201,138 research outputs found

    Study of simple pendulum using tracker video analysis and high speed camera: an interactive approach to analyze oscillatory motion

    Get PDF
    In this paper, we report on the use of Tracker video analysis and high speed camera as an interactive approach to study oscillatory motion of a simple pendulum. Tracker software is basically a computer based learning tool and is preferred because it is free, user friendly and support effective learning and teaching. Combining with the high speed camera that records the motion of pendulum at a frame rate up to 1000 frames per second (fps), analysis of the motion is performed at different angles and video qualities. The periods obtained from the experiment are then compared with the exact period expression and Lima and Arun approximation in order to determine how well this approach suited for the large angle approximation. Results have shown that when the video qualities improved, errors are minimal but errors increased when the angle increased. This research finding shows that this approach is feasible in studying the motion of simple pendulum and at the same time, interactive and inexpensive

    Mitigating Motion Blur for Robust 3D Baseball Player Pose Modeling for Pitch Analysis

    Full text link
    Using videos to analyze pitchers in baseball can play a vital role in strategizing and injury prevention. Computer vision-based pose analysis offers a time-efficient and cost-effective approach. However, the use of accessible broadcast videos, with a 30fps framerate, often results in partial body motion blur during fast actions, limiting the performance of existing pose keypoint estimation models. Previous works have primarily relied on fixed backgrounds, assuming minimal motion differences between frames, or utilized multiview data to address this problem. To this end, we propose a synthetic data augmentation pipeline to enhance the model's capability to deal with the pitcher's blurry actions. In addition, we leverage in-the-wild videos to make our model robust under different real-world conditions and camera positions. By carefully optimizing the augmentation parameters, we observed a notable reduction in the loss by 54.2% and 36.2% on the test dataset for 2D and 3D pose estimation respectively. By applying our approach to existing state-of-the-art pose estimators, we demonstrate an average improvement of 29.2%. The findings highlight the effectiveness of our method in mitigating the challenges posed by motion blur, thereby enhancing the overall quality of pose estimation.Comment: Accepted in the 6th International Workshop on Multimedia Content Analysis in Sports (MMSports'23) @ ACM Multimedi

    Efficient and effective human action recognition in video through motion boundary description with a compact set of trajectories

    Get PDF
    Human action recognition (HAR) is at the core of human-computer interaction and video scene understanding. However, achieving effective HAR in an unconstrained environment is still a challenging task. To that end, trajectory-based video representations are currently widely used. Despite the promising levels of effectiveness achieved by these approaches, problems regarding computational complexity and the presence of redundant trajectories still need to be addressed in a satisfactory way. In this paper, we propose a method for trajectory rejection, reducing the number of redundant trajectories without degrading the effectiveness of HAR. Furthermore, to realize efficient optical flow estimation prior to trajectory extraction, we integrate a method for dynamic frame skipping. Experiments with four publicly available human action datasets show that the proposed approach outperforms state-of-the-art HAR approaches in terms of effectiveness, while simultaneously mitigating the computational complexity

    Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea

    Get PDF
    This paper presents a new real-time automated infrared video monitoring technique for detection of breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust action classification method to recognize abnormal breathing activities and limb movements. This technique avoids imposing positional constraints on the patient, allowing patients to sleep on their back or side, with or without facing the camera, fully or partially occluded by the bed clothes. Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of the method, and it is insensitive to environmental settings such as infrared lighting levels and camera view angles. The experimental results show that the technique achieves high accuracy (94% for the clinical data) in recognizing apnea episodes and body movements and is robust to various occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest breathing, and abdominal breathing). © 2013 IEEE

    Investigation of a new method for improving image resolution for camera tracking applications

    Get PDF
    Camera based systems have been a preferred choice in many motion tracking applications due to the ease of installation and the ability to work in unprepared environments. The concept of these systems is based on extracting image information (colour and shape properties) to detect the object location. However, the resolution of the image and the camera field-of- view (FOV) are two main factors that can restrict the tracking applications for which these systems can be used. Resolution can be addressed partially by using higher resolution cameras but this may not always be possible or cost effective. This research paper investigates a new method utilising averaging of offset images to improve the effective resolution using a standard camera. The initial results show that the minimum detectable position change of a tracked object could be improved by up to 4 times

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    Flight Dynamics-based Recovery of a UAV Trajectory using Ground Cameras

    Get PDF
    We propose a new method to estimate the 6-dof trajectory of a flying object such as a quadrotor UAV within a 3D airspace monitored using multiple fixed ground cameras. It is based on a new structure from motion formulation for the 3D reconstruction of a single moving point with known motion dynamics. Our main contribution is a new bundle adjustment procedure which in addition to optimizing the camera poses, regularizes the point trajectory using a prior based on motion dynamics (or specifically flight dynamics). Furthermore, we can infer the underlying control input sent to the UAV's autopilot that determined its flight trajectory. Our method requires neither perfect single-view tracking nor appearance matching across views. For robustness, we allow the tracker to generate multiple detections per frame in each video. The true detections and the data association across videos is estimated using robust multi-view triangulation and subsequently refined during our bundle adjustment procedure. Quantitative evaluation on simulated data and experiments on real videos from indoor and outdoor scenes demonstrates the effectiveness of our method

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications
    corecore