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Abstract— Human action recognition (HAR) is at the core
of human-computer interaction and video scene understanding.
However, achieving effective HAR in an unconstrained environ-
ment is still a challenging task. To that end, trajectory-based
video representations are currently widely used. Despite the
promising levels of effectiveness achieved by these approaches,
problems regarding computational complexity and the presence
of redundant trajectories still need to be addressed in a
satisfactory way. In this paper, we propose a method for trajec-
tory rejection, reducing the number of redundant trajectories
without degrading the effectiveness of HAR. Furthermore,
to realize efficient optical flow estimation prior to trajectory
extraction, we integrate a method for dynamic frame skipping.
Experiments with four publicly available human action datasets
show that the proposed approach outperforms state-of-the-art
HAR approaches in terms of effectiveness, while simultaneously
mitigating the computational complexity.

I. INTRODUCTION

Human action recognition (HAR) is one of the enabling
technologies behind human-computer interaction and video
scene understanding [1]. However, achieving effective HAR
in an unconstrained environment is an open research chal-
lenge, given the frequent presence of background clutter,
partial occlusions, viewpoint changes, and camera motion
[1]. To overcome the aforementioned problems, and thus to
realize effective HAR, discriminating a human action from
background information is considered to be an important
research task [1].

According to [1], local space-time feature extraction
approaches using bag-of-words representations (e.g., 3-D
Hessian [2], space-time interests points (STIP) [3], local
trinary patterns (LTP) [4], Cuboids [5], and 3-D SIFT [6])
have shown promising levels of HAR effectiveness, mainly
thanks to their robustness against partial occlusions and
noise [1]. These approaches commonly focus on capturing
edge and texture characteristics within 3-D space-time blocks
defined by interest points. However, even when different
types of motion are related to a human action within the
3-D space-time blocks used, the aforementioned approaches
blend together the different types of motion, thus resulting
in a loss of discriminative power [7].

To facilitate a more effective usage of motion information,
trajectory-based feature extraction approaches have been pro-
posed, following interest points along the temporal dimen-
sion with either a KLT-based tracker [7], SIFT matching [8],
dense trajectory features (DTF) [9], or improved DTF (IDTF)
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Fig. 1.  Visualization of dense trajectories after rejection by IDTF and
after rejection by the proposed approach. Red dots indicate the interest point
positions in the current frame, whereas the green curved lines denote the
change in location of the interest point positions compared to the previous
frame.

[10]. By temporally tracking interest points, these approaches
make it possible to automatically separate different types of
motion information from background information. Therefore,
as these approaches do not blend together different types of
motion, they have been widely used for HAR. Among the
different approaches mentioned, IDTF can be considered the
state-of-the-art. IDTF extracts dense trajectories obtained by
tracking uniformly sampled interest points using optical flow.
In order to represent each trajectory, IDTF makes use of local
descriptors such as histograms of oriented gradients (HOG)
[11], histograms of optical flow (HOF) [12], motion bound-
ary histograms (MBH) [13], and trajectory shapes (TS) [9].
Additionally, IDTF suppresses camera motion by estimating
a homography, using a human detector to improve this
estimation. That way, IDTF is able to more effectively rep-
resent the complicated motion of human actions. However,
despite these strengths, IDTF still suffers from a number of
weaknesses. First, the dense trajectories contain a substantial
amount of redundancy [14]. Second, the extraction of dense
trajectories is highly complicated due to the computation of
optical flows and histogram-based descriptors (e.g., HOG,
HOF, and MBH). Considering that real-world HAR requires
both high levels of effectiveness and efficiency, it is necessary
to address the two aforementioned weaknesses of IDTF.

Motivated by the work of [14], we propose a method
for motion boundary description with a compact set of
trajectories, allowing for both effective and efficient HAR. In
addition, to efficiently compute the optical flows needed for
extracting trajectories, we propose to make use of a dynamic
frame skipping technique, ignoring frames that contain less
motion information. As such, we can summarize the main
contributions of our paper as follows:
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Fig. 2. Overview of the proposed HAR framework.

e By removing redundant trajectories induced by camera
motion, we are able to obtain a compact set of trajec-
tories (please see Fig. 1). Since we are able to signif-
icantly mitigate the presence of trajectories irrelevant
to human action, we can achieve higher levels of HAR
effectiveness than previous research efforts.

e As we do not need to compute the optical flow for
dynamically skipped frames, we are able to decrease
the computational complexity of trajectory extraction.

Through comparative experimentation with four challeng-
ing human action datasets (i.e., HMDBS51 [15], Hollywood2
[16], UCF50 [17], and UCF101 [18]), we show that the
proposed approach allows improving HAR in terms of both
effectiveness and efficiency.

The remainder of this paper is organized as follows. In
Section II, we provide a high-level overview of the proposed
approach. Next, in Section III, we explain our approach
in more detail. In Section IV, we present our experimental
results, demonstrating the efficiency and effectiveness of the
proposed approach. Finally, we draw conclusions in Section
V.

II. OVERVIEW OF THE PROPOSED HAR FRAMEWORK

Figure 2 visualizes the proposed HAR framework. Our
framework consists of three sequential modules: 1) dynamic
frame skipping for efficient optical flow computation; 2)
motion boundary information-based trajectory rejection and
descriptor extraction along the trajectories obtained; and 3)
human action classification.

For a given input video clip, we first select frames by
making use of dynamic frame skipping (see the first step
of Fig. 2). In order to allow for trajectory extraction, we
then estimate the optical flow fields for the skipped frames.
To that end, we simply interpolate between the optical
flow fields computed for the frames retained, significantly
reducing the overall complexity of optical flow computation.
In the next step, for the optical flow fields obtained, we
detect dense trajectories. To remove redundant trajectories
caused by camera motion, we reject trajectories by making
use of motion boundary information (see the second step
of Fig. 2). Furthermore, the proposed method for trajectory
rejection only retains the useful trajectories for describing
a human action (that is, the proposed method only retains
trajectories closely related to motion boundaries), facilitating

both a reduction in computational complexity and a compact
video content representation.

For classification purposes, we extract discriminative de-
scriptors (HOG, HOF, MBH, and TS) from the selected
trajectories. We further process the resulting descriptors by
Fisher Vector (FV) encoding [19] using Gaussian Mixture
Models (GMMs), an encoding approach that has recently
shown state-of-the-art effectiveness. Finally, we generate
an action label through the use of sparse representation-
based classification (SRC) [20]. To satisfy the requirement
of having an over-complete dictionary [20] and to increase
the discriminative power, we adopt Fisher linear discriminant
analysis (FLDA) [21] for the encoded FVs.

III. PROPOSED TRAJECTORY-BASED FEATURE
EXTRACTION

In this section, we detail the proposed method for describ-
ing motion boundaries with a compact set of trajectories. In
Section A, we first explain our motion boundary information-
based method for trajectory rejection. Next, in Section B, we
discuss our approach towards optical flow computation using
dynamic frame skipping.

A. Motion Boundary Information-based Trajectory Rejection

According to [14], given the presence of redundant trajec-
tories in a video clip (e.g., as caused by camera motion [22]),
these non-relevant trajectories should be rejected in order to
achieve more effective HAR. The authors of [10] identify
four different types of trajectories in the IDTF framework
that can be rejected: (1) static trajectories; (2) random trajec-
tories; (3) trajectories with sudden and large displacements;
and (4) trajectories affected by camera motion. According
to [22], a trajectory caused by camera motion is highly
redundant in nature, given that such a trajectory is irrelevant
to the motion induced by a human action. In [10], the authors
estimate a homography between adjacent frames to align
their background. After background alignment using the
homography and estimating the optical flow, if the maximum
motion magnitude of a trajectory is lower than one pixel, they
assume that the trajectory is generated by camera motion, and
thus reject the trajectory. However, the homography cannot
be exactly estimated in the case that there is a lack of
pixel information in the background or in the case that pixel
values are corrupted by noise or blur [10]. In this paper,
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Fig. 3. Scheme for motion boundary information-based trajectory rejection. Using two consecutive frames (note that the yellow box delineates the camera
motion, whereas the gray box delineates the human action), we estimate the x- and y- components of the corresponding optical flow field. Then, in order
to measure the change of the motion vectors, we compute the partial derivatives of each component of the optical flow field (see the vertical and horizontal
motion boundary). Next, we obtain the normalized sum of the motion boundaries. Depending on the motion boundary information of all the patches from

T1 and T3, we decide whether or not a rejection is needed.

in order to reject redundant trajectories caused by camera
motion, we propose a trajectory rejection approach based
on motion boundary information. By leveraging motion
boundary information, we can remove redundant trajectories
more effectively than [10] (see Fig. 1 for a comparative
example). In what follows, we provide more details regarding
the aforementioned approach.

After having obtained the optical flow field w; €
R(Xw)X2 petween two frames F; at time ¢t and Fypq at
time ¢ + 1 (h and w denote the height and width of the
frames, respectively), we can separate it into two components
(IF, 1), where If € R"® and I} € R"*% denotes the
z- and y- component of the optical flow field, respectively.
In order to compute the change of the motion vectors,
we can calculate the partial derivatives 0I7 /0x, OIF /Oy,
I} /0x and OI}/0y. Each derivative captures the change
of the optical flow (i.e., the motion boundary). Using the
partial derivatives, we can compute the motion boundary

oIy ory ory

information as follows:
Tt it 2 —t1), 1
Jy ox y ) M

1 /oLy
Ar = 4 ( Ox
where Ap, € R"X™ is the quantity that measures the
motion boundary information of the frame Fj. Herein, Eq.
(1) measures the normalized sum of the change of the
motion vectors. Let F; ; denote a patch in the ¢-th frame
F; on the j-th trajectory T; and let Ap, ; denote the motion
boundary information of the patch obtained from Apg, by
cropping the region of P ;. We can subsequently calculate
the values Ap, and Ap, ; by averaging all the elements of
the matrices Ap, and pr, respectively. Using Ap, and
)\pw., we can then decide whether the patch P; ; contains
substantial motion boundary information. For example, if
Ap, ; is larger than Af,, then the patch P ; is considered to
contain more motion boundary information on average than
any other region included in F;. As shown on the right in Fig.
3, the patches from the human action region (as identified by
the gray boxes) have plenty of information, while the patches
from the camera motion region (as identified by the yellow
boxes) are homogeneous. By counting the number of cases

for which A P, ,; 18 larger than Ar, for all patches from T3,
we can decide whether a trajectory should be rejected or not
(e.g., if the total count is higher than a pre-defined threshold
0:r, we let the trajectory T pass).

B. Dynamic Frame Skipping for Efficient Optical Flow Com-
putation

A human action can be described by both motion and
appearance information [1]. In order to extract motion infor-
mation, optical flow has been widely used for the purpose
of motion analysis [1]. According to [9], computing optical
flow is the most time-consuming part of the dense trajectory
extraction process for HAR. For the practical usage of HAR,
reducing the complexity of optical flow computation is a
crucial factor for obtaining a high efficiency.

Motivated by the observation that computing the optical
flow between every two adjacent frames in a video clip
is highly wasteful from a computational point-of-view, we
propose a frame skipping-based method for improved effi-
ciency. In particular, we adopted dynamic frame skipping, a
technique that has been widely used for effective adjustment
of the bit-rate in video transcoding [23]. According to [23,
241, dynamic frame skipping is based on the motion vectors
obtained from the optical flow. In our framework, we modify
the dynamic frame skipping method so that it is based on the
difference between adjacent frames instead of making use of
optical flow. That way, given that we only need to estimate
the optical flow for selected frames and that the skipping
scheme is only dependent on the difference operation, the
computational complexity can be highly decreased.

Given two frames F; and Fiy;, we first compute the
absolute difference between these two frames in order to
measure the significance of change:

L, |Fi(z,y) — Figpi(z,y)| > 0,

Cla,y) = {O, otherwise 2)

where, C'(z,y) is a binary value that indicates whether the
change between the two frames at pixel position (z,y) is
higher than 6,,. Based on the value obtained from Eq. (2),



we define the scene change index § as a criterion for frame
skipping:

1
5:m Z Clz,y). 3)

(z,y)EF,

The normalized value defined in Eq. (3) reflects the signifi-
cance of the total magnitude of motion change between two
adjacent frames. If ¢ is larger than the pre-defined threshold
value 6,,, we do not skip frame F;,, otherwise, we skip
frame Fi,. We limit the maximum number of frames to be
skipped to five in order to avoid motion blurring. As a result,
we only compute optical flow for the frames that have not
been skipped.

Through the aforementioned frame skipping scheme, we
can efficiently compute optical flow fields, given that we
skip frames without significant changes in motion. However,
in order to be able to further consider appearance and
context information for the skipped frames when creating
the discriminative descriptors, we need to devise a simple
interpolation technique for obtaining representative motion
fields for the skipped frames.

Assuming that the motion between two selected frames is
linear in nature and that the number of skipped frames is
denoted by s, we can estimate the optical flow between the
selected frames by making use of the following procedure.
Given that a motion vector between the selected frames
passes through the skipped frames, we estimate the motion
vector from the skipped frame to the next frame from the
point where the motion vector passes through the skipped
frame. We can then find the nearest pixel position around the
pixel in the skipped frame from the path of the motion vector.
Herein, to adjust the magnitude of the vector, we interpolate
the motion vector at the pixel found by scaling the motion
vector between the selected frames through 1/(s+1). After
interpolation, since the aforementioned forward mapping
scheme generates a few holes, we apply a median filter as a
post-processing step, filling the holes generated [25].

By skipping frames, interpolation errors are present, due
to the degradation of the temporal resolution. However, we
only skip a frame when the difference with the previous
frame is not significant. In other words, additional motion
information from such a skipped frame would not be a
significantly important factor. Hence, this error does not
critically influence the discriminative power, as also shown
by our experimental results.

IV. EXPERIMENTS
A. Experimental Setup

To evaluate the proposed approach, we used four chal-
lenging human action datasets that are publicly available:
HMDB51 [15], Hollywood?2 [16], UCF50 [17], and UCF101
[18]. HMDBS51 contains 51 action classes, represented by
6,766 videos collected from movies and databases such as
the Prelinger archive, YouTube, and Google Video. For the
HMDBS51 dataset, we followed the guidelines used by [15]
(i.e., we generated three distinct training and testing splits

from the database). Hollywood2 contains 12 action classes,
represented by 1,707 videos obtained from 69 different
movies. Herein, 823 videos are used for training and 884
videos are used for testing. In addition, UCF50 contains
50 action classes, represented by 6,676 videos [17]. These
videos have been collected from YouTube. In this context, we
made use of leave-one-group-out cross validation following
the guidelines of [17]. UCF101, which is an extension of
UCF50, contains 101 action classes, represented by 13,320
videos collected from YouTube [18]. For UCF101, we
followed the original guide-lines outlined in [18]. For all
datasets used, we measured the HAR effectiveness by means
of average accuracy, with the exception of Hollywood2. For
Hollywood2, we made use of mean average precision (mAP)
[16].

In order to verify the effectiveness of the proposed ap-
proach, we compared our approach to IDTF [10] and other
state-of-the-art approaches [14, 17, 22, 26-31]. In particular,
for IDTF, we extracted histogram-based descriptors from
volumes with a size of N x N x L in the video frames,
where N and L denote the spatial size of a volume and
the trajectory length, respectively, and where we set these
parameters to a value of 32 and 15, respectively [10]. Note
that IDTF uses human detection for discriminating a human
from the background [10]. In contrast, the proposed approach
does not make use of human detection.

For all experiments, we empirically set the threshold
values 6y, 0, and 0,,, as described in Section III, to 7, 5, and
0.02, respectively. We made use of the Farneback algorithm
[32] to estimate the optical flow, conducting the polynomial
expansion with a 7 x 7 Gaussian kernel that comes with a
standard deviation of 1.5, and setting the maximum number
of pyramid layers to 8. For Fisher vector encoding of the
features extracted from the trajectories, we made use of prin-
cipal component analysis (PCA) [33] to reduce the dimension
of each descriptor, and we subsequently estimated GMMs by
making use of 256 Gaussians. Note that we normalized the
FVs through power and l;-normalization [19]. To combine
different types of descriptors into a single feature vector, we
concatenated the normalized FVs. We subsequently applied
FLDA [21] to increase the discriminative power as well as
to reduce the dimensionality. Finally, we generated a human
action label by making use of SRC [20].

Our evaluation consists of three experiments: 1) an ex-
periment that investigates the effectiveness of the proposed
approach; 2) an experiment that investigates the efficiency of
the proposed approach; and 3) an experiment that compares
the proposed approach with state-of-the-art HAR approaches
[10, 14, 17, 22, 26-31]. We present our results in the
following subsections.

B. Experiment 1: Evaluation of Effectiveness

To evaluate the effectiveness of the proposed approach, we
performed experiments with the challenging HMDBS51 and
Hollywood2 datasets. For comparison purposes, we adopted
IDTF [10], which is known as the most effective method



TABLE I
EFFECTIVENESS OF HAR (%) FOR IDTF AND THE PROPOSED APPROACH.

TABLE III
COMPARISON OF THE PROPOSED APPROACH TO THE STATE-OF-THE-ART.

HOF+ HMDB51 Hollywood2
TS HOG HOF MBH MBH ALL
Jain et al. 2013 [22] 52.10 Mathe ef al. 2012 [14] 61.00
IDTF 2647 3582 4856 5333 5599 57.78 Wu ef al. 2014 [26] 56.36  Jain et al. 2013 [22] 62.50
HMDBST  p osed  32.61  36.19 49.15 5488 5651 5891 Cai et al. 2014 [27] 5590  Jomes ef al. 2014 [29] 59.90
Narayan et al. 2014 [28] 58.70 Wang et al. 2013 [10] 64.30
Hollywood2 IDTF 50.73 4577 60.82 6233 64.41 65.26 Wang et al. 2013 [10] 57.20
Proposed  51.98 48.72 5959 63.84 6539 65.37 Proposed method 5891  Proposed method 65.37
UCF50 UCF101
TABLE II Reddy ef al. 2012 [17] 7690  Karpathy ef al. 2014 [31] 65.40
EFFICIENCY OF HAR (%) FOR IDTF AND THE PROPOSED APPROACH. Ciptadi et al. 2014 [30] 90.50  Wu et al. 2014 [26] 84.16
Narayan et al. 2014 [28] 92.50 Cai et al. 2014 [27] 83.50
Wang et al. 2013 [10] 91.20  Wang et al. 2013 [34] 85.90
Selected Number of trajectories Speed(fps) Proposed method 93.70  Proposed method 85.74
frames (trajectories/frames) peeddips
IDTF 29,258 128.72 7.8240.003
Proposed 18,319 90.41 9.841-0.004

for feature extraction at the time of writing. In Table I, we
present the difference in HAR effectiveness between IDTF
and the proposed approach for a variety of descriptors. To
facilitate a fair comparison, each framework made use of the
same descriptors. Herein, the label ALL in Table 1 means
the combination of all descriptors.

Overall, the proposed approach outperforms IDTF on the
two datasets used, with the proposed approach achieving an
average accuracy of 58.91% on HMDB51 and a mAP of
65.37% on Hollywood2 when making use of the combined
descriptors. This can be mainly attributed to the proposed ap-
proach rejecting redundant trajectories, increasing the HAR
effectiveness. Specifically, for the TS descriptor, the higher
HAR effectiveness of the proposed approach stems from
the fact that our approach is able to remove redundant
trajectories caused by camera motion.

For the MBH descriptor, we could also obtain a gain in
HAR effectiveness of about 1.6% on HMDBS51 and 1.5% on
Hollywood2. An MBH descriptor represents the orientation
and the magnitude of the gradients of the optical flow. There-
fore, an MBH descriptor extracted from a trajectory passing
through a homogeneous motion region contains small values.
Nevertheless, this descriptor is not negligible because all
descriptors are normalized, thus dealt with equivalently. In
addition, this descriptor is not discriminative because the
gradients of the optical flow in the homogeneous motion
region are nearly zero. Therefore, it adversely influences the
effectiveness of HAR. On the other hand, since the trajecto-
ries from the homogeneous motion region were effectively
removed, we could achieve a higher level of effectiveness
with the MBH descriptor.

For Hollywood2, we can observe that the HAR effec-
tiveness of the proposed approach is slightly lower than
the HAR effectiveness of the IDTF framework using the
HOF descriptor. This is mainly because of the properties of
Hollywood2 and HOF. In the dataset, there are videos with
a relatively large frame size and dominant human regions.
In addition, HOF encodes the histogram of optical flow
orientation. Therefore, a homogeneous motion region related
to a human action can be suitably represented by HOF since

that region contains human motion. However, our method
typically removes a lot of trajectories that are detected in
homogeneous motion regions related to human action. As a
result, a limited amount of important information was lost,
thus slightly decreasing the HAR effectiveness.

C. Experiment 2: Evaluation of Efficiency

To evaluate the efficiency of the proposed approach, we
analyzed the skipped frame rate, the trajectory rejection rate,
and the speed of operation (i.e., the number of frames per
second (fps)). Herein, we measured the operation time from
loading a video to obtaining all descriptors. In order to allow
for a direct comparison, we used the 107 videos from the
brush hair action class of HMDBS51, having an average frame
size of 335 x 240 pixels. All results were obtained on a
desktop PC with an Intel Core 17-3770 (@3.40GHz) proces-
sor and 32 GB RAM, not using any parallel processing. We
report our results by averaging the outcome of 10 test runs,
in order to account for possible I/O and caching effects.

According to Table II, the proposed approach only selected
18,319 frames out of a total of 29,258 frames (about 63%),
using the dynamic frame skipping method as described in
Section II. The proposed approach selects 90.41 trajectories
per frame. On the other hand, IDTF selects 128.72 trajecto-
ries per frame, which is larger than the number of trajectories
per frame selected by the proposed approach. Additionally,
we can observe that the processing speed of IDTF is about
7.824+0.003 fps. In contrast, the processing speed of the
proposed approach is about 9.84+0.004 fps which is nearly a
20% increase in speed. Specifically, the proposed approach
for optical flow computation led to a significant reduction
in computing time of about 19%, compared to the com-
puting time needed by DTF for optical flow computation.
Furthermore, since the proposed approach does not make
use of homography estimation and only extracts descriptors
from the selected frames, the proposed approach is able to
attain a lower computational complexity, in spite of the use
of interpolated motion vectors for the skipped frames.

In summary, given the results presented in Table I and
Table II, our approach was able to outperform the state-of-
the-art IDTF approach in terms of both effectiveness and
efficiency.



D. Comparison with the State-of-the-Art

To further verify the feasibility of the proposed approach,
we compared our approach with a number of state-of-the-
art HAR approaches [10, 14, 17, 22, 26-31], using the four
datasets previously described. To facilitate a fair comparison,
we used the descriptor that combines the four types of
descriptors discussed earlier. As can be seen in Table III,
for all datasets, the proposed approach achieves better or
comparable levels of HAR effectiveness. In the context of
UCF101, the method of Wang [34] achieved the highest
effectiveness. However, the effectiveness was accomplished
by human detection and spatio-temporal pyramids [34],
winning the THUMOS challenge [35]. When spatio-temporal
pyramids are not applied, then the average accuracy lowers to
84.8%, which is lower than the effectiveness of the proposed
approach.

V. CONCLUSIONS

In this paper, we proposed a trajectory rejection method,
with the aim of improving the effectiveness of HAR. At the
same time, in order to mitigate the computational complexity
of optical flow computation prior to extracting trajectories,
we integrate a method for dynamic frame skipping. Through
experimentation with four publicly available datasets, we
demonstrated that the proposed approach outperforms state-
of-the-art approaches in terms of both effectiveness and effi-
ciency. In particular, at a gain of about 20% in computational
efficiency, our approach was still able to achieve comparable
and reliable levels of HAR effectiveness.

VI. ACKNOWLEDGEMENTS

This work was supported by the ICT R&D program
of MSIP/IITP. [13912-06006, Development of the Filtering
Technology for Objectionable Streaming Contents on Smart
Platform].

REFERENCES

[11 R.Poppe, ”A survey on vision-based human action recognition,” Image
and Vision Computing, vol. 28, no. 6, pp. 976-990, 2010.

[2] G. Willems, T. Tuytelaars, and L. Van Gool, ”An efficient dense and
scale-invariant spatio-temporal interest point detector,” in European
Conf. Computer Vision, 2008, pp. 650-663.

[3] I. Laptev, "On space-time interest points,” Int’l Journal of Computer
Vision, vol. 64, no. 2-3, pp. 107-123, 2005.

[4] L. Yeffet and L. Wolf, “Local trinary patterns for human action
recognition,” in /IEEE Int’l Conf. Computer Vision, 2009, pp. 492-497.

[5]1 P. Dollr, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recog-
nition via sparse spatio-temporal features,” in IEEE Int’l Works.
Visual Surveillance and Performance Evaluation of Tracking and
Surveillance, 2005, pp. 65-72.

[6] P. Scovanner, S. Ali, and M. Shah, ”A 3-dimensional SIFT descriptor
and its application to action recognition,” in Int’l Conf. Multimedia,
2007, pp. 357-360.

[7] P. Matikainen, M. Hebert, and R. Sukthankar, “Trajectons: Action
recognition through the motion analysis of tracked features,” in /EEE
Int’l Conf. Computer Vision Works., 2009, pp. 514-521.

[8] J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li, "Hierarchi-
cal spatio-temporal context modeling for action recognition,” in /EEE
Conf. Computer Vision and Pattern Recognition, 2009, pp. 2004-2011.

[9] H. Wang, A. Klser, C. Schmid, and C.-L. Liu, “Dense trajectories and
motion boundary descriptors for action recognition,” Int’l Journal of
Computer Vision, vol. 103, no. 1, pp. 60-79, 2013.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

H. Wang and C. Schmid, Action recognition with improved trajecto-
ries,” in IEEE Int’l Conf. Computer Vision, 2013, pp. 3551-3558.

N. Dalal and B. Triggs, "Histograms of oriented gradients for human
detection,” in IEEE Conf. Computer Vision and Pattern Recognition,
2005, pp. 886-893.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning
realistic human actions from movies,” in IEEE Conf. Computer Vision
and Pattern Recognition, 2008, pp. 1-8.

N. Dalal, B. Triggs, and C. Schmid, "Human detection using oriented
histograms of flow and appearance,” in European Conf. Computer
Vision, 2006, pp. 428-441.

S. Mathe and C. Sminchisescu, "Dynamic eye movement datasets
and learnt saliency models for visual action recognition,” in European
Conf. Computer Vision, 2012, pp. 842-856.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, "HMDB:
a large video database for human motion recognition,” in /IEEE Int’l
Conf. Computer Vision, 2011, pp. 2556-2563.

M. Marszalek, I. Laptev, and C. Schmid, ”Actions in context,” in I[EEE
Conf. Computer Vision and Pattern Recognition, 2009, pp. 2929-2936.
K. K. Reddy and M. Shah, “"Recognizing 50 human action categories
of web videos,” Machine Vision and Applications, vol. 24, no. 5, pp.
971-981, 2012.

K. Soomro, A. R. Zamir, and M. Shah, ”Ucfl01l: A dataset of
101 human actions classes from videos in the wild,” arXiv preprint
arXiv:1212.0402, 2012.

F. Perronnin, J. Snchez, and T. Mensink, “Improving the Fisher kernel
for large-scale image classification,” in European Conf. Computer
Vision, 2010, pp. 143-156.

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” /EEE Trans. Pattern Analysis
and Machine Intelligence, vol. 31, no. 2, pp. 210-227, 2009.

P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp.
711-720, 1997.

M. Jain, H. Jgou, and P. Bouthemy, "Better exploiting motion for
better action recognition,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2013, pp. 2555-2562.

J.-N. Hwang, T.-D. Wu, and C.-W. Lin, "Dynamic frame-skipping in
video transcoding,” in IEEE Works. Multimedia Signal Processing,
1998, pp. 616-621.

C.-Y. Chen, C.-T. Hsu, C.-H. Yeh, and M.-J. Chen, ”Arbitrary frame
skipping transcoding through spatial-temporal complexity analysis,” in
IEEE Region 10 Conf. TENCON, 2007, pp. 1-4.

P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R.
Yang, et al., ”Real-time visibility-based fusion of depth maps,” in IEEE
Int’l Conf. Computer Vision, 2007, pp. 1-8.

J. Wu, Y. Zhang, and W. Lin, “Towards good practices for action video
encoding,” in IEEE Conf. Computer Vision and Pattern Recognition,
2014, pp. 2571-2578.

Z. Cai, L. Wang, X. Peng, and Y. Qiao, "Multi-View Super Vector
for Action Recognition,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2014, pp. 596-603.

S. Narayan and K. Ramakrishnan, ”A Cause and Effect Analysis of
Motion Trajectories for Modeling Actions,” in IEEE Conf. Computer
Vision and Pattern Recognition, 2014, pp. 2633-2640.

S. Jones and L. Shao, ”A Multigraph Representation for Improved
Unsupervised/Semi-supervised Learning of Human Actions,” in /EEE
Conf. Computer Vision and Pattern Recognition, 2014, pp. 820-826.
A. Ciptadi, M. S. Goodwin, and J. M. Rehg, "Movement Pattern
Histogram for Action Recognition and Retrieval,” in European Conf.
Computer Vision, 2014, pp. 695-710.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, "Large-scale video classification with convolutional neural
networks,” in IEEE Conf. Computer Vision and Pattern Recognition,
2014, pp. 1725-1732.

G. Farnebck, "Two-frame motion estimation based on polynomial
expansion,” in [3th Scandinavian Conf. Image Analysis, 2003, pp.
363-370.

1. Jolliffe, 2005. Principal Component Analysis: Wiley Online Library.
H. Wang and C. Schmid, "LEAR-INRIA submission for the THUMOS
workshop,” in ICCV Works. Action Recognition with a Large Number
of Classes, 2013.

[Online] Available: http://crcv.ucf.edu/ICCV 13-Action-Workshop/



