3,922 research outputs found

    Nonlinear Propagation of Light in One Dimensional Periodic Structures

    Full text link
    We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion), the periodic structure (photonic band dispersion) and nonlinearity. We present a detailed discussion of the role of these effects individually and in concert. We derive the nonlinear coupled mode equations (NLCME) which govern the envelope of the coupled backward and forward components of the electromagnetic field. We prove the validity of the NLCME description and give explicit estimates for the deviation of the approximation given by NLCME from the {\it exact} dynamics, governed by AMLE. NLCME is known to have gap soliton states. A consequence of our results is the existence of very long-lived {\it gap soliton} states of AMLE. We present numerical simulations which validate as well as illustrate the limits of the theory. Finally, we verify that the assumptions of our model apply to the parameter regimes explored in recent physical experiments in which gap solitons were observed.Comment: To appear in The Journal of Nonlinear Science; 55 pages, 13 figure

    Bright and Gap Solitons in Membrane-Type Acoustic Metamaterials

    Full text link
    We study analytically and numerically envelope solitons (bright and gap solitons) in a one-dimensional, nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in the continuum approximation, leads to a nonlinear, dispersive and dissipative wave equation. Applying the multiple scales perturbation method, we derive an effective lossy nonlinear Schr\"odinger equation and obtain analytical expressions for bright and gap solitons. We also perform direct numerical simulations to study the dissipation-induced dynamics of the bright and gap solitons. Numerical and analytical results, relying on the analytical approximations and perturbation theory for solions, are found to be in good agreement

    Conservation laws, exact travelling waves and modulation instability for an extended nonlinear Schr\"odinger equation

    Full text link
    We study various properties of solutions of an extended nonlinear Schr\"{o}dinger (ENLS) equation, which arises in the context of geometric evolution problems -- including vortex filament dynamics -- and governs propagation of short pulses in optical fibers and nonlinear metamaterials. For the periodic initial-boundary value problem, we derive conservation laws satisfied by local in time, weak H2H^2 (distributional) solutions, and establish global existence of such weak solutions. The derivation is obtained by a regularization scheme under a balance condition on the coefficients of the linear and nonlinear terms -- namely, the Hirota limit of the considered ENLS model. Next, we investigate conditions for the existence of traveling wave solutions, focusing on the case of bright and dark solitons. The balance condition on the coefficients is found to be essential for the existence of exact analytical soliton solutions; furthermore, we obtain conditions which define parameter regimes for the existence of traveling solitons for various linear dispersion strengths. Finally, we study the modulational instability of plane waves of the ENLS equation, and identify important differences between the ENLS case and the corresponding NLS counterpart. The analytical results are corroborated by numerical simulations, which reveal notable differences between the bright and the dark soliton propagation dynamics, and are in excellent agreement with the analytical predictions of the modulation instability analysis.Comment: 27 pages, 5 figures. To be published in Journal of Physics A: Mathematical and Theoretica

    Traveling dark-bright solitons in a reduced spin-orbit coupled system: application to Bose-Einstein condensates

    Full text link
    In the present work, we explore the potential of spin-orbit (SO) coupled Bose-Einstein condensates to support multi-component solitonic states in the form of dark-bright (DB) solitons. In the case where Raman linear coupling between components is absent, we use a multiscale expansion method to reduce the model to the integrable Mel'nikov system. The soliton solutions of the latter allow us to reconstruct approximate traveling DB solitons for the reduced SO coupled system. For small values of the formal perturbation parameter, the resulting waveforms propagate undistorted, while for large values thereof, they shed some dispersive radiation, and subsequently distill into a robust propagating structure. After quantifying the relevant radiation effect, we also study the dynamics of DB solitons in a parabolic trap, exploring how their oscillation frequency varies as a function of the bright component mass and the Raman laser wavenumber

    Dissipative Kerr solitons in optical microresonators

    Full text link
    This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this class of bright solitons are discussed. Moreover, analytical and numerical descriptions are presented that do not only reproduce qualitative features but can also be used to accurately model and predict the characteristics of experimental systems. Particular emphasis lies on temporal dissipative Kerr solitons with regard to optical frequency comb generation where they are of particular importance. Here, one example is spectral broadening and self-referencing enabled by the ultra-short pulsed nature of the solitons. Another example is dissipative Kerr soliton formation in integrated on-chip microresonators where the emission of a dispersive wave allows for the direct generation of unprecedentedly broadband and coherent soliton spectra with smooth spectral envelope.Comment: To appear in "Nonlinear optical cavity dynamics", ed. Ph. Grel

    Dynamics of Lattice Kinks

    Full text link
    In this paper we consider two models of soliton dynamics (the sine Gordon and the \phi^4 equations) on a 1-dimensional lattice. We are interested in particular in the behavior of their kink-like solutions inside the Peierls- Nabarro barrier and its variation as a function of the discreteness parameter. We find explicitly the asymptotic states of the system for any value of the discreteness parameter and the rates of decay of the initial data to these asymptotic states. We show that genuinely periodic solutions are possible and we identify the regimes of the discreteness parameter for which they are expected to persist. We also prove that quasiperiodic solutions cannot exist. Our results are verified by numerical simulations.Comment: 50 pages, 10 figures, LaTeX documen
    • …
    corecore