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ABSTRACT 

This research proposal presents a methodology whereby a protection device can 

be modeled in SPICE compatible platforms with respect to the transient behaviors during 

Electrostatic Discharge (ESD) events. This methodology uses an exclusively “black-box” 

approach to characterize the parameters of the protection device, thereby allowing it to be 

implemented without intimate knowledge of the DUT. Results of this methodology can 

be used to predict the transient response (conductivity modulation and snapback delay) of 

the ESD protection devices, and thereby predicts how much current could flow into the 

device (typically a digital IO pin) under protection. The transient behavior modeling 

methodology for the ESD protection device is developed for the purpose of system level 

ESD design, and it is part of the study of System-level Effective ESD Design (SEED) 

methodology. During the work, the transient behavior modeling method and the SEED 

methodology have been applied to a high-speed USB3.x repeater IC circuit design. This 

article introduces a PCB test board working as USB3.x repeater, which allows to place 

various on-board protection devices and to measure the residual voltage and current at the 

IO pin accurately. 

In Section 2, the transient behavior modeling framework and the characterization 

method will be introduced. The validation results of three different types of protection 

devices are shown in the end of the section. In Section 3, the implementation of SEED 

methodology to a USB3.x system design will be introduced. The measurement setup is 

described in detail. Finally, the validation results for different scenarios will be shown. 
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1. INTRODUCTION 

ESD damage is common in the electronic devices, to protect the DUT from ESD 

damage, multiple protection devices have been developed to suppress the voltage 

transiently during ESD event. There can be found thousands of millions ESD protection 

devices in the market. During ESD event, the devices will be triggered, thus most of the 

ESD current can be bypassed and will not damage the device under protection. However, 

the turn on mechanism and speed are very different among them. The turn on time for a 

spark gap device can be in range of microseconds to milliseconds. Comparably, the TVS 

diode could be turn on much faster, in range of several nanoseconds. The turn on time 

severely weakens the ESD protection effectiveness. Besides turn on time, the 

performance of an ESD protection device is also related to the lowest conductivity. 

The goals of the transient behavior modeling method are to provide a model that: 

1. combines small signal and large signal response. 

2. can predict the transient response of the protection device during ESD event. 

3. can be used in multiple SPICE based platform. 

4. can be extracted from measurements in a ‘black box’ way. 

5. works for variant protection devices.  

System level Effective ESD Design (SEED) methodology has been successfully 

applicated in many situation during the last several years. However, SEED methodology 

on high speed interfaces design has not been widely applied yet. For high speed 

interfaces, On-chip ESD protection is limited in area size since the capacitance is 

proportional to the size of P-N junction, and the higher capacitance sacrifices the 

bandwidth of the transmission channel. High-speed interfaces are more sensitive to 
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transient overshoots than slower interface types, thus the transient responses of the IO pin 

during the ESD event are investigated in this work.  

In this work, the SEED methodology has been applied to a high-speed USB3.x 

repeater IC circuit design. It introduces a PCB test board working as USB3.x repeater, 

which allows to place the off-chip ESD protection devices at multiple positions and to 

measure the residual voltage and current at the IO pin accurately. 
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2. TRANSIENT BEHAVIOR MODELING FOR ESD PROTECTION DEVICES 

Having accurate SPICE models which capture the transient behavior of TVS 

devices is important in system-level ESD simulations. Such simulations will predict 

whether the protection device or the protected device will trigger. Table 1.1 lists the 

advantages and disadvantages of different existing models. Column 1 in Table 1.1 

represents the author of the prior work. 

During the protection device turn-on process, there are two major transient 

behaviors: the inductive overshoot and the non-inductive overshoot.  

The inductive overshoot is due to the fast time-changing current which flows 

through the apparent inductance inducing a peak voltage. The duration of the overshoot is 

related to the rise time of the transient current. 

The non-inductive overshoot of a TVS diode is attributed to the conductivity 

modulation of the device [5] as well as the snapback delay within the device. In a spark 

gap, the static time lag can be observed, and it is very similar behavior as the snapback 

delay of a TVS diode. The duration for this overshoot is determined by the injection 

level. In general, for the injection level closed to the device trigger voltage, the turn-on 

process could last approximately in the range of several nano-seconds to tens of nano-

seconds. For the injection level which is much higher than the device trigger voltage, the 

turn-on process could reduce to within nano-second.  

The breakdown of a spark gap may occur in micro-second after the voltage across 

it reaches the trigger voltage.  
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Table 1.1. Comparison of existing models used for describing the large signal response 

  
Author What has been modeled Advantages Disadvantages 

R. P. Santoro [1]  Quasi-static VI curve  Easy to implement 

 Portable to multiple 
platforms 

 Quasi-static VI curve 

 Convergence issue in 
transient solver 

 No transient behavior 

N. Monnereau [2] 

L. Wei [3] 

 Quasi-static VI curve 

 Snapback behavior 

 Small signal model for 
RF analysis 

 Combines small signal 
and large signal model 

 Not compatible with 
SPICE solver 

 No conductivity 
modulation behavior 

D. Dobrescu [4]  Static VI curve  Portable to multiple 
platforms 

 VI curve fitted 

 No transient behavior 
included 

Z. Pan [5] 

J. R. Manouvrier 
[6] 

 Conductivity 
modulation 

 Snapback behavior 

 Particle physics-based 
model 

 Overshoot due to the 
conductivity 
modulation has been 
well modeled 

 Particle-based simulation 
not portable to SPICE 

 Difficult to be 
implemented in SEED 

J. Di Sarro [7] 

P. Juliano [8] 

 Conductivity 
modulation 

 Non-linear transient 
overshoot included 

 SPICE based model 

 Valid for SCR type TVS 
devices, not applicable 
BJT type devices 

 
 
 
The proposed modeling method was developed for variant ESD protection 

devices include TVS, spark gap and varistor. All kinds of the devices can be modeled to 

capture all three overshoot mechanisms discussed [9]. The model is portable to different 

SPICE type platforms and demonstrates good correlation with measurement for both the 

overshoot peak voltage as well as duration (approximately <10% error). The modeling 
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method is validated for simulating the transient behaviors of spark gaps, varistors and 

other overvoltage protection devices.  

2.1. REVIEW OF LITERATURE

In previous study, three main different models are created by different groups. 

They all give their own benefits and limitations.

2.1.1. Piecewise Linear Model. Piecewise linear model describes only the

voltage and current relationship of the protection device. For different types of device, 

the piecewise linear model can be easily used to predict the quasi-static IV curve. The 

modeling method is introduced in [1][4], and it is possible to be ported the model to 

multiple SPICE based platforms. However, two issues are mainly seen in this method:

1. A suddenly changed voltage or current would causes convergence issue.

2. The piecewise linear model doesn’t contain transient behavior.

Figure 2.1 is showing an example of modeled quasi-static IV curve and the time 

domain waveform during a TLP injection.

Figure 2.1. Quasi-static IV curve of the piecewise linear model (left) and its time domain 
waveform (right)
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In the time domain waveform, the artificial peaks can be observed at both rising 

edge and falling edge of the TLP pulse because the model describes only the relationship 

between the voltage and current of the DUT.  

2.1.2. Physics Based Numerical Model. The physics mechanism of the  

transient overshoot is introduced in [5] [12] [13]. Paper [5] explains the mechanism of the 

overshoot due to conductivity modulation, the simulation has been implemented in 

TCAD, and the time domain measurement result is compared to the simulation result. 

Paper [12][13] describes the conductivity modulation as well as the snapback delay. The 

voltage and current of the device are expressed in the differential equations. However, the 

comparison between the measurement and the simulation is not shown in the two paper. 

The limitations of the model are: 

1. These models are numerical models, cannot be easily implemented in SPICE 

based solvers. 

2. Operators must have very strong physical background in semi-conductor 

technology to create a model based on the articles. 

3. The models can only be used to predict one of the transient behaviors but in 

practical, the transient response of an ESD protection device are combination of multiple 

behaviors, such as conductivity modulation, snapback delay and the inductive overshoot. 

4. The model cannot be used for other types of ESD protection devices, such as 

spark gap and varistor. 

2.1.3. State Machine Model. Compare to the piecewise linear model, the state  

machine model improves the convergence, it defines three regions in the IV curve: off, 

snapback, and on. However, same as the piecewise linear model, the state machine model 
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expresses the voltage as the function of current, hence, only the quasi-static IV curve is 

fitted, the non-linear overshoot behaviors are not included. As a result, the turn on time of 

the protection device cannot be modeled by this method. 

2.2. MODELING FRAMEWORK 

The block diagram of the proposed SPICE model for the TVS device is shown in 

Figure 2.2. It contains a linear small signal model, and a non-linear large signal model. 

The non-linear behavior is separated into a turn on behavior model and a large signal 

quasi-static model for the time after snapback (D3 and D4).  

The turn on behavior model in Figure 2.2 includes a snapback delay model and 

the conductivity modulation model. The core blocks that influence the current flow are: 

1). Small signal model; 2). D5 (D6); 3). Snapback delay model (if the device is a 

snapback type); 4). Conductivity modulation model; 5). D3 (D4). Diodes D1 and D2 are 

ideal diodes, but D3 to D5 have modified VI curves, they do not show the typical 0.7 V 

turn on of a PN diode. 

The model frame in Figure 2.2 is symmetric for both polarities and the model 

parameters can be tailored to fit the specific TVS, varistor or spark gap of interest. 

2.2.1. Linear Small Signal Model of The Protection Device.  The linear small 

signal model replicates the RF performance of the TVS device when it is not turned on, 

which is needed to simulate the effect of the TVS on signal integrity. It contains the 

junction capacitance (C1) of the TVS device, the effective series resistance at resonance 

(R2, in order of Ohms), the apparent inductance (L1) arising due to the current path, as 

well as the leakage current resistor (R1) that is usually a very large value (MOhms or 
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higher). The junction capacitance of a diode usually varies with voltage, here we use the 

zero-biased value of the junction capacitance as C1. 

Figure 2.2. Block diagram of the transient behavior model

In large signal simulations, the parameters (R2, C1, L1) also impact the initial 

overshoot in both voltage and current waveforms. The voltage can be calculated from:

�(�) =
��∙��(�)

��
+ ����(�) ∙ �(�) (1)

where 
��∙��(�)

��
determines the overshoot voltage. The ����(�) is the time variant resistance 

of the ESD protection device (non-linear resistance of the device). In the implementation, 

����(�) includes the snapback delay model, conductivity modulation model and the 

quasi-static VI curve (D3). 

For devices having a larger junction capacitance, the charge up of this capacitance 

leads to a current pulse that can be described by:
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���������(�) =
��∙���(�)

��
     (2) 

where, ��(�) is the voltage across the junction. 

2.2.2. Non-Linear Large Signal Model. The non-linear large signal model  

structure contains five sub-models: the pre-clamping diode model before snapback 

D5/D6 (in Section 2.3.2.1), the path selection diode D1/D2 (in Section 2.3.2.2), and the 

quasi-static VI curve D3/D4 (in Section 2.3.2.3), snapback delay model (in Section 

2.3.2.4), and conductivity modulation model (in Section 2.3.2.5). The combination of 

these models describes the transient behavior of the TVS.  

2.2.2.1. Pre-clamping diode model. Some snapback devices demonstrate a 

‘bending’ in the VI curve before they go into snapback. A TVS example 

(PESD3V3Z1BSF) is shown in Figure 2.3.   

In Figure 2.3(b), the forward TLP voltage is 15 V, before the TVS snaps back, it 

clamps the voltage at 8.5 V. This behavior is due to the snapback triggering component 

inside the device (e.g. in [9] the Zener diode is used for triggering) and characterized 

using a very fast TLP (VF-TLP, pulse width is 6 ns) [10]. This clamping is modeled by 

D5 and D6 (in Figure 1.2). 

2.2.2.2. Path selection diode. The path selection adds a directional feature to  

the model. For a positive transient event, diode D1 (Figure 2.1) turns on activating the 

positive current path while the negative current path is activated through diode D2 for a 

negative transient stress event. Diodes D1 and D2 are set only to have several mV voltage 

drop and they are practically ideal diodes. 
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Figure 2.3. a) VF-TLP VI curve at the low current (I < 0.2 A) region, and b) the time 
domain pre-clamping behavior measured at 15 V forward voltage

2.2.2.3. VI curve after turn-on. Disregarding the transient behavior, the device

can be modeled as a PN diode (Is, Rs and N are the parameters needed in the diode model) 

in SPICE, D3 and D4 in Figure 2.2 are used to model the quasi-static VI curve. The data 

is extracted from 100 ns TLP measurements.
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In Figure 2.4(a) the red dash line shows one of the modeled TVS 

(PESD5V0C1USF) VI curve after turn-on.

Figure 2.4. a) Simulated quasi-static VI curve after turn-on vs. measured quasi-static VI 
curve and b) circuit of the model

2.2.2.4. Snapback delay model. A TVS device does not go into snapback

immediately when the voltage crosses the snapback threshold voltage. This delay is 

termed as snapback trigger delay. Snapback trigger delay is an inherent behavior of all 

snapback type devices. A spark gap may show nanosecond to millisecond delay which is 

usually called static time lag of dielectric breakdown. This effect is demonstrated in 

Figure 2.5. Physical reasons for this delay have been analyzed in [11][12][13]. 

The example shows a TVS (PESD5V0C1USF) under 5 ns TLP stress at 20, 22, 

and 30 V forward voltage. The quasi-static snapback threshold voltage (Vt1) is 17 V. The 
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area size of S1 and S2 in Figure 2.5 is equal to the constant value, “snapback_trigger”, 

when the snapback occurs within the device.  With increased forward voltage, the 

snapback delay is reduced. However, this TVS device did not snapback at 20 V forward 

voltage for the 5 ns pulse, because the area, S3, is smaller than the threshold value 

“snapback_trigger”. The pulse length is not long enough.

Figure 2.5. Snapback trigger delay behavior of one TVS sample

The snapback delay is modelled the following way. If the voltage across the TVS 

(VTVS) is larger than the snapback threshold voltage (Vt1), then the difference between 

VTVS and Vt1 is integrated. The resulting value of the integration is compared to a 

threshold value (snapback_trigger) of a SPICE switch. Once the voltage reaches this 

threshold the switch switches its state from OFF to ON.

The SPICE implementation for the snapback trigger delay is shown in Figure 2.6

which is a sub-circuit used in Figure 2.2. 
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The voltage between the input node and the Cathode is the voltage drop across the 

TVS device (VTVS). Vt1 is determined from 100 ns TLP quasi-static VI measurements. The 

voltage difference between VTVS and Vt1 is descripted in term of Vint as:

Figure 2.6. Snapback delay model circuit diagram

���� = ���� − ��� (3)

The relationship between the delay and the VTVS is described by the charge (Qctl) 

accumulated in Cinteg, and expressed in:

�

������
∫ ����

�

��
∙ �� = ����    (4)

where t0 is the time instant when VTVS is higher than the trigger voltage (Vt1). Rtrans is the 

transfer impedance of the VCCS which is 1 Ohm. In the model, VTVS is applied to a 

VCVS having a gain of 1. This reproduces the voltage. Next, the threshold voltage Vt1 is 

subtracted. The resulting voltage (Vint) is used to control a VCCS. Before t0, Vint is 
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clamped to Cathode voltage by D9. The controlled output current charges Cinteg. Vsb is the 

voltage across Cinteg, which is also the control level for the switch, it is determined by: 

��� =
����

������
      (5) 

Vsb is then compared to the “snapback_trigger” and determines the state of the switch. D7 

and D8 are used to clamp the voltage of Vsb such that Vsb is never negative, and cannot 

exceed 100 V. 

Once the switch is turned on, the voltage at the input is reduced and Vsb goes 

below “snapback_trigger”. Avoiding the turn-off of the switch after triggering, a current-

controlled current source (CCCS) is implemented in the model.  

The output of this model (node B) is connected to the input of the conductivity 

modulation model. If the TVS does not exhibit snapback, the snapback delay model can 

be removed, node A and node B will be shortened in Figure 2.2. 

2.2.2.5. Conductivity modulation model. Conductivity modulation in a  

semiconductor device is associated with the change in carrier concentration due to the 

avalanche and injection processes [5]. The conductivity is modulated by the amount of 

carriers in the neutral region near the depletion region edge. The conductivity modulation 

will increase the voltage across the TVS beyond the value predicted by the quasi-static VI 

curve during the transition. 

Figure 2.7 shows the SPICE model which was developed to capture the 

conductivity modulation for the TVS device. 

The current-controlled current source (CCCS) mirrors the transient current 

flowing through the device into the capacitor (Cswitch). Cswitch is related to the diffusion 
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capacitance which is an equivalent capacitance due to the minority carrier distribution in 

the quasi-neutral region [16].

Figure 2.7. Conductivity modulation model circuit diagram

The SPICE model does not model the physical process. Some similarities exist as 

the model has a capacitor Cswitch that is charged by the current to create a voltage that is 

used to change the resistance of the switch. VC is the voltage across the diffusion 

capacitor Cswitch in the SPICE model. It is used to control the conductivity by changing 

the value of the variable resistor (RM). The variable resistance was created using a 

voltage-controlled switch model [14]. When Cswitch charges up, VC rises, thus, lowering 

the value of RM. A turn-on threshold voltage (Vturnon) is derived from the charge threshold 

(Qth) shown later. When VC is greater than Vturnon, the resistance RM is fixed to a low 

value (1mohm) and the model is completely turned on. The total charge delivered during 

a transient stress can be calculated as

�� = ∫ ����(�) ��
�

��
(6)
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where QM is the accumulated charge at time instant t, Itvs (Disregarding the current 

flowing through R1, R2 and D5 in the model) is the current through the TVS device, t0 is 

the start time, and t is the end time for the charge calculation. Qth is referred as the charge 

at the turn-on moment (tturnon) thus, it is the amount of charge needed to complete the 

phase in which the conductivity of the TVS is increasing. After this phase the quasi-static 

VI curve determines the current. This can be extracted by monitoring the current 

waveforms obtained from the VF-TLP measurements. Qth describes the result from 

integrating the current through the device from t0 to tturn-on. The value of Qth is determined 

from measurements. Next, Vturnon can be determined from 

������� = ���/�������     (7) 

At last, the resistor Rrecomb is the recombination resistor that discharges the charge 

in Cdiff after the ESD event, which also helps the solver to converge. The value of Rrecomb 

is 1 MOhm for general implementation. The parameters extraction procedure will be 

introduced in Appendix A. 

2.3. TRANSIENT MODEL VALIDATION 

11 ESD protection devices listed in Table 2.1 are selected in broad range, models 

for the devices were created in Keysight ADS using the proposed methodology, the 

models are also ported to LTspice without changing any parameter. All the models listed 

in Table 2.1 are attached in Appendix B. In Figure 2.8, the simulation result of using 

ADS and LTspice are compared with the measurement result (for PESD3V3Z1BSF). It 
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can be observed that the simulation results for both platforms are identical when the same 

set of parameters are used.

Table 2.1. TVS models have been created

TVS model number Type 

PESD5V0C1USF Unipolar snapback device

PESD3V3Z1BSF Bi-polar snapback device

PESD5V0H1BSF Bi-polar snapback device

PESD5V0S1USF High capacitance(42pF) unipolar Zener diode

DF2S5M4SL Unipolar snapback device

ESD102-U1-02ELS Unipolar snapback device

DF2S5.6 High capacitance (40pF) unipolar Zener diode

RClamp2431T High voltage TVS(32V), bipolar Zener

uClamp2801T High voltage(36V), high capacitance (25pF), unipolar Zener

BK33000702 Spark gap

AVLC 5S 02 050 Varistor

Figure 2.8. 30 V TLP injection result comparison among two different simulation 
platforms and the measurement
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The simulation results of TLP are compared to the measurement, regarding the 

peak voltage, turn on time and quasi-static VI curve and show a good match. Some of the 

models’ simulation results are also validated by the HMM test. The TLP pulse width used 

for the characterization in this article was selected to be 6 ns, but the models have been 

tested for other pulse widths as well. The TLP characterization was tested on both 

snapback and non-snapback type devices while the HMM stress was tested on a snapback 

device. 

2.3.1. Validation Using TLP Source. The quasi-static IV curve (of

PESD3V3Z1BSF) taken from the 100 ns TLP measurement result and the transient 

simulation result are compared in Figure 2.9. The average window for both measurement 

and simulation are set to 70% to 90 % of the time domain waveforms.

Figure 2.9. Quasi-static VI curve comparison of the 100 ns TLP measurement result and 
the simulation result

The time domain simulation result of the model was validated using a TLP 45 V 

to 1000 V forward voltage. Figure 2.10 compares measurement and simulation data for 
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this snapback device (PESD3V3Z1BSF) at 45 V and 1000 V. The TVS triggers at 9 V. 

The simulation matches the measured delay. At 1000 V, the delay is very short, and the 

overshoot is mainly inductive. The simulations successfully captured the transient 

response observed in the measurements.  

 
 

 

 
 

Figure 2.10. TLP validation result for snapback type of TVS device with forward voltage 
of 45 V (top) and 1000 V (bottom) 

 
 
 

A similar type of characterization was performed on a non-snapback type device 

(PESD5V0C1USF). The comparison between measurement and simulation is shown in 

Figure2.11. The TLP forward voltage for Figure 2.11 (a) was -40 V while it was -500 V 
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for Figure 2.11 (b). The simulation model successfully predicts the overshoot voltage and 

overshoot duration within 10 % tolerance.

Figure 2.11. TLP validation result for non-snapback type of TVS device with forward
voltage of a) -40 V and b) -500 V

2.3.2. Validation Using ESD Gun Generator. The same snapback device used 

in the TLP characterization was stressed with an ESD generator. The device was tested 

with two stress levels as shown in Figure 2.12. 

Figure 2.12. IEC validation results with source voltage set at a) 1 KV and b) 2 KV
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The peak voltage was observed to be nonlinear based on the peak transient 

injection which indicates it was related to the non-linear part of the overshoot model. The 

simulation model was able to predict the transient response in terms of the peak voltage 

and ringing frequency for the device under test. The model is able to predict the quasi-

static behavior after the ringing is settled. 

2.4. SUMMARY AND FUTURE WORK 

In this section, the transient behavior modeling method has been proposed for 

various ESD protection devices. It allows to predict the transient behaviors such as 

snapback delay (static time lag for spark gap), conductivity modulation and quasi-static 

IV curve. The model also combines the RF response of the protection devices. The model 

has been validated by both TLP injection and ESD gun test. 

To adapt the model to different TVS, a set of parameters needed to be tuned based 

on measurements. This model was written to operate on most SPICE solvers. A very 

detail instruction of modeling procedures has been introduced so that other students and 

engineers can follow it and model the protection devices for their own usage purpose. 

The next step for this work is to automatically generate the SPICE model by 

simply import the measured S-Parameters and TLP results. 
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3. AN APPLICATION OF SYSTEM LEVEL EFFICIENT ESD DESIGN FOR 
HIGH-SPEED USB3.X INTERFACE 

High-speed interfaces like USB3.x or HDMI need optimized selection and 

placement of off-chip ESD protection devices regarding parasitic capacitance (<1 pF) and 

turn-on time. On-chip ESD protection is limited in area size since the capacitance is 

proportional to the size of P-N junction. High-speed interfaces are more sensitive to 

transient overshoots than slower interface types [17][18][19]. It is important to consider 

that both on board and on-chip ESD protection devices might show a delay in turn-on. 

Thus, not only the static VI curves but the transient turn-on behavior needs to be 

considered [20][21]. This uncertainty in the design process can be evaluated and an 

optimal solution found by applying System Level Efficient ESD Design (SEED) 

methodology [22][23]. 

In the system level ESD design, engineers mostly consider the susceptibility of 

the event based on IEC61000-4-2 and ISO10605 standards [24], yet in the field, CDE 

[25] (cable discharge event) is another type of stress that can cause malfunction or 

damage of the system [26]. In this paper, the SEED methodology has been applied to a 

high-speed USB3.x repeater IC circuit design. The paper discusses the application of the 

SEED methodology, and it introduces a PCB test board working as USB3.x repeater, 

which allows to place various PCB protection devices and to measure the residual voltage 

and current at the IO pin accurately. 
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3.1. DESCRIPTION OF THE VALIDATION TEST SYSTEM

The system is built around TI SN65LVPE512, which is an USB 3.0 repeater IC.

The IC compensates the frequency response of the USB3.0 transmission channel, such 

that no distortion of the signal at the end of the channel.

3.1.1. USB3.X Test Board. An on-board current and voltage measurement

structure captures the pin voltage and current close to the IC’s RX and TX pin.  

Figure 3.1 represents the PCB designed for this investigation. 

Figure 3.1. Photograph of the USB3.x repeater board (top) and the ESD injection board 
(bottom)
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The USB3.x repeater board includes two USB ports, one of them is connected to 

an ESD injection board.  Besides the repeater and its measurement ports, the PCB 

contains a calibration structure (lower side of the PCB, the top image of Figure 3.1 that 

replicates the voltage and current measurement circuit. It allows calibrating the voltage 

and current measurement port transfer functions. 

To measure the current two choices have been considered: Inductive and via the 

voltage drop along a 1 Ohm resistor [27]. As the 1 Ohm resistor introduces a significant 

voltage drop (relative to the Rdynamic of the I/O and the TVS), we decided to use an 

inductive method and accept its disadvantage of more complex signal processing to 

obtain the current from the measurement voltage. 

Figure 3.2 shows the critical part of the layout of the voltage and current 

measurement ports. The 1 kOhm resistor R3 together with the input impedance of the 

oscilloscope forms a 26.4 dB voltage divider. The two adjacent lines (red lines) form a 

transformer for capturing the current.  

The induced voltage Vind(t) is given by 

����(�) = �
��

��
    (8) 

The mutual inductance, M, is determined by the local trace geometry. Its value is 

measured 0.31 nH. The inductor L1, in conjunction with the parallel resistors R1 and R2 

form a low pass filter. This partially compensates for the frequency response of the 

inductive pick-up transformer. Its cutoff frequency fc is 79 MHz.  The low pass is added 

to allow for better usage of the dynamic range of the oscilloscope. Without the low pass, 

the initial current rise would cause a large initial peak, forcing a large voltage scale 
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setting. This complicates the current measurement for later parts of the waveform and 

worsens the effect of oscilloscope offset. Figure 3.3 shows the frequency response 

between the injection port and the current measurement port with and without the RL 

integrator.

Figure 3.2. Layout pattern (top) and schematic (bottom) of the voltage and current 
measurement structures

To obtain the current values from the measured voltage a deconvolution of the 

frequency response is needed. The method used is described in [28]. Figure 3.4 is the 

frequency response for the current measurement structure, deconvolution structure and 

the expected response after deconvolution. It can be observed that the transfer function of 
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the current measurement structure and the deconvolution structure are symmetric to the 0 

dB line.

Figure 3.3. Frequency response between the injection port and the current measurement 
port in simulation

Figure 3.4. Frequency response of the inductive current measurement structure, 
deconvolution structure and the expected response after deconvolution
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3.1.2. TLP Injection Setup. In the TLP injection test setup, the TLP output is 

connected to the injection board through a coax cable, the injection board is plugged into 

the USB3.x test board. Figure 3.5 is the illustration of the TLP injection test setup.

The onboard current and voltage measurement ports are connected to the 

oscilloscope, ESD protection and attenuator are placed in between to protect the channels 

of the oscilloscope.

Figure 3.5. TLP injection setup

3.1.3. HMM Injection Setup. The connection of the HMM injection setup is

similar to the TLP injection setup. However, due to the strong emission during the 

discharge event (When the relay is closed, the E-field collapses causing large dD/dt and 

the current through the tip suddenly increases which causes large dB/dt), the transient 

field could be coupled to both the onboard traces and the oscilloscope, thus, ruining the 

measurement results. To avoid the transient field coupling, the oscilloscope and the 

USB3.x test board are well shielded during the discharge event. Additionally, the FCC 

F65 current probe is used in this measurement to measure the current which is injected by 

the ESD gun. The HMM injection test setup is shown in Figure 3.6.
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Figure 3.6. Illustration of the HMM (ESD gun) injection test setup(top) and the photo of 
the real test system(bottom)

3.2.MODELING METHODOLOGY

The objective of the modeling work is to predict the ESD current flow in the TVS 

and the IC’s I/O pin. This requires including the source (e.g., HMM or TLP), the passive 
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components (e.g., transmission line, series and shunt RLC components), and both the IO 

and the external ESD protection. For all components besides, measured data are used to 

create and verify the model.

3.2.1. TLP And HMM Source Model. The TLP waveform is less complex and 

it provides an efficient method to evaluate some forms of the Cable Discharge Event 

(CDE). The TLP model and test instrument use a waveform of 0.2 ns rise time and 100 ns 

pulse length. The spice model creates the rising edge by applying a 0.2 ns rise time filter 

to an ideal step response. Figure 3.7 shows the SPICE model for the TLP source.

Figure 3.7. SPICE model for TLP source

Figure 3.8 shows the effect of the rise time filter which smooths the transition of 

the waveform.

To realize the HMM injection the contact mode ESD gun model shown in [29] is 

used. Figure 3.9 shows the ESD gun contact discharge model and Figure 3.10 compares 
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the simulated current waveform with the measured waveform from a real ESD gun 

(EMTEST Dito).

Figure 3.8. The comparison between measured and simulated waveform

Figure 3.9. ESD gun contact discharge model
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Figure 3.10. The current waveform of simulation and measurement

3.2.2. Large Signal IO Pin Model. The IO pin response is characterized and

modeled using the method discussed in [30]. Figure 3.11 shows the TX pin model of the 

USB3.x equalizer IC for the positive current path.

3.2.3. Transmission Path Model. Three elements are included in the channel

path model, the series components, shunt components and the transmission line. A 

100 nF capacitor is used to block DC. The ESD protection design may include a series 

resistor to limit the current into the IC and to cause a more favorable ratio of currents 

flowing through the TVS relative to the current flowing into the IO pad. The transmission 

line model can be extracted either from insertion loss measurement or from the numerical 

simulation. In this paper, we used a physical based transmission line model provided by 

the simulation tool, based on the required parameters, such as geometry, permittivity, and

the dielectric loss tangent.
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Figure 3.11. Positive polarity injection IO model of the TX pin. The positive model of IO 
(top); Measured and simulated IV curve of the IO pin model (bottom)

3.2.4. ESD Protection Device Model. A snapback type Transient Voltage

suppressor (TVS) is modeled using the methodology proposed in Section 2 [21]. 

Figure 3.12 compares measurements to simulations of quasi-static IV curve and the 

transient responses at 45 V and 1000V TLP charge voltage. 
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Figure 3.12. TLP validation result for a snapback type TVS at TLP charge voltages of a) 
45 V and b) 1000 V, and c) the comparison of the simulated and measured quasi-static IV 

curve

3.2.5. The Full System Model. Figure 3.13 shows the combined model for 

system level ESD simulation. The 200 nF capacitor provides an RF short from VDD pin 

to VSS pin. The additional 1 uF capacitor and 4.7 uH inductor are used in the test setup to 

isolate the VDD pin from the supply. The voltage measurement port has also been 

included in the simulation model as it bypasses part of the current. However, the current 

measurement port is not simulated since the coupling is less than -50 dB at frequencies 
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lower than 3 GHz. Both powered (VDD=3.3 V) and unpowered (VDD=0 V) 

configurations are tested.

Figure 3.13. Combined system model

3.3. SYSTEM LEVEL ESD SIMULATION AND MODEL VALIDATION

Both power on and power off situation of the system level model are validated by 

TLP and ESD gun injection.

3.3.1. TLP Injection. The 50 Ohm TLP generator is charged to 100 V, the rise

time is 0.2 ns, and the pulse length is 100 ns. Both powered and unpowered situations are 

considered.

3.3.1.1. Scenario I: 2 A TLP injection, VDD = 0V. The measured and 

simulated transient response of the IO pin is shown in Figure 3.14 for the unpowered 

case. 

The sub-Figure 3.14(b) emphasis on the ringing. It is caused by multiple 

reflections at both ends of the transmission line. Both the TVS and the IO pin form low-

value resistances (after turn-on), thus the wave is reflected at both ends of the 
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transmission line. The period of the ringing is 1 ns, which is twice the delay time of the 

trace.

Figure 3.14. Voltage (a) (b) and current (c)(d) transient response of the IO pin. VDD=0 
V, TLP charged voltage = 100 V

Figure 3.14(c) shows a bump-like current waveform. This effect will be explained

in Section 3.5. Here the voltage ringing is underestimated, and the current is 

overestimated due to the transmission line model in the simulation is the ideal delay line 

with no loss parameter. The average difference between the simulation and the 

measurement results is less than 10%.
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3.3.1.2. Scenario II: 2 A TLP injection, VDD = 3.3 V. The test and simulation

configuration is identical to the previous one, but the IC is powered with VDD = 3.3V. In 

general, if the IC is powered, the IO will behave differently. The results are shown in 

Figure 3.15.

Figure 3.15. Voltage (a) (b) and current (c)(d) transient response of the IO pin. VDD=3.3 
V, TLP charged voltage = 100 V

Compared to Figure 3.14, the result shows the effect of having the IC powered.

The unpowered case poses a larger risk to the IC. Once the IC is powered, its positive 

trigger voltage is increased by 3.3 V. Thus, the external TVS will carry most of the 

current (1.85 A in this case).
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3.3.2. HMM Injection. The measurement has well validated the simulation  

results using the TLP as the source. However, the HMM is the essential test method for 

system level ESD test. The HMM pulse is a more complicated source compared to the 

TLP source. Thus, a correct prediction of the interaction of the various components under 

HMM conditions is very important for applicability of the SEED methodology. 

3.3.2.1. Scenario I: 1 kV HMM injection, VDD=0 V. Figure 3.16 Shows the  

measurement results compared to the simulation results. In Figure 3.16 (a), the total 

injection current is measured by FCC F65 current probe. The measured peak current is 

3.6 A, the simulated peak current is 3.5 A, the difference is only 0.1 A. The difference of 

the second current peak at 30 ns after the first peak is 0.5 A, which is allowed within the 

tolerance according to IEC61000-4-2. However, the discrepancy of the second current 

peak causes the difference of the peak current flows into the IO pin between the 

simulation and measurement as shown in Figure 3.16 (b). The IO current is measured 

during the first HMM injection. If continuous multiple injections have been performed, 

the current flow into the IO reduces. This effect is due to a charging of the floating part of 

the transmission line and will be described in more detail in Section 3.5. 

3.3.2.2. Scenario II: 1 kV HMM injection, VDD=3.3 V. When the system is  

powered, hardly any current flows into the IO pin after about 10 ns, in Figure 3.17, it can 

be observed that both the measurement and simulation results are showing the same 

current waveform at the IO pin.  

In the initial phase of the ESD pulse, the TVS is off, and the incident wave 

triggers the on-chip protection resulting in a current flow into the IO pin. A ringing with a 
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periodicity of 1 ns is observed (like for TLP) due to reflections in the transmission line 

between the IO pin and the TVS. The ringing then attenuates to zero after about 10 ns. 

Figure 3.16. The current output from the ESD gun (a) and the current flows into the IO 
pin (b) during a 1 kV HMM injection to the unpowered system

Figure 3.17. The current flows into the io pin during a 1 kv hmm injection to the powered 
system (left) and the close view of the current waveform in the initial 10 ns

3.4.DISCUSSION

In last section, the measurement result shows very good agreement to the 

simulation result. However, many interesting behaviors have been observed. These 
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effects can be categorized into non-linear effect and passive linear effect, and the reasons 

are discussed below.

3.4.1. IV Characteristics. Figure 3.18 Shows the quasi-static IV (measured by 

100 ns TLP, average window sets to 70%-90% of the pulse width) characteristics of the 

unpowered and powered IO pin (w/o TVS) during TLP pulsing and the selected TVS 

device. It can be observed that under certain injection level, the unpowered IO pin clamps 

at lower voltage than the TVS device. Hence, ESD current would flow into the IO other 

than the TVS. 

Figure 3.18. Quasi-static IV curve comparison: unpowered/powered IO pin vs. TVS

However, the clamping voltage of the powered IO pin is much larger than the 

TVS. Thus, TVS conducts most of the ESD current once it is triggered. It is 

understandable that this type of TVS cannot provide sufficient protection for the 

unpowered situation if no additional component added. The spikes of the IV curve of the 
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powered IO pin are due to the level at the IO pin switching between 0 V to 1.8 V if the IC 

is powered. This is the normal operation of the repeater IC in the powered state. 

3.4.2. Passive Component Effects. The passive components in the system level 

ESD design have an important role to the transient behavior. 

3.4.2.1. Transmission line. One of the effects of the transmission line is the delay 

effect (delay time of the 70 mm TL is 0.5 ns). Figure 3.19 shows a set of IV curves 

measured at the IO pin, it can be observed that if the TVS is placed very close to the IO 

pin, the IV curve measured at the IO pin is identical to the IV curve without TVS because 

the clamping voltage of the on-chip protection is much lower than the trigger voltage 

(Vt1) of the TVS thus the TVS stays off. However, if the TVS is placed at the other end 

of the 70 mm transmission line, the IV curve changes. In Figure 3.19 (a), the IC is 

unpowered, the TVS at the other end of the transmission line increases the IV curve slope 

(dynamic resistance) of the IO pin, because the TVS partially bypasses the ESD current 

thus less current flows into the IO.  

In Figure 3.19 (b), the IC is powered. The red curve shows that if the TLP output 

current is larger than 0.6 A, the TVS clamps the voltage at less than 3 V, and the current 

flowing into the IO pin reduces to zero. The TVS diode can trigger and snaps back within 

nanoseconds. 

Another effect of the transmission line is the inductive behavior. The inductance 

of the 70 mm transmission line can be calculated (from the geometry) as 30 nH. 

Figure 3.20 shows the inductive effect of the transmission line during a 100 V TLP 

injection to the unpowered system with TVS placed at position 1. In order to investigate 

the inductive effect only, the capacitors are shorted in this simulation. If one end of the 
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transmission line is shorted it behaves like an inductor and adds inductance. The time 

constant in the waveform is determined by the inductance (30 nH) and the load resistance 

(0.6 ohm) and results to 50 ns.

Figure 3.19. Quasi-static IV curve measured at the IO pin for different TVS positions, 
VDD = 0 V (a), VDD = 3.3 V (b), circuit diagram (c)

This effect explains the growing portion of the current waveform in Figure

3.14(c) and Figure 3.16(b). If there is no path for the capacitor to be discharged after 

injection, then it is highly possible that a USB device plug into the system could be 

damaged.



42

Figure 3.20. Inductive effect of the 70 mm transmission line

3.4.2.2. Capacitors. During the TLP injection, the capacitors (DC block capacitor 

and the decoupling capacitor) are charged. Hence, the TVS sees a more significant

voltage (for a 2 A TLP injection, the 200 nF capacitor is charged to 2 V) at its input and 

gradually conducts more current. Figure 3.21 shows the effect of the capacitors being 

charged up during the injection. If both the DC block capacitor and the decoupling 

capacitor are both shorted, only the inductive effect could be seen.

While the TLP source is grounded after the application of the pulse, in case of the 

use of the ESD gun as injection source, the tip of the ESD gun is actually left floating 

after the injection. Thus, the charges remain in the DC block capacitor, consequently 

influences the system response of the next injection. (Note: According to IEC61000-4-2, 

the system should be discharged after every injection.)
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Figure 3.21. Capacitor effect during a 100 V TLP injection to the system. Comparison of 
shorted and unshorted capacitors effects (a), and the voltage across the DC block 

capacitor (b)

Figure 3.22 compares the voltage and current waveform measured at the IO pin 

during the first HMM injection and the 20th HMM injection. It can be observed that the 

voltage of the 20th injection has been pulled down to below 0 V. 

Figure 3.22. Comparison of the voltage and current response at the IO pin during the 1st 
HMM injection and the 20th HMM injection.

During an ESD event, when TVS is turned on, the input node of the TVS has been 

pull to “GND” and the DC block capacitor is trying to maintain the voltage across it, 
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hence, the voltage of the IC side reversed to negative. Due to the discharge path of the IC

side is high resistance, the voltage will remain negative during the ESD event. On the 

other hand, before the TVS is turned on, the voltage at the TVS input is higher for the 

20th injection than the 1st injection. Hence, the TVS turns on much faster if multiple 

discharges are applied.

3.4.2.3. Series resistor. Since the ESD current flows into the IO pin is not 

significantly bypassed by the TVS device in the unpowered system, adding a series 

resistor is a practical method of limiting the current. Figure 3.23 (a) is the measurement 

result of using different values of the series resistor during the 100 V TLP injection. A 

reduction of peak current into the IO can be seen.

Figure 3.23. Measured current flows into the IO pin when different values of series 
resistor are used (a), simulated current flows through the TVS when different values of 

series resistor are used (b)

In Figure 3.23 (b), it can also be observed that the larger resistance of the series 

resistor the current into the TVS increases faster. This can be explained by the voltage 
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drop of series resistor which boosts the voltage at the input of the TVS device and 

triggers the TVS faster. 

3.5. SUMMARY AND FUTURE WORK 

A PCB has been designed for simulating the ESD protection of a USB 3.x 

repeater IC in conjunction with different external protection diodes. The purpose of the 

board is to illustrate SEED simulations which are verified by measurements. For this 

reason, voltage and current measurement ports are included on the board. The board will 

be used in a round robin test of SEED simulation [31].  

From the SEED simulation results, the reactions of the passive components during 

an ESD event are of considerable importance, the core findings here are: 

1) The transmission line between the TVS device and the IO pin delays the 

clamping behavior of the on-chip ESD protection, therefore the TVS can be turned on 

even though the Vt1 of the TVS diode is much larger than that of the on-chip protection. 

2) The capacitors (DC block capacitor and the decoupling capacitor) series in the 

current path can be charged up during the ESD event, the voltage drop across the 

capacitors increases the voltage at the input of the TVS, thus, helps the TVS to be 

triggered. 

3) The series resistor can be used additionally to limit the current flows into the 

IO pin. 

4) The off-chip ESD protection gives much better protection for the powered IC, 

because the trigger voltage of the on-chip ESD protection increases after Vdd is applied.  
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Finally, the measurement results validate our proposed SEED simulation model, 

the modeling method can be applied to other high-speed interfaces. 

The test boards were sent to multiple labs, the next steps of this work are 

collecting data from the labs that have joined the round robin test, comparing the 

measurement results and simulation results among labs. 
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4. CONCLUSION  

In Section 2, the transient behavior modeling method has been proposed for 

various ESD protection devices. It allows to predict the transient behaviors such as 

snapback delay (static time lag for spark gap), conductivity modulation and quasi-static 

IV curve. The model has been validated by both TLP injection and ESD gun test. 

In Section 3, a PCB has been developed to measure the transient response of the 

IO pin under various scenarios, such as power on/off, different positions of the protection 

device, with and without decoupling capacitors. A full system level model has been 

introduced including the source model, TVS model, passive components model and the 

IO pin model. Finally, the simulation results are validated by the measurement results.  
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APPENDIX A. 

TRANSIENT MODEL EXTRACTION PROCEDURE 
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In this section, the parameters extraction of one TVS (PESD3V3Z1BSF) sample 

and the tuning process is described. Table A.1 lists all the nine parameters needed to be 

tuned, their effects to the small/large signal behavior, and it explains which measurement 

is needed to tune them. 

 
 

Table A.1 Parameters that need to be tuned and their effects 
 

Parameters  Sub-model Small 
signal 
effects 

Large signal effects Measurement 

L1 Linear small 
signal 

Small 
signal 
bandwidth 

Inductive voltage overshoot  VNA S-parameter 

C1 Linear small 
signal 

Small 
signal 
bandwidth 

Current overshoot if the capacitance 
is large  

VNA S-parameter 

R2 Linear small 
signal 

Depth of 
the 
resonance 

Current overshoot VNA S-parameter 

Vt1 Snapback 
delay  

No effect Snapback voltage of the quasi-static 
VI curve 

100ns TLP 

Snapback 
trigger 

Snapback 
delay 

No effect Snapback delay time VF TLP 

Diode quasi-
static VI after 
snapback 

Quasi-static 
VI curve 

No effect Quasi-static VI curve 100ns TLP 

Pre-clamping 
diode before 
snapback 

VI curve No effect Voltage clamped by the triggering 
component inside the TVS before 
snapback. 

VF-TLP 

Rturnoff Conductivity 
modulation 

No effect Non-inductive overshoot VF-TLP 

Vturnon Conductivity 
modulation 

No effect Non-inductive overshoot; 

Time constant of the forward 
recovery;  

fully turn on time 

VF-TLP 
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A. SMALL SIGNAL PARAMETERS

The linear small signal model characterization is performed according to the 

method discussed in [15].

The steps to create the small signal model are:

1. Mount the DUT on a series through test fixture shown in Figure A.1, then 

measure S21 and calculate the junction capacitance(C1) use the equation in:

���� =
���(�����)

���
(1)

���� = |
�

����
| (2)

Figure A.1 Series through test fixture

Figure A.2 Measured frequency response of a TVS DUT
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An example of the measured series through S21 is shown in Figure A.2. The 

capacitance for this TVS sample is 0.42 pF.

2. Mount the DUT on a shunt through fixture which is shown in Figure A.3. This 

provides the resonance frequency, using the capacitance value (C1) measured from the 

previous step, the inductance (L1) and the effective series resistance at resonance (R2) 

are calculated using:

���1 = 1/���1 (3)

 ��� = |25 ×
���

�����
|    (4)

Figure A.3 Shunt through test fixture

Figure A.4 The shunt through measurement result of the DUT compares to the simulated 
small signal frequency response
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An example of a shunt through measurement result is shown in Figure A.4.

The apparent inductance and the effective series resistance of the TVS sample is 

0.9 nH and 23 ohm, respectively. However, the inductance value depends on how the 

DUT is mounted and the actual inductance in the final application may be different.

B. PRE-CLAMPING DIODE MODEL AND AFTER-SNAPBACK VI DIODE 
MODEL

The pre-clamping behavior (see Section 2.2.2.1) can be characterized by using the

VF-TLP measurement. Three parameters (IS, RS and N) of the pre-clamping diode model 

need to be tuned to fit the measured VI curve before snapback.

The fitted parameters value of the model are:

IS = 1.4×10-20 A, RS = 10 ohm, N = 8.6

Figure A.5 shows the measured quasi-static VI curve before snapback and the 

simulated VI curve for the pre-clamping diode model.  

Figure A.5 Measured quasi-static VI curve before snapback and simulated VI curve for 
the pre-clamping diode model of the DUT
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Similarly, the after snapback quasi-static VI diode model can also be created by 

tuning the three parameters to fit the measurement result. Figure A.6 shows the measured 

quasi-static VI curve of the TVS sample compared with the fitted VI curve of the after-

snapback diode model.

The fitted parameters value of the after-snapback diode model are:

IS = 6 ×10-15 A, RS = 0.15 ohm, N = 3.1

Figure A.6 Measured TVS quasi-static IV curve and the after-snapback diode model IV 
curve

C. CONDUCTIVITY MODULATION MODEL

The following steps are applied to create the conductivity modulation model:

1. Select one of the time domain current waveforms that clearly shows the turn on 

behavior. In this example, a -25 V TLP injection result was selected and is shown in 

Figure A.7;
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Figure A.7 Measured current waveform of -40 V TLP injection and integration of current 
over time

2. Identify the turn on moment (tturnon) and find the related total charges (Qth) at 

tturnon as Qth is the amount of the injected charge that is sufficient to approximately 

increase the channel conductivity to its final value, such that a quasi-static VI curve 

describes the behavior. In the example, Qth is observed as 0.38 nC;

3. Specify the Cswitch to 100 pF and determine the Vturnon using (7). Here the Vturnon

is the voltage value at which the switch turns on.

Vturnon in the model is the control voltage for the “ON” state of the switch (RM) in 

the model. For the “OFF” state, the control voltage is 0 V;

5. To obtain the “OFF” state resistance (Rturnoff) of RM, we need to first distinguish 

the inductive overshoot from the total overshoot.

Figure A.8 shows the voltage and current waveform of a 40 V TLP injected into 

the TVS sample.
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Figure A.8 Voltage and current waveform of 40 V TLP injection to the TVS sample

The peak voltage is -16.7 V and the peak value of current derivative is 0.6 A/ns. 

The inductive overshoot can be calculated by

���� =
�∙��

��
  (5)

�������� =
����������

�
     (6)

The resistance value can be derived as 25 ohm. Rturnon as the “ON” state resistance 

of RM is set to 1 milliOhm.

6. Finally, the Vturnon and Rturnoff value need to be fine-tuned to match the 

measured waveforms.
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D. SNAPBACK DELAY MODEL

The steps for creating the snapback delay model are:

1. Extract Vt1 from the quasi-static VI curve of the 100 ns TLP measurement 

result. The value for the given TVS sample is 9 V as shown in Figure A.9.

Figure A.9 Quasi-static VI curve taken from the100 ns TLP measurement result for the 
selected TVS sample

2. Select one of the voltage waveforms around the Vh point in the quasi-static VI 

curve from the VF-TLP measurements. Figure A.10 shows the voltage waveform of 24 V 

TLP injection result for the given TVS sample.

3. Identify the snapback moment tsnapback from the waveform as the point in time 

where the voltage drops below Vt1. 

4. Integrate VTVS – Vt1 from t0 to tsnapback. The red curve in Figure A.10 shows the 

result of this integration. A value of 1V∙ns is then selected for “snapback_trigger”.
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Figure A.10 Voltage waveform of 24 V VF-TLP injection to the selected TVS sample 
and the integration result of VTVS-Vt1

5. In the model, the “snapback_trigger” is the control voltage of the “ON” state of 

the snapback switch. The “OFF” state control voltage is set as “snapback_trigger” – 0.1 

V to ensure the transition is fast enough. Correspondingly, the “ON” and “OFF” state 

resistance are set to 1 milliOhm and 1 GOhm respectively.

6. Finally, the value of “snapback_trigger” needs to be fine-tuned to match the 

measurement results for both high level and low level injections. 
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APPENDIX B. 

MODELS CREATED BY THE TRANSIENT BEHAVIOR MODELING METHOD 
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A. INTRODUCTION

Included with this thesis, 11 models of the ESD protection devices have been 

created using the transient behavior modeling method. The schematic of each device 

model is shown as follows.

B. TRANSIENT BEHAVIOR MODEL FRAMEWORK

Figure B.1 Small signal, path selection and IV before snapback

Figure B.2 Snapback delay model of positive path
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Figure B.3 Conductivity modulation model of positive path

Figure B.4 After snapback IV curve model of positive path

Figure B.5 Snapback delay model of negative path
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Figure B.6 Conductivity modulation model of negative path

Figure B.7 After snapback IV curve model of negative path

For all the switch model, R_turnon is set to 1e-3, and it is not necessary to be 

tuned in most of the cases.

The parameters for the ideal diode model are listed below:

IS = 1e-14

Rs = 0

N = 1e-2

Note: in ADS the parameter Imax needs to be set as a large value, it has been set 

to 1e6 for the diode models in this modeling work.
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C. MODEL PARAMETERS FOR THE ESD PROTECTION DEVICES 

BK33000702 

Spark gap. 

 
 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 10 Small signal 

C1 0.3 pF Small signal 

L1 0.7 nH Small signal 

Vt1 700 V Snapback delay 

V_clamp 3000 V Snapback delay, conductivity modulation 

Snapback_trigger 2500 Snapback delay 

CSWITCH, CSWITCH_N 1n F Conductivity modulation 

Von (RM, RM_N) 100 V Conductivity modulation 

R_turnoff (RM, RM_N) 50 Conductivity modulation 

Is (D5, D6) Disable Pre-clamping diode 

Rs (D5, D6) Disable Pre-clamping diode 

N (D5, D6) Disable Pre-clamping diode 

Is (D3, D3_N) 1e-15 IV after snapback 

Rs (D3, D3_N) 0.15 IV after snapback 

N (D3, D3_N) 20 IV after snapback 
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AVLC 5S 02 050 

Varistor  

 
 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 0.5 Small signal 

C1 42 pF Small signal 

L1 0.5 nH Small signal 

Vt1 Disable Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger Disable Snapback delay 

CSWITCH, CSWITCH_N 1n F Conductivity modulation 

Von (RM, RM_N) 100 V Conductivity modulation 

R_turnoff (RM, RM_N) 4 Conductivity modulation 

Is (D5, D6) Disable Pre-clamping diode 

Rs (D5, D6) Disable Pre-clamping diode 

N (D5, D6) Disable Pre-clamping diode 

Is (D3, D3_N) 0.0135 IV after snapback 

Rs (D3, D3_N) 0.43 IV after snapback 

N (D3, D3_N) 241.28 IV after snapback 

 
 
 
 
Note: the varistor is not a snapback device, the node “positive” and “B” are 

shorted, node “neagtive” and “B_N” are shorted. 
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 PESD5V0C1USF 

Uni-polar snapback type TVS diode, low capacitance. 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 5 Small signal 

C1 0.3 pF Small signal 

L1 0.7 nH Small signal 

Vt1 15 V Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger 1.3 Snapback delay 

CSWITCH 1n F Conductivity modulation 

Von (RM) 1 V Conductivity modulation 

R_turnoff (RM) 20 Conductivity modulation 

CSWITCH_N 100p F Conductivity modulation 

Von (RM_N) 3 Conductivity modulation 

R_turnoff (RM_N) 76 Conductivity modulation 

Is (D5, D6) Disable Pre-clamping diode 

Rs (D5, D6) Disable Pre-clamping diode 

N (D5, D6) Disable Pre-clamping diode 

Is (D3) 1e-18 IV after snapback 

Rs (D3) 0.127 IV after snapback 

N (D3) 1.21 IV after snapback 

Is (D3_N) 1e-18 IV after snapback 

Rs (D3_N) 0.133 IV after snapback 

N (D3_N) 1.18 IV after snapback 

Note: for negative path, the node “Negative” and “B_N” are shorted. 



65 

 

PESD3V3Z1BSF 

Bi-polar snapback type TVS diode, low capacitance 

 
 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 10 Small signal 

C1 0.3 pF Small signal 

L1 0.07 nH Small signal 

Vt1 9 V Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger 1.2 Snapback delay 

CSWITCH, CSWITCH_N 100p F Conductivity modulation 

Von (RM, RM_N) 15 V Conductivity modulation 

R_turnoff (RM, RM_N) 20 Conductivity modulation 

Is (D5, D6) 1e-20 Pre-clamping diode 

Rs (D5, D6) 14 Pre-clamping diode 

N (D5, D6) 7 Pre-clamping diode 

Is (D3, D3_N) 1e-18 IV after snapback 

Rs (D3, D3_N) 0.127 IV after snapback 

N (D3, D3_N) 1.21 IV after snapback 
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PESD5V0H1BSF 

Bi-polar snapback TVS diode, low capacitance.  
 
 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 10 Small signal 

C1 0.3 pF Small signal 

L1 0.07 nH Small signal 

Vt1 19 V Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger 1.1 Snapback delay 

CSWITCH, CSWITCH_N 100p F Conductivity modulation 

Von (RM, RM_N) 15 V Conductivity modulation 

R_turnoff (RM, RM_N) 40 Conductivity modulation 

Is (D5, D6) 1e-18 Pre-clamping diode 

Rs (D5, D6) 10 Pre-clamping diode 

N (D5, D6) 19.5 Pre-clamping diode 

Is (D3, D3_N) 1e-18 IV after snapback 

Rs (D3, D3_N) 0.227 IV after snapback 

N (D3, D3_N) 2.3 IV after snapback 
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 PESD5V0S1USF 

High capacitance(42pF) unipolar Zener diode. 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 100 Small signal 

C1 42 pF Small signal 

L1 0.2 nH Small signal 

Vt1 Disable Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger Disable Snapback delay 

CSWITCH, CSWITCH_N 1n F Conductivity modulation 

Von (RM) 3 V Conductivity modulation 

R_turnoff (RM) 0.5 Conductivity modulation 

Von (RM_N) 2.3 V Conductivity modulation 

R_turnoff (RM_N) 0.9 Conductivity modulation 

Is (D5, D6) Disable Pre-clamping diode 

Rs (D5, D6) Disable Pre-clamping diode 

N (D5, D6) Disable Pre-clamping diode 

Is (D3) 6.8e-21 IV after snapback 

Rs (D3) 0.5 IV after snapback 

N (D3) 6 IV after snapback 

Is (D3_N) 6.8e-21 IV after snapback 

Rs (D3_N) 0.37 IV after snapback 

N (D3_N) 0.9 IV after snapback 

Note: the Zener diode is not a snapback device, the node “positive” and “B” are 

shorted, node “neagtive” and “B_N” are shorted. 
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ESD102-U1-02ELS 

Uni-polar snapback type TVS diode, low capacitance.  
 
 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 100 Small signal 

C1 0.5 pF Small signal 

L1 0.7 nH Small signal 

Vt1 6.5 V Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger 1 Snapback delay 

CSWITCH 2n F Conductivity modulation 

Von (RM) 5 V Conductivity modulation 

R_turnoff (RM) 5 Conductivity modulation 

CSWITCH_N 1p F Conductivity modulation 

Von (RM_N) 20 Conductivity modulation 

R_turnoff (RM_N) 400 Conductivity modulation 

Is (D5) 1e-11 Pre-clamping diode 

Rs (D5) 50 Pre-clamping diode 

N (D5) 13.55 Pre-clamping diode 

IS, Rs, N (D6) Disable Pre-clamping diode 

Is (D3) 1e-18 IV after snapback 

Rs (D3) 0.294 IV after snapback 

N (D3) 4.1 IV after snapback 

Is (D3_N) 1.7e-15 IV after snapback 

Rs (D3_N) 0.25 IV after snapback 

N (D3_N) 1.09 IV after snapback 

Note: for negative path, the node “Negative” and “B_N” are shorted. 
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DF2S5M4SL 

Uni-polar snapback type TVS diode, low capacitance.  
 
 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 100 Small signal 

C1 0.38 pF Small signal 

L1 2 nH Small signal 

Vt1 8 V Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger 3 Snapback delay 

CSWITCH 1n F Conductivity modulation 

Von (RM) 8.96 V Conductivity modulation 

R_turnoff (RM) 13.55 Conductivity modulation 

CSWITCH_N 1p F Conductivity modulation 

Von (RM_N) 20 Conductivity modulation 

R_turnoff (RM_N) 400 Conductivity modulation 

Is (D5) 1.4e-20 Pre-clamping diode 

Rs (D5) 10 Pre-clamping diode 

N (D5) 8.6 Pre-clamping diode 

IS, Rs, N (D6) Disable Pre-clamping diode 

Is (D3) 8e-15 IV after snapback 

Rs (D3) 0.4 IV after snapback 

N (D3) 7 IV after snapback 

Is (D3_N) 6.96e-11 IV after snapback 

Rs (D3_N) 0.3 IV after snapback 

N (D3_N) 1.9 IV after snapback 

Note: for negative path, the node “Negative” and “B_N” are shorted. 
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DF2S5.6 

High capacitance(42pF) unipolar Zener diode. 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 50 Small signal 

C1 40 pF Small signal 

L1 0.3 nH Small signal 

Vt1 Disable Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger Disable Snapback delay 

CSWITCH, CSWITCH_N 1n F Conductivity modulation 

Von (RM) 3.8 V Conductivity modulation 

R_turnoff (RM) 1.5 Conductivity modulation 

Von (RM_N) 1.6 V Conductivity modulation 

R_turnoff (RM_N) 2 Conductivity modulation 

Is (D5, D6) Disable Pre-clamping diode 

Rs (D5, D6) Disable Pre-clamping diode 

N (D5, D6) Disable Pre-clamping diode 

Is (D3) 6.8e-21 IV after snapback 

Rs (D3) 0.19 IV after snapback 

N (D3) 6 IV after snapback 

Is (D3_N) 4.2e-6 IV after snapback 

Rs (D3_N) 0.27 IV after snapback 

N (D3_N) 18.725 IV after snapback 

Note: the Zener diode is not a snapback device, the node “positive” and “B” are 

shorted, node “neagtive” and “B_N” are shorted. 
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uClamp2801T 

High capacitance(42pF) unipolar Zener diode. 

Parameters Value Sub-model 

R1 10M ohm Small signal 

R2 20 Small signal 

C1 25 pF Small signal 

L1 0.7 nH Small signal 

Vt1 Disable Snapback delay 

V_clamp 100 V Snapback delay, conductivity modulation 

Snapback_trigger Disable Snapback delay 

CSWITCH, CSWITCH_N 1n F Conductivity modulation 

Von (RM) 1 V Conductivity modulation 

R_turnoff (RM) 0.5 Conductivity modulation 

Von (RM_N) 0.1V Conductivity modulation 

R_turnoff (RM_N) 100 Conductivity modulation 

Is (D5, D6) Disable Pre-clamping diode 

Rs (D5, D6) Disable Pre-clamping diode 

N (D5, D6) Disable Pre-clamping diode 

Is (D3) 4e-16 IV after snapback 

Rs (D3) 0.1 IV after snapback 

N (D3) 0.98 IV after snapback 

Is (D3_N) 5e-21 IV after snapback 

Rs (D3_N) 0.67 IV after snapback 

N (D3_N) 30.125 IV after snapback 

Note: the Zener diode is not a snapback device, the node “positive” and “B” are 

shorted, node “neagtive” and “B_N” are shorted.  
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