (1997): 54-55.

Bash, Jeffrey, and Clare Ryan. "Stream Restoration and Enhancement Projects: Is

Anyone Monitoring?." Environmental Management. 29.6 (2002): 877-885.

Bernhardt, Emily, Elizabeth Sudduth, Margaret Palmer, David J. Allan, Judy Meyer,

Grethchen Alexander, Jennifer Follastad-Shah, Brooke Hassett, Robin Jenkinson,

Rebecca Lave, Jeanne Rump, and Laura Pagano, . "Restoring Rivers One Reach at a

Time: Results form a Survey of U.S. River Restoration Practitioners." Restoration

Ecology. 15.3 (2007): 482-493.

Carsten Fuchs Software, "Welcome to Cafu." Cafu Engine. 2010. Web. 25 April 2010.

<http://www.cafu.de/>.

Chan, Min, Fritz Holznagel, and Michael Krantz. 20 Things I learned about Browsers and the

 Web. Google Chrome Team, 2010. http://www.20thingsilearned.com/media/ (accessed

 December 2011).

Cheng, Ge, Fei, Guo, Wang shu, Zhao Zhang, Yu Han. “3D Visualization of Pollutant

 Dispersion in Taihu Lake.” IEEE: 2010 2
nd

 Conference on Environmental Science and

 Information Application Technology (2010)

Chybicki, Andrej, Marcin Kulawiak, Zbigniew Lubniewski, Jacek Dabrowski, Mariusz

 Luba, Marek Moszynski and Andrzej Stepnowski. "GIS for Remote Sensing,

 Anaysis and Visualizsation of Marine Pollutution and Other Marine Ecosystem

 Components." IEEE: Proceeding of the 2008 1
st
 International Conference on Information

 Technology (2008): 19-21

Croix, John, and Sunil Khatri. "Introduction to GPU Programming for EDA." IEEE/ACM

International Conference on Computer-Aided Design Digest of Technical Papers

(2009): 276-280. Web. 22 February 2010.

"CUDA in Action." NVIDIA Corporation 2010: 1. Web. 22 February 2010.

 <www.nvidia.com>.

Daintith John. "Delaunay triangulation." A Dictionary of Computing. 2004. Encyclopedia.com.

 21 Apr. 2012 <http://www.encyclopedia.com>.

http://www.encyclopedia.com/doc/1O11-Delaunaytriangulation.html
http://www.encyclopedia.com/

115

Davison, Andrew. “Game Programming with Java and Java 3D.” O’Reilly Media (2005): 1008

Davison, Andrew. "Chapter 1. Why Java for Games Programming? The Myths (and Truths) of

 Java Games Programming.". N.p., March 12, 2012. Web. 21 Oct 2010.

 <http://fivedots.coe.psu.ac.th/~ad/jg/ch00/index.html>.

Day, Bill. "3D Graphics Programming in Java, Part 3: OpenGL." InfoWorld JavaWorld.

 http://www.javaworld.com/javaworld/jw-05-1999/jw-05-media.html (accessed May

 2010).

"DimensioneX." http://www.dimensionex.NET/en/.August 2009. Web.

Dong, Chen, Fengyuan Liu, Haiyan Wang and Feixiang Chen. "Application Research of

 Mobile GIS in Forestry Informatization." IEEE: The 5
th

 International Conference of

 Computer Science & Education (2010): 351-355.

Feibush, Eliot, Nikhil Gagvani, and Daniel Williams. "Geo-Spatial Visualization for

Situation Awareness." IEEE: Computer Graphics and Applications. (1999): 441-443.

Fleming, Bill. 3D Modeling & Surfacing. Academic Press. 1999

Fishwick, Paul . "An Introduction to OpenSimulator and Virtual Environment Agent-Gased M &

 S Applications." IEEE: Proceeding of the 2009 Winter Simulation Conference (2009):

 177-183.

Floriani, Leila, and Paola Magillo. "Regular and Irregular Multi-Resolution Terrain

Modelings: a Comparison." ACM. (2002): 143-148. Print.

Friesen, Jeff. "Open Source Java Projects: Java Binding for OpenGL (JOGL)." InfoWorld

 JavaWorld. http://www.javaworld.com/javaworld/jw-09-2008/jw-09-opensourcejava-

 jogl.html (accessed May 2010).

Gangolly, Jagdish. "Software Development Lifecycle."

 http://www.albany.edu/acc/courses/acc681.fall00/681book/node25.html (accessed

 October 2009).

GeekLog, "Delta3D: Open Source Gaming and Simulation Engine." Delta3D. GNU

Lesser General Public License, 02 May 2010. Web. 2 May 2010.

<http://www.delta3d.org/>.

Glaeser, and Stachel Hellmuth. Open Geometry: OpenGL + Advanced Geometry.

Springer, 1999.

Greenwood, Philip, Jesse Sago, Sam Richmond and Vivi Chau. "Using Game Engine

http://www.javaworld.com/javaworld/jw-09-2008/jw-09-opensourcejava-
http://www.javaworld.com/javaworld/jw-09-2008/jw-09-opensourcejava-

116

 Technology to Create Real-time Interactive Environments to Assist in Planning and

 Visual Assessment for Infrastructure." 18th World IMACS/MODSIM Congress (2009):

 2229-2235.

Grevera, George and Jayaram Udupa. "An Objective Comparison of 3-D Image Interpolation

 Meithos." IEEE Transactions On Medical Imaging 17 (1998): 642-652.

Guo, Fei, Shu WAng, Zhuo Zhang, Linlin Zhao and Cheng Ge. "Simulation and Model

 Computation of Taihu Lake Based on GIS." National Natural Science Foundation of

 China and National Science and Technology R&D Program: (2008)

Han, Y., M. Kwon and H. Park. "Reduction of Triangles in Discretized Marching Cubes for 3D

 Rendering of Brain MR Images." Proc. Intl. Soc. Mag. Reson. Med. 11 (2003)

Hand, Randall. "SecondLife Q2 Features: Mesh Import & Havok Physics." VizWorld.

 http://www.vizworld.com/2010/05/life-q2-features-mesh-import-havok-physics/

 (accessed May 2011)

Harris, Mark. Mapping Computational Concepts to GPUs. GPU Gems 2. NVIDIA,

2005. 493-508. Print.

Harris, Mark. Mapping Computational Concepts to GPUs. NVIDIA, 2005. 493-502.

"Havok." http://www.havok.com/ (accessed April 21, 2012).

Hawkins, Kevin, and Dave Astle. "What is OpenGL?." Premier Press (2001): 1-4. Web.

 8 March 2010. <http://www.developer.com>.

Henderson, Shane, and Andrew Mason. "Ambulance Service Planning: Simulation and

Data Visualization." n. page. Web. 22 February 2010.

He, Yong, Xunfei Deng, Yongni Shao and Hui Fang. "Study on Farmland Information

 Management Model Integrated with GSM and a Web-Based GIS." IEEE (2006): 9371-

 9375.

Hodorowicz, L. "What is a Gaming engine?." Distance Education Report. (2006): Print.

Howard, Chang. "River Morphology and River Channel Changes." Trans. Tianjin

University. 14. (2008): 254-262.

“Hydrographic Gauging Station Scoping Document.” Department of Natural Resources,

Environment, The Arts and Sport. Northern Territory Government.

http://www.nt.gov.au/nretas

http://www.vizworld.com/2010/05/life-q2-features-mesh-import-havok-physics/
http://www.nt.gov.au/nretas

117

"Java.NET The Source for Java Technology Collarboration." Java.NET. N.p., 02 May 2010.

 Web. 22 February 2010. <http://www.java.NET/>.

Jiejun, huang, Cui Wei, Cheng Ting, Zhan Yunjun and lI Ye. "Using GIS for Data

 Visualization and Processing in Pollution Sources Census." IEEE (2010): 710-

 713.

Johnson, Chris, Rob MacLeod, Steven Parker, and David Weinstein. "Biomedical

Computing and Visualization Software Environments." Communication of the

ACM. 47.11 (2004): 65-71. Print.

Kelly, Fred. "Restoration of Urban Streams: Practical Evaluation of Options for 319(h)

Funded Projects." USDA-NRCS. (2001): 1-8. Print.

Khosronejad, Rennie, Neyshabouri, and Townsend, “3D Numerical Modeling of Flow

 and Sediment Transport in Laboratory Channel Bends.” Journal of Hydraulic

 Engineering (2007) 1123-1134

Klein, Linda, Stephen Clayton, Richard Alldredge, and Peter Goodwin. "Long-Term

Monitoring and Evaluation of the Lower Red River Meadow Restoration Project,

Idaho, USA." Restoration Ecologoy. 15.2 (2007): 223-239.

Kondolf, Mathias G., and Elisabeth Micheli. "Forum: Evaluating Stream Restoration

Projects." Environmental Management. 19.1 (1995): 1-15.

Kondolf, G. M., S. Anderson, R. Lave, L. Pagano, A. Merenlender and E.S. Bernhardt.

 "Two Decades of River Restoration in California: What Can We Learn?."

Restoration Ecology. 15.3 (2007): 516-523.

Lake, P.S., N. Bond, and P. Reich. "Linking Ecological Theory with Stream Restoration."

Freshwater Biology. 52. (2007): 597-615.

Langendoen, Eddy. CONCEPTS-CONservational Channel Evolution and Pollutant

 Transport Model . Research Report 16. USDA-ARS National Sedimentation

Laboratory , 2000.

Langendoen, Eddy, R. Lowrance, and Andrew Simon. "Assessing the Impact of Riparian

Processes on Stream Bank Stability." Ecohydrology. 2. (2009): 360-369.

Lewis, Michael, and Jeffrey Jacobson. "Gaming engines in Scientific Research."

 Communication of the ACM. 45.1 (2002): 27-31.

Lim, Choong-Gyoo and ByongTae Choi. "Hierarchical Triangular Patches for Terrain Rendering

 with Their Matching Blocks." ACM:3rd International Conference on Digital Interactive

118

 Media in Entertainment and Arts (2008)

Lisle, T.E. "Overview: Channel Morphology and Sediment Transport in Steepland

Streams." Erosion and Sedimentation in the Pacific Rim. 165. (1986): 287-297.

Love, Timothy, Chris Trumbauer and Charles Cole. "Implementation of a Pilot GIS for a

 Volunteer-Based Water Quality Monitoring Program."

Lu, Xiaolin. "Develop Web GIS Based Intelligent Transportation Application Systems with Web

 Service Technology." IEEE (2006): 159-.

Madsen, B. L., P. J. Boon, P. S. Lake, S. E. Bunn, and C. N. Dahm. "Ecological

Principles and Stream Restoration." 1-8.

Mcallister, Keegan. Triangle Rasterization. October 2007. (accessed January 2012)

Mcatmney, Hugh, Bryan Duggan and Fredrick Mtenzi. "Using the Crytek Game Engine in the

 Dublin Institute of Technology."

McReynolds, Tom, and David Blythe. Advanced Graphic Programming using OpenGL. San

 Francisco: Morgan Kaufmann Publishers, 2005

Merwade, Venkatesh. "River Channel Morphology Model." River Channel Morphology

 Model n. pag. Web. 14 October 2008. <www.crwr.utexas.edu>.

Miller, Tom. Beginning 3D Game Programming. Indianapolis: SAMS, 2005. (accessed

 October 27, 2011).

Morrision, Michael. Beginning Game Programming. Indianapolis: SAMS, 2005.

 (accessed October 27, 2011).

Muller, Wolfgang, and Heidrun Schumann. "Visualization Methods for Time-Dependent

 Data-An Overview." Proceedings of the 2003 Winter Simulation Conference.

 (2003): 737-745.

NeoAxis Group. "NeoAxis." http://www.neoaxis.com/ (accessed 2010).

Northern Territory Government, . "Hydrographic Gauging Station Scoping Document."

 Hydrographic Services-Department of Natural Resorces. 1-12.

Palmer, M. A., E.S. Bernhardt, J.D. Allan, P.S. Lake, and G. Alexander. "Forum:

Standards for Ecologically Successful River Restoration." Journal of Applied

 Ecology. 42. (2005): 208-217.

119

Pan, Zhigeng, Xiaochao Wei, and Jian Yang. "Geometric Model Reconstruction from

Streams of DirectX 3D Application." ACM. (2005): 242-245.

"Panda3D-Free 3D Gaming engine." Panda3D. Carnegie Mellon University, 2010. Web.

 23 April 2010. <http://www.panda3d.org/>.

Pazzaglia, Frank J. “Landscape Evolution Models.” Development in Quaternary Science.

 1571-0866.1, 2003

Phillips, Greg. "Success and Benefits of Stream Restoration." AWRA Hydrology &

Watershed Management. 1.6 (2003): 1-3

Purcell, Alison H., Carla Friedrich, and Vincent H. Resh. "An Assessment of a Small

 Urban Stream Restoration Project in Northern California." Restoration Ecology.

 10.4 (2002): 685-694.

Razafindrazaka, Faniry. "Delaunay Trainagulation Algorithm and Application to Terrain

 Generation." International Institue for Software Technology: African Institute for

 Mathematic Science (AIMS) (2009)

Rehman, Herath, and Katumi Musiake, “A Process Based Approach to Model Soil

Erosion and Sediment Transport at Regional Scale: Model Structure, Modeling

 Strategies and Validation,” GeoInformatics, vol 14, 1, (2003) 29-36

Rhyne, Theresa-Marie. "Visualization and the Large World of Computer Graphics: What

Happens Out There?." TR News September-October 2007: 20-23. Print.

Roberson, Roy. "Recovering From Drought: Restoring Stream Banks a Big Step."

Southeast Farm Press 1 October 2008: 19-20.

Roberts, G., S. Balakirsky and S. Foufou. "3D Reconstruction of Rough Terrain for

 USARSim Using a Height-map Method." ACM (2008): 259-264.

Sander, Pedro, Xianfeng Gu, Steven Gortler, Hugues Hoppe and John Synder. "Silhouette

 Clipping." ACM: SIGGRAPH 2OOO (2000)

Sangappa, Sudhir, K. Palaniappan, and Richard Tollerton. "Benchmarking Java Against

 C/C++ for Interactive Scientific Visualization." ACM. (2002): 236.

Schroeder, Will, Ken Martin, and Bill Lorensen. The visualization toolkit. Kitware Inc,

2004.

Scott, Stephen, and Yafei Jia. "Simulation of Sediment Transport and Channel

120

Morphology Change in Large River Systems." US-China Workshop on Advanced

Computational Modeling in Hydroscience & Engineering. 1-11.

Selvakumar, Ariamalar. "Evaluating Receiving Water Improvements From Stream

 Restoration (Accotink Creek, Fairfax City, VA)." EPA United States

Environmental Protection Agency. (2009): 1-2.

Shield, Douglas F., Charles Cooper, and Scott Knight. "Experiment in Stream

Restoration." Journal of Hydraulic Engineering. 121.6 (1995): 494-502. Print.

Shields, Douglas F., Ronald Copeland, Peter Klingeman, Martin Doyle, and Andrew

 Simon. "Design for Stream Restoration." Journal of Hydraulic Engineering.

129.8 (2003): 575-584.

Simpson, Jake. "Gaming engine Anatomy 101." ExtremeTech 30 April 2002: 1-17. Web.

 19 December 2009. <http://www.extremetech.com/print_article>.

Starr, Rich. "Stream Restoration." Stream Restoration. U.S. Fish and Wildlife Service,

n.d. Web. 21 January 2010. <www.fws.gov/ChesapeakeBay/stream.html>.

Stowell, Timothy, and Brett Shelton. "Challenges, Frustrations and Triumphs of

Remixing an Open Source Gaming Engine for Educational Purposes."TechTrends. 52.5

 (2008): 32-37.

Sudduth, Elizabeth, Judy Meyer, and Emily Bernhardt. "Stream Restoration Practices in

 the Southeastern United States." Restoration Ecology. 15.3 (2007): 573-583.

"Sybase ." Sybase History. Sybase, 2010. Web. 12 February 2010.

 <http://www.sybase.com/about_sybase/history>.

Tomiyama, Hiroyuki and Hiroto Yasuura. "Code Placement Techniques for Cache Miss Rate

 Reduction." ACM: ACM Transactions on Design Automation of Electronic Systems 2

 (1997): 410–429.

Trattner, Christph, Steurer, Michael, & Kappe, Frank. "Socializing Virtual Worlds with

 Facebook." MindTrek October 6
th

-8
th

, 2010: ACM, 2010.

"OpenGL: The Industry's Foundation for High Performance Graphics." Kronos Group”, 1 May

 2010. Web. <http://www.opengl.org>.

"OpenSim." http://opensimulator.org/wiki/Main_Page (accessed October 2011). ("OpenSim,")

121

Osterkamp, Waite, Janet Hooke, and John Ridgway. "Stream Channel Morphology and

 Position." GeoIndicators (2006): n. pag. Web. 26 Apr 2010. <www.lgt.lt/geoin>.

Palmer, Margaret, David J. Allan, Judy Meyer, and Emily Bernhardt. "River Restoration

in the Twenty-First Century: Data and Experiential Knowledge to Inform Future

 Efforts." Restoration Ecology. 15.3 (2007): 427-481.

The Federal Interagency Stream Restoration Working Group. "Stream Corridor

Restoration: Principles, Processes, and Practices." (1998 Revised 2001):

"Unity." Unity Technology. http://unity3d.com/unity/engine/ March 2010).

US Army Corps of Engineers, . "HEC-6." HEC History. N.p., n.d. Web. 12 October

 2009. <http://www.hec.usace.army.mil/>.

US Army Corps of Engineers, River hydraulics.18. New York: American Society of Civil

Engineers, 1996.

Vance, Tiffany, Sharon Mesick, and Scott Cross. "Integrating particle Tracking Models

 into a GIS for Analysis and Display of Environmental Phenomena." ACM GIS.

(2009): 460-465.

Vieira, Dalmo. "Modeling Hydrodynamics, Channel Morphology, and Water Quality

Using CCHE1D." US-China Workshop on Advanced Computational Modeling in

Hydroscience & Engineering.

Vieira, Dalmo and Wei Ming Wu. "CCHE1D Version 3.0: Model Capabilities and Application."

 Technical Report NCCHE-TR-2002-2005 (2002)

Wagner, Iwona, Jiri Marsalek, John McCullah, Donald Gray, Hui Xiong, Nicole Silk,

Kristine Ciruna, Zhen-Gang Ji, International Research, Michael Clar, American

Committee, Timothy Randhir, John Randolph, and Wei Ji. Wetland and water

resource modeling and assessment. CRC Press, 2008.

Wang, Sam, and Yafei Jia. "A Discussion on the Computational Modeling of Channel

 Morphology."

Weber, Joseph. "ProteinShader: Illustrative Rendering of Macromolecules." BMC

 Structural Biology. 9.19 (2009): 1-19.

Wegner, Katja. "SIMWIZ3D-Visualising biochemical simulation results." IEEE (2005)

(Wegner 2005)

http://unity3d.com/unity/engine/

122

Wells, William. "Generating Enhanced Natural Environments and Terrain for Interactive

 Combat Simulations (GENETICS)." ACM (2005): 184-191.

Willis, B.G. Krishnapan, “Numerical Modeling of Cohesive Sediment Transport in

Rivers”, Can. J. Civ. Eng. 31 (2004) 749-758

Wilson, Leslie, and Robert Clark. Comparative Programming Languages. 3rd ed. Great

Britain: Addison-Wesley Publishers Limited, 2001.

"What is CUDA?." CUDA GPUs. 2010. NVIDIA, Web. 24 Feb 2010.

<http://www.nvidia.com/object/what-is_cuda_new.html>.

Wolff, David. "Using OpenGL in Java with JOGL." Consortium for Computing Sciences

 in Colleges. (2005): 223-224.

Woolsey, Sharon, Florence Capelli, Tom Gonser, Eduard Hoehn, and Markus Hostmann.

 "A Strategy to Assess River Restoration Success." Freshwater Biology. 52.

(2007): 752-769.

Yang, Chi, Franciso Simoes, Jianchun Juang, and Blair Greimann. "Generalized

Sediment Transport Models for Alluvial Rivers and Reservoirs." US-China

Workshop on Advanced Computational Modeling in Hydroscience &

Engineering.

Yee, Jerry. "A Survey of Graphic Programming Languages." 1-10.

Yoon, and Seung-Kyu Kang, “A Numerical Model of Sediment-laden Turbulent Flow in

an Open Channel.” NRC 32 (2005): 233-240

Zutshi, Aditya and Geetika Sharma. "A Study of Virtual Environments for Enterprise

 Collaboration." ACM: VRCAI (2009): 331-333.

123

APPENDIX

124

XMLPARSER

Written by Chenchutta Denaye Cross Jackson

October 10, 2010

Version 1

Copy write July 20, 2012

The XML parser was created to extract information from an XML file to be inserted into

the MYSQL database.

using System;

using System.Collections;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

using System.Xml;

using MySql.Data.MySqlClient;

using System.Data.SqlClient;

using System.Drawing;

using System.Windows.Forms;

namespace Concepts3D

{

 class ConceptsXMLParser

 {

 /**

 *

 * @param args

 */

 private MySqlConnection conn;

 private Dictionary <String, Int32> xsidMap; //key is xsid and

value is primary key from database

 private Boolean performInserts = true;

 public ConceptsXMLParser(String inputFile)

 {

 DialogResult result = MessageBox.Show("Inserts can be slow

for large datasets. Do you want to insert this data into the database?",

"Database Inserts", MessageBoxButtons.YesNo);

 if (result == DialogResult.Yes)

 {

 performInserts = true;

 }

 else

 {

 performInserts = false;

 }

125

 parse(inputFile);

 //datacols = (int)(highestEasting - lowestEasting) + 1;

 //datarows = (int)(highestNorthing - lowestNorthing) + 1;

 //elevationData = new Single[datarows, datacols];

 //int listIndex = 0;

 //for (int y = 0; y < datarows; y++)

 //{

 // for(int x = 0; x < datacols; x++)

 // {

 // elevationData[y, x] =

pointList[listIndex++].getZ();

 // }

 //}

 }

 private void connectToDB()

 {

 //conn = new

MySqlConnection("jdbc:mysql://localhost:3306/concepts?user=root&password=");

 conn = new

MySqlConnection("SERVER=localhost;DATABASE=concepts;UID=root;PASSWORD=;");

 }

 public String parse(String inputFile)

 {

 String result = "";

 FileStream input = null;

 try

 {

 this.connectToDB();

 conn.Open();

 xsidMap = new Dictionary<String, Int32>();

 XMLLoader parser = new XMLLoader();

 Document xmlDoc = parser.build(inputFile);

 // get root element and parse it

 Element conceptsModel = xmlDoc.getRootElement();

 Console.WriteLine("Parsing concepts xml file....");

 this.parseConceptsModel(conceptsModel);

 Console.WriteLine("Done!");

 result = "Content parsed and inserted into the

database.";

126

 }

 catch (Exception e)

 {

 // TODO Auto-generated catch block

 Console.WriteLine("Exception: " + e.StackTrace);

 MessageBox.Show("Exception: " + e.StackTrace);

 result = "An error occurred!";

 }

 if (conn != null)

 conn.Close();

 if (input != null)

 input.Close();

 return result;

 }

 private void parseConceptsModel(Element conceptsModel)

 {

 // COLUMNS SECTION

 String versionText = this.parseString(conceptsModel

 .getAttributeValue("version"));

 String lastVersionText = this.parseString(conceptsModel

 .getAttributeValue("lastversion"));

 String name = "TESTModel";

 // DB INSERT SECTION

 String query = "INSERT INTO conceptsmodel (name, version,

lastVersion) "

 + "VALUES ('" + name + "'," + versionText + ", " +

lastVersionText + ")";

 int conceptsModelID = this.executeDBUpdate(query);

 // FOREIGN KEY SECTION

 // get data element and parse it

 Element data = conceptsModel.getChild("data");

 this.parseData(conceptsModelID, data);

 // actually get children of channelModels and parse each one

of them

 Element channelModels =

conceptsModel.getChild("channelModels");

 List<Element> channelModelList = channelModels

 .getChildren("channelModel");

 // for (Element channelModel in channelModelList) {

 // this.parseChannelModel(conceptsModelID, channelModel);

 // }

 // Many to many relationships must be handled differently

127

 for (int index = 0; index < channelModelList.Count; index++)

 {

 this.parseChannelModel(conceptsModelID,

channelModelList[index], index);

 }

 // get runData element and parse it

 Element runData = conceptsModel.getChild("runData");

 this.parseRunData(conceptsModelID, runData);

 }

 private void parseData(int conceptsModelID, Element data)

 {

 String query = "INSERT INTO data (conceptsModelID) " +

"VALUES ("

 + conceptsModelID + ")";

 int dataID = this.executeDBUpdate(query);

 Element materials = data.getChild("materials");

 this.parseMaterials_Data(dataID, materials);

 Element crossSections = data.getChild("crossSections");

 List<Element> crossSectionList = crossSections

 .getChildren("crossSection");

 for (int i = 0; i < crossSectionList.Count; i++)

 {

 this.parseCrossSections(dataID, crossSectionList[i], i);

 }

 Element reaches = data.getChild("reaches");

 List<Element> reachList = reaches.getChildren("reach");

 for (int i = 0; i < reachList.Count; i++)

 {

 this.parseReaches(dataID, reachList[i], i);

 }

 Element structures = data.getChild("structures");

 this.parseStructuresData(dataID, structures);

 Element tributaries = data.getChild("tributaries");

 List<Element> tributaryList =

reaches.getChildren("tributary");

 for (int i = 0; i < tributaryList.Count; i++)

 {

 this.parseTributaries(dataID, tributaryList[i], i);

 }

 Element lateralInflows = data.getChild("lateralInflows");

 List<Element> lateralInflowList = lateralInflows

 .getChildren("lateralInflow");

 for (int i = 0; i < lateralInflowList.Count; i++)

 {

128

 this.parseLateralInflows(dataID, lateralInflowList[i],

i);

 }

 }

 private void parseChannelModel(int conceptsModelID, Element

channelModel,

 int index)

 {

 String nameString = this.parseString(channelModel

 .getAttributeValue("name"));

 String query = "INSERT INTO channelmodels (conceptsModelID,

name) "

 + "VALUES (" + conceptsModelID + ", " + nameString +

")";

 int channelModelID = this.executeDBUpdate(query);

 mapXSIDString(channelModel, index, channelModelID);

 // INSERT MANY TO MANY RELATIONSHIPS

 // Reach-ChannelModel

 foreach (Element reach in

(List<Element>)channelModel.getChildren("reach"))

 {

 String reachXSID = reach.getText();

 int reachID = xsidMap[reachXSID];

 query = "INSERT INTO reachchannelmodels (reachID,

channelModelID) VALUES ("

 + reachID + ", " + channelModelID + ")";

 this.executeDBUpdate(query);

 }

 // CulvertSection-ChannelModel

 foreach (Element culvertSection in

(List<Element>)channelModel

 .getChildren("culvertSection"))

 {

 String culvertSectionXSID = culvertSection.getText();

 int culvertSectionID = xsidMap[culvertSectionXSID];

 query = "INSERT INTO culvertsectionchannelmodels

(culvertSectionID, channelModelID) VALUES ("

 + culvertSectionID + ", " + channelModelID + ")";

 this.executeDBUpdate(query);

 }

 // BridgeSection-ChannelModel

 foreach (Element bridgeSection in (List<Element>)channelModel

 .getChildren("bridgeSection"))

 {

 String bridgeSectionXSID = bridgeSection.getText();

 int bridgeSectionID = xsidMap[bridgeSectionXSID];

129

 query = "INSERT INTO bridgesectionchannelmodels

(bridgeSectionID, channelModelID) VALUES ("

 + bridgeSectionID + ", " + channelModelID + ")";

 this.executeDBUpdate(query);

 }

 // DropStructure-ChannelModel

 foreach (Element dropStructure in (List<Element>)channelModel

 .getChildren("dropStructure"))

 {

 String dropStructureXSID = dropStructure.getText();

 int dropStructureID = xsidMap[dropStructureXSID];

 query = "INSERT INTO dropstructurechannelmodels

(dropStructureID, channelModelID) VALUES ("

 + dropStructureID + ", " + channelModelID + ")";

 this.executeDBUpdate(query);

 }

 // GenericStructure-ChannelModel

 foreach (Element genericStructure in

(List<Element>)channelModel

 .getChildren("genericStructure"))

 {

 String genericStructureXSID = genericStructure.getText();

 int genericStructureID = xsidMap[genericStructureXSID];

 query = "INSERT INTO genericstructurechannelmodels

(genericStructureID, channelModelID) VALUES ("

 + genericStructureID + ", " + channelModelID +

")";

 this.executeDBUpdate(query);

 }

 // Tributary-ChannelModel

 foreach (Element tributary in (List<Element>)channelModel

 .getChildren("tributary"))

 {

 String tributaryXSID = tributary.getText();

 int tributaryID = xsidMap[tributaryXSID];

 query = "INSERT INTO tributarychannelmodels (tributaryID,

channelModelID) VALUES ("

 + tributaryID + ", " + channelModelID + ")";

 this.executeDBUpdate(query);

 }

 // LateralInflow-ChannelModel

 foreach (Element lateralInflow in (List<Element>)channelModel

 .getChildren("lateralInflow"))

 {

 String lateralInflowXSID = lateralInflow.getText();

 int lateralInflowID = xsidMap[lateralInflowXSID];

 query = "INSERT INTO lateralinflowchannelmodels

(lateralInflowID, channelModelID) VALUES ("

 + lateralInflowID + ", " + channelModelID + ")";

 this.executeDBUpdate(query);

130

 }

 }

 private void parseRunData(int conceptsModelID, Element runData)

 {

 String query = "INSERT INTO rundata (conceptsModelID) " +

"VALUES ("

 + conceptsModelID + ")";

 int runDataID = this.executeDBUpdate(query);

 Element runControlDataSets =

runData.getChild("runControlDataSets");

 List<Element> runControlDataList =

runControlDataSets.getChildren("runControlData");

 for (int i = 0; i < runControlDataList.Count; i++)

 {

 this.parseRunControlData(runDataID,

runControlDataList[i]);

 }

 Element outputOptionsSets =

runData.getChild("outputOptionsSets");

 List<Element> outputOptionsList =

outputOptionsSets.getChildren("outputOptions");

 for (int i = 0; i < outputOptionsList.Count; i++)

 {

 this.parseOutputOptions(runDataID, outputOptionsList[i]);

 }

 Element scenarios = runData.getChild("scenarios");

 List<Element> scenariosList =

scenarios.getChildren("scenario");

 for (int i = 0; i < scenariosList.Count; i++)

 {

 this.parseScenarios(runDataID, scenariosList[i]);

 }

 }

 private void parseMaterials_Data(int dataID, Element

material_data)

 {

 String query = "INSERT INTO material_data (dataID) " +

"VALUES ("

 + dataID + ")";

 int material_DataID = this.executeDBUpdate(query);

 /*

 * TODO: sedimentProfile* soilProfile*

 */

 Element sediments = material_data.getChild("sediments");

131

 this.parseSediments(material_DataID, sediments);

 Element soils = material_data.getChild("soils");

 List<Element> soilsList = soils.getChildren("soil");

 for (int index = 0; index < soilsList.Count; index++)

 {

 this.parseSoil(material_DataID, soilsList[index], index);

 }

 Element sedimentProfiles =

material_data.getChild("sedimentProfiles");

 List<Element> sedimentProfileList =

sedimentProfiles.getChildren("sedimentProfile");

 for (int index = 0; index < sedimentProfileList.Count;

index++)

 {

 this.parseSedimentProfile(material_DataID,

sedimentProfileList[index], index);

 }

 //Soil profile is the same type as sediment profile so we

treat them the exact same

 //and we use the same parseSedimentProfile method

 Element soilProfiles =

material_data.getChild("soilProfiles");

 List<Element> soilProfileList =

soilProfiles.getChildren("soilProfile");

 for (int index = 0; index < soilProfileList.Count; index++)

 {

 this.parseSedimentProfile(material_DataID,

soilProfileList[index], index);

 }

 }

 private void parseSediments(int material_DataID, Element

sediments)

 {

 // TODO Auto-generated method stub

 List<Element> materialsList =

sediments.getChildren("material");

 for (int index = 0; index < materialsList.Count; index++)

 {

 Element materials = materialsList[0];

 int materialID = this.parseMaterials(materials, index);

 String query = "INSERT INTO sediments (material_DataID,

materialID) " + "VALUES (" + material_DataID + ", " + materialID + ")";

 this.executeDBUpdate(query);

 }

132

 }

 private void parseSoil(int material_DataID, Element soil, int

index)

 {

 Single? bulkDensity =

this.parseSingle(soil.getChildTextTrim("bulkDensity"));

 Single? permeability =

this.parseSingle(soil.getChildTextTrim("permeability"));

 //Soil element is purposefully passed into parseMaterials

method because it is an extension of parseMaterials

 int materialID = this.parseMaterials(soil, index);

 String query = "INSERT INTO soils (material_DataID,

materialID, bulkDensity, permeability) " + "VALUES (" + material_DataID + ",

" + materialID + ", " + bulkDensity + ", " + permeability + ")";

 int soilID = this.executeDBUpdate(query);

 //mapXSIDString(soil, index, soilID);

 }

 private void parseSedimentProfile(int material_DataID, Element

sedimentProfile, int index)

 {

 // TODO Auto-generated method stub

 String id =

this.parseString(sedimentProfile.getAttributeValue("id"));

 String query = "INSERT INTO sedimentProfiles

(material_DataID, id) " + "VALUES (" + material_DataID + ", " + id + ")";

 int sedimentProfileID = this.executeDBUpdate(query);

 Element site = sedimentProfile.getChild("site");

 this.parseSite(sedimentProfileID, null, site);

 Element materialHorizon =

sedimentProfile.getChild("materialHorizon");

 this.parseMaterialHorizon(sedimentProfileID,

materialHorizon);

 mapXSIDString(sedimentProfile, index, sedimentProfileID);

 }

 private void parseMaterialHorizon(int sedimentProfileID, Element

materialHorizon)

 {

 Single? topDepth =

this.parseSingle(materialHorizon.getChildTextTrim("topDepth"));

 Single? bottomDepth =

this.parseSingle(materialHorizon.getChildTextTrim("bottomDepth"));

133

 String materialXSID =

materialHorizon.getChildTextTrim("material");

 int materialID = xsidMap[materialXSID];

 String query = "INSERT INTO material_horizon (topDepth,

bottomDepth, materialID, sedimentProfileID) VALUES (" + topDepth + ", " +

bottomDepth + ", " + materialID + ", " + sedimentProfileID + ")";

 executeDBUpdate(query);

 }

 private void parseSite(int? sedimentProfileID, int? transectID,

Element site)

 {

 String id = this.parseString(site.getAttributeValue("id"));

 Single? easting =

this.parseSingle(site.getChildTextTrim("easting"));

 Single? northing =

this.parseSingle(site.getChildTextTrim("northing"));

 Single? elevation =

this.parseSingle(site.getChildTextTrim("elevation"));

 Single? station =

this.parseSingle(site.getChildTextTrim("station"));

 String query = "INSERT INTO site (id, easting, northing,

elevation, station, sedimentProfileID, transectID) VALUES " +

 "(" + id + ", " + easting + ", " + northing +

", " + elevation + ", " + station + ", " + sedimentProfileID + ", " +

transectID + ")";

 executeDBUpdate(query);

 }

 private int parseMaterials(Element materials, int index)

 {

 // TODO Auto-generated method stub

 String name =

this.parseString(materials.getChildTextTrim("name"));

 Single? particleDensity =

this.parseSingle(materials.getChildTextTrim("particleDensity"));

 Single? porosity =

this.parseSingle(materials.getChildTextTrim("porosity"));

 Single? erodibility =

this.parseSingle(materials.getChildTextTrim("erodibility"));

 Single? criticalShearStress =

this.parseSingle(materials.getChildTextTrim("criticalShearStress"));

 Single? cohesion =

this.parseSingle(materials.getChildTextTrim("cohesion"));

 Single? frictionAngle =

this.parseSingle(materials.getChildTextTrim("frictionAngle"));

 Single? phiB =

this.parseSingle(materials.getChildTextTrim("phiB"));

134

 Element grainSizeDistribution =

materials.getChild("grainSizeDistribution");

 int grainSizeDistributionID =

this.parseGrainSizeDistribution(grainSizeDistribution);

 String query = "INSERT INTO materials

(grainSizeDistributionID, name, particleDensity, porosity, erodibility,

criticalShearStress, cohesion, frictionAngle, phiB) VALUES (" +

grainSizeDistributionID + ", " + name + ", " + particleDensity + ", " +

porosity + ", " + erodibility + ", " + criticalShearStress + ", " + cohesion

+ ", " + frictionAngle + ", " + phiB + ")";

 int materialID = this.executeDBUpdate(query);

 mapXSIDString(materials, index, materialID);

 return materialID;

 }

 private int parseGrainSizeDistribution(Element

grainSizeDistribution)

 {

 Single? clayTotal =

this.parseSingle(grainSizeDistribution.getChildTextTrim("clayTotal"));

 Single? siltVeryFine =

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltVeryFine"));

 Single? siltFine =

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltFine"));

 Single? siltMedium =

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltMedium"));

 Single? siltCoarse =

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltCoarse"));

 Single? siltVeryCoarse =

this.parseSingle(grainSizeDistribution.getChildTextTrim("siltVeryCoarse"));

 Single? sandVeryFine =

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandVeryFine"));

 Single? sandFine =

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandFine"));

 Single? sandMedium =

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandMedium"));

 Single? sandCoarse =

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandCoarse"));

 Single? sandVeryCoarse =

this.parseSingle(grainSizeDistribution.getChildTextTrim("sandVeryCoarse"));

 Single? gravelVeryFine =

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelVeryFine"));

 Single? gravelFine =

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelFine"));

 Single? gravelMedium =

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelMedium"));

 Single? gravelCoarse =

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelCoarse"));

135

 Single? gravelVeryCoarse =

this.parseSingle(grainSizeDistribution.getChildTextTrim("gravelVeryCoarse"));

 Single? cobblesSmall =

this.parseSingle(grainSizeDistribution.getChildTextTrim("cobblesSmall"));

 String query = "INSERT INTO grainSizeDistribution (clayTotal,

siltVeryFine, siltFine, siltMedium, siltCoarse, siltVeryCoarse, sandVeryFine,

sandFine, sandMedium, sandCoarse, sandVeryCoarse, gravelVeryFine, gravelFine,

gravelMedium, gravelCoarse, gravelVeryCoarse, cobblesSmall) VALUES " +

 "(" + clayTotal + ", " + siltVeryFine + ", " +

siltFine + ", " + siltMedium + ", " + siltCoarse + ", " + siltVeryCoarse + ",

" + sandVeryFine + ", " + sandFine + ", " + sandMedium + ", " + sandCoarse +

", " + sandVeryCoarse + ", " + gravelVeryFine + ", " + gravelFine + ", " +

gravelMedium + ", " + gravelCoarse + ", " + gravelVeryCoarse + ", " +

cobblesSmall + ")";

 //Console.WriteLine(query);

 int grainSizeDistributionID = this.executeDBUpdate(query);

 return grainSizeDistributionID;

 }

 private void parseCrossSections(int dataID, Element crossSection,

int index)

 {

 String name = crossSection.getChildTextTrim("name");

 if(name.Equals("7977.576 (EC)")){

 Console.WriteLine(name);

 }

 Single? station = this.parseSingle(crossSection

 .getChildTextTrim("station"));

 Int32? leftBankTop = this.parseInt(crossSection

 .getChildTextTrim("leftBankTop"));

 Int32? leftBankToe = this.parseInt(crossSection

 .getChildTextTrim("leftBankToe"));

 Int32? rightBankTop = this.parseInt(crossSection

 .getChildTextTrim("rightBankTop"));

 Int32? rightBankToe = this.parseInt(crossSection

 .getChildTextTrim("rightBankToe"));

 Single? nBed =

this.parseSingle(crossSection.getChildTextTrim("nBed"));

 Single? nLeftBank = this.parseSingle(crossSection

 .getChildTextTrim("nLeftBank"));

 Single? nRightBank = this.parseSingle(crossSection

 .getChildTextTrim("nRightBank"));

 Single? nLeftFloodplain = this.parseSingle(crossSection

 .getChildTextTrim("nLeftFloodplain"));

 Single? nRightFloodplain = this.parseSingle(crossSection

 .getChildTextTrim("nRightFloodplain"));

 Single? bedrockElevation = this.parseSingle(crossSection

 .getChildTextTrim("bedrockElevation"));

 Single? leftGroundWaterTable = this.parseSingle(crossSection

 .getChildTextTrim("leftGroundwaterTable"));

136

 Single? rightGroundWaterTable = this.parseSingle(crossSection

 .getChildTextTrim("rightGroundwaterTable"));

 String bedSediment = crossSection

 .getChildTextTrim("bedSediment");

 String leftBankSoil = crossSection

 .getChildTextTrim("leftBankSoil");

 String rightBankSoil = crossSection

 .getChildTextTrim("rightBankSoil");

 Int32 bedSedimentID = xsidMap[bedSediment];

 Int32 leftBankSoilID = xsidMap[leftBankSoil];

 Int32 rightBankSoilID = xsidMap[rightBankSoil];

 String query = "INSERT INTO crosssection (name, dataID,

station, leftBankTop, leftBankToe, rightBankTop, rightBankToe, nBed,

nLeftBank, nRightBank, nLeftFloodplain, nRightFloodplain, bedRockElevation,

leftGroundwaterTable, rightGroundwaterTable, bedSedimentID, leftBankSoilID,

rightBankSoilID) "

 + "VALUES ('"

 + name

 + "', "

 + dataID

 + ", "

 + station

 + ", "

 + leftBankTop

 + ", "

 + leftBankToe

 + ", "

 + rightBankTop

 + ", "

 + rightBankToe

 + ", "

 + nBed

 + ", "

 + nLeftBank

 + ", "

 + nRightBank

 + ", "

 + nLeftFloodplain

 + ", "

 + nRightFloodplain

 + ", "

 + bedrockElevation

 + ", "

 + leftGroundWaterTable

 + ", "

 + rightGroundWaterTable

 + ", "

 + bedSedimentID

 + ", "

 + leftBankSoilID + ", " + rightBankSoilID + ")";

137

 // execute query and retrieve the generated key

 int crossSectionID = this.executeDBUpdate(query);

 mapXSIDString(crossSection, index, crossSectionID);

 // Place crossSection inside of HashMap using the db primary

key as the

 // key and a reference string for the channelModel as the

value

 Element transect = crossSection.getChild("transect");

 if (transect != null)

 {

 parseTransect(crossSectionID, transect);

 }

 }

 private void parseTransect(int crossSectionID, Element transect)

 {

 String id =

this.parseString(transect.getAttributeValue("id"));

 String query = "INSERT INTO transect (crossSectionID, id) " +

"VALUES (" + crossSectionID + ", " + id

 + ")";

 int transectID = this.executeDBUpdate(query);

 List<Element> siteList = transect.getChildren("sites");

 foreach(Element site in siteList){

 this.parseSite(null, transectID, site);

 }

 }

 private void parseReaches(int dataID, Element reach, int index)

 {

 String name =

this.parseString(reach.getChildTextTrim("name"));

 String query = "INSERT INTO reaches (dataID, name) " +

"VALUES ("

 + dataID + ", " + name + ")";

 int reachesID = this.executeDBUpdate(query);

 mapXSIDString(reach, index, reachesID);

 /*

 * reach culvertSection bridgeSection dropStructure

genericStructure

 * tributary lateralInflow

 */

138

 }

 private void parseStructuresData(int dataID, Element structure)

 {

 String query = "INSERT INTO structures_data (dataID) VALUES

(" + dataID

 + ")";

 int structuresDataID = this.executeDBUpdate(query);

 Element culverts = structure.getChild("culverts");

 List<Element> culvertSectionList = culverts

 .getChildren("culvertSection");

 for (int i = 0; i < culvertSectionList.Count; i++)

 {

 this.parseCulvertSections(structuresDataID,

 culvertSectionList[i], i);

 }

 Element bridgeSections =

structure.getChild("bridgeSections");

 List<Element> bridgeSectionList = bridgeSections

 .getChildren("bridgeSection");

 for (int i = 0; i < bridgeSectionList.Count; i++)

 {

 this.parseBridgeSections(structuresDataID,

 bridgeSectionList[i], i);

 }

 Element dropStructures =

structure.getChild("dropStructures");

 List<Element> dropStructureList = dropStructures

 .getChildren("dropStructure");

 for (int i = 0; i < dropStructureList.Count; i++)

 {

 this.parseDropStructures(structuresDataID,

 dropStructureList[i], i);

 }

 Element genericStructures =

structure.getChild("genericStructures");

 List<Element> genericStructureList = genericStructures

 .getChildren("genericStructure");

 for (int i = 0; i < genericStructureList.Count; i++)

 {

 this.parseGenericStructures(structuresDataID,

 genericStructureList[i], i);

 }

 }

139

 private void parseTributaries(int dataID, Element tributary, int

index)

 {

 String name =

this.parseString(tributary.getChildTextTrim("name"));

 String dataFile = this.parseString(tributary

 .getChildTextTrim("dataFile"));

 String crossSection = tributary

 .getChildTextTrim("crossSection");

 Int32 crossSectionID = xsidMap[crossSection];

 String query = "INSERT INTO tributaries (name, dataFile,

dataID, crossSectionID) VALUES ("

 + name

 + ", "

 + dataFile

 + ", "

 + dataID

 + ", "

 + crossSectionID + ")";

 int tributaryID = this.executeDBUpdate(query);

 mapXSIDString(tributary, index, tributaryID);

 }

 private void parseLateralInflows(int dataID, Element

lateralInflow,

 int index)

 {

 String name =

this.parseString(lateralInflow.getChildTextTrim("name"));

 String dataFile = this.parseString(lateralInflow

 .getChildTextTrim("dataFile"));

 String upCrossSection = lateralInflow

 .getChildTextTrim("upCrossSection");

 Int32 upCrossSectionID = xsidMap[upCrossSection];

 String downCrossSection = lateralInflow

 .getChildTextTrim("downCrossSection");

 Int32 downCrossSectionID = xsidMap[downCrossSection];

 String query = "INSERT INTO lateralinflow (name, dataFile,

upCrossSectionID, downCrossSectionID) VALUES ("

 + name

 + ", "

 + dataFile

 + ", "

140

 + upCrossSectionID

 + ", "

 + downCrossSectionID + ")";

 int lateralInflowID = this.executeDBUpdate(query);

 mapXSIDString(lateralInflow, index, lateralInflowID);

 }

 private void parseCulvertSections(int structuresDataID,

 Element culvertSection, int index)

 {

 int structureID = this.parseStructure(culvertSection);

 Int32? chartNumber =

this.parseInt(culvertSection.getChildTextTrim("chartNumber"));

 Int32? scaleNumber =

this.parseInt(culvertSection.getChildTextTrim("scaleNumber"));

 Int32? numberOfBarrels =

this.parseInt(culvertSection.getChildTextTrim("numberOfBarrels"));

 Single? span =

this.parseSingle(culvertSection.getChildTextTrim("span"));

 Single? rise =

this.parseSingle(culvertSection.getChildTextTrim("rise"));

 Single? entranceLossCoefficient =

this.parseSingle(culvertSection.getChildTextTrim("entranceLossCoefficient"));

 String query = "INSERT INTO culvertSections

(structures_dataID, structureID, chartNumber, scaleNumber, numberOfBarrels,

span, rise) VALUES (" +

 structuresDataID + ", " + structureID + ", " + chartNumber +

", " + scaleNumber + ", " + numberOfBarrels + ", " + span + ", " + rise +

")";

 int culvertSectionID = this.executeDBUpdate(query);

 this.mapXSIDString(culvertSection, index, culvertSectionID);

 }

 private void parseBridgeSections(int structuresDataID,

 Element bridgeSection, int index)

 {

 int structureID = this.parseStructure(bridgeSection);

 Single? width =

this.parseSingle(bridgeSection.getChildTextTrim("width"));

 Single? sideslope =

this.parseSingle(bridgeSection.getChildTextTrim("sideslope"));

 Single? pierWidth =

this.parseSingle(bridgeSection.getChildTextTrim("pierWidth"));

 Single? pierShapeCoefficient =

this.parseSingle(bridgeSection.getChildTextTrim("pierShapeCoefficient"));

141

 Single? pierLossCoefficient =

this.parseSingle(bridgeSection.getChildTextTrim("pierLossCoefficient"));

 String query = "INSERT INTO bridgeSections

(structures_dataID, structureID, width, sideslope, pierWidth,

pierShapeCoefficient, pierLossCoefficient) VALUES (" +

 structuresDataID + ", " + structureID + ", " + width + ", " +

sideslope + ", " + pierWidth + ", " + pierShapeCoefficient + ", " +

pierLossCoefficient + ")";

 int bridgeSectionID = this.executeDBUpdate(query);

 this.mapXSIDString(bridgeSection, index, bridgeSectionID);

 }

 private void parseDropStructures(int structuresDataID,

 Element dropStructure, int index)

 {

 int structureID = this.parseStructure(dropStructure);

 Single? width =

this.parseSingle(dropStructure.getChildTextTrim("width"));

 Single? sideslope =

this.parseSingle(dropStructure.getChildTextTrim("sideslope"));

 Single? energyLossCoefficient =

this.parseSingle(dropStructure.getChildTextTrim("energyLossCoefficient"));

 String query = "INSERT INTO dropStructures

(structures_dataID, structureID, width, sideslope, energyLossCoefficient)

VALUES (" +

 structuresDataID + ", " + structureID + ", " + width + ", " +

sideslope + ", " + energyLossCoefficient + ")";

 int dropStructureID = this.executeDBUpdate(query);

 this.mapXSIDString(dropStructure, index, dropStructureID);

 }

 private void parseGenericStructures(int structuresDataID,

 Element genericStructure, int index)

 {

 int structureID = this.parseStructure(genericStructure);

 Single? width =

this.parseSingle(genericStructure.getChildTextTrim("width"));

 Single? sideslope =

this.parseSingle(genericStructure.getChildTextTrim("sideslope"));

 Single? energyLossCoefficient =

this.parseSingle(genericStructure.getChildTextTrim("energyLossCoefficient"));

142

 Element ratingCurve =

genericStructure.getChild("ratingCurve");

 int ratingCurveID = this.parseRatingCurve(ratingCurve);

 String query = "INSERT INTO genericStructures

(structures_dataID, structureID, width, sideslope, energyLossCoefficient,

ratingCurveID) VALUES (" +

 structuresDataID + ", " + structureID + ", " + width + ", " +

sideslope + ", " + energyLossCoefficient + ", " + ratingCurveID + ")";

 int genericStructureID = this.executeDBUpdate(query);

 this.mapXSIDString(genericStructure, index,

genericStructureID);

 }

 private int parseRatingCurve(Element ratingCurve)

 {

 String query = "INSERT INTO ratingCurves() values()";

 int ratingCurveID = this.executeDBUpdate(query);

 //TODO: ratingCurveSegments

 return ratingCurveID;

 }

 //this method actually returns the key generated because other

elements extend from this element

 private int parseStructure(Element structureType)

 {

 String name =

this.parseString(structureType.getChildTextTrim("name"));

 Single? station = this.parseSingle(structureType

 .getChildTextTrim("dataFile"));

 Single? manningN = this.parseSingle(structureType

 .getChildTextTrim("manningN"));

 Single? length = this

.parseSingle(structureType.getChildTextTrim("length"));

 Single? upstreamInvert = this.parseSingle(structureType

 .getChildTextTrim("upstreamInvert"));

 Single? downstreamInvert = this.parseSingle(structureType

 .getChildTextTrim("downstreamInvert"));

 Single? upstreamDrop = this.parseSingle(structureType

 .getChildTextTrim("upstreamDrop"));

 Single? downstreamDrop = this.parseSingle(structureType

 .getChildTextTrim("downstreamDrop"));

143

 String query = "INSERT INTO structure (name, station,

manningN, length, upstreamInvert, downstreamInvert, upstreamDrop,

downstreamDrop) VALUES ("

 + name

 + ", "

 + station

 + ", "

 + manningN

 + ", "

 + length

 + ", "

 + upstreamInvert

 + ", "

 + downstreamInvert

 + ", "

 + upstreamDrop

 + ", "

 + downstreamDrop

 + ")";

 int structureID = this.executeDBUpdate(query);

 return structureID;

 }

 private void parseRunControlData(int runDataID, Element

runControlData)

 {

 // TODO Auto-generated method stub

 String name =

this.parseString(runControlData.getChildTextTrim("name"));

 Boolean? doSedimentTransport =

this.parseBoolean(runControlData.getChildTextTrim("doSedimentTransport"));

 Boolean? doToeErosion =

this.parseBoolean(runControlData.getChildTextTrim("doToeErosion"));

 Boolean? doBankStability =

this.parseBoolean(runControlData.getChildTextTrim("doBankStability"));

 String simulationStartTime =

this.parseString(runControlData.getChildTextTrim("simulationStartTime"));

 String simulationEndTime =

this.parseString(runControlData.getChildTextTrim("simulationEndTime"));

 Int32? initialTimeStep =

this.parseInt(runControlData.getChildTextTrim("initialTimeStep"));

 String upstreamBC =

this.parseString(runControlData.getChildTextTrim("upstreamBC"));

 String downstreamBoundaryCondition =

this.parseString(runControlData.getChildTextTrim("downstreamBoundaryCondition

"));

144

 String downstreamWaterLevelFile =

this.parseString(runControlData.getChildTextTrim("downstreamWaterLevelFile"))

;

 String washLoadSizeClass =

this.parseString(runControlData.getChildTextTrim("washLoadSizeClass"));

 Single? cohesiveSiltClayFraction =

this.parseSingle(runControlData.getChildTextTrim("cohesiveSiltClayFraction"))

;

 Single? upstreamSedimentWeightCoefficient =

this.parseSingle(runControlData.getChildTextTrim("upstreamSedimentWeightCoeff

icient"));

 String upstreamSedimentBoundaryCondition =

this.parseString(runControlData.getChildTextTrim("upstreamSedimentBoundaryCon

dition"));

 Single? downstreamGradeControl =

this.parseSingle(runControlData.getChildTextTrim("downstreamGradeControl"));

 Int32? processesAnalyzedByBankStability =

this.parseInt(runControlData.getChildTextTrim("processesAnalyzedByBankStabili

ty"));

 Int32? numberOfShearEmergences =

this.parseInt(runControlData.getChildTextTrim("numberOfShearEmergences"));

 Single? tensionCrackDepth =

this.parseSingle(runControlData.getChildTextTrim("tensionCrackDepth"));

 Int32? numberOfSkippedTimeSteps =

this.parseInt(runControlData.getChildTextTrim("numberOfSkippedTimeSteps"));

 Single? blockRetentionTime =

this.parseSingle(runControlData.getChildTextTrim("blockRetentionTime"));

 Boolean? doGroundWaterDynamics =

this.parseBoolean(runControlData.getChildTextTrim("doGroundWaterDynamics"));

 String query = "INSERT INTO runControlData (runDataID, name,

doSedimentTransport, doToeErosion, doBankStability, simulationStartTime,

simulationEndTime, initialTimeStep, upstreamBC, downstreamBoundaryCondition,

downstreamWaterLevelFile, washLoadSizeClass, cohesiveSiltClayFraction,

upstreamSedimentWeightCoeff, upstreamSedimentBoundaryCond,

downstreamGradeControl, processesAnalyzedByBankStability,

numberOfShearEmergences, tensionCrackDepth, numberOfSkippedTimeSteps,

blockRetentionTime, doGroundWaterDynamics) VALUES (" + runDataID + ", " +

name + ", " + doSedimentTransport + ", " + doToeErosion + ", " +

doBankStability + ", " + simulationStartTime + ", " + simulationEndTime + ",

" + initialTimeStep + ", " + upstreamBC + ", " + downstreamBoundaryCondition

+ ", " + downstreamWaterLevelFile + ", " + washLoadSizeClass + ", " +

cohesiveSiltClayFraction + ", " + upstreamSedimentWeightCoefficient + ", " +

upstreamSedimentBoundaryCondition + ", " + downstreamGradeControl + ", " +

processesAnalyzedByBankStability + ", " + numberOfShearEmergences + ", " +

tensionCrackDepth + ", " + numberOfSkippedTimeSteps + ", " +

blockRetentionTime + ", " + doGroundWaterDynamics + ")";

 //Console.WriteLine(query);

 int runControlDataID = this.executeDBUpdate(query);

 /* TODO

 * ratingCurve

 * sedimentFraction

145

 *

 *

 *

 */

 }

 private void parseOutputOptions(int runDataID, Element

outputOptions)

 {

 // TODO Auto-generated method stub

 }

 private void parseScenarios(int runDataID, Element scenario)

 {

 // TODO Auto-generated method stub

 }

 private int executeDBUpdate(String query)

 {

 //Only insert if the user requests this

 if (!performInserts)

 {

 return -1;

 }

 //Console.WriteLine("Query before replace - " + query);

 //REPLACE EMPTY STRINGS WITH NULL keyword

 //This means that we have to be very careful with spacing in

database queries

 query = query.Replace("(,", "(NULL,");

 query = query.Replace(" ,", " NULL,");

 query = query.Replace(")", " NULL)");

 //Console.WriteLine("Executing - " + query);

 int autoIncKey = -1;

 try

 {

 MySqlCommand sqlComm = new MySqlCommand(query + "; select

last_insert_id();", conn);

 autoIncKey = Convert.ToInt32(sqlComm.ExecuteScalar());

 return autoIncKey;

 }

 catch (Exception e)

 {

 Console.WriteLine(query + "\n" + e.Message);

 throw new Exception(query + "\n" + e.Message);

 }

146

 }

 // Construct the reference string for a given element to map and

maintain

 // many to many foreign key relationships

 // Parameter element is element reference string is being

constructed for

 // Index is location of element within parent tag

 private void mapXSIDString(Element element, int index, int

dbKeyValue)

 {

 // Get reference string to maintain proper map of foreign

keys

 String referenceKey = "." + index;

 while (element != null)

 {

 referenceKey = "/@" + element.getName() + referenceKey;

 element = element.getParentElement();

 }

 referenceKey = "#/" + referenceKey;

 //Console.WriteLine(referenceKey);

 xsidMap.Add(referenceKey, dbKeyValue);

 }

 private Int32? parseInt(String value)

 {

 if (value == null)

 return null;

 else

 return Int32.Parse(value);

 }

 private Single? parseSingle(String value)

 {

 if (value == null)

 return null;

 else

 return Single.Parse(value);

 }

 private String parseString(String value)

 {

 if (value == null)

 return null;

 else

 return "'" + value + "'";

 }

 private Boolean? parseBoolean(String value)

147

 {

 if (value == null)

 return null;

 else

 return Boolean.Parse(value);

 }

 private class XMLLoader

 {

 private XmlDocument xmlDoc;

 public XMLLoader()

 {

 xmlDoc = new XmlDocument();

 }

 public Document build(String xmlFileName)

 {

 //FileStream input = new FileStream(xmlFileName,

FileMode.Open);

 xmlDoc.Load(xmlFileName);

 return

 new Document(xmlDoc);

 }

 }

 private class Document

 {

 private XmlDocument xmlDoc;

 public Document(XmlDocument xmlDoc)

 {

 this.xmlDoc = xmlDoc;

 }

 public Element getRootElement()

 {

 return new Element(xmlDoc.DocumentElement);

 }

 }

 private class Element

 {

 private XmlElement xmlElement;

 public Element(XmlElement xmlElement)

 {

 this.xmlElement = xmlElement;

 }

 public String getName()

148

 {

 return xmlElement.LocalName;

 }

 public Element getParentElement()

 {

 if (xmlElement.ParentNode == null ||

xmlElement.ParentNode.GetType().ToString().Equals("System.Xml.XmlDocument"))

 return null;

 else

 return new

Element((XmlElement)xmlElement.ParentNode);

 }

 public List<Element> getChildren(String name)

 {

 List<Element> childList = new List<Element>();

 XmlNodeList childNodeList =

xmlElement.GetElementsByTagName(name);

 IEnumerator iterator = childNodeList.GetEnumerator();

 while (iterator.MoveNext())

 {

 childList.Add(new

Element((XmlElement)iterator.Current));

 }

 return childList;

 }

 public String getTextTrim()

 {

 return xmlElement.InnerText.Trim();

 }

 public String getText()

 {

 return xmlElement.InnerText;

 }

 public String getChildText(String name)

 {

 IEnumerator elements =

xmlElement.GetElementsByTagName(name).GetEnumerator();

 elements.MoveNext();

 if (elements.Current == null)

 return null;

 else

 return ((XmlElement)elements.Current).InnerText;

149

 //return

((XmlElement)(xmlElement.GetElementsByTagName(name).GetEnumerator().Current))

.Value;

 }

 public String getChildTextTrim(String name)

 {

 IEnumerator elements =

xmlElement.GetElementsByTagName(name).GetEnumerator();

 elements.MoveNext();

 if (elements.Current == null)

 return null;

 else

 return

((XmlElement)elements.Current).InnerText.Trim();

 //return

((XmlElement)(xmlElement.GetElementsByTagName(name).GetEnumerator().Current))

.Value.Trim();

 }

 public Element getChild(String name)

 {

 IEnumerator elements =

xmlElement.GetElementsByTagName(name).GetEnumerator();

 elements.MoveNext();

 if (elements.Current == null)

 return null;

 else

 return new Element((XmlElement)elements.Current);

 //return new

Element((XmlElement)xmlElement.GetElementsByTagName(name).GetEnumerator().Cur

rent);

 }

 public String getAttributeValue(String name)

 {

 return xmlElement.GetAttribute(name);

 }

 }

 }

}

150

DEMFILEPARSER

Written by Chenchutta Denaye Cross Jackson

Version 1

Copy write July 2012

The DEM file parser extracts data from the DEM file. The DEM file format is based on the

ERSI file format and contains six fields in its header.

The DEM file contains z (elevation) values. From the DEM file the x (easting) and y

(northing) values are determined by the z value’s position in the DEM file.

The idea is to use this information from the raw HeightMap to create a virtual reality

terrain.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Collections;

using System.IO;

using System.Drawing;

using System.Windows.Forms;

using System.Drawing.Imaging;

namespace Concepts3D

{

 class GridFileParser

 {

 private int ncols = 0;

 private int nrows = 0;

 private int cellSize = 0;

 private Single xllcorner = 0.0f;

 private Single yllcorner = 0.0f;

 private Single NODATAVALUE = 0.0f;

 private Single highestElevation = -1;

 private Single lowestElevation = -1;

 private int datacols = 0;

 private int datarows = 0;

 private Single[,] elevationData = null;

 private List<Point3D> pointList = new List<Point3D>();

 private Hashtable yAxisMap = new Hashtable();

 private Hashtable xAxisMap = new Hashtable();

 private Single elevationStartRange = -1;

 public GridFileParser(String inputFile)

 {

 parse(inputFile);

151

 }

 public void parse(String inputFile)

 {

 // TODO Auto-generated method stub

 String[] line;

 if (inputFile == null) {

 throw new Exception("Input file is null");

 }

 StreamReader reader = new StreamReader(inputFile);

 if (reader.Peek() > -1) {

 line = reader.ReadLine().Split(new char[] {' '},

StringSplitOptions.RemoveEmptyEntries);//.Split(" +");

 ncols = Int32.Parse(line[1]);

 }

 if (reader.Peek() > -1)

 {

 line = reader.ReadLine().Split(new char[] {' '},

StringSplitOptions.RemoveEmptyEntries);

 nrows = Int32.Parse(line[1]);

 }

 if (reader.Peek() > -1)

 {

 line = reader.ReadLine().Split(new char[] {' '},

StringSplitOptions.RemoveEmptyEntries);

 xllcorner = Single.Parse(line[1]);

 }

 if (reader.Peek() > -1)

 {

 line = reader.ReadLine().Split(new char[] {' '},

StringSplitOptions.RemoveEmptyEntries);

 yllcorner = Single.Parse(line[1]);

 }

 if (reader.Peek() > -1)

 {

 line = reader.ReadLine().Split(new char[] {' '},

StringSplitOptions.RemoveEmptyEntries);

 cellSize = Int32.Parse(line[1]);

 }

 if (reader.Peek() > -1)

 {

 line = reader.ReadLine().Split(new char[] {' '},

StringSplitOptions.RemoveEmptyEntries);

 NODATAVALUE = Single.Parse(line[1]);

 }

 elevationData = new Single[nrows, ncols];

 Console.WriteLine("ncols: " + ncols + "\nnrows: " + nrows

 + "\nxllcorner: " + xllcorner + "\nyllcorner: " +

yllcorner

152

 + "\ncellsize: " + cellSize);

 Single x = xllcorner - cellSize;

 Single y = yllcorner + nrows - cellSize;

 Single z = 0.0f;

 int count = 0;

 //Single[] rowMap = new Single[nrows]; //keeps track of row

order so it can easily be reversed

 //int rowMapIndex = 0;

 Single topMostRow = -1.0f;

 while (reader.Peek() > -1)

 {

 line = reader.ReadLine().Split(new char[] {' '},

StringSplitOptions.RemoveEmptyEntries);

 for (int i = 0; i < line.Length; i++) {

 x = x + cellSize;

 if (x % (ncols + xllcorner) == 0) {

 x = xllcorner;

 y = y - cellSize;

 }

 if (count == 0){

 topMostRow = y;

 }

 z = Single.Parse(line[i]);

 elevationData[(int)(count / ncols), (int)(count % ncols)]

= z;

 if (lowestElevation == -1 && z != -9999)

 lowestElevation = z;

 else if (z < lowestElevation && z != -9999)

 lowestElevation = z;

 if (z > highestElevation)

 highestElevation = z;

 //rowMap[rowMapIndex++] = y;

 Point3D point = new Point3D(x, y, z);

 pointList.Add(point);

 if (!yAxisMap.ContainsKey((int)y))

 {

 yAxisMap.Add((int)y, (int)(count / ncols));

 }

 if (!xAxisMap.ContainsKey((int)x))

153

 {

 xAxisMap.Add((int)x, (int)(count % ncols));

 }

 //points[y,x] = z;

 count++;

 //Console.WriteLine(point.toString());

 }

 }

 reader.Close();

 datarows = nrows;

 datacols = ncols;

 //PERFORM INTERPOLATION IF REQUESTED OR NEEDED

 if (cellSize >= 2)

 {

 InterpolationSelectionForm form = new

InterpolationSelectionForm(cellSize);

 form.ShowDialog();

 if (! form.interpolationTechnique.Equals("NONE"))

 {

 datarows = (nrows - 1) * cellSize + 1;

 datacols = (ncols - 1) * cellSize + 1;

 }

 if (form.interpolationTechnique.Equals("BILINEAR"))

 {

 performBilinearInterpolation();

 }

 else if (form.interpolationTechnique.Equals("BARYCENTRIC"))

 {

 performBarycentricInterpolation();

 }

 }

 }

 //Values must be read in starting at the last row of data values

because of different coordinate mapping

 //elevationStartRange indicates whether or not the range of elevation

values should be modified for better viewing

 //A value of 25 indicates that the range should start at 25, so if

values are actually 75-150 they would instead be

 //25-100

 //The lower the elevationStartRange, the higher water will appear

 public void createRaw32File(Rectangle selectedRegion, String

raw32FileName, Single elevationStartRange)

 {

154

 this.elevationStartRange = elevationStartRange;

 if (selectedRegion.Top < 0 || selectedRegion.Left < 0)

 {

 selectedRegion = new Rectangle(0, 0, selectedRegion.Right,

selectedRegion.Bottom);

 }

 try

 {

 FileInfo file = new FileInfo(raw32FileName);

 FileStream s = file.Open(FileMode.Create, FileAccess.Write);

 BinaryWriter bs = new BinaryWriter(s);

 Single heightValue = -1.0f;

 Bitmap testImage2 = new Bitmap(selectedRegion.Width,

selectedRegion.Height);

 int bitMapX2 = -1;

 int bitMapY2 = -1;

 for (int y = selectedRegion.Top; y < selectedRegion.Top +

selectedRegion.Height; y++)

 {

 bitMapY2++;

 bitMapX2 = -1;

 for (int x = selectedRegion.Left; x < selectedRegion.Left

+ selectedRegion.Width; x++)

 {

 //Console.WriteLine("[" + x + ", " + y + "]");

 heightValue = elevationData[y, x];

 if (heightValue > 7000)

 {

 Console.WriteLine(heightValue);

 }

 if (elevationStartRange != -1)

 heightValue = heightValue - lowestElevation +

elevationStartRange;

 bs.Write(heightValue);

 bitMapX2++;

 if (heightValue < 0)

 {

 heightValue = 0;

 }

 testImage2.SetPixel(bitMapX2, bitMapY2,

Color.FromArgb((int)(heightValue), (int)(heightValue), (int)(heightValue)));

155

 }

 }

 //testImage2.Save(raw32FileName);

 bs.Close();

 s.Close();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 }

 }

 public Bitmap getBitmap()

 {

 Single imageRange = (highestElevation - lowestElevation);//

*METERSCALEUP;

 Console.WriteLine("Highest elevation is " + highestElevation);

 Console.WriteLine("Lowest elevation is " + lowestElevation);

 Console.WriteLine("Image range is " + imageRange);

 Single heightMapRange = 255;

 Single heightMapRatio = heightMapRange / imageRange;

 Bitmap image1 = null;

 //try

 //{

 image1 = new Bitmap(datacols, datarows);

 int elevation = -1;

 Single value = -1.0f;

 for (int y = 0; y < datarows; y++)

 {

 for (int x = 0; x < datacols; x++)

 {

 value = elevationData[y, x];

 if (value >= lowestElevation && value <=

highestElevation) //We attempt to weed out the NO DATA VALUES and possible

interpolated values influenced by the NO DATA VALUES

 {

 elevation = (Int32)((value - lowestElevation) *

heightMapRatio);

 //int imageX = (Int32)(point.getX() - xllcorner);

 //int imageY = (Int32)(point.getY() - yllcorner);

 Color newColor = Color.FromArgb(elevation, elevation,

elevation);

156

 //if (elevation > 15)

 //{

 // Console.WriteLine(elevation);

 //}

 image1.SetPixel(x, y, newColor);

 }

 }

 }

 return image1;

 }

 public void mergeSecondaryData(List<Point3D> secondaryPointList)

 {

 Single elevationValue = -1;

 int zeroCount = 0;

 foreach (Point3D point in secondaryPointList)

 {

 elevationValue = point.getZ();// -lowestElevation +

elevationStartRange;

 if (elevationValue != 0)

 {

 if (elevationValue < lowestElevation)

 {

 lowestElevation = elevationValue;

 }

 if (elevationValue > highestElevation)

 {

 highestElevation = elevationValue;

 }

 }

 else

 {

 zeroCount++;

 Console.WriteLine("(" + (int)point.getX() + ", " +

(int)point.getY() + ")");

 }

 int y = (int)yAxisMap[(int)point.getY()];

 int x = (int)xAxisMap[(int)point.getX()];

 elevationData[y, x] = elevationValue;

 }

 Console.WriteLine("There was a total of " + zeroCount + " zero

values found");

 }

157

 private void performBilinearInterpolation()

 {

 Single[,] interpolatedData = new Single[datarows, datacols];

 //two outer loops are for original data

 Single x0 = -1, y0 = -1, y1 = -1, x1 = -1;

 Single height00 = -1, height01 = -1, height10 = -1, height11 = -

1;

 for (int datay = 0; datay < nrows - 1; datay++)

 {

 //y1 = y0 + 1;

 for (int datax = 0; datax < ncols - 1; datax++)

 {

 height00 = elevationData[datay, datax];

 height01 = elevationData[datay + 1, datax];

 height10 = elevationData[datay, datax + 1];

 height11 = elevationData[datay + 1, datax + 1];

 //two inner loops are for new created data

 //an extra column and row of data will be interpolated

even though it should already have its values

 //this might need to be fixed

 y0 = datay * cellSize;

 x0 = datax * cellSize;

 y1 = (datay + 1) * cellSize;

 x1 = (datax + 1) * cellSize;

 for (int y = (int)y0; y < y1; y++)

 {

 for (int x = (int)x0; x < x1; x++)

 {

 Single sum1 = (((x1 - x) * (y1 - y)) / ((x1 -

x0) * (y1 - y0))) * height00;

 Single sum2 = (((x - x0) * (y1 - y)) / ((x1 -

x0) * (y1 - y0))) * height10;

 Single sum3 = (((x1 - x) * (y - y0)) / ((x1 -

x0) * (y1 - y0))) * height01;

 Single sum4 = (((x - x0) * (y - y0)) / ((x1 -

x0) * (y1 - y0))) * height11;

 Single value = sum1 + sum2 + sum3 + sum4;

 interpolatedData[y, x] = value;

 }

 }

 }

158

 }

 elevationData = interpolatedData;

 }

 private void performBarycentricInterpolation()

 {

 Single[,] interpolatedData = new Single[datarows, datacols];

 //two outer loops are for original data

 Single x0 = -1, y0 = -1, y1 = -1, x1 = -1;

 //Single height00 = -1, height01 = -1, height10 = -1, height11 =

-1;

 for (int datay = 0; datay < nrows - 1; datay++)

 {

 //y1 = y0 + 1;

 for (int datax = 0; datax < ncols - 1; datax++)

 {

 /*

 * a--------------c

 * | \ |

 * | \ |

 * | \ V |

 * | \ |

 * b--------------d

 */

 Single heighta = -1, heightb = -1, heightc = -1, heightd

= -1;

 heighta = elevationData[datay, datax];

 heightb = elevationData[datay + 1, datax];

 heightc = elevationData[datay, datax + 1];

 heightd = elevationData[datay + 1, datax + 1];

 //two inner loops are for new created data

 //an extra column and row of data will be interpolated

even though it should already have its values

 //this might need to be fixed

 y0 = datay * cellSize;

 x0 = datax * cellSize;

 y1 = (datay + 1) * cellSize;

 x1 = (datax + 1) * cellSize;

 //This should only need to be calculated once since the

points for a regular grid

 Single entireTriangleArea = Math.Abs((x0 * (y1 - y1) + x0

* (y1 - y0) + x1 * (y0 - y1)) / 2);

 int xincrease = 1;

 for (int y = (int)y0; y < y1; y++)

159

 {

 for (int x = (int)x0; x < x0 + xincrease; x++)

 {

 /*

 * a--------------c

 * | \ |

 * | \ |

 * | \ V |

 * | \ |

 * b--------------d

 */

 //Get areas of each individual triangle opposite

the corresponding vertex (i.e. Ab = area of triangle opposite vertex b)

 Single Aa = Math.Abs((x * (y1 - y1) + x0 * (y1 -

y) + x1 * (y - y1)) / 2);

 Single Ab = Math.Abs((x0 * (y - y1) + x * (y1 -

y0) + x1 * (y0 - y)) / 2);

 Single Ad = Math.Abs((x0 * (y1 - y) + x0 * (y -

y0) + x * (y0 - y1)) / 2);

 Single value = ((Aa * heighta) + (Ab * heightb)

+ (Ad * heightd)) / entireTriangleArea;

 interpolatedData[y, x] = value;

 }

 xincrease++;

 }

 int xstart = (int)x0;

 for (int y = (int)y0; y < y1; y++)

 {

 for (int x = xstart; x < x1; x++)

 {

 /*

 * a--------------c

 * | \ |

 * | \ |

 * | \ V |

 * | \ |

 * b--------------d

 */

 //Get areas of each individual triangle opposite

the corresponding vertex (i.e. Ab = area of triangle opposite vertex b)

 Single Aa = Math.Abs((x * (y0 - y1) + x1 * (y1 -

y) + x1 * (y - y0)) / 2);

 Single Ac = Math.Abs((x0 * (y - y1) + x * (y1 -

y0) + x1 * (y0 - y)) / 2);

 Single Ad = Math.Abs((x0 * (y - y0) + x * (y0 -

y0) + x1 * (y0 - y)) / 2);

 Single value = ((Aa * heighta) + (Ac * heightc) +

(Ad * heightd)) / entireTriangleArea;

160

 interpolatedData[y, x] = value;

 //Console.WriteLine("(" + x + ", " + y + ")");

 }

 xstart++;

 }

 }

 }

 elevationData = interpolatedData;

 }

 private void performTriangulatedInterpolation()

 {

 Single[,] interpolatedData = new Single[datarows, datacols];

 //two outer loops are for original data

 Single x0 = -1, y0 = -1, x1 = -1, y1 = -1, x2 = -1, y2 = -1;

 Single heightA = -1, heightB = -1, heightC = -1;//, height11 = -

1;

 for (int datay = 0; datay < nrows - 1; datay++)

 {

 //y1 = y0 + 1;

 for (int datax = 0; datax < ncols - 1; datax++)

 {

 Single determinant;

 //two inner loops are for new created data

 //an extra column and row of data will be interpolated

even though it should already have its values

 //this might need to be fixed

 y0 = datay * cellSize;

 x0 = datax * cellSize;

 y1 = (datay + 1) * cellSize;

 x1 = (datax + 1) * cellSize;

 y2 = (datay + 1) * cellSize;

 x2 = datax * cellSize;

 determinant = (x0 * y1) - (x1 * y0) + (x1 * y2) - (x2 *

y1) + (x2 * y0) - (x0 * y2);

 heightA = elevationData[datay, datax];

 heightB = elevationData[datay + 1, datax + 1];

 heightC = elevationData[datay + 1, datax];

 //height11 = elevationData[datay + 1, datax + 1];

161

 int xFactor = 0;

 for (int y = (int)y0; y < y1; y++)

 {

 xFactor++;

 for (int x = (int)x0; x < x0 + xFactor; x++)

 {

 Single A = ((y1-y2)*heightA+(y2-

y0)*heightB+(y0-y1)*heightC) / determinant;

 Single B = ((x2-x1)*heightA+(x0-

x2)*heightB+(x1-x0)*heightC) / determinant;

 Single C = ((x1*y2-x2*y1)*heightA+(x2*y0-

x0*y2)*heightB+(x0*y1-x1*y0)*heightC) / determinant;

 Single value = (A * x) + (B * y) + C;

 interpolatedData[y, x] = value;

 }

 }

 y2 = datay * cellSize;

 x2 = (datax + 1) * cellSize;

 heightA = elevationData[datay, datax];

 heightB = elevationData[datay + 1, datax + 1];

 heightC = elevationData[datay, datax + 1];

 //height11 = elevationData[datay + 1, datax + 1];

 xFactor = cellSize;

 for (int y = (int)y0; y < y1; y++)

 {

 xFactor--;

 for (int x = (int)x0 + xFactor; x > 0; x--)

 {

 //Single A = ((y1 - y2) * heightA + (y2 - y0) *

heightB + (y0 - y1) * heightC) / determinant;

 //Single B = ((x2 - x1) * heightA + (x0 - x2) *

heightB + (x1 - x0) * heightC) / determinant;

 //Single C = ((x1 * y2 - x2 * y1) * heightA + (x2

* y0 - x0 * y2) * heightB + (x0 * y1 - x1 * y0) * heightC) / determinant;

 //Single value = (A * x) + (B * y) + C;

 Single A = ((y1 - y2) * heightA + (y2 - y0) *

heightB + (y0 - y1) * heightC) / determinant;

 Single B = ((x2 - x1) * heightA + (x0 - x2) *

heightB + (x1 - x0) * heightC) / determinant;

 Single C = ((x1 * y2 - x2 * y1) * heightA + (x2 *

y0 - x0 * y2) * heightB + (x0 * y1 - x1 * y0) * heightC) / determinant;

 Single value = (A * x) + (B * y) + C;

 interpolatedData[y, x] = value;

162

 }

 }

 }

 }

 elevationData = interpolatedData;

 }

 public List<Point3D> get3DPointList()

 {

 return this.pointList;

 }

 }

}

163

X-SECTIONPARSER

Written by: Chenchutta Cross Jackson

Copy write July 2012

Version 1

The X-Section parser component starts by reading the file and extracting each value in the

line of the comma separated file. Once this data is extracted, it is stored in a list of a user

defined Point3D objects. The Point3D class has x (easting), y (northing), and z (elevation

properties for storing data). This data is merged with the DEM file data by looping through

the POINT3D list merging the PointList with the DEM information.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

namespace Concepts3D

{

 class CrossSectionParser

 {

 private List<Point3D> pointList = new List<Point3D>();

 public CrossSectionParser(String inputFile)

 {

 parse(inputFile);

 }

 public void parse(String inputFile)

 {

 String[] line;

 if (inputFile == null)

 {

 throw new Exception("Input file is null");

 }

 StreamReader reader = new StreamReader(inputFile);

 int lineCount = -1;

 int elevationPosition = -1; //corresponds to the column where

elevation values are

 int eastingPosition = -1; //corresponds to the column where

easting values are

 int northingPosition = -1; //corresponds to the column where

northing values are

 while (reader.Peek() > -1)

 {

164

 line = reader.ReadLine().Split(new char[]{','},

StringSplitOptions.RemoveEmptyEntries);

 if (line[0].ToUpper().Equals("END"))

 {

 break;

 }

 lineCount++;

 //READ HEADER AND FIND COLUMN NUMBER FOR EACH VALUE

 if (lineCount == 0)

 {

 for (int i = 0; i < line.Length; i++)// (String s in

line)

 {

 String s = line[i];

 if (s.ToUpper().Equals("ELEV"))

 {

 elevationPosition = i;

 }

 else if (s.ToUpper().Equals("EASTING"))

 {

 eastingPosition = i;

 }

 else if (s.ToUpper().Equals("NORTHING"))

 {

 northingPosition = i;

 }

 }

 }//end if

 else

 {

 Single x = Single.Parse(line[eastingPosition]); //easting

 Single y = Single.Parse(line[northingPosition]);

//northing

 Single z = Single.Parse(line[elevationPosition]);//

*0.3048f; //elevation

 //add to 3D point list

 Point3D point = new Point3D(x, y, z);

 pointList.Add(point);

 //Console.WriteLine(lineCount + ". " + point.toString());

 }

 }//end while

 }//end parse method

 public List<Point3D> getPointList()

 {

 return pointList;

 }

165

 }

}

CONCEPTS3D

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Drawing.Imaging;

using System.Runtime.InteropServices;

using System.Diagnostics;

using System.Threading;

namespace Concepts3D

{

 public partial class MainForm : Form

 {

 public MainForm()

 {

 InitializeComponent();

 }

 private const String OPENSIMHOME = @"\Concepts Project\opensim-

0.7.3.1\bin";

 //private IntPtr viewerHandle, openSimHandle;

 private Process viewerProcess = null;

 private Process openSimProcess = null;

 private void btnGo_Click(object sender, EventArgs e)

 {

 String primaryInputFile = txtSelectedFile.Text;

 String secondaryInputFile = txtSelectedCrossSectionFile.Text;

 DateTime oldDate = DateTime.Now;

 //PrimaryParser primaryParser;

 //Select parser based on file extension

 if(primaryInputFile.EndsWith(".txt", true, null))

 {

 GridFileParser parser = new GridFileParser(primaryInputFile);

166

 CrossSectionParser secondaryParser = null;

 if (secondaryInputFile != null &&

!secondaryInputFile.Equals(""))

 {

 secondaryParser = new

CrossSectionParser(secondaryInputFile);

parser.mergeSecondaryData(secondaryParser.getPointList());

 }

 //Create a bitmap based on loaded data

 Bitmap bmp = parser.getBitmap();

 //Save the bitmap to disk

 //String outName = "C:\\bmpout3.bmp";

 //bmp.Save(@outName, ImageFormat.Bmp);

 DateTime newDate = DateTime.Now;

 Console.WriteLine("Executed in " + (newDate -

oldDate).TotalMilliseconds + "ms");

 //Load the bitmap into the image viewer so user can select

the region for the raw data file

 ImageViewer viewer = new ImageViewer(bmp);

 viewer.ShowDialog();

 //Get user selected region from viewer

 Rectangle selectedRegion = viewer.getSelectedRegion();

 //Create raw file data, we start the range at a number based

on the water level being 20 meters

 try

 {

 parser.createRaw32File(selectedRegion, OPENSIMHOME +

@"\OUTPUT.f32", 5.0f);

 MessageBox.Show("RAW32 Heightmap File Created!");

 }

 catch (Exception ex)

 {

 throw ex;

 }

 }

 else if (primaryInputFile.EndsWith(".xml", true, null))

 {

 ConceptsXMLParser parser = new

ConceptsXMLParser(primaryInputFile);

 }

 else

 {

 MessageBox.Show("The file extension is not supported.");

167

 }

 }

 private void enableCrossSectionSelection(Boolean enable){

 if (enable)

 {

 lblCrossSection.Enabled = true;

 txtSelectedCrossSectionFile.Enabled = true;

 btnCrossSectionBrowse.Enabled = true;

 }

 else

 {

 lblCrossSection.Enabled = false;

 txtSelectedCrossSectionFile.Text = "";

 txtSelectedCrossSectionFile.Enabled = false;

 btnCrossSectionBrowse.Enabled = false;

 }

 }

 private void btnBrowse_Click(object sender, EventArgs e)

 {

 openFileDialog1.Title = "Please select a DEM file or CONCEPTS XML

file";

 openFileDialog1.FileName = @"C:\Concepts

Project\SampleData\dem_1m.txt";

 openFileDialog1.Filter = " DEM File (*.txt)|*.txt|CONCEPTS XML

File (*.xml)|*.xml";

 DialogResult dResult = this.openFileDialog1.ShowDialog();

 if (dResult == DialogResult.OK)

 {

 txtSelectedFile.Text = openFileDialog1.FileName;

 }

 btnGo.Enabled = true;

 }

 private void txtSelectedFile_TextChanged(object sender, EventArgs e)

 {

 txtSelectedCrossSectionFile.Text = "";

 if (txtSelectedFile.Text.EndsWith(".txt"))

 {

 enableCrossSectionSelection(true);

 }

 else if (txtSelectedFile.Text.EndsWith(".xml"))

 {

 enableCrossSectionSelection(false);

 }

 }

 private void btnCrossSectionBrowse_Click(object sender, EventArgs e)

168

 {

 openFileDialog2.Title = "Please select a Cross Section File";

 openFileDialog2.FileName = @"\SampleData\chat-xs-points.txt";

 openFileDialog2.Filter = " Cross Section File (*.txt)|*.txt";

 DialogResult dResult = this.openFileDialog2.ShowDialog();

 if (dResult == DialogResult.OK)

 {

 txtSelectedCrossSectionFile.Text = openFileDialog2.FileName;

 }

 btnGo.Enabled = true;

 }

 private void btnStartOpenSim_Click(object sender, EventArgs e)

 {

 String program = "cmd.exe";

 String args = "/k" + " cd " + OPENSIMHOME + " && " +

"OpenSim.exe";

 openSimProcess = Process.Start(program, args);

 Thread.Sleep(100);

 SetParent(openSimProcess.MainWindowHandle,

panelGameEngine.Handle);

 MoveWindow(openSimProcess.MainWindowHandle, 0, 0,

panelGameEngine.Width, panelGameEngine.Height, true);

 }

 private void btnOpenViewer_Click(object sender, EventArgs e)

 {

 String program = @"C:\Program Files\Imprudence\imprudence.exe";

 String args = "--settings settings_imprudence.xml";

 viewerProcess = Process.Start(program, args);

 //Thread.Sleep(20000); // Allow the process to open it's window

 //IntPtr newParent;

 viewerProcess.WaitForInputIdle();

 SetParent(viewerProcess.MainWindowHandle, panelViewer.Handle);

 MoveWindow(viewerProcess.MainWindowHandle, 0, 0,

panelViewer.Width, panelViewer.Height, true);

 //viewerProcess.WaitForInputIdle();

 }

 //WINDOWS API FUNCTIONS

 [DllImport("user32.dll")]

169

 static extern IntPtr SetParent(IntPtr hWndChild, IntPtr

hWndNewParent);

 [DllImport("user32.dll", EntryPoint = "SetWindowPos")]

 public static extern IntPtr SetWindowPos(IntPtr hWnd, int

hWndInsertAfter, int x, int Y, int cx, int cy, int wFlags);

 [DllImport("user32.dll", SetLastError = true)]

 private static extern bool MoveWindow(IntPtr hwnd, int x, int y, int

cx, int cy, bool repaint);

 [DllImport("Kernel32.dll")]

 static extern Boolean AllocConsole();

 [DllImport("user32.dll", EntryPoint = "FindWindow")]

 public static extern IntPtr FindWin(string lpClassName, string

lpWindowName);

 [DllImport("user32.dll", EntryPoint = "GetParent")]

 public static extern IntPtr GetParent(IntPtr hWnd);

 [DllImport("user32.dll", CharSet = CharSet.Auto, ExactSpelling =

true)]

 public static extern bool IsChild(IntPtr hWndParent, IntPtr hwnd);

 //Clean up processes when the main form closes

 private void MainForm_FormClosing(object sender, FormClosingEventArgs

e)

 {

 if (viewerProcess != null)

 {

 //Make sure the process is stopped and its resources are

released

 viewerProcess.CloseMainWindow();

 viewerProcess.Kill();

 viewerProcess.Dispose();

 }

 if (openSimProcess != null)

 {

 //Make sure the process is stopped and its resources are

released

 openSimProcess.CloseMainWindow();

 openSimProcess.Kill();

 openSimProcess.Dispose();

 }

 }

 }

}

170

VITA

Chenchutta Cross Jackson was born and raised in Itta Bena, MS. She is the daughter of Mary

Cross who is also of Itta Bena, MS. She attended Leflore County High School where she

graduated in 1996. In the spring of 1997 she attended Mississippi Valley State University

(MVSU) in Itta Bena, MS. While pursuing her undergraduate studies she was affiliated with

many honor programs and groups such as the MVSU collegiate cheerleading squad, Alpha

Kappa Mu, Beta Kappa Chi, National Honor Society, Who’s Who among College Students, and

the Mathematics and Computer Science Club. In May 2000 she graduated magna cum laude with

a bachelor’s degree in Computer and Information Sciences. In the summer of 2000 she had the

opportunity to work as an intern at North Carolina State University under the direction of Dr.

Dave McAllister through an Alliance for Graduate Education and the Professoriate (AGEP)

program. At North Carolina State University she worked on one of the first virtual reality

environments used to model flight simulations. In the summer of 2001 she was accepted into the

graduate program at the University of Mississippi. During the summer of 2001 she accepted the

opportunity to be a part of the Alliance for Graduate Education in Mississippi (AGEM) Summer

Research Institute for Undergraduate (SRIU) program. Through this research arm she expanded

her knowledge in the areas of computer graphics and robotics under the mentorship of Dr.

Pamela Lawhead. While attending graduate school in the fall of 2002, she was also employed at

the United States Department of Agriculture. She was employed for 12 years under the

171

supervision of Dr. Carlos Alonzo and Dr. Eddy Langendoen in the Watershed Physical Processes

Research Unit as an Information Systems Specialist.

	Virtual Worlds and Conservational Channel Evolution and Pollutant Transport Systems (Concepts)
	Recommended Citation

	Thesis/Dissertation Template

