40 research outputs found

    Behavioral patterns of individuals and groups during co-located collaboration on large, high-resolution displays

    Get PDF
    Collaboration among multiple users on large screens leads to complicated behavior patterns and group dynamics. To gain a deeper understanding of collaboration on vertical, large, high-resolution screens, this dissertation builds on previous research and gains novel insights through new observational studies. Among other things, the collected results reveal new patterns of collaborative coupling, suggest that territorial behavior is less critical than shown in previous research, and demonstrate that workspace awareness can also negatively affect the effectiveness of individual users

    Design of a Scenario-Based Immersive Experience Room

    Get PDF
    open1noopenKlopfenstein, Cuno LorenzKlopfenstein, CUNO LOREN

    Visual Perception in Simulated Reality

    Get PDF

    Enabling Collaborative Visual Analysis across Heterogeneous Devices

    Get PDF
    We are surrounded by novel device technologies emerging at an unprecedented pace. These devices are heterogeneous in nature: in large and small sizes with many input and sensing mechanisms. When many such devices are used by multiple users with a shared goal, they form a heterogeneous device ecosystem. A device ecosystem has great potential in data science to act as a natural medium for multiple analysts to make sense of data using visualization. It is essential as today's big data problems require more than a single mind or a single machine to solve them. Towards this vision, I introduce the concept of collaborative, cross-device visual analytics (C2-VA) and outline a reference model to develop user interfaces for C2-VA. This dissertation covers interaction models, coordination techniques, and software platforms to enable full stack support for C2-VA. Firstly, we connected devices to form an ecosystem using software primitives introduced in the early frameworks from this dissertation. To work in a device ecosystem, we designed multi-user interaction for visual analysis in front of large displays by finding a balance between proxemics and mid-air gestures. Extending these techniques, we considered the roles of different devices–large and small–to present a conceptual framework for utilizing multiple devices for visual analytics. When applying this framework, findings from a user study showcase flexibility in the analytic workflow and potential for generation of complex insights in device ecosystems. Beyond this, we supported coordination between multiple users in a device ecosystem by depicting the presence, attention, and data coverage of each analyst within a group. Building on these parts of the C2-VA stack, the culmination of this dissertation is a platform called Vistrates. This platform introduces a component model for modular creation of user interfaces that work across multiple devices and users. A component is an analytical primitive–a data processing method, a visualization, or an interaction technique–that is reusable, composable, and extensible. Together, components can support a complex analytical activity. On top of the component model, the support for collaboration and device ecosystems comes for granted in Vistrates. Overall, this enables the exploration of new research ideas within C2-VA

    Architectures for ubiquitous 3D on heterogeneous computing platforms

    Get PDF
    Today, a wide scope for 3D graphics applications exists, including domains such as scientific visualization, 3D-enabled web pages, and entertainment. At the same time, the devices and platforms that run and display the applications are more heterogeneous than ever. Display environments range from mobile devices to desktop systems and ultimately to distributed displays that facilitate collaborative interaction. While the capability of the client devices may vary considerably, the visualization experiences running on them should be consistent. The field of application should dictate how and on what devices users access the application, not the technical requirements to realize the 3D output. The goal of this thesis is to examine the diverse challenges involved in providing consistent and scalable visualization experiences to heterogeneous computing platforms and display setups. While we could not address the myriad of possible use cases, we developed a comprehensive set of rendering architectures in the major domains of scientific and medical visualization, web-based 3D applications, and movie virtual production. To provide the required service quality, performance, and scalability for different client devices and displays, our architectures focus on the efficient utilization and combination of the available client, server, and network resources. We present innovative solutions that incorporate methods for hybrid and distributed rendering as well as means to manage data sets and stream rendering results. We establish the browser as a promising platform for accessible and portable visualization services. We collaborated with experts from the medical field and the movie industry to evaluate the usability of our technology in real-world scenarios. The presented architectures achieve a wide coverage of display and rendering setups and at the same time share major components and concepts. Thus, they build a strong foundation for a unified system that supports a variety of use cases.Heutzutage existiert ein großer Anwendungsbereich für 3D-Grafikapplikationen wie wissenschaftliche Visualisierungen, 3D-Inhalte in Webseiten, und Unterhaltungssoftware. Gleichzeitig sind die Geräte und Plattformen, welche die Anwendungen ausführen und anzeigen, heterogener als je zuvor. Anzeigegeräte reichen von mobilen Geräten zu Desktop-Systemen bis hin zu verteilten Bildschirmumgebungen, die eine kollaborative Anwendung begünstigen. Während die Leistungsfähigkeit der Geräte stark schwanken kann, sollten die dort laufenden Visualisierungen konsistent sein. Das Anwendungsfeld sollte bestimmen, wie und auf welchem Gerät Benutzer auf die Anwendung zugreifen, nicht die technischen Voraussetzungen zur Erzeugung der 3D-Grafik. Das Ziel dieser Thesis ist es, die diversen Herausforderungen zu untersuchen, die bei der Bereitstellung von konsistenten und skalierbaren Visualisierungsanwendungen auf heterogenen Plattformen eine Rolle spielen. Während wir nicht die Vielzahl an möglichen Anwendungsfällen abdecken konnten, haben wir eine repräsentative Auswahl an Rendering-Architekturen in den Kernbereichen wissenschaftliche Visualisierung, web-basierte 3D-Anwendungen, und virtuelle Filmproduktion entwickelt. Um die geforderte Qualität, Leistung, und Skalierbarkeit für verschiedene Client-Geräte und -Anzeigen zu gewährleisten, fokussieren sich unsere Architekturen auf die effiziente Nutzung und Kombination der verfügbaren Client-, Server-, und Netzwerkressourcen. Wir präsentieren innovative Lösungen, die hybrides und verteiltes Rendering als auch das Verwalten der Datensätze und Streaming der 3D-Ausgabe umfassen. Wir etablieren den Web-Browser als vielversprechende Plattform für zugängliche und portierbare Visualisierungsdienste. Um die Verwendbarkeit unserer Technologie in realitätsnahen Szenarien zu testen, haben wir mit Experten aus der Medizin und Filmindustrie zusammengearbeitet. Unsere Architekturen erreichen eine umfassende Abdeckung von Anzeige- und Rendering-Szenarien und teilen sich gleichzeitig wesentliche Komponenten und Konzepte. Sie bilden daher eine starke Grundlage für ein einheitliches System, das eine Vielzahl an Anwendungsfällen unterstützt

    Optimization of Display-Wall Aware Applications on Cluster Based Systems

    Get PDF
    Actualment, els sistemes d'informació i comunicació que treballen amb grans volums de dades requereixen l'ús de plataformes que permetin una representació entenible des del punt de vista de l'usuari. En aquesta tesi s'analitzen les plataformes Cluster Display Wall, usades per a la visualització de dades massives, i es treballa concretament amb la plataforma Liquid Galaxy, desenvolupada per Google. Mitjançant la plataforma Liquid Galaxy, es realitza un estudi de rendiment d'aplicacions de visualització representatives, identificant els aspectes de rendiment més rellevants i els possibles colls d'ampolla. De forma específica, s'estudia amb major profunditat un cas representatiu d'aplicació de visualització, el Google Earth. El comportament del sistema executant Google Earth s'analitza mitjançant diferents tipus de test amb usuaris reals. Per a aquest fi, es defineix una nova mètrica de rendiment, basada en la ratio de visualització, i es valora la usabilitat del sistema mitjançant els atributs tradicionals d'efectivitat, eficiència i satisfacció. Adicionalment, el rendiment del sistema es modela analíticament i es prova la precisió del model comparant-ho amb resultats reals.Nowadays, information and communication systems that work with a high volume of data require infrastructures that allow an understandable representation of it from the user's point of view. This thesis analyzes the Cluster Display Wall platforms, used to visualized massive amounts of data, and specifically studies the Liquid Galaxy platform, developed by Google. Using the Liquid Galaxy platform, a performance study of representative visualization applications was performed, identifying the most relevant aspects of performance and possible bottlenecks. Specifically, we study in greater depth a representative case of visualization application, Google Earth. The system behavior while running Google Earth was analyzed through different kinds of tests with real users. For this, a new performance metric was defined, based on the visualization ratio, and the usability of the system was assessed through the traditional attributes of effectiveness, efficiency and satisfaction. Additionally, the system performance was analytically modeled and the accuracy of the model was tested by comparing it with actual results.Actualmente, los sistemas de información y comunicación que trabajan con grandes volúmenes de datos requieren el uso de plataformas que permitan una representación entendible desde el punto de vista del usuario. En esta tesis se analizan las plataformas Cluster Display Wall, usadas para la visualización de datos masivos, y se trabaja en concreto con la plataforma Liquid Galaxy, desarrollada por Google. Mediante la plataforma Liquid Galaxy, se realiza un estudio de rendimiento de aplicaciones de visualización representativas, identificando los aspectos de rendimiento más relevantes y los posibles cuellos de botella. De forma específica, se estudia en mayor profundidad un caso representativo de aplicación de visualización, el Google Earth. El comportamiento del sistema ejecutando Google Earth se analiza mediante diferentes tipos de test con usuarios reales. Para ello se define una nueva métrica de rendimiento, basada en el ratio de visualización, y se valora la usabilidad del sistema mediante los atributos tradicionales de efectividad, eficiencia y satisfacción. Adicionalmente, el rendimiento del sistema se modela analíticamente y se prueba la precisión del modelo comparándolo con resultados reales

    Human factors in the perception of stereoscopic images

    Get PDF
    Research into stereoscopic displays is largely divided into how stereo 3D content looks, a field concerned with distortion, and how such content feels to the viewer, that is, comfort. However, seldom are these measures presented simultaneously. Both comfortable displays with unacceptable 3D and uncomfortable displays with great 3D are undesirable. These two scenarios can render conclusions based on research into these measures both moot and impractical. Furthermore, there is a consensus that more disparity correlates directly with greater viewer discomfort. These experiments, and the dissertation thereof, challenge this notion and argue for a more nuanced argument related to acquisition factors such as interaxial distance (IA) and post processing in the form of horizontal image translation (HIT). Indeed, this research seeks to measure tolerance limits for viewing comfort and perceptual distortions across different camera separations. In the experiments, HIT and IA were altered together. Following Banks et al. (2009), our stimuli were simple stereoscopic hinges, and we measured the perceived angle as a function of camera separation. We compared the predictions based on a ray-tracing model with the perceived 3D shape obtained psychophysically. Participants were asked to judge the angles of 250 hinges at different camera separations (IA and HIT remained linked across a 20 to 100mm range, but the angles ranged between 50° and 130°). In turn, comfort data was obtained using a five-point Likert scale for each trial. Stimuli were presented in orthoscopic conditions with screen and observer field of view (FOV) matched at 45°. The 3D hinge and experimental parameters were run across three distinct series of experiments. The first series involved replicating a typical laboratory scenario where screen position was unchanged (Experiment I), the other presenting scenarios representative of real-world applications for a single viewer (Experiments II, III, and IV), and the last presenting real-world applications for multiple viewers (Experiment V). While the laboratory scenario revealed greatest viewer comfort occurred when a virtual hinge was placed on the screen plane, the single-viewer experiment revealed into-the-screen stereo stimuli was judged flatter while out-of-screen content was perceived more veridically. The multi-viewer scenario revealed a marked decline in comfort for off-axis viewing, but no commensurate effect on distortion; importantly, hinge angles were judged as being the same regardless of off-axis viewing for angles of up to 45. More specifically, the main results are as follows. 1) Increased viewing distance enhances viewer comfort for stereoscopic perception. 2) The amount of disparity present was not correlated with comfort. Comfort is not correlated with angular distortion. 3) Distortion is affected by hinge placement on-screen. There is only a significant effect on comfort when the Camera Separation is at 60mm. 4) A perceptual bias between into the depth orientation of the screen stimuli, in to the screen stimuli were judged as flatter than out of the screen stimuli. 5) Perceived distortion not being affected by oblique viewing. Oblique viewing does not affect perceived comfort. In conclusion, the laboratory experiment highlights the limitations of extrapolating a controlled empirical stimulus into a less controlled “real world” environment. The typical usage scenarios consistently reveal no correlation between the amount of screen disparity (parallax) in the stimulus and the comfort rating. The final usage scenario reveals a perceptual constancy in off-axis viewer conditions for angles of up to 45, which, as reported, is not reflected by a typical ray-tracing model. Stereoscopic presentation with non-orthoscopic HIT may give comfortable 3D. However, there is good reason to believe that this 3D is not being perceived veridically. Comfortable 3D is often incorrectly converged due to the differences between distances specified by disparity and monocular cues. This conflict between monocular and stereo cues in the presentation of S3D content leads to loss of veridicality i.e. a perception of flatness. Therefore, correct HIT is recommended as the starting point for creating realistic and comfortable 3D, and this factor is shown by data to be far more important than limiting screen disparity (i.e. parallax). Based on these findings, this study proposes a predictive model of stereoscopic space for 3D content generators who require flexibility in acquisition parameters. This is important as there is no data for viewing conditions where the acquisition parameters are changed

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    Cross-display attention switching in mobile interaction with large displays

    Get PDF
    Mobile devices equipped with features (e.g., camera, network connectivity and media player) are increasingly being used for different tasks such as web browsing, document reading and photography. While the portability of mobile devices makes them desirable for pervasive access to information, their small screen real-estate often imposes restrictions on the amount of information that can be displayed and manipulated on them. On the other hand, large displays have become commonplace in many outdoor as well as indoor environments. While they provide an efficient way of presenting and disseminating information, they provide little support for digital interactivity or physical accessibility. Researchers argue that mobile phones provide an efficient and portable way of interacting with large displays, and the latter can overcome the limitations of the small screens of mobile devices by providing a larger presentation and interaction space. However, distributing user interface (UI) elements across a mobile device and a large display can cause switching of visual attention and that may affect task performance. This thesis specifically explores how the switching of visual attention across a handheld mobile device and a vertical large display can affect a single user's task performance during mobile interaction with large displays. It introduces a taxonomy based on the factors associated with the visual arrangement of Multi Display User Interfaces (MDUIs) that can influence visual attention switching during interaction with MDUIs. It presents an empirical analysis of the effects of different distributions of input and output across mobile and large displays on the user's task performance, subjective workload and preference in the multiple-widget selection task, and in visual search tasks with maps, texts and photos. Experimental results show that the selection of multiple widgets replicated on the mobile device as well as on the large display, versus those shown only on the large display, is faster despite the cost of initial attention switching in the former. On the other hand, a hybrid UI configuration where the visual output is distributed across the mobile and large displays is the worst, or equivalent to the worst, configuration in all the visual search tasks. A mobile device-controlled large display configuration performs best in the map search task and equal to best (i.e., tied with a mobile-only configuration) in text- and photo-search tasks
    corecore