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 Abstract— In this paper, we present a novel method for content adaptation and video summarization fully 

implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of 

extracted human objects under various activities/events. Accordingly, frames are classified into five categories 

via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and 

object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using 

Haar-like features. With the detected human objects and attained frame categories, activity levels for each 

frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped 

to form one activity entry as content of interest (COI) which will convert the original video into a series of 

activities. An overall adjustable quota is used to control the size of generated summarization for efficient 

streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling 

the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness 

and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as 

domain-specific tasks such as accurate recognition of objects can be avoided.  

 

Index Terms— Activity-driven content adaptation, content of interest, activity level, video summarization, 

compressed-domain processing.  
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I. INTRODUCTION 

Summarization of digital videos plays essential roles in efficient content-access, browsing and retrieval of large video 

databases as well as effective storage, management and transmission [1-5]. In general, a good summarization should only keep the 

most important information while ignoring the less important ones, which consequently leads to extraction the content of interest 

(COI). However, it is found that objective defining of COI is difficult due to the fact that COIs are inevitably dependent on both the 

application domain and the users’ preferences. One of the most widely investigated application is sports video summarization [10, 

13-14, 25, 34], followed by movies [5, 7, 21, 30, 35], news [18, 32], surveillance [6], home videos [28] and web videos [19, 24]. 

Regarding the users’ preferences, personalized and user-adaptive summarization techniques are introduced and can be found in 

[10-11, 28].  

Video summarization generally involves four main components, including video segmentation, key frame extraction, COI 

extraction, and summary generation. Segmentation is used to determine shots and sub-shots in original videos for further 

processing [6, 12-13], in which shot boundary detection is usually employed [1, 8]. Normally, histogram and frame differences are 

measured and decision is then made via simple thresholding or complex classifying techniques for shot boundary detection [8]. 

Key frames are defined as most representative frames in each shot, and many techniques have been proposed for the extraction of 

them [5-6, 11, 37, 38] whilst frame similarity can be measured by using simple histogram distance [1, 7, 30, 32, 39] and mutual 

information etc. [8]. Extraction of COIs including objects and activities can be solved by introducing user-attention model and 

domain knowledge [3, 6, 16]. As for summary generation, combining of key frames, video segments, or even a complex layout of 

these frames whose sizes are determined by their contained information may be considered [18].  Recent literature surveys on 

relevant techniques can be found in a number of sources [2, 17, 20, 36].  

According to the information used in determining COIs, video summarization methods can be categorized into two main 

groups, i.e. “internal summarization” and “external summarization” [17]. The prior utilizes only information extracted from the 

video, including image features [7, 14-15, 20, 26, 30, 32], audio [32-34], camera motion [8, 12] and object motion [1,7,13, 16].  In 

contrast, the latter supports interactive processing by employing additional information such as manual annotation of the video 

used in MPEG-7 descriptors [32] and knowledge about the users to achieve personalized summarization [10-11, 28].  

In addition to low level features, high level semantics are also extracted for more effective video summarization as it believes 

that these semantics can help to extract more accurate COIs. These COIs include static and moving objects and activities at higher 

level, where representative techniques are involved including (facial) object detection, tracking, event classification and audio 

analysis [6, 8, 13-14, 17-18, 22]. Generally, clips of more human objects are considered to have more importance and hence 

assigned with higher ranks. Since the defined objects and activities are solely application dependent, such as human objects under 
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surveillance environment and normal/abnormal activities at an airport, models and approaches for the summarization of general 

video contents are desired. 

In this paper, we propose a new content-adaptation algorithm for video summarization, which is basically an internal 

summarization solution. Firstly, video summarization is modeled as extraction of COIs, which is further emphasized by using 

human objects under motion activities. Two inter-frame measurements are then applied for frame categorization via fuzzy 

decision. Secondly, human objects are detected using Haar-like features. With frame categorization results and detected human 

objects, each frame is assigned with an activity level to represent its importance for summarization. Continuous frames of same 

category are then grouped to form a motion activity which has converted the original video into a series of motion activities. 

Thirdly, under an adjustable quota of summarization size, representative frames in each activity are determined by evenly sampling 

the accumulated activity level to adapt with the activity-driven content changes.  

The remaining part of this paper is organized as follows. In Section II, video summarization is modeled as extraction of useful 

COIs in which frame categorization is presented in details. Section III describes the definition of activity level and extracted series 

of motion activities, on the basis of extracted human objects and frame categorization results. Experimental results and discussions 

with quantitative evaluations are given in Section IV, and finally brief conclusions are drawn in Section V.  

 

II. MODELING 

In this section we will model the elements in extracted COIs for content adaptation, based on which frames are classified into 

several categories including shot changes, motion activities and others. This categorization is achieved by two inter-frame 

measurements. This on the one hand solves the problem of shot boundary detection. On the other hand, it provides useful 

information to rank the importance of frames for summarization.  

To design effective techniques for video summarization, one important requirement is the COIs extracted should be closely 

related with the video contents. In general, video sources are captured to cover scenes of people’s daily life. As a result, the COIs 

need to be defined in a way where such scenes can be modeled. There are two common elements involved in modeling these 

scenes, including objects and activities (events). The prior normally refers to both human and other entities, and the latter is 

generally caused by movement of objects and cameras. Some examples to show relationships between these objects and activities 

are given below. 

a) Static objects (no event or camera motion), like a painting, a flower, and a movie star, etc.; 

b) Objects under camera motions, such as pan to a football field and zoom into a player, etc.; 

c) Objects in motion activities, such as people swimming, students reading and a man driving; 

d) Objects under camera motion whilst in an event. 
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Since deep understanding of these objects and activities are purely domain-specific tasks, we avoid going to any further and try 

to provide a more general solution for video summarization. Consequently, our tasks are constrained in identifying human objects 

and corresponding camera and object motions rather than exactly recognizing the objects and motion activities. By measuring these 

extracted objects and activities, COIs are then obtained for video summarization.   

To detect the above motion activities, one apparent indicator is that these activities will lead to large frame difference in video 

frames. However, as we know, shot changes including cuts and gradual transitions will also generate large frame difference. 

Therefore, the video frames need to be classified into at least five categories including cut, gradual transition, camera motion, 

object motion and others. In the following, we will discuss the principles in classifying these five categories of frames. 

If we consider video frames as sequential images, the inter-frame difference ( IFD ), namely frame distortion metric in [9], will 

be high when shot changes occur. Normally, this difference will remain low if there are no such shot changes. As for cut, this 

change can be identified by a large peak in the IFD  curve which lasts for only one frame. For gradual transitions, however, there 

will be multiple peaks which are relative high but generally lower than the height of the peak as a cut. Regarding frames without 

shot changes, their IFD  values should be very low except those containing apparent motions. Here camera motion usually leads 

to higher IFD  values than that of object motion as it refers to overall change of pixel positions.  

Although camera motion may cause large IFD  values in counting co-sited pixel difference, the overall similarity of the 

frames remains high. Therefore, global similarity of images ( GSI ) can be employed to filter such cases from real shot changes. 

Please note that accurate definitions of GSI and IFD are given in the next section, based on the extracted DC-images from MPEG 

video. For boundary frames of cuts, their GSI  values are small as the boundary frames are apparent different. For boundary 

frames of gradual transitions, their GSI  values will become smaller when the interval between the frames increases. If there is no 

large motion and shot changes involved, the GSI  values between frames will become large. Regarding large object motion, it may 

lead to intermediate values of both IFD  and GSI  which makes it different from other patterns. 

Table 1. Appearance of five kinds of frames in terms of relevant IFD  and GSI  values. 

 cut Gradual transitions (gt) Camera motion (cam) Object motion (om) Others 

IFD   High 
Intermediate, higher under 

larger interval 

Intermediate, higher under 

larger interval 
Low to intermediate Low 

GSI  Low 
Low to intermediate, lower 

under larger interval 

Intermediate to high, lower 

under larger interval 

Intermediate  to high 
High 

 

Table 1 illustrates the appearances of IFD and GSI  values over five categories of frames, from which we can clearly find that 

these two measures are capable of classifying frames into our defined categories. Although both gradual transition and large object 

motion will generate intermediate values of IFD  and GSI , they can be distinguished by considering IFD  and GSI  in varying 
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intervals. In gradual transitions, larger interval between frames will produce higher IFD  values and lower GSI  values, and 

smaller intervals will lead to lower IFD  values and higher GSI  values. Whilst for object motion, IFD  and GSI  values under 

varying frame intervals do not satisfy these appearances.  

To help understand how IFD  and GSI  values change under various frame categories, Figure 1 illustrates some examples in 

which the data is extracted from test set of TRECVID’08 [40]. The frame numbers in the plots are for index purpose only, as the 

curves are compacted with intermediate points being omitted for better visualization effect. The frame ranges for the three 

sequences “BG_36528”, “BG_34413” and “BG_35148” in determining these values are [1575, 1945], [120, 225], and [2, 205], 

respectively. As seen, frame categories of cut and others can be clearly identified. Although sometimes it is difficult to distinguish 

between camera motion and large object motion (see Fig 1b), such inaccuracy will not degrade our results as both these motion 

activities will be ranked the same level for summarization as discussed in the next Section.  

 

  (a) 

 (b) 

 (c) 

Figure 1. Illustrations of IFD  and GSI  values vs. frames under various frame categories, the data in (a-c) is 

respectively extracted from “BG_36528.mpg”, “BG_34413.mpg” and “BG_35148.mpg” of TRECVID’08 test set.  
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III. FRAME CATEGORIZATION 

Frame categorization is to classify video frames into five categories by using the principles as illustrated in Table 1. For the 

input videos compressed in MPEG format, we implement the whole process in compressed-domain for efficiency. The high 

efficiency is achieved due to the fact that only partial decoding of the video is required and the time-consuming inverse discrete 

cosine transform (IDCT) is avoided. Actually, both IFD  and GSI  are attained on the basis of our extracted DC-images. Since all 

the macroblocks are intra-coded in I-frames, the corresponding DC-images can be directly extracted. For P-frames and B-frames, 

their DC-images are obtained via weighted motion compensation as proposed in [23]. As each DC value corresponds to the average 

pixel value inside the related block, the DC-image provides a low-resolution version of the original frame, which presents a 

scaled-down visual content platform for further analysis.  

If we define 
)(i

dcY  as the corresponding DC-images of luminance component for the thi  frame, for two given frames i  and j , 

their IFD  value is defined using the Soergel distance as follows [41]: 
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where k  is the index of the elements in the DC-images. Since all the elements in each DC-image are non-negative, we can easily 

have ]1,0[),( jiIFD  where larger IFD  values indicate more difference between the two frames and vice versa. If the overall 

illumination of the image is low, a small change within frames may result in a large IFD  value. On the other hand, a larger change 

is required to generate the same IFD value over frames of high illumination conditions. For example, if the average luminance of 

the image is 200, the required intensity change should be 40 to obtain a IFD  value of 0.2. To achieve the same IFD  value, the 

intensity change of 10 is sufficient if the average luminance of the image becomes 50. Consequently, IFD  value provides certain 

degree of robustness to adapt with illumination changes over frames. 

As seen, IFD  values are defined in a way to measure the sum of co-sited block difference hence it is inevitably sensitive to 

block motions that makes the contents inconsistent. To overcome this drawback, we intend to introduce GSI  as frame correlation 

which is implemented by phase correlation on extracted DC-images for efficiency [33]. For two DC-images 
)(i

dcY  and 
)(i

dcY , its 

phase correlations is defined as follows, where )(  denotes Fourier transform: 
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Afterwards, the global peak of maximum amplitude is determined over ),( ji  surface, and the corresponding amplitude 

which belongs ]1,0[  is then taken as the similarity between two DC-images as defined in (3).  
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Apparently, we also have ]1,0[),( jiGSI  and larger GSI  value refers to higher similarity and vice versa.  

Examples of extracted DC-images and their associated original images in four consecutive video frames are shown in Figure 2, 

where significant intensity changes can be found in the last two frames. The measurements of IFD  and GSI  values for each 

consecutive pairs of the DC-images are also given. Since there are very limited content changes in the two frames before the cut, a 

low IFD  value of 0.282 and a high GSI  value of 0.908 are found. When the cut occurs, a rather high IFD  value of 0.765 and a 

very low GSI  value of 0.105 are obtained indicating apparent content changes associated.  Due to significant change of intensity, 

the two post-cut frames appear very different with a pretty high IFD  value of 0.805, even higher than the IFD  value during the 

cut. However, thanks to the robustness of GSI  in measuring frame similarity, a relative high value of 0.774 still suggests 

consistent contents of the two frames.  

 

     

    

   

Figure 2. Examples of four original video frames (top row) extracted from “BG_34413” sequence, their associated  

DC-images (middle row) and the difference between three pairs of consecutive DC-images (bottom row). The IFD and  

GSI values for the three pairs DC-images are (0.282, 0.908), (0.765, 0.105) and (0.805, 0.774), respectively, which  

clearly shows that GSI is insensitive to intensity changes in providing accurate measurement of image similarity. 

 

With the defined IFD  and GSI  values, five fuzzy membership functions (FMF) (.)1,  ii are defined for frame 

categorization as presented below, where 10 21  dd  and 10 21  ss  are four constant parameters. For simplicity, we 

also denote )1,(  iiIFDdi  and )1,(  iiGSIsi , where i  is the frame index. The frame is then classified as the category 
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of the maximum membership value over the five FMFs.  This is different from the work in [29] where FMF is employed for fuzzy 

content representation. According to the principles in Table 1, FMFs for cut and others category are defined as follows. 
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In (4), the FMF is defined to reflect the fact that frames in the category otherstend to have small id  but large is  values, i.e. 

low frame difference and high inter-frame similarity. If the id  is small enough and is  is sufficient large, i.e. 21 ssdd ii  , it 

is determined as others with 100% membership degree. Otherwise, the degree is linearly degraded. Since the visual appearance 

of cut  is of large id  and small is , which is opposite to that of others, hence the FMF for frame category cut  in (5) is defined 

in a similar way, but in a different logic of (4).  

To further classify camera motion, object motion and gradual transition cases, two flags, )1,( iif IFD  and )1,( iifGSI , are 

attained below,  where 1step  is a large frame interval.  
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Again, according to the principles in Table 1, FMF for frame categories of gradual transition and camera motion determined as 

follows: If  )1,(!)1,(!  iifiif GSIIFD , 0)()( 1,1,   camgt iiii ; Otherwise, we have 
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In Eq. (8), if ],[ 21 ddd i  , we have either 1dd i   or 2dd i  , and the part of corresponding fuzzy likelihood for id  is 

then defined as )/,/min( 12 tddt ii .  Similar rules are applied to is , i.e. when ],[ 21 sssi  , the part of its corresponding fuzzy 

likelihood is determined as )/,/min( 12 ssss ii . In Eq. (9), please note that even the likelihood part for id  is similar to that 

defined in Eq. (8), the range of is  is different, and this difference will help to identify these two cases.   

Also, FMF for the frame category of object motion is defined as follows: If  )1,()1,(  iifiif GSIIFD , 0)(1,   omii ; 

Otherwise, we have 
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As can be seen, parameters 1d  and 2d  are used as a group to threshold (.)IFD  values, and parameters 1s  and 2s  form 

another group to threshold (.)GSI  values. Each parameter is determined by using Bayesian minimum error classification rules as 

follows. Taking 1d  as an example, firstly we calculate )|( IFDothersp  and )|( IFDothersnonp   as conditional probability 

learnt from a training set. Secondly, the threshold 1d  is optimally decided in (11) below,  

])()|()()|([minarg
1

0
1  







IFDdIFDotherspIFDdIFDothersnonpd
  

        (11) 

where the first and second parts of (11) respectively denotes errors caused by false alarms and missing classifications when the 

decision is made where (.)IFD  refers to others. Finally, we have determined that 06.01 d , 75.02 d , 1.01 s  and  

93.02 s . 

 

IV. HUMAN OBJECT DETECTION AND COIS EXTRACTION  

In this Section, we will firstly discuss how to detect human objects in videos. On the basis of detected human objects and frame 

categorization results, secondly we will present the details in extracting useful COIs containing human objects and motion 

activities.  
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A. Human-object Detection 

To detect human objects within videos, Haar-like features are used for their accuracy, robustness and efficiency [31]. The 

Haar-like features are determined like a group of templates which denote the difference of dark and light regions. As a result, they 

can be considered as features containing edge information at different orientation and scale. Although the whole set of Haar-like 

features is large, during a training process only a small sub-set is learned from positive and negative examples for face detection. In 

our system, the implementation of Haar face detector in OpenCV is used for the detection of human objects [42].  

For efficiency, face detection is only applied to I-frames on the corresponding DC-images of luminance component, 
)(i

dcY . 

Since the size of a face in the DC-image will become one-eighth of its original size in width and height, the extracted DC-image is 

enlarged to enable successful detection of small face regions in the DC-image. Also a small window of 10*10  pixels is used as 

the initial search window with a step of 10% of the initial size, i.e. increasing 1 pixel in both width and height. Finally, the number 

of detected face objects is denoted as in , which will be employed in video summarization in the next step.   

B. Activity-Driven COIs Extraction 

As described in the previous sections, COIs should be defined in a way that human objects and apparent motion activities are a 

focus. To this end, for each frame i  we assign )(ir  as a rank of importance to be selected as COIs which is defined as follows, 

  
)1/(1

)]1,([)( in
iiIFDir




  
               (12) 

Apparently, larger values of )1,( iiIFD  and in  produce higher ranks of )(ir  as they respectively refer to more content 

changes (caused by motion activities, etc.) and more detected human objects. On the contrary, smaller values of )1,( iiIFD  and 

in  will generate lower ranks of )(ir . When there is no human objects detected, i.e. 0in , we simply have 

)1,()(  iiIFDir . When 0)1,( iiIFD , we have 0)( ir  no matter how in  changes. This is useful to skip frames 

which have no difference to its prior ones, such as embedded static or black frames in videos. 

Since both camera motion and large object motion yield large values of )1,( iiIFD , they will lead to high ranks of )(ir  for 

further processing. In other words, both of them are treated equally in ranking frames for summarization thus the inaccuracy in 

classifying these two categories can be ignored. As for frame category of others, its rank values are low due to very small 

)1,( iiIFD  values that have been attached. In addition, it can be seen that for shot changes including both cut and gradual 

transitions, the associated rank values will also be high due to large )1,( iiIFD  values contained. However, these frames can be 

processed specifically by making use of the frame category information which will be addressed in the next section.  

According to the sequence “BG_2408.mpg” from TRECVID’07 test set, we have illustrated the change of )(ir  between 

)1,( iiIFD  under varying detected number of human objects in  as shown in Figure 3. As seen, larger in  will help to increase 
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the rank value )(ir  and makes )1,()(  iiIFDir . In other words, it is the human objects (represented by detected face masks) 

and large inter-frame difference (caused by motion activities) that leads to high rank values for effective video summarization. To 

this end, our approach is activity-driven which shows content adaptation with COIs.  

 

 

Figure 3. Illustration the change of )(ir  under varying in ,  and )1,( iiIFD  is also shown for comparison,  

and the data is extracted from the sequence of “BG_2408.mpg” of TRECVID’07 test set.  

C. Generating Summarization through Content Adaptation 

After frame categorization, the original video V  can be represented by a series of motion activities A , including camera 

motion, object motion, and others, i.e. },...,,{ 21 MAAAV  , and M  is the total number of extracted motion activities. These 

activities may separated by shot changes like cut and gradual transitions. Frames in the category of camera and object motion will 

be included in the generated summarization, but those gradual transitions will be excluded. Two boundary frames of cut effects 

will be merged with their directly adjacent motion activities. The reason that we put others within the activity series is that frames 

in this category may be also included in the summarization, though under a coarse re-sample rate due to much low rank values of 

)(ir . 

In fact, )(ir  is employed to determine the importance of the frame to be included in the summarization. For each motion 

activities mA , the sum of its average motion activity level mR is determined by (13) where 1mi  and 2mi  denote the frame 

boundary of mA , 
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The overall activity level of the whole sequence allR  is then obtained as 

   


M

m mall RR
1   

               (14) 
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To provide certain flexibility, an adjustable upper limit of the summarization ratio   (between 0 and 1) is allowed in video 

summarization, i.e. the target video will have frames no more than a fixed percentage of the original video. Next, we will discuss 

how to assign the size quota to all detected activities mA  for video summarization. Let L  be the length of the original video in 

frames, the length of the summarization video should be no more than L  frames. Therefore, each rank unit corresponds to 

allRL /  frames inside the summarization video.  For each activity mA , the frame quota )(mq  assigned for it is determined as  

1)(  allmRLRmq 
                 

(15) 

In the following, we will discuss how to determine the specific )(mq  frames in mA  for summarization. If 0)( mq , the 

whole clip of mA  is ignored. If 1)( mq , the middle frame of mA  at the index 2/)( 21 mm ii   is selected. Otherwise, both the 

first and the last frames of mA  are selected. When  2)( mq , the remaining frames to be selected for summarization is 

determined via an iterative process as follows. If frame 1i  has been selected, the next frame to be selected is 2i , and 2i  should be 

the first frame satisfying that the accumulated activity level between 1i  and 2i  is no less than 
allRL / .  





2121

),(),(/)( 21

iii

mm

iii

all iiiirRLir 
           

(16) 

Please note that the above re-sampling is nonlinear and unevenly distributed over frames. In terms of the accumulated activity 

levels, however, the sampling process could be regarded as even. If a video clip contains high activity level caused by 

camera/object motion and detected human objects, it is re-sampled under a small interval. On the other hand, a video clip of low 

activity level will have a large re-sample interval due to smooth contents it has contained. In an extreme case, static frames of no 

changes in comparison with its prior frame will be skipped. This is consistent with the expectations of our human perceptions in 

viewing videos whilst extracting COIs and identifying importance over sequence of videos. Some interesting results are illustrated 

and discussed in the next section.  

 

V. RESULTS AND DISCUSSIONS 

The proposed model and techniques have been fully tested by using the data set from the well-known TRECVID evaluation 

series. In this section, the results on frame categorization and video summarization are illustrated and analyzed. Quantitative 

evaluations are achieved objectively by using our extracted manual ground truth maps and the details are presented below.  

A. Data Set and Evaluation Criteria 

The test set in TRECVID series contains videos compressed in MPEG-1 format, and the frame size is 352x288 pixels. In total 

15 video sequences are used in our experiments with nearly 524000 frames (about 5.8 hours at 25fps). These test sequences cover 

a wide range of courses including movies, news, education programs and historical archives.  
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According to the results of frame categorization and video summarization, two different evaluations are used in our system. To 

achieve objective and quantitative measurements of the performance, these results are compared with our manually extracted 

ground truth maps. The ground truth maps are produced for each sequence which contains a series of video segments in varying 

frame categories. Each such segment is represented as  wiitypeid ,,,, 21  where id  and type denote its index and frame 

category, respectively; 1i  and 2i  refer to the start and end frames; ]1,0[w  denotes average importance of the segments to be 

selected as COIs. The most important content is assigned with 1w  and the least important one with 0w . The parameter w  

is manually determined as follows. Firstly, we have three independent viewers and they view each sequence and assign a weight to 

every video segment. To enable accurate weighting, the viewers need glance over the whole sequence before they rank the video 

segments. Finally, the average score from them is then utilised as the determined w .  Accordingly, quantitative analysis of these 

evaluations are achieved and discussed below. 

B. Evaluation of Frame Categorization 

To evaluate the performance of frame categorization, the results attained are converted to the similar format as defined in the 

ground truth, which contains  rankiitypeid ,,,, 21 where rank  denotes the average activity level within the frame interval 

],[ 21 ii  and the other elements are the same as those in ground truth maps. On the average the overall accuracy of frame 

categorization is about 88.3%. By comparing the results with ground truth frame by frame, a confusion matrix is obtained to show 

the accuracy of frame categorization as presented in Table 2. 

As seen, in general the most accurate results are achieved in classifying frames in the categories of cut and others, followed by 

object motion and camera motion. And the worst results are obtained in classifying gradual transition effects. One apparent reason 

here is that both cut and others can be defined clearly with little ambiguity, such as its appearances listed in Table 1. While for the 

other three categories, they share some common appearances hence the lower accuracy in classification. Although there are relative 

large errors in classifying frames in the categories of gradual transition, camera motion and object motion, such errors will not 

necessarily lead to poor performance in video summarization, especially for the misclassification errors between camera motion 

and object motion.  However, inaccurately classifying motion activities into gradual transitions may lead to critical problems as it 

may lead to content lost when such gradual transitions are removed during summarization.  

In addition, it is found in Table 2 that motion activities including both camera motion and object motion form more than 80% of 

the video contents. This has also proved that our activity-driven scheme has the potential to extract the most meaningful contents 

from the videos for effective summarization. On the contrary, shot changes only occupy less than 2.5% of frames in the original 

videos. Regarding frames in the category of others, they appear as a percentage about 16% in the test videos.  

Table 2. Confusion matrix of frame categorization results in comparison with manual ground truth maps. 
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                     GT 

Results cut 
Gradual  

transition 

Camera 

motion 

Object 

motion 
others Sum 

Cut 99.2% 0.1% 0.2% 0.2% 0.0% 0.1% 

Gradual transition 0.3% 77.6% 9.7% 2.9% 0.1% 2.1% 

Camera motion 0.2% 12.5% 82.3% 3.8% 0.3% 14.7% 

Object motion 0.2% 9.3% 7.6% 88.2% 3.2% 66.8% 

Others 0.1% 0.5% 0.2% 4.9% 96.4% 16.3% 

sum 0.1% 2.3% 16.2% 65.6% 15.8% 100% 

 

The parameter rank  in obtained results and w  in ground truth maps are used to evaluate the accuracy of frame importance 

which is measured by using activity levels. For each motion activity, the error of frame ranking is ||)1( 12 wrankii  . The 

relative overall error of frame ranking fe  is defined as 



 



id

gt

id

idididid

f
idR

wrankii

e
)(

||)1( )()()(

1

)(

2

           
(17) 

where )(idRgt denotes the sum of frame importance of motion activity id in the ground truth maps as defined below 

 

)1()( )(

1

)(

2

)(  ididid

gt iiwidR
           

(18) 

Table 3 gives fe  values under various frame categories from which we can see that our extracted activity level is closely 

matched with the frame importance defined in the ground truth. This one hand has demonstrated that activity levels indeed can be 

used to measure frame importance in such a context. On the other hand, it also reveals that large errors in frame categorization 

(about 11.7%) only cause a quite small error in fe  at about 4.1%. This again has shown that misclassification of frame categories 

will not certainly lead to degradation of summarized videos. 

Table 3. Relative overall error of frame ranking. 

           GT 

Results cut 
Gradual  

transition 

Camera 

motion 

Object 

motion 
others average 

fe  0.1% 4.71% 5.22% 4.60% 2.78% 4.14% 

C. Evaluation of Video Summarization 

The most important measurement in evaluation of video summarization is to examine the completeness that all the COIs have 

been included, i.e. inclusions in the summary, and this is usually defined as a percentage of activities included in the generated 

summary. Here, two different evaluations are obtained including: i) inclusion of motion activities eIN , and ii) inclusion of frame 

accuracy fIN . The first one is an overall evaluation to the inclusion of COIs and a COI is included if the summarized video 

contains at least one frame of the COI. Certainly this is a coarse evaluation which is further improved in the second evaluation 

where the inclusion of each activity is defined as a ratio between [0,1] below. Please note that we intend to generate automatic and 
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objective evaluation in which subjective scoring by human observers is avoided as those used in many other systems such as [27]. 

For a given motion activity in the ground truth, its associated frame quota 
gtq  can be decided by  

  
id

gtallgt

allgt

gt

gt idRR
R

idLR
idq )(,

)(
)( _

_



  
          (19) 

where parameter   and L  respectively denote a given summarization ratio and the length of the original video as defined in (15).  

The overall inclusion of frame accuracy fIN  is then attained as 

  






id

gt

id
f

idq

idn

IN
)(

)(

  
             (20) 

where )(idn  denotes number of frames within the 
thid motion activity in the ground truth that has been included in the 

summarized video.  

 

Figure 4. Illustration of eIN  and fIN  over various  (x-axis). 

Figure 4 plots the changes of activity inclusion eIN  and frame inclusion fIN  under varying summarization ratio  . 

According to the results in Figure 5, several facts can be summarized below. Firstly, fIN  is found more accurate than eIN  due to 

the fact that fIN  is determined by a percentage of frames included. Therefore, incompleteness of frame inclusion may lead to a 

low fIN  value but still a high eIN  value. In other words, fIN  is more accurate in measuring the inclusion of summarized 

video. Secondly, decreasing summarization ratio will lead to lower inclusion scores, and fIN  values will degrade more than eIN  

values. Thirdly, it seems %15  is a good tradeoff between a low summarization ratio and a high inclusion values. 

With a fixed summarization ratio of %15 , the performance of our proposed algorithm is compared with two others 

including the work reported in [8] and [27] and the results are listed in Table 4. For consistent comparisons, the recursive process in 

clustering of key frames in [8] stops when the sum of extracted key frames no more than our predefined quota. For simplicity, linear 

fusion is employed in which all the weights for different videos are set as 0.25 in implementing the algorithm in [27]. As can be 
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seen, our method yield slightly better results than the one reported in [27] under linear fusion scheme. Since the weights in [27] can 

be adjusted for better performance, the overall performances of the two algorithms are quite comparative.  However, fewer features 

are needed in our algorithm and it is also nearly three times faster than the one in [27]. Regarding the method in [8], it generates the 

worst results in this test due to the fact that extraction of high-level semantics such as face detection is excluded. Taking this into 

consideration, the result is not bad as it can be further improved in video summarization context. 

Table 4. Evaluation of our proposed algorithm in terms of inclusion of events and frames. 

 The work in [8] Linear fusion in [27] Our method 

eIN  81.9% 84.7% 85.1% 

fIN  79.4% 81.8% 82.2% 

 

Note, an average face detection rate achieved is only 74.6% using the Haar detector, and three reasons to explain this are given 

as follows. The first one is the pose variation of faces in video, as Haar detector performs better only in detecting frontal faces. The 

second reason is the limited size of image for face detection, especially using DC-image, the smoothed small version of the original 

frame image. The third reason is that we only detect faces in I-frames, thus faces in B- and P- frames may be missed. Although the 

face detection rate is less than 75%, the fIN  and eIN  values achieved in Table 4 is 82-85%. This has clearly shown that our 

proposed approach can still generate good results even the detected faces is less accurate. In other words, it means that our method 

does not rely on face detection. As a result, it can be applied to general videos even without human objects for content-adaptive 

summarization. 

Finally, it is worth mentioning that our system can achieve a processing speed of 128.3fps, i.e. more than 5.1 times faster than 

real-time play of the video. The percentage of time spend in our algorithm is summarized in Table 5 in which we can find that 

nearly 32% of computational load is used in calculating GSI , even under fast implementation of Fourier transform. Partial 

decoding of MPEG videos occupies about 30% of the computation capacity. These two need to be further improved.  

Table 5. Time spent in different stages of the algorithm. 

 Partial-decoding IFD  GSI  Fuzzy decision Face detection Other 

Time spent 29.8% 11.4% 31.9% 8.6% 7.1% 11.2% 

 

VI. CONCLUSIONS 

In this paper, we described a new algorithm for video summarization, which provides a more flexible and general solution for 

this topic as domain-specific tasks like exactly recognizing the objects and activities are avoided. In general our approach can be 



 17 

applied to any videos, although the presence of human objects helps to refine the weights in generating content-adaptive 

summarization. Our COI-based modeling is found not only useful in frame categorization but also helpful in activity-driven 

content adaptation for effective video summarization. We have introduced two measures for objective evaluation of summarization 

results, and it is found that our proposed methodology can generate very promising results under such a context. In addition, we 

have also demonstrated that compressed-domain processing is not only efficient but also effective in such a context. Further 

improvement could be made by introducing new techniques towards more effective presentation of COIs of varying activity levels.  
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