
Unconstrained Video Monitoring of Breathing Behavior and Application to Diagnosis of Sleep Apnea 

 

This paper presents a new real-time automated infrared video monitoring technique for detection of 

breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a 

novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised 

self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust 

action classification method to recognize abnormal breathing activities and limb movements. This 

technique avoids imposing positional constraints on the patient, allowing patients to sleep on their 

back or side, with or without facing the camera, fully or partially occluded by the bed clothes. 

Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of 

the method, and it is insensitive to environmental settings such as infrared lighting levels and 

camera view angles. The experimental results show that the technique achieves high accuracy (94% 

for the clinical data) in recognizing apnea episodes and body movements and is robust to various 

occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body 

rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, 

mouth breathing, chest breathing, and abdominal breathing). 

 

SECTION I 

INTRODUCTION 

OBSTRUCTIVE Sleep Apnea (OSA) [1] is a condition with severe complications including: reduction in 

cognitive function, cardiovascular disease, stroke, fatigue, and excessive day time sleepiness. OSA is 

characterized by repetitive obstruction of the upper airways during sleep, resulting in oxygen 

desaturation and frequent arousal events, characterized by violent awakening. Although OSA affects 

around $\hbox{4}\%$ of men and $\hbox{2}\%$ of women [1], [2] the majority of affected 

individuals, perhaps 80– $\hbox{90}\%$ [3], [4], remain undiagnosed. 

The gold standard diagnostic tool for OSA is Polysomnography (PSG), which measures a wide range 

of parameters, including brain waves (EEG), eye movements, skeletal muscle activation, 

electrocardiogram (ECG)/heart rate, airflow, respiratory effort, and blood oxygen saturation using a 

range of sensors. However, PSG is costly, labor-intensive (not least in analyzing the data), and 

invasive, which may disturb sleep and compromise the findings. 

A popular cost-effective, less invasive alternative combines pulse oximetry (to measure blood 

oxygen saturation levels [SpO2] and heart rate) with infrared (IR) video monitoring. The clinician 

identifies suspicious areas on the pulse oximetry trace (defined by a dip of more than 4% in the 

oxygen saturation level) and reviews the corresponding video data to reach a diagnosis. However, 

the pulse oximetry traces of some OSA patients do not show all the abnormalities, forcing the 

clinician to review a significant amount of the video data. To reduce the workload, some existing 

video systems [5] try to detect patient movement, utilizing patterned sheets and IR light to detect 

gross degrees of motion, which at least identifies periods of activity, even if it does not identify what 

the activities are. However, if the patterned cover is removed by the patient, the system fails. There 
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is thus a growing interest in alternative, more robust, automated approaches to the diagnostic 

assessment of OSA. 

The contact-type approaches include thoracic–abdominal bands [8], which track changes in the body 

circumference during the respiratory cycle, stick-on electrodes such as the ECG method [9], the nasal 

temperature probe [10], and contact-type microphone for audio analysis to monitor tidal volumes 

from the human breathing activity [11]. The main disadvantages of these approaches are 

consequent on their invasiveness: they may be uncomfortable, which disturbs sleep and 

compromises results; and patient movement may dislodge sensors or compromise readings. 

The noninvasive techniques include noncontact audio analysis [12], [13], vibration sensors [14], 

thermal imaging [15], [16], [17], and Doppler radar sensors [18], [19] designed to identify breathing. 

A major challenge for noncontact type audio analysis is the extraction of the breathing sounds from 

the sensor signals contaminated by the environmental noise [12], [13]. The vibration sensors require 

an expensive specialized hardware and impose positional and postural constraints. The thermal 

imaging techniques have been used to capture a breathing signal, by detecting the breath as it is 

expelled [15], [16], [17], and the radar sensors have been proposed for monitoring of the cardiac and 

respiratory motion [18], [19]. However, in both the methods, there are strict positional constraints 

(the mouth/nose region must be targeted), and the region of interest must not be occluded. These 

requirements are not easily fulfilled when monitoring humans during sleep. 

In this paper, we investigate the use of IR video in detecting apnea events. This has the advantages 

of using standard, low-cost hardware, and being noninvasive. However, there are several major 

technical issues: the breathing motion is barely perceptible (due to obscuration by bed clothing and 

the subtlety of the breathing movements), and being cyclical the movements are prone to self-

occlusion. Consequently, the standard motion detection and activity recognition methods do not 

function well. An interesting alternative exists in modern low-cost 3-D cameras (e.g., Kinect, Xtion 

Pro, CamBoard nano, or Gesture Camera), which have been suggested for the respiratory motion 

detection [20], [21]. However, our preliminary analysis indicates that the image signal from Kinect is 

much more unstable than the IR image (see Fig. 1), making filtering of noise and detection of subtle 

breathing patterns more difficult. The use of a standard IR camera alone, which may already be 

available in sleep labs, is also helpful in reducing the complexity of the technology. 
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Fig. 1. Unstable signals appear in the depth images using a low-cost-3-D camera (Kinect). 
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The standard motion detection methods include difference of frames (DOF) and optic flow. DOF can 

be formulated as follows: 

TeX 

Source$$D(t)=\vert I(t)-I(t-k)\vert \eqno{\hbox{(1)}}$$ where $I(t)$ is the intensity image at 

frame/time $t, k$ is the selected time interval, and $D(t)$ is the frame difference. If 

$k=1, D(t)$ is the difference of consecutive frames. The difference is thresholded to 

produce a binary difference map 

TeX 

Source$$B(x,y,t)=\biggl \{\matrix{1, & \hbox{if} \hfill & D(x,y,t)>\alpha \cr 0, & \hbox{otherwise} & } 

\eqno{\hbox{(2)}}$$ where $\alpha$ is a selected threshold. 

As breathing movement is so subtle, the value of $\alpha$ in (2) must be set to such a small value 

(e.g., $\alpha =1$) to detect differences that noise problems become excessive, particularly as 

IR sensors suffer from high noise levels [23]. 

The optic flow tends to fail in regions with a largely homogeneous appearance [24], which is typical 

of bed clothing. Furthermore, objects that move in a straight line but oscillate forward and backward 

tend to have low salience [22]. These issues make optic flow unsuitable for our problem domain. 

Activity recognition extracts a compact representation of spatiotemporal features and uses this to 

classify activities. A popular recent approach treats the video sequence as a 3-D space-time volume 

(of intensities, gradients, optical flow, or other local features). Efros et al. [25] perform action 

recognition by correlating optical flow measurements from low-resolution videos. Bobick and Davis 

[26] proposed a static vector image as a temporal template to represent human movement, where 

the vector value at each point is a function of the motion properties at the corresponding spatial 

location; they introduced the motion history image (MHI) and motion energy image (MEI), 

spatiotemporal models that can be matched to stored models of known actions. However, the 

technique is view sensitive, requiring the “shapes” of actions in the same category to be similar and 

the shapes of actions in different categories to be dissimilar. In our domain, there is little constraint 

on the subject's sleeping posture and the shape of breathing varies. MEI and MHI are derived from 

DOF, and indeed Bobick and Davis [26] suggest that a more robust motion detection mechanism is 

required in situations where the test subject moves slowly. In addition, the MHI is vulnerable to 

spatial motion self-occlusion occurring within a temporal window due to overwriting. The extensions 

to the MHI have been designed to handle self-occlusion [27], [28], but as these are based on DOF 

techniques, they remain unsuitable for our domain. Gorelick et al. [29] also use spatiotemporal 

volumes for action recognition, modeling human actions as silhouettes of a moving torso and 

protruding limbs undergoing articulated motion. These space-time shapes may be used to classify 

actions. 

Another popular technique is to track space-time interest points [30] to generate spatial-temporal 

“words” [31] (using the bag of words representation), and to classify these using probabilistic 
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techniques [32], [33]. However, the lack of distinctive patterns on the bed cover makes this 

unsuitable for our domain. 

This paper presents a new real-time IR video monitoring technique for detecting abnormal breathing 

activities. It extends our previous work published in short form in [7]. Here, we introduce improved 

models for both the motion detection and activity recognition that are less sensitive to noise than 

our earlier approach. Our evaluation demonstrates that these achieve high accuracy in recognizing 

the abnormal breathing events and the body movement. The organization of the paper is as follows. 

The proposed algorithm is introduced in Section II. Section III shows the experimental results on 15 

video sequences featuring simulated apnea episodes and four clinical clips featuring actual episodes. 

Section IV concludes the paper. 

I. Introduction 

II. Breathing Detection 

III. Experiments 

IV. Conclusion and Discussion 

SECTION II 

BREATHING DETECTION 

This section presents a new IR video monitoring approach for anomalous breathing behavior 

detection. No positional constraint on the patient is imposed (other than by the orientation and 

position of the bed), allowing patients to sleep on their back or side, with or without facing the 

camera. The technique works with subjects either fully or partially obscured by a bed cover. The 

system monitors the degree of motion; while this remains below a threshold, the subject is 

undergoing normal breathing; when it exceeds the threshold, a motion event has occurred. The 

system learns a template to characterize normal breathing motion patterns online, and uses this to 

classify motion events as body movements, normal breathing episodes, deep breathing episodes, or 

apnea episodes. 

A. Motion Detection for Breathing Analysis 

To address the limitations of DOF methods with respect to the detection of breathing, we have 

developed a persistent luminous impression model (PLIM). PLIM is derived from the concept of 

background modeling, which updates a model of the background to discount transitory noise 

sources while allowing adaptation to long-term changes [34], [35]; however, the PLIM is tuned to 

detect subtle motion rather than to segment foreground objects. In background differencing, the 

background model is updated over time to avoid accumulated errors. In contrast, the PLIM is 

designed to accumulate errors to enhance the breathing signals and to differentiate between the 

breathing activity and the body movement. The PLIM incorporates slow adaptation, allowing pose 

changes to be accommodated while allowing cyclical movements to be detected; see Fig. 2. A simple 

measure of activity level can be extracted from the PLIM, and used to identify motion events; see 

Fig. 3. 
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Fig. 2. Sample activity map generated using PLIM, illustrated across a breathing cycle. The subject's 

breathing is detected around the edge of the subject and folds in the bed clothes. The activity level 

grows and falls in a cyclical manner through the breathing cycle. 
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Fig. 3. Activity level, $e_t$, may be used to detect events, with normal breathing (b,d), apnea 

events (e), and body movements (a,c) giving rise to significantly different levels of $e_t$. 
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Given an $M \times N$ image, and frame rate of $F$ frames/s, the PLIM is initialized 

using the image values 

TeX 

Source$$P(x,y,0)=I(x,y,0). \eqno{\hbox{(3)}}$$ 

http://ieeexplore.ieee.org/ielx7/10/6714426/6587794/html/img/6587794-fig-2-large.gif
http://ieeexplore.ieee.org/ielx7/10/6714426/6587794/html/img/6587794-fig-2-large.gif
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6587794#fig_1
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6587794&pgName=figures
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6587794#fig_3
http://ieeexplore.ieee.org/ielx7/10/6714426/6587794/html/img/6587794-fig-3-large.gif
http://ieeexplore.ieee.org/ielx7/10/6714426/6587794/html/img/6587794-fig-3-large.gif
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6587794#fig_2
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6587794&pgName=figures
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6587794#fig_4
http://ieeexplore.ieee.org/ielx7/10/6714426/6587794/html/img/6587794-fig-2-large.gif
http://ieeexplore.ieee.org/ielx7/10/6714426/6587794/html/img/6587794-fig-3-large.gif


At time $t$, the PLIM is updated using 

TeX 

Source$$\eqalignno{&\Delta (x,y,t)=I(x,y,t)-P(x,y,t-1) &{\hbox{(4)}}\cr & P(x,y,t)=P(x,y,t-1)+\left 

\{\matrix{1,\hfill & \Delta (x,y,t)>0 \cr 0,\hfill & \Delta (x,y,t)=0 \cr -1,\hfill & \Delta 

(x,y,t)<0}\right.\,.\quad &\hbox{(5)}}$$ The PLIM activity map $A(x,y,t)$ is defined as 

TeX 

Source$$A(x,y,t)=\biggl \{\matrix{1, & \hbox{if} \hfill & I(x,y,t)-P(x,y,t)>\alpha \cr 0, & 

\hbox{otherwise} & \cr } \eqno{\hbox{(6)}}$$ where $\alpha$ is the detection threshold, a 

parameter of the model. During normal sleep, breathing causes subtle movements away from and 

back toward any arbitrarily chosen starting point. These are observable as a cyclical growth and 

decline of regions in the PLIM activity map; see Fig. 2. We define the activity level, $e_t$, as the 

number of detected pixels in the activity map, $A(x,y,t)$, computed using (6) at time $t$

TeX 

Source$$e_t=\sum_{(x,y)}A(x,y,t). \eqno{\hbox{(7)}}$$ 

B. State Algorithm for Action Segmentation 

Normal breathing is (barely) perceptible in the $e_t$ level; however, motion events manifest as 

significant perturbations; see Fig. 3. We segment motion events by identifying the start and end 

time, $t_s$ and $t_e$, where $e_t$ rises above and subsequently falls below thresholds, 

described below. The sequences between motion events, where the activity level is very low, 

correspond to periods of normal breathing. We, therefore, use a two-state algorithm, which 

switches between the normal breathing state and the motion event state. It is possible to classify 

motion events using only the duration and peak values from the corresponding section of the 

$e_t$ time series, but this is insufficient to distinguish some movements (e.g., slight head 

movements) from apnea episodes. A more sophisticated approach using online breathing templates 

is introduced in the next section. 

C. Templates for Normal Breathing Activity 

The sleeping subject undergoes protracted periods of normal breathing, where there is only slight 

movement in particular areas (e.g., around the rib cage, shoulder, throat, mouth, or abdomen, 

depending on the posture and individual breathing behavior). By identifying where this movement 

occurs, it is possible to distinguish even quite subtle body movements from breathing, and to classify 

breathing actions as apnea, moderate deep breathing, or normal breathing episodes. We use a 

template-based method to capture the regions of movement corresponding to normal breathing. 

However, as the subject tends to change body pose periodically during sleep, the breathing motion 

region changes over time too; the template model is therefore reconstructed after body pose 

changes. 
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The method is related to MHI, described previously, but given the partial, noisy, and occasional 

signals, we use a simple binary template augmented with an online construction algorithm to 

produce a self-adapting normal breathing template based on an individual breathing behavior. A 

blank template is initially created, and when the state switches to normal breathing, the adaptive 

construction proceeds, until the algorithm switches to the motion event state. If the motion event is 

classified as a breathing event, which implies that the body pose remains the same, the previous 

template is retained and used when the state changes back to normal breathing. On the other hand, 

if the motion event is a body movement, a new template is created to capture breathing activity in 

the new pose. Fig. 4 illustrates the new adaptive online template construction process and 

recognition of events in a particular scenario. 

 

 

Fig. 4. Sample sequence illustrating adaptive online breathing template construction and activity 

recognition. (1) Initially, a normal breathing template is constructed, (2) an apnea episode occurs 

and is identified using the template-matching model, (3) adaption of the existing breathing template 

continues, (4) a body movement is detected based on the template matching result - template 

mismatch, (5) a normal breathing template is reconstructed by the proposed adaptive online 
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breathing template construction model, and (6) another apnea episode is detected using the 

template matching model with the newly constructed template. 
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The template construction algorithm needs to capture intermittent and limited breathing motion 

signals while discarding noise. To suppress noise, the signals are included in the template only if they 

appear at least twice within a certain period, and are retained if they repeat reasonably often. The 

signals that stop repeating are usually discarded, except when the number of signals on the 

template is low, in which case they are retained, as it is then more important to accumulate data 

than to avoid noise. 

The binary template $T_t$ is updated at each time step $t$, using an auxiliary integer-valued 

cumulative image $T_t^g$ with values in the range $[0,255]$. Defining the template 

quality level, $q_t=\sum_{x,y}(T_t)$ as the number of set pixels in the template, each 

pixel of $T_t$ is updated as follows: 

TeX 

Source$$\eqalignno{& T_t^g= \left \{\matrix{255,\hfill & \hbox{if} \; A_t=1\hbox{and }T_{t-1}^g>0 

\hfill \cr \delta,\hfill & \hbox{if} \; A_t=1 \, \hbox{and} \, T^g_{t-1}=0 \hfill \cr T_{t-1}^g-

\epsilon,\hfill & \hbox{if} \; A_t=0 \, \hbox{and} \, q_{t-1}>\lambda \, \hbox{and} \, T_{t-1}^g>0 \hfill 

\cr 0\hfill & \hbox{otherwise}}\right. &{\hbox{(8)}}\cr & T_t(x,y)=\left \{\matrix{1, & \hbox{if} \;\; 

T_t^g(x,y)>\delta \cr 0, & \hbox{otherwise} \hfill }\right.&\hbox{(9)}}$$ where 

$\delta =100, \epsilon =4$, and $\lambda =0.0012\,\hbox{WH}$ are empirically-

determined parameters of the algorithm, and we have omitted the pixel indices $(x,y)$ for 

brevity. The template quality threshold $\lambda$, is also ultimately used to determine whether 

the template contains sufficient information to be used for motion event classification. 

D. State Transition Rules 

The start point $t_s$ of a normal breathing cycle is triggered when the activity level, $e_t$, 

drops below the selection threshold $\lambda$ for $n=10$ time steps. The end $t_e$ 

point of the normal breathing cycles is triggered when the activity level rises above the adaptive 

threshold, $e_e$, given by 

TeX 

Source$$e_e={\rm max}(q(t^*)\nu, \lambda) \eqno{\hbox{(10)}}$$ where $\nu =1.3$ is 

determined empirically and $t^*$ is a periodic time sample taken on every $m{\hbox{th}}$ 

frame ( $m=40$ for 15 frames/s video clips). Hence, the activity level must rise by 

$\hbox{130}\%$ within a short period $\le m$ to indicate the end of a normal breathing 

episode. 
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The template is compared with the activity map at time $t_{{\rm match}}$, after $t_e$, 

where the activity level has risen above the adaptive threshold, $e_e$, for $n/2$ time steps; 

see Fig. 5. At frame 0, when no template has been built, $e_e$ is temporarily set as 

$e_e=\lambda \nu^2$, which is defined empirically and soon replaced by the values generated 

based on the individual breathing pattern. Obtaining $e_e,e_s$, the end time $t_e$ to 

terminate the current template construction, the template matching time $t_{{\rm match}}$, 

and the starting time $t_s^{{\rm new}}$ to build the next normal breathing template are 

defined below with a stabilizing factor $n$ for the switching status, which is defined empirically (

$n=10$) TeX 

Source$$t_e=\arg \min_{t\in T_1} t \eqno{\hbox{(11)}}$$ where 

$T_1=\{t:e_t\ge e_e \, \hbox{and} \, t>t_s^{{\rm old}}\}$ and $t_s^{{\rm old}}$ is set to 0 in the 

beginning TeX 

Source$$t_{{\rm match}}=\arg \min_{t\in T_2} \vert {n\over 2} - \sum_{l=t_e}^{t} 1\vert 

\eqno{\hbox{(12)}}$$ where $T_2=\{t:e_t\ge e_e \, \hbox{and} \, 

t>t_e\}$ TeX 

Source$$t_s^{{\rm new}}=\arg \min_{t\in T_3} \vert n- \sum_{l=t_{\rm match}}^{t} 1\vert 

\eqno{\hbox{(13)}}$$ where $T_3=\{t:e_t\le e_s \; \hbox{and} 

\; t>t_{{\rm match}}\}$. 

 

 

Fig. 5. Switching algorithm state. Assuming the algorithm has switched to normal breathing state at 

$t_s^1$, the rise of $e_t$ above the threshold $e_e$ at time $t_e$, for $n/2$ steps to 

$t_{{\rm match}}$ switches state to a motion event and triggers template matching at 

$t_{{\rm match}}$. The fall of $e_t$ below the threshold $e_s$ for $n$ steps triggers the 

switch to normal breathing at $t_s^2$. 
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E. Action Recognition by Template Matching 

The motion events are classified using one of the two techniques, based on the breathing template if 

it is usable (i.e., $q_t \ge \lambda$), or the activity level otherwise. The activity map is 

compared with the template using a normalized matching score, $s=w_2/w_1$, where 

$w_1$ is the proportion of the template intersecting the activity map, and $w_2$ the 

proportion of the activity map not intersecting the template 

TeX 

Source$$\eqalignno{w_1&={\sum (T \bigcap A)\over \sum T} &{\hbox{(14)}}\cr w_2&={\sum (\sim T 

\bigcap A)\over \sum A} &{\hbox{(15)}}\cr s&=w_2/w_1. &\hbox{(16)}}$$ 

The action is classified using two empirically defined thresholds, $\gamma_1=0.03$ and 

$\gamma_2=0.004$

TeX 

Source$${\hbox{action}}=\Biggl \{\matrix{o_1, & \hbox{if} \; s\ge \gamma_1 \hfill \cr o_2, & 

\hbox{if} \; \gamma_2\le s<\gamma_1 \hfill \cr o_3, & \hbox{if} \; s<\gamma_2 \hfill\cr } 

\eqno{\hbox{(17)}}$$ where $o_1$ is a body movement event, $o_2$ an apnea event, and 

$o_3$ a deep breathing event. 

The matching score is a measure of the degree of novelty of the action with respect to the template, 

normalized for both the activity map and the template size; the time complexity is ${\cal 

O}(p)$ where $p\ge q$. 

F. Simple Action Recognition Model 

When the breathing template is insufficient to support matching (e.g., due to shallow breathing), 

$q_t < \lambda$, we instead classify the motion events using the duration $d$ and the 

activity level value $e_{t_m}$

TeX 

Source$$\eqalignno{d &= t_e-t_s &{\hbox{(18)}}\cr \hbox{action}&= \left\{\matrix{o_1, & \hbox{if} 

\; e_{t_m} \ge \theta_m \; \hbox{or} \; d \ge \theta_d \hfill \cr o_2, & \hbox{if} \; d \ge \theta_d/2 

\hfill \cr o_3, & \hbox{otherwise} \hfill}\right. &\hbox{(19)}}$$ where thresholds 

$\theta_m = \kappa \hbox{WH}$ and $\theta_d=\beta F$, where 

$\kappa =0.26, \beta =4.6$ are defined empirically. 
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G. Adjustable Parameters 

The algorithm has a number of adjustable parameters. An initial set of effective parameter values 

was heuristically determined; then, each parameter was experimentally varied in turn. The operating 

values for these were determined using three video clips from the simulated datasets, which 

contains various events including overbreathing and body movement events. Where parameters 

produced effective performance over a range of values, the most effective value was chosen for 

each parameter. 

Table I illustrates the range of effective parameter values. The reported results utilize the values (

$\alpha =10$, $\lambda =0.0012\, \hbox{WH}$, 

$\gamma_1=0.03$, $\gamma_2=0.004$, $\nu =1.3$, $n=10$, 

$\kappa = 0.26$, $\beta =4.6$). The algorithm is not very sensitive to the settings 

of most of these parameters provided they are within the effective range; we discuss the more 

sensitive parameters below. 

 

 

TABLE I EFFECTIVE VALUES OF MODEL PARAMETERS 

The front end motion detector parameter $\alpha$ influences the motion detection results. When 

$\alpha$ is small (e.g., $\alpha =6$), more motion is captured, as is noise; when $\alpha$ 

is too high, all motion is filtered out. As a result, the selection of $\alpha$ is important and can 

influence the settings of other parameters such as $\lambda$. An effective range of $(8 

\sim 10)$ was identified, and a large value ( $\alpha =10$) chosen to filter out high IR noise. 

Another important and relatively sensitive parameter, $\lambda$, determines whether to use the 

template-matching method or the simple action recognition model. A range of $\lambda$ values 

were tested $(0.00105 \sim 0.00165)$, and a low value (

$\lambda =0.00117$) was selected in order to utilize the template as often as possible. Other 

parameters ( $\gamma_1,\gamma_2,\nu,n,\kappa,\beta$) are set using the mean 

of the effective range. 

The same parameter values were used successfully on two separate datasets, which have 

significantly different environmental settings—-including the illumination, camera viewpoint and 

angle, camera distance to the subject, and bed and clothing configuration—which indicate that the 

proposed method is robust. 

I. Introduction 
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II. Breathing Detection 

III. Experiments 

IV. Conclusion and Discussion 

SECTION III 

EXPERIMENTS 

We have evaluated the new technique in identification of normal breathing, apnea events, and body 

movement events. The apnea events are identified as the overbreathing event that occurs at the 

end of every apnea episode. The body movement is also used as an indicator of waking up by 

clinicians: if a body movement directly follows an overbreathing event, it supplies additional 

evidence of an apnea episode. Consequently, the evaluation of the proposed technique is based on 

detection of the overbreathing events and body movement events. 

Two datasets are used in our evaluation: the simulation dataset and the clinical dataset, which use 

different models of camera, and in different settings with different camera positions with respect to 

the subject. 

The simulation dataset (15 video clips) features actors simulating a wide variety of motion and body 

movement events. This allows us to evaluate a range of scenario with various occlusion levels, body 

poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight 

torso movement), breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest 

breathing, and abdominal breathing) and sequences of linking events (i.e., apnea–body movement 

and body movement–apnea). Two Sony IR camcorders (DCR-HC-30E) were utilized, with three 

different shooting angles, at 15 frames/s and a resolution of $320\times 240$. In order 

to simulate the sleep-lab environment, there was no visible lighting in the filming room and the 

subjects were partially covered by a sheet. The experimental data were collected from two subjects 

with three main postures (i.e., lying on the back, lying on one side facing the camera, and lying on 

the other side with their back to the camera). The data were collected on different days, from 

multiple camera positions, with the subjects wearing different clothing. The activities, such as 

normal breathing, obstructive apnea, and body movement, were simulated by the subjects. 

Furthermore, one of the subjects has shallow breathing patterns. To produce a reference standard, 

the experimental video contents were manually marked by a human observer who defined all 

motion events except for deep breathing events, including the frame numbers of the beginning and 

end of each event. The deep breathing activity is marked as normal breathing. 

The clinical evaluation system is installed in the sleep lab of the Lincoln County Hospital. The video 

system contains three IR cameras: two wall-mounted cameras on each side of the bed targeting on 

the upper body of the patient from different angles, and one on the ceiling capturing the full body 

view. In these experiments, the wall-mounted cameras were used. Three symptomatic subjects (one 

severe and two moderate) and six nonsymptomatic subjects were recruited to spend one night 

sleeping in the sleep lab for 8 h video recording. For the symptomatic data, five video clips are 

randomly sampled from the 8 h recordings of the severe OSA patient; four video clips are randomly 

sampled from the moderate OSA sufferers (two from each). Each clip lasting 15 min, containing 

22500 frames. Six video clips are randomly sampled, one from each of the nonsymptomatic subjects. 
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To produce a reference standard, the data were manually marked by the author, who is trained by 

the medical experts from the Lincoln County Hospital to identify apnea episodes. 

The output of the algorithm is a list of apnea and body movement episodes, each with the 

associated beginning and end frame numbers. These episodes are compared to the reference 

standard. We define an event to be correctly recognized if the majority of frames ( $>85\%$) 

covered by the estimated event have the correct labeling. Fig. 6 illustrates the classification process 

on the simulation dataset. 

 

 

Fig. 6. Experimental results of the simulated data: action classification outcome and reference 

standard. 

Previous | View All | Next 

Fig. 7 shows the quantitative classification results in the form of a confusion matrices [25], [42], for 

both datasets. The rows represent the reference standard, the columns the algorithm's results. On 

the simulation dataset, the diagonal average of the confusion matrix is $\hbox{95.5}\%$, 
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demonstrating that the method achieves high accuracy in recognizing apnea episodes and body 

movements. We observe that the method misses apnea episodes occurring directly after a body 

movement episode, as shown in video clip 8, as it segments temporally contiguous episodes as one. 

In practice, this scenario is implausible as apnea does not occur when the patient is awake, and body 

movement indicates waking up. On the other hand, if minor body movements happens right after an 

apnea episode (e.g., in video clip 11, and frequently in the clinical data), the method classifies the 

entire event as an apnea episode. In such cases, the human observer also defines the entire session 

as an apnea episode. 

 

 

Fig. 7. Confusion matrix of action classification on (a) Simulated data. (b) Clinical data. 
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For the clinical dataset, the diagonal average is $\hbox{94}\%$, demonstrating high accuracy in 

recognizing apnea and body movements episodes for the real clinical data. It is worth noting that the 

nonsymptomatic patients may experience some apnea episodes (a normal occurrence), and some 

such episodes were identified. 

Some template matching outputs for the clinical dataset are shown in Fig. 8. 
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Fig. 8. Template matching examples. Each row contains the raw image $I$, activity map $A$, 

online constructed action template $T$, matching result at a given time step (yellow: 

$\sim T \wedge A$; blue: $T \wedge \sim A$; white: $T \wedge A$). The upper three 

rows are apnea episodes, showing relatively low matching levels; the lower three rows are body 

movement episodes. 
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a) Classification of symptomatic and nonsymptomatic subjects: The apnea–hypopnea index is 

generally used for evaluation of the severity of OSA in PSG studies, and is calculated as the average 

number of apneas (airflow during breath reduced by >90%) plus hypopneas (airflow during breath 

reduced by between 50% and 90%), per hour of sleep. It is normal for the nonsymptomatic subjects 

to have a few apnea episodes during sleep, and generally the pulse oximetry traces of the 

nonsymptomatic subjects also show a small number of oxygen desaturation episodes (ODI <5 h -1). 

The distinction between the symptomatic subjects and nonsymptomatic subjects is that the number 
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of apnea episodes is considerably higher for the former (the greater the number is, the more severe 

the OSA patients suffer). 

Apart from experiments on classification accuracy of individual event-based recognition, we further 

tested subject-based classification performance. We report the number of abnormal episodes 

detected in individual clinical video clips, to show that the proposed algorithm is able to calculate an 

index $v$ (VAHI) which reflects the severity of the subject OSA: see Table II. We treat detected 

deep breathing episodes as potential hypopnea events, and sum the number of apnea episodes, 

$a$, and $0.5 \times$ the number of deep breathing episodes, $d$, and divide the total by 

the ratio of the length of the video clip to an hour, $l$

TeX 

Source$$v={a+0.5d\over l}. \eqno{\hbox{(20)}}$$ 

Table II shows that the VAHI values of the symptomatic video clips are distinct from the 

nonsymptomatic ones. Using Spearman's rho statistical analysis, the VAHI values are significantly 

correlated to the OSA diagnosis generated by pulse oximetry device ( $p=0.002$). In the 

binary classification of the symptomatic and nonsymptomatic video, the VAHI values are highly 

correlated to the OSA diagnosis ( $p<0.001$) based on Spearman's rho statistical analysis. 

In one clip, a nonsymptomatic subject had a disturbed sleep and showed a number of body 

movement episodes and nine apnea episodes (of which five are minor body movements but 

misclassified as apnea episodes, and the other four are overbreathing episodes; this is normal as 

noted previously). 

 

 
TABLE II VAHI VALUES 
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SECTION IV 

CONCLUSION AND DISCUSSION 

We have presented a novel approach to detect breathing signals and to recognize abnormal 

breathing activity from IR video, and have analyzed the method in identification of episodes of OSA. 

The technique runs in real time, is robust to occlusion by a standard hospital bed cover or sheet, 

variances in patterns of breathing and subject appearance, and substantial changes of camera view 

relative to the subject. This preliminary study indicates that it has good performance on both the 

simulated and clinical data. The algorithm uses a novel persistence luminance model that helps to 

reinforce subtle breathing movements, an activity level to segment the video, and a novel activity 

template to classify motion events. 

One limitation of the presented method is the number of heuristically determined parameters of the 

algorithm. For future work, we will investigate automated methods to determine sensitive 

parameters values and adapt them to individual scenarios, and potentially subjects. We also plan to 

augment video analysis of human breath activity by adding audio analysis. In addition, we would like 

to further investigate human sleep behavior by combining the computer vision approach with a 

(contact-type) EEG technique and exploring methods for using depth data acquired from Kinect. A 

more extensive analysis with a wider range of cameras and cross validation of clinical diagnosis is 

required to justify clinical trials and interventions. Furthermore, it would also be interesting to apply 

the newly developed methods to other breathing monitoring problems. 
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