382 research outputs found

    Parametric Macromodels of Drivers for SSN Simulations

    Get PDF
    This paper addresses the modeling of output and power supply ports of digital drivers for accurate and efficient SSN simulations. The proposed macromodels are defined by parametric relations, whose parameters are estimated from measured or simulated port transient responses, and are implemented as SPICE subcircuits. The modeling technique is applied to commercial high-speed devices and a realistic simulation example is shown

    The 1980 land cover for the Puget Sound region

    Get PDF
    Both LANDSAT imagery and the video information communications and retrieval software were used to develop a land cover classifiction of the Puget Sound of Washington. Planning agencies within the region were provided with a highly accurate land cover map registered to the 1980 census tracts which could subsequently be incorporated as one data layer in a multi-layer data base. Many historical activities related to previous land cover mapping studies conducted in the Puget Sound region are summarized. Valuable insight into conducting a project with a large community of users and in establishing user confidence in a multi-purpose land cover map derived from LANDSAT is provided

    Parametric Macromodels of Drivers for SSN Simulations

    Get PDF
    This paper addresses the modeling of output and power supply ports of digital drivers for accurate and efficient SSN simulations. The proposed macromodels are defined by parametric relations, whose parameters are estimated from measured or simulated port transient responses, and are implemented as SPICE subcircuits. The modeling technique is applied to commercial high-speed devices and a realistic simulation example is shown

    TVS transient behavior modeling method, and system-level effective ESD design for USB3.x interface

    Get PDF
    This research proposal presents a methodology whereby a protection device can be modeled in SPICE compatible platforms with respect to the transient behaviors during Electrostatic Discharge (ESD) events. This methodology uses an exclusively black-box approach to characterize the parameters of the protection device, thereby allowing it to be implemented without intimate knowledge of the DUT. Results of this methodology can be used to predict the transient response (conductivity modulation and snapback delay) of the ESD protection devices, and thereby predicts how much current could flow into the device (typically a digital IO pin) under protection. The transient behavior modeling methodology for the ESD protection device is developed for the purpose of system level ESD design, and it is part of the study of System-level Effective ESD Design (SEED) methodology. During the work, the transient behavior modeling method and the SEED methodology have been applied to a high-speed USB3.x repeater IC circuit design. This article introduces a PCB test board working as USB3.x repeater, which allows to place various on-board protection devices and to measure the residual voltage and current at the IO pin accurately. In Section 2, the transient behavior modeling framework and the characterization method will be introduced. The validation results of three different types of protection devices are shown in the end of the section. In Section 3, the implementation of SEED methodology to a USB3.x system design will be introduced. The measurement setup is described in detail. Finally, the validation results for different scenarios will be shown --Abstract, page iii

    Use of collateral information to improve LANDSAT classification accuracies

    Get PDF
    There are no author-identified significant results in this report

    Analysis and modeling of power supply induced jitter for high speed driver and low dropout voltage regulator

    Get PDF
    ”With the scaling of power supply voltage levels and improving trans-conductance of drivers, the sensitivity of drivers to power supply induced delays has increased. The power supply induced jitter (PSIJ) has become one of the major concerns for high-speed system. In this work, the PSIJ analysis and modeling method are proposed for high speed drivers and the system with on-die low dropout (LDO) voltage regulator. In addition, a jitter-aware target impedance concept is proposed for power distribution network (PDN) design to correlate the PSIJ with PDN parasitic. The proposed PSIJ analysis model is based on the driver power supply rejection ratio (PSRR) response, transition edge slope and the propagation delay. It is demonstrated that the proposed model can be generalized for different type of drivers. Following the proposed PSIJ model, a method for improving the PSIJ simulation accuracy in the input/output buffer information (IBIS) model is also proposed. A PSIJ analysis method is also proposed for system with on-die LDO. The approach relies on separate analysis of the LDO block PSRR response and the buffer block PSIJ sensitivity. This procedure allows designer to evaluate the system PSIJ with fewer and faster simulations. For the jitter-aware target impedance, a systematic procedure to develop the target impedance curves is formulated and developed for common CMOS buffer circuits. Given the transient IC switching current and the jitter specification, multiple target impedance curves can be defined for a specific circuit. The proposed design procedure can largely relieve over-constrain in the PDN designed based on the original target impedance definition”--Abstract, page iv

    Macromodel Extraction for Drivers in High-Speed Communications Channels

    Get PDF
    Proyecto de Graduación (Licenciatura en Ingeniería Electrónica) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Electrónica, 2015.This thesis describes the process performed for extracting a descriptive macromodel for a generic transmitter block at IC level for high-speed channels applications. The work has been focused on a first approach to establish at methodology to extract a macromodel considering both the signal and power domains. Macromodels are required to perform accurate and numerically efficient simulations, in order to verify and validate behavior performances of communication links without having to consider the full driver model and potential IP sensitive information related to it. In this work, different approaches for macromodeling generation are reviewed and a methodology based on the IBIS specification is explored. A driver specific topology had been chosen in order to exercise the methodology for macromodel generation. An important feature of the methodology is the possibility to include the effects concerning signal integrity and power integrity simultaneously, which was carried out by including controlled sources on the output of the driver

    Otimização e melhoria da modulação comportamental para os interfaces de E/S analógica e de sinal misto de alta velocidade

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaA integridade do sinal em sistemas digitais interligados de alta velocidade, e avaliada através da simulação de modelos físicos (de nível de transístor) é custosa de ponto vista computacional (por exemplo, em tempo de execução de CPU e armazenamento de memória), e exige a disponibilização de detalhes físicos da estrutura interna do dispositivo. Esse cenário aumenta o interesse pela alternativa de modelação comportamental que descreve as características de operação do equipamento a partir da observação dos sinais eléctrico de entrada/saída (E/S). Os interfaces de E/S em chips de memória, que mais contribuem em carga computacional, desempenham funções complexas e incluem, por isso, um elevado número de pinos. Particularmente, os buffers de saída são obrigados a distorcer os sinais devido à sua dinâmica e não linearidade. Portanto, constituem o ponto crítico nos de circuitos integrados (CI) para a garantia da transmissão confiável em comunicações digitais de alta velocidade. Neste trabalho de doutoramento, os efeitos dinâmicos não-lineares anteriormente negligenciados do buffer de saída são estudados e modulados de forma eficiente para reduzir a complexidade da modelação do tipo caixa-negra paramétrica, melhorando assim o modelo standard IBIS. Isto é conseguido seguindo a abordagem semi-física que combina as características de formulação do modelo caixa-negra, a análise dos sinais eléctricos observados na E/S e propriedades na estrutura física do buffer em condições de operação práticas. Esta abordagem leva a um processo de construção do modelo comportamental fisicamente inspirado que supera os problemas das abordagens anteriores, optimizando os recursos utilizados em diferentes etapas de geração do modelo (ou seja, caracterização, formulação, extracção e implementação) para simular o comportamento dinâmico não-linear do buffer. Em consequência, contributo mais significativo desta tese é o desenvolvimento de um novo modelo comportamental analógico de duas portas adequado à simulação em overclocking que reveste de um particular interesse nas mais recentes usos de interfaces de E/S para memória de elevadas taxas de transmissão. A eficácia e a precisão dos modelos comportamentais desenvolvidos e implementados são qualitativa e quantitativamente avaliados comparando os resultados numéricos de extracção das suas funções e de simulação transitória com o correspondente modelo de referência do estado-da-arte, IBIS.Signal integrity (SI) simulation of high-speed digital interconnected system via transistor level models is computational expensive (e.g. CPU time and memory storage), and requires the availability of physical details information of device’s internal structure. This scenario raises the interest for a behavioral modeling alternative which describes the device’s operation characteristics based on the observed input/output (I/O) electrical signal. I/O buffers that interface memory’s interconnects have major share in the computational load containing a very active complex functional part and high numbers of pins. Particularly, output buffers/drivers are forced to distort the I/O signals due to their nonlinear dynamics. In this concern, they constitute the integrated circuit (IC) bottleneck of ensuring reliable data transmission in the high-speed digital communication link. In this PhD work, the previously neglected driver’s nonlinear dynamic effects are efficiently captured to significantly reduce the state of the art black-box parametric modeling complexities and enhance the input/output buffers information specifications (IBIS). This is achieved by following the gray-box approach that merges the features of the black-box model’s formulation, the analysis of the observed I/O electrical signals and the buffer’s physical structure properties under practical operation conditions. This approach leads to physically inspired behavioral model’s construction procedure that overcomes the issues of the previous modeling approaches by optimizing the resources used at different model’s generation steps (i.e. characterization, formulation, extraction, and implementation) to mimic the driver’s nonlinear dynamic behavior. Moreover, the most important achievement is the development of a new two-port analog behavioral model for overclocking simulation that copes with the recent trends in I/O memory interfaces characterized by higher data rate transmission. The effectiveness and the accuracy of the developed and implemented behavioral models are qualitatively and quantitatively assessed by comparing the numerical results of their functions extraction and transient simulation to the ones simulated and extracted with transistor level models and the state of the art IBIS in order to validate their predictive and the generalization capabilities
    corecore