951 research outputs found

    A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks

    Full text link
    Near real-time building damage mapping is an indispensable prerequisite for governments to make decisions for disaster relief. With high-resolution synthetic aperture radar (SAR) systems, such as TerraSAR-X, the provision of such products in a fast and effective way becomes possible. In this letter, a deep learning-based framework for rapid regional tsunami damage recognition using post-event SAR imagery is proposed. To perform such a rapid damage mapping, a series of tile-based image split analysis is employed to generate the data set. Next, a selection algorithm with the SqueezeNet network is developed to swiftly distinguish between built-up (BU) and nonbuilt-up regions. Finally, a recognition algorithm with a modified wide residual network is developed to classify the BU regions into wash away, collapsed, and slightly damaged regions. Experiments performed on the TerraSAR-X data from the 2011 Tohoku earthquake and tsunami in Japan show a BU region extraction accuracy of 80.4% and a damage-level recognition accuracy of 74.8%, respectively. Our framework takes around 2 h to train on a new region, and only several minutes for prediction.This work was supported in part by JST CREST, Japan, under Grant JPMJCR1411 and in part by the China Scholarship Council. (JPMJCR1411 - JST CREST, Japan; China Scholarship Council

    Applications of active microwave imagery

    Get PDF
    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft

    Building change detection in Multitemporal very high resolution SAR images

    Get PDF

    Impact of Geographical Information Systems on Geotechnical Engineering

    Get PDF
    Over the last four decades Geographical Information Systems (GIS) have emerged as the predominant medium for graphic representation of geospatial data, including geotechnical, geologic and hydrologic information routinely used by geotechnical and geoenvironmental engineers. GIS allow unlimited forms of spatial data to be co-mingled, weighted and sorted with any number of physical or environmental factors. These data can also be combined with weighted political and aesthetic values to create hybrid graphic products capable of swaying public perceptions and decision making. The downside of some GIS products is that their apparent efficacy and crispness can also be deceptive, if data of unparalleled reliability is absorbed in the mix. Disparities in data age and quality are common when compiling geotechnical and geoenvironmental data. Despite these inherent shortcomings, GIS will continue to grow and evolve as the principal technical communication medium over the foreseeable future and engineers will be forced to prepare their work products in GIS formats which can be widely disseminated through the world wide web. This paper presents the historical evolution of GIS technologies as it relates to the impact in geotechnical engineering, concluding with four case histories on the application of this emerging technology

    Residential building damage from hurricane storm surge: proposed methodologies to describe, assess and model building damage

    Get PDF
    Although hydrodynamic models are used extensively to quantify the physical hazard of hurricane storm surge, the connection between the physical hazard and its effects on the built environment has not been well addressed. The focus of this dissertation research is the improvement of our understanding of the interaction of hurricane storm surge with the built environment. This is accomplished through proposed methodologies to describe, assess and model residential building damage from hurricane storm surge. Current methods to describe damage from hurricane events rely on the initiating mechanism. To describe hurricane damage to residential buildings, a combined wind and flood damage scale is developed that categorizes hurricane damage on a loss-consistent basis, regardless of the primary damage mechanism. The proposed Wind and Flood (WF) Damage Scale incorporates existing damage and loss assessment methodologies for wind and flood events and describes damage using a seven-category discrete scale. Assessment of hurricane damage has traditionally been conducted through field reconnaissance deployments where damage information is captured and cataloged. The increasing availability of high resolution satellite and aerial imagery in the last few years has led to damage assessments that rely on remotely sensed information. Existing remote sensing damage assessment methodologies are reviewed for high velocity flood events at the regional, neighborhood and per-building levels. The suitability of using remote sensing in assessing residential building damage from hurricane storm surge at the neighborhood and per-building levels is investigated using visual analysis of damage indicators. Existing models for flood damage in the United States generally quantify the economic loss that results from flooding as a function of depth, rather than assessing a level of physical damage. To serve as a first work in this area, a framework for the development of an analytical damage model for residential structures is presented. Input conditions are provided by existing hydrodynamic storm surge models and building performance is determined through a comparison of physical hazard and building resistance parameters in a geospatial computational environment. The proposed damage model consists of a two-tier framework, where overall structural response and the performance of specific components are evaluated

    Detection of Building Damages in High Resolution SAR Images based on SAR Simulation

    Get PDF

    Integrated Applications of Geo-Information in Environmental Monitoring

    Get PDF
    This book focuses on fundamental and applied research on geo-information technology, notably optical and radar remote sensing and algorithm improvements, and their applications in environmental monitoring. This Special Issue presents ten high-quality research papers covering up-to-date research in land cover change and desertification analyses, geo-disaster risk and damage evaluation, mining area restoration assessments, the improvement and development of algorithms, and coastal environmental monitoring and object targeting. The purpose of this Special Issue is to promote exchanges, communications and share the research outcomes of scientists worldwide and to bridge the gap between scientific research and its applications for advancing and improving society
    • …
    corecore