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The aims of this Special Issue (SI) of Remote Sensing are to demonstrate the state of

the art in the development and application of geo-information technology, including optical

and radar remote sensing, GIS, GPS, and computing systems in various environmental fields.

Motivated by the high-quality presentations at the International Conference on Geo-information

Technology and its Applications (ICGITA 2019), this book covers the up-to-date research in land

cover change and desertification analyses, geo-disaster risk and damage evaluations, mining

area restoration assessments, the improvement and development of algorithms, and coastal

environmental monitoring and object targeting. This book can be used as a reference for graduates

and scientists in environmental sciences, disaster managers, urban planners, and big data miners.

The Guest Editors are grateful to the authors for their contributions of high-quality studies, and,

specifically, to the MDPI team for their effective assistance and cooperation. Without their devotion

and support, it would have been impossible to publish this book.
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Abstract: Geo-information technology has been playing an increasingly important role in environ-
mental monitoring in recent decades. With the continuous improvement in the spatial resolution of
remote sensing images, the diversification of sensors and the development of processing packages,
applications of a variety of geo-information, in particular, multi-resolution remote sensing and geo-
graphical data, have become momentous in environmental research, including land cover change
detection and modeling, land degradation assessment, geohazard mapping and disaster damage
assessment, mining and restoration monitoring, etc. In addition, machine learning algorithms such
as Random Forests (RF) and Convolutional Neural Networks (CNN) have improved and deepened
the applications of geo-information technology in environmental monitoring and assessment. The
purpose of this Special Issue is to provide a platform for communication of high-quality research in
the world in the domain of comprehensive application of geo-information technology. It contains
10 high-level scientific papers on the following topics such as desertification monitoring, governance
of mining areas, identification of marine dynamic targets, extraction of buildings, and so on.

1. Desertification and Sand-Control Monitoring and Assessment

Soil degradation and even desertification are a serious environmental problem that
affects the production activities and quality of life of local residents. Kim et al. devel-
oped a method fusing optical vegetation index and time-series phase coherence Synthetic
Aperture Radar (SAR) data to monitor aeolian erosion sequences in desert areas using the
Interferometric SAR (InSAR) technique. Additionally, the surface changes before and after
desertification control activities in the Kubuqi Desert were monitored and analyzed [1],
and the research demonstrates the effectiveness of InSAR techniques when applied for
monitoring desertification and sand control. Li et al. [2] comprehensively evaluated sand-
control effectiveness based on multitemporal Landsat images from 1990 to 2020 in the Mu
Us Desert, China [2], by linking sand-control with socioeconomic and environmental data
via multiple linear and logistic regression models. At the same time, the driving forces
of desertification were also analyzed. This study shows that from 1991 to 2020, 8712 km2

or 63% of the desert has been converted into pastures and shrublands with a greenness
increase of 0.3509 in GDVI; the effectiveness of sand-control is favored by the rational
agropastoral activities and policies; though desertification occurs locally, it is associated
with both climatic and socioeconomic factors, such as wind speed, precipitation, water
availability, distance to roads and animal husbandry. Globally, the rationalization of agri-
cultural and animal husbandry activities through policies and other means is favorable for
sand-control activities [2].

2. Geohazard Mapping and Restoration Assessment in Mining Areas

Since industrialization, mining activities have been increased significantly world-
wide, causing a series of geo-environmental problems, especially geodisasters, for exam-
ple, landslides, collapses and subsidence. Hence, high-resolution geohazard prediction
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and mapping are essential but challenging due to limitations in the acquisition of high-
resolution data of the mining areas. In response to this problem, Qin et al. [3] combined
geological prospecting data, topographic data and Gaofen-1 satellite data to construct a
multi-source dataset and used machine learning technology to model the geological hazard
in the Liaojiaping Orefield in Central China. The Random Forests (RF)-based mining-
induced geohazard mapping (MGM) model they constructed shows excellent predictive
performance, which provides a new method for geological hazard mapping [3]. Rare earth
elements (REE) have a wide range of usages in the world, and the local enterprises and
governments have heavily exploited these REE resources through open-pit or chemical
leaching approaches in southern Jiangxi, China. Such REE mining has caused serious dam-
age to the environment. Xie et al. [4] developed a new set of remote sensing indicators, i.e.,
Mining and Restoration Assessment Indicators (MRAIs), to assess land degradation caused
by mining and the effectiveness of remediation. Compared with the single vegetation
index, these new indicators have stronger sensitivity and wider dynamic range than the
usual indices such as NDVI, GDVI, EVI, SAVI and ARVI. They are hence more suitable for
evaluating the mining and recovery of REE mines [4]. This study not only provides more
efficient remote sensing indicators for mining and restoration evaluation, but also makes
up for the shortcomings of only relying on the known vegetation indices for evaluation of
the restoration effectiveness.

3. Improvement of Algorithms for Classification

The rapid development of urbanization has led to a significant increase in the density
of buildings. While providing convenience for living, problems such as illegal construction
and conflicts between people and land are also prominent. It greatly increases the difficulty
of supervision for governments. Therefore, remote sensing and geographic information
technologies to accurately extract buildings and monitor them dynamically are one of
the important applications of geo-information technology in environmental monitoring.
Ma et al. [5] proposed an improved Convolutional Neural Network (CNN) Inception V3
architecture to evaluate the degree of damage to buildings after an earthquake in Yushu,
Qinghai, China. This method improved the accuracy of classification and performed
better than the traditional machine learning classifiers and also avoided the disadvantages
of the traditional CNN, such as difficulty in function selection and image segmentation.
Additionally, it provides a new attempt to evaluate the damage degree of buildings after
the earthquake through remote sensing images. Wu et al. [6] proposed an improved
anchor-free instance segmentation method based on CenterMask with spatial and channel
attention-guided mechanisms for accurate extraction of buildings in high-resolution remote
sensing images. In comparison with methods of Mask R-CNN, Mask Scoring R-CNN and
CenterMask, their method is able to achieve the state-of-the-art performance at real-time
speed, which makes it possible to extract buildings accurately in real time [6].

As a basic content of environmental monitoring, land use/land cover change (LUCC)
monitoring has always been a research hotspot. Yu et al. [7] effectuated monitoring research
on LUCC in the Xiong’an New Area based on new bands (purple, yellow, and red edges)
of the GF-6 Wide Field of View (WFV) images (16 m in resolution) using the Double-
Constrained Change Detection approach. The accuracy of monitoring through the two
red-edge bands of GF-6WFV is higher than that of GF-1WFV. This result provides theoretical
support for the application of GF-6WFV in LUCC study [7].

4. Coastal and Ocean Applications

Another major content included in this Special Issue is the application of optical
and radar remote sensing to the coastal and oceanic research, for example, extraction
and identification of coastlines and tracking the dynamic targets on the sea surface. The
ocean occupies about 71% of the Earth’s surface; it is rich in minerals and biological and
chemical resources and has great development prospects. At the same time, socioeconomic
development in the world has also brought about environmental problems in coastal areas
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and ocean such as sea level rise, marine debris and ocean garbage patches. However, limited
by sensors and resolution, the monitoring of the marine environment has certain limitations.
In recent years, with the rapid development of geo-information technology, many scholars
have shifted the target of environmental monitoring from the traditional land surface to
the ocean. Nazeer et al. [8] tracked the positional changes of the coastline by extracting
historical coastline positions from topographic maps, medium-resolution Landsat (30 m)
and high-resolution (3 m) imagery, respectively. Their research shows that human activities
have a significant impact on the movement of the shoreline of Karachi. Additionally, the
difference in human activities between the east and west coasts makes the coastline in the
eastern region very fragile, while the western region is more stable. Therefore, management
of the coast by the government and prevention of illegal marine encroachment are crucial
for coastal protection [8]. Jiang et al. used the wideband echo simulation method based
on a frequency domain to analyze the influence of ocean wave motion on the synthetic
aperture radar (SAR) image of a target. Furthermore, they introduced a rectangular wave-
beam-based geometrical optics and physical optics (GO/PO) method to calculate the
electromagnetic (EM) scattering properties for the identification of complex targets [9]. The
methods they proposed are capable of simulating the SAR image of the target on the sea
surface, which is an important advancement in identifying dynamic targets on the sea
surface. Massarelli et al. used high-resolution airborne data to identify and map mussel
farming in the first and second inlet of Mar Piccolo, Italy. On this basis, factors that could
harm the environmental status of the Mar Piccolo ecosystem were assessed. Their map
made it possible to determine anthropogenic pressure on the Mar Piccolo of Taranto and
the necessary actions for better management of the area [10].
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Abstract: Aeolian erosion occurring in sand deserts causes significant socio-economical threats over
extensive areas through mineral dust storm generation and soil degradation. To monitor a sequence
of aeolian erosion in a sand desert area, we developed an approach fusing a set of remote sensing
data. Vegetation index and Interferometric Synthetic Aperture Radar (InSAR) phase coherence
derived from space-borne optical/SAR remote sensing data were used. This scheme was applied
to Kubuqi Desert in Inner Mongolia where the effects of activity to combat desertification could
be used to verify the outcome of the approach. We first established time series phase coherence
and conducted a functional operation based on principal component analysis (PCA) to remove
uncorrelated noise. Then, through decomposition of vegetation effect, where a regression model
together with the Enhanced Vegetation Index (EVI) was employed, we estimated surface migration
caused by aeolian interaction, that is, the aeolian erosion rate (AER). AER metrics were normalized
and validated by additional satellite and ground data. As a result, the spatiotemporal migration of the
target environment, which certainly induced dust storm generation, was traced and analyzed based
on the correlations among surface characteristics. It was revealed that the derived AER successfully
monitored the surface changes that occurred before and after the activities to combat desertification
in the target area. Employing the established observation scheme, we expect a better understanding
of the aeolian process in sand deserts with enhanced spatio-temporal resolution. In addition, the
scheme will be beneficial for the evaluation of combating desertification activities and early warning
of dust storm generations.

Keywords: aeolian process; desertification; multi-sensor fusion; interferometric SAR; time-series analysis

1. Introduction

Dust storms are now emerging as a major threat affecting public health and social
activities worldwide, including northeastern Asian countries. Since most dust originates
from the arid desert, desert expansion caused by climate change results in increased dust
levels. For instance, Tegen and Fung (1995) [1] estimated that 30–50% of aerosol in the
global atmosphere originates from regolith over arid areas. From a regional point of view,
a dust storm from Inner Mongolia and the Tarim Basin, where arid climate conditions
interact with the surrounding environment, is now regarded as a disastrous environmental
hazard in northeastern Asia [2–5]. It imposes significant ill effects on surrounding areas;
for example, the occurrence of dust storms in South Korea has increased from four times
between 1985 and 1989 to 26 times between 2000 and 2004 and caused significant socio-
economic problems [6]. Therefore, dust source monitoring has attracted lots of research
interest. However, there is still not yet an effective and accurate monitoring method of
the aeolian activity over arid desert because of the difficult accessibility to such regions

Remote Sens. 2021, 13, 2240. https://doi.org/10.3390/rs13122240 https://www.mdpi.com/journal/remotesensing5
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and the time requirements for the full range of data collection. Remote sensing, especially
for space-borne data, can be a powerful solution for such difficulties. A few studies that
employ medium resolution satellite products such as Total Ozone Mapping Spectrometer
(TOMS) [7,8] and Moderate Resolution Imaging Spectroradiometer (MODIS) [9,10] have
been conducted to tackle the technical issues of the dust source mapping using aerosol
optical depth (AOD). However, the most significant aspects of the aeolian process in the
arid desert, including the propagation of the transition region between the desert and
soil-rich areas, and the aeolian surface migration speed and tendency, cannot be observed
properly using the typical medium resolution AOD products. This is because the primary
interest if we focus on the environment in the dust source area of an arid desert, is in the
change in the topographic conditions rather than the dust aerosol trail. The generation of
dust, especially over the sandy desert, was induced mainly by a process called saltation.
The particles caused by saltation are suspended into the air and transported. It is why
sandy deserts are considered as a dust source by the United Nations Convention to Combat
Desertification (UNCCD) [11]. Hence, it is necessary to define the degree of surface change
consequence into dust generation interacting with the wind. In further discussions, we will
use “aeolian erosion” as a term encompassing all topographic migration processes such as
transportation and deposition inducing saltation and subsequent removal of minerals. The
rate of aeolian erosion in the following is defined as the aeolian erosion rate (AER), which
can be measured by observation methods including the proposed phase coherence time-
series analysis used in this study. It should be noted that there is no universal approach
to measure the strength of aeolian erosion. Therefore, we use AER as an index to identify
the relative (dimensionless) strength of aeolian erosion within an independent observation
system. Furthermore, if we compare the AERs derived from different observations, it is
necessary to adjust their data range into cross-comparable quantities. Such adjusted AERs
are referred to as normalized AERs (n-AER) in this study. Once n-AERs are converted
into physically meaningful values, for instance, a changed weight per unit time and area
with a certain level of calibration, they can be treated as a quantified AER. Except in very
particular cases where high-resolution volumetric tracing is used, the quantified AER is
not directly measurable by a remote sensing approach.

Recently, very high-resolution satellite image products enable detection of a subtle
surface change caused by dust generation—especially sand dune migration with 2D pro-
jected migration. In spite of such merit, the very high-resolution satellite observation
has been rarely used for desertification monitoring because of their technical problems,
for example, the dependence on the climate factors, the revisiting time, and the inability
to trace continuous topographic conditions. The technical barriers are more obvious, as
the task requires the observation of external environmental factors governing the aeolian
surface migration as well as the migration itself. Hence, a sophisticated monitoring system
that applies remote sensing techniques is required to monitor the origin and consequences
of the AER on arid deserts using various recent satellite images. Considering that the
most significant identifier of aeolian processes over the arid desert is aeolian topographic
erosion such as sand dune migration inducing saltation and suspension of particles, the full
aeolian interactions that induce dust storms can be reconstructed by observing topographic
changes in the arid desert and surrounding areas affected by surface erosion. However,
conventional image analysis by visual inspection cannot directly measure the aeolian
process and its governing factors.

To tackle such problems, we developed a monitoring system to observe and model the
progress of desertification and the aeolian activity using a synergistic fusion of remotely
sensed data, including the Synthetic Aperture Radar (SAR) and medium resolution optical
image. The constructed approach was tested over the Kubuqi Desert located in Northeast
China for two reasons. Firstly, it is considered a major contributor to dust storms over
the surrounding areas in eastern Asian countries [12,13]. Secondly, the test area has been
managed by well-organized international organizations through a series of combating
desertification activities for a decade. Hence, the environmental evolution was expected to
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be observed using satellite images, verifiable by the on-ground observations over a long
time period, and to be converted into quantified AERs. Moreover, it was expected that the
governing parameters of aeolian interaction and consequent AERs in the target area were
extracted within the observation capabilities of the proposed scheme.

The target area is described in Section 2. The processing methodologies for Interfero-
metric Synthetic Aperture Radar (InSAR) and auxiliary data sets are given in Section 3, and
the results are demonstrated in Section 4. A discussion on the detected aeolian migration
and the inter-comparison work validating the InSAR observations is presented in Section 5.

2. Test Site

In past decades, the Chinese Loess Plateau and arid Gobi Deserts of Inner Mon-
golia have been observed as a source of mineral dust [14]. However, recent research
(Zhang et al., 2008) [15] identified few deserts in northern China, such as Badain Jaran,
Kubuqi, and Taklamakan, as the more prominent sources of mineral dust. Although
Wang et al. (2007, 2009) [16,17] reported that dune activities in deserts in China ceased
after the 1990s, northern China still suffers from undergoing desertification. Therefore,
the observation of aeolian processes, especially dune migration in the deserts of northern
China, is key to reconstructing the dust storm generation process, as the sand dune activity
is the most obvious consequence and the index of aeolian activities over the sand desert.
The deserts in northern China, one of the largest arid desert areas on Earth, extend from the
Tarim Basin to Inner Mongolia as shown in Figure 1a. Among them, the Kubuqi Desert’s
expanse threatens the highly densified residential areas in Inner Mongolia and Shanxi
province [18]. In addition, considering the land cover types, Kubuqi Desert has a highly
peculiar pattern in which the barren fields, moving sand dunes, forests, and built-up urban
center complicatedly coexist. Such a landscape provides an optimal location to conduct
comparative observations of erosion over different surface characteristics; thus, this area
was selected as the test site of our monitoring system. Liu et al. (2005) [19] once tried
to identify the influence of wind factor over sand dune movement mainly using ground
survey data on Kubuqi Desert. Our purposes are quite similar to that, but this study was
performed to build a comprehensive and universal monitoring scheme to identify the
effects of wind-topographic interactions using remote sensing data fusion.

Kubuqi Desert is well confined by the riverside and Ordos plateau as shown in
Figure 1b and the weakly connected Southern Mu-Us Desert. Thus, the environments
between the arid desert and background vegetated fields are well distinguished, compared
to the background Ordos plateau. It should be noted that the area’s contribution as a dust
source is significant. Analysis conducted using MODIS satellite image and atmospheric
circulatory simulation confirmed that a large amount of sand dust (66% probability of
generated dust storm) in the Kubuqi Desert region migrated to the Korean peninsula (Yun
et al., 2011) [20]. This value is higher than that in the Gobi Desert (55%), a known source of
dust, which indicates that it is demanding to conduct detailed monitoring of the Kubuqi
Desert region to understand the sand dust erosion process in Northern China. Additionally,
due to the severe threats that occurred in this region, in the last decade, NGOs and Chinese
local governments have conducted activities to combat desertification in the Kubuqi Desert
and the surrounding areas. Since those efforts have dramatically changed the desert
environment in Kubuqi (Figure 1c,d), the region became an ideal test site to develop the
monitoring system. Furthermore, it provided a study case where comprehensive validation
by in-field observation was feasible, allowing all outcomes of this study to be validated
using long-term on-site observations. The origin and morphological characteristics of the
Kubuqi Desert were reported in Yang et al. (2016) [21].
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Figure 1. (a) North-Eastern deserts in China. Kubuqi is located on the eastern side. (b) Location and geological context of the
target area over Kubuqi. (c) 17 July 2007 (Near-IR-G-B) LANDSAT-5 image and land cover classification. (d) 12 September
2019 (Near-IR-G-B) Sentinel-2 multispectral image and the associated land cover classification. Land cover classification
was performed by a maximum likelihood algorithm. The changes in land cover around desert areas were noticed. The land
cover classification results were employed in the aeolian erosion rate (AER) extraction process (see Section 3).

8



Remote Sens. 2021, 13, 2240

Regarding climate conditions over the target area, it should be noted that the annual
precipitation in Kubuqi is 300 mm/year and concentrates on the period from July to August
according to the local government information (http://www.baotou.gov.cn/ (accessed
on 1 January 2021). Thus, dust generation usually occurs from March to May before the
seasonal precipitation. Such seasonal concentration of the aeolian process is a reason why
we adopted the long-term time-series analysis of phase coherence.

3. Method and Data Sets

To achieve the objectives of this study, satellite data sets covering sufficient temporal
and spatial domains, including InSAR and auxiliary data sets, were extensively employed.
Then, we were able to evaluate both the progress of aeolian erosion and the effects of
anti-desertification activities. InSAR phase coherence was chosen as a prime observation.
Meanwhile, a series of InSAR observations were necessary for measuring surface changes.
We first established the time-series approach on the target domain and then developed
a further processing scheme to decompose the components which were not involved
in the surface changes. Consequently, the progress of desertification and the effects of
activities to combat desertification were properly measured. Then, the driving factors of
surface changes and their consequences could be inferred. The data indices and processing
approaches, which are capable of measuring the cause and consequence of aeolian erosion,
were based on the backgrounds as follows.

3.1. Erosion Measurement with InSAR Phase Decorrelation

Since the target area is an arid desert, it was presumed that dune mobility is the most
obvious representative of aeolian surface erosion. Monitoring of dune mobility on certain
spatial domains is feasible by the following methods:

(1) 2D transition vector derivation by high-resolution satellite/Unmanned Aerial Vehicle
(UAV) orthographic image comparison [22–24]: This approach has the advantage of
obtaining accurate dune mobility only by acquiring a pair of satellite images. How-
ever, it is limited to only measuring 2D projected dune mobility on ortho-image space.

(2) Observation of 3D volumetric change based on high-resolution Laser Detection and
Ranging (LIDAR)/UAV continuous stereo observations [25–27]: Digital Elevation
Models (DEMs) generated from precisely registered stereo/LIDAR observations at
two observation times allows the calculation of volumetric change. However, the
possibilities of consecutive 3D observations are even more restricted.

Our target area covered a 200 by 150 km spatial domain and more than a decadal
time period. In terms of data availability and accuracy of remote sensing measurements,
the employment of 2D/3D dune mobility tracing is practically impossible. Hence, the
application of InSAR techniques was proposed as an alternative way to cover the spatio-
temporal domain of the target area. Although InSAR was developed for the measurement
of topographic deformation, phase angle analyses, which is a conventional approach of
InSAR, are not adequate to trace severely ongoing topographic changes such as sand dune
migrations. This is because the large change of base topography by saltation processes on
desert dune fields causes a temporal decay of phase coherence (Liu et al., 2001) [28], called
decorrelation. However, it also represents that phase coherence is strongly correlated with
the strength of dune migrations, as shown in studies such as Wegmuller et al. (2000) [29].
Phase coherence represents cross-correlation between two SAR images derived from the
InSAR technique and can be described in the following relationship.

coh =
N

∑
i=1

|< SmiS∗
si >|/

√
< SmiS∗

mi >< SsiS∗
si > (1)

where Smi and S*si are the complex conjugated signals of master and slave SAR images,
N is the total number of InSAR pixels within the estimated window, and <> assigns an
average operation.
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Nowadays, some studies have established methods for monitoring sand dune dy-
namics and aeolian migrations by the InSAR phase coherence footprint as shown by
Gomez et al. (2018) [30], Havivi et al. (2018) [31], and Ullmann et al. (2019) [32]. However,
decorrelation is not only a function of dune migration rate, it is also involved with mul-
tiple other components such as vegetation [33–35], InSAR geometry [33,36], and climate
effects [37,38]. Thus, in order to extend phase coherence monitoring on the extensive
desert environment, it is essential to decompose the decorrelation part contributed by the
other factors.

The overall InSAR phase coherence can be expressed by the aggregation of the follow-
ing components [39].

Coh = Cohthermal Cohspatial Cohtemporal (2)

where thermal coherence cohthermal can be expressed as follows [40]:

cohthermal = 1/
√(

1 + SNR−1
m_image

)(
1 + SNR−1

s_image

)
(3)

where SNRm_image is the signal to noise of the master SAR image and SNRs_image is the signal
to noise of the slave SAR image. Thermal phase coherence can be negligible due to the high
signal to noise values of the target InSAR systems in this study. Tamm et al. (2016) [41]
proved it using range-dependent noise parameters in SAR metadata.

Spatial coherence cohspatial can be expressed as follows [42]:

Cohspatial = 1 − 2|Bp|Rycos2(θ − α)

λρ
(4)

where Bp is the perpendicular baseline, Ry is the range resolution, θ is the incidence
angle, λ is the wavelength range of SAR, and α is the local surface slope and ρ is the
distance between the sensor and the object [36]. To understand the characteristics of
spatial coherence, we herein introduced the SAR data used in this study. We employed two
different InSAR data sets, including the Advanced Land Observing Satellite (ALOS) and the
Phased Array type L-band Synthetic Aperture Radar (PALSAR) 1/2 [43,44] over a 10-year
period by the combined observations by PALSAR 1 and 2, and C-band Sentinel-1 [45,46],
collected from 2016 to 2020 (see Tables 1 and 2). Spatial coherence, especially with short
perpendicular baselines such as Sentinel-1 and PALSAR1/2, was very close to 1.0 as shown
in Tables 1 and 2. Moreover, the effects of local surface slope on spatial coherence, as shown
in Equation (4), was tiny. This was because the terrain slopes in the test area were only a few
degrees or less; thus the variations of spatial coherence were not high (refer to Spatial coh1
and 2 values in Tables 1 and 2 whose maximum differences were only 0.03 to 0.05 in the
cases of PALSAR-1/2 and Sentinel-1) and were alternatively managed by the consequent
functional analysis. In addition, the window size for phase coherence calculations was
chosen to optimize the minimize noise and to prevent over-sampling of phase coherence.
The empirical or typical optimal window sizes are 5 in Sentinel-1, 5 in PALSAR-1, and 3
in PALSAR-2.
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Table 1. Employed PALSAR 1 (left part)/2 (right part) InSAR pairs and their acquisition conditions together with spatial
phase coherences (Bp: perpendicular baseline (m), Bt: temporal baseline (day), Spatial coh1: spatial phase coherences in
mean topographic slope angle (3.34 ◦). Spatial coh2: spatial phase coherences in mean topographic slope angle (28.3 ◦). The
samples of topographies to calculate Spatial coh1 and 2 were taken from a low sloped plain and high-relief dune field.

Master Date Slave Date Bp Bt Spatial
Coh1

Spatial
Coh2 Master Date Slave Date Bp Bt Spatial

Coh1
Spatial
Coh2

11 July 2007 26 August 2007 251 46 0.955 0.967 18 July 2015 23 September
2015 85 70 0.985 0.987

26 August 2007 11 October
2007 389 46 0.931 0.948 15 July 2015 02 December

2015 −1.6 140 1.000 1.000

11 October
2007

26 February
2007 1209 138 0.785 0.839 23 September

2015
02 December

2015 −83 70 0.985 0.988

26 February
2008 12 April 2008 437 46 0.922 0.942 10 February

2016 13 July 2016 95 154 0.983 0.986

26 February
2008 28 May 2008 274 92 0.951 0.964 10 February

2016
23 September

2015 25 −140 0.995 0.996

12 April 2008 28 May 2008 −163 46 0.971 0.978 13 July 2016 10 February
2016 −94.9 −154 0.983 0.986

28 August 2008 13 October
2008 955 46 0.830 0.873 13 July 2016 21 September

2016 53.9 70 0.990 0.992

- - - - - - 13 July 2016 30 November
2016 −141.8 140 0.974 0.979

- - - - - - 21 September
2016

30 November
2016 −88 70 0.984 0.987

- - - - - - 21 September
2016

08 February
2017 69.8 140 0.987 0.990

- - - - - - 30 November
2016

08 February
2017 157.8 70 0.971 0.976

Table 2. Employed Sentinel-1 pairs and their acquisition conditions together with spatial phase coherences (Bp: perpendicu-
lar baseline (m), Bt: temporal baseline (day), Spatial coh1: spatial phase coherences in mean topographic slope angle (3.34 ◦),
Spatial coh2: spatial phase coherences in mean topographic slope angle (28.3 ◦)).

2016/2017

Master Date Slave Date Bp Bt Spatial
Coh1

Spatial
Coh2 Master Date Slave Date Bp Bt Spatial

Coh1
Spatial
Coh2

16 May 2016 09 June 2016 17 25 0.988 0.992 12 March 2017 05 April 2017 63 24 0.954 0.968
09 June 2016 03 July 2016 7 25 0.995 0.997 05 April 2017 11 May 2017 12 36 0.991 0.994
03 July 2016 20 August 2016 3 47 0.998 0.999 11 May 2017 04 June 2017 38 24 0.972 0.981

20 August 2016 07 October
2016 49 48 0.965 0.978 04 June 2017 10 July 2017 110 36 0.919 0.944

25 September
2016

07 October
2016 75 13 0.947 0.967 10 July 2017 03 August 2017 74 24 0.945 0.963

07 October
2016

12 November
2016 111 37 0.921 0.951 03 August 2017 08 September

2017 81 37 0.940 0.959

12 November
2016

06 December
2016 35 25 0.975 0.984 08 September

2017
02 October

2017 78 24 0.943 0.961

06 December
2016

11 January
2017 179 37 0.873 0.920 02 October

2017
07 November

2017 5 48 0.996 0.997

- - - - - - 07 November
2017

01 December
2017 52 24 0.962 0.974

2018/2019

Master Date Slave Date Bp Bt Spatial
Coh1

Spatial
Coh2 Master Date Slave Date Bp Bt Spatial

Coh1
Spatial
Coh2

06 January
2018

11 February
2018 13 36 0.990 0.993 02 December

2018
01 January

2019 26 24 0.981 0.987

11 February
2018 07 March 2018 11 24 0.992 0.994 01 January

2019
06 February

2019 5 48 0.996 0.997

07 March 2018 12 April 2018 52 36 0.962 0.974 06 February
2019 02 March 2019 143 24 0.895 0.928

12 April 2018 06 May 2018 49 24 0.964 0.975 02 March 2019 07 April 2019 28 36 0.979 0.986
06 May 2018 11 June 2018 3 37 0.998 0.998 07 April 2019 01 May 2019 64 24 0.953 0.968
11 June 2018 05 July 2018 41 48 0.970 0.979 01 May 2019 06 June 2019 83 36 0.939 0.958
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Table 2. Cont.

2018/2019

Master Date Slave Date Bp Bt Spatial
Coh1

Spatial
Coh2 Master Date Slave Date Bp Bt Spatial

Coh1
Spatial
Coh2

05 July 2018 10 August 2018 83 93 0.939 0.958 06 June 2019 12 July 2019 27 36 0.980 0.986
10 August 2018 03 September

2018 173 24 0.873 0.913 12 July 2019 05 August 2019 34 24 0.975 0.983

03 September
2018

09 October
2018 174 36 0.872 0.912 05 August 2019 10 September

2019 45 48 0.967 0.977

09 October
2018

02 November
2018 94 24 0.931 0.953 10 September

2019
04 October

2019 104 24 0.923 0.948

- - - - - - 04 October
2019

09 November
2019 123 36 0.909 0.938

- - - - - - 09 November
2019

03 December
2019 10 24 0.993 0.995

- - - - - - 03 December
2019

08 January
2020 79 36 0.942 0.960

2020

Master Date Slave Date Bp Bt Spatial
Coh1

Spatial
Coh2 Master Date Slave Date Bp Bt Spatial

Coh1
Spatial
Coh2

08 January
2020

01 February
2020 71 4 0.948 0.964 18 July 2020 11 August 2020 116 24 0.915 0.941

01 February
2020 08 March 2020 5 36 0.996 0.997 11 August 2020 04 September

2020 148 24 0.891 0.925

08 March 2020 01 April 2020 54 24 0.960 0.973 04 September
2020

10 October
2020 99 28 0.927 0.950

01 April 2020 18 July 2020 102 108 0.925 0.949 - - - - - -

Thermal and spatial coherences are related to the system characteristics or InSAR
observation conditions, whereas temporal coherence is a major parameter to observe
surface migration. Lee et al. (2012) [47] described the phase coherence in the time domain
as shown below:

Cohtemporal = exp (−CtΔT) (5)

where Ct is the decay constant of temporal coherence, which is determined based on the
physical and geometric characteristics of the target surface, and ΔT is the time period of
InSAR pair observations.

Once these have been addressed, it is possible to express the phase decorrelation,
i.e., the decrease of phase coherence over a certain period, especially over the arid desert,
as follows:

TotalDecorr = Decorr(AER)× Decorr(Vege)× Decorr(MO)× Decorr(System) (6)

where Decorr(AER) is the decorrelation induced by the aeolian erosion rate, Decorr(Vege) is
the decorrelation induced by vegetation, Decorr(MO) is the decorrelation induced by soil
moisture and other climatic factors, and Decorr(System) is the remnants of systematic effects.

However, considering the vegetation and its interaction with wind and moisture
(Yun et al., 2019) [48], it is almost impossible to precisely model the decorrelation com-
ponents indicated by the temporal baseline between InSAR pairs. As such, random and
systematic effects are difficult to predict, and the application of a time series analysis of
phase coherences was a potential approach to address the issues. Based on the phase coher-
ence time-series results, the principal component analysis (PCA) was applied to extract
the major component. To extract the trending component along the mean direction for
further decomposition (see Gallagher et al., 2020 [49] for more details of centering effects
in PCA), the centering of each phase coherence was not applied. The temporal outliers,
e.g., temporal wind, moisture variations, and the remnants of systematic components as
shown in Kim et al. (2020) [50], were expected to be excluded. Note that the decorrelation
by the AER might have a directional trend. Thus, it will remain even in the first component
of PCA. However, the decorrelation by vegetation is very strong and also has directional
trends with seasonal change and growth of vegetation. To handle the decorrelation in the
AER, a decomposition was further conducted through modeling.
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3.2. Decomposition by Vegetation Decomposition and Overall Decomposition Procedure

Even though PCA analysis can effectively suppress the random change of phase
coherence, we have to address the decorrelation by vegetation. Our approach was to model
decorrelation with the vegetation indices. Based on Equation (5) and Santoro et al. (2009)’s
temporal coherence approximation [51], we proposed phase coherence decomposition by
introducing an external vegetation index:

Decorr(Vege) = exp(Cm × VI) (7)

where Cm is the dependent constant on surface vegetation, and VI is the vegetation index.
Corresponding to the insensitivity of desert dune that occurred in the measurements, it

was observed that the Normalized Vegetation Difference Index (NDVI) and other vegetation
indices were not optimally presented in the temporal and spatial migrations. Particularly,
NDVI had a problem presenting actual vegetation metrics [52,53]. Therefore, the Enhanced
Vegetation Index (EVI) was applied in the analysis. We tackled the regression model
by introducing LANDSAT-5/8 EVI to our target area. Two regression models between
decorrelation and the vegetation index computed from the two SAR image acquisition
times were proposed as follows.

Decorr(Vege) = exp(Cm1 × Avg(EVI1, EVI2) + Cm2 × abs(EVI1 − EVI2)) (8)

Decorr(Vege) = exp(Cm1 × Avg(EVI1, EVI2)) (9)

We tested two models and found that it was difficult to establish two variable regres-
sion models as listed in Equation (8) and, therefore, employed Equation (9) as a default
model instead. Noted that we used long-term (monthly or yearly) average EVIs of time
InSAR image acquisition to avoid short-term variation of the vegetation index and void
due to cloud coverage. Once the decorrelation component by vegetation was established,
we applied it for decomposition either before or after PCA analysis based on time-series
phase coherence. Decomposition is a simple division of decorrelation by vegetation from
each phase coherence (Figure 2a) or component 1 of PCA analysis based on the phase
coherence time-series as shown in Figure 2b. To distinguish the two processes, we named
the procedure in Figure 2a as a prior processor and Figure 2b as a posterior processor.

It was worthwhile noting that the decorrelation model that employs EVI should be
established in areas excluding desert as well as urban areas, artificial structures, and water
surfaces. The land cover, which has more than a certain proportion of vegetation, would
follow the decorrelation model as presented in Equation (9). Therefore, we introduced a
land cover classification map for the decorrelation modeling and excluded urban areas, arti-
ficial structures, desert, and water surfaces from the EVI-decorrelation model as presented
in both Figure 2a,b.

3.3. Inter-Comparison with Protrusion Coefficients (PC)

As demonstrated in Figure 2, we employed the protrusion coefficient (PC) as validation
data sets. PC was introduced because the other data sets such as vegetation indices, which
supposedly involved the aeolian process, had significant problems being directly compared
to AER by InSAR analysis. In an arid desert environment, some rough objects such as
leafless vegetation, shrub, and non-vegetation objects are largely effective in reducing the
aeolian erosion process; however, unlike non-vegetation, vegetation indices do not reflect
the strength of ground obstacles. Therefore, we needed quantity measuring roughness,
which consequently represented resistance against aeolian erosion to validate the AER
estimated by InSAR analysis. The background for the employment of PC for comparison
with InSAR AER is as follows.
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Figure 2. (a) Processing flow of phase coherence analyses for the establishment of the AER map using decomposed phase
coherence, which is called a prior processor, (b) Processing flow of phase coherence analyses for the establishment of the
AER map using the 1st principal component analysis (PCA) component and its decomposition, which is hereafter referred
to as the posterior processor.

One of the crucial parameters governing aeolian erosion is aerodynamic roughness,
also called Zo. The smaller the Zo value (mostly covered desert, low vegetation area, etc.),
the greater the probability of dust in the topsoil during the saltation process. Therefore,
the essential information to identify the feasibility of erosion is the Zo of the target surface
and its time-series, specifically the spatiotemporal migration of Zo, expressed by the
following function.

U(z) =
(u∗

K

)
ln(z − d0)/Zo (10)

where U(z) is the vertical wind profile, Zo is the aerodynamic roughness length, u* is
the friction velocity, K is the Vol Karman constant (dimensionless) which defines the
logarithmic law in a fluid flow, and d0 is the elevation of displacement plane.

The observation of Zo in an open field is available by the following methods. The
first straightforward approach is to analyze high-resolution satellite and airborne DEMs
and to identify aerodynamic obstacles such as man-made structures and vegetation on the
DEM [54–56]. However, it should be noted that the spatio-temporal domains of the target
area in this study could not be easily covered by the employment of high-resolution DEM
products. The method which regressed Zo from the vegetation index [57,58] was not valid
in many practical cases. Since the target area included large urban and artificial structures
and some vegetation in the arid desert was not distinguished by the satellite vegetation
index, therefore, this approach was not appropriate for our case.

An indirect derivation may be obtained through processing the low-medium reso-
lution image of the Bidirectional Reflectance Distribution Function (BRDF). The BRDF
can be obtained from a combination of multiple satellite images over one point [59] and
measurements of the reflectivity function depending on the viewing and illuminating of
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geometry and surface roughness. By a kernel-based approach that has been commonly
used for satellite products [60], the BRDF is defined as follows:

Rsur f = k0 + k1 f1 + k2 f2 (11)

where Rsurf is the BRDF of the surface, k0 is an isotropic coefficient, k1, f 1 is the volumetric
coefficient and kernel while k2, f 2 is the geometric coefficient and kernel. The volumetric
and isotropic coefficients of the derived BRDFs are the dependent variable of PC and
downward relationship with Zo [61,62].

PC =
k1

k2
= a × log(Zo) + b (12)

It is known that the PC from the BRDF was involved with the strength of aeolian
erosion on the condition that the other governing factors for aeolian erosion such as soil
moisture are negligible. Therefore, the inter-comparison of the InSAR AER to PC from
the BRDF had merit. Here, we employed MODIS BRDF products to extract PC maps as
precedent researches have conducted [63,64].

4. Processing Results

The ALOS PALSAR time series were used for long-term monitoring, while Sentinel-1
imagery tested the availability of short-term AER measurements. Two L-band InSAR
image series of PALSAR-1 and -2 were first employed to extract phase coherence maps.
A minimum span tree (MST) [65] was formed in which the average of InSAR phase
coherence between pairs could be the maximum value, and the InSAR phase coherence
between the formed pair was extracted. Phase coherence maps generated by PALSAR-1
InSAR pairs during 2007–2008 represented the decorrelation trend before the activity to
combat desertification as shown in Figure 3. On the contrary, Figure 4 generated from
the PALSAR-2 InSAR time series in 2016–2017 demonstrated decorrelation status after
combating desertification.

Figure 3. Interferometric Synthetic Aperture Radar (InSAR) phase coherence using PALSAR-1 during the 2007–2008 period,
including (a) 11 July 2007–26 August 2007, (b) 26 August 2007–11 October 2007, (c) 26 February 2008–12 April 2008, (d) 12
April 2008–13 July 2008, (e) 13 July 2008–28 August 2008, and (f) 28 August 2008–13 October 2008. Note the dust storm
season is usually from February to May, but mainly in March and April.
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Figure 4. InSAR phase coherence using PALSAR-2, including pairs of (a) 15 July 2015–23 September 2015, (b) 2 December
2015–10 February 2016, (c) 10 February 2016–13 July 2016, (d) 13 July 2016–21 September 2016, (e) 21 September 2016–30
November 2016, and (f) 30 November 2016–8 February 2017.

Vegetation index EVI derived from the medium resolution (30–50 m/pixel) LANDSAT
5 and 8 data were extracted in the corresponding areas of InSAR observations using Google
Earth Engine (GEE), as described later. The scattergrams in Figure 5 demonstrated extremely
important results in the correlation between vegetation and phase coherence signals.

Figure 5. (a,b) The scattergram between the Enhanced Vegetation Index (EVI) and its corresponding single-phase coherence
from the PALSAR-1 InSAR pair by a prior processor, (c) The scattergram between the EVI and PCA 1st component
from the PALSAR-1 phase coherence time-series by a posterior processor, (d–f) The scattergram between the EVI and its
corresponding single-phase coherence from the PALSAR-2 InSAR pair by a prior processor, (g) The scattergram between the
EVI and PCA 1st component from the PALSAR-2 phase coherence time-series by a posterior processor. The corresponding
regression models were presented as blues lines. Control points indicating high EVI, low phase coherence, and low EVI and
high phase coherence were indicated by red points. The color represents the cumulative pixel number of the corresponding
EVI-PCA bin. RMSEs were measured over the upper area of the land erosion component and demonstrated with the
regression model constant Cm of Equation (1).
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For all the scattergrams illustrated in Figure 5, three components were commonly
observed: (1) the component of vegetation which is populated around the decorrelation
model (blue lines); (2) elongated part into lower EVI and low phase coherence (black dotted
lines); (3) some distribution with low EVI and high phase coherence presented in black
ellipses. The components around the modeled decorrelation re clearly vegetated terrains,
thus they are decomposed. Elongated components described in (2) with low EVI and
low phase coherence assign aeolian erosion, referred to as the erosion component as low
vegetation and low phase coherence can only be presented as the erosional surface by the
decrease of Zo which induces more aeolian erosion as stated in Section 3.3. Components
described in (3) are mainly artificial structures or bare terrain covered by very weak
vegetation. The problem we observed here is that the decorrelation model of vegetation
was frequently inclined in the component 3 direction when there was no consideration to
exclude it from the modeling. Thus, we employed two ways to clarify the findings: (1)
processing together with land cover maps, excluding from the modeling some specific
land cover types such as water surface, desert, and urban area, which may distort the
decorrelation model on vegetation; (2) further introducing two control points in regression
modeling, one with low EVI and high phase coherence and the other with high EVI
and low phase coherence. Both points were clearly located in natural vegetation, and
the value was assigned within a sufficient surrounding buffer zone. These two control
points were introduced in the regression with high weighting values. The effects of
the control points may not have been significant, but they enabled us to observe the
controllability of the regression model. We observed that the regression model of vegetation
decorrelation through the posterior process was better established as it was not inclined
towards artificial/urban components compared to other cases by a prior processor (refer
to Figure 5c,g). Moreover, it is worthwhile highlighting that the erosion components
assigned by black dotted lines, which was our main object to measure, were all better
distinguished in the results by a posterior process, as shown in Figure 5c,g. The erosion
components characterized the inverse relationship between the EVI and phase coherences,
which were also observed in precedent studies regarding surface migration on arid sandy
desert using phase coherence [28,29,31–33]. We measured and presented root mean square
errors (RMSEs) between regression models by Equation (5) and observations. Those values
demonstrated that the posterior processor was more effective to eradicate uncorrelated
components of time-series phase coherence. Which corresponded to the precedent phase
coherence analysis by Kim et al. (2021) [50]. The observations summarized above hence
formed the basis of using a posterior process to extract AER as the default method.

In order to extract the decorrelation component by vegetation, we established a
decorrelation map using an established regression model and EVI, as shown in Figure 6.
Therefore, we were able to decompose the decorrelation map from phase coherence or the
PCA 1st component of the phase coherence time-series, as demonstrated in Figure 7. It
should be noted that the AER in Figure 7 is the relative strength of aeolian erosion between
the maximum to minimum values after decomposition. Thus, the minimum AER value
in an InSAR time-series analysis presents the minimum change of topography while the
maximum AER value is the maximum change of topography in each time-series analysis.
As we inferred from the Figure 5 cases, the results from a posterior processor showed
the outcomes better distinguished the before (see Figure 7c) and after activities to combat
desertification (Figure 7d), which were intensively conducted in the mid-2010s.
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Figure 6. (a) Pre-decomposition stage in PALSAR-1 (2007–2008 period) by a posterior processor. (b) Pre-decomposition stage
in PALSAR-2 (2015–2017 period) by a posterior processor with LANDSAT-8 EVI average. The left is the PCA component 1
of PALSAR-1/2 phase coherence, the middle corresponds to the LANDSAT-5/8 EVI average over the InSAR observation
time period, and the right is the simulated decorrelation map by vegetation decorrelation model and the EVI map.

Figure 7. AER maps using ALOS PALSAR-1/2 during 2007–2008 and 2015–2017 periods using a prior processor in (a,b)
and a posterior processor in (c,d). Noted that the effects of combating desertification activities are obvious in the posterior
processor cases.

Sentinel-1 InSAR phase coherence time-series covering the 2016–2020 period were
constructed in consecutive InSAR pairs. We established short-term time series for each
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year from 2016 to 2020. After the decomposition of vegetation, surface erosion components
in each year were established (Figure 8). Since the erosion map created by a prior processor
presented more noise because of temporal variation of the EVI and phase coherence, our
default approach followed a posterior decomposition processor in all Sentinel-1 cases. The
AER time-series analysis is for the inter-comparison of short-term aeolian erosion using
the high temporal density of Sentinel-1 InSAR image acquisitions. Thus, a normalization
procedure was necessary to convert all AER metrics in the same data range. The details of
validation employing normalized Sentinel-1 AER are described in the next section.

Figure 8. (a–e) Surface erosion map using Sentinel-1 during the 2016–2020 period. Noted that all AER maps were constructed
by a posterior processor. The crosshairs in (a) indicate the location of ground control points for normalization. See the next
section for the detailed normalization process. AERs of data sets are not controlled by each other’s data ranges. See the next
section for the detailed normalization process to assign controlled data ranges using ground control points.

5. Discussion

Since the decomposition procedure was conducted based on the vegetation index, it is
not ideal to employ other vegetation indicators to assess extracted AER. Thus, we employed
the PC for this purpose. The PC time-series representing the surface characteristics in the
target area from 2000 to 2017 were reconstructed based on MODIS 43 BRDF products as
shown in Figure 9 [66] in which the relatively clear discrimination between sand dune and
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other land cover types can be clearly observed. Thus, it is worth noting that the PC to
InSAR erosion map comparison was effective for validating our approach.

Figure 9. Time-series representations of protrusion coefficients (PCs) in 2001 (a), 2003 (b), 2007 (c), 2009 (d), 2013 (e), and
2017 (f) using MODIS BRDF MOD 42 products (the resolution is 500 m/pixel).

The scattergrams between the PCs and AERs extracted from Sentinel-1 in the 2016–
2020 period, together with the established regression models, are shown in Figure 10 and
Table 3. It is noted that there are commonly two data clusters (see blue and red ellipses in
Figure 10a) together with the inverse proportional relationship in PC-AER distributions.
The part encircled by the red ellipse is the aeolian land degradation component, and the
part outlined in the blue ellipse represents the weak erosion components with low-to-
high rough surfaces, such as vegetation and urban areas. The dispersions in PCs in both
distributions mainly originated from resolution differences of the PC (500 m) and the AER
(30 m) as aggregated land cover types in one PC pixel which induced a large dispersion.
However, parts of the dispersion in the aeolian erosion ellipse can be attributed to the
influences of other control factors of aeolian erosion, such as soil moisture, condensation,
and clay ratio. The lower half part of the high roughness ellipse, i.e., the lower part in the
blue ellipse, is certainly formed by the relatively flat but robust surface to aeolian erosion
in rocky areas, concrete pavements, and the roadside; thus they have low PC and low AER
values. Other upper parts of the low erosion ellipse can be explained as high roughness in
surfaces found in forest and urban structures.

Table 3. The metrics of linear and LMA regression models between the PC and Sentinel-1 AER (R2: coefficient of determination).

2016 Model R2 RMSE 2017 Model R2 RMSE 2018 Model R2 RMSE

Linear Y = −0.074 ×
X − 0.822 0.024 0.079 Linear Y = −0.087 ×

X − 0.737 0.023 0.072 Linear Y = −0.108 ×
X − 0.668 0.056 0.074

RMA Y = −0.469 ×
X + 0.157 0.372 0.137 RMA Y = −0.567 ×

X + 0.426 0.371 0.126 RMA Y = −0.458 ×
X + 0.195 0.396 0.12

2019 Model R2 RMSE 2020 Model R2 RMSE - - - -

Linear Y = −0.081 ×
X − 0.796 0.027 0.088 Linear Y = −0.213 ×

X − 0.421 0.152 0.084 - - - -

RMA Y = −0.495 ×
X + 0.231 0.375 0.151 RMA Y = −0.547 ×

X + 0.392 0.45 0.671001 - - - -

Therefore, the regression models of the AER and PC were not clear in both the least
mean squares (LMA) and linear regression approaches as listed in Table 3. Considering
the dispersion in low erosion and high erosion ellipses, we estimated that the PC-AER on
the natural surface was similar to the linear regression model, which was actually the first-
order polynomial presented in Table 3 rather than the high order polynomial cases. High
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data dispersion in the PC to AER regression showed the extra effects on surface changes
such as soil moisture, wind strength, and human activities which induced aeolian erosion.
The introduction of advanced biomass metrics that can be extracted from a sequence of
new algorithms [67,68] or from new sensing systems [69,70] will be helpful for a precise
validation of the AER in future studies. Thus, the developed AER tracing scheme will be
useful for the activities to combat desertification as well as the early warning of dust storm
generations after applying such precise validation processing.

Figure 10. PC vs. InSAR AER in 2016 (a), 2017 (b), 2018 (c), 2019 (d), and 2020 (e). Note that the regression models between
the PC and AER were built by an ordinal linear regression model (blue dotted lines) and a least mean squares (LMA)
regression model (red dotted lines).

A further step applied was to normalize all derived AER measurements by different
InSAR time-series analyses in the same standardized range. The processed outcomes
can be comparable to each so it is referred to as n-AER as stated in Section 1. Regarding
normalization, a linear regression model assuming a linear relationship between the values
of the reference and subject images for points of the same land cover types as those
reported in Sadeghi et al. (2017) [71] was applied in this study. Based on the dark set-
bright set (DB) method developed by Hall et al. (1991) [72], a total of 16 erosional ground
control points (EGCPs) appearing unchanged as settlement, river, and road were manually
selected to derive the normalization coefficients (refer to Figure 8a to see the location of the
selected points). Given the pattern of exponential decay in phase coherence presented in
Equation (5), a linear relationship can be established:

n-AERi = GiXlog(AERi) + off_seti (13)
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where G is the gain value, off is offset to deploy logarithmic AER value into a normalized
data range, and I is ith target InSAR time series observation. The G and off_set can be
extracted from the linear system in Equation (13) and EGCPs were assigned to 0.0 with
zero migration over settlement and road and 1.0 with full decorrelation over the water
surface. The values of the potential EGCPs in the InSAR AER images over the whole
observation period were recorded respectively and chosen carefully only in the case that
there were no significant changes. Based on the coefficients, i.e., Gi and off_seti derived
through ordinary least squares estimation, the AER images were normalized through a
linear transformation. The extracted n-AERs are demonstrated in Figure 11 for ALOS
PALSAR 1/2 and in Figure 12 for Sentinel-1.

Figure 11. Normalized aeolian erosion (n-AER) maps using ALOS PALSAR-2 pairs of 2007–2009 (a) and 2015–2017 (b). Two
n-AER maps now can be assessed against each other as the data ranges of the two maps used the process of employing
control points (see Figure 8a). The effects of activities to combat desertification are evident as presented in circled areas.

Therefore the n-AER maps produced by independent phase coherence time-series
analysis over the Kubuqi Desert demonstrated how the change in surface characteristics
caused the mitigation of erosions. A further procedure for assessment of InSAR n-AER
products was performed based on the inter-comparison to vegetation information and
ground truth regarding activities to combat desertification. The n-AER covering a decadal
period in comparison to the EVI of LANDSAT 5/8 and MODIS is presented in Table 4. It
was observed that commonly in LANDSAT and MODIS EVIs, the low EVI area (<0.2, 0.15,
and 0.1, respectively) was dramatically reduced in the 2016 observations compared to the
2007 observations. For instance, the area with an EVI lower than 0.1 changed from 77% in
2006 to 6.6% in 2016. When the MODIS EVIs were employed to address different sensor
issues in the use of LANDSAT 5 and 8, low EVI areas were considerably reduced, especially
in areas where the EVI was smaller than 0.1. More importantly, n-AER values in low
EVI areas showed no differences, or worse, in the 2007 and 2016 observations. Thus, the
values in Table 4 represented that the overall changes in n-AER were due to the increasing
vegetation coverages in the entire Kubuqi area. However, natural conditions that induce
aeolian land degradation were still severe. Conclusively, it has been proven that the main
drivers of mitigating sand dune activities and aeolian land degradation for the last decade
have been anthropogenic factors, including activities to combat desertification in this area.

These observations can be proved again by employing ground truth regarding ac-
tivities to combat desertification. Figure 13a showed the extent of yearly planting areas
brought about by efforts to combat desertification conducted by international NGOs and
Chinese local government from 2006 to 2020. Figure 13b demonstrated the organized
planting efforts that resulted in noticeable changes in both EVI and n-AER values as ob-
served in PALSAR 1/2 time-series analyses covering the 10-year period. On the contrary,
the short-term n-AERs by Sentinel-1 from 2016 to 2020 did not make significant changes.
Obviously, old planting areas (2006–2010 and 2010) in Figure 13c,d were most successful in
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reducing aeolian erosion in the decadal period. Compared to the recent planting activities
and their relatively weak anti-AER effects presented in Figure 13e–g, it is concluded that the
activities to combat desertification during 2006–2010 successfully built a high aerodynamic
surface roughness wall crossing Kubuqi Desert, which prevented aeolian saltation.

Figure 12. n-AER maps using Sentinel-1 in 2016 (a), 2017 (b), 2018 (c), 2019 (d), and 2020 (e). See the dotted ellipses where
n-AER successfully detects the effect of ground compaction around solar panels. Note the range of n-AER is now adjusted
between 0.0 to 1.0.

Table 4. Distribution of low EVI areas and their n-AER values.

EVI Threshold
(<EVI)

2007 LANDSAT 5 EVI 2016 LANDSAT 8 EVI

Ratio * in 2007
Mean n-AER
Value in 2007

n-AER Stdev
in 2007

Ratio in 2016
Mean n-AER
Value in 2016

n-AER Stdev
in 2016

0.2 99.34 0.355 0.122 81.96 0.349 0.148
0.15 92.26 0.363 0.122 50.7 0.396 0.161
0.1 76.88 0.377 0.126 6.56 0.6 0.095

EVI Threshold
(<EVI)

2007 MODIS EVI 2016 MODIS EVI

Ratio in 2007
Mean n-AER
Value in 2007

n-AER Stdev
in 2007

Ratio in 2016
Mean n-AER
Value in 2016

n-AER Stdev
in 2016

0.2 98.48 0.356 0.122 95.2 0.337 0.144
0.15 87.29 0.365 0.123 80 0.348 0.15
0.1 43.8 0.428 0.135 30.4 0.467 0.162

* Percentage of the area where EVI value less than EVI threshold.
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Figure 13. n-AER values using Sentinel-1 and PALSAR-1/2 over combat desertification areas (outlined by black dash line in
(a)). The performance over all planting areas are shown in (b). Note the effects of combat desertification activities are highly
obvious in the observations of very early planting such as 2006–2010 in (c), 2010 in (d) and possibly 2015 (e) employing
PALSAR-1 and 2. However, the n-AER changes after 2016 measured by Sentinel-1 observations, such as 2019 (f) and 2020
(g), are not clear.
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All these results support that the phase coherence time-series analysis developed in
this study is effective in tracing erosion. It has also shown great potential for identifying
sources of dust and ongoing erosion by replacing existing approaches such as AOD analysis.
Compared to 25 km resolution dust source tracing using AOD analysis, the InSAR phase
coherence method provided an improved opportunity to directly observe erosion with a few
decameters spatial resolution and better temporal resolution regardless of climate condition.
However, it should be noted that the limitations of the phase coherence time-series analysis
for dust source mapping are also clear. As mentioned above, the values observed by phase
coherence time-series analysis are only relative intensities. Therefore, a calibration process
between erosion maps in each epoch using land control points is necessary. Another
significant problem of phase coherence analysis is the reliability of the decomposition of
the phase coherence contribution by other factors such as vegetation, soil moisture, snow
cover, and other land changes. In this respect, we propose a more detailed interpretation of
phase coherence time-series that combines high-resolution remote sensing data products
such as drone and space-borne ultra-high-resolution products. Cross-comparison studies
using climatic factors such as soil moisture, wind speed, and precipitation will provide
insight into the improvement of the phase coherence AER.

6. Conclusions and Future Work

This study proved that precise long-term monitoring of aeolian erosion and progress
of involved surface condition is feasible using time series InSAR and medium resolution
vegetation index products. A scheme employing InSAR phase coherence time-series suc-
cessfully traced a temporal consequence in which activity to combat desertification caused
the increase of aerodynamic roughness length and the decrease of sand dune mobility. In
spite of the favorable natural environment for intensive aeolian land degradation in N.W
Chinese deserts, the efforts to combat desertification and other anthropogenic factors led
to the overall reduction of erosion in Kubuqi during the period 2000–2020. Our scheme
successfully reconstructed such a long-term and steady-going combating desertification
consequence on the establishment of a blocking wall leading to the effective mitigation
of aeolian erosion. Thus, the effectiveness of the phase coherence approach for erosion
monitoring was well verified in both aspects of precision and spatio-temporal resolution.

However, it has appeared that a few issues remained to be solved in the proposed
scheme before it is to be employed as a standard approach for AER measurement. First, the
driven InSAR AER only extracted the relative strength of aeolian erosion; thus, it should be
calibrated compared to the metrics of quantitative erosion. On the other hand, the InSAR
signal still needs to be further inspected to decompose other governing factors of erosion,
such as climatic factors and the footprints of the urban area, rock surface, and concrete
resistant land cover that exists against erosion. It means the procedure needs to be more
updated considering how surface conditions for erosion are very complicated.

For future work, in order to carry out the quantitative analysis which is more generally
applicable for erosion monitoring in major sand dust source areas, it is essential to perform
additional measurement over the target area, such as UAV stereo, high-resolution satellite
analysis, and close-range photogrammetry. Improved time-series data analysis together
with high-resolution products will be of great help for the planning of more effective activity
to combat desertification and better prediction and observation of erosion in the arid desert.
Future space-borne sensors such as NASA-ISRO Synthetic Aperture Radar (NiSAR) [73],
Geostationary Ocean Color Imager-2 (GOCI-2) [74], and Panchromatic Remote-sensing
Instrument for Stereo Mapping-2 (PRISM-2) will provide highly valuable data sets to
update or precisely validate proposed algorithms.
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Abstract: The first successful sand-control was achieved in the Mu Us Desert by local people in the
1950–1960s, and their experience and approach have been extended to the whole Ordos and Northern
China since then. The objective of this paper is to assess comprehensively the effectiveness of sand-
control in 15 counties in and around Mu Us using multitemporal satellite images and socioeconomic
data. After atmospheric correction, Landsat TM and OLI images were harnessed for land cover
classification based on the ground-truth data and for derivation of the GDVI (generalized difference
vegetation index) to extract the biophysical changes of the managed desert and desertification.
Climatic, socioeconomic, environmental and spatial factors were selected for coupling analysis by
multiple linear and logistic regression models to reveal the driving forces of desertification and their
spatial determinants. The results show that from 1991 to 2020, 8712 km2 or 63% of the desert has been
converted into pastures and shrublands with a greenness increase of 0.3509 in GDVI; the effectiveness
of sand-control is favored by the rational agropastoral activities and policies; though desertification
occurs locally, it is associated with both climatic and socioeconomic factors, such as wind speed,
precipitation, water availability, distance to roads and animal husbandry.

Keywords: post-classification differencing; generalized difference vegetation index (GDVI); multiple
linear regression; logistic regression

1. Introduction

Desertification is a phenomenon of land degradation resulting from by human activ-
ities and climate variations in arid, semi-arid and partially sub-humid areas [1,2]. With
more than about four million km2 of dryland, China has been suffering from desertification
since centuries ago. Though sand-control through afforestation and plantation of shrubs
and herbaceous vegetation has been widely effectuated in the dryland areas since the 1950s,
there is still large area of desert in China, reaching 739,200 km2 [3]. This poses a serious
threat to the sustainable socioeconomic development in the arid region.

Remote sensing (RS) technology has become an important data source and technical
means for desertification monitoring due to its wide detection range and observation
periodicity since the 1970s [2,4–10]. It has been successfully applied to distinguish desert
encroachment or climate events of the south border movement of the Saharan Desert [5],
desertification in Sahel [4], in western Rajasthan in India in 1990s [11], and in Mu Us [2,8].
Remote sensing approaches include, but are not limited to, differencing-and-thresholding
technique and supervised classification [7,8,12–14], in which the quantitative evaluation of
desertification based on remote sensing indicators is made possible [15,16]. Commonly-
used indicators are the normalized difference vegetation index (NDVI), fractional vege-
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tation coverage (FVC), vegetation net primary productivity (NPP), rainfall-use efficiency
(RUE), etc. [17–20]. Both FVC and NDVI are able to identify land degradation and dis-
tinguish the degree of governance of sand land [8,21]. However, it is difficult to discern
subtle changes in vegetation when applied to desert areas with sparse vegetation. Recently,
Wu (2014) proposed the generalized difference vegetation index (GDVI) for arid areas [22],
and Xie et al. (2020) developed a set of monitoring and restoration assessment indicators
(MRAIs) for assessing the mining impacts and restoration effectiveness [23]. Since these
two indicators were developed for sparse vegetation areas, both of them are promising for
land degradation and desertification study. In addition, supervised classification is also
widely used in land cover mapping and dynamic monitoring of desertification [5,8,12,24].
With improvement of classification algorithm and technique, land cover mapping including
desertification can be achieved with high accuracy and reliability [24]. Therefore, combi-
nation of the supervised classification with differencing-and-thresholding technique will
allow the advantages of each to complement the other, and hence achieve a comprehensive
quantitative evaluation of the effectiveness of sand-control [8].

Actually, for desertification monitoring and assessment, we have to mention the Euro-
pean megaproject, the Mediterranean desertification and land use (MEDALUS) projects I, II
and III from 1989 to 1999 [25], which proposed a comprehensive assessment approach using
four main quality indices, e.g., climate quality index (CQI), soil quality index (SQI), vege-
tation quality index (VQI), and the management (human influence) quality index (MQI).
These indices were employed to constitute an environmental sensitive area index (ESAI)
to identify the vulnerable area of desertification. The DesertWatch projects funded by the
European Space Agency (ESA) (2004–2008) followed this and applied Earth Observation
(EO)-based information to derive environmental elements to generate a land degradation in-
dex and develop the desertification scenarios [26]. Lee et al. (2019), Bouhata and Bensekhria
(2021), and Abuzaid and Abdelatif (2022) respectively applied the MEDALUS approach for
desertification vulnerability assessment in Mongolia, Algeria and Egypt [27–29].

Analysis on the driving forces of desertification is an indispensable part of desert
monitoring and assessment [9]. Most of the driving factors are related to climate and
human activities [30], e.g., precipitation, temperature, wind speed, and sunshine hours,
and socioeconomic factors such as gross domestic product (GDP), population, and livestock
numbers [18,31,32]. At present, the research on the driving force mainly focuses on two
aspects: (1) Using correlation analysis, principal component analysis, stepwise linear re-
gression, and other methods to explore the influence of human activity and climate on land
cover change and desertification [2,6], and these methods have been proved effective. How-
ever, desertification is a complicated process, and simple linear models cannot fully reveal
its driving mechanism [33,34]. (2) In recent years, several studies on the driving forces of
the spatial variability of desertification have been carried out employing the geographically
weighted regression, geographic detectors, logistic regression models, etc., and all of these
approaches may lead to promising results [35–38]. With the development in socioeconomy,
construction of roads, expansion of settlements, protection of farmland and other human
activities have also become important factors for desertification reversal [36,38]. However,
currently, the existing research mainly focuses on a fixed time point or single phase, and few
studies have incorporated human activity into desertification modeling, and this may fail
to rationally uncover the real mechanism and causes of desertification in different periods.
Even the MEDALUS and DesertWatch projects focused on prediction of the vulnerable
areas of desertification, but not on its driving forces.

Based on the above understanding, the objective of the study is to conduct a compre-
hensive monitoring and assessment of the desertification progress and the effectiveness
of sand-control in space and time, taking the Mu Us Desert in China as an example, so as
to provide an extension of or a complement to the MEDALUS and DesertWatch projects
and put forward feasible suggestions for decision-makers to manage the remaining active
deserts. One specific objective of this study is to build spatially explicit models of desertifi-
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cation and sand-control activity. Multitemporal Landsat images and socioeconomic data
will be employed for achieving these purposes.

2. Materials and Methods

2.1. The Study Area

The study area is located at the junction of three provinces, namely Inner Mongolia,
Shaanxi and Ningxia, in northern China. The main part is the Mu Us Desert (or Sandy
Land) with a geographical extent from 105◦20′17′′ E to 109◦32′41′′ E in longitude and
36◦49′12′′ N to 39◦49′31′′ N in latitude and covering an area of 73,737 km2 (Figure 1). The
terrain is relatively flat, with an average elevation of 1380 m. Apart from a few mountains
(Mts) in the northwest (e.g., Helan Mts and Zhuozi Mts), most of the study area is sandy
land, desert in Mu Us, and farmland in the Yinchuan Plain. It borders the Loess Plateau in
the south and southeast.

Figure 1. Location of the study area.

The average annual rainfall is about 317 mm, mainly concentrated in July–September [2,8],
while annual evaporation reaches 2500 mm, much stronger than precipitation. Winds from
the northwest blow on average 230 days per year, and those exceeding the speed of 17 m/s
(Beaufort Scale-8) may occur during more than 40 days [8]. The mean annual temperature
is about 6.0–8.5 ◦C, but there is a significant difference between summer and winter and
between day and night.

The vegetation type is mainly shrubs and herbs in the sandy land, and rice and
maize are the main cultivation in the Yinchuan Plain with which the greenness reaches its
maximum in July and August. The special terrain and climate conditions, as well as the
overgrazing in the early periods, have made the study area largely desertified or susceptible
to desertification.

There are rich mineral resources including coal, oil and gas in the study area, and
that is why the latter was designated as one of the energy bases of China by the central
government in 1999 [8].

Since 1959, local people started to conduct sand-control activities and many large-
scale combating desertification campaigns have been successfully undertaken by individ-
ual/household companies and national teams since then.
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2.2. Data and Processing

To achieve our purposes, a combined method of post-classification differencing and
GDVI differencing was proposed to quantitatively evaluate the spatial distribution and degree
of sand-control. A set of socioeconomic, climatic and environmental factors were selected to
quantitatively analyze the driving forces of the spatial heterogeneity of desert governance in
different periods using multiple linear regression and logistic regression models.

2.2.1. Data
Satellite Data

Landsat TM, ETM+ and OLI images from 1987 to 2020 with path/row numbers
128/33-34 and 129/33-34 and 16 tiles of digital elevation model (DEM) data (ASTERV003,
30 m resolution) of the study area were obtained from the USGS data server (glovis.usgs.gov,
accessed on 16 June 2020) and NASA (earthdata.nasa.gov, accessed on 16 June 2020).
Landsat images were mostly acquired in summer from July to September with cloud cover
less than 1% (Table 1) in terms of the phenological features of crops and vegetation in
the continental climate zone. Due to frequent cloudy weather in summer, it is difficult
to acquire cloud-free images for the adjacent scenes of different paths in the same year.
Hence, selection of images depended on the availability of cloud-free images and there
was difference in acquisition dates of the adjacent scenes of images. The obtained Landsat
images were utilized for the following supervised classification and derivation of different
vegetation index, GDVI, and land surface temperature (LST).

Table 1. Landsat images used in the study.

Captors Scene Path/Row No Acquisition Dates Spatial Resolution Source

Landsat 5 TM

128/33

23 August 1991

30 m
USGS

https://glovis.usgs.gov (last
accessed on 20 May 2021)

Landsat 5 TM 28 July 1999
Landsat 5 TM 27 August 2010
Landsat 8 OLI 5 July 2020

Landsat 5 TM

128/34

23 August 1991
Landsat 5 TM 26 June 1999
Landsat 5 TM 10 July 2010
Landsat 8 OLI 7 September 2020

Landsat 5 TM

129/33

30 August 1991
Landsat 5 TM 20 August 1999
Landsat 5 TM 28 June 2009
Landsat 8 OLI 26 July 2019

Landsat 5 TM

129/34

30 August 1991
Landsat 5 TM 22 August 2000
Landsat 5 TM 17 July 2010
Landsat 8 OLI 26 July 2019

High resolution images available on Google Earth were harnessed to derive road
vector data for 1991,1999, 2010 and 2020.

Socioeconomic Data

It is difficult to monitor and quantify human activity, and the best way is to use annual
socioeconomic data, the finally quantified expression of human activity during a one-year
period, for research [2]. For the study area, county-level socioeconomic data are available
from the Statistic Yearbooks published by the government. The data include the total
sown area, meat product, total number of livestock at the end of year, sheep stock, per
capita net income of farmers and herdsmen, gross output of agriculture, forestry, animal
husbandry and fishery, gross domestic product (GDP) and total population. For this reason,
the Statistic Yearbooks of Inner Mongolia, Ningxia and Shaanxi from 1990 to 2020 were
collected. Due to the change of administrative divisions, we combined the data of Xixia,
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Xingqing and Jinfeng districts into Yinchuan City; Wuda, Hainan and Haibowan districts
were merged into Wuhai City; and Dawukou and Huinong districts were incorporated
into Shizuishan City. Finally, socioeconomic data of 15 counties and cities were prepared
for analysis.

Meteorological Data

The monthly average temperature, average precipitation, average wind speed, maxi-
mum wind speed and sunshine duration of four stations, e.g., Yulin, Etog, Otogqian and
Uxin, were obtained from the website of National Meteorological Science Data Center of
China (http://data.cma.cn, accessed on 18 June 2021) [39]. Those of Yinchuan, Shizuis-
han, Pingluo, Huinong, Yongning, Helan, Wuzhon, Lingwu, Yanchi, Qingtongxia and
Zhongning were extracted from the Ningxia Statistic Yearbooks.

Field Data

Field survey was conducted in August 2000, June 2002, May 2005, October 2020
and July 2021 to (1) understand land use/cover and its change; (2) coal mining in five
coal fields, namely Qipanjing, Zhuozi Mts, Shanghaimiao, Shitanjing and Ruqigou coal
fields; (3) oil and gas exploitation in the banners Otog, Otogqian and Uxin; and (4) sand-
control achievement by local and national companies in the whole study area. In total,
more than 2000 observation points were collected with GPS location. One surprising
thing observed is that sandy land has greatly decreased from 2000 to 2021 and converted
mostly into shrublands and forests in dunes and grasslands in interdunes thanks to the
sand-control activity.

2.2.2. Processing Procedures
Satellite Data Processing

Atmospheric correction of Landsat images was conducted using the COST model
developed by Chavez (1996) [40], where the band minimum was employed to remove the
haze effect and at-satellite radiance of all bands was converted into surface reflectance.

Land surface temperature (LST) was derived from the thermal band of Landsat TM
and OLI data [41,42].

The dryland-tailored vegetation index, GDVI, is shown in Equation (1). When n = 1,
GDVI = NDVI; when n = 2, it is suitable for characterizing dryland biomes including
shrubland, woodland and forest; when n = 3, it can be used for monitoring the degradation
and desertification in sparsely vegetated area [22,23]. Compared with NDVI and other
vegetation indices, GDVI has higher sensitivity and dynamic range, and is able to identify
more effectively subtle differences in vegetation greenness in low vegetated areas [22].
Therefore, GDVI of n = 3 was produced for the successive analysis.

GDVI = (ρn
NIR − ρn

R)/(ρ
n
NIR + ρn

R) (1)

where, ρNIR is the spectral reflectance of the near-infrared band, and ρR is that of the red band.
Slope and aspect were produced from the DEM data and used for land cover classifi-

cation [24] and desertification modeling as a part of the environmental factors.

Land Cover Classification

A dataset of eleven bands, including elevation, slope, aspect, LST, GDVI and six spec-
tral bands (blue, green, red, near infrared, shortwave infrared 1 (SWIR 1) and SWIR 2)
through layer-stacking function was composed for each observation year [24].

Based on field survey and knowledge, we defined 30–32 initial classes of ground-
truth samples (regions of interest, ROIs) for different scenes and observation years, and
half of the samples (about 5–6% of the total scene) were used for training, i.e., training
samples (TS), and the remaining half for validation, or rather, validation samples (VS).
Sand-control and desertified land (or deserts) were the important classes to be classified out.
After classification, all initial classes were merged into 12 classes in terms of the similarity,
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namely sandy land, shrublands, grasslands, waters, artificial (built up) areas, bare soil, loess
land, woodlands, coal mines, saline land, croplands and fallows. Forests were sporadic
and less than several pixels, and merged into woodlands. Finally, the sandy land was
extracted as a mask, and all the remaining classes were merged into non-sand land for
further analysis.

Supervised classification using maximum likelihood approach was conducted, and
the results were validated with VS.

Processing of the Driving Factors

The distance from the random points in the managed areas and desertified land to
roads, water bodies, residential areas and farmland was obtained by proximity analysis.
The change of water bodies and mining area were obtained by the statistics of classified
images. Population density was calculated by Equation (2).

Y = X/A (2)

where, Y is the population density, X is total population, and A is the area.

2.3. Effectiveness Assessment of Sand-Control
2.3.1. Post-Classification Differencing

Post-classification differencing is a method for identification of land cover change
proposed by Wu [12]. The same type of land cover of the different observation time, deserts
and controlled sandy land in this case, was extracted from the classified images and a
differencing was applied to obtain the change in space. Equation (3) was used to calculate
the difference. Taking desertification as an example, when ΔS = 0, it means no change
in sandy land during this period; when ΔS = 1, the desert or sandy land has expanded;
when ΔS = −1, the sandy land is reduced and controlled [8,12]. This method can be used
to monitor the overall change of sandy land and identify accurately the area and spatial
distribution of sandy land, and at the same time, quantify which land cover types have
been converted into sandy land or vice versa. This will allow to produce the gain/loss
change matrix of land cover of the study area in different observation periods.

ΔS = ST2 − ST1 (3)

2.3.2. ΔGDVI

Based on the calculation of GDVI of different time images, a differencing was effectu-
ated under the masks of deserts or sand-control extracted from the classified images:

ΔGDVI = GDVIT2 − GDVIT1 (4)

When ΔGDVI < 0, desertification has occurred as vegetation vigor has decreased; if
ΔGDVI > 0, indicating a vegetation increase, or rather, sandy land has been controlled and
converted into vegetated area such as grasslands and shrublands.

2.3.3. Multiple Linear Regression Analysis

Multiple linear stepwise regression is an approach to analyze the relationship between
a dependent variable and several independent variables, and to find which independent
variable(s) contribute(s) most to the dependent or which factor(s) has(have) played the
most important role in the event occurrence (Equation (5)) [2,6,43].

Yi = β0 + β1X1i + · · ·+ βkXki + Ui (5)

where, Yi is the dependent variable, X1i . . . Xki are the independent variables, and β0, β1 . . . , βk
are the regression coefficients of their corresponding variables, and Ui is the random error. The
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dependent variable in this case is the desertified land or sand-control area at county-level, and
the independent variables are county-level socioeconomic and climatic factors.

2.3.4. Logistic Regression Analysis

Logistic regression model (LRM) is capable of dealing with both categorical and continu-
ous variables and can effectively achieve spatially explicit analysis to reveal the probability of
certain change in space (i.e., with probability of 1 indicating event occurred, and 0 indicating it
has not occurred) associated with multiple independent variables, i.e., spatial determinants. It
was first used in the field of disease diagnosis and has been extended to land change research
to reveal the spatial determinants of land cover change in environmental geography and
geological disaster prediction in recent decades [2,44–46]. However, it has been rarely used
in the quantitative analysis of desertification driving force because of the particularity of its
dependent variable. The formula (6) was used to establish the LRM.

P =
1

1 + e−(β0+β1X1+···+βiXi)
(6)

where, P is the probability, X1 . . . , Xi are the independent variables, and β0, β1 . . . , βi are the
regression coefficients of their corresponding variables.

Before logistic regression analysis, it is necessary to undertake the collinearity diagnosis
to check whether there is collinearity among the independent variables using either tolerance
(TOL) or variable inflation factor (VIF) as an indicator. If VIF < 10 or TOL > 0.1, there is no
evident collinearity and the result of the logistic regression analysis shall be reliable.

In order to examine the importance of factors influencing sand-control and deserti-
fication, the following preprocessing is required. First, rasterization of the independent
variables, e.g., GDP, per capita rural net income, meet product and so on are converted into
county-level raster; then, creation of the random points in the controlled and uncontrolled
areas of sandy lands, the desertified areas and the unchanged areas in line with the ratio
of 1:1. The points in the desertified areas and sand-control areas were assigned a value
of 1, and in non-desertification and non-control areas were assigned a value of 0, which
were used as dependent variables. At last, the values of independent and dependent
variables were both extracted and input into SPSS, a package for statistic analysis, for
logistic regression modeling.

The model was tested in two aspects: (1) the Hosmer–Lemeshow (H-L) test was used
to evaluate the degree of fit of the model; if H-L > 0.05, the model was considered to have a
good fit; and (2) using significance (Sig), e.g., Sig < 0.05, to test whether the independent
variable in the model has a significant effect on the dependent variable. Finally, the absolute
values of the regression coefficients or odds ratios (OR) were used for judging the influence
degree of the independent variables on the dependent variable.

3. Results

3.1. Dynamic Situation of the Desert

As shown in Table 2, the overall accuracy (OA) of the land cover classification vs. the
validation samples is about 90.3–92.8% with a kappa coefficient of 0.87–0.90. The desert or
sandy land is mainly distributed in the banners Otog, Otogqian and Uxin, among which
the last has the largest area (Table 3 and Figure 2). In the past 30 years, sandy land has
decreased by 8712.23 km2, accounting for 63.05% of the total sandy land though there were
slight fluctuation in some counties in different periods, e.g., from 1991 to 1999, sandy land
increased by 291.6 km2 in Yanchi, and from 1999 to 2010, sandy land in Yinchuan, Otogqian
and Wuzhong had an increase of 32.22 km2, 65.13 km2 and 3.59 km2, respectively, while a
decrease appeared in other areas in the whole period.
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Table 2. Accuracy of land cover classification.

Year Overall Accuracy Kappa Coefficient

1991 92.35% 0.9009
1999 92.87% 0.9086
2010 90.33% 0.8767
2020 92.598 0.9061

Table 3. Area of sandy land.

City/County or Banner
Sandy Land

1991 1999 2010 2020

WuhaiCity Area (km2) 232.60 114.73 43.36 5.93
Proportion (%) 1.68 1.10 0.60 0.12

Otogqian Area (km2) 3164.50 1925.91 1991.04 1611.14
Proportion (%) 22.90 18.52 27.75 31.55

Otog Area (km2) 3262.41 2362.18 2118.26 1271.96
Proportion (%) 23.61 22.71 29.53 24.91

Uxin
Area (km2) 4693.44 3861.74 2159.62 1848.40

Proportion (%) 33.97 37.13 30.10 36.20

Dingbian Area (km2) 224.60 99.40 56.16 55.20
Proportion (%) 1.63 0.96 0.78 1.08

Yinchuan
Area (km2) 172.50 33.16 65.38 4.45

Proportion (%) 1.25 0.32 0.91 0.09

Yongning Area (km2) 10.31 1.10 0.56 0.88
Proportion (%) 0.07 0.01 0.01 0.02

Helan
Area (km2) 10.15 4.79 2.29 0.07

Proportion (%) 0.07 0.05 0.03 0.00

Lingwu Area (km2) 703.12 614.50 323.03 143.80
Proportion (%) 5.09 5.91 4.50 2.82

Shizuishan
Area (km2) 2.95 0.87 0.41 0.04

Proportion (%) 0.02 0.01 0.01 0.00

Pingluo Area (km2) 215.35 148.06 134.74 44.64
Proportion (%) 1.56 1.42 1.88 0.87

Wuzhong Area (km2) 20.09 5.85 9.44 0.77
Proportion (%) 0.15 0.06 0.13 0.01

Yanchi
Area (km2) 740.98 1032.56 222.99 103.33

Proportion (%) 5.36 9.93 3.11 2.02

Qingtongxia Area (km2) 235.02 116.77 7.96 3.91
Proportion (%) 1.70 1.12 0.11 0.08

Zhongning Area(km2) 130.41 79.41 38.63 11.71
Proportion (%) 0.94 0.76 0.54 0.23

Total Area (km2) 13,818.45 10,401.03 7173.87 5106.22

3.2. Effectiveness of the Combating Desertification

Between 1991–2020, a total of 9140.44 km2 of sandy land has been managed and
converted into pastures, shrublands, and even forests (Table 4). The main sand-control
areas are located in the banners (counties) Uxin, Otog and Otogqian, with an area of
3022.76 km2, 2090.48 km2 and 1637.36 km2 respectively. As shown in Figures 3 and 4, the
area of sand-control was much larger than the desertified land.
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Figure 2. Spatial distribution of sandy land in the study area: (a) 1991; (b) 1999; (c) 2010; and (d) 2020.

Table 4. Areas of sand-control and desertification.

Period
Sand-Control Desertification

1991–1999 1999–2010 2010–2020 1991–2020 1991–1999 1999–2010 2010–2020 1991–2020

Area (km2) 5537.61 4969.28 3420.24 9140.44 2120.36 1742.40 1352.53 428.13
Proportion (%) 40.07 47.78 47.68 66.15 3.36 2.62 1.94 0.68

ΔGDVI 0.1575 0.1806 0.1456 0.3518 −0.0921 −0.1237 −0.0997 −0.0691
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Figure 3. Area and proportion of the sand-control and desertification at county- and/or city-level:
(a) 1991–1999; (b) 1999–2010; (c) 2010–2020; (d) 1991–2020.

Figure 4. Spatial distribution of sand-control and desertification: (a) 1991–1999; (b) 1999–2010;
(c) 2010–2020; (d) 1991–2020.
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Most of the sand-control was effectuated in the western margin of the desert, i.e., the
west part of the banners Otog and Otogqian, followed by the southern area in Dingbian,
Lingwu and Yanchi (Figures 3 and 4). The desertification occurred mainly in Yanchi and
Lingwu in 1991–1999 (Figure 4a), but it was concentrated in the west of Otogqian and
Otog in 1999–2010 (Figure 4b), and it appeared as small dots in the east of the study
area in 2010–2020, and a large piece of desertification was not observed in the last period
(Figure 4c).

As seen in Table 4, the vegetation greenness represented by ΔGDVI in the controlled
areas in the past 30 years has gained an increase of 0.3518 with a minimum of 0.1456 in
2010–2020, while the greenness had decreased by 0.0691 in the desertified area, and the
biggest decrease (−0.1237) appeared in 1999–2010.

Presented in Tables 5–8, sandy land was mostly transferred into shrublands and
grasslands with an area of 6359.79 km2, accounting for 69.58%, from 1991 to 2020. This con-
version took up 4943.51 km2, 4088.33 km2 and 2606.92 km2, accounting for 89.27%, 82.27%
and 76.22%, respectively, in the three observed periods 1991–2000, 2000–2010 and 2010–2020.
It is obvious that sand-control by planting shrubs such as Salix cheilophila, Tamarix ramosis-
sima, Hedysarum mongolicum, Caragana korshinskii Kom, Hippophae rhamnoides L. and Lycium
chinense Miller and herbaceous vegetation including Medicago sativa L., Artemisia desertorum,
Artemisia sieversiana, Astragalus adsurgens Pall. has achieved a remarkable output.

Figures 3–5 show that the extent of sand-control was much larger than that of deser-
tification, whereas it was the opposite in Yanchi during 1991–1999. From 1991 to 2020,
sand-control seems to have had the best effectiveness in Uxin with an increase of 0.0897 in
GDVI, and the lowest effectiveness in Shizuishan, with an increase of 0.0002. Meanwhile,
ΔGDVI of the desertified area was close to 0 (Figure 5).

Figure 5. The mean values of ΔGDVI of the sand-control and desertification area in each county:
(a) 1991–1999; (b) 1999–2010; (c) 2010–2020; (d) 1991–2020.

3.3. Determinants of Sand-Control and Desertification

As shown in Table 9, 15 factors from three aspects were used for stepwise linear regression
modeling with the area of sand-control and desertification as the dependent variable. Taking
R2 > 0.60 as the model testing standard, seven models were finally obtained (Table 10).
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Table 9. Socio-environmental factors for multiple linear regression modeling.

Type Factors Symbol Data Preprocessing

Social and Economic Factors

Total Sown Area X1

Z-Score

Meat Product X2
Sheep Number X3

Total Number of Livestock at the Year-end X4
Per capita Net Income of Farmers and Herdsmen X5

Gross Output of Farming, Forestry, Animal
Husbandry and Fishery X6

Gross Domestic Product (GDP) X7
Population Density X8

Meteorological Factors

Annual Precipitation X9
Mean Temperature X10

Maximum Wind Speed X11
Average Wind Speed X12
Sunshine Duration X13

Environmental Factors
Area of Water X14

Area of Coal Mines X15

Table 10. Multiple linear regression models.

Model Period Expression R2

Sand-Control

1991–1999 Y1 = −0.370 − 0.679*ΔX10 − 0.420*ΔX15 0.898 (7)
1999–2010 Y2 = −8.009 × 10−17 + 0.855*ΔX2 − 0.392*ΔX13 0.764 (8)
2010–2020 Y3 = 1.410 × 10−16 + 0.570*ΔX5 + 0.520*ΔX3 0.835 (9)
1991–2020 Y4 = −1.03 × 10−15 + 0.801*ΔX5 + 0.465*ΔX9 0.764 (10)

Desertification
1991–1999 Y5 = 0.206 − 1.058*ΔX5 0.600 (11)
2010–2020 Y6 = 1.646 × 10−16 + 0.573*ΔX5 − 0.404*ΔX14 0.638 (12)
1991–2020 Y7 = −1.091 × 10−15 + 0.637*ΔX5 + 0.411*ΔX12 0.628 (13)

Note: Here Y1, Y2, Y3 and Y4 are the areas of sand-control in each county in 1991–1999, 1999–2010, 2010–2020
and 1991–2020, respectively, while Y5, Y6, and Y7 are the areas of desertification in each county in 1991–1999,
2010–2020 and 1991–2020, respectively. Of the corresponding period, ΔX10 is the difference in annual mean
temperature, ΔX15 the difference in coal mine area, ΔX2 the difference in meat product, ΔX13 the difference in
sunshine duration, ΔX5 the difference in per capita net income of farmers and herdsmen, ΔX3 the difference in
sheep number, ΔX9 the difference in annual precipitation, ΔX12 the difference in average wind speed, and ΔX14
the difference in area of water body.

In terms of the multiple linear regression models in Table 10, it is seen that sand-
control area is closely associated with the difference in temperature, mining area, meat
product, sunshine hours, per capita net income of farmers and herdsmen, sheep number,
and precipitation between the two observation years. More concretely, the increases in
mining area, temperature and sunshine hours are negatively correlated with the sand-
controlled area, while the increase in meat (pork, beef and mutton) product, per capita net
income of farmers and herdsmen, sheep number and precipitation are positively correlated
with the sand-controlled area.

The desertified area is related to the average wind speed and water. More exactly,
the increase in average wind speed is the main driving force of desertification, while the
increase in water areas are the favorable factors to reverse desertification, that is, lead to a
decrease in desertified area.

3.4. Spatial Variability of Sand-Control

Different from those used for multiple linear regression analysis, here 19 socio-
environmental factors shown in Table 11 were used for logistic regression modeling to
understand the different spatial distribution of sand-control and desertification in different
periods, and the obtained models that have passed the Hosmer–Lemeshow (HL) test are
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presented in Table 12. It is worth mentioning that the spatial factors are the different
distances at the start of the observed period, and the socioeconomic and climate factors are
the increments of the same period which have been rastorized to county-level as depicted
before. The optimal discretization method was used to discretize the meteorological and
spatial factors, and Z-Score was applied to normalize the socioeconomic factors, which
were all taken as independent variables.

Table 11. Socio-environmental factors for logistic regression (LR) modeling.

Type Factors Data Preprocessing

Social and Economic Factors

Total Sown Area X1

Z-Score

Meat Product X2
Sheep Number X3

Total Number of Livestock at the End of Year X4
Per capita Net Income of Farmers and Herdsmen X5

Gross Output of Farming, Forestry, Animal
Husbandry and Fishery X6

Gross Domestic Product (GDP) X7

Climatic Factors

Precipitation X8

The optimal
discretization

Temperature X9
Maximum Wind Speed X10
Average Wind Speed X11
Sunshine Duration X12

Spatial Factors

Distance from Road X13
Distance from City X14

Distance from Water X15
Distance from Cropland X16

Terrain Factors
Elevation X17

Aspect X18
Slope X19

Temperature, meat product, per capita net income of farmers and herdsmen and
sheep number, elevation, distance from road and distance from cropland are the important
factors driving spatial differentiation of sand-control. In general, low elevation, increases in
temperature, and increase in per capita net income of farmers and herdsmen and proximity
to roads created a favorable condition for sand-control activity. It is worth mentioning
that prior to 1999, increases in meat product and sheep number constrained sand-control,
or rather, led to desertification, but after 1999 they have become favorable factors as
controlled deserts have served for cropping and forage production. Prior to 2010, the closer
to cropland, the higher the possibility of sandy land to be controlled; while it was the
opposite after 2010, as combating desertification activity gradually moved into the heart
areas of deserts.

Based on the regression coefficients and odds ratio (OR), it is possible to distinguish the
importance of the socio-environmental factors (independent variables) in the sand-control
or desertification event. As seen in Tables 10 and 12–14 the important factors causing the
spatial variability of desertification include temperature, average wind speed, precipitation,
per capita net income of farmers and herdsmen, GDP, total sown area and year-end number
of big livestock. The areas far from cities and roads with low elevation and slope seem more
susceptible to desertification than those close to cities and roads because the latter is easier
to be managed and controlled. The increase in GDP, net income of farmers and herdsmen,
the year-end number of big livestock and the total sown area for grain production are the
driving forces of desertification. Additionally, the decrease in temperatures and reduction
in water availability and increase in wind speeds increase the probability of desertification.
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4. Discussion

4.1. Spatiotemporal Variability of the Sand-Control Effectiveness

As demonstrated above, the sand-control exhibits obvious spatiotemporal variability.
This is probably because of the difference in regional implementation of the ecological
restoration projects or environmental protection policies [8,33,47,48]. In 1999, the Grain for
Green Program (GGP), or the Conversion of Cropland to Forest and Grassland Program,
was promulgated by the Central Government and first implemented in Shaanxi, Ningxia
and Inner Mongolia while the third phase of the Three-North Shelter Forest Program
(TNSFP) was reaching its end. In addition, the local governments, e.g., the banners Otogqian
and Otog, issued the “Grazing ban and rotation policy with a subsidy system” in 2001 [8].
At the same time, a large number of families or household companies started to devote
themselves to the sand-control activities. The fourth and fifth phase of the TNSFP, which
were focused on desertification prevention and control, was achieved respectively in
2010 and 2020. Moreover, the Central Government invested another 13.6 billion yuan in
2011 to eight main pastoral areas in Northern China for implementation of a protection
policy with subsidy and incentive mechanisms, including subsidies for the grazing ban,
incentives for balancing forage productivity and livestock, and for good performance of
herdsmen (http://www.moa.gov.cn, accessed on 8 June 2021) [49]. These programs, policies
and spontaneous sand-control activities have played a positive role in desertification
reversal since the 1990s, but with a spatial variability in space as there was a difference in
implementation progress of these initiatives. For this reason, the proportion of sand-control
has increased significantly, despite of its spatial variability. Actually, a large piece of the
degraded grassland in the banners Uxin, Otog and Otogqian has been restored.

4.2. Driving Forces for Desertification and Sand-Control

Some authors consider that climate is the main driving force of desertification [50],
while others believe that human activities exert more impact on the latter [18]. Our research
indicates that both human activities and climate condition including animal husbandry
(i.e., increase in big livestock and, in particular, sheep number), GDP growth, variation in
wind speed and temperature (Tables 10, 12 and 14) have played an important role in this
process. More concretely, linear regression analysis reveals that desertification is positively
correlated with the maximum and average wind speed and negatively correlated with the
area of water (Table 10).

These analyses demonstrate that variation in strong wind speed, coal mining, grazing
and reduction in water availability may have driven the occurrence of desertification.

As demonstrated in Table 14, logistic regression modeling uncovers that in different
periods, the probability of desertification in space is different and the roles of the socio-
environmental factors are also different. However, in the past 30 years, the contribution
of ΔX8, local reduction in precipitation, ΔX11, increase in wind speed, and X13, distance
to roads, have played a positive role, while X19, slope, takes a negative part in the de-
sertification process, meaning that steep slope does not favor desertification. Therefore,
desertification is associated with both climate condition and human activity, and this
finding confirms the correctness of the definition of “desertification” by UNCCD in 1994.

Increase in precipitation is conducive to vegetation growth, thus promoting sand-
control and vegetation recovery. It is worth mentioning that previous studies have shown
that over-reclamation and over-stock will inevitably exacerbate desertification [2,8,30],
whereas our study reveals that since 1999, the increase in meat product including pork, beef
and mutton is a favorable sand-control indicator, and since 2010, the increase of per capita
income of farmers and herdsmen has been also conducive for combating desertification.
This is because in the frame of the TNSFP, GGP (1999), the Ecological Grassland Protection
Project (2011) and other national ecological projects, sand-control has not only promoted
vegetation recovery to reverse desertification, but also produced economic value as forages
such as Medicago sativa and Astragalus adsurgens pall for dry-lot feeding [8], and plantations
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of Elaeagnus angustifolia Linn., Lycium barbarum L., Ephedra sinica Stapf [2], etc., have brought
a significant improvement in net rural income. Hence, sand-control favors both agricultural
and pastoral activities.

4.3. Spatially Explicit Probability of Sand-Control and Desertification

Logistic regression modeling discovers that the area with flat terrain and low elevation
is convenient for transportation and irrigation of planted trees, shrubs and herbage, and
thus shows high probability of sand-control events. This is consistent with our field survey
(Figure 6). Owing to the developed transportation, high accessibility and convenience for
management, the areas close to cities, roads and farmland have a high probability of being
managed. Meanwhile, those far from cities, roads and farmland are prone to desertification
due to less human management and costly transport; this is similar to the results of Feng
et al. (2021) [33]. Water source is essential for vegetation growth, and the closer to water,
the lower the cost for irrigation and the higher the possibility of being controlled. The
areas with irrational agricultural activity and animal husbandry had a high probability of
desertification before 1999 because profit-seeking did not go with environmental protection.
As Wu et al. (2013) revealed [8], reclamation for cropping and abandonment after 2–3 years
of cultivation, land was left with erosion by both wind and water, and herdsmen preferred
to breed the maximum possible number of sheep and big livestock to compete for the
public grassland resource to maximize their economic profit, which had been discussed by
Hardin in his article “The Tragedy of the Commons” [51]. However, since the large-scale
implementation of policies, such as rotational grazing and the grazing-ban policy with a
subsidy mechanism in 2001, the probability of successful sand-control in these areas has
been significantly increased, in particular after 2010. This is in agreement with our field
survey in July 2021 (Figure 7), which shows the difference between the rotational grazing
areas and the grazing-ban area.

 
Figure 6. Landscape of interdune (grassland and pasture) and sand dune. (Photo was taken on 15
July 2021).
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Figure 7. Vegetation in areas with measure of rotational grazing (a) and implementation of the policy
grazing-ban (b) (Photos were taken on 16 July 2021 and 11 July 2021, respectively).

5. Conclusions

This paper presents an integrated remote sensing-based study on the effectiveness of
sand-control and desertification in the Mu Us Desert, and spatially explicit models aiding to
explain spatial determinants of sand-control and desertification were developed. We found
that a total of 8712.23 km2 of sandy land (63.05% of the study area) has been controlled
and converted into shrublands and grasslands with different greenness, where GDVI has
increased by 0.3509 on average from 1991 to 2020. This activity has brought not only
recovery of vegetation cover, but also growth in rural income and meat products, allowing
an improvement of the livelihood of herdsmen, and thus created a win–win situation. This
is a great success of combating desertification by local people and the Chinese governments,
and this experience deserves to be extended to other desert control in Northern China and
even to other dryland countries across the world. However, despite the decrease in desert
area, desertification is still taking place locally and more than 5000 km2 of deserts remain
unmanaged in the study area.

Multiple linear regression models illustrate that the rural per capita income, wind
speed and water source play a role in desertification process, and logistic regression models
reveal that the local reduction in precipitation, increase in wind speed and the distance to
roads are the key factors influencing the desertification in the past three decades. Anyway,
desertification is associated with both climate and human activity, such as wind speed,
precipitation, water availability, distance to roads, rural per capita income and animal
husbandry. The climatic part, such as variation in wind speed and precipitation. can
be hardly managed, but it is possible to control animal husbandry (e.g., rational sheep
number and livestock), and to make relatively remote areas accessible by road construction
and available water. In this way, existing desertification may be reversed and future
desertification could be avoided. The findings of this study may provide advice for local
decision-makers in taking measures to conduct sand-control of the next step in Mu Us or
elsewhere.

Different from the existing MEDALUS and DesertWatch projects, which were aimed
at desertification vulnerability assessment and scenario modeling, this study attempted to
reveal the desertification mechanism by two kinds of regression modeling, and achieved
a quantitative desertification assessment with a deepened understanding on its driving
forces. We can say that this study is an extension or a complement of the two mentioned
projects in the continental climate dryland environment. Probably, a combination of these
two approaches may lead to a more comprehensive research on desertification. This will be
the topic of our next research in the Ordos region.
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Abstract: Mining-induced geo-hazard mapping (MGM) is a critical step for reducing and avoiding
tremendous losses of human life, mine production, and property that are caused by ore mining.
Due to the restriction of the survey techniques and data sources, high-resolution MGM remains
a big challenge. To overcome this problem, in this research, such an MGM was conducted using
detailed geological exploration and topographic survey data as well as Gaofen-1 satellite imagery
as multi-source geoscience datasets and machine learning technique taking Liaojiaping Orefield,
Central China as an example. First, using Gaofen-1 panchromatic and multispectral (PMS) sensor
data and Random Forest (RF) non-parametric ensemble classifier, a seven-class land cover map was
generated for the study area with an overall accuracy (OA) and Kappa coefficient (KC) of 99.69% and
98.37%, respectively. Next, several environmental drivers including land cover, topography (aspect
and slope), lithology, distance from fault, elevation difference between surface and underground
excavation, and the difference of spectral information from PMS multispectral data of different years
were integrated as predictors to construct an RF-based MGM model. The constructed model showed
an excellent prediction performance, with an OA of 98.53%, KC of 97.06%, and AUC of 0.998, and
the 85.60% of the observed geo-disaster that have occurred in the predicted high susceptibility class
(encompassing 2.82% of the study area). The results suggested that the changes in environmental
factors in the high susceptibility areas can be used as indicators for monitoring and early-warning of
the geo-disaster occurrence.

Keywords: geo-hazard mapping; Gaofen-1 satellite; land cover; environmental factors; susceptibility

1. Introduction

Mining-induced geo-disasters (MG) are a type of disaster related to geological pro-
cesses induced by natural and/or man-made factors [1,2]. These disasters, which include
debris flow, landslide, collapse, ground fissure, and subsidence, are usually caused by inten-
sive mining activities with tremendous damage to the natural and man-made environment,
such as water bodies, farmlands, roads, and pipelines. More importantly, mining-induced
disasters lead to mining accidents and losses of human life and property and even reduce
the sustainability and stability of development among human beings, resources, and the
environment. Hence, some useful prevention measures and technology of MG must be
proposed [3–5]. Mining-induced geo-hazard mapping (MGM) based on determining the
relative probability of geo-disaster occurrence is essential for real-time monitoring and
prediction of the spatial patterns of geological disasters and subsequently protection of the
ecological resources and human health in the mining areas [6,7].
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Qualitative or semi-quantitative estimation of the occurrence possibility is considered
a common procedure for evaluating geo-disaster susceptibility, especially for individual
disasters. This can be implemented by studying the mechanism of geo-disaster occurrences,
identifying triggering factors, and then using these factors to simulate the deformation
progress of the related geological bodies, especially for the single landslide triggered
by rainfall or earthquake [8–12]. Various geo-disasters may occur concurrently by the
same type of environmental factors, such as rainfall, geological structures, and excavation
activity. Moreover, trigger factors caused by geo-disasters should be used for predicting
and evaluating geo-disaster susceptibility. The characteristics of geological structures
are one of the important factors in the field of MGM. In this regard, Wang et al. [13]
developed a disaster-area prediction model that is based on analyzing the correlation of
geo-disaster with mining-induced activity, lithology, and geological structure. In another
study, Segoni et al. [14] performed a landslide susceptibility mapping approach using
various geological data including structural, lithology, chronologic, genetic units, and
paleogeography. These triggering and triggered factors, as well as the geological and
geographical conditions and environmental factors, can be obtained from field-based
disaster investigation, geological survey, and remote sensing (RS), taking advantage of
the earth observation satellite data, geographic information system (GIS) technique, and
machine learning modeling [15].

In order to quantitatively conduct MGM, it is necessary to first consider all causes
of previous events and accordingly analyze the association between disasters with dif-
ferent environmental drivers using data-driven methods in the GIS platform [16–19]. In
the literature, various multi-source geospatial data, i.e., topographic features, geologi-
cal information, rainfall conditions, and vegetation indexes (VIs) from field survey and
satellite imagery were used as environmental predictive factors for MGM using power-
ful data-driven methods, such as support vector machine (SVM) [20], logistic regression
(LR) [21], artificial neural networks (ANN) [22], random forest (RF) [23], decision tree
(DT) [24], weights of evidence (WofE) [20], frequency ratio (FR) [25], analytic hierarchy
process (AHP), and linear combination (LC) [26,27]. Overall, a wide variety of approaches
have been used for MGM, among which supervised machine learning algorithms have
shown high efficiency and reliability. In recent years, these methods have been successfully
applied in the field of geoscience, especially for mineral prospectivity mapping (MPM) and
MGM [15,28–38]. MG occurs suddenly within/around mining areas with the characteristic
of small scale, high density, and frequency. Due to the vital need for more detailed mining
activity and geological exploration data, the implementation of MGM is associated with
some restrictions [8,39]. Despite numerous studies in this field, due to the restriction of the
survey techniques and data sources, MGM with high-resolution remains a major challenge.

Preparation of land cover map is a preliminary to analyzing physiognomy charac-
teristics and evaluating land resources, and it also definitely facilitates the prediction and
evaluation of MG. Under normal circumstances, different land cover types indicate the
different levels of human activities as the triggering factors of MG. Utilizing multispectral
and multi-temporal RS datasets is a momentous approach to mining geospatial informa-
tion. For example, a great number of researchers obtain the land use/cover maps based on
RS image classification techniques by taking advantage of the capabilities of supervised
machine learning methods (e, g., RF, SVM, ANN, and LR) [40–42].

Nowadays, thanks to the development of high-spatial- and spectral-resolution RS
technology, it has become feasible to extract more precise and comprehensive geospatial
information. In the same context, Youssef [43] generated predictive geo-disaster drivers
by integrating 15 m resolution satellite imagery and 10 m contour maps to obtain the
landslide susceptibility indices. Pachuau [44] identified the areas susceptible to landslide
occurrence with a variety of high spatial resolution satellite datasets, i.e., Quick Bird,
IRS, and Cartosat-I imagery. Arabameri et al. [45] used RS datasets with different spatial
resolutions to assess landslide susceptibility based on combined FR and RF approaches. In
their study, the sample data were collected from various resources, such as extensive field
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surveys, historical records, aerial photo interpretation, and high-spatial-resolution Google
Earth images.

The Liaojiaping Orefield, which is located in Hunan province, Central China, is an
important part of the gold (Au) and antimony-tungsten (Sb-W) polymetallic metallogenic
belt in the southern branch of the middle Xuefeng Arcuate Tectonic Belt (XATB). The main
deposits hosted in this orefield have been indiscriminately mined for decades. Coupled
with the complex geological and structural setting of the mining areas, this has led to
the frequent occurrence of different MGs such as landslip, collapse, land subsidence,
and fissure. It should be noted that these MGs directly restrict mine exploitation and
pose serious threats to human life and property. In the absence of systemic research on
susceptibility, these disasters are difficult to prevent. Accordingly, the main purpose of this
study is to perform a high-resolution MGM in Liaojiaping Orefield based on multi-source
high spatial resolution geo-environmental data using data-driven methods, taking the
main environmental factors that are associated with MG into account.

2. Study Area and Materials

2.1. Geological Setting

Liaojiaping Orefield, covering an area of 41.25 km2 and located in the central Hunan
province, China, is situated in the southern margin of the middle XATB, which is developed
between the Dongting Basin and the Gui-Xiang subsidence belt in the Yangtze Block and
consists of Northeastern Hunan fault-uprising belt and the Xuefeng thrust belt (Figure 1).
The approximately EW- and NE-striking faults and the secondary anticlines with the NE
direction axis in this tectonic setting form the basic structural framework of the orefield
(Figure 2). These multi-phase geological structures intricately crisscross and lead to the dip
and steep landform.

Figure 1. Location of the Hunan province in China (a), the study area in Hunan province (b) and the geological settings of
the Liaojiaping Orefield (c).
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Figure 2. Geological map of the Liaojiaping Orefield, showing the main stratigraphic units, faults, water body, and the main
mining areas, including (a) Taiping–Tanchelun, (b) Babaoshan, (c) Xiaojiawan, (d) Niejialing, and (e) Tianshenghe.

The fine clastic rocks intercalated with carbonate rocks that were deposited in the
epicontinental rift basin environment from Lower Proterozoic to Upper Paleozoic Era and
the carbonate rocks intercalated with clastic rocks in the epicontinental basin environment
(later Paleozoic) form the stratigraphic assemblage of this region. The strata from Sinian
to Devonian are well exposed in this orefield, and the Quaternary sediments are mainly
deposited in the northwest corner (Figure 2 and Table 1). The outcrops of different strata
have been experiencing various degrees of weathering and splintering; for example, the
fine sandstone in the Upper Zhoujiaxi Formation of Lower Silurian presents a bead shape
as a result of an intense spheroidal weathering process.
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Table 1. Detailed stratigraphy of the Liaojiaping Orefield.

Epoch Lithological Unit Code Thickness and Lithological Composition

Quaternary No Q 1~3 m. Eluvium and alluvium: thin clay and clayey soil.

Upper Devonian Tianxin Formation D3t 180~400 m. Thin-bedded siltstone, silty shale.

Middle Devonian Tiaomajian Formation D2t
More than 660 m. Silty shale with siltstone interblended, thick
fine-grained quartzose sandstone intercalated with siltstone

and celadon shale.

Lower Silurian Zhoujiaxi Formation S1z
64~375 m. Medium-thick fine sandstone intercalated with thin

layered silty shale, carbonaceous fine sandstone with
interlayers of the siltstone.

Upper Ordovician Wufeng Formation O3w 5~28 m. Medium-bedded silty carbonaceous platy shale with
intercalated siliceous bands.

Middle Ordovician Modao Formation O2m 48~80 m. Carbon-bearing silicate with thin silty shale
interblended.

Lower Ordovician Baishuixi Formation O1b 150~520 m. Gray plate shale locally intercalated with
carbon-bearing mudstone and siliceous bands.

Upper Cambrian Miliangpo Formation Є3m 140~320 m. Crystal powder limestone intercalated with
siliceous bands.

Middle Cambrian Tanxi Formation Є2t 110-280 m. Gray banded marlstone and globular crystal
powder limestone.

Lower Cambrian Xiaoyanxi Formation Є1x 158~368 m. Carbonaceous mudstone intercalated with poor
coal seam and siliceous bands.

Upper Sinian Doushantuo
Formation Zbd 70~121 m. Thin-bedded carbon-bearing mudstone, biomicrite,

and silicate layered clearly.

Lower Sinian Nantuo Formation Zan 100~680 m. Moraine conglomerate, conglomerate, and
carbonate with the character of glaciomarine deposit.

2.2. Geological Disasters

This orefield has been mined on and off for more than half a century. Early unau-
thorized and later wasteful mining activities led to a series of environmental problems in
these mining areas, such as ground deformation, water, and soil pollution. The MG often
occurring next to each other cause serious damage to human life and property, although
the mining has been conducted in a more scientific and cautious way in the last decade.
For example, the landslide that occurred in July 2018 caused one death and two injuries
in one family in the Tianchelun mine of this orefield. This highlights the need for MGM
using multi-source environmental factors that are related to the geological setting and
mining activities.

It took several months to investigate the MG that occurred in Liaojiaping Orefield, and
the survey results showed that the landslide, collapse, land subsidence, and fissure errati-
cally took place in this orefield, especially in case of heavy rainfall. The main characteristic
of MG is that they usually occur at a different scale around mining and excavated areas.
The difference in lithology and physical environment leads to different degrees of outcrop
weathering, and in this circumstance, various MGs are triggered in these outcrop areas
by various types and scales of human activities. The MGs that occurred (e.g., Figure 3)
are mainly medium–small in size in the Liaojiaping Orefield. In this regard, the detached
mass of landslides in Figure 3a,b is less than 1000 m3, the biggest collapsed area (Figure 3c)
is no more than 500 m2, and other common collapsed areas (e.g., Figure 3d) are about
10 to 100 m2. Most of the collapsed blocks (e.g., Figure 3e) are only several m3, and the
ground fissures are normally tens of centimeters in width and several meters in length (e.g.,
Figure 3f). Some of these MG are interconnected in terms of occurrence; e.g., the ground
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fissures above the mining areas always occur before the subsidence, and the places often
affected by the collapse may concurrently produce landslides.

Figure 3. Mining-induced geo-disasters (MG) in the Liaojiaping Orefield, showing the different types
and scales, (a,b): landslide, (c,d): subsidence, (e): collapse, and (f): ground fissure.

2.3. Multi-Source Geo-Environmental Data

The occurrences of MG in the Liaojiaping Orefield are often related to different factors
including underground mining, geological structures, topographic features, near-surface
excavation, and rock weathering. In addition to these factors, the land cover information
and surface spectral characteristics can be also used for MGM. MG investigation, geological
survey, mineral exploration, and RS are vital and common techniques that can provide all
mentioned multi-source geo-environmental data necessary for MGM.

The dataset composed of the above factors is actually an integration of different
variable layers that are rasterized into the same grid size, and the sample set, an important
part of this grid dataset containing the target variable, is used for training the prediction
model and its validation. The determination of features (for the whole dataset) and the
target variable (for the sample set) plays an important role in the construction of the
prediction model, and these variables, which are used as predictive factors [46,47], need to
be explored by different methods, and their spatial autocorrelation must be reduced [48].

Three Au and two Sb-W deposits have been mined for more than 20 years in the
study area. The data supporting this study can be sourced accordingly: (1) the detailed
geological data acquired by continuous geological survey and exploration, i.e., the main
stratigraphic units and faults presented in the geological map of the study area (Figure 2);
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(2) the exploration data from mining activities, such as tunnels and stopes implemented in
the mining areas; (3) the topographic features such as aspect and slope values extracted
from the high-precision topographic map on the scale of 1:5000; (4) the minor structures
and the surface spectral characteristics (e.g., VIs) obtained and interpreted using high-
resolution RS imagery, in this case, Gao Fen-1 (GF-1) satellite, which was launched on
April 26, 2013 by CNSA (China National Space Administration) [49]. Two panchromatic
and multispectral sensors (PMS) and four wide field-of-view (WFV) sensors are aboard
the GF-1 satellite [50]. The present study took advantage of the PMS sensor data. The
specifications of GF-1/PMS are presented in Table 2.

Table 2. Imagery parameters of the GF-1/PMS [50].

Sensor Spectral Band Wavelength Range (μm) Spatial Resolution (m)

PMS

Panchromatic B–1 (PAN) 0.45–0.90 2

Multispectral

B–2 (Blue) 0.45–0.52

8
B–3 (Green) 0.52–0.59
B–4 (Red) 0.63–0.69
B–5 (NIR) 0.77–0.89

3. Methodology

The results of different statistic-based prediction models for MGM are quite differ-
ent [51–53]. For a certain algorithm, it may achieve good prediction accuracy/performance
in one case but perform poorly in another. The intrinsic structure of samples must be
the decisive factor that causes this situation. In the same context, Kalantar et al. [54] and
Qin et al. [37] have also pointed out that the determination of the sample dataset has a
direct effect on the model prediction accuracy. Accordingly, to increase the generalizability
of the predictive model, it is adequate to combine the classical and popular mathemat-
ical methods to construct a robust prediction model as long as the relevant dataset is
well prepared.

3.1. GF-1 Image Processing

Band ratio operation, multispectral transformation, and image filtering are important
techniques for image enhancement and extraction of spectral information of the ground
objects after preprocessing, including ortho-rectification, radiometric calibration, and
atmospheric correction [55]. For the GF-1 imagery, the spatial resolution of the multispectral
bands can be improved to 2 m by fusing them with the panchromatic band so that it can
meet the requirements of this study despite its low spectral resolution.

3.1.1. Band Ratio Operation

All kinds of VIs that can detect spatiotemporal patterns of vegetation can be used as
an important factor for land cover classification [32]. Kaufman and Tanré [56] proposed a
VI named soil-adjusted atmospherically resistant vegetation index (SARVI) based on the
soil-adjusted vegetation index (SAVI) [57], which can be written as Equation (1),

SARVI = (1 + L)
BNIR − (2 × BRED − BBLUE)

BNIR + (2 × BRED − BBLUE) + L
(1)

where L is a constant that is used to reduce the soil effect as much as possible, and it is
suggested to be set as 1; BNIR, BRED, and BBLUE are, respectively, the reflectance of the
near-infrared (NIR), red, and blue bands. SARVI is suitable for the strongly vegetated areas
from various satellite sensors, and it also can be employed for vegetation analysis based on
Gaofen-1/PMS data.
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3.1.2. Image Transformations

With the help of color-space conversions and principal component analysis (PCA),
the spectral information can be enforced while the noise is reduced to a certain extent.
Munsell HSV transformation, which converts a three-layer color space of red (R), green (G),
and blue (B), known as RGB, into another three-layer color space, including hue (H),
saturation (S), and value (V), known as HSV, facilitates the description and distinction
of the color features of soil and rock [58]. The theoretical model of the Munsell HSV
transformation is presented as follows:

H =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 R = G = B

60 ×
(

G−B
max(R,G,B)−min(R,G,B) + 1

)
max(R, G, B) = R

60 ×
(

B−R
max(R,G,B)−min(R,G,B) + 3

)
max(R, G, B) = G

60 ×
(

R−G
max(R,G,B)−min(R,G,B) + 5

)
max(R, G, B) = B

(2)

S =

{
max(R,G,B)−min(R,G,B)

max(R,G,B) max(R, G, B) �= 0
0 max(R, G, B) = 0

(3)

V = max(R, G, B) (4)

where R, G, and B are the reflectance values of the corresponding RGB combined band, H
is a range from 0 to 360, and S and V range from 0 to 1.

PCA, which is also known as the Karhunen–Loeve (K–L) transform [59], is used
to generate a new spectral space F from the original space X that consists of n samples
with p dimensions. The dimensions p of the space X can be reduced to m using a linear
transformation matrix A, which contains m multi-feature vectors. The first few principal
components of the new space F usually contain the vast majority of the spectral information.
This process can be described as Equation (5):

X =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x11
x21

...
xn1

x12
x22

...
xn2

. . .

. . .

. . .

. . .

x1p
x2p

...
xnp

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

F=AX−−−→ F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F11
F21
...

Fn1

F12
F22
...

Fn2

. . .

. . .

. . .

. . .

F1m
F2m

...
Fnm

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

3.1.3. Filtering

The purpose of image filtering is to highlight useful spatial information and depress
the noise of a single image using various filters [60]. Convolutions and morphology are two
common filtering methods. The convolution filtering intensity depends on the parameter-
setting transform kernels, and the morphology filtering is generally used for effectively
eliminating the noise in single bands.

3.2. RF-Based Classification Scheme and Prediction Model
3.2.1. RF Background

Developed by Breiman [61], RF is a type of ensemble learning algorithm and is
constructed by multiple decision trees. A decision tree is a typical supervised learning
approach that can be used to categorize or regress something based on the data we have [62].
Classification and regression trees (CART), which is an important dichotomy algorithm, are
used to generate binary decision trees [63]. Determining the optimal feature for splitting
and providing a condition to stop splitting are two critical processes of tree generation.
For the classification tree, the Gini coefficient (Gini) is used to measure the impurity of
the node splitting, and the feature with the minimum Gini can be used for splitting in the
generation of decision trees (Equations (6) and (7)). For the regression tree, the minimum
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squared error (MSE) is used for splitting in decision tree generation [63]. The Gini criterion
for node splitting is defined as:

Gini (t) = 1 − ∑[p(ck|t)]2 (6)

where p(ck|t) is the probability of the class ck in the node t for a decision tree. There are
two assemblies (DL and DR) corresponding to the left and right child nodes around the
parent node, and the Gini after splitting can be defined as Equation (7):

Gini(D, A) =
|DL|
|D| Gini(DL) +

|DR|
|D| Gini(DR) (7)

In general, two random processes, namely bootstrap aggregating (bagging) [64] and
stochastic subspace [65], are employed to construct RF. These two processes can help to
ensure the accuracy of every tree and effectively avoid its overfitting. More details on the
generation procedure of the RF are given in Qin et al. [37].

3.2.2. RF-Based Classifier

Each sample has only one single attribute class, both for the case of binary- and
multi-class classification, i.e., all the attribute classes of the sample set are separately and
exclusively present in one sample. For a sample set with n (1, 2 . . . , n) attribute classes, it
can be classified by n binary classifiers; every classifier has two classes, e.g., class 1 with
classes (2, 3 . . . , and n) or class 2 with classes (1, 3 . . . , and n). In this way, one classifier can
be learned for binary classification, while n classifiers will be learned for n-class problems
from every training set.

The training and validation datasets are randomly determined using the bagging
method from the sample dataset, and the ratio of these two sets is about 7 to 3 (i.e., 70%
for training and 30% for validation). The RF-based classifier that was constructed based
on multiple training sets will return a classification result based on the ratio of the votes
provided by all the tree classifiers. In other words, the final attribute class is decided by the
maximum of all the returned values (namely prediction probability) for every class.

The out-of-bag error (OBB error), F1 score, overall accuracy (OA), kappa coefficient
(KC), and area under the receiver operating characteristic (ROC) curve are obtained from
the generated confusion matrix based on the classification result and the validation dataset.
These statistics can be used to evaluate the performance of the constructed classification
and prediction model, and higher values indicate the higher prediction accuracy of the
corresponding model [37,66]. The RF classifier can provide the relative importance of
different features in the sample dataset, and this kind of importance value indicates their
contribution to the decision tree, and thus, the correlation of every feature with the attribute
class could be analyzed using other statistical methods.

3.3. Sample-Improved WofE Method

Weight of evidence (WofE), a multivariate statistical approach and fusion method
based on probabilistic uncertainty and Bayes theorem, was developed for spatial correlation
analysis and posterior probability prediction in mineral prospectivity mapping [67–69]. In
the WofE analysis, the samples D (e.g., the MG occurrence) are used as training points,
the geological factors that are related to the samples are used as evidential factors, and
these themes should be generated as the grid file with a given unit cell size. In the study
area T, the number of the grid cell is marked as N, and the prior probability of the sample
occurrence is defined by Equation (8).

P{D} =
N(D)

N(T)
(8)
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According to the theorem, the conditional probability of the sample occurrence with
the appearance of evidential factor Bj (j = 1, 2 . . . , n) can be written as Equation (9):

P
{

D
∣∣Bj

}
=

P
{

D ∩ Bj
}

P
{

Bj
} (9)

The positive and negative weights of the sample occurrence are defined as Equation (10)
and Equation (11):

W+
j = ln

P
{

Bj
∣∣D}

P
{

Bj
∣∣D} (10)

W−
j = ln

P
{

Bj
∣∣D}

P
{

Bj
∣∣D} (11)

where the positive W+
j and negative W−

j indicates that the occurrence of sample D is
positively related to the evidence Bj; otherwise it has a negative correlation. In addition,
this degree of correlation can be measured with the contrast (C), in which a larger positive
C value means a greater positive correlation. For the evidence Bj, its Cj is calculated by
Equation (12):

Cj = W+
j − W−

j (12)

In conventional WofE analysis, all the samples are abstracted as the training points
regardless of their spatial size. This process is able to reduce the number of sample
occurrences and directly affects the correlation based on probability analysis between
samples and evidential factors. Therefore, the areas of the sample occurrence are firstly
identified and then grided into the same cell size as other factors of the study area. In this
way, every sample area is converted into a certain number of training points for spatial
correlation analysis (Figure 4). In addition, this approach is also suitable for improving
samples to train machine-learning-based prediction models.

Figure 4. Improving the process of GM sample occurrence, (a) show the occurrence areas (vector),
(b) are their grid form (raster), and (c) are the training points converted from samples.

4. Results

4.1. Land Cover Mapping

The study area encompasses 10,312,500 grid cells with a size of 2 × 2 m. In this study,
RF classifier, as a non-parametric supervised machine learning algorithm, is employed for
land cover mapping. The ground truth samples were determined based on GF-1/PMS (the
year 2020) true-color image (TCI), composed of bands 3 (R), 2 (G), and 1 (B) (Table 2) based
on the field disaster and land cover survey. The ground truth samples were randomly
divided into two sets, i.e., training and validation sets, with a 7 to 3 ratio. Figure 5 shows
the different ground truth land cover classes in the training and validation sets. As shown
in Table 3, the training and validation sets occupy about 9.58% of the entire study area.
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Figure 5. Ground truth datasets for land cover mapping: (a) training set and (b) validation set.

Table 3. Ground truth sample composition for land cover mapping.

Classification
No. of Samples for Sample Proportion

Training Validation In Sample Set In Study Area

Tailing area 1258 545 0.183 0.017
Residential area 3252 1412 0.472 0.045

Farmland 22,904 9618 3.293 0.315
Road 2718 1164 0.393 0.038

Woodland 621,245 266,578 89.902 8.609
Water body 35,801 15,346 5.179 0.496
Bare land 4108 1594 0.577 0.055

Aiming for precise land classification, four kinds of factors were considered for gener-
ating the classification dataset (Figure 6): (1) the SARVI calculated by Equation (1) and the
vegetation and no-vegetation areas are distinguished in Figure 6a; (2) the first component
(PC-1) of the PCA using bands 1, 2, 3, and 4 includes 87.42% of the eigenvalue (Figure 6b);
(3) the HSV space image was generated by Munsell HSV transformation from the pseudo
color image (PCI) composed of bands 3 (R), 2 (G), and 1 (B), and it can facilitate identifying
soil and rocks as bare lands (Figure 6c); (4) the useless information of the TCI is depressed
by convolution filtering, which helps distinguish between the land cover classes in the
filtered image (Figure 6d).

The RF-based land cover classification model is constructed with the parameter of
168 trees and three randomly selected features within EnMap-Box [70]. The performance
parameters and variable importance can be calculated by applying the constructed model to
the validation set. Table 4 shows the obtained confusion matrix based on the classification
result and validation set. The number of correctly classified grid cells in each class is
displayed in bold on the diagonal matrix. The minimum F1 score calculated from this
matrix is 92.28%, pointing to the remarkable performance of the classification model. The
high OA of 99.69% and KC of 98.37% suggest that this RF-based model can be successfully
used for classification.
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Figure 6. Determined classification factors for land cover mapping: (a) SARVI, (b) PC-1, (c) HSV_PCI,
RGB color image from HSV space transformation (bands 4, 3, and 1), and (d) CF_TCI, RGB color
image from convolution filtering (bands 3, 2, and 1).

Table 4. Accuracy assessment of RF-based land cover classification model.

Class
Confusion Matrix (No. of Grid Cells) F1 Score

(%)Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Sum

Tailing
area 536 * 1 0 2 0 0 6 545 98.80

Residential
area 0 1333 1 14 0 4 60 1412 95.01

Farmland 0 7 9356 5 138 0 112 9618 96.33
Road 1 3 0 1131 0 0 29 1164 97.16

Woodland 0 22 439 0 266,110 1 6 266,578 99.89
Waters 0 7 0 0 0 15,339 0 15,346 99.96
Naked
land 3 21 10 12 0 0 1548 1594 92.28

Sum 540 1394 9806 1164 266,248 15,344 1761 296,257 -
* Diagonal number highlighted in bold indicates the correctly classified cells.

The raw variable importance can indicate its contribution to the generation of every
class. It can be seen that the filtering process on the TCI is most favorable for the identifi-
cation of different land covers, while SARVI comes second, and HSV transformation also
performs rather well (Figure 7).
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Figure 7. Contribution ranking of each classification factor to the RF-based classifier.

Finally, by applying the RF-based constructed model to the whole dataset, the classifi-
cation result of the seven-class land cover map is presented in Figure 8. In this study area,
the woodland has the highest proportion of up to 81.96%, farmland occupies 8.86%, and
the other classes range from 1.19% to 3.42%, except for the tailing area (0.07%). This result
is highly consistent with what has been observed in the recent field survey.

Figure 8. The obtained RF-based 2 m resolution land cover map of the study area using
GF-1/PMS imagery.

4.2. Mining-Induced Geo-Hazard Mapping (MGM)

The actual distribution of the MG occurrences, which is obtained by a large amount of
detailed fieldwork, is used as the positive samples, and the places with no MG occurrences
are determined as the negative samples. It is important to note that the negative samples
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should be evenly selected in every land cover class and approximately equal to the positive
samples. Here, 24,570 samples, containing 17,126 training samples and 7444 validation
samples, are used for training and testing the RF-based prediction model (Figure 9).

Figure 9. Spatial distribution of the acquired positive and negative samples in the training and
validation sets for construction of RF-based prediction model for MGM of the study area.

Under the guidance of experts and former field investigations, stratigraphic lithology,
geological structure, topographical features, road distribution, and rainfall rates are usually
used as the predictive factors for MGM. There is no need for information on rainfall
because the study area is only about 41 km2, with no variation in rainfall. In addition,
environmental factors related to mining activities should be considered as well as the
different spectral information of the surface features. Accordingly, the eight predictive
factor layers are determined as follows:

(1) Lithology: the lithology layer with twelve types of lithological information is gener-
ated from the geological map (Figure 2). Different lithology of the strata possesses different
physical structures, resulting in different degrees of weathering and fragmentation.

(2) Land cover map: based on GF-1/PMS data and RF classifier, a land cover map
was produced (Section 4.1), and this factor layer is shown in Figure 8.

(3) Structure: geological structure, especially the faults, has a strong relationship with
MG. As Figure 2 shows, the identified structures are only distributed around mining areas,
so the detailed structures of the whole study area need to be reinterpreted. Here, the
three-dimension (3D) terrain surface is modeled using triangulated irregular network (TIN)
and discrete smooth interpolation (DSI) within GOCAD platform based on a topographic
map of 1:2000 on scale. Simultaneously, the noise of the spatial-resolution-improved
multispectral bands (1, 2, 3, and 4) are depressed by morphological filtering, and the PC-1
of PCA that is carried out on the filtered result can be used to generate new PCI combining
with the other two original bands. Finally, the TCI and two PCIs (enhanced in ENVI) are
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displayed on a 3D terrain model within MICROMINE (Figure 10). In this way, the faults
are easily extracted from these 3D displays through visual interpretation with the help of
geologic recognition. The MG occurrences are associated with the distance to faults, and
thus, the buffer zones of faults are constructed using three buffer radii of 10, 20, and 30 m,
and the distance that is greater than 30 m is set to a value of 999 (Figure 11a) because this
distance interval does not affect the MG occurrence under normal circumstances in the
study area.

Figure 10. The 3D visualization of the terrain surface, showing the TCI (a) and two enhanced PCI
(b,c) from GF-1/PMS imagery.

(4) Elevation difference: underground excavation, e.g., tunnels, stopes, and blasting
area, will change the stability of strata in the mining areas, and this may lead to surface
deformation. The minimum height difference between the surface and the underground
mining sites is calculated from the field survey data (Figure 11b).

(5) Aspect and slope: these two property values from topographic features have been
proven to be useful for the assessment of MG [27,46,71]. Constructed 3D terrain model
can be transformed into a digital elevation model (DEM), and then the aspect and slope of
every grid cell can be calculated from the DEM in ArcGIS (Figure 11c,d).

(6) Difference netween the PC-1 and SARVI: as mentioned before, most information
of the multispectral bands can be presented in PC-1 using PCA. The SARVI is conducive to
distinguish vegetation greenness between different land cover classes, and their difference
from different years indicates the changes of the terrain surface. The GF-1/PMS data in
the same acquisition phase of 2015 and 2020, in which spatial resolution is improved to
2m with the panchromatic band, are used to calculate SARVI and PC-1, and the difference
between these two indexes is shown in Figure 11e,f.
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Figure 11. Predictive factor layers: (a) distance buffers of the structure, (b) difference in elevation
between underground excavation and surface, (c,d) aspect and slope, and (e,f) difference between
the PC-1 and SARVI.

The pixel-based values of every predictive factor layer with the samples layer were
extracted as the data vector from their respective raster layers, and then these vectors were
combined into a matrix, the dataset for training and prediction consisting of 10,312,500
rows and 9 columns in R. The RF-based prediction model was constructed using positive
and negative sample sets (Figure 9) in the data matrix with optimal parameters, i.e., 108
trees and three randomly selected features. Meanwhile, its out-of-bag error (OOB Error)
is 1.80%, which indicates a good classification performance. By applying the constructed
model to the validation set, 3696 negative samples out of 3796 were correctly classified
and 3705 positive samples out of 3722 were correctly predicted. Accordingly, the OA of
98.53% and KC of 97.06% were calculated. In addition, the acquired high AUC value of
0.998 suggests that this constructed model has high performance for MGM in this study.
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The constructed RF-based prediction model was applied back to the whole data matrix,
and every row returned a probability (P) value of classification, containing positive and
negative classes. The returned positive class can be considered as the prediction result of
MG occurrence probability or susceptibility. The whole dataset is ranked according to the
probability values from high to low, and the cumulative percentage of the predictive cells
and predicted sample cells can be calculated. Then, the prediction efficiency curve (PEC)
and prediction probability curve (PPC) can be plotted (Figure 12). Three thresholds of 1,
2, and 3 were determined on the PEC (Figure 12a), and their corresponding probability
values were 90.59%, 77.26%, and 50.20%, respectively (Figure 12b). According to these
three thresholds, the whole study area, relative to the occurrence of MG, was divided
into four susceptibility classes consisting of high, middle, low, and stable (Figure 13b and
Table 5). For the high-susceptibility areas, 2.82% of the total grid cells hold 85.60% of the
disaster samples. The stable areas occupy 79.79% of the study area, containing almost no
disaster sample.

Table 5. Zonation of the MGM.

Susceptibility
Class

Probability Interval
(P, %)

Proportion of
the Predictive

Data (%)

Proportion of
the Samples

(%)

Occurrence
Rate of the

Samples (%)

High P ≥ 90.59% 2.82 85.60 7.23
Middle 90.59% > P ≥ 77.26% 5.28 8.08 0.36

Low 77.26% > P ≥ 50.20% 12.11 6.07 0.12
Stable P < 50.20% 79.79 0.25 0

Figure 12. Analysis of capture-efficiency curve (a,b) prediction probability curve for zonation of the
MGM.

By qualitatively comparing the terrain surface feature (Figure 10a), land cover map
(Figure 8), and MGM (Figure 13), it can be seen that the probability distribution of the MG
occurrence is closely related to the places of human activities, such as road excavation,
residential area, and mining areas (Figure 13a). In particular, the high susceptibility areas
to MG are distributed near the surface excavation and mining areas (Figure 13b).
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Figure 13. The 3D display of the MGM, showing (a) the probability distribution and (b) zonation of
the MG susceptibility areas.

5. Discussion

5.1. Importance of the Feature Variable

Variable importance is regarded as the contribution to tree node splitting in the
generation of the RF-based prediction model, i.e., the contribution of the predictive factors
to sample occurrence. The mean decrease accuracy (MDA) and mean decrease Gini (MDG)
are two common measures for estimating the variable importance of the RF model. The
MDA rankings are more stable than those using MDG, although the higher value of these
two indexes indicates the greater contribution of the factor to model construction [72].
Based on the performed importance ranking (Figure 14), we know that the lithology of the
strata and the land cover map contributed to the occurrence of the MG more than the other
six factors. The faults and underground excavation have been regarded as the critical ones
for causing MG, but this result is contrary to our common sense. This highlights the need
to quantitatively analyze the correlation of every factor with MG.

Figure 14. Ranking of predictive factors’ contribution to RF-based prediction modeling.
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5.2. Correlation of the Predictive Factors with MG Occurrence

Every predictive factor was divided into different intervals with its property categories
(e.g., lithology of the strata, distance buffers of the faults, and the land cover map) or
property value (e.g., elevation difference between the terrain surface and the underground
excavation, SARVI difference, PC-1 difference, aspect, and slope). Then, the correlation
indexes of every interval with MG occurrence, including positive and negative weights
(W+ & W−) as well as the contrast (C), were calculated by the WofE method and presented
in Figure 15.

Figure 15. Calculated results of WofE, showing the different predictive factors: (a) lithology of the
strata, (b) distance buffers of the faults, (c) elevation difference between the underground excavations
and the surface, (d) SARVI difference, (e) PC-1 difference, (f) land cover, (g) aspect, and (h) slope.
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The factors such as lithology and land cover map that are defined for MGM are closely
related to MG occurrence (Figure 15). To be specific, in Figure 15a, the calculated W+

and C values of the Baishuixi Formation are positive and the highest, followed by the
Zhoujiaxi, Modao, and Wufeng Formation, illustrating that the stratum holding the shale
and sandstone with intercalated carbon-bearing mudstones is the main geological disaster-
bearing body. In Figure 15f, for bare land, farmland, residential area, road, and tailing area,
their calculated W+ and C values are all positive and greater than those for woodland and
waters, showing a clear correlation between human activities and MG occurrence.

In Figure 15b,c, the generated buffers of the faults and the elevation difference between
terrain surface and underground tunnels almost obtained greater W+ and C than extremum
areas. The buffer distance was more than 30 m, and the elevation difference was more than
360 m, suggesting that these two predictive factors are all in favor of MGM. The SARVI
difference in the intervals between 0.25 and 1 showed a close correlation between the
decreasing vegetation cover and MG occurrence (Figure 15d). In addition, a higher value
of PC-1 difference indicates the increasing probability of the MG occurrence (Figure 15e).
Figure 15g,h shows that the MG easily occurred in the surface areas with the features of
aspect from 210◦ to 240◦ and 270◦ to 300◦ and slope from 18◦ to 36◦. Comparative analysis
of the results with the later field investigation showed that the aspect and slope of these
areas are essentially in agreement with the spatial patterns of the strata outcrop. To sum
up, the determination of the eight predictive factors above is reasonable and necessary
for MGM.

5.3. MG Monitoring and Pre-Warning

The main purpose of MGM is to monitor and predict the occurrence of future MG,
and this work should be continuously focused on the predicted high-susceptibility areas.
In addition to monitoring the ground deformation and subsidence using professional
GPS equipment and technology, the following precursor information should be captured
by visual inspection for MG early-warning: (1) surface and underground excavation,
(2) storage or flow changes of water, (3) suddenly bent trees and new fissures or bulges
on the ground. Geologically, more attention should be paid to the spatial patterns of
stratigraphic formation, especially for places that are highly consistent with the natural or
side slope.

6. Conclusions

After more than half a century of mining activities in Liaojiaping Orefield, a series
of mining-induced geo-disasters (MG) have been reported. One of the most effective
strategies for managing and controlling MG in these mining areas is to identify and map
their susceptibility. For this purpose, Gaofen-1 high-resolution satellite images, along with
environmental factors identified through geological exploration and topographic survey,
were used for mining-induced geo-hazard mapping (MGM) in Liaojiaping Orefield for the
first time. RF classifier was used to model the relationship between environmental factors
and actual MG events during the MGM, as well as to produce a land cover map. The main
findings of this study are summarized as follows:

(1) Using Gaofen-1 high-resolution data, both RF-based binary and multi-class classi-
fiers achieved good performance in land cover mapping and MGM. Some land cover types,
e.g., tailing disposal sites, excavated sites, and MG, occupy a small land area. In such cases,
a supervised learning algorithm can be used in tandem with high-resolution data to extract
samples and detect ground targets.

(2) Based on variable importance analysis, the highest contribution to MGM is related
to lithology and land cover among the observed environmental factors, which usually
indicate the stability of geological bodies and should be employed to map the geo-disaster
susceptibility. In addition, we are able to understand the contribution of variables to the risk
modeling through importance analysis of variables; nevertheless, the quantitative analysis
of the correlation between the geo-environmental factors and MG based on geostatistical
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method will allow us to achieve a better understanding of their spatial correlation. In any
cases, it is necessary and reasonable to involve all the predictive factors for MGM.

(3) Any changes in land cover, e.g., emerging excavation works and direct vegetation
change or degradation, as well as rock bedding creeping in the high susceptibility areas
need to be paid high attention to and shall be defined for monitoring and early-warning
of MG.
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Abstract: Rare earth elements (REEs) are widely used in various industries. The open-pit mining
and chemical extraction of REEs in the weathered crust in southern Jiangxi, China, since the 1970s
have provoked severe damages to the environment. After 2010, different restorations have been
implemented by various enterprises, which seem to have a spatial variability in both management
techniques and efficiency from one mine to another. A number of vegetation indices, e.g., normalized
difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), enhanced vegetation index
(EVI) and atmospherically resistant vegetation index (ARVI), can be used for this kind of monitoring
and assessment but lack sensitivity to subtle differences. For this reason, the main objective of this
study was to explore the possibility to develop new, mining-tailored remote sensing indicators to
monitor the impacts of REE mining on the environment and to assess the effectiveness of its related
restoration using multitemporal Landsat data from 1988 to 2019. The new indicators, termed mining
and restoration assessment indicators (MRAIs), were developed based on the strong contrast of
spectral reflectance, albedo, land surface temperature (LST) and tasseled cap brightness (TCB) of REE
mines between mining and postmining restoration management. These indicators were tested against
vegetation indices such as NDVI, EVI, SAVI and generalized difference vegetation index (GDVI),
and found to be more sensitive. Of similar sensitivity to each other, one of the new indicators was
employed to conduct the restoration assessment of the mined areas. Six typically managed mines with
different restoration degrees and management approaches were selected as hotspots for a comparative
analysis to highlight their temporal trajectories using the selected MRAI. The results show that REE
mining had experienced a rapid expansion in 1988–2010 with a total mined area of about 66.29 km2 in
the observed counties. With implementation of the post-2010 restoration measures, an improvement
of varying degrees in vegetation cover in most mines was distinguished and quantified. Hence, this
study with the newly developed indicators provides a relevant approach for assessing the sustainable
exploitation and management of REE resources in the study area.

Keywords: REE mines; mining and restoration assessment indicators (MRAIs); damage; time trajectory;
effectiveness of management
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1. Introduction

As a strategic resource, rare earth elements (REEs) are essential for high-tech applications
and development across various industries [1–5]. With the increased demand for REE resources in
the national and international markets, the scale of REE mining has been expanding since 1970s,
and it has become one of the leading industries in southern Jiangxi, the origin of two important
rivers, the Ganjiang and the Dongjiang (Figure 1). Due to their particular metallogenic character,
the ion-adsorption type REE deposits are mostly hosted in the weathered crust of granitic massifs.
Their mining is hence different from that of most other metal ore deposits, and the low-cost open-pit
mining has led to severe damages to the ecosystem [6]. Actually, 4 decades of disordered exploitation
and mining without relevant environmental protection have caused not only serious land degradation,
e.g., vegetation stripping, soil erosion, nutrients losses, damage to the cultivated land and river
courses and groundwater pollution, but also waste of REE resources in the mining areas. It is thus of
pressing importance to implement effective measures to restore the damaged land cover and protect
the environment of the mined areas in southern Jiangxi.

Figure 1. Location of the study area in southern Jiangxi (Ganzhou City) and distribution of the rare
earth element (REE) mines.

The purpose of restoration is to recover the normal functions of the devastated ecosystems as
a consequence of mining [7–10]. For this reason, the Chinese central and local governments have
promulgated orders since 2009 to mitigate the degradation and restore ecosystem functions of the REE
mining areas. With this effort, the environment has been improved to a certain degree in some mined
areas, while degradation continues in others. However, neither systematic monitoring of the recovery
status nor assessment on the effectiveness of different management approaches or techniques has
been conducted.

Remote sensing has been widely applied in environmental monitoring, including in land
degradation analysis, assessment of the mitigation effectiveness and, particularly, assessment of
the policy impacts on the environment [11–16]. Since vegetation degradation and recovery are related
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to change in surface albedo [17], it is possible to use vegetation greenness, surface brightness and their
change vector [18] to assess the effectiveness of such management of the mining areas [19,20]. As a topic
increasingly recognized as important, research on the human–environment linkages has become
a hotspot [21–26], and our study on assessment of mining, degradation and restoration is such a case.

Multitemporal remote sensing data are an important geo-information source which allow us to
monitor and determine the dynamic trends of vegetation cover [27–36]. In recent years, a number of
studies have been focused on monitoring of land cover change in the mining areas using vegetation
indices, e.g., normalized difference vegetation index (NDVI) [37], soil-adjusted vegetation index
(SAVI) [38] and enhanced vegetation index (EVI) [32,39,40]. Other studies have used thermal
information to monitor coal fires [41] or radar data to examining land subsidence of coal mines [42]. It is
worthwhile to mention that several authors have employed remote sensing to assess the rehabilitation
or revegetation states of the mined areas [43] and have applied unmanned aerial vehicles (UAVs) for
this purpose [44–46]. It is good to see that a limited number of studies were devoted to monitoring of
REE mines [6,47,48]; however, none of them focused specifically on a comprehensive assessment of
spatiotemporal characteristics of land degradation and restoration of the mining areas in southern
Jiangxi. For this reason, the main objective of our study was to conduct monitoring and assessment
research to fill this gap and to provide relevant advice for local governments for restoration management.

While examining the recovery degree of different REE mines using the above-mentioned vegetation
indices, some difficulty was encountered in revealing the subtle difference of restoration, even with
the generalized difference vegetation index (GDVI), which is more sensitive and of wider dynamic range
than other indices in low-vegetation areas [49,50]. Nevertheless, it might be possible to incorporate GDVI
with other biophysical indicators such as surface albedo [17], land surface temperature (LST) [25,51–53]
and tasseled cap brightness (TCB) [54] to derive a more sensitive indicator to characterize the subtle
differences of the REE mines and their restoration. Therefore, one specific objective of this research
was to develop an integrated remote sensing indicator for achieving the monitoring and assessment of
REE mines while taking multiple biophysical indicators into account.

2. Materials and Methods

2.1. Study Area

The study area, Ganzhou City, which encompasses 18 counties with 39,363 km2 in surface area, is
located in southern Jiangxi (Figure 1) and climatically belongs to the subtropical monsoon climatic
zone. This area is mainly covered with forests which are partially conifers (Cunninghamia lanceolata,
Pinus massoniana) and mainly mixed forests with the following dominant species: Schima superba,
Cinnamomum camphora, Acer palmatum, Nothofagaceae Kuprian, Liquidambar formosana, Pinus elliottii,
Pinus massoniana and Cunninghamia lanceolata. Other land cover types include woodlands, croplands,
orchards, water-bodies and artificial land, where landscape is mainly mountains and hills interbedded
with basins. The main river is Ganjiang River running north and its tributaries and subtributaries.
The study area is also the origin of the Dongjiang River running south. The average annual precipitation
is around 1318 mm and the annual mean temperature is 19.8 ◦C. The elevation ranges from 89 to 1971
m with an average of 300–500 m. With concentrated rainfall in spring and summer (March–July), soil
erosion and water loss are a severe problem, especially in the red soil areas. Through this study, 1281
REE mines were identified with a total mined area of about 79 km2 in the whole southern Jiangxi.
However, our research was mainly focused in seven counties (Figure 1) including 1158 mines covering
an area of 66.29 km2.

In terms of natural resource endowment, apart from the tungsten ore reserve, southern Jiangxi has
abundant ion-absorption type REE deposits and is known as the “Rare Earth Kingdom”. However, due
to long-term disordered mining in this area, the native vegetation cover has been severely damaged
and the original geomorphologic feature has greatly changed since the 1970s. The early mining
techniques included the “pool-leaching” or “heap-leaching” techniques in 1981–1995, which have
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caused serious vegetation degradation, soil erosion and pollution. The processing adopted in the later
stage is the “in situ leaching” technique that has been widely applied since 1996 [55]. With this
technique, the surface vegetation was not seriously damaged in a large area, but a great number
of liquid injection holes were excavated in the ore-bearing crust, causing damage to topsoil locally
and subsoil largely. A part of vegetation cover in the mining area was also immediately destroyed,
and the chemical liquid would remain for a long time in soils, causing soil acidification and leading to
an increased risk of landslides as such liquid serves as a lubricator. No matter which kind of technique
was used, the REE exploitation has caused severe damage to the environment.

2.2. Data and Preprocessing

2.2.1. Satellite Data and Processing

Multitemporal Landsat TM, ETM+ and OLI images from 1988 to 2019 were obtained from
the USGS data server (https://glovis.usgs.gov). Only cloud-free images or those with less than 5% of
cloud coverage were selected. Due to the abundant rainfall and cloudy weather throughout spring
and summer in the study area, October and early November are the period when it is possible to
acquire images with low cloud cover, good quality and acceptable sun-elevation angle (≥40◦). For this
reason, only October and early November images were employed for this study.

Already orthorectified by the provider, NASA, before Landsat images were made publicly
accessible, only atmospheric correction was conducted for these images using the COST model
developed by Chavez [56] in combination with the dark-object subtraction (DOS) [57] approach to
remove the haze effect. The band minimum was applied to estimate the haze value in each band of
Landsat images, and spectral radiance was then converted into surface reflectance for each band after
atmospheric correction [13,56].

Very high resolution imagery, such as QuickBird, GeoEye and SPOT, available on Google Earth
was used as a complementary source for definition of the boundaries and visual verification of mines.

Elevation data (ASTER GDEMV2) with 30 m resolution were obtained from the Geospatial
Data Cloud Platform of the Chinese Academy of Sciences (http://www.gscloud.cn/) and used as
the background information of the study area.

2.2.2. Field Data

The first-hand data were acquired from field investigations conducted in December 2016 to December
2019 to understand the damages caused by mining to environment and the situation of restoration.
Our partner, the 264 Geological Team of Jiangxi Nuclear Industry has conducted rehabilitation management
in 11 abandoned REE mines in the study area. Their knowledge and experience were important to our
study, especially for assessing the results of our analysis on management effectiveness, and their field
pictures were direct proof for validation of our analysis.

2.3. Biophysical Features of the Mining and Restored Areas

The typical biophysical change after open-pit mining, i.e., deforestation through the peeling-off
of the topsoil and vegetation cover, is the decrease or loss of vegetation greenness and increase in
bareness. The major restoration efforts are to recover the mined areas with vegetation plantation such
as grasses, shrubs and trees, but other management options are either to convert the mined areas into
factories or solar power stations or simply to cover them with plastic mulch to prevent further soil
erosion. Thus, restoration and mitigation measures and procedures are different from mine to mine,
and so are the restored greenness and extent in the study areas.

Vegetation indices, surface albedo, brightness and other indicators that are able to capture
the bareness information may all be useful for assessment of the mining impacts and restoration
effectiveness. For this purpose, remote-sensing-based biophysical indicators such as NDVI, GDVI,
EVI, SAVI, atmospherically resistant vegetation index (ARVI) and soil-adjusted and atmospherically
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resistant vegetation index (SARVI) [58], surface albedo [17], the first principal component (PC1),
tasseled cap brightness (TCB) [54,59,60] and LST were taken into account (Table 1). Calculation of
vegetation indices is known, but other indicators, e.g., albedo and LST, are less frequently applied.
We present their calculation formulas here.

Table 1. Biophysical indicators used in this study.

Index Full Name Formula Sources

GDVI Generalized Difference
Vegetation Index

(
ρ2

NIR − ρ2
R

)
/
(
ρ2

NIR + ρ2
R

)
[49]

NDVI Normalized Difference
Vegetation Index

(ρNIR − ρR)/(ρNIR + ρR) [37]

EVI Enhanced Vegetation Index 2.5× ρNIR−ρR
ρNIR+6.0ρR−7.5ρB+1 [39]

SAVI Soil Adjusted Vegetation Index
(1 + L)(ρNIR − ρR)/(ρNIR + ρR + L)
Low vegetation, L = 1; intermediate,

0.5; high, 0.25
[38]

ARVI Atmospherically Resistant
Vegetation Index

(ρNIR − ρRB)/(ρNIR + ρRB)
ρRB = (ρR − γ× ρR − ρB)

γ = 1, ρB = reflectance of blue band
[58]

SARVI
Soil Adjusted

and Atmospherically Resistant
Vegetation Index

(1 + L)(ρNIR − ρRB)/(ρNIR + ρRB + L) [58]

α Albedo [17]

TN
Normalized Land Surface

Temperature
TN =

(LST− LSTmin)/(LSTmax − LSTmin)
[25]

TCB Tasseled Cap Brightness [54,59,60]

PC1 The First Principal Component [25]

Albedo (α), originally meaning “whiteness”, is a measure of the diffuse reflection of solar radiation
out of the total solar radiation on land surface and measured on a scale from 0 to 1. Courel et al.
(1984) revealed that increase in albedo in African savanna was a result of land degradation caused by
drought [17]. In our case, land degradation by mining may also lead to increase in surface albedo. Liang
(2000) developed a series of algorithms for calculating albedo for various satellite sensors [61]. The one
for Landsat data, which was further normalized by Smith (2010) [62], is expressed in Equation (1):

αshort =
0.356ρ1 + 0.130ρ3 + 0.373ρ4 + 0.085ρ5 + 0.072ρ7 − 0.0018

0.356 + 0.130 + 0.373 + 0.085 + 0.072
(1)

where ρi represents the reflectance of band i; here, i is 1, 3, 4, 5 and 7.
LST was produced in terms of Chander et al. (2009) [63] and USGS (2019) [64] as shown in

Equation (2):

LST =
k2

ln
( k1

Lλ

)
+ 1

(2)

where Lλ is the at-the-sensor spectral radiance (W/(m2sr μm)); k1 and k2 are calibration coefficients.
LST in kelvin (>273.15 K) is big unit in comparison with other vegetation indices. It was thus further
normalized as:

TN = (LST− LSTmin)/(LSTmax − LSTmin) (3)

where TN is the normalized LST; LSTmin and LSTmax are the minimum and maximum LST of
the observed area, i.e., the mines in our case. TN also takes a value between 0 and 1.

The surface characteristics of REE mines at different stages such as mining disturbance, reclamation
and vegetation restoration show great differences. The time trajectories of the biophysical indicators of
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a typical mine with restoration intervention were projected for the period 1988–2019. We noted that
vegetation indices all showed a U-type curve in the mined areas, while other biophysical indicators such
as albedo (α), TCB and LST demonstrated an inverse curvilinear character showing, more concretely,
a mirror effect of the vegetation indices, i.e., a peak in the mined areas before restoration. An example
is shown in Figure 2.

Figure 2. Time trajectories of the biophysical indicators of an REE mine (115◦06′E, 24◦99′N).

2.4. Pearson Correlation Analysis, Development of the New Mine-Tailored Indicators and Sensitivity Analysis

Apart from the time trajectories, a Pearson correlation analysis at the confidence level of 0.01 was
applied to all biophysical indicators (i.e., NDVI, GDVI, SAVI, EVI, SARVI, ARVI, α, TN, TCB and PC1)
to uncover their correlation (Table 2).

In terms of the contrasted difference in correlation together with the mirror effect of vegetation
indices versus other biophysical indicators (Table 2 and Figure 2), it seems possible to develop
a mine-tailored remote sensing indicator or a set of such indicators for assessing the impacts of
mining activities on the environment and the postmining mitigation effectiveness. This indicator will
allow identifying the subtle difference in land cover change between premining and mining states,
and between mined and pos-mining restoration intervention, and to highlight it.

Among the vegetation indices, those with soil adjustment and atmospheric correction were less
sensitive to canopy cover than NDVI [13], and all these indices were less sensitive to multibiome
features and of less dynamic range than GDVI in dryland systems [49,51]. For mining and mined areas,
we randomly selected six typical mines with different mining periods, REE extraction approaches
and restorations (see Table 6 for details) to project the time trajectories of GDVI and NDVI,
and the former shows again wider dynamic range and higher sensitivity than NDVI (Figure 3).
Hence, based on the results shown in both Figures 2 and 3, GDVI seems more suitable for highlighting
the vegetation-related information of the mining and mined areas than other indices.
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Table 2. Pearson correlation coefficients among the biophysical indicators.

GDVI NDVI EVI SAVI ARVI SARVI α TN TCB PC1

GDVI 1 0.966
**

0.964
**

0.960
**

0.788
**

0.620
**

−0.713
**

−0.529
**

−0.809
**

0.356
**

NDVI 1 0.949
**

0.948
**

0.805
**

0.642
**

−0.683
**

−0.464
**

−0.776
**

0.348
**

EVI 1 0.992
**

0.787
**

0.719
**

−0.547
**

−0.477
**

−0.670
**

0.500
**

SAVI 1 0.843
**

0.788
**

−0.532
**

−0.470
**

−0.649
**

0.544
**

ARVI 1 0.844
**

−0.475
**

−0.383
**

−0.542
**

0.507
**

SARVI 1 −0.072 −0.266
** −0.170 0.766

**

α 1 0.434
**

0.976
** 0.198 *

TN 1 0.485
**

−0.208
*

TCB 1 0.107
PC1 1

* and ** indicate that the confidence level is 0.01 and 0.05, respectively.

Figure 3. Time trajectories of the generalized difference vegetation index (GDVI) (a) and normalized
difference vegetation index (NDVI) (b) of six typical mines. Time trajectory comparison of the mean
GDVI and the mean NDVI (c), showing GDVI to have a wider dynamic range and higher sensitivity
than NDVI in the mining areas (see Figure 5 for location of these mines and Table 6 for selection details).
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To justify this selection, an importance ranking based on the correlation coefficients in Table 2
using the approach of Orloci (1978) [65] was conducted, and the weighted importance is reported in
Table 3.

Table 3. Importance ranking of the biophysical indicators based on Table 2.

Biophysical Indicators Specific Sum of Squares
Specific Sum of Squares

as a Proportion (%)
Cumulative (%)

GDVI 6.359 63.588 63.588
SARVI 1.798 17.984 81.572

TN 0.727 7.267 88.839
α 0.558 5.585 94.424

PC1 0.329 3.295 97.720
ARVI 0.113 1.130 98.849
NDVI 0.064 0.639 99.488
EVI 0.034 0.343 99.831
TCB 0.016 0.165 99.996
SAVI 0.000 0.004 100.000

Ranking was conducted following the approach proposed by Orloci (1978).

The nonvegetal part can be revealed by α, TCB and TN, which are negatively correlated with
GDVI. In view of this, the new remote sensing indicators were established as follows:

MRAI1 = GDVI/(α+ TN) (4)

MRAI2 = GDVI/(α+ TCB) (5)

MRAI3 = GDVI/(α+ TN + TCB) (6)

MRAI4 = GDVI/(TN + TCB) (7)

The indicators in this set were termed mining and restoration assessment indicators (MRAIs).
To evaluate their sensitivity, the approach proposed by Gitelson (2004) [66] was followed. Wu (2014)
used this approach to assess the sensitivity of GDVI and confirmed the efficiency of this approach [49].
The sensitivity is expressed in Equation (8):

Sr(MRAI) =
[

d(MRAI)
d(VI)

]
× [Δ(MRAI)

Δ(VI)
]
−1

(8)

where Sr(MRAI) is the relative sensitivity of MRAI versus the referenced vegetation index (VI); d(MRAI)
d(VI)

is the first derivative of MRAI against VI or the infinitesimal change in MRAI in response to that of
VI, or rather, the differences between two adjacent pixels of MRAI and VI, showing the tiny change;
and Δ(MRAI) = MRAIMAX −MRAIMIN and Δ(VI) = VIMAX −VIMIN are the ranges of MRAI and VI
of the observed mines in our case. If Sr > 1, MRAI is more sensitive than the referenced VI; if Sr = 1,
they have the same sensitivity; if Sr < 1, MRAI is less sensitive than the referenced VI.

2.5. Application of MRAI for Mining and Restoration Monitoring

After sensitivity analysis, one MRAI, i.e., MRAI1, was selected for mining
and restoration monitoring.

To compare the spatiotemporal changes and the management effectiveness at different stages of
the REE mines, four observation points in time were selected, i.e., 1988 as premining, 1989–2000 as
mining, 2010 as mining and mined state and 2019 as restoration state. Please be aware of the fact that
those mines that had been exploited before 1988 were largely considered “no change” in the 1988–2010
period before restoration was conducted. Four concentrated REE mining areas in the study area
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were chosen for a detailed analysis of mining activities and vegetation greenness changes using
MRAI1 as remote sensing indicator. The approach used was a differencing technique followed by
a thresholding processing realized by density slicing or classification in order to identify the degradation
and restoration and their subtle change degree in space and time [12,14].

3. Results

The intermediate and final results obtained following the above approaches and processing
procedure are presented in this section.

3.1. Mirror Effect and Correlation among the Biophysical Indicators

It was revealed that vegetation indices have U-type time trajectories while nonvegetation
biophysical indicators show anti-U curvilinear features, constituting a mirror effect of these two
groups of indicators in the mining and mined areas (Figure 2).

Pearson correlation analysis illustrated that while the vegetation indices are positively correlated
with each other, all of them are negatively correlated with α, TN, TCB and PC1 (Table 2). GDVI has
the best negative correlation with these nonvegetation indicators, and TCB seems the best approximation
of α, followed by TN.

Table 3 presents the result of ranking analysis based on the correlation coefficients of biophysical
indicators (Table 2) and demonstrates that GDVI accounts for the most important weight (63.58%);
hence, it is appropriate to select it as vegetation index to constitute the MRAIs.

3.2. Sensitivity and Dynamic Ranges of MRAIs

As presented in Figure 4, the sensitivity of all these MRAIs, i.e., Sr(MRAIs), in unmanaged
and different vegetation restoration periods of the REE mines is higher than 1, indicating that all of
the indicators in the set have higher sensitivity than vegetation indices. Thus, this set of MRAIs can be
used for assessing the effects of mining and restoration management.

Figure 4. Sensitivity of mining and restoration assessment indicators (MRAIs) versus vegetation indices
(VIs): (a) Sr(MRAI1); (b) Sr(MRAI2); (c) Sr(MRAI3); (d) Sr(MRAI4). Each sensitivity was the average of
ten measurements in their corresponding mines at different stages (see Supplementary Materials).
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The dynamic ranges of these indicators of REE mines for Landsat images of 2019 are shown in
Table 4; their indications, taking MRAI1 as an example, are listed as follows: when MRAI1 < 1.0,
it represents an unmanaged state; when 1.0 < MRAI1 ≤ 1.5, it represents a poor restoration; when
1.5 <MRAI1 ≤ 2.0, it implies a general case of restoration; and when MRAI1 > 2.0, it means a good
restoration. Actually, thanks to the wide dynamic range and high sensitivity, the ranges can be much
more finely divided.

Table 4. The ranges of MRAIs in REE mines.

Range Mean StDev

MRAI1 [−2.86, 3.95] 1.43 0.55
MRAI2 [−6.87, 5.64] 1.21 0.51
MRAI3 [−2.18, 2.05] 0.78 0.31
MRAI4 [−2.37, 2.50] 0.97 0.39

3.3. Spatiotemporal Change of Vegetation Restoration

As previously mentioned, 1158 REE mines with a total surface area of about 66.29 km2 in the seven
counties were identified by multitemporal satellite images though the mining period of these mines
was different from one to another. The spatiotemporal changes in land degradation (e.g., vegetation
loss and soil erosion) and restoration of mines are shown in Table 5 and Figure 5, taking the four most
serious counties where REE mines are dominantly distributed (circles a, b, c and d) as an example.

Table 5. Results of vegetation restoration in the seven counties detected by using MRAI1 indicator.

Period

Severe
Degradation

Slight
Degradation

No Change Slight Recovery
Significant
Recovery

Area
%

Area
%

Area
%

Area
%

Area
%

(ha) (ha) (ha) (ha) (ha)

1988–2000 629.62 9.50 658.39 9.93 5264.43 79.42 46.72 0.72 29.83 0.45
2000–2010 1786.93 26.96 1206.82 18.21 3278.35 49.45 227.32 3.43 129.58 1.95
2010–2019 435.87 6.58 462.23 6.97 3594.99 54.23 1421.62 21.45 714.29 10.78

Here, “No Change” includes the mined area or degradation in the pre-1988 period. Before restoration, such area
remained unchanged.

From 1988 to 2010, land degradation, or rather, mining area, had increased by 4281.76 ha (red
and brown color in Figure 5), but from 2010 to 2019, newly mined area was reduced to 898.1 ha
and rehabilitated green areas had a significant increase by 2135.9 ha, especially in Xunwu, Dingnan,
Longnan, and Anyuan (green color in Figure 5). In addition, mining activity and restoration showed
a spatial heterogeneity and variability in different counties.

3.4. Verification of the Detected Changes

To ensure the accuracy of the MRAI1 analysis, eight typical REE mines, namely A–F, V1 and V2
(as shown in Figure 5), were selected for verification in reference to field observation and Google
Earth (Figures 6–8). The geographical information, REE extraction technique and the restoration
management are all presented for each mine in Table 6. The comparison shows that the assessment
results of the management effectiveness of the mined areas were well consistent with the actual situation
observed in the field and on Google Earth (Figures 7 and 8), indicating that the new remote sensing
indicator, MRAI1, was able to achieve the monitoring and assessment of the mining and restoration
effects on the environment in space and time. On the other hand, from the local detailed analysis, we
can see that in the same mining area, the new indicator MRAI1 can well reflect the tiny differences in
management effectiveness.
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Figure 5. Spatiotemporal changes of vegetation restoration in four areas (a–d) with high mining
concentration. A–F are typical mines selected for detailed analysis; V1 and V2 are example sites for
verification managed by the 264 Geological Team (see Figures 7 and 8).
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Figure 6. Comparison of our results from the six mining sites with Google Earth images from the mining
to restoration stages ((A–F) is six typical mines, see details in Table 6) (high-resolution images: ©Google).

Figure 7. REE mine management in Ganlin Village in Ganzhou City (V1: 114◦55′42.73”E, 25◦44′4.28”N).
(a) “Slight recovery” detected by Landsat data from 2010 to 2019; (b) eroded landscape after exploitation
(10 August 2004, ©Google); (c) landscape observed in the field after management (9 July 2019), i.e.,
cultivated with grasses and trees; and (d) effect of restoration management seen on 26 April 2020
(©Google), i.e., 14 months after the management was conducted in January 2019.
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Figure 8. Restoration of REE mine close to Fengshan Village (V2: 115◦0′35.97”E, 25◦42′49.90”N).
(a) Slight recovery detected by Landsat data because of the restoration engineering conducted in
November 2018; (b) damaged landscape before management (29 February 2016, ©Google); (c) observed
landscape in the field in July 2019; and (d) restoration seen on Google Earth (26 August 2019, ©Google).

Table 6. The features of the six typical managed REE mines.

Site Longitude Latitude Surface Area (ha) County Major Features

A 115.339 25.13 8.03 Anyuan
“Heap leaching” technique,
land leveling and grass
plantation in 2014

B 115.679 24.85 442.76 Xunwu

“Pool leaching” technique,
land leveling in 2016, solar
power plant in the south,
west and northeast in 2017,
and large areas of grass
plantation in others

C 115.725 24.90 92.55 Xunwu
“Pool leaching” technique,
land leveling and tree
plantation in 2009

D 115.067 24.99 87.48 Dingnan

“In situ mineral leaching”
technique, a combination of
grass and tree plantation
in 2012

E 115.049 24.98 54.94 Dingnan

“Pool leaching” technique,
land leveling in 2010, grass
plantation in 2013, factory
construction in some areas
in 2018

F 114.846 24.83 320.55 Longnan
“Pool leaching” technique,
a combination of tree
and grass plantation in 2010

The forest types A–F are coniferous and mixed forests (see Section 2.1).
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4. Discussion

4.1. Recovery Process

The land surface of REE mines has experienced significant changes from premining and mining
to recovery in the past decades, and such changes were mainly associated with implementation
of different policies. Driven by the policy of “invigorating the domestic economy and opening to
the outside world” of Deng Xiaoping in 1987–1988 [14], innumerous local private companies were set
up nationwide. As a result, REE mining experienced a disorderly expansion for economic reasons
by a great number of private enterprises in southern Jiangxi. Our change detection using the MRAI1
indicator illustrated that the vegetation cover in the four counties considered decreased dramatically,
showing a clear degradation by 4281 ha in which previous vegetation cover had become bare soil with
an increased albedo and brightness in 1988–2010. This is indicative of an expanding mining process
including the striping off of topsoil and forests to exploit REE deposits in the weathered crust and, at
the same time, the setting up of a series of leaching ponds for application of the “pool leaching” or
“heap leaching” technology, or digging/drilling of holes and ditches elsewhere to apply the “in situ
leaching” technology for REE extraction after 1996 [1,55,67,68]. Vegetation degradation, soil erosion
and groundwater pollution as a consequence of mining activities resulted in negative impacts on
the ecosystems [68,69]. These are local phenomena in response to the macroscopic policy of the state.

With an increasing awareness of the hazardous damage to the environment caused by mining,
the central government promulgated the “Regulations on the Protection of the Geological Environment
of Mines” (MoLR 2009) [70], with an order of “who mined who governs”. Hence, restoration
management of the abandoned mines became an obligation for mining enterprises in southern Jiangxi
in 2010. For this reason, a number of pilot projects have been implemented [67] and different treatments,
including chemical and biological approaches, have been tested and proposed [68,71–75]; for the time
being, biological rehabilitation is dominant because of the purpose of ecological restoration.

The common vegetation recovery management is plantation of conifers (e.g., Cunninghamia lanceolata,
Pinus massoniana), grasses (e.g., Paspalum wettsteinii Hack) and orchards (e.g., navel orange and other
local specialty fruits) in the mined areas located in hills and mountains that showed spatial differences in
levels of recovery within our detection results (Figure 5). Thanks to these efforts, 2135 ha of abandoned
mines have been managed and have, to a certain degree, recovered in the period of 2010–2019 (Table 5).
However, in 2019, about 67% of the total area of the observed REE mines was still in a state of degradation
or remained unmanaged (Table 5). This is probably the results of the following cases: (1) restoration of
some mined areas was still at the stage of land leveling and vegetation was not yet planted; (2) for large
mined areas surrounding the cities, the management action was to build factories and solar power plants,
which was not regarded as an ecological restoration and led such areas to be classified as unmanaged
mines by MRAIs; (3) restoration management had not yet been conducted for the newly mined area after
2010. Clearly, much reclamation work remains to be conducted in this region.

4.2. Advantages and Disadvantages of Our Approaches

It is clear that with their sensitivity and wide dynamic ranges, the integrated MRAIs can help
distinguish the subtle differences between premining and mining and between mined and postmining
management, of which the latter was actually graded into two levels for facilitating visualization in
maps, though it may be divided into many more levels. Actually, Li et al. (2018) and Zhang et al.
(2015) used NDVI to identify the REE mines locally [6,48], and Peng et al. (2016) employed ecological
quality index to analyze these areas in southern Jiangxi [47]. Largely speaking, their studies were
relevant but had less sensitivity and accuracy than our approach, because some of them even failed
to distinguish clouds from mines or required more indicators to compose the quality index. From
this viewpoint, our approach based on MRAIs seems more robust and practical, requiring less data
and having superior applicability. As a matter of fact, our new indicators contain both vegetation
and nonvegetation characteristics and are capable of catching more features of land surface change
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than other single indicators or indices. As such, aside from REE mines, it will be possible to apply
them in studies of other kinds of open-pit mining areas such as copper, limestone, iron and coal mines.

However, as with other remote sensing approaches, MRAIs were unable to identify completely
mined areas where “in situ leaching” technique had been applied due to the fact that drilling operations
kept the surface vegetation cover to certain extent. This problem can be resolved if UAV technology
is employed, as it is able to provide higher resolution and hyperspectral data [44]. The limitation of
our approach lies in that most of the MRAIs developed, except for MRAI2, may not be applicable if
remote sensing data do not possess the thermal band that allows us to derive LST. In this case, MRAI2
is the only choice.

5. Conclusions

This paper presented the development of a set of mine-tailored remote sensing indicators (MRAIs)
and their application to detection of the spatial and temporal changes of the REE mining and mined
areas and assessment of the effectiveness of restoration management in southern Jiangxi. Our study
showed that these new indicators are applicable for achieving such research goals with reliability. We
believe that these indicators not only are suitable for research on REE mines, but also have potential
for assessment of other kinds of open-pit mines.

This study considered the state of surface vegetation cover, albedo, brightness and surface
temperature to assess mining and the effectiveness of the postmining management after different policy
implementations. The research still remains at the surface layer, and a more holistic and comprehensive
assessment integrating MRAIs with soil and groundwater samples will be required as a next step, as
the multidimensional assessment may provide more relevant advice for local authorities for sustainable
exploitation and restoration of REE mines.
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Abstract: Effective extraction of disaster information of buildings from remote sensing images is of
great importance to supporting disaster relief and casualty reduction. In high-resolution remote
sensing images, object-oriented methods present problems such as unsatisfactory image segmentation
and difficult feature selection, which makes it difficult to quickly assess the damage sustained
by groups of buildings. In this context, this paper proposed an improved Convolution Neural
Network (CNN) Inception V3 architecture combining remote sensing images and block vector data
to evaluate the damage degree of groups of buildings in post-earthquake remote sensing images.
By using CNN, the best features can be automatically selected, solving the problem of difficult feature
selection. Moreover, block boundaries can form a meaningful boundary for groups of buildings,
which can effectively replace image segmentation and avoid its fragmentary and unsatisfactory results.
By adding Separate and Combination layers, our method improves the Inception V3 network for easier
processing of large remote sensing images. The method was tested by the classification of damaged
groups of buildings in 0.5 m-resolution aerial imagery after the earthquake of Yushu. The test accuracy
was 90.07% with a Kappa Coefficient of 0.81, and, compared with the traditional multi-feature machine
learning classifier constructed by artificial feature extraction, this represented an improvement of
18% in accuracy. Our results showed that this improved method could effectively extract the damage
degree of groups of buildings in each block in post-earthquake remote sensing images.

Keywords: earthquake; damaged groups of buildings; classification; remote sensing images;
Convolution Neural Network (CNN); block vector data

1. Introduction

During the rescue and recovery phases following an earthquake, damaged buildings may indicate
the locations of trapped people [1]. Hence, building damage maps are key to post-earthquake
rescue and reconstruction. The use of traditional manual field survey methods to obtain building
damage information presents relatively high accuracy and confidence. However, there are still
some shortcomings such as large workload, low efficiency, high costs and unintuitive information,
meaning that these methods cannot meet the requirements for the fast acquisition of building damage
information [2]. With the progress of sensors and space technology, remote sensing can now provide
detailed spatial and temporal information for target areas, whilst usually requiring little field work.
Therefore, remote sensing has been widely used in various post-disaster rescue operations, being
particularly important for earthquake-stricken areas where it is often difficult to conduct field surveys
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for the first time [3]. To some extent, previous studies have proved that relatively accurate information
of building damage can be obtained from remote sensing data [4].

Many methods to extract information about building damage, caused by earthquakes, from
remote sensing images have been presented [5–7]. These can be divided into single-temporal and
multi-temporal evaluation methods according to the number of images being used. In single-temporal
evaluation methods, only one kind of post-earthquake image is used for the extraction of information.
Multi-temporal evaluation methods, in turn, use at least two-temporal images. Due to the influence
of data acquisition, sensor revisiting cycle, and filming angle and time, multi-temporal evaluation
methods are difficult to be applied in practice [8]. Single-temporal evaluation methods are less restricted
and have become an effective technical means to directly extract and evaluate the damage information
of buildings using remote sensing images after earthquakes [9]. Chen [10] used object-oriented methods
to segment remote sensing images, and classified image objects by Classification and Decision Tree
(CART), Support Vector Machine (SVM), and Random Forest (RF) in the machine learning methods.
The results showed that, among the three machine learning methods, RF was the best in extracting
information about damaged buildings. Janalipour et al. [11] used high spatial resolution remote
sensing images as a background to manually select and extract features based on the fuzzy genetic
algorithm, establishing a semi-automatic detection system for building damage. This system has higher
robustness and precision compared with machine learning methods such as the RF and SVM. In the
single-temporal evaluation methods, the spectral, textural and morphological features of the image
are mainly used for its classification. This process is often based on the object-oriented classification
algorithm for the extraction of information about building destruction [12–14]. However, these
object-oriented classification methods present problems such as difficulties in feature space selection
and unsatisfactory image segmentation.

In recent years, deep learning technology has achieved great success in the image application
field [15], becoming more and more popular in the applications of remote sensing [16]. Convolutional
Neural Network (CNN) is a common method of deep learning. Since LeNet5 [17] has achieved
satisfactory results in handwritten number recognition tasks compared with traditional methods, a
large number of deeper and more complex CNN, such as AlexNet [18], VGGNet [19], Inception V3 [20],
and ResNet [21], have made a great breakthrough in large-scale image classification tasks. These
CNN models went deeper and deeper, reaching 152 layers by the time of ResNet. A deeper network
layer means that deeper image features can be extracted, making the image classification results more
accurate. Compared with traditional object-oriented classification methods, CNN-based methods can
select and extract classification features automatically, presenting a strong self-learning ability and
robustness [22]. Meng Chen et al. [23] proposed a method combining image segmentation with CNN
to extract building damage information from remote sensing images, and effectively extracted the
damage information of buildings after earthquakes. However, its robustness is largely affected by
the accuracy of image segmentation, which affects the effectiveness of the successive tasks and limits
practical applications.

With the continuous improvement of basic Geographic Information System (GIS) data in recent
years, their applications for the extraction of richer and clearer disaster information have become more
popular [24,25]. Ye et al. [8] combined the block information derived from urban road vector data
in post-earthquake remote sensing images and constructed a multi-feature classification model with
building blocks as its unit. The results showed that this method had high accuracy for the classification
of the damage degree of groups of buildings. Therefore, GIS data can be applied to the damage
assessment of buildings. In other words, we can accurately achieve the boundary segmentation of the
groups of buildings by overlaying the analysis of GIS data and remote sensing images instead of using
image segmentation.

To overcome the problem of feature selection and image segmentation in object-oriented
classification, this paper proposes a new strategy to extract the damage information of groups
of buildings via remote sensing images by combining CNN and GIS data. Using block vector data,
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all buildings in each block were treated as a group of buildings unit, and the Inception V3 network
in CNN was used as the basic classification network to classify the damaged groups of buildings,
which was compared with traditional machine learning methods. The rest of this paper is organized as
follows. Section 2 describes the details of the method. Section 3 provides the descriptions of the study
area. Section 4 presents the analysis of the experimental results. Finally, Section 5 concludes this paper.

2. Method

2.1. The Basic Architecture of Inception V3

The basic architecture of CNN usually includes alternating overlapping convolution and pooling
layers, full connection layer, input layer, and output layer. The convolution layer usually includes
convolution operation and nonlinear transformation [26]. In the Inception V3 network, besides these
basic structures, there are some special operations such as the addition of the well-designed Inception
Module to replace the last fully connected layer with global average pooling and the addition of the
BN (Batch Normalization) [27] method.

The Inception Module in Inception V3 can improve the efficiency of parameter utilization. One
of the structures is shown in Figure 1. It is similar to a small network in a large network, and its
structure can be repeatedly stacked to form a larger network. In the Inception Module structure,
the convolution of 1 × 1 can organize information across channels, improve the expression ability of
the network, and raise or lower the dimensions of the output channel. Moreover, the idea of spatial
asymmetric convolution [20] is introduced to split a large two-dimensional convolution into two
smaller one-dimensional convolutions. This helps to reduce many parameters, accelerate the operation,
and reduce the overfitting; on the other hand, it adds a layer of nonlinearity, increases the diversity of
features and expands the expression ability of the model and its ability to deal with more and richer
spatial features.

 
Figure 1. Inception Module structure in Inception V3.
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Inception V3 removes the last fully connected layer and replaces it with a global average pooling
layer. In AlexNet and VGGNet, the full connection layer accounts for almost 90% of all the parameters,
which causes overfitting. Therefore, by removing the full connection layer, the model can be trained
faster, and overfitting can be reduced.

The BN method added to Inception V3 is one of the most effective regularization methods. When
BN is used for a certain layer of the neural network, it will standardize the internal processing of each
mini-batch of data, to normalize the output to N (0,1) and reduce the changes in the distribution of
internal neurons. It can considerably accelerate the training speed of large convolutional networks and
greatly improve the classification accuracy after convergence.

2.2. Method Flow

In this study, to utilize Inception V3, the remote sensing image was cropped into sub-images of S× S
pixels, and these sub-images with fixed size were used as an input for the Inception V3. Each sub-image
was processed with Inception V3 to output the probability of each category of damage for groups of
buildings. The higher the value, the greater the probability of belonging to the damaged category.

Although CNN can well predict the damage category of groups of buildings [23,28,29] in
rectangular images with a fixed size, for groups of buildings in each block, it often results in a larger
error to predict directly using CNN due to irregular shape and different sizes of blocks. Therefore, this
paper proposed a method to avoid the bigger error when using CNN to predict the categories of blocks
presenting irregular shapes and different sizes. The main idea of the method was to cut the rectangular
image of fixed size in the minimum bounding rectangle of the block according to a specific step size,
and the obtained rectangular image could directly predict its category by using CNN. However, many
of the obtained rectangular images were outside the block range, so the threshold of the overlap ratio
had to be set to filter out rectangular images outside the block range. Finally, the prediction results of
all rectangular images within each block were averaged to obtain the category of the block.

By using the method described above combined with block vector data, the groups of buildings
in post-earthquake remote sensing images were classified by the basic processes shown in Figure 2.

The first part was to cut the remote sensing images into rectangular sub-images with a fixed size
and train the Inception V3 network to obtain the trained network weights.

The second part consisted of three steps. First, an S × S window was used to scan the images
contained in the minimum bounding rectangle of each block with the step size S, and a certain number
of S × S sub-images were obtained. Then, the overlap ratio between each sub-image and its block was
calculated, and the sub-images with an overlap area greater than 50% were used as inputs for the
Inception V3 in order to predict their category probability. Finally, the category probabilities of all
effective sub-images in each block were integrated to obtain the category probability of the block.
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Figure 2. Classification process of damaged groups of buildings by remote sensing images combined
with Convolutional Neural Network (CNN) and Geographic Information System (GIS).

2.3. The Improved Convolutional Neural Network (CNN)

The remote sensing image usually has a larger width than that of the natural image, so they
cannot be directly input into traditional CNN for processing. In order to enable the classification
network to more easily process large remote sensing images for application and considering that the
method proposed in this paper took city blocks as the basic processing unit, superimposition of block
vector data for processing was required. Thus, this paper added Separate and Combination layers to
Inception V3, as shown in Figure 3.

 
Figure 3. Improved CNN classification framework for damaged groups of buildings after earthquakes.
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The role of the Separate layer here was to use a sliding window of 224 × 224 to scan and cut with
a step size of 224 within the minimum bounding rectangle of each block. Taking block 1 as an example,
as shown in Figure 4, 16 sub-images of 224 × 224 pixels were cut by scanning block 1. Then, the
overlap area between these 16 sub-images and block 1 was calculated, and the 7 sub-images in which
the overlap ratio was greater than 50% were selected as the valid sub-images, that is, the sub-images
belonging to block 1. After the Separate layer, a number of 224 × 224 pixels effective sub-images were
generated for each block, and these sub-images were used as the input for the Inception V3 network
for classification.

 
Figure 4. Sub-image cutting schematic diagram of block 1 (red boxes are valid sub-images).

The purpose of the Combination layer was to combine the classification results of all valid
sub-images in each block. For example, the function to integrate the probability values of 7 sub-images
in block 1 is expressed as:

P1, j =
1
7
∑7

i=1 Ai, j (1)

where Ai, j is the probability that the i valid sub-image in block 1 is classified into j class, and P1, j is the
probability that block 1 is divided into j class.

3. Data

In order to test the effectiveness of this method, 0.5 m-resolution aerial remote sensing images
were selected. These images were acquired on the second day after the 7.1-magnitude earthquake in
the Yushu Tibetan Autonomous Prefecture of Qinghai Province on 14 April 2010. The studied area was
severely affected by the disaster and there were a large number of collapsed buildings (Figure 5).

102



Remote Sens. 2020, 12, 260

Figure 5. Location of the study area and the remote sensing image: (a) China map, (b) the image of
Yushu Tibetan Autonomous Prefecture, and (c) part of the enlarged image.

The earthquake damage of buildings was divided into five grades according to the “Guidelines
for Earthquake Damage and its Loss Assessment” formulated by the China Earthquake Administration
and the “Classification Standard for Building Earthquake Damage Levels” formulated by the Ministry
of Housing and Urban-Rural Development of China. In remote sensing images, classification is
based mainly on the overall and detailed image characteristics of the buildings after the earthquake.
Additionally, in the classification process, the sub-study area method is adopted to make a general
assessment of the damage degree of all buildings in the sub-study area. In this paper, the sub-study
area could be divided into a sub-image of 224 × 224 pixels, or a block. Referring to previous research
results [8,30,31], and according to the post-earthquake remote sensing images, this paper divided the
damage of the groups of buildings into three levels: serious damage (all destroyed or most collapsed),
moderate damage (about half collapsed), and slight damage (generally intact or a small part collapsed).
The specific classifications are shown in Table 1. The collapse rate, c, was the ratio between the
number of collapsed buildings (or collapsed building area) and the total number of buildings (or total
building area).
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Table 1. Classification of damaged groups of buildings in post-earthquake remote sensing images.

Category Character Description Collapse Rate

Serious damage All destroyed or most collapsed >70%
Moderate damage About half collapsed 30–70%

Slight damage Generally intact or a small part collapsed <30%

After some necessary processing, the above experimental images can be trained within the CNN.
The sub-images of 224 × 224 pixels were clipped from the remote sensing images. Then, one category
was assigned to each sub-image by visual interpretation. The samples for each category of Table 1 are
shown in Figure 6 (where negative samples are open space and water bodies are near buildings, etc.).

Figure 6. Typical classification samples for damaged groups of buildings: (a,b) serious damage,
(c,d) moderate damage, (e,f) slight damage, (g,h) negative samples.

Data used for training usually needs to be enhanced, similar to natural images, and processes such
as rotation, flipping, and color conversion can be used [32]. However, this enhancement is different
from that applied to natural images. Most objects in natural images can only be rotated at very small
angles, yet, the buildings can be rotated at any angle in this study. In addition, remote sensing images
are often displayed after being stretched, so data enhanced by stretching could make the Inception V3
model more robust. Through the process of enhancing, a total of 16,803 samples were obtained. These
were divided into three groups: 10,764 samples were used as a training set, 4599 as a validation set,
and 1440 as a test set.

4. Results and Discussion

4.1. Multi-Feature Machine Learning Classification Method

To compare the accuracy of the results obtained by the method described in this paper with that
of the results of traditional machine learning methods, the experiment involving the machine learning
method was firstly carried out. First, various features of the image were extracted manually, and then,
according to the features extracted from each block, the damage categories of the groups of buildings
were classified by the machine learning method.

The features selected in this study were: contrast, dissimilarity, correlation, entropy, and
homogeneity. The extracted image features are shown in Figure 7. It can be seen from the original
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raster image in Figure 7 that the buildings in the left half of the image were completely collapsed,
while the buildings in the right half were less collapsed. Comparing the five characteristic diagrams in
Figure 7, it can be seen that the difference between the collapsed buildings on the left side and the
non-collapsed buildings on the right side is clearly reflected in the feature map.

Figure 7. Feature maps: (a) raster images, (b) contrast, (c) dissimilarity, (d) correlation, (e) entropy, and
(f) homogeneity.

In order to see more easily the range of values of each feature for the different damage categories,
a quantitative statistical analysis was conducted for the feature maps of each category of damage, and
the results are shown in Figure 8. Changes in building damage grade cause the values of the five
features to change accordingly, which can reflect the damage grade of groups of buildings. Therefore,
these five features can be used to classify the damage of groups of buildings.

After completing the feature extraction, the feature maps on each band were superimposed with
the block vector data, and the average value of different features in each block were calculated by the
ArcGIS software. The results of statistical calculations for multiple features were used as the feature
vector of the block to classify the damage of groups of buildings, and the multi-feature classification
model was established. According to the statistical results of the aforementioned features, SVM, CART
and RF in machine learning methods were used to obtain the classification accuracy of the damage of
groups of buildings.
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Figure 8. Quantitative statistical analysis curves for different features of each damage category.

The final classification results obtained by using the three machine learning classifiers are shown
in Table 2. SVM had the highest classification accuracy, reaching 72%. The parameter C corresponding
to the optimal accuracy of SVM was 1, which was the penalty coefficient for the classification error item
in this classifier. The larger C corresponded to a greater punishment degree for the misclassification of
samples. Therefore, the higher the accuracy in training samples, the lower the generalization ability.
Conversely, the smaller C corresponded to the more misclassified samples that were allowed in the
training sample then the stronger the generalization ability.

Table 2. Comparison of three machine learning classifiers for groups of buildings damage classification.

Classifier Optimal Precision Parameter Corresponding to the Optimal Precision

SVM 72.5% Penalty factor for error terms: C = 1
CART 70% Maximum depth of the tree: max_depth = 6

RF 60% Number of trees in RF: n_estimators = 3

4.2. Improved CNN Classification Method

In this study, the deep learning library TensorFlow was used to replicate the Inception V3 network
model. To facilitate the model training, the Separate and the Combination layers shown in Figure 3
were removed. During the training process, the parameters were gradually optimized and adjusted,
and the final parameters were as follows: the optimizer was Stochastic Gradient Descent with mini
batches, the batch size was 32, the dropout ratio was 0.5. The learning rate started from 0.01 and
dropped to 0.001 when the training reached 20,000 steps, and to 0.0001 at 28,000 steps.
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After the training, the accuracy of the Inception V3 model finally reached 96.39% for the verification
set. The loss value and accuracy change for the verification set during this training process are shown
in Figure 9.

Figure 9. Loss and accuracy changes for the validation set during training: (a) loss curve,
(b) accuracy curve.

The trained model was then tested on the test set of 1440 rectangular images, with an accuracy
of 92.22%. The confusion matrix between the test results on the test set and the ground truth is
shown in Table 3. The confusion matrix showed that the number of wrong judgements between the
serious and the moderate damage was 56 and the number of wrong judgements between the moderate
and the slight damage was 52, and there was almost no misjudgment between the serious and the
slight damage.

Table 3. Confusion matrix of ground truth and test results of the CNN model.

Category
Ground Truth

Serious
Damage

Moderate
Damage

Slight
Damage

Negative
Samples

Total
User

Accuracy

Serious damage 457 29 0 0 486 94.03%
Moderate damage 27 249 15 0 291 85.57%

Slight damage 1 37 531 0 569 93.32%
Negative samples 1 0 2 90 93 96.77%

Total 486 315 549 90 1440
Producer accuracy 94.03% 79.05% 96.72% 100.00% 92.22%

Finally, the Separate and Combination layers were added to the Inception V3 network to directly
input aerial images of the Yushu earthquake and the vector map of urban blocks, and to output the
vector map of building damage. After completion of the process described above, the building damage
information was extracted from the aerial images after the Yushu earthquake (Figure 10). To compare
the results extracted by the improved CNN method with the ground truth, visual interpretation was
carried out by combining the pre-earthquake and post-earthquake images. The visual interpretation
results were taken as the ground truth reference results. The results obtained by visual interpretation is
shown in Figure 11. Together, Figures 10 and 11 show that the extraction result was basically consistent
with the visual interpretation result, although there were still some misjudgments in some blocks.
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Figure 10. Damage classification map for groups of buildings based on the improved CNN method.

 
Figure 11. Damage classification map for groups of buildings based on visual interpretation.

To quantitatively compare the results of CNN extraction and visual interpretation, the confusion
matrix table is shown in Table 4. The mis-detected blocks mainly resulted from wrong judgement
between the moderate and the slight damage, and the number of wrong judgements between the two
categories was 7. Finally, the overall accuracy was 90.07%, and Kappa Coefficient was 0.81.

Table 4. Confusion matrix of visual interpretation and extraction results of the improved CNN method.

Visual Interpretation Results

Category
Serious
Damage

Moderate
Damage

Slight Damage Total User Accuracy

Serious damage 21 1 1 23 91.3%
Moderate damage 2 19 2 23 82.61%

Slight damage 2 5 78 85 91.76%
Total 25 25 81 131

Producer accuracy 84% 76% 96.29% 90.07%
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Figure 12 shows examples of some typical blocks. Blocks (1), (2) and (3) are the correct classification
blocks, while (4) and (5) are the wrong classification blocks. Table 5 shows the probability distribution
of the classification results of the five blocks in Figure 12. From the probability of each category, we
concluded that the probability difference between the misclassified category and the correct category
was not significant, although the classification category was wrong. This indicated that the final
classification category was not the only judging criterion for the blocks with difficulty to distinguish
collapse types. It was also possible to determine the confidence degree of each collapse type according
to the probability of each category, to evaluate the collapse type of each block more accurately.

 
Figure 12. Block building classification example: (1) moderate damage, (2) serious damage, (3) slight
damaged, (4) moderate damage, (5) moderate damage.

Table 5. Comparison of the test results of the improved CNN method with the results of
visual interpretation.

Block
Categories

Obtained by
Visual

Interpretation

Test Results of the Improved CNN Method

Categories
Probability of

Serious
Damage

Probability of
Moderate
Damage

Probability
of Slight
Damage

(1) Moderate damage Moderate damage 29.29% 48.35% 11.79%
(2) Serious damage Serious damage 79.12% 11.09% 0.01%
(3) Slight damage Slight damage 0.02% 0.23% 96.30%
(4) Moderate damage Serious damage 27.64% 23.91% 17.55%
(5) Moderate damage Slight damage 0.83% 25.50% 56.42%
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4.3. Discussion

In this study, some measures were taken to prevent overfitting in the training of the CNN. In fact,
there was not enough data on building damage to meet the requirements. When these limited samples
were used to train the large CNN, it tended to over fit. For this reason, the data set was enhanced and
expanded to increase the diversity of samples. Furthermore, in the training process of the CNN, when
the loss function value did not decline after a certain number of steps, the training was terminated in
advance to avoid excessive learning.

In this study, the classification of damaged groups of buildings achieved high accuracy through
training, but there were also some wrong classifications, which were mainly attributed to the following
two reasons. First, the background environment of the high-resolution remote sensing images after an
earthquake are far more complex than those of the natural images, so the background environment has
a greater impact on the classification results. For example, the characteristics of collapsed adobe house
and bare soil are very similar, thus, it is easy to judge bare soil as collapsed adobe house. Second,
because the labeling of sample categories is judged by visual interpretation and lacks the support of
ground survey data, this may cause some error labels.

The improved CNN approach proposed in this study can be extended to other CNNs. With the
continuous advancement of deep learning, a CNN with higher accuracy and better performance will be
developed in the near future. Adding Separate and Combination layers to better network architectures
may allow the achievement of a better classification effect.

5. Conclusions

By combining an improved CNN approach with GIS data, this paper proposed a new strategy to
extract the damage information of groups of buildings in remote sensing images after earthquakes.
From our experiment, we found that CNNs could effectively solve the problem of difficult feature
selection, which is an advantage over traditional object-oriented classification methods. Compared
with the traditional multi-feature machine learning classification method constructed by artificial
feature extraction, accuracy is greatly improved, and a satisfactory effect can be achieved. Block vector
data in GIS can form a meaningful boundary for groups of buildings, effectively replacing image
segmentation and avoiding its fragmentary and unsatisfactory results. At the same time, our method
was able to avoid the big error that arises when the CNN is used to predict irregular shapes and
different sizes of blocks.

However, due to the limited number of samples used for training in CNN and the confusion
between collapsed buildings and bare ground, classification errors for the groups of buildings can be
easily caused, meaning that there are still some errors in comparison with the ground truth.

Therefore, extending the training data set, including remote sensing images of different types and
resolutions, is future work to be tested for improvement. The methods combining multi-classifiers
including CNN should be considered to improve the classification accuracy of groups of buildings.
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Abstract: Building extraction from high-resolution remote sensing images plays a vital part in
urban planning, safety supervision, geographic databases updates, and some other applications.
Several researches are devoted to using convolutional neural network (CNN) to extract buildings
from high-resolution satellite/aerial images. There are two major methods, one is the CNN-based
semantic segmentation methods, which can not distinguish different objects of the same category and
may lead to edge connection. The other one is CNN-based instance segmentation methods, which rely
heavily on pre-defined anchors, and result in the highly sensitive , high computation/storage
cost and imbalance between positive and negative samples. Therefore, in this paper, we propose
an improved anchor-free instance segmentation method based on CenterMask with spatial and
channel attention-guided mechanisms and improved effective backbone network for accurate
extraction of buildings in high-resolution remote sensing images. Then we analyze the influence
of different parameters and network structure on the performance of the model, and compare the
performance for building extraction of Mask R-CNN , Mask Scoring R-CNN , CenterMask, and the
improved CenterMask in this paper. Experimental results show that our improved CenterMask
method can successfully well-balanced performance in terms of speed and accuracy, which achieves
state-of-the-art performance at real-time speed.

Keywords: building extraction; improved anchor-free instance segmentation; high-resolution remote
sensing images; deep learning

1. Introduction

In pace with the high-speed development of high-resolution remote sensing data in both China
and International Community, the spatial information, geometric structures, textural features and
intensity information contained in remote sensing images and point cloud data are becoming clearer,
which makes it possible to identify and detect terrestrial objects. Among them, building is an important
feature of city and the most important place for human production and life [1]. The geometry, area,
or the dimensions of buildings gained from two-dimensional information-rich optical remote sensing
images and three-dimensional information-containing point cloud data [2] are the relevant urban
metrics. They can effectively represent the urban spatial structure, and then quantify the morphology of
city [3], reflect the processes that occur during a city’s development [4], and monitor urban management
and planning strategies [5]. Thus, the identification and extraction of the individual building will
play a vital role in a wide range of applications such as urban planning, safety supervision, real-estate
management and Geo-database updates.

Remote Sens. 2020, 12, 2910; doi:10.3390/rs12182910 www.mdpi.com/journal/remotesensing
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For decades, researchers have made considerable efforts to extract buildings from remote sensing
data. Huertas and Nevatia [6] assumed that the building is composed of rectangular components
(such as “T” shape, “L” shape and “E” shape), and then designed a building model to detect buildings.
Irvin and McKeown [7] used the spatial constraint relationship between shadows and buildings to
extract buildings. Inglada [8] achieved automatic recognition of buildings in high resolution optical
remote sensing images by support vector machine (SVM) classification of geometric image features.
Meng et al. [9] proposed a novel object-oriented building extraction method based on fuzzy SVM.
Awrangjeb et al. [10], designed an innovative image line guided segmentation technique to extract
the roof planes based on light detection and ranging (LIDAR) and orthoimage, and applied a newly
proposed rule-based procedure to removing planes constructed on trees. In Reference [11], to represent
an individual building or tree, researchers clustered the non-ground LIDAR points, and then the planar
roof segments were extracted from each cluster of points and refined using rules, such as the coplanarity
of points and their locality. Gilani et al. [12] used LIDAR data to present a non-manifold points creation
methods that provides a better interpolation of roof regions, these geometric features were preserved
to achieve automated identification and segmentation of the building roof. Besides, they also used
features from point cloud and orthoimagery to extract and regularise the buildings, so as to overcome
the limitations of shadow and partly occlusion [13]. As can be seen from above, scholars have tried
many methods to extract buildings from optical remote sensing images, point cloud data, or the fusion
of optical images and point cloud data. However, the features of buildings used in all the above
methods are artificially designed shallow features, which are time-consuming and labor-intensive,
sparse for feature distribution, and cannot express higher-level semantic information.

In the past few years, deep learning algorithms have made breakthrough progress in the field
of image processing. And the convolutional neural network (CNN) has been used to abstract
multi-level and metaphysical features from original images, which undoubtedly provides a huge
advantage for obtaining the complex spectrum, texture, and geometric features contained in remote
sensing images. Based on that, currently, most researchers have used semantic segmentation
frameworks (such as U-Net [14], SegNet [15], and DeepLab [16]), to achieve efficient and automatic
buildings extraction from high-resolution remote sensing images. For instance, Xu et al. [17] designed
a segmentation method with deep residual networks and a guided filter to gain buildings from remote
sensing images. In Reference [18], to balance high accuracy with low network complexity, Shrestha and
Vanneschi proposed an enhanced fully convolutional network (FCN) structure by adding conditional
random fields (CRFs) and successfully obtained buildings. Li et al. [19] integrated latent high-order
structural features learned by the adversarial network into semantic segmentation network during
network training, and can effectively rectify spatial inconsistency on aerial images.

Although the CNN-based semantic segmentation methods have achieved promising results,
they still have drawbacks.The main problem lies in a large number of closely adjacent buildings
existing in remote sensing images. But semantic segmentation can not distinguish different objects of
the same category. Under complex and fluid geographical environment, it may lead to edge connection
and is unfavorable for the application and research which focused on single building extraction.
Compared with the task of image semantic segmentation, instance segmentation can not only identify
the individual buildings on the image, but also give the pixel-levels semantic categories of each target
on this basis.

At present, most state-of-the-art approaches to instance segmentation are based on the
two-stage object detection model, and Mask R-CNN [20] is one of the classic models and standard
frameworks for them, which has achieved the best result of a single model in COCO instance
segmentation challenge. It designed RoIAlign instead of RoI pooling layer used in Faster R-CNN [21],
and plugged an FCN branch into the original classification and regression network branch to predict
the mask. As scholars continue to study, there have been many works [22–25] on improving
the Mask R-CNN, but few considered the speed of instance segmentation. Inspired by SSD [26]
and YOLO [27], some scholars have designed instance segmentation model based on one-stage
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object detection methods. For example, YOLACT [28] used RetinaNet as the basic network and
added two parallel branches to complete the mask prediction task: the first branch applied FCN to
generating a series of prototype masks independent of a single instance; the second branch added
mask coefficients to prediction head to encode the representation of an instance in the prototype
mask space. Finally, after Non-Maximum Suppression(NMS) operation, the output results of the
two branches were linearly combined to get the final prediction results. Based on state-of-the-art
instance segmentation approaches, some researchers designed novel building extraction methods
from high-resolution remote sensing images. Potlapally et al. [29] extracted various types of remote
sensing features including buildings by employing Mask R-CNN. Ji et al. [30] utilized building
extraction network implemented with a Mask R-CNN branch for object-based instance segmentation,
and a multi-scale FCN branch for pixel-based semantic segmentation to locate changed buildings
as well as the changed pixels from aerial remote sensing images. Li et al. [31] improved Mask
R-CNN by adding key points map, and completed well preservation of geometric details for buildings.
Su et al. [32] proposed an advanced Cascade Mask R-CNN which named HQ-ISNet and made the
predicted instance masks more accurate.

As can be seen from above, CNN-based instance segmentation methods for building extraction
from high-resolution remote sensing images are generally via two-stage, just like Mask R-CNN,
which focus primarily on extraction performance, few take the speed and real-time ability into account.
Although there are some instance segmentation methods, such as YOLACT, are built on one-stage
detector that directly predicts boxes without proposal step. They still rely heavily on pre-defined
anchors, which are sensitive to data sets and hyperparameters (e.g., aspect ratio, ratio, input size, etc.).
In addition, to ensure sufficient overlap with most ground truth boxes, excessively anchor setting
results in the matters of higher computation/storage cost and imbalance between positive and negative
samples. In order to address these problem, recently, many kinds of research [33–37] tended to replace
the anchors with anchor-free by using corner/center points. Compared with anchor-based detectors,
anchor-free will contribute to more efficient computation and better performance.

Therefore, in this paper, we propose an improved anchor-free instance segmentation method based
on CenterMask [37] with spatial and channel attention-guided mechanisms for accurate extraction of
buildings in high-resolution remote sensing images. It maintains good performance yet realize efficient.
The main contributions of our work can be summarized as follows:

• An improved anchor-free instance segmentation architecture is proposed for building extraction
from high-resolution remote sensing images, which is composed of an efficient one-stage
anchor-free object detector FCOS [33] and a novel spatial and channel attention-guided
mask branch.

• Besides, we design a more effective backbone network by improving VoVNetV2 that is designed
in Reference [37], and receives better performance than ResNet and VoVNetV2.

• In order to improve the segmentation performance of CenterMask, we also develop the mask
branch in CenterMask. A spatial and channel attention-guided mask (SCAG-Mask) branch is
designed in this paper to effectively optimize the building extraction behavior.

The next content of the paper is organized as follows—Section 2 introduces our instance
segmentation network architecture and the details for building extraction. Section 3 details the
dataset and evaluation approach used in the experiment. Section 4 describes the experimental results
and analysis in detail. Then Section 5 draws a conclusion and looks forward to the follow-up work.

2. Methods

The overall architecture of the improved CenterMask is shown in Figure 1. It consists of
four parts, and (a) in Figure 1 represents the feature extraction network. This paper uses the improved
VoVNetV2-57 to complete the convolution feature extraction of the input image. It consists of three
convolutional layers and four stages (C2-C5) with different numbers of one-shot aggregation (OSA)
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modules. Each OSA module has five convolutional layers. In order to realize the fusion of the shallow
position information and deep semantic information of the convolutional neural network, (b) in
Figure 1 is connected to feature pyramid network (FPN) [38]. In this paper, the output of C3–C5
for improved VoVNetV2-57 network is operated through upsampling and horizontal connection
operations to generate P3–P5, and P6 and P7 are obtained through convolution operations on the
basis of P5, thus rich feature information extraction from a single-resolution input image is completed.
After passing through FPN network, the FCOS bounding box prediction network is connected to each
scale feature map to generate the region of interests(RoIs), as shown in (c) of Figure 1. By judging the
relative size of the generated RoI and input image, the feature map matching the scale of the RoI is
selected and operated by RoIAlign [20]. After processing, the RoI and the feature map are fed into the
spatial and channel attention-guided mask branch in Figure 1d for segmenting the instance in this RoI.
Finally, the exported instance segmentation extraction results are obtained.

Figure 1. The network architecture of Improved CenterMask, where C3, C4, and C5 denote the
feature maps of the backbone network, and P3 to P7 are the feature levels used for the final prediction.
W, H separately represent the width and height of feature maps.

2.1. Improved VoVNetV2

VoVNet [39] is an efficient feature extraction network. It uses one-time aggregation module.
In this module, each convolution layer generates two kinds of connections. One is connected with the
next layer through convolution to gain larger receptive fields. The other one is connected to the final
output layer to aggregate features.

However, with the deepening of the network and the stacking of OSA modules, the accuracy of
the model will be saturated. According to the ResNet [40] literature, this is because the deepening of
the network causes the problem of gradient explosion and gradient disappearance. In Reference [37],
to boost the performance of VoVNet, the identity mapping and an effective Squeeze-Excitation(eSE)
module are added. In this paper, we let the C4 and C5 stages retain the added identity mapping as
shown in Figure 2a. At the same time, we improve the eSE module, and the improved eSE module
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(im-eSE) is proposed and added to the OSA module at each stage of C2-C5 to learn the correlation
between feature maps to filter out the more powerful feature maps, as shown in Figure 2b.

Figure 2. The structure of feature extraction network, where Fgapavg is global average pooling,
Fgapmax is global max pooling, WC is fully-connected layer. W, H, C separately represent the width,
height, and the number of channels for feature maps.

In order to obtain the global statistics while retaining the degree of the most significant part of
each feature map, im-eSE module in this paper uses a global average pooling and a global max pooling.
Suppose that after passing through the original OSA module, a feature map U of W × H ×C is obtained.
Then the gating unit in im-eSE module can be expressed as:

Aim−eSE(U) = σ(Wc(Fgapavg(U))⊕ Wc(Fgapmax(U))), (1)

where, σ is sigmoid function. ⊕ denotes element-wise addition. Fgapavg and Fgapmax are defined as:

Fgapavg(U) =
1

WH

W,H

∑
i,j=1

Ui,j, (2)

Fgapmax(U) = maxi∈W,j∈HUi,j. (3)

Finally, output Ũ of the im-eSE module is obtained by multiplying the gating unit Aim−eSE(U)

with the feature map U, see formula (4), where ⊗ denotes element-wise multiplication. After this,
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for the C4 and C5 stages, identity mapping is added to Ũ, so as to obtain the output feature maps of
this OSA module.

Ũ = Aim−eSE(U)⊗ U. (4)

2.2. FCOS

FCOS uses pixel-by-pixel idea for object detection. For each point (x, y) on the feature map, it will
be mapped back to the coordinates of the input image as (xs, ys). formula (5) shows the conversion
relationship between these, where s represents the downsampling rate of the current feature map
relative to the input image.

xs =
⌊ s

2

⌋
+ x × s, ys =

⌊ s
2

⌋
+ y × s. (5)

For any ground truth box Bi given in this paper, is defined as (x(i)0 ,y(i)0 , x(i)1 ,y(i)1 , C), where (x(i)0 ,

y(i)0 ) and (x(i)1 , y(i)1 ) are the coordinates of the upper left and lower right corners of the ground truth box,
C is the building category. If (xs, ys) calculated by formula (5) falls into any ground truth box, it is
temporarily considered to be a positive sample, and its regression target is (l∗, t∗, r∗, b∗). Here l∗, t∗,
r∗, b∗ are the distances from the location to the four sides of the ground truth box, as shown in (6).
Otherwise, it will be considered as a negative sample and its category will be set to 0. If the point is
located in multiple ground truth boxes, it is considered an ambiguous sample. And then we select the
ground truth box with the minimal area as the regression target. In addition, for multi-level prediction
with FPN, if the regression target of positive sample at level i satisfies max(l∗, t∗, r∗, b∗) ≥ mi or
max(l∗, t∗, r∗, b∗) ≤ mi−1, it will be set as a negative sample, and can not regress a bounding box
anymore. Here mi is the maximum distance that feature level i can regress. In this paper, we set
m2, m3, m4, m5, m6 and m7 as 0, 64, 128, 256, 512 and ∞, respectively.

l∗ = xs − x(i)0 , t∗ = ys − y(i)0 , r∗ = x(i)1 − xs, b∗ = y(i)1 − ys. (6)

As can be seen from Figure 1, FCOS contains classification subnet and regression subnet.
In classification subnet, we firstly use four 3 × 3 × 256 convolutional layers, and then through a 3 × 3
convolutional layer with the channel number of 1 to predict the probability that each bounding
box belongs to a building in the range of W × H. The design of the regression subnet is same to
classification subnet, the only difference is that the number of channels in the last layer is 4, that is,
each bounding box will regress a four-dimensional vector, indicating the offset of the bounding box
from the related ground truth box. In other words, without the anchor-box, FCOS directly predicts
a 4D vector plus a class label at each spatial location on a level of feature maps.

Besides, in order to suppress the low-quality bounding boxes generated at the locations that are
far from the center of a target object. FCOS adds a centerness branch to the classification subnet to
predict the deviation of a pixel to the center of its corresponding bounding box. Given the regression
targets l∗, t∗, r∗, b∗ for a location, the centerness target can be defined as,

centerness =

√
min(l∗, r∗)
max(l∗, r∗) ×

min(t∗, b∗)
max(t∗, b∗) , (7)

When l∗ = = r∗, t∗ = = b∗, it is the most ideal state, and the centerness value is 1. In this paper,
the binary cross-entropy(BCE) loss is used to calculate the loss caused by different centerness values.
The smaller the centerness value is, the greater BCE loss will be, so that the predicted bounding box
will be close to the center point during training. When testing, the value of centerness is equivalent to
a weight, which is used to multiply the classification score of each RoI. Thus the centerness can down
weight the scores of bounding boxes far from the center of an object. Finally, the detection performance
can be effectively improved by filtering out the bounding boxes with low scores by NMS operation.
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2.3. Spatial and Channel Attention-Guided Mask

We judge the feature map matched with the RoIs obtained by FCOS according to formula (8),
where kmax is the maximum level of the feature map. Ainput and ARoI represent the area of the input
image and the area of RoI, respectively. If the area of the RoI is greater than half of the input image area,
the RoI is assigned to the feature map with the largest scale. In this paper, we set kmax=7, if k is lower
than the minimum level (in this paper, we set the minimum level to P3), then k is forcibly assigned to
the minimum scale feature map P3.

k = kmax − log2
Ainput

ARoI
. (8)

Inspired by the spatial attention mechanism, this paper uses a SCAG-Mask mechanism to guide
the mask subnet to predict class-specific masks by focusing on meaningful pixels and suppressing
non-information pixels. The details are shown in Figure 3 and formula (9).

X = F1×1(deconv2×2((σ(F3×3(Pmax ◦ Pavg))⊗ xi)⊕ (σ(

Wc(Fgapavg(xi))⊕ Wc(Fgapmax(xi)))⊗ xi))),
(9)

where xi denotes the input feature map obtained through RoIAlign operation and four convolutional layers.
Pmax is the max pooling of all feature maps for each position. Pavg is the average pooling for all feature
maps for each position. ◦ represents concatenate operation. F1×1 and F3×3 separately denote 1 × 1 conv
and 3 × 3 conv. ⊕ and ⊗ respectively represent element-wise addition and element-wise multiplication.

Figure 3. The structure of the spatial and channel attention-guided mask (SCAG-Mask), where Fgapavg
and Fgapmax are global average pooling and global max pooling same as Figure 2, WC is
fully-connected layer. W, H, C separately represent the width, height, and the number of channels for
feature maps.

2.4. Multi-Task Loss

During training time, we compute a multi-task loss on each RoI as:

Loss = Lcls + Lreg + Lcenterness + Lmask + Lmaskiou, (10)

where the classification loss Lcls is α-Balance focal loss defined in Reference [41], the regression loss
Lreg is GIoU loss identical as in Reference [42], the centerness loss Lcenterness and mask loss Lmask are
same as those in Reference [33]. In addition, this paper uses L2 loss to calculate MaskIoU loss Lmaskiou.
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3. Dataset and Evaluation Metrics

3.1. Dataset Description

In this paper, we gain high-resolution remote sensing building semantic segmentation database
data of Wuhan University (WHU building dataset, http://study.rsgis.whu.edu.cn/pages/download/
building_dataset.html). The original remote sensing images in the database were from Christchurch,
New Zealand, which cover 220,000 diverse buildings. After the downsampling, labeling and
segmentation operations of the Jishunping team [43] of Wuhan University, more than 8000 images of
512-pixel × 512-pixel, 0.3 m spatial resolution were produced. In this paper, through removing the
abnormal images in the building dataset manually and converting the semantic segmentation dataset
to COCO instance segmentation task format by using the Suzuki [44] contours detection algorithm,
we obtain 4268 images as training set data and 719 images as test set.

3.2. Evaluation Metrics

We adopt average precision (AP) and average detection time to quantitatively assess the
performance of the instance segmentation method. A certain number of indexes are needed, namely,
true positive (TP),false negative (FN), false positive (FP), and precision–recall curve (PRC). TP denotes
the number of correct detections; FN denotes the number of missing detections; and FP denotes the
number of mistaken detections. PRC is a curve drawn by the precision metric and the recall metric.
The precision metric measures the proportion of correct detections to all detections. The recall metric
measures the proportion of correct detections to all ground-truth boxes. The precision metric and recall
metric are defined as,

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
. (12)

AP—the AP metric computes the area under the PRC. A higher AP value indicates better
performance, and vice versa. The AP used here includes AP of box detection APbox and AP of
mask extraction APmask. Besides, the APbox and APmask of small, medium and large size objects
are further refined. Among them, small-sized objects are objects with a pixel area of less than 322.
Medium-sized objects are objects with a pixel area greater than 322 but less than 962. Large size objects
are objects with a pixel area greater than 962.

4. Results and Discussion

4.1. Parameter Setting Experiments

Table 1 shows the detailed hyperparameter settings. In the experiment, we set weight decay
as 0.0001, the momentum as 0.9, and the pooler_scales as (0.125, 0.0625, 0.03125), then, we use
ResNet101 and VoVNetV2-57 with different learning rates commit several experiments. Note that,
we utilize the training set data described in Section 3 to fit the model when changing the backbone
and learning rate; and we use test set to evaluate the different performances of models generated by
different backbone and learning rates. The performances of different models on the test set are shown
in Table 2.
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Table 1. Summarization of hyperparameters fixed in the paper.

Hyperparameters Setting Details

No. of FILTERS

3 × 3conv, 64
3 × 3conv, 64

3 × 3conv, 128
[3 × 3conv, 128,×5, concat, &1 × 1conv, 256]× 1
[3 × 3conv, 160,×5, concat, &1 × 1conv, 512]× 1
[3 × 3conv, 192,×5, concat, &1 × 1conv, 768]× 4
[3 × 3conv, 224,×5, concat, &1 × 1conv, 1024]× 3

BATCH SIZE 8
EPOCHS 200

WEIGHT DECAY 0.0001
MOMENTUM 0.9

WARMUP_FACTOR 0.333
WARMUP_ITERS 500
POOLER_ScALES (0.125, 0.0625, 0.03125)

POOLER_SAMPLING_RATIO 2.0
POOLER_RESOLUTION 14

FPN_STRIDES [8, 16, 32, 64, 128]
FCOS_CENTER_SAMPLE_POS_RADIUS 1.5

FOCAL_LOSS_ALPHA 0.25
FOCAL_LOSS_GAMMA 2.0

In this paper, we consider the impact of different learning rates on model performance. As shown
in Table 2, when using ResNet101 as the feature extraction network, the model performance is optimal
when the learning rate is 0.005. And when using VoVNetV2-57 as the feature extraction network,
the model performance is optimal when the learning rate is 0.001. Comparing the AP values for
performance of two best-case models, we can find that the VoVNetV2-57 has significant advantages as
a feature extraction network, especially when extracting small and medium-scale buildings.

Table 2. Comparison of average precision (AP) on the test set under different parameter configurations.

Feature Extraction
Network

Learning
Rate

APbox APbox
s APbox

m APbox
l APmask APmask

s APmask
m APmask

l

ResNet101 0.01 0.6444 0.4483 0.8142 0.7344 0.6085 0.4009 0.7758 0.7672
ResNet101 0.005 0.6544 0.4552 0.8285 0.747 0.6116 0.3972 0.7836 0.7725
ResNet101 0.0001 0.629 0.4287 0.8047 0.6741 0.5981 0.3884 0.7694 0.7311

VoVNetV2-57 0.0005 0.6773 0.4869 0.8436 0.7205 0.6272 0.4234 0.7933 0.7323
VoVNetV2-57 0.001 0.6799 0.4915 0.8451 0.7208 0.6296 0.4274 0.7959 0.7437

Besides, we examine the impact of our improvements in this paper on model performance.
Since our backbone is improved on VoVNetV2-57, we control the learning rate at 0.001 in the following
experiments. The performances of our improved models on test set are shown in Table 3.

As can be seen from Table 3, when use optimized backbone without changing other parts of
the model, the AP value(the second row in Table 3) of the obtained model on buildings detection
and segmentation has been improved to a certain extent. Especially when extracting large buildings,
the AP value increased significantly. When only use SCAG-Mask without changing other parts of
the model. Compared with the AP value gained by original CenterMask (the first row in Table 3),
the AP value of bounding box detection of small and medium-sized buildings has decreased. But due
to our SCAG-Mask focus on spatial and channel attention guiding, the AP value of the building
segmentation has been significantly improved. Compared with the results obtained by optimizing
the backbone (the second row in Table 3), although the AP value acquired by using SCAG-Mask in
the segmentation of medium and large buildings is significantly improved, the AP of bounding box
detection reduces heavily. Thus, it seems that optimize the backbone only is better than only use
SCAG-Mask due to its comprehensive performance improvement. At last, we synthetically use the
improved backbone and SCAG-Mask. The obtained AP value is shown in the fourth row of Table 3.
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And we can see that the AP value for large building detection and the AP value for small, medium,
and large building instance object segmentation are both significantly improved. Although compared
with the backbone optimizing only (the second row in Table 3), the detection AP of small buildings and
medium-sized buildings have slight decreases, but compared with other performance improvements,
these slight decreases can be ignored. So the combination of backbone and SCAG-Mask is effective.

Table 3. Comparison of AP on the test set under different improved models.

Model APbox APbox
s APbox

m APbox
l APmask APmask

s APmask
m APmask

l

CenterMask with VoVNetV2-57 0.6799 0.4915 0.8451 0.7208 0.6296 0.4274 0.7959 0.7437
CenterMask with improved

VoVNetV2-57(ours) 0.6847 0.4923 0.846 0.7365 0.6307 0.4279 0.7969 0.7542

CenterMask with SCAG-Mask(ours) 0.6778 0.488 0.8434 0.7296 0.631 0.4269 0.7985 0.7561
CenterMask with improved

VoVNetV2-57+SCAG-Mask(ours) 0.6841 0.492 0.8444 0.7377 0.6342 0.4309 0.7992 0.7574

After the above experiments, here, we visualize and compare the building extraction results on
the test set, which from the optimal model obtained by using ResNet101 as feature extraction network,
the optimal model gained by applying VoVNetV2-57 as backbone, and the three models acquired by
using the improved methods in our work, as Figure 4 shown. And we can find that the performances
of the segmentation of target bounding box (Figure 4a), the prediction of dense buildings (Figure 4b),
the identification of confusing object (Figure 4c) and occlusion buildings (Figure 4d) by synthetically
using the improved VoVNetV2-57 and SCAG-Mask are better than the others, especially the use of
ResNet101 and original VoVNetV2-57. It further illustrates the effectiveness of the network structure
and the trained model used in this paper.

4.2. Comparison with State-of-the-Art Methods

This paper compares and analyzes the method effects of Mask R-CNN, Mask Scoring R-CNN,
CenterMask and improved CenterMask on the same test set under the same experimental environment.
Same as parameter setting experiments, we use the training set data described in Section 3 to fit the
model when adopting different algorithms; and we use test set to evaluate the different performances
of models under different methods. The corresponding AP values and average detection time of four
methods are shown in Table 4. As can be seen from Table 4, CenterMask and improved CenterMask
by not setting the anchor mechanism perform more efficiently than Mask R-CNN and Mask Scoring
R-CNN which belong to two-stage instance segmentation method. And the average detection time is
only 49.88 ms. In addition, the improved CenterMask used in this paper, while ensuring efficiency,
demonstrates that it is not inferior to the performance of Mask R-CNN and Mask Scoring R-CNN.
Especially in the extraction of medium and large scale buildings, it can even achieve higher AP than
the two methods. Although the anchor mechanism is discarded, the AP of improved CenterMask is
slightly lower than Mask R-CNN and Mask Scoring R-CNN when extracting small-scale buildings.
However, in terms of comprehensive AP and average detection efficiency, improved CenterMask used
in this paper still has great advantages.

Table 4. Comparison of AP on the test set with state-of-the-art methods.

Method APbox APbox
s APbox

m APbox
l APmask APmask

s APmask
m APmask

l

Average
Detection
Time (ms)

GPU

Mask R-CNN 0.6585 0.5049 0.789 0.7121 0.6384 0.4663 0.771 0.7468 69.49 Xp
Mask scoring

R-CNN 0.6604 0.5058 0.7881 0.7124 0.6451 0.4705 0.7806 0.756 72.83 Xp

CenterMask 0.6799 0.4915 0.8451 0.7208 0.6296 0.4274 0.7959 0.7437 49.88 Xp
Improved

CenterMask 0.6841 0.492 0.8444 0.7377 0.6342 0.4309 0.7992 0.7574 49.88 Xp
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Figure 4. Comparison of building extraction results on test set for five models. (a) Performance of
segmentation for target bounding box; (b) Performance of dense buildings prediction; (c) Performance
of confusing object identification; (d) Performance of occlusion buildings extraction.
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4.3. Usability Analysis in Practical Application

In order to further illustrate the effectiveness of the method proposed in this paper, we take
building extraction in China’s urban villages as example to verify the usability of our method in
practical application. This paper collects the building samples in China’s urban villages from Google
Earth imagery with spatial resolution of 0.11 m. To realize data augmentation, these samples are vertical
and horizontal flipped, and 90 degrees, 180 degrees and 270 degrees counterclockwise rotated. Finally,
by using professional labeling software, 2726 instance segmentation samples of China’s urban villages
buildings are obtained. They are further divided into 2326 training samples and 400 test samples.
The training samples are fed into the method proposed in this paper to fit a model suitable for the
extraction of urban villages buildings. And the test samples are used for verifying the performance of
the proposed method in the extraction of China’s urban villages buildings.

Figure 5 shows the extraction results of China’s urban villages buildings on test samples with
proposed method in this paper. We can find out that despite the high density of buildings and narrow
streets and lanes in urban villages, the method in this paper can still effectively extract buildings in
China’s urban villages. In terms of quantitative indicators, the APbox of the model on the urban village
buildings test set is 0.799, and the APmask is 0.728. The precision rate of building extraction can be as
high as 0.91 and the recall rate can be as high as 0.95 for single sample. This fully demonstrates that
the improved anchor-free instance segmentation method proposed in this paper can achieve good
extraction performance on China’s urban villages building samples. And the method can achieve
real-time building extraction, the prediction of entire test samples only takes 12 s, which further proves
the practicability of this method.

Figure 5. Building extraction results on building test samples in China’s urban villages.
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5. Conclusions

We have proposed an improved real-time anchor-free one-stage instance segmentation method
and a more effective backbone network. By adding the SCAG-Mask to the anchor-free one stage
instance detection, our improved CenterMask achieves state-of-the-art performance at real-time speed.
Although Mask R-CNN and Mask Scoring R-CNN show better performances than our improved
CenterMask on APbox

s and APmask
s , we are still full of confidence in our improved CenterMask due to

its well-balanced performance in terms of speed and accuracy. In addition, we take buildings extraction
in China’s urban villages as example to verify the usability of our method in practical applications
and get good extraction results and satisfactory speed. In the future, we will further improve the
performance of the model in small object detection and segmentation. And some post-processing
techniques may be explored and compared to obtain the best framework for building extraction.
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Abstract: As a new satellite sensor of the GaoFen (GF) series, GF-6 Wide Field of View (WFV) with the
resolution of 16 m has the characteristics of wide coverage, high-frequency imaging and has four new
bands of two red-edge, yellow, and purple compared with GF-1 WFV. In order to test the validity of the
supplementary bands of GF-6WFV data for change detection of land use/land cover (LULC), this study
applied the Double-constrained Change Detection Method (DCDM) that uses the double constraints
(change vector intensity and correlation coefficient) for change detection on object-level. According to
two GF-6WFV imageries acquired in the Xiong’an New Area in June of 2018 and 2019, feature analysis
was performed to determine whether the new bands are helpful to detect the change of LULC first.
Then, by coupling these selected features, the intensity of change vector and correlation coefficient
were used as the double constraints to perform the change detection. The study demonstrates
that the relevant features of the two red-edge bands can achieve the overall accuracy of 89% for
change detection of LULC and improved by 2% comparing with using the corresponding temporal
GF-1WFV data, while the purple and yellow bands cannot provide enough effective information
for this detection. This study can provide theoretical support for the in-depth applications of GF-6
WFV data products in the change detection fields and has explored its applicability and potential in
resource and environment monitoring, it is helpful to the further applications.

Keywords: land use/land cover (LULC); GF-6 WFV; object-oriented; change detection; double constraints

1. Introduction

Land use/land cover (LULC) is a combination of surface elements covered by natural land and
artificial construction structures. LULC change is a widely concerned issue in global environmental
change and sustainable development presently. The urbanization in China has promoted the increase
in land use/cover change during recent 10 years due to the national economic and social development,
while the growing needs of implementation of land planning, comprehensive land management,
cadastral management, farmland protection, law enforcement, and supervision for the LULC updating
information is more and more urgent. Due to the short revisiting period, macroscopic and wide
acquisition coverage, remote sensing technology is widely applied to the field of environmental
monitoring by the related departments of China [1,2].

Change detection is the approach to detect the surface changes over time by remote sensing
images acquired at different times for the same interesting area. The premise is that these changes will
lead to Digital Number (DN) changes in the corresponding area between different images, and the
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DN changes caused by real changes in ground truth is far greater than those caused by other factors,
such as spectral changes caused by the observation angle, solar altitude angle, and atmospheric
conditions at different times [3]. The basic approaches for change detection are direct comparison and
post-classification comparison [4]. The former is to process the preprocessed original image through
image enhancement, image transformation, or to use specific operators to extract image features,
and compare the features of each image at the corresponding position to obtain the result of change
detection [5]. The latter is based on the classifications for different imageries. It excessively depends on
the accuracy of classification, therefore, its results for change detection are often unstable. In contrast,
the results of the direct comparison method are more stable [6]. Bruzzone and Prieto first proposed an
unsupervised change detection method based on the difference graph in 2002 [7]. Many subsequent
researches on change detection, such as Change Vector Analysis (CVA) [8–12], have been based on
their studies. As an extension of the difference method, CVA combines the difference value of bands
between images into a change vector and uses the change vector to measure the change between
bi-temporal images. The change intensity is obtained by determining the Euclidean distance between
two data points in the N-dimensional space. Yang et al. conducted a comparative study on CVA and
other commonly used methods; their results show that CVA has the lowest probability of omission [13].
Actually, CVA has been widely used in change detection of LULC, the main reason is that it is more
suitable for change detection based on remote sensing images in terms of that it can use more or even
all the band information to detect changing pixels [14]. However, this method also has shortcomings,
that is, it is difficult to determine the change threshold.

According to this, Wang et al. of our team proposed the object-oriented Double-Constrained
Change Detection (DCDM) model that combines CVA with correlation analysis between different
objects to conduct change detection in 2018 [15]. Correlation analysis studies the degree of correlation
between objects in multi-temporal imageries by calculating their correlation coefficient. Obviously,
the greater the degree of correlation between an object in images of different time phases, the less likely
it is to change. Therefore, using the dual constraints of the correlation coefficient and CVA can better
determine the change threshold and reduce more errors and omissions.

At the same time, based on an object-level, DCDM can reduce the “salt and pepper” phenomenon
compared to the pixel-level method and improves the detection accuracy [16–20]. However,
these researches only based on the images of GaoFen (GF)-1 Wide Field of View (WFV) [21,22].

The GF-6 satellite, also known as the “High-resolution Land Emergency Monitoring Satellite”,
was launched on 2 June 2018. It is equipped with two cameras, one is the panchromatic/multi-spectral
camera with high-resolutions of 2 m and 8 m, and the other is the WFV camera with 16 m multi-spectral
medium-resolution and 800 km wide-coverage of observation. The WFV can provide great support for
the investigations of agriculture, forestry, land and resources, disaster emergency, and other industries
in China [23]. The parameters of its sensors include 4 more bands of purple, yellow, and two red-edge
bands than those of GF-1WFV.

The above researches show that use object-level CVA and correlation analysis as double constraints
to conduct change detection can obtain higher detection accuracy, so in order to study whether the
4 new added bands of GF-6WFV data are suitable for change detection, we used the object-oriented
DCDM to do research on GF-6WFV data. The aim of the study is to provide a theoretical basis for the
in-depth application of GF-6 WFV data products in change detection fields and explore the applicability
and the potential of GF-6 in resource and environment monitoring [24]. We used the significance
analysis of spectral, texture, and shape features for each band of GF-6WFV. Based on optimal features
selection, the change vector intensity of objects after image segmentation for bi-temporal imageries and
the correlation coefficient between the objects were used for coupling features to realize the automatic
extraction of the change information. Finally, the comparison test was conducted with a pair of same
time-phrase of GF-1WFV data to evaluate the result of GF-6 data.
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2. Materials and Methods

2.1. Analysis of Band Spectral Characteristics

When detect changes for ground features from satellite remote sensing data, the values of features
and the spectral characteristic curves are based on the multi-spectral information. Consequently,
to make full use of this information for subsequent analysis, one needs to perform a holistic statistical
analysis of the information to derive the spectral statistical characteristic values of each band, such as
the maximum, mean, standard deviation, entropy, etc., for providing the basis for the subsequent
feature selection and various types of analysis [25].

The remote sensing images can be expressed in three dimensions of x, y, and z, where x and y are
used to represent plane space, and z is band information, as shown in Expression (1).

I = f (x, y, z) (1)

According to the needs of different analyses, it can be expressed by following three means:
(1) The image space I = f (x, y, 0), simply and directly describes the spatial distribution of ground

objects in the image and the relationship between spectral response and spatial position, but it is not
sensitive to the relationship between bands.

(2) The spectral space I = f (x, 0, z), it mainly reflects a spectral curve corresponding to the average
radiation value of each pixel and depicts the characteristics of the electromagnetic wave energy with
the wavelength change, that is, the spectral characteristic. The spectral response is the function of
wavelength. Because of the difference in brightness between different objects as well as the same
objects in different bands, these constitute the spectral feature information of the ground objects and
make it possible to use the spectral space for image analysis and interpretation.

(3) The feature space I = f (0, y, z), is a two-dimensional feature space in which the radiation
intensity values of different features in two bands are plotted on a two-dimensional plane.

Statistical analysis was conducted on the 8 bands of GF-6WFV images to derive the related
statistical characteristic values such as mean, maximum, and standard deviation.

2.2. Feature Analysis and Optimization of LULC

The process of the change detection for multi-temporal remote sensing images is to extract change
information for the ground objects from the region of interests by the change detection algorithm and
to obtain the changes through analysis and description. The core of change detection is to determine
whether the features in the smallest detection unit have changed by the quantification of the difference
between the features of this unit in different temporal images. Therefore, the selection of features is
crucial [26]. Feature analysis was used to verify the influence of the new additional bands of GF-6WFV
on the accuracy of change detection of LULC.

The surface features of remote sensing imagery can be described by spectral features, texture
features, and spatial features. In this paper, these three types of features are selected for the quantitative
analysis of objects in different temporal remote sensing imageries. The spectral features, often refer
to the reflectance spectral characteristics, can be expressed by single-band grayscale mean, standard
deviation, and band-specific feature index, such as Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI). The textual features describe the repeated local
patterns in the image and their arrangement and include Angular Second Moment (ASM), dissimilarity,
and correlation [27]. The shape features describe the contour features of objects in the image,
which nclude aspect ratio, shape index, and area index. Its feature analysis can be carried out according
to the classes of construction land, vegetation, bare land, and water body.

NDVI = (NIR − R)/(NIR + R) (2)

NDWI = (Green − NIR)/(Green + NIR) (3)
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Green, R, NIR are B2, B3, and B4 bands in GF-6WFV data, respectively (See the next section for details).
The spectral feature curves are used to represent the different features of objects in spectral space.

Therefore, it is necessary to select the valid features and remove the redundant and invalid features to
improve the efficiency for change detection.

Feature selection is to select N (N ≤M) features from the given M features to optimize the features,
which is the key step for the pre-processing of change detection [25,26]. The purpose of this study is to
select the features that are sensitive to LULC changes from the spectral and textural features of the
images and to apply the selected features to the change detection model for reducing the dimension of
data and to keep the original useful information to effectively describe the characteristic of changes for
all the classes to the maximum extent.

In order to test the significance of the difference between the features for selected categories in
each band, a test of significance approach was used to realize the optimization of features. The test of
significance approach is used to test whether there is a difference between the effects of the experimental
group and the control group or two different treatments and whether this difference is significant.
The more significant the difference between classes in a certain feature, the more effective the feature
can distinguish these classes, then it can be as the optimal feature. In this paper, Variance Analysis is
adopted for this significance test. Its formula is as follows:

F = MSb/MSw (4)

where F is the statistic calculated by Analysis of Variance (ANOVA), MSb is the mean square between
groups, and MSw is the mean square within a group [28].

When performing ANOVA on a feature, each F value has its corresponding p-value. The larger
the F value and the smaller the p-value, the smaller the possibility of accepting the null hypothesis,
that is, the difference in feature between groups is large. However, when the result of ANOVA is
significant, the feature has a significant difference between the classes, but it does not indicate whether
there are significant differences among all the classes under this feature or only among some classes.

In this case, multiple comparisons are required, that is, pairwise comparisons to determine the
significance of each feature level. In multiple comparisons, if the calculated p-value is less than 0.05 at
a given confidence level, the null hypothesis is rejected, and the two feature types are significantly
different under this feature. Otherwise, the difference is not significant.

The confidence level does not indicate the size of the difference between groups, but it can show
whether the difference between the two test groups is statistically significant. According to the needs of
feature selection, one-way ANOVA with single-factor and multiple comparisons are taken to analyze
the significant differences of various features between different classes, and the optimal features are
selected after comprehensive analysis. In this paper, we used a 95% confidence interval (CI), that is,
the p-value is equal to 0.05.

According to the above principles, the most suitable features for change detection in GF-6WFV
data were selected.

2.3. Double-Constrained Change Detection

The “double-constrained” here refers to obtaining the change information by two thresholds
through the change vector intensity and the correlation coefficient of objects in two-phase images.
The double-constrained change detection is performed after image segmentation and feature
optimization. The process is shown in Figure 1, and the specific methods are described as follows.
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Figure 1. Flow chart of object-level double-constrained change detection (DCDM).

CVA is based on the radiation changes between images of different time phases, focusing on
the analysis of the differences in each band to determine the intensity and direction characteristics
of the change. Each pixel can generate a change vector with two characteristics of change direction
and change intensity. The intensity of change is the Euclidean distance between two data points in
n-dimensional space [5,7,10], its calculation is shown in Formula (5).

||ΔG|| =
√√ n∑

k=1

(gk − hk)
2 (5)

||ΔG|| is the intensity of the change vector. The larger the value is, the greater the possibility of the
change is. Conversely, the less the probability of the change is. Under normal circumstances, the initial
threshold of the intensity of the change vector is set to 0.8, which needs to be adjusted appropriately
according to different regions. gk and hk represent the features in the images of T1 and T2 phases,
respectively, and n is the number of selected features.

Generally, it is not accurate enough to use CVA alone to express the features of changes, so the
correlation coefficient was used to further measure the possibility of change together with CVA in this
study. The correlation coefficient is the result of correlation analysis in change detection and can be
used to evaluate the correlation between the same object in different time phases images. The larger
the correlation coefficient, the greater the correlation of the object between two images and the less
likely for them to change. The addition of the correlation coefficient can better determine the change
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threshold and reduce more errors and omissions. The correlation coefficient can be calculated by
Formula (6):

R =

∑n
k=1

{[
xk

i1 − xi1
]
·
[
xk

i2 − xi2
]}

√∑n
k=1

[
xk

i1 − xi1
]2 ×∑n

k=1

[
xk

i2 − xi2
]2 (6)

where R is the correlation coefficient, the objects with small correlation coefficients are less likely to
change. n is the number of selected features, which xk

i represents the average DN of the i-th object in
the k-band in a certain time-phase image and xi represents the average DN of the n-band of the i-th
object in a certain-phase image.

Through the above data analysis, the results are applied to the Double-constrained Change
Detection Model. The first process is the multi-scale segmentation for the input images, the second is
the optimal features selection for each object, the third is the calculation of the correlation coefficient
and the intensity of change vector, and the last is to extract the change areas in the image using the
double constraints.

2.4. Accuracy Assessment

A confusion matrix was used to evaluate the detection accuracy of the above change detection
method. The results are as shown in Table 1. Each column of the confusion matrix represents the
predicted categories, and the total number of each column represents the number of samples predicted
to be in the appointed category. Each row represents the actual category, and the total number in each
row represents the number of instances in a certain category.

Table 1. Confusion matrix of change detection for land use/land cover (LULC).

Detection Result

Evaluation Data
Unchanged Changed Total

Unchanged Nnn Ncn Ntn
Changed Nnc Ncc Ntc

Total Nnt Nct N

Some parameters, such as commission errors, omission errors, precision, and overall accuracy,
are usually applied to assess the detection accuracy.

Commission Errors =Ncn/Ntn represents the proportion of samples in which unchanged categories
are detected as changed categories;

Omission Errors = Nnc/Ntc represents the proportion of the undetected samples that are the
actual changes;

Precision = Ncn/Nct represents the proportion of the real change samples in all detected changes;
Overall Accuracy = (Nnn + Ncc)/N represents the proportion of samples correctly detected;
Kappa is used to measure classification accuracy; the result of performing a KAPPA analysis is a

KHAT statistic (an estimate of KAPPA), its formula is as follows:

khat =
N·(Nnn + Ncc) − (Ntn·Nnt + Ntc·Nct)

N2 − (Ntn·Nnt + Ntc·Nct)
(7)

Among them, Nnn represents the number of samples that have not changed both in the test
results and the reality, Ncn represents the number of samples that have been erroneously detected
as unchanged, Ntn represents the total number of samples that have not changed in the test results,
and Nnc represents the number of unchanged samples that have been erroneously detected as changed,
Ncc represents the number of samples whose detection result is changed and is in line with the actual
situation, Ntc represents the total number of changed samples of the detection result, Nnt represents
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the total number of actually unchanged samples, Nct represents the total number of actually changed
samples, and N is the total number of samples.

The specific change detection process is shown in Figure 1.

3. Study Area and Data

The Xiong’an New Area is a state-level new area established in Hebei, China on 1 April 2017,
and covers Xiongxian, Rongcheng, and Anxin counties. It serves to further promote the coordinated
development of the Beijing-Tianjin-Hebei region and relief the nonessential functions of Beijing in an
orderly fashion [29]. After the Xiong’an New Area was started following the Shenzhen Special Economic
Zone and Shanghai Pudong New Area, the urban-rural, industrial and mining, and residential land
in this new area has increased substantially and has derived its land use and cover being undergone
obvious changes. Therefore, this is very suitable as a study area for change detection of LULC. The
studied area for this study is located between 38◦54′22′′–39◦9′11′′ N and 115◦42′50′′–116◦13′26′′ E
and occupies a land area of 1183.6 square kilometers, shown in Figure 2. In the selected area, there are
mainly four types of ground objects: vegetation, construction-land, bare land, and water bodies.
Among them, vegetation covers the largest proportion, followed by water bodies, built-up areas,
and bare land.

Figure 2. The study area.

The study is based on bi-temporal data obtained by GF-6WFV on 6 September 2018 and 6 September
2019 shown in Figure 3, and data obtained by GF-1WFV on 24 September 2018 and 24 September
2019, and their spatial resolution is 16 m shown in Figure 4. A comparative test was conducted
on the two sets of data to study the usefulness of the newly launched GF-6WFVdata in the field of
change detection.
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(a) (b) 

Figure 3. Two GF-6 Wide Field of View (WFV) images for the study area ((a) is for 6 September 2018,
(b) is for 6 September 2019).

(a) (b) 

Figure 4. Two GF-1WFV images for study area ((a) is for 24 September 2018, (b) is for 24 September 2019).

GF-6 has the characteristics of wide coverage, high-quality imaging, high localization rate, etc.,
and has a breakthrough in the super-large field-of-view imaging technology in a single projection
center, which improves the accuracy of wide-field camera images [30]. Its specific parameters of
sensors are shown in Table 2. The additional red edge bands of GF-6 WFV comparing with GF1 WFV
can effectively reflect the unique spectral characteristics of crops [23]. In theory, it can provide a greater
amount of information for monitoring crop growth, and it has good application potential for the
detection of changes in vegetation-covered areas.

Table 2. Technical indicators of sensors payload for GaoFen (GF)-6.

Parameters Cameras

Spectrum (μm)

panchromatic 0.45–0.90

multi-spectral

B1 (blue) 0.45−0.52
B7 (purple) 0.40–0.45

B1 (blue) 0.45–0.52

B2 (green) 0.52–0.59
B2 (green) 0.52–0.59

B8 (yellow) 0.59–0.63

B3 (red) 0.63–0.69
B3 (red) 0.63–0.69

B5 (red-edge1) 0.69–0.73

B4 (near-infrared) 0.77–0.89
B6 (red-edge2) 0.73–0.77

B4 (near-infrared) 0.77–0.79

Spatial
resolution (m)

panchromatic 2
16

multi-spectral 8

Width (km) 90 800
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4. Results

4.1. Feature Analysis and Optimization

Before change detection, the GF-6WFV images in two different years were preprocessed by
radiation correction and geometric correction, and then the images were segmented by object-oriented
multi-scale [31–33]. After multiple experimental comparisons, a set of optimization segmentation
parameters was selected, including segmentation scale of 40, shape factor of 0.1, and compactness of
0.9. Through these processes, a more homogeneous patch can be obtained, that is, the segmentation
result is not too broken and reflects the difference information between the patches, making the interior
of the object more homogenous and is consistent with the actual boundaries of the features. Figure 5
shows two sets of tiles taken from the study area after multi-scale segmentation.

    
(a) (b) (c) (d) 

Figure 5. Segmentation tile diagram for GF-6WFV (The segmentation scale is 40, and the shape factor
and compactness are 0.1 and 0.9, respectively). (a,b) represent tile in the same area in 2018 and 2019 of
GF-6, respectively; (c,d) represent another set of tiles in 2018 and 2019 of GF-6, respectively.

Spectrum statistical characteristic values of each band for GF-6WFV are shown in Table 3. Among them,
the near-infrared band (B4) has the largest standard deviation, followed by the red band (B3),
the red-edge band 2 (B6), and the green band (B2), respectively. The blue band (B1) and the red-edge
band 1 (B5) have a smaller standard deviation than the first three bands and the standard deviations
of these two bands are similar, while the standard deviation of the purple band (B7) is the smallest.
The standard deviation reflects the degree of discrete distribution of DN of each band. The higher
the degree of dispersion, the greater the contrast of the image in this band, and the more abundant
the information is. It is found that the near-infrared band contains the most abundant information,
the spectral value distribution of pixels in this band is more dispersed, and the purple band has the
smallest amount of information. The mean reflects the average size of the spectral value of each band.
It shows that the near-infrared band (B4) is the highest, reaching 2778.32, and band 7 is the smallest.

Table 3. Statistical characteristic values of all bands of GF-6WFV.

Min Max Mean StdDev

Blue (1) 729 3722 944.12 174.37
Green (2) 700 4094 1042.05 243.08
Red (3) 471 4094 820.12 303.88
NIR (4) 665 4095 2778.33 536.60
RE1 (5) 330 4088 701.96 180.05
RE2 (6) 381 4081 1448.52 264.46

Purple (7) 612 3064 713.01 77.99
Yellow (8) 437 4094 698.25 207.76

In summary, the new additional bands for GF-6WFV have the characteristics that the near-infrared
band contains the largest amount of information, the red-edge band 1 contains less information than
the red-edge band 2, and the purple band has the smallest amount of information.

After above analysis, we used GF-6WFV data to analyze the spectral values of different wavebands
in each wave band and selected the features that can best express the change information. The features
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selected in this study are: contrast, dissimilarity, correlation, entropy, and homogeneity. The extracted
features of images are shown in Figure 6.

 

 

 

 

 

Figure 6. Comprehensive feature analysis for GF-6 WFV data ((a1~a6): spectral curves for each feature,
(b1~b6): the ANOVA results for each feature, the p-value here is 0.05 (95% CI), which is represented as
red dotted line in (b1~b6)).
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The F value of each feature for the ANOVA (A 95% confidence interval, F0.05 = 5.117) is shown
in Table 4.

Table 4. Statistical results of ANOVA.

B1 B2 B3 B4 B5 B6 B7 B8

Mean

F 83.7 65.57 92.28 174.34 67.43 150.93 53.98 83.26
p 6.64 × 10−20 1.11 × 10−17 8.04 × 10−21 4.08 × 10−27 3.18 × 10−22 1.20 × 10−25 6.22 × 10−22 7.44 × 10−20

Standard Deviation

F 46.95 47.45 31.25 27.21 37.15 27.12 20.81 25.44
p 1.48 × 10−16 1.16 × 10−16 8.20 × 10−13 1.13 × 10−11 3.14 × 10−9 1.20 × 10−11 5.99 × 10−13 3.78 × 10−11

Angular Second Moment (ASM)

F 10.25 17.58 15.87 17.69 15.33 16.62 11.64 10.17
p 1.76 × 10−5 3.64 × 10−8 1.38 × 10−7 3.35 × 10−8 5.83 × 10−8 7.62 × 10−8 2.19 × 10−6 1.91 × 10−5

Dissimilarity

F 16.81 14.83 16.38 15.19 21.59 24.74 9.76 9.81
p 6.58 × 10−8 3.19 × 10−7 9.24 × 10−8 2.39 × 10−7 2.11 × 10−9 2.54 × 10−10 4.29 × 10−8 2.65 × 10−5

Correlation

F 16.68 13.24 15.69 11.83 15.12 14.29 10.68 12.00
p 7.27 × 10−8 1.21 × 10−6 1.59 × 10−7 4.15 × 10−6 7.38 × 10−8 5.00 × 10−7 3.13 × 10−8 3.56 × 10−6

B1–B8 represent the eight bands of GF-6WFV, respectively.

As it can be seen from Table 4, the F value of each feature significance analysis is greater than
F0.05, which shows that the difference between the five types of features selected in this paper
between different types of features is significant. However, it is still uncertain whether the difference
between any two feature types is significant. Therefore, the multiple comparisons were carried out for
further analysis.

The results of spectral analysis and multiple comparisons for each band are summarized in
Figure 6. In the spectral feature space, the difference in the Euclidean distance of the mean of various
classes on B5 is the largest. In its corresponding significance analysis, the mean of B1, B4, B5, and B6
are significantly different between any two classes. The difference in standard deviations of Euclidean
distance of all the classes on band B3, B4, and B5 is large, but in ANOVA, the difference between the
construction land and bare land on these three bands is not significant, neither between the vegetation
and water. The difference in the Euclidean distance of ASM of classes on B1, B2, and B8 is large,
but any two classes in all bands have poor significance; The difference in the Euclidean distance of the
dissimilarity of classes on B2 and B6 is significant. However, in the significance analysis, three pairs of
classes are less significant on B2, while on B6, the significance between vegetation and bare land is poor.
The difference in Euclidean distance of correlation of these classes on B2, B7, and B8 is large, but in the
corresponding significance analysis, only B2 can be selected for the following change detection.

Among the four new bands in GF-6 WFV, B7 cannot be used as an effective feature in land change
detection because of the little information contained. Although the amount of information in the B8
band is moderate, it means that it cannot provide sufficient effective information for change detection
after significance analysis. The mean value of the two new red bands is significantly different between
classes, but after the spectrum statistics, it can be found that the red-edge band 2 (B6) has a higher
standard deviation than that of the red-edge band 1 (B5), indicates B6 has a larger image contrast.

4.2. The Accuracy of LULC Change Detection Results

After multi-scale segmentation, the feature vector of the object needs to be constructed through
feature optimization. The analysis of variance in the previous section has selected the mean of bands 1, 4,
5, 6 of GF-6 WFV, respectively, the auto-correlation of band 2, and NDVI and NDWI to generate feature
vectors. Then, through CVA and correlation analysis to obtain the difference intensity information
between two images. Finally, determine the areas of change and non-change according to the threshold.
The change detection results are shown in Figures 7 and 8.
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(a) (b) 

 
(c) 

Figure 7. Change detection results by GF-6 WFV images of September of 2018 and 2019 (a) is binary
(white represents changed areas); (b) is the superposition of the change detection results and the image
(the yellow are the detected change areas; (c) is the base map of changed areas (white represents
unchanged areas)).

  
(a) (b) 

 
(c) 

Figure 8. Change detection results by GF-1 WFV images of September of 2018 and 2019 (a) is binary
(white represents changed areas); (b) is the superposition of the change detection results and the image
(the yellow are the detected change areas; (c) is the base map of changed areas (white represents
unchanged areas)).
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In order to verify the accuracy of the model for GF-6WFV data, 300 samples were selected,
including 133 samples without change and 167 samples with change. The selection of samples is
carried out by the stratified sampling, randomly selecting the corresponding number of objects with
change or without change individually, and then locate these objects through the generated ID numbers.
The results are shown in Table 5.

Table 5. Confusion matrix of change detection using GF-6WFV images.

Detection Results

Evaluation Index
Unchanged Changed Total

Unchanged 119 19 138
Changed 14 148 162

Total 133 167 300

According to the calculations via the formulas, the commission error, omission error, and Kappa
are 8.64%, 11.38%, and 0.7780, overall accuracy of 89%, respectively. For GF-6 WFV data with the
resolution of 16 m, this accuracy can fully meet the application requirements of LULC change detection.
Among the sample of the wrong and the missing, the proportion of each category is shown in Table 6.
Among them, the change between bare land and vegetation has the highest probability of being
incorrectly detected, reaching 42.4%, most of them are the farmland after harvest. In fact, such changes
are often not regarded as real changes between classes. Due to the large proportion of farmland in
the study area, the sample of farmland included in a random sampling sample will be higher than
that of other land cover types, which leads to the largest proportion of farmland in the samples that
were falsely detected and missed. Theoretically, the additional red-edge bands can provide more
information for identifying changes in vegetation. For construction land, it has achieved good results
for GF-6WFV data.

Table 6. Samples analysis for false/missing detection by GF-6WFV images.

Class
Vegetation-Bare

Land

Vegetation-
Construction

Land

Vegetation-
Water

Bare Land-
Water

Bare Land-
Construction-on

Land

Water-
Construction

Land

Number of
samples

14 4 2 1 11 1

percentage 42.4% 12.1% 6.1% 3.0% 33.3% 3.0%

It can be seen from Figure 7 that the Xiong’an New Area has undergone many changes in LULC
from 2018 to 2019, and the types of changes mainly include construction land, vegetation, water bodies,
and bare land. Moreover, the construction land changes account for a relatively large amount, including
demolition and engineering facilities under construction. These changes are evenly distributed roughly
throughout the whole study area.

4.3. Comparison Results of GF-1WFV Images

To verify whether the GF-6WFV data has an advantage in change detection, a comparison test
was performed on GF-1WFV images in the same area and the same phase. The results are shown in
Figure 8 and Table 7.

Table 7. The comparison of the change detection results for LULC by GF-6WFV and GF-1WFV data.

Data Type

Evaluation Index Overall
Accuracy

Kappa Commission
Errors

Omission
Errors

GF-1 WFV 87% 0.7351 13.21% 9.58%
GF-6 WFV 89% 0.7760 8.64% 11.38%
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The experiment found that the double-constrained change detection method can detect most of
the change areas in the GF-1WFV images. Compared with the GF-6 data obtained on September 6,
the GF-1 data obtained on September 24 obviously have many smaller blocky objects, most of which
are harvested arable land, cause the late September coincides with the harvesting season of corn and
sorghum. Due to the large amount of cloud interference in the data of GF-1 in the first ten days of
September, we can only select the data in late September as a substitute in the experiment. As shown
in Figure 8, there are many regular rectangular objects evenly distributed in the study area. Most of
these are pseudo-changes caused by the harvest of cultivated land. In fact, the land cover type of
the features themselves has not changed. To further verify the accuracy of the results, 300 samples
were selected for comparative analysis, including 133 unchanged samples and 167 changed samples.
Through comparison and calculation, the commission error is 13.21%, the omission error is 9.58%,
Kappa is 0.7351, and the overall accuracy is 87%.

The result shows that the commission error of change detection under GF-1WFV data is significantly
higher than that of GF-6WFV data using the same method, and the overall accuracy is reduced by
2%. Therefore, the accuracy of change detection that used the GF-6WFV data with the contained
information of new additional bands is significantly improved. This indicates that these new red-edge
bands contribute to the improvement of change detection accuracy and possess good potentials in the
application of change detection.

5. Discussion

Through this research, it is necessary to discuss the following related issues.
In this paper, we only used the 16 m-resolution imageries of GF-6 WFV, not include other sensors’

data of GF-6, such as panchromatic camera data and 8 m multi-spectral data for change detection of
LULC. Although an accuracy of 89% is achieved, if the spatial resolution of the image can be improved,
the accuracy of change detection should be higher. In order to fully test the performance of GF-6,
the subsequent experiments can be considered, respectively. And the DCDM method used in the
research is not an exclusive method proposed for GF series satellites, it is a general method that can be
used for the detection of changes in various commonly used satellite data. In theory, if the appropriate
features of objects are selected, the DCDM method can be suitable for any common used multi-spectral
satellite imageries.

In terms of the change detection accuracy, the errors of registration preprocessing for different
time-phase images, and vegetation phenology have some impacts on the final accuracy. The registration
error is mainly caused by the change of the satellite parameters, the observation angle, topography
and etc., which leads to the position of the same ground object in the images of different time phases to
change. Although image registration is performed, this type of error cannot be completely eliminated,
and we can try other methods to test whether such errors can be reduced. Moreover, taking the impact
caused by phenology into consideration will help to detect the vegetation more accurately.

The experiments in this study are only for the change detection of bi-temporal images. For further
validation, the more time phases for multi-temporal change detection should be tested and fully
demonstrate the response of the new red-edge bands to change. This will be able to provide the
advantages for resource monitoring or disaster assessment. And the automatic identification of the
classes of LULC changes has not been done in this paper, it can be completed in the near future by
learning the different types of features through machine learning methods.

6. Conclusions

The main conclusions of this study are as follows:
Firstly, through the spectral analysis and significance analysis of images of GF-6WFV, we found

that its two new red-edge bands can provide effective information for change detection of LULC,
while the purple and the yellow band cannot, and the addition of the new added two red-edge bands of
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GF-6WFV increased the overall accuracy of 89% for change detection and improved by 2% compared
with using the same temporal GF-1WFV data.

Secondly, the DCDM method based on change vector intensity and correlation coefficient can
effectively detect the changes between different time-phase images for the same area. The object-oriented
multi-scale segmentation method can more clearly describe the boundary of the changing area. It enables
a more complete detection of the large change objects, as well as less omission of small change objects,
making better use of the spectral and spatial information of images to obtain the changes. In addition,
it can effectively reduce the generation of “salt and pepper” noise and increase the accuracy of
change detection.

However, according to the validation, some narrow and long roads are incorrectly detected due to
the errors caused by the registration, which affects the overall accuracy.

In summary, it can be concluded from the study that GF-6, as the first high-resolution satellite for
precision agricultural observation in China, can meet the accuracy requirements of change detection of
LULC with the combination of the new red-edge bands, and there is a good potential in monitoring
resource and environment, for example, agriculture and forestry, and disaster mitigation, etc. This study
also provides a theoretical support for the in-depth applications in related fields.
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Abstract: According to the Intergovernmental Panel on Climate Change (IPCC), global mean sea
levels may rise from 0.43 m to 0.84 m by the end of the 21st century. This poses a significant threat to
coastal cities around the world. The shoreline of Karachi (a coastal mega city located in Southern
Pakistan) is vulnerable mainly due to anthropogenic activities near the coast. Therefore, the present
study investigates rates and susceptibility to shoreline change using a 76-year multi-temporal dataset
(1942 to 2018) through the Digital Shoreline Analysis System (DSAS). Historical shoreline positions
were extracted from the topographic sheets (1:250,000) of 1942 and 1966, the medium spatial resolution
(30 m) multi-sensor Landsat images of 1976, 1990, 2002, 2011, and a high spatial resolution (3 m) Planet
Scope image from 2018, along the 100 km coast of Karachi. The shoreline was divided into two zones,
namely eastern (25 km) and western (29 km) zones, to track changes in development, movement, and
dynamics of the shoreline position. The analysis revealed that 95% of transects drawn for the eastern
zone underwent accretion (i.e., land reclamation) with a mean rate of 14 m/year indicating that the
eastern zone faced rapid shoreline progression, with the highest rates due to the development of
coastal areas for urban settlement. Similarly, 74% of transects drawn for the western zone experienced
erosion (i.e., land loss) with a mean rate of −1.15 m/year indicating the weathering and erosion of
rocky and sandy beaches by marine erosion. Among the 25 km length of the eastern zone, 94%
(23.5 km) of the shoreline was found to be highly vulnerable, while the western zone showed much
more stable conditions due to anthropogenic inactivity. Seasonal hydrodynamic analysis revealed
approximately a 3% increase in the average wave height during the summer monsoon season and a
1% increase for the winter monsoon season during the post-land reclamation era. Coastal protection
and management along the Sindh coastal zone should be adopted to defend against natural wave
erosion and the government must take measures to stop illegal sea encroachments.

Keywords: shoreline change; landsat; planet scope; coastline; morphological changes

1. Introduction

A shoreline is defined as the boundary between land and water. The position of the shoreline is
dynamic both spatially and temporally, due to hydrological, geological, climatic, and economic
developments in coastal areas [1,2]. Therefore, shoreline indicators are used for a consistent
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representation of a shoreline. The most common shoreline indicators are the tidal datum (e.g.,
a specific elevation at the land–ocean boundary) and visually discernible features (e.g., a revetment
structure, an erosion scarp, a previous high-tide high-water level, low-tide low-water level, or
dune vegetation line, etc.) [3–8]. The shoreline is an indicator of the ecological health of coastal
areas [3,9–11]. In past decades, the development of mega-infrastructure projects in coastal areas for
urbanization/industrialization has placed more stress on the coastal ecosystem and changed ocean
hydrodynamics [12–16]. Unplanned coastal development coupled with the natural action of ocean
processes has led to the increasing vulnerability of low lying coastal environments [16–18]. This
also induces spatiotemporal changes in the shoreline. Short-term geomorphological changes in the
shoreline are caused by extreme geological, climatic, and oceanic events (i.e., earthquakes, tsunami,
seasonal variation in waves, tides, and storms conditions), hence, such changes are less predictable,
while long-term changes to the shoreline are caused by relative changes in astronomical, meteorological,
and regional climatic variations (i.e., tides, waves, sea-level rise, and storm surges), and are somewhat
predictable [6,19]. Both types of shoreline change are important for understanding trends in coastal
sustainability for different times and spaces [3].

Anthropogenic activities coupled with global warming intensify ocean controlling factors that
modify the coastal environment [20,21]. Morphological shoreline changes are directly associated
with wave height, tide level, wind speed, periodic storms, and sea level [15,22]. Specifically, an
accelerated rise in sea level and cyclones pose a considerable threat to populations living within a
100 km vicinity of the shoreline, as well as their economic assets. It is considered that more than 40% of
the world’s population is living in coastal cities [18]. For the monitoring of coastal zones, a common
method for the assessment of spatiotemporal variability of the shoreline consists of the extraction
of the shoreline position using multi-temporal data sources [5,6,22,23]. The primary data sources
used for shoreline extraction and evaluation are historical photographs, coastal maps/charts, aerial
and beach surveys, global positioning system based shoreline surveys, and images acquired through
satellite sensors [15,24,25]. Each source has its own measurement and positional uncertainty [1,4,7,26].
Historical archives of satellite remote sensing open source data with a high spatial resolution of 3 m
such as from Planet Scope to a low spatial resolution of 1000 m from the Moderate Resolution Imaging
Spectroradiometer (MODIS) have revolutionized science. These datasets have proved their potential
for the detection of historically changing trends in extensive coastal land masses, with an insignificant
uncertainty in the case of high spatial resolution, and a relatively high uncertainty in cases of moderate
to low spatial resolution [4,12,15,16,27–30].

Different methods, including image classification [4,31], band ratio [15],principal component
analysis [32], overlay operation [30], and density slicing [23] have been used for the delineation,
mapping, and estimation of the variability of proxy-based shoreline positions through satellite imagery,
and have differing levels of measurement accuracy [4,5]. The most commonly used indices for
the delineation of the shoreline include the Normalized Difference Water Index (NDWI) [33], the
Automated Water Extraction Index (AWEI) [34], and the Modified Normalized Difference Water Index
(MNDWI) [35]. Several studies have been carried out globally, of both short-term and long-term
shoreline changes using different image analysis techniques. For example, a recent study by Nassar
et al. (2018) [36] used the archive of Landsat multi-sensor images from 1989 to 2016 to assess the
rates of change by the accretion and erosion of the coastal area of North Sinai that were caused by
changes in hydrodynamics and alongshore currents. Cenci et al. (2018) [37] performed a multi-proxy
analysis of two different shorelines (i.e., in high and low energy areas) and assessed the rate of shoreline
change to highlight the uncertainty in coastal risk management. Bheeroo et al. (2016) [38] carried out
a risk assessment of the north-western side of the Mauritius coastline and addressed changes in the
coastal environment with reference to high energy wave action and storms. Kermani et al. (2016) [39]
used aerial photographs and high resolution satellite images of the Bay of Jijel in Eastern Algeria to
investigate changes in morpho-dynamics of the shoreline. Ozturk and Sesli (2015) [15] used historical
multi-temporal satellite data to assess changes in the coastal environment in the lagoons of Kizilirmak
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Delta due to ocean controlling factors (e.g., wind and wave erosion). They also addressed the rate
of shoreline change and shrinkage of the lagoon series. Kuleli et al. (2011) [40] assessed the rates of
shoreline change on the Ramsar beaches of Turkey using Landsat images from 1975 to 2009 and found
that most parts of the wetland areas were under stress with a significant withdrawal rate.

Pakistan is considered the seventh most vulnerable country to climate change induced events.
These include four major floods and six historical cyclones, which have damaged the socio-economy
of low lying areas within the Sindh coastal region [41]. The coastal belt of the Indus Delta Region is
continuously changing due to physical processes such as tidal actions, waves, wind speed, sea level
rise, and anthropogenic factors, for example land reclamation and modification [12,16,42,43]. Rising
sea levels are contributing to the erosion of less resistant soil in the region. It has been claimed that the
mean sea level rose from 1.7 mm/year between 1900 and 2010 and 3.2 mm/year globally over the past
decade [44]. Similarly, the Intergovernmental Panel on Climate Change (IPCC) predicts that the global
mean sea-level will rise from 0.43 m to 0.84 m in the current scenario and 0.61 m to 1.10 m in the worst
case scenario by 2100 [45]. It has been reported that the sea level has already risen from 1.1 mm/year to
1.8 mm/year regionally over the past decade [42]. If sea levels rise above the predicted rate, shorelines
in the region will experience erosion in both the long- and short-term. Unfortunately, there has been
no study to quantitatively estimate future shoreline changes along the coastline of Karachi, Pakistan.
Therefore, this study aims to (i) merge multi-temporal datasets i.e., topographic maps and medium
(30 m) to fine spatial resolution (3 m) satellite imagery, (ii) investigate a change in the position of the
Karachi shoreline from 1942 to 2018, and (ii) assess the rate of systematic land loss and/or gain due to
oceanic processes and anthropogenic activities along the coastline.

2. Study Area

Karachi is considered Pakistan’s largest city, hosting about 7% of the country’s population,
making it the fifth largest coastal city in the world [46]. The coast of the Karachi city is about 100
km between the Gharo creek on the east and the river hub on the west, and constitutes a number of
tourist beaches [43,47]. The coastline of Karachi is considered an economic hub for Pakistan as 90%
of seaborne trade is carried out through two of its international ports i.e., the Port of Karachi and
the Port Qasim [43] (Figure 1). The elite class of Pakistan’s population enjoy life along the Karachi
coast, and a number of tourist spots have been developed, which has increased its residential property
values [16,47]. The study area, the coast of Karachi, is divided into two zones i.e., eastern and western
zones. The eastern zone starts from the Defense Housing Authority (DHA) phase 8 to the South Asian
terminal on the west and is 25 km long (Figure 1), while the western zone from Manora beach on
the east to the Engro beach huts on the west (Figure 1) is 29 km long. The western zone is mostly
sandy but toward its western part the nearshore region becomes steeper, with irregular rocky outcrops
associated with the underlying geology. During the last decade, several housing societies including
the DHA Phase 8 and EMMAR project have encroached on the coastline in the Karachi metropolitan
and Crescent Bay areas. The coastline of the eastern zone constitutes a mostly loose stone structure
and sandy beaches.

The Sindh coastal zone is mixed wave dominated, with continuous accretion and erosion due to
waves and tides of up to 3 m in height, modifying the coastal environment [16]. Strong westerly winds
prevail during the summer monsoon and influence ocean circulation with the dominant direction of
surface water flow [42]. The pre- and post-monsoon periods have long been associated with cyclone
development in the Arabian Sea, which increase erosion and move the shoreline landward. The
alongshore sediment transportation is from west to east due to a longshore drift in a clockwise direction.
Water depth within 1 km offshore in the study area is shallow (3 m–10 m) with a maximum depth
of about 10 m at Hawk’s Bay. Seawater surface temperatures in the near shore water off the coast of
Karachi range from 24 ◦C to 28 ◦C in summer and 20 ◦C to 24 ◦C in winter [43].
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Figure 1. (A) Map of Pakistan with a demarcation of the study area (filled red rectangle).
(B) Geographical location of the coastal city, Karachi, where the red rectangle shows the study
area. (C) Wind climatology of the study area and (D) historical shoreline positions of the Karachi coast
in the eastern and western zones.

3. Data Used

3.1. Historical Topographic Maps

In order to use a long-term data record for the monitoring and evaluation of the shoreline, two
topographic maps by the Army Map Service (GDPE), Corps of Engineers, at a 1:250,000 scale for the
years 1942 and 1966 (AMS U502 NG 42-13, Edition 1), were used.

3.2. Satellite Data

Two types of satellite datasets were used to assess morphological changes in the shoreline positions
i.e., data from Landsat at medium spatial resolution (and Planet Scope at a finer spatial resolution).
Landsat collection 1 Level-1 images of Multispectral Scanner (MSS) sensor and Level-2 images of
Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager
(OLI) sensors were acquired on different dates (Table A1) from the United States Geological Survey
(USGS) Earth Explorer (http://earthexplorer.usgs.gov/) and USGS Earth Resources Observation and
Science (EROS), as well as the Center Science Processing Architecture (ESPA) On Demand Interface
(https://espa.cr.usgs.gov/), respectively. The finer spatial resolution data from Planet Scope (PS) was
acquired for the year 2018. Four continuous strips of PS (Table A1) scenes covering the study area and
Level 3B product (orthorectified and surface reflectance image product) of PS were acquired.

3.3. Wind-Wave Data

Winds are the driving source of waves and the transformation of wind energy results in strong
ocean currents [42,48,49]. Wave action is considered the most important factor for a change in a coastal
environment during the summer and winter monsoon seasons, as prevailing winds from the south-west
and northeast intensify attacks on the coastline. Long-term offshore daily-hourly wind-wave data
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collected from National Oceanic and Atmospheric Administration (NOAA) Wave-Watch III Model [50]
were used to evaluate the influence of wind-wave climatology on the coastline of Karachi before and
after the mega land reclamation project of 2008 to 2017.

3.4. Tidal Data

Tides significantly affect wave dominant shorelines [49,51] as they induce longshore drift, which
can nourish or erode the coast. The variations of tides at Karachi can be used to analyze the impact of
tidal currents along the coastline and identify the coastal waterlines. In this study, tide height was
used as a tool in the image selection criteria to extract the true shoreline position. Port Muhammad Bin
Qasim is located about 5 km east of the coast of Sindh where the tide height has been monitored by the
National Institute of Oceanography (NIO) Karachi, Pakistan from 1976 to 2018. Historical tide height
records show that maximum and minimum tide heights recorded between 1976 and 2018 at the station
were 3.8 m and a little less than 0.1 m.

4. Methodology

4.1. Pre-Processing of Data

4.1.1. Rectification of Topographic Maps

The geo-referencing of scanned topographic maps was made in-house using the Universal
Transverse Mercator (UTM) coordinate system (WGS1984-UTM-Zone-42N; EPSG-32642 OTF) to project
over the study area so as to estimate the shoreline position. The topographic sheets were then rectified
using 35 Ground Control Points (GCP) and the NIO shoreline profile along with the 2016 image to
reduce measurement uncertainty in the shoreline position [4,26,52].

4.1.2. Atmospheric Correction of Satellite Imagery

The pre-processing of images from different sensors in order to make it consistent with other
images by normalizing them is very important in shoreline change detection studies [4,7,31,53,54]. The
image based Dark Object Subtraction (DOS) model was used to convert the digital number recorded
by the MSS sensor to generate a surface reflectance product [55–57]. Then, the surface reflectance
products of L2 MSS images with a 60 m spatial resolution were resampled at 30 m to conform to the
spatial resolution of other Landsat sensors (TM, ETM+, and OLI) [16,56].

The Scan Line Corrector (SLC) error encountered on all images acquired after 31 May 2003 from
ETM+ caused about a 22% loss of data [57]. Therefore, a correction of the SLC error was carried out
using the “Fill no data tool” under the raster tools available in Quantum Geographical Information
System (QGIS 2.8.8) software, though some degree of error remains [4,26,52].

4.2. Satellite Data Selection Criteria

Images for the same months of different years for several decades enabled us to investigate
the variability of shoreline morphology with nominal inherited measurement and positional
uncertainty [15,43,58,59]. Therefore, we only selected Landsat (L2, L5, L7, and L8) and PS images
that met the following conditions: (1) 0% cloud cover over the study area, (2) non-flooding months
(December to April), and (3) tide height of <1 m within a time window of ±1 h of the image acquisition
time. Non-flooding months provided information about the stability of the ocean condition because
tropical storms mainly prevail during the months of May to June and September to November [16].
Furthermore, low tide height provided stable outer boundaries of the coastline [4,5,26,59]. This image
selection criteria (Figure 2) resulted in a limited number of images available, including four images
from Landsat sensors and one from PS which was prioritized over the OLI images due to a higher
resolution (Table A1). The image selection criteria in this study was helpful in reducing or removing
the inherited seasonal uncertainty in shoreline change analysis.
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Figure 2. Flowchart of the methodology for the shoreline change detection along the coast of Karachi
from 1942 to 2018. (SLC = Scan Line Corrector, SR = Surface Reflectance, NSM = Net Shoreline
Movement, SCE = Shoreline Change Envelope, EPR = End Point Rate, LMS = Least Median of Square,
and LRR = Linear Regression Rate).

4.3. Shoreline Identification and Extraction

The basic requirement for detection of the true shoreline position is to determine the shoreline
indicator i.e., the high tide line, the high-water line, dune line, or vegetation line [3–5,7,26,60]. These
indicators show a variability in the shoreline position for the same time and space [3–5]. For the
present study, detection of a high water line (HWL) under stable oceanic conditions (low wave-tide
condition) from satellite images was calculated by band ratioing. The HWL shoreline indicator for
images acquired during non-flooding months at a low tide condition reduced the overall positional
uncertainty to a minimum as HWL migrates to contemporary low water line (LWL) or mean water line
(MWL) to draw satisfactory continuity of the shoreline positions during different time periods [26,27].
The best results for shoreline identification were obtained from NDWI (Equation (1), which is used
to monitor changes in water content) by evaluating the results of all indices (NDWI, MNDWI, and
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AWEI) [33–35] visually with true color satellite images. Mud-flats were also considered to represent
the shoreline [48].

NDWI =
Green−NIR
Green + NIR

(1)

The land and water mask were then developed by image thresholding [61]. Raster binary images
were then converted to linear vectors by using the raster to vector conversion tool available in QGIS
2.8.8 software. Minor edits were made to the shoreline position by visual interpretation at a scale
of 1:20,000 for mapping the shoreline position with more accuracy than the pixel size [62,63]. The
maximum measurement uncertainty for the MSS sensor was presumed as ±37 m (about one pixel of
resampled MSS image) while for TM and ETM+ sensors it was ±34 m (about one pixel of TM/ETM+)
and for PS ±3.4 m (about one pixel of PS). Historical shoreline positions for 1942 and 1966 prior to the
available satellite images were acquired from rectified GeoRef topographic sheets through digitization
using GIS state of the art tools at a scale of 1/8000, having a maximum measurement uncertainty of
about ±37 m [26,52,62]. The MWL for topographic maps could be located to within 0.150 mm on a map
scale or to within 37 m on the ground for a map of scale 1:250,000. The comparison of MWL between
topographic sheets and HWL for satellite images was possible due to their near equivalence [52]. The
best estimate of maximum annualized average shoreline uncertainty for the study was considered
±0.43 m. Here it should be noted that the uncertainty 0.43 m/year is an average value for change in
rate i.e., not constant for all transects of the local area. For example, in the case of Hawks Bay (in the
western zone), only 105 transects out of the total 268 transects encounter accretion and erosion less
than 0.07 m/year, which is less than the annualized uncertainty rate of 0.43. Furthermore, it needs to
be clarified that the value of 0.07 m/year (by the EPR method) reflect the averaged value of shoreline
change (for all transects drawn including erosional and accretional) over the period of 76 years for the
Hawks Bay area (Table 1), and do not reflect a change within a pixel size. These low rates in change
represent very low or moderate anthropogenic activity compared to the eastern zone where there are
more anthropogenic activities (Section 5).

Table 1. Average shoreline change rate of the eastern and western zone.

Eastern Zone

DHA ZB DHA GC DHA ZC DHA ZD DHA EXT S V SJC SAT

TT 86 104 65 236 149 257 162 135
T ID 1–86 87–190 19–255 256–491 492–640 641–897 898–1059 1060–1194

ShoreT RS RS RS RS SGB SB SedB RS
EPR 14.3 22 22.4 21 8.7 5.9 12 8.38
LMS 2.51 5.05 6.98 16.98 11.54 7.2 4.78 7.01
LRR 16.29 24.96 23.95 25.8 11.26 5.8 9.95 5.57
SCE 1.73 1.73 1.77 1.89 0.90 0.57 1.01 0.82

NSM 1.63 1.68 1.71 1.59 0.67 0.45 0.91 0.64

Western Zone

MB SS KP HB JG SG ARG HAG EBH

TT 342 291 62 268 77 46 40 96 100
T ID 1–342 343–633 634–695 696–963 964–1040 1041–1086 1087–1126 1127–1222 1223–1322

ShoreT SGB SB RB SB SB SB SB SB RB
EPR −0.61 −0.77 0.18 0.07 −1.55 −0.95 −0.73 −0.75 −0.87
LMS −0.07 −0.19 0.12 −0.01 −1.7 −0.54 −0.82 −0.28 −1.34
LRR −0.32 −0.72 0.07 −0.22 −1.79 −0.65 −0.12 −0.74 −1.2
SCE 0.23 0.10 0.10 0.11 0.15 0.11 0.14 0.17 0.13

NSM −0.05 −0.06 0.01 0.01 −0.12 −0.07 −0.06 0.17 −0.07

Notes: (1) TT = Total Transects drawn, T ID = Transect Identity, ShoreT = Shoreline Type; (2) RS = Riprap Structer,
SB = Sand Beach, SGB = Sand and Gravel Beach, SedB = Sediment Bank, RB = Rocky Beach; (3) Eastern Zone:
DHA = Defense Housing Authority, ZB = Zone B, GC = Golf Club, ZC = Zone C, ZD = Zone D, Ext = Extension,
SV = Sea-view, SJC = Shireen Jinnah Colony, SAT = South Asian Terminal; Western Zone: MB =Manora Beach,
SS = Sandspit, KP = Kaka Pir, HB = Hawks Bay, JG = Jamali Goath, SG = Somar Goath, ARG = Abdul Rehman
Goath, EBH = Engro Beach Huts; (4) EPR, LMS, LRR = Rate of shoreline change (m/year) and NSM, SCE = Shoreline
movement (Km).

4.4. Digital Shoreline Analysis System (DSAS)

The Digital Shoreline Analysis System (DSAS) version 4.4 is now provided by the Environmental
Systems Research Institute (ESRI) as an add-in utility for the ArcGIS version 10.5 service pack, which
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was developed by the USGS under the Coastal and Marine Geology Program [64]. The statistical
algorithm in DSAS allows the measurement of shoreline change statistics for multiple historical
shorelines at each transect drawn at a user specified interval and length, relative to the baseline.
The baseline is drawn at a user specified distance from the source shoreline, which remains parallel
and offset to the reference shoreline orientation. Then transects were cast, which must intersect
each shoreline position to calculate the change in shoreline positions. The DSAS executes statistical
operations based on measured differences between historic shoreline positions to measure the rate of
change in the following terms:

• SCE: Shoreline change envelopes (distance measurement);
• NSM: Net shoreline movement (distance measurement);
• EPR: End point rate (point rate);
• LRR: Linear regression rate (regression statistics);
• WLR: Weighted linear regression (regression statistics);
• LMS: Least median of squares (advanced statistics).

The extracted shorelines (i.e., from the historical topographic sheets and multi-temporal images)
and the relative discrete baselines were placed in a personal geo-database prepared using Arc Catalog
and prerequisite attribute fields (i.e., date, shape length, cast direction, etc.) were added to them. The
movement of shoreline recorded at each transect drawn relative to the orientation of baseline, was
considered as a landward movement if there was a negative (–) value recorded at the transect drawn,
while positive (+) values indicated seaward movement (accretion) at that specific transect [64]. In
this study, NSM, SCE, EPR, LMS, and LRR metrics were used to determine changes in the shoreline
during the study period. Here SCE and NSM measured the net change in historical shoreline positions
(distance) while EPR was used to measure the net rate of change in the shoreline [15]. The LMS and
LRR were used to calculate the median and mean susceptibility rate of the shoreline change by fitting
a regression line for each transect [64]. The SCE measured the distance between the two farthest
shoreline positions and the distance value from the SCE method was always positive, as it does not
record the accretion and erosion in shoreline positions. NSM calculated the distance of the youngest
from oldest shoreline position, which represents the change in positive and negative values [40,64].
SCE was independent of the date factor of shoreline position while NSM was associated with the date
factor for these two shoreline positions, and both estimated the distance, but not the rate. The EPR was
used to estimate the rate of erosion and accretion per year at each transect [52]. In LMS, the median
value of the squared residual was used for fitting a regression line shoreline. Its value was obtained by
dividing the total coastal change distance, or NSM, by the total number of years at each transect [52].
In LMS, the median value of the squared residual was used for fitting a regression line relative to
different positions of shoreline at each transect, which exhibited the rate of shoreline change. Similarly,
the LRR method used the mean value of residuals to fit a line for each transect in which the slope of the
line predicted the rate of shoreline change. A great variation between these two methods was observed
because in the LRR method, each input offset data point had an equal influence on the estimation of
the slope’s change rate, while in the LMS method each offset data point had less influence on the slope
as the median value was considered the rate. The LRR rate of shoreline change was susceptible to
effects of outlier values because it could underestimate or overestimate shoreline change rate values
observed by the EPR method [58].

4.5. Shoreline Change Analysis

Different parts of the study area showed different characteristics of coastal change [7,65]. Therefore,
we divided the study area into two major zones as eastern and western zones of a length of 25 km
and 29 km, respectively. These major zones were further divided by their local area name to better
understand shoreline change at a micro level. The eastern zone had local areas named DHA Zone B,
DHA Golf Club, DHA Zone C, DHA Zone D, DHA Extension, Sea-view, Shireen Jinnah Colony, and
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South Asian Terminal (Figure 3). The shorelines of DHA Zone B, DHA Golf Club, DHA Zone C, DHA
Zone D, and South Asian Terminal have loose stone structures while DHA Extension has a sand and
gravel beach (Table 1). The shoreline of Sea-view has a tidal flat sand beach and Shireen Jinnah Colony
has a sediment bank (Table 1). Similarly, the western zone has local names Manora Beach, Sandspit,
Kaka Pir, Hawks Bay, Jamali Goth, Somar Goth, Abdul Rehman Goth, Haji Ali Goth, and Engro Beach
Huts (Figure 4). The shoreline of Sandspit, Hawks Bay, Jamali Goth, Somar Goth, Abdul Rehman
Goth, and Haji Ali Goth have sandy beaches while Kaka Pir and Engro Beach Huts have rocky beaches
(Table 1). The shoreline of Manora Beach constitutes sand and gravel beaches (Table 1).

Figure 3. Digital shoreline analysis on the eastern zone (inset red doted rectangle shows a part of the
study area) (ZB = Zone B; GC = Golf Club; ZC = Zone C; Ext = Extension, SV = Sea-view, SJC = Shireen
Jinnah Colony, and SAT = South Asian Terminal) (Table 1).

Figure 4. Digital shoreline analysis on the western zone (inset red doted rectangle shows a part of the
study area) (MB =Manora Beach, SS = Sandspit, KK = Kaka Pir, HB =Hawks Bay, JG = Jamali Goth,
SG = Somar Goth, ARG = Abdul Rehman Goth, HAJ =Haji Ali Goth, and EBH = Engro Beach Huts)
(Table 1).

A baseline was created for the two zones offshore and onshore of the coast, which remained
parallel to the shorelines, in order to draw transects for determining shoreline changes. The baseline
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of the eastern zone (Figure 3) constitutes segments of baseline and a baseline of the western zone is
divided into three segments because of the discrete shoreline orientation to draw transects of length
3500 m and 1000 m respectively from the baseline as it intersects all the shorelines. A total of 2516
transects were drawn for the study area at 20 m intervals along the baseline (1194 for the eastern
zone, and 1322 for the western Zone) (Figures 3 and 4). This transect interval was small enough
comparatively to the satellite image resolution, but transect intervals below than this would not provide
a better understanding of shoreline change.

5. Results

An analysis of the shoreline change rate revealed that both zones exhibited both types of change,
with erosional trends as negative values and accretional trends as positive values. The eastern zone
exhibited accretional action in the shoreline position throughout the study period while the western
zone mostly showed both accretion and erosion. Therefore, the results of the present study identified
areas with accretion and erosion in the shoreline position at each transect drawn (Tables 1 and 2).
Table 1 represents the types of shoreline, transect-based change rates from selected metrics (EPR, LMS,
LRR, SCE, and NSM) for both zones with respect to their local areas, and a total number of transects
drawn for each local area. Table 2 shows maximum accretion and erosion rates recorded for transects
in both zones, and the percentage of transects that recorded erosion or accretion.

Table 2. Maximum and mean actions (accretion and erosion) at eastern and western zones.

Rate Eastern Zone Western Zone

Accretion Max Location Max Location

EPR 32 South Asian Terminal 3.88 Haji Ali Goth
LMS 27 DHA zone D 4.37 Haji Ali Goth
LRR 35.49 DHA zone D 5.66 Haji Ali Goth
NSM 2.43 South Asian Terminal 0.30 Haji Ali Goth

Erosion Max Location Max Location

EPR −1.85 South Asian Terminal −3.96 Manora Beach
LMS −14 Shireen Jinnah colony −3.98 Manora Beach
LRR −2.21 South Asian Terminal −3.27 Manora Beach
NSM −0.14 South Asian Terminal −0.30 Manora Beach

Accretional
Transects

Mean Count Percent % Mean Count %

EPR 14.05 1130/1194 94.6 1.37 339/1322 25.6
LMS 9.99 1084/1194 90.8 0.58 523/1322 40
LRR 15.31 1130/1194 94.6 0.98 296/1322 22.4
NSM 1.06 1130/1194 94.6 0.08 338/1322 25.6

Erosional
Transects

Mean Count Percent % Mean Count %

EPR −1.48 64/1194 5.4 −1.15 983/1322 74.4
LMS −3.23 111/1194 9.3 −0.85 799/1322 60.4
LRR −1.89 64/1194 5.4 −0.99 1026/1322 77.6
NSM −0.11 64/1194 5.4 −0.08 984/1322 74.4

Note: EPR, LMS, LRR = Rate of shoreline change (m/year) and NSM = Shoreline movement (Km).

5.1. Rate of Shoreline Change for the Eastern Zone

The maximum average accretion rate in this zone was observed at DHA Phase 8 Zone C with
a rate of 22 m/year at a transect identity (TID) from 191–255 (Table 1). The lowest average rate of
accretion was observed at Sea-view Clifton beach with an average rate of 6 m/year (TID 641–897)
(Table 1). The lowest to highest EPR rate in the eastern zone, from −1.85 to 32 m/year was observed at
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South Asian terminal (Table 2). Using the EPR method in the eastern zone, 1130 out of 1194 transects
(94.6%) experienced accretion, while 64 (5.4%) exhibited erosion. The mean values of accretion and
erosion from EPR were 14 m/year and –1.48 m/year for the total accretional and erosional transects in
the eastern zone (Table 2).

The LMS was the second metric used for estimating shoreline change rates. The eastern zone
showed a high variation of accretional shoreline change rates with a mean maximum of 17 m/year at
DHA Phase8 zone D and a mean lowest change of 2.5 m/year at DHA Phase8 zone B (Table 1). The
transects with the greatest erosional LMS rate of –14 m/year and greatest accretional rate of 27 m/year
were estimated at Shireen Jinnah Colony and DHA phase8 zone D respectively (Figure 5, Table 2). The
LMS rate showed that 90.7% of transects were accretional with an average rate of 10 m/year while 9.3%
of them were erosional with a mean rate of –3.23 m/year. Similarly, observed values of the LRR for
eastern zone showed that the DHA golf club exhibited a maximum mean accretional rate of 25 m/year
and South Asian terminal had the lowest mean rate of 5.6 m/year (Table 1). The greatest significant LRR
erosional rate of -2.21m/year and accretional rate of 35 m/year (Table 2) were estimated for the transects
of DHA Phase8 zone D and South Asian terminal respectively (Figure 5). Furthermore, the overall
LRR records show that 94.6% of transects drawn in eastern zone experienced shoreline accretion, with
mean rate of 15.3 m/year while only 5% of transects recorded erosion, with mean rate of -1.89 m/year
(Table 2).

Figure 5. Shoreline change rate (EPR, LMS, LRR) of eastern zone (DHA = Defense housing Authority;
ZB = Zone B; GC = Golf Club; ZC = Zone C; Ext = Extension, SV = Sea-view, SJC = Shireen Jinnah
Colony, SAT = South Asian Terminal).

The estimation of the shoreline changes in the study area for the eastern zone constitutes on the
predicted values of shoreline change envelope (SCE) and net shoreline movement (NSM). The results
of SCE reveal that a mean highest accretional SCE value of 1.9 km was obtained for the DHA phase
8 zone D (TID from 256-491) (Table 1). However, it cannot be concluded that the shoreline moved
seaward. Similarly, the lowest mean accretional SCE value of 0.57 km was observed for the Sea View
Clifton beach (Table 1). The highest and lowest SCE values of 2.4 km and 0.15 km were obtained for
the South Asian terminal (TID from 1060-1194) (Table 2). Furthermore, the NSM values recorded in the
analysis indicate that the maximum mean accretion distance between the oldest shoreline position
of 1942 and the recent shoreline position of 2018 was 1.7 km, obtained for DHA phase 8 zone C (TID
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from 191–255) (Table 1). Similarly, the lowest mean NSM value of 0.4 km was obtained for Sea View
Clifton Beach (TID from 641–897) (Table 1). The highest accretional and erosional values of NSM were
obtained for South Asian terminal ranging from 2.43 km to -0.14 km respectively (Table 2, Figure 6).
Overall results for NSM shows that 95% of the eastern zone transects experienced accretion with a
mean seaward movement of the shoreline of 1.06 km, while 5.4% of transects in the eastern zone show
erosion, with a mean retreat of -0.11 km (Table 2) (Figure 6).

Figure 6. Shoreline change (NSM, SCE) of eastern change (DHA = Defense housing Authority; ZB =
Zone B; GC = Golf Club; ZC = Zone C; Ext = Extension, SV = Sea-view, SJC = Shireen Jinnah Colony,
SAT = South Asian Terminal).

5.2. Rate of Shoreline Change for Western Zone

The western Zone (Figure 4) constitutes rocky and sandy beaches, and exhibited both erosional
and accretional trends in the shoreline (Figures 7 and 8). Hawks Bay, Haji Ali Goth (French Beach)
and Manora Beach are recreational beaches with beach huts and water sports parks with thousands of
visitors daily. The maximum mean accretion rate of 0.18 m/year by EPR was observed for the Kaka Pir
area, having TID ranges from 634–695 (Table 1, Figure 7). The lowest mean erosional rate of −1.5 m/year
by EPR (Table 1) was observed at Jamali Goth area (TID from 964–1040) (Table 1). The highest rate of
accretion and erosion shoreline change was recorded at Manora Beach with a value of 3.86 m/year
and −3.96 m/year (Table 2). The EPR method shows that 26% of the 1322 transects 1322 experienced
accretion, with a mean linear rate of 1.37 m/year (Table 2). Similarly, erosive action was dominant in the
western zone, with 1322, or 74% of transects drawn showing erosion, at a mean rate of −1.15 m/year.

LMS values for the western zone showed that the highest mean accretional rate occurred at
Kaka Pir area at a rate of of 0.12 m/year (Table 1) and highest mean erosional rate of −1.7 m/year for
Jamali Goth (Table 1). The highest accretional rate of shoreline change from the LMS method was
observed over Haji Ali Goth, with a rate of 4.37 m/year (Table 2). Similarly, the highest erosional rate of
change by LMS was obtained for Manora beach with a value of −3.94 m/year (Table 2) (Figure 7). The
overall results for the LMS method indicated that 40% of transects drawn encountered accretion, with
mean accretional rate of 0.5 m/year and 60% of them recorded erosion with the mean erosional rate of
−0.85 m/year.

Moreover, the values of LRR showed that the highest mean accretional rate of 0.07 m/year was
observed for Kaka Pir and the highest mean erosional rate of −1.79 m/year for Jamali Goth in the zone
(Table 1). Similarly, the highest accretional and erosional rate by LRR method for each transect drawn
shows that Haji Ali Goth had a highest positive rate of 5.66 m/year while Manora beach with a highest
erosive rate of −3.27 m/year (Table 2). The LRR showed accretion in 22% of transects in the western
zone with mean accretion rate of 0.98 m/year, and erosion in 78% at a rate of −1 m/year (Table 2).
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Movement of the shoreline position was estimated by the SCE and NSM methods (Figure 8). The
highest mean distance change by SCE shows value of 0.23 km obtained for the Manora beach (TID
from 1-342) which shows the highest variability in shoreline position during the study period (Table 1).
Similarly, the lowest mean distance change by SCE method shows 0.10 km value for Sandspit beach
area (TID from 343-633) (Table 1). The highest variability in shoreline position at any transect drawn
in western zone by SCE method was obtained for the Manora beach with a value of 0.769 km and
minimum distance variability in shoreline position for Haji Ali Goth observed with a value of 0.016 km
(Figure 8) (Table 2). The estimated NSM values show displacement of the shoreline on both landward
and seaward sides. The NSM result indicate that highest mean accretion occurred at Haji Ali Goth
(TID from 1127–1222) with a value of 0.17 km (Table 1). Similarly, the highest mean landward shifting
(regression) of the shoreline encountered at Somar Goth (TID from 1041–1086) with a value of −0.07
km (Table 1). The highest net shoreline shift towards sea (accretion) encountered at Haji Ali Goth with
a value of 0.29 km and highest landward shoreline shifting (erosion) was observed at Manora beach
with a value of 0.3 km (Figure 8) (Table 2). The NSM results show that 26% of transects drawn in the
western zone moved sea, with mean net shoreline change of 0.08 km, while 74% of transects showing
landward movement, with a mean retreat of −0.08 km (Table 2).

Figure 7. Shoreline change rate (EPR, LMS, LRR) of the western zone (MB = Manora Beach, SS =
Sandspit, KP = Kaka Pir, HB = Hawks Bay, JG = Jamali Goath, SG = Somar Goath, ARG = Abdul
Rehman Goath, HAJ = Haji Ali Goath, EBH = Engro Beach Huts).
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Figure 8. Shoreline change (NSM, SCE) of the western zone (MB =Manora Beach, SS = Sandspit, KK =
Kaka Pir, HB = Hawks Bay, JG = Jamali Goath, SG = Somar Goath, ARG = Abdul Rehman Goath, HAJ
= Haji Ali Goath, EBH = Engro Beach Huts).

6. Discussion

This study examines variability in historical shoreline position along the coastal city of Karachi,
using historical topographic maps (1942 & 1966), Landsat satellite imagery (1976, 1990, 2002, and 2011)
and Planet Scope satellite imagery (2018). Historical shoreline positions were extracted using NDWI
and shoreline changes were observed using the DSAS approach. The study provides in-depth fine
spatio-temporal shoreline change analysis and contributes to exploring the causes of such changes.
Results show significant accretionary change in shoreline position in the eastern zone (Figure 3)
(Table 2), where large residential projects have encroached on the sea in the past decade. On the other
hand, the western zone (Figure 4) (Table 2) has the highly stable shoreline. The results also demonstrate
that the shoreline changes in the western zone were related to the changes in hydrodynamics due
to land reclamation projects in the eastern zone, associated with the local longshore current. Similar
findings have been reported by recent studies conducted in other parts of the Indus delta region
where large land reclamation projects have increased coastal vulnerability by altering the ocean
hydrodynamics. For instance, Waqas et al. (2019) [16] found that 38% of the barrier islands in the Indus
delta were vulnerable to oceanic factors. Similarly, Salik et al. (2015) [41] reported the vulnerability of
the communities living in the lower Indus deltaic plain due to climatic and anthropogenic impacts on
the coast.

6.1. Qualitative Rate of Shoreline Change

The shoreline positions in both zones have experienced accretion and erosion in different ways.
The length of shorelines in the eastern and western zones have increased by 2.6% and 16.6% respectively,
over a period of 76 years. The maximum accretional and erosional rates of shoreline recorded at each
transects by EPR and NSM methods help to quantify the length of shoreline vulnerable to extreme ocean
events (Table 3) while SCE can help to track the overall movement in the shoreline position. This study
revealed that 5.4% of transects drawn in the eastern zone (25 km), representing 1.28 km of the whole
shoreline length, experienced erosion (Table 2) and of this, 1.22 km at South Asian terminal underwent
high erosion rates (Table 3). Similarly, 94.6% of transects drawn in the eastern zone, corresponding to a
22.6 km shoreline length, showed accretion (Table 2), of which 22.4 km exhibited very high accretion
rates (Table 3) at DHA Zone B, DHA Golf Club, DHA Zone C, DHA Extension, Sea-view, Shireen
Jinnah Colony, and South Asian Terminal. The DHA Zone B, DHA Golf Club, DHA Zone C, and
DHA Extension corresponding to a combined shoreline length of 12.8 km showed high accretional
rates (Table 3) of shoreline change because of massive land reclamation projects for urbanization and
industrialization (Figure 9). Similarly, Sea-view is a recreational beach with a low substrate slope and
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had high accretion rates (Table 3). Table 3 indicates that 4.94 km of the beach length was nourished by
trapping, dredging, and constructional materials from offshore drift. This beach regularly receives
large numbers of visitors from all over Pakistan (Figure 9). Furthermore, Shireen Jinnah Colony had
high accretion rates (Table 3) due to soft sediments deposited by longshore drift after construction of
breakwaters preventing seawater and high energy waves from entering the residential areas (Figure 9)
(Section 6.2).

Table 3. Shoreline classification based on EPR [39].

Rate of Shoreline
Change (x m/y)

Shoreline Classification
Affected Shoreline of

Easter Zone (%)
Affected Shoreline of

Western zone (%)

x ≤ −2 Very High Erosion 0.0 9.9
−1 < x ≤ −2 High Erosion 5.1 27.1
0 < x < −1 Moderate Erosion 0.3 37.4

x = 0 Stable Shoreline 0 0

0 ≤ x < 1 Moderate Accretion 0.0 13.7
1≤ x <2 High Accretion 0.8 8.4

x ≥ 2 Very High Accretion 93.8 3.6

Note: Affected shoreline length reflects the percentage (%) of total shoreline length of each zone.

Figure 9. Shoreline vulnerability map of the study area (the width indicating the spatial extent of the
overall shoreline development) (DHA = Defense housing Authority; ZB = Zone B; GC = Golf Club; ZC
= Zone C; Ext = Extension, SV = Sea-view, SJC = Shireen Jinnah Colony, SAT = South Asian Terminal,
MB =Manora Beach, SS = Sandspit, KK = Kaka Pir, HB = Hawks Bay, JG = Jamali Goath, SG = Somar
Goath, ARG = Abdul Rehman Goath, HAJ = Haji Ali Goath, and EBH = Engro Beach Huts).

The study also revealed that during this period, 74.4% of transects drawn in the western zone
(29 km) corresponding to 19.7 km of the total coastline experienced erosion (Table 2), and of this, 9.9
km experienced moderate erosion (Table 3) at Manora Beach, Sandspit, Kaka Pir, Hawks Bay, Jamali
Goth, Somar Goth, Abdul Rehman Goth, Haji Ali Goth, and Engro Beach Huts (Figure 9). A total of
2.5 km out of the 5.3 km shoreline length of Hawks Bay and 4 km of the 5.82 km of Sandspit shows
moderate erosion action (Tables 1 and 3) because they have almost flat substrate slopes that are being
eroded by waves and current action during the south-west monsoon season (Section 6.2). Similarly,
1.82 km out of the shoreline length of the 6.64 km western part of Manora beach and 0.7 km out of
the 1.54 km of Jamali Goth showed severe erosion from strong wind-driven longshore currents in
the western part of study area (Figure 9). Furthermore, 25.6% of transects drawn in the western zone
corresponding to 6.8 km of the shoreline experienced accretion, of which 3.62 km showed moderate
accretion (Table 3). These involved some parts of Manora beach, Hawks Bay, Kaka Pir, and Haji Ali
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Goth. High to very high accretion was encountered at the northeastern part of Manora beach due to
soft sediments deposited by longshore drift from the construction of the deep-water container port,
corresponding to 1.38 km to 0.88 km of shoreline (Figure 9).

6.2. Hydrodynamics of the Sindh Coastal Zone

Pakistan’s coastal hydrodynamics are controlled by the reversal of the monsoonal system.
Significant oceanic factors such as wind and wave climatology influence the coastal environment of
Karachi because these changes are associated with the local wind driven longshore current [16,51,66,67].
To analyze the wind and wave climate influencing the study area seasonally before and after the major
encroachment by urban development (Figures 10 and 11), the long-term offshore daily-hourly data
from the National Oceanic and Atmospheric Administration (NOAA) was divided into two periods:
Pre-encroachment (2008–2010) and post-encroachment (2011–2017). During the pre-summer monsoon
season (March–May) of the pre-encroachment period, the wave height (WH) results showed an absence
of swell for 35% of the time, while waves exceeding the 2 m height were recorded for only about 2%
of the whole data (Figure 13). During this season, winds were northwesterly, with an average wind
speed (WS) of 4.4 knots having an average wave period (WP) of 13 s, and only 0.5% of the time did WS
exceed 9 knots, generating large wavelets (Figure 12). However, during the summer (Jun–Sep) i.e.,
the southwest (SW), monsoon season winds were southwesterly (Figure 10) with an average WS of 9
knots, generating strong waves with a mean significant WH of 3 m, and an average WP of 11 s.

Surprisingly, 22% of the time WH exceeded 4 m, and occasionally reached 6 m due to a rising
tide, generated by heavy SW winds of WS above 12 knots (Figure 12). During the SW monsoon,
high-energy southwesterly waves strikes the coast, accelerating erosive action in the western zone and
sediment deposition in the eastern zone from longshore drift. During the retreat of the monsoon season
(Oct–Nov), northeasterly winds with an average WS of 5 knots generated waves with an average
WH lower than 1 m and a mean WP of 11 s. During this season, 86% of the observed time WS was
observed to be between 3–9 knots, which generated small waves with a significant WH lower than
2 m (Figure 13). Furthermore, during the northeastern (NE) monsoon transition season (Dec–Feb),
northeasterly winds (Figure 10) with a low mean WS of 5 knots generated small wavelets of an average
1 m wave height, of 1 m, which allowed the settling of suspended sediments. During this season, the
NE wind remained lower than 9 knots for 99% of the time (Figure 12) and WH remained less than 2 m
for 98% of the time (Figure 13).

During the pre-summer monsoon (NW) season (Mar–May) of the post-encroachment (2011–2017)
period (Figure 11), the average WS was more than 4 knots and only 14% of the observed time the WS
remained between 6–9 knots (Figure 13). The persistent NW winds generated a small swell of which
about 97% of the swell’s significant WH remained below 2 m (Figure 13) with an average WP of about
13 s. Similarly, average WS of about 9 knots during the SW monsoon season (Jun–Sep) (Figure 11)
generated strong wave swells with a mean wave height of more than 3 m having a mean WP of 11
s. During the SW season, 26.6% of the time WH exceeded more than 4 m generated by WS reached
to 22 knots (Figure 12) and a maximum 7.7 m of WH recorded during the post-encroachment period
(Figure 13). During the retreating period of the monsoon season (Oct–Nov), wind prevailed from the
NE side with an average WS of about 5 knots, which generated a swell wave of an average significant
wave height of 1 m. The average WP of 13 s during the season showed the calmness of the sea where a
total 98% of the time WH recorded below 2m, which helps in the settlements of the sediments in the
bottom (Figure 13). During the winter monsoon season (NE) (Dec–Feb), winds with an average speed
of more than 5 knots generated swells with an average significant WH of 1 m. Consistent and normal
wind generated 98% of swell wave less than 3 m (Figure 13) with an average WP of about 11 s.
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Figure 10. Pre-encroachment (2008–2010) seasonal hydrodynamics of the Karachi (WS =wind speed,
WH =wave height).

163



Remote Sens. 2020, 12, 749

Figure 11. Post-encroachment (2011–2017) seasonal hydrodynamics of the Karachi (WS = wind speed,
WH =wave height).
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Figure 12. Wind (knots) climatology of the Sindh Coastal zone with respect to the modern Beaufort scale.

Generally, the wave height and its energy in the study area directly or indirectly subject of the
wind speed, wave period, surface area over which the wind blows, and bathymetry of the area. The
wave packets remain in action until the energy of the waves is absorbed by coastal region. Therefore,
shoreline vulnerability of Karachi will probably be accelerated by high wave-height generated by
high-speed winds at a high frequency (Figures 12 and 13). The pre- and post-hydrodynamic study
revealed that about a 2.95% average WH increased significantly during the SW summer monsoon
season and a 0.97% average for the NW winter monsoon season indicating the vulnerability of the
shoreline position in the future. The sediments usually deposited during the stable ocean condition
when the energy of waves is low and the deposited soft sediments in the shelves are driven away from
the coast by the action of longshore drift and high wave energy [43]. The wave and wind are important
factors for changing the nourishment and erosion of the coastal environment and development of
urban areas along the Sindh coastal zone [15,68,69].

Figure 13. Wave (m) climatology of the Sindh Coastal zone with respect to the modern Beaufort
scale [70].

165



Remote Sens. 2020, 12, 749

7. Conclusions

This study presented tracks changes along a coastal mega city Karachi, Pakistan by employing
historical topographic sheets dated back to 1942 and images from different missions of Landsat and
Cubesats, until 2018. The total shoreline length was divided in two eastern zone and western zones.
The mean accretional End Point Rate (EPR) for the eastern zone was observed to be 14 m/year, which
indicated that 95% of the total transects of the eastern zone encountered accretion. This implies that
the eastern zone remained under extensive land reclamation activities. Similarly, the EPR rate of
change for the western zone revealed a mean accretional rate of 1.37 m/year, and with that 26% of the
total transects underwent positive change. This indicates a small positive change rate for a quarter of
the study area, while 74% of the transects in the western zone experienced mean an erosional EPR
value of −1.15 m/year, indicating that a major proportion of the study area faced erosional activities.
Furthermore, a total of 23.5 km of the shoreline length of eastern zone was designated as very high
accretional while 2.9 km of western zone shoreline was found prone to very high erosional activity.
The pre- and post-land reclamation hydrodynamics revealed that an average wave height increased by
2.95% during the south-west summer monsoon season and 0.97% during the NW winter monsoon
season, indicating potential future threats to the shoreline position. Most of the western part of the
shoreline is still undisturbed by human intervention. The shoreline position at a place is mostly
determined by sand supply for nourishment, geomorphology, and oceanic forcing factors coupled
with sea level change. Coastal land development via encroaching sea is a two-way process and triggers
disturbance in the ocean hydrodynamics, which may create future stress on communities living in
low-lying coastal areas. There are potential chances of land subsidence on reclaimed coastal areas
following extreme events. Our study shows the potential of GIS and remote sensing techniques for
comprehensive coastal risk assessment and our method would be very useful for the entire delta or
other deltaic areas. Furthermore, it was observed that low to medium spatial resolution data sets
(i.e., topographic sheets, Landsat MSS, TM, ETM+, and OLI) have higher uncertainty than the higher
spatial resolution (3 m) Planet Scope imagery. The availability of Planet Scope imagery for educational
and research purpose has opened new doors for the exploration of new techniques to preserve the
environment. It is recommended that proper coastal protection and coastal management along ocean
facing coastal areas should be adopted to defend against the erosive action of the ocean. The master
plan for Karachi coastal areas should be revised to be friendlier to the coastal environment, with more
emphasis on sustainable coastal development and coastal safety. In future, we will employ coastal
vulnerability tools to quantify physical and socio-economical vulnerabilities of the Sindh coastal region
to examine the effect of seawater intrusion due to sea level rise.
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Appendix A

Table A1. List of satellite images used in this study.

Sr. # Satellite Sensor Scene Identifier Path/Row
Acquisition

Date

1 PlanetScope Optical 20180422_053509_1033_3B_ AnalyticMS_SR 53/509 22 Apr 2018
2 PlanetScope Optical 20180422_053510_1033_3B_AnalyticMS_SR 53/510 22 Apr 2018
3 PlanetScope Optical 20180422_060440_0f32_3B_AnalyticMS_SR 60/440 22 Apr 2018
4 PlanetScope Optical 20180422_060441_0f32_3B_AnalyticMS_SR 60/441 22 Apr 2018
4 Landsat-5 TM LT05_L1TP_152043_20110211_20161010_01_T1 152/43b 11 Feb 2011
5 Landsat-7 ETM+ LE07_L1TP_152043_20021211_20170127_01_T1 152/43b 11 Dec 2002
6 Landsat-5 TM LT05_L1TP_152043_19900217_20170131_01_T1 152/43b 17 Feb 1990
7 Landsat-2 MSS LM02_L1TP_163043_19761214_20180425_01_T2 163/43a 14 Dec 1976

Note: The superscripts a and b represent the path/row for WRS-1 and WRS-2, respectively.
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Abstract: Unlike a generally rough ground surface, the sea surface varies over time. To analyze
the impact of the motion of sea waves on the synthetic aperture radar (SAR) image of a target, the
wideband echo simulation method based on a frequency domain is used. For the wideband echo,
the electromagnetic (EM) scattering properties of the main frequency components are analyzed by
the simulation method. Based on the EM scattering properties, the echo can be accurately simulated
by using the inverse fast Fourier transformation (IFFT). Combined with the flight path of the radar,
the echo of each pulse can be simulated to obtain the SAR image. The correct evaluation of the EM
scattering properties is indispensable to the acquisition of an accurate SAR image. For complex
targets, such as ships, the multiple scattering effects have a significant influence on the EM scattering
properties. Thus, a rectangular wave beam-based geometrical optics and physical optics (GO/PO)
method is introduced to calculate the EM scattering properties, which is more efficient than the
traditional GO/PO. The GO/PO method is suitable to simulate SAR images in which the EM
scattering properties of each pulse need to be calculated. With these methods, the SAR images of
the target on the sea surface are simulated. Based on the comparison of the SAR images between a
static and dynamic sea surface, it is found that the region corresponding to the target is blurred and
the texture of the dynamic sea is blurrier. The impact of multiple scattering and sea wave motion
on target recognition are also analyzed with the SAR images that were generated under different
conditions. Some strong scattering points appear when multiple scattering effects are considered. It
is also found that the texture of the SAR images, corresponding to the sea surface, changes with the
synthetic aperture time.

Keywords: synthetic aperture radar (SAR); target; sea surface; multiple scattering

1. Introduction

Target recognition based on synthetic aperture radar (SAR) images is a hot topic in
the remote sensing field [1,2]. With the development of technology, the bandwidth is
increased to improve the range resolution and more details can be obtained from the SAR
image [3,4]. The strong scattering points in SAR images are usually used to detect the target.
However, the background may affect the accuracy of the target detection. The objective
of the paper is to efficiently provide reliable simulation data for ship target recognition
in the dynamic sea. In general, the sea surface is stirred up when the wind grows fierce,
and the strong scattering points of the ship may be submerged in the background noise
caused by scattering from the sea surface. Thus, many researchers have worked against
a complex and noisy background [5,6]. The traditional methods are usually based on a
prior detection window, such as the constant false alarm rate methods [7,8]. Because the
prior detection window needs to be initialized, the application of the traditional method is
limited for a complex background. To detect a target against a complex background, the
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self-adaptive method based on the local variance weighted information entropy (VWIE)
has been developed [9,10]. In recent years, a ship detection method based on convolutional
neural networks (CNN) has been proposed [11,12]. The method is conventional and
performs well. Thus, it is widely used in the field of target recognition. However, its
precision relies on a large-scale, high-quality training dataset. As we all know, accurately
measured data are difficult to obtain. However, it is much easier to acquire simulation
data. To ensure the accuracy of the simulation data, the SAR imaging process follows the
practical situation. Thus, the simulated sea surface has changed over time during the flight
of the radar, and the multiple scattering effects have been taken into account for a complex
target, such as a ship, to enhance the electromagnetic (EM) scattering echo. Moreover, it
takes lots of time to calculate the EM scattering properties of all the pulses during the SAR
imaging process. Thus, the geometrical optics and physical optics (GO/PO) method, which
is efficient and accurate enough, is employed to simulate the SAR image of a target on a
dynamic sea surface for a wideband signal.

In terms of the general time-domain simulation method of the SAR echo, the SAR
scene is divided into many scattering units, and the total echo is the sum of the echo from
each unit. In addition, the echo from each unit is approximated by the scattering properties
of the center-frequency EM wave [13,14]. However, for the wideband signal, the differences
in scattering properties between the main frequency components increase and the error
of the traditional approximation becomes large. To accurately simulate the SAR echo, the
method in the frequency domain is employed, which considers the scattering properties
of all the frequency components. After the scattering properties of each frequency are
obtained, the time domain scattering echo can be calculated by using the inverse fast
Fourier transformation (IFFT). Then, the SAR image of the whole scene can be generated
by using the simulated echo.

To calculate the scattering properties, frequency domain EM scattering algorithms can
be used, such as method of moment (MoM), equivalent edge currents (EEC), finite element
method (FEM), and physical optics (PO) [15]. However, as the scattering properties of all
the frequency components need to be analyzed, the calculation load is quite heavy. To
reduce the simulation time, a high-efficiency method would be a better choice. Here, the
GO/PO hybrid method, which has high efficiency and considers the multiple scattering
effects, is employed to simulate the scattering fields. Although the efficiency of the GO/PO
method is high, it still takes a lot of time to search for the reflected rays. Moreover, the
calculation is mainly focused on the ray tracing process. To accelerate the ray tracing
process, the kd-tree method is usually used [16]. The method of hardware acceleration is
frequently used too. For instance, the graphical electromagnetic computing method uses a
graphics processing unit (GPU) to estimate the illuminated area [17]. In recent years, the
parallel acceleration method has been very popular because of the significant improvement
in the parallel computing capability of the GPU [18]. However, most of these methods trace
the ray according to the facets, e.g., the traditional GO/PO method, which calculates the
EM scattering properties by analyzing the EM scattering fields of the illuminated facets [17].
Thus, these methods require the density of rays to be higher than the density of the facets.
Their efficiency depends on the number of facets and their accuracy is affected by the
size of the facet; thus, the size of the facet should be small enough to ensure accuracy. Of
course, this will increase the number of facets and calculation load. To further improve
the efficiency, the rectangular wave beam-based GO/PO method can be used. It calculates
the EM scattering properties by analyzing the EM scattering fields of the area illuminated
by a small rectangular wave beam. Furthermore, it does not have a requirement for the
facet size as the traditional GO/PO method does. Thus, the same level of efficiency and
accuracy can be achieved with a lower number of pixels [19].

During the process of the SAR platform movement, the fluctuation of the dynamic
sea surface changes. The longer the time, the more obvious the change. Unlike the static
rough surface, the dynamic sea surface at a different time, corresponding to each pulse will
change. Thus, the impact of the sea surface movement on SAR imaging will be discussed.

172



Remote Sens. 2021, 13, 3186

After the analysis, it was found that it is more difficult to recognize the shape of the ship on
a dynamic sea surface than a static one. The longer the synthetic aperture time, the more
blurred the shape of the ship. It means that the SAR images of a target ship on a dynamic
sea are affected by the synthetic aperture time.

2. Materials and Methods

2.1. Scattering Echo Simulation

For many emission signals of radar, the energy concentrates on the frequency compo-
nents near the center frequency f0, with a range between f0 − f ′ and f0 + f ′, as shown in
Figure 1a. In addition, the frequency components out of this range are so weak that the
components can be ignored. Its spectrum, Fe( f ), can be written as follows [20]:

Fe( f ) = ∑
i

δ( f − fi)Aei f0 − f ′ ≤ f < f0 + f ′

δ( f ) =
{

1 f = 0
0 f �= 0

, (1)

where Aei is the complex amplitude corresponding to frequency fi.

Figure 1. Normalized spectrum of a signal: (a) emission signal; (b) scattering echo.

Figure 1a shows the normalized spectrum of the emission signal for a linear frequency-
modulated (LFM) signal. As shown in Figure 1a, the energy mainly distributes near the
center frequency, f0, with bandwidth B. Figure 1b shows the normalized spectrum of
the corresponding scattering echo. Its energy is also mainly distributed near the center
frequency, f0. Then, the frequency-domain form of the scattering echo signal can be written
as follows [20]:

Fs( f ) = ∑
i

δ( f − fi)Aei
√

σi · ϕ( fi), (2)

where σi is the radar cross section (RCS) and ϕ( fi, t) is the phase delay corresponding to
the frequency of fi. Before the scattering echo processing, it should be demodulated to the
baseband. Its corresponding spectrum can be written as follows [20]:

FsB( f ) = ∑
i

δ( f − fi + f0)Aei
√

σi · ϕ( fi) · e−i4π f0R0/C, (3)

where C is the light speed and R0 is the distance between the target and the radar sensor.
With FsB( f ), the demodulated scattering echo in the time domain is obtained by

using IFFT:
sB(t) = IFFT[FsB( f )], (4)
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During irradiation, the radar emits a pulse periodically. The demodulated scattering
echo of the ith pulse is marked as sB(t, ηi). Then, the SAR echo can be written as follows:

sB(t, η) = ∑
i

δ(η − ηi)sB(t, ηi), (5)

where η represents the time when the radar emits the pulse, and ηi is the time when the
radar emits the ith pulse.

With the SAR echo, the SAR image can be calculated using imaging algorithms, such
as the Range–Doppler (RD) algorithm [21] or the Back Projection (BP) algorithm [22,23].
Here, the RD algorithm is applied to calculate the SAR image with the simulated echoes.

In order to verify the reliability of the simulation method, the radar moves along
the same designed trajectory as the actual illuminating process. A scene of five cubes is
presented to demonstrate that the simulated echo with different parameters is in accordance
with the actual situation. For example, the simulated echo with a wider bandwidth can
generate a SAR image with a higher range resolution. Figure 2 shows a schematic diagram
of the scene. The airborne radar moves along the flight path with the height of H; see the
red line in Figure 2. R is the distance between the target and radar. θ is the incident angle.
The five cubes in Figure 2 have a volume of 1 m3. The five cubes are placed on the XOY
plane, as shown in Figure 2.

Figure 2. Schematic diagram of the scene.

While the radar moves along the flight path, it emits pulses periodically. The echo from
the cubes corresponding to each pulse is simulated by the proposed method. With these
echoes, the SAR images of the five cubes can be generated. Figure 3 gives the SAR images
of the five cubes with different bandwidths B and azimuth resolution ρa. The antenna
lengths of Figure 3a–d are 4 m, 2 m, 1 m, and 0.5 m, respectively. The corresponding
bandwidths are 0.0375 GHz, 0.075 GHz, 0.15 GHz, and 0.3 GHz, respectively. The incident
angle θ is 57◦. The carrier frequency f0 is 9.375 GHz. The range resolution is C/(2B). As
shown in Figure 3, when the azimuth resolution and the range resolution are both low, it is
difficult to detect the cubes, shown in Figure 3a, where the resolution is 4.0 m. When the
resolution is improved, the cubes can be gradually identified in the SAR image, as shown
in Figure 3b–d, with increasing bandwidth B.
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Figure 3. SAR images of the cubes: (a) ρa = 4 m, B = 0.0375 GHz; (b) ρa = 2 m, B = 0.075 GHz; (c) ρa =
1 m, B = 0.15 GHz; (d) ρa = 0.5 m, B = 0.3 GHz.

2.2. Rectangular Wave Beam-Based GO/PO Method

According to Equation (3), the scattering echo can be calculated when obtaining the
RCS σi of all the frequency components. Because the multiple scattering effect of the
complex target is obvious, the GO/PO method is used to calculate the RCS from the target
on the sea surface.

The GO/PO method is based on the PO method, and also considers the scattering
fields of the facets illuminated by the reflected rays that are traced according to the GO
method. For the traditional GO/PO method, the scattering property is the sum of the con-
tribution of each illuminated facet. The total RCS σ can be obtained by the formula below.

√
σ = ∑0 j k√

π

∫
sm

êr ·
[
ŝ ×

(
n̂m × ĥi

)]
exp(jk

→
r · (î − ŝ))dsm+

∑1 j k√
π

∫
sm

êr ·
[
ŝ ×

(
n̂m × ĥir1

)]
exp(jk

→
r · (îr1 − ŝ))dsm+

∑2 j k√
π

∫
sm

êr ·
[
ŝ ×

(
n̂m × ĥir2

)]
exp(jk

→
r · (îr2 − ŝ))dsm + · · ·

(6)

where k is the wave number and j is the imaginary unit; î is the direction of the incident
wave; îr1 and îr2 are the directions of the first-order and second-order reflected waves,
respectively; ĥi is the polarization direction of the incident wave; ĥir1 and ĥir2 are the
polarization direction of the first-order and second-order reflected waves, respectively; ŝ
is the scattering direction; êr is the polarization direction of the receiver; n̂m is the normal
vector of the mth facet; and dsm is the area of the mth facet.

To accurately determine which facets are illuminated requires a larger density of rays
than that of facets. If the density of rays is low, some facets will be missed. The accuracy
of the traditional GO/PO method depends on the size of the facets. To ensure accuracy
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requires that the size of facet be small enough. However, this will increase the number of
facets and the density of the rays. Thus, the calculation load is large.

To improve the efficiency, it is an effective way to reduce the density of the rays, but the
problem of the facets missing must be solved when the density of the rays is low. Here, the
rectangular wave beam-based GO/PO method is used [19]. The improved method treats
the ray as a rectangular wave beam, and analyzes the EM scattering properties of the area
illuminated by the rectangular wave beam. Each rectangular wave beam corresponds to
an illuminated area, and these areas just fill the whole illuminated area. For the improved
GO/PO method, there is no illuminated area missed, with the same density of rays. Thus,
it is more accurate than the traditional GO/PO method with the same density of rays. Since
the density of the rays is lower, its computational load is lower, and the improved method
is more efficient than the traditional method.

To calculate the EM scattering properties, the contribution of each rectangular wave
beam should be considered. According to the ray direction, the illuminated area is mapped
to a picture with pixel matrix (see Figure 4). Then the beam is divided into many small
rectangular wave beams according to the pixel matrix. Each small rectangular wave beam
corresponds to one pixel. For example, the nth rectangular wave beam corresponds to
the nth pixel. Furthermore, the boundary of the cross-section corresponding to the nth

rectangular wave beam is rectangular with two edge vectors of
→
L xrn and

→
L yrn, as shown in

Figure 4.

Figure 4. Schematic diagram of a small rectangular ray.

The nth rectangular wave beam illuminates an area. The RCS of this illuminated area
is marked as σprn, which satisfies the equation below:

√
σprn = j

4k√
π

êr ·
[
ŝ ×

(
n̂rm × ĥirn

)]
exp(jk

→
r crn · (îrn − ŝ)) · F(îrn, n̂rm,

→
L xrn,

→
L yrn), (7)

where n̂rm is the normal vector of the facet illuminated by the nth ray, and its number is
marked as m; and

→
r crn is the center position of the area illuminated by the nth ray, with a

ray direction of îrn. The expression of F(îrn, n̂rm,
→
L xrn,

→
L yrn) is shown in [19].

The total RCS is the sum of the contribution of all rays. In addition, multiple scattering
effects are considered. Thus, the nth ray, which illuminates the facet, may be part of the
incident wave or the reflected wave. To determine the distribution of the different kinds
of waves, the RCS caused by the nth ray of the incident wave is marked as σprn0, and the
corresponding number is marked as n0. Similarly, the RCS, which is caused by the nth
ray of the first-order reflected wave, is marked as σprn1, and the corresponding number is
marked as n1. The RCS, which is caused by the nth ray of the second-order reflected wave,
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is marked as σprn2, and the corresponding number is marked as n2. Thus, the total RCS σ
of the scene satisfies the equation below:

√
σ = ∑

n0

√
σprn0 + ∑

n1

√
σprn1 + ∑

n2

√
σprn2 + · · · , (8)

where ∑
n0

, ∑
n1

, and ∑
n2

are operated on the small rectangular wave beams of the incident

wave as well as the first time and the second time reflected ray, respectively.

2.3. Scene of Ship and Sea

Generally, a rough surface is simulated by a superposition of harmonic waves. Thus,
the surface can be generated by the given spectrum. For a dynamic sea surface, the height
h(r, t) of the sea surface at time t can be expressed as follows:

h(r, t) = Re

{
∑
k

A(k, vw) · exp(iwt) · exp(ik · r)

}
, (9)

where A(k) is the Elfouhaily sea spectrum used to simulate the dynamic sea surface with
a wind speed of vw [24]. In addition, there is an obvious orientation for the dynamic sea
surface along the direction of the wind. Then, the angular spreading function Φ(k, ϕ′) [25]
is added to modify Equation (8):

h(r, t) = Re

{
∑
k

A(k, vw) · exp(iwt) · Φ(k, ϕ′) exp(ik · r)

}
, (10)

where ϕ′ is the angle between the wave vector k and the direction of the wind.
Figure 5 shows the sea surface simulated with a wind speed of 5 m/s and a wind

direction of 45◦. As shown in Figure 5, the direction of the sea surface is obvious along
the wind direction. The size of the sea surface is 150 × 150 m2, which is large enough to
put a general ship on it. As shown in Figure 6, the ship model is 120 m long, 20 m wide,
and 25 m high. Generally, the scattering properties of a ship change obviously with the
azimuth. Here, two typical orientations are considered. One orientation is that the ship’s
bow is perpendicular to the moving direction of the airborne radar (see Figure 6a). The
other is that the ship’s bow is parallel to the moving direction of the airborne radar (see
Figure 6b).

Figure 5. Sea surface with a wind speed of 5 m/s.
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Figure 6. Model of a ship on a dynamic sea surface with different orientations: (a) perpendicular to
the moving direction of the airborne radar; (b) parallel to the moving direction of the airborne radar.

The incident angle θ is 45◦. The carrier frequency is 9 GHz. The bandwidth is 0.15 GHz
and its corresponding range resolution is 1 m. The azimuth is along the direction of motion
of the airborne radar. The range direction is perpendicular to the azimuth. The antenna
length is 2 m and its corresponding azimuth resolution, ρa, is 1 m.

3. Results

3.1. Results of the SAR Simulation

Figure 7a shows the SAR image of the scene corresponding to Figure 6a, when the
sea surface is static. The velocity of the airborne radar, Vradar, is 300 m/s and the synthetic
aperture time, TR, is about 0.62 s. Figure 7b shows the SAR image where the multiple
scattering effects are considered. Comparing to Figure 7a, some regions in Figure 7b become
brighter where multiple scattering is considered. These brighter regions correspond to the
place marked with the red elliptical frame in Figure 6a and make the ship more obvious in
the SAR image. Thus, it is necessary to analyze multiple scattering effects, which have an
important impact on target recognition. Because the deck of the ship is flat and the EM
wave is reflected to the mirror direction, its back scattering is weaker and its corresponding
regions in the SAR image are obviously darker than the other regions. The shape of the
darker regions is also close to the shape of the ship, which can serve as another feature for
detecting the ship from the sea background.
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Figure 7. SAR images of the ship on a static sea surface: (a) single scattering; (b) multiple scattering.

Figure 8 shows the SAR images with the same conditions as in Figure 7, but with the
sea surface being dynamic. The synthetic aperture time, TR, is 0.62 s. Compared to the
static one shown in Figure 7, the boundary of the region for the deck is not as clear as the
static one. Thus, it is not as easy to detect the shape of the ship as with the static one.

Figure 8. SAR images of a ship on a dynamic sea surface (0.62 s): (a) single scattering;
(b) multiple scattering.

Figure 9 shows the SAR image of the ship on a dynamic sea surface with a longer
synthetic aperture time TR = 1.86 s. Because the synthetic aperture time gets longer, the
sea surface changes much more and the SAR image of the dynamic sea is blurrier than the
one shown in Figure 7. As shown in Figure 7, the dark region corresponding to the ship
looks close to the ship’s shape. In this case, it is a feasible method to recognize the ship by
analyzing the shape of the dark region. However, this method fails when the dark region is
disturbed by the dynamic sea surface. As shown in Figure 9, the area corresponding to
the dark region in Figure 7 has a similar texture to the sea surface. In this situation, the
strong scattering points are reliable features to recognize the ship. The strong scattering
points are caused by the multiple scattering effects, which are considered in the GO/PO
method. Comparing Figure 9a,b, there are some scattering points much stronger than the
background. These strong scattering points are caused by the multiple scattering effects
of the structure marked with the red elliptical frame in Figure 6a. Thus, it is necessary
to use the GO/PO method to calculate the multiple scattering effects. Furthermore, the
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bright region caused by the multiple scattering plays an import role in target recognition,
especially for a long synthetic aperture time.

Figure 9. SAR images of a ship on a dynamic sea surface (1.86 s): (a) single scattering;
(b) multiple scattering.

3.2. Efficiency of the Rectangular Wave Beam-Based GO/PO Method

Figure 10a,b shows the SAR images of the scene corresponding to Figure 6b, with
the sea surface being dynamic. The SAR imaging conditions are the same as in Figure 8.
Comparing these two SAR images, the region below the ship gets brighter when multiple
scattering is considered. This is because that the side of the ship and the sea surface form
an angular structure marked with the red elliptical frame in Figure 6b. It means that
the multiple scattering effects between the target and the background may enhance the
scattering echo under special conditions when forming some special structures.

Figure 10. Cont.
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Figure 10. SAR images with different sizes of the pixel matrices: (a) single scattering (128×128);
(b) multiple scattering (128×128); (c) multiple scattering (256×256); (d) multiple scattering (512×512).

Figure 10 shows the SAR images with different sizes of the pixel matrix. It takes more
time to calculate the scattering echoes from the ship when the size of the pixel matrix is
larger. Table 1 gives the time to calculate the scattering echo with different matrix sizes.
There are 256 frequency components calculated. The time required drastically increases
when the size of the matrix is larger. Fortunately, the proposed method is accurate enough
with a small size pixel matrix. As shown in Figure 10b,d, the SAR image obtained with the
pixel matrix size of 128 × 128 is almost the same as the SAR image with a size of 512 × 512.
The proposed rectangular wave beam-based GO/PO method has the ability to improve
the efficiency with low errors when the pixel matrix size is small.

Table 1. Simulation time of the EM scattering field for one pulse (256 frequency components) *.

Pixel Matrix Size Time Needed with Proposed Method (s)

128×128 16.364

256 × 256 65.224

512×512 260.925

* Calculated by computer with Intel CoreTM i7-6700K CPU and NVIDIA GeForce GTX 1080 display card.

4. Conclusions

The scattering echo simulation method in the frequency domain was used to calculate
the echo from a ship on a dynamic sea surface. The method introduced considers the
EM scattering properties of all the frequencies. Thus, the method is able to simulate
the scattering echo for a wideband signal. For a complex ship with many corners, the
rectangular wave beam-based GO/PO method can accurately calculate the EM scattering
properties when considering multiple scattering effects. The improved GO/PO method
is efficient and accurate when the size of the pixel matrix is small. Combined with the
SAR imaging process, the rectangular wave beam-based GO/PO method was used to
calculate the EM scattering properties of all the frequency components when the radar
emits a wideband pulse. With these EM scattering properties, the scattering echo of each
pulse can be calculated by using the introduced echo simulation method. The sea surface
is dynamic when the radar emits a pulse periodically. The SAR image results show that
the static sea surface is quite different from the dynamic sea surface, which gets blurrier as
the synthetic aperture time increases. In addition, multiple scattering, which increases the
back scattering, has an important impact on the SAR image of a complex target. Therefore,
the proposed method can simulate the SAR image of a target on a sea surface. Lastly, the
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method can improve the simulation efficiency with good accuracy by using a small pixel
matrix size.
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Abstract: This research activity, conducted in collaboration with the Aero-Naval Operations Depart-
ment of the Guardia di Finanza of Bari as part of the Special Commissioner for urgent measures of
reclamation, environmental improvements and redevelopment of Taranto’s measurement, is based
on the use of a high-resolution airborne sensor, mounted on board a helicopter to identify and
map all in operation and abandoned mussel farming in the first and second inlet of Mar Piccolo.
In addition, factors able to compromise the environmental status of the Mar Piccolo ecosystem were
also evaluated. The methodological workflow developed lets extract significant individual frames
from the captured video tracks, improves images by applying five image processing algorithms,
georeferences the individual frames based on flight data, and implements the processed data in a
thematic Geographical Information System. All mussel farms, in operation and derelict, all partially
submerged and/or water-coated invisible to navigation poles and other elements such as illegal
fishing nets and marine litter on the seabed up to about 2 m deep, have been identified and mapped.
The creation of an instant, high-precision cartographic representation made it possible to identify
the anthropogenic pressures on the Mar Piccolo of Taranto and the necessary actions for better
management of the area.

Keywords: mussel farming; high-resolution image; transitional water management; environmental
pollution; open source software

1. Introduction

The recent development of remote sensing techniques has contributed significantly
to improving the ability to monitor coastal areas more efficiently, providing cost-fitting
spatially distributed data [1,2].

Many different observing sensors are used to measure the qualitative parameters of
water bodies, i.e. suspended sediments, dissolved organic matter (DOM), chlorophyll-a,
and pollutants, map coastal areas and monitor anthropogenic pressures [3].

They are divided into two main categories based on the platforms used to locate them.
Airborne sensors are assembled on a platform within the Earth’s atmosphere (i.e. helicopter,
aircraft, etc.), and spaceborne sensors are mounted on spacecraft or satellites outside of the
Earth’s atmosphere [4].

Airborne sensors have greater spectral and spatial resolutions compared to space-
borne sensors [5,6].

Among the most commonly used sensors, there are digital cameras, Light Detection
and Ranging (LiDAR), Synthetic-aperture radar (SAR), MultiSpectral and Iperspectral
Scanner [7]. However, each platform has advantages and disadvantages necessary to know
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to choose the more appropriate instruments to achieve work objectives (Supplementary
Material, Tables S1–S3) [7–10].

Among the remote-sensing applications interesting is mapping mussels aquaculture
farms using high-resolution images acquired from different sources [11].

The primary role of mussel aquaculture is to provide food, but it also has an important
ecological role through carbon fixation and, therefore, contributes to improving coastal
ecosystems’ capacity to absorb atmospheric CO2 from anthropic sources [12,13].

However, the massive expansion of mussel aquaculture started in the 1990s continued
to proliferate rapidly [12]. This significant development took place in establishing several
illegals farms due to inadequate control and management. Consequently, mussel aquacul-
ture became a considerable pressure for natural resources by producing large quantities of
decomposing biomass that leads to eutrophication of the waters and enhancing potentially
harmful algal blooms with effects on local and migratory wildlife and the aesthetic value
of the coastal area [14].

Traditional mapping aquaculture farms are currently being developed on-site, includ-
ing Global Positioning Systems (GPS) [2,15]. However, these methods appear expensive
for the cost of field survey, time-consuming and potentially dangerous for the physical
restrictions that make navigation difficult. In this context, mussel farms, distributed over
vast areas, are difficult to detect and monitor with traditional monitoring devices.

1.1. Framework and Criticalities of the Study Area

The experimental site is located in the Southern Italy—Apulia Region; it is the Mar
Piccolo of Taranto, in the northern part of the town (Figure 1). This transitional water
system is characterised by an enclosed basin that shows lagoon characteristics due to
numerous submarine freshwater springs, knows as “citri” [16–18]. These submarine
springs, supplied by an underlying karst aquifer, recharge the Mar Piccolo with freshwater,
which influences the equilibrium of its ecosystem and provides it with the features of a
transition environment [19,20].

Figure 1. Study area.

The total surface area of the basin (20.72 km2), divided into two inlets, called first
(west) and second (east) inlet, which have a maximum depth of 18 m and 29 m [21] at
the citri and 8 m and 13 m as average values, respectively. The Mar Piccolo is connected
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with the Mar Grande through two channels, the Navigabile and the Porta Napoli channels
(Figure 1). The tidal range does not exceed 30–40 cm [22]. The circulation of sea waters
in the Mar Piccolo is influenced not only by the semi-enclosed characteristics but also by
human infrastructure [23]. Due to its peculiar characteristics, the Mar Piccolo is one of the
major mussel farming sites in the Mediterranean Sea, with a maximum production capacity
of about 60.000 t/y [24,25].

Mussel farming is one of the oldest practices in aquaculture of the Taranto area [24],
particularly in the Mar Piccolo. It is dated back to the end of the 17th century and was
carried out on fixed structures that have remained almost similar to this day. Techniques
are based on the empirical knowledge of mussel farmers handed down from father to son
for centuries. It assumes high socio-economic importance in Taranto, and cooperatives
or individual firms traditionally practise it often family-run without a real management
collaboration plan. The entire sector comprises 37 individual cooperatives, employing
about 900 farmers (300 full time and 600 part-time) [24]. However, it is not easy to quantify
the annual turnover, which is in the order of M€ [26].

The current legal framework, through the Ordinance of the Taranto Port Authority
n◦107/2005 (subsequently amended and supplemented by Ordinance n◦222/2009 [27]
regulates the mooring, transit and anchorage of nautical vehicles and people in the first
and second inlets of the Mar Piccolo, outlining the profile of mussel plants in the two water
basins. In addition, different regulations apply to the two inlets: for the first inlet, the
Ordinance of the President of the Regional Council n◦532 of 13 September 2018 [28] in
which it is forbidden for mussels to exceed 28 mm in this sub-basin due to accumulation of
water contaminants; for the second inlet, a fixed monitoring station was identified for the
health surveillance of mussel farming areas under EC regulation n◦854/04 [29].

If, on the one hand, mussel farming represents a characteristic of the Taranto area
and products are particularly appreciated, on the other hand, this practice contributes to
increasing pollution. In particular, mussel farming causes the accumulation of marine litter,
especially plastic waste ghost nets [30] in the Mar Piccolo basin.

In recent decades serious organisational and management deficiencies have led to a
deterioration in the quality of the mussels produced. In July 2011, following the detection
of dioxins and polychlorinated biphenyl dioxins-like (PCB—DL) in the mussels of the first
inlet, its collection and handling was banned [26].

In addition, the lack of maintenance has favoured over the years the accumulation of
ancient structures to the point that abandoned farming areas become a source of danger
to shipping or are illegally occupied without authorisation. Hence, through accurate
spatial planning, regulating mussel production is essential to ensure sustainable use of
marine resources [31].

Due to this poor management of permits, licenses and concessions, illegal phenomena,
industrial pollution, and climate change affected mussel quality and productivity [32–34].
This area is included within the Italian Sites of National Interest (SIN) of Taranto, which
needs urgently environmental remediation [35]. More recently, the Mar Piccolo has been
the subject of several studies to identify strategies for the site’s reclamation [36,37].

As generally happens in this type of activity, data coming from mussels cultivation
are highly variable, aggregated and poorly documented. However, valid and reliable data
is here reported: the production of mussels in 2010 is close to 40,000 tons/year, in the Mar
Piccolo, of which about 13,000 t/year in the first inlet [24,26].

1.2. Mussel Farms of Mar Piccolo

The Mar Piccolo of Taranto is the Mytilus galloprovincialis L. historical breeding site,
representing a significant socio-economic activity.

A high density of mussel farms characterises the study site. Among these are recognisable
traditional plants called quadri (Figure 2), built with chestnut poles and synthetic strings [38],
and those created using plastic materials [39], to form the latest long lines (Figure 3) [24].
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quadri 

Figure 2. Traditional mussel farms called “quadri” in the first inlet of Mar Piccolo (Puglia Region).
May 2015.

 

Long lines 

Figure 3. Floating systems of mussel farms called “long lines” where the plastic buoys are clearly
visible (in the background, a former shipyard is visible) in the first inlet of Mar Piccolo (Puglia Region).
May 2018.

Mussel crops, called squares, are formed by a variable number (4–6) of parallel rows of
chestnut wood poles for the tip at the bottom of the sea. Under the sea’s surface, the poles
are connected by ropes of synthetic material, called libàni.

Each module consists of a rope, generally of polypropylene, called ventìa, whose
thickness varies between 40 and 50 mm and whose length is not less than 5 m. The floats
placed at the two ends of the ventìa were anchored to the bottom using dead bodies in
concrete, with an anchoring function, with polyethene or polypropylene cables, whose
length varies according to the bathymetry of the site. The ventìa has the function of
supporting the reste, tubular stockings in which the mussels are grafted and supporting
growth.

In the last decades, the availability of floats in plastic material has allowed the con-
struction of floating systems, called long lines, which have spread, progressively replacing
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the systems with poles. These floating suspension farms are typical of inland seas and
lagoons, such as the Mar Piccolo.

1.3. Objectives of the Work

The activity reported in the present work was born as part of the actions undertaken
by “Special Commissioner for urgent measures of reclamation, environmental improvements and
redevelopment of Taranto”, in cooperation with National Research Council, University of Bari
Aldo Moro and Apulian Aero Naval Regional Command of the Finance Police. It is titled:
“Interventions for the mitigation of impacts on the Mar Piccolo”.

The general objective of the present study is to develop a methodology that combines
High-Resolution airborne images with open-source software for the elaboration of data
aimed to map aquaculture mussel farms in the “Mar Piccolo” of Taranto city (South Italy).

Moreover, the specific aims of the study referred to the study case of Taranto were:

• realise a census of all the mussels farms in the first and second inlet of the Mar Piccolo
providing accurate information on the number of units, the precise location through
georeferentiation, the area, perimeter and density of mussel farms;

• identify and georeferencing abandoned cultivation fields for which navigation can be
dangerous;

• identify illegal installations and provide details necessary to local port authorities to
define the appropriate management interventions of the area

• detect any unauthorised anthropogenic action and environmental pressures that may
alter the profile of the marine ecosystem in terms of overfishing

• plan strategies for the surveillance, remediation and restoration of the Mar Piccolo area

These problems and criticalities have been showing up lately as over time no remedia-
tion operations have ever been carried out on the systems that have gone into disrepair
and now creates severe problems for the Mar Piccolo ecosystem and navigation, as they are
real hidden dangers (Figure 4).

 

Figure 4. Ancient mussel farms abandoned and never restored (the red arrows indicate the barely
visible poles on the water). First inlet of Mar Piccolo (Puglia Region). May 2018.
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2. Materials and Methods

2.1. Data Acquisition
2.1.1. Sensor Characteristics

The Leonardo Electro-Optic Surveillance System (LEOSS) is the latest multi-sensor,
high accuracy, four axes gyro-stabilised for aerial surveillance applications, designed to
be compliant with demanding vibration profiles. The system combines high-performance
sensors capable of meeting the requirements of advanced fixed and rotary-wing aerial
platforms. The Optronic Turret Unit (OTU) is the central unit of the system that, through
the IR (Infrared) and CCD (Change Couple Device) sensors, produces the visible and
infrared vision of the framed scene. Among the electro-optical sensors of the system, there
are a High Definition Color Camera, TVC-HD; an IR SD (Standard Definition) camera and
a Short-wave Infrared (SWIR) camera.

The TVC-HD Camera is a High Definition Serial Digital Interface whit CMOS technol-
ogy. It produces an image of 1920 × 1080 pixels and has a 40X optical zoom up to NFOV
0.5◦ any more than a 4X digital zoom.

The IR SD Camera works in the 3–5 micron IR spectrum. It produces an image of 640
× 512 pixels and has optics SD and 2× optical zoom whit a Narrow Field of View (NFOV)
of 0.6◦ × 0.48◦.

The SWIR camera, on the other hand, offers the possibility to observe scenarios with
low visibility (haze, fog, fumes); it is set to work in the 0.9–1.7 micron spectrum and
produces an image of 640 × 512 pixels. The optic has a High Field of View (HFOV) from
27◦ to 0.7◦ and a 40× optical zoom integrated whit 4× digital zoom.

The sensor is mounted on an AgustaWestland AW-109N Nexus helicopter.

2.1.2. Planning of Flight

The flights were carried out in eight days of activity from 17 to 25 June 2018. In total,
eighty-three video tracks for over 34GB of archive data have been acquired.

The optical data for each swipe consist of video files with an average duration of
3 minutes and 30 seconds, with a frame rate of 25 frames/second and resolution of
1920 × 1080 pixels in AVI format, for a final resolution on the ground of 5 cm.

All the flight paths used were georeferenced to understand the totality of the activity
carried out in the overflights of the Mar Piccolo. The trajectories were processed by com-
bining the information provided by the GNSS receiver and the inertial platform on board
the helicopter with the information provided by the permanent GNSS stations of Ginosa,
Valenzano and Fasano. The precision processing of the trajectories is necessary to correctly
identify the position and orientation of sensors during the flight. The files generated by the
onboard navigation system are called logbooks; they have been exported in CSV exchange
format and contain the following information: date, time, latitude, longitude, altitude of
helicopter and the observed object, roll, pitch, yaw. Figure 5 shows all the flight trajectories
(set of all georeferenced points) performed obtained from the logbooks of the onboard
instrumentation. All data were planimetrically reported in the WGS 84/UTM zone 33N
reference system, EPSG 32633.
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Figure 5. All flight paths from the logbook.

2.1.3. Field Inspections

To verify the correctness of the coordinates of some acquired details and when the
ground control points (GCPs) were not sufficient, additional inspections were carried out
aimed at thickening the network of GCPs with Leica CS25 differential GPS.

2.2. Image Processing

To pursue our mapping objectives, they are generally used push-broom sensors (also known
as an along-track scanner) installed on aircraft. However, given the necessary presence of the
Guardia di Finanza to monitor other aspects with a high degree of confidentiality, to optimise
resources, we found it helpful to develop an ad-hoc operational workflow based on interoper-
ability tools. It is based on the steps reported in Figure 6. As shown in Figure 6, for video files,
substantial processing (six distinct phases) is required to georeferences the individual frames
through the data of the flight logbooks. Only after georeferenciation, it is possible to obtain the
information indispensable to create the thematic maps helpful in achieving our objectives.

Figure 6. The operative workflow implemented.
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Differently from many satellite images and that produced by well-known airborne
sensors for which many algorithms and software for the image processing are available,
our novel LEOSS sensor miss of any correlated tools. Therefore, our efforts aimed also to
develop a new methodology fitted for LEOSS sensors that fulfil our application purposes.

Right from the design of the activity, it was known that to adapt the specific engi-
neering of the sensor and the acquisition methods via helicopter to our specific mapping
targets, several changes in the acquisition-processing phase were necessary to reach the
set goal. In addition, we always considered the possibility to introduce several new useful
functions according to other needs that could emerge during the operations.

Driven by these needs, we opted for the choice of Open Source software focusing
exclusively on the high-level programming language python, considered very robust and
highly versatile and with a consistent number of python bindings [40], that are packages
and extensions tools for programming and manipulating the Geospatial Data Abstraction
Library (GDAL) [41].

The CNR-IRSA working group has therefore developed a series of scripts capable
of extracting a considerable amount of information from the video data acquired at the
same time as the aircraft’s logbooks, preserving the considerable degree of detail (as said
resolution of 5 cm) allowing to obtain an instant representation of the investigated area
focused mainly on the mapping of mussel farms present.

2.2.1. Video Data Processing

For our purpose, first, we used FFmpeg [42], a leading multimedia framework, able
to decode, encode, transcode, mux, demux, stream, filter and play the video under the
GNU Lesser General Public License [43] under an Ubuntu server [44]. So, the first step
consists of a frame extraction technique that implements video content by selecting a set of
summary keyframes to represent video sequences [45].

Secondly, a crop filter was applied [46] to remove undesired logos such as compass
and navigation data. The number of pixels removed is always the same because these
are portions of the video which are fixed and which report navigation data. In this way,
each frame is cleared of the raw data frame of the video file in which the superimposed
information relating to the aeronautical acquisition software appears.

After these first two phases, we included the use of another free software delivered
as a ready-to-run binary distribution or as source code that can be used, copied, mod-
ified, and distributed in both open and proprietary applications [47] under a derived
Apache 2.0 license [48].

The third stage of video processing consists of a normalisation operation increasing the
contrast in an image by stretching the range of intensity values. Normalisation transforms
any n-dimensional grayscale image (in the case of an RBG, every single channel) into a
new image according to the formula with the desired range 0–255 to obtain more contrast
through the dynamic range expansion techniques [49]. The linear normalisation of a
greyscale digital image is performed according to the formula:

IN= (I − Min)
newMax − newMin

Max − Min
+ newMin (1)

with:

IN new pixel value;
I old pixel value;
Min and Max are the minimum and maximum pixel value measured;
newMin and newMax are the new minimum and maximum desired pixel values.

An adaptive-sharpen filter was then applied to the processed frame aimed at improv-
ing the contours by borrowing the technique from the processing of medical images that
are known to have a blur with a special tuning weight that controls the amount of the
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produced sharpness helped to increase the acutance of edges and improve the overall
sharpness significantly in the processed images [50].

Subsequently, to correct the intrinsic characteristics related to the acquisition in the
optical field of the sensor with an IR cut filter for low light visibility (not removed due to
other mission purposes), selective colour correction had to be applied. The result is that
the red band was shifted towards the thermal infrared and selective colour correction had
to be applied by selectively correcting the green colour by an empirical value of 20% to
counterbalance the shift towards red.

This step is highly effective for improving colours for coastal environments and
improving the contrast between semi-submerged and submerged objects near the coast in
the water matrix.

A gamma value correction was applied, which indicates the slope of the logarithmic
curve representative of the relationship between signal and response according to (2)
(specifically, it represents the derivative of the relationship between input and output in a
logarithmic space).

γ =
d log(Vout)
d log(Vin)

(2)

with:

γ gamma value;
d log(Vout) logarithmic value of the digital signal in output;
d log(Vin) logarithmic value of the digital signal in input.

To keep the data in a domain as uniform as possible from the perceptual point of
view, the gamma value of the images in post-processing was empirical. For the case study,
we based on the acquisition of 10 keyframes representing different conditions, set at +0.9,
which was also valuable for enhancing the contrast. Indeed, if the gamma value increases,
the resulting curve will be convex, and the resulting image will be more bright while
shrinking that value will darken the image, and the curve will be concave [51]. In Figure 7.
we report three of the ten keyframes used.

An example of a result relating to the overall improvement of the image for each frame
is shown in Figure 8. As it is possible to observe, the improvement has also significantly
reduced the slight blur of the starting image because the sensor was unable to focus well
due to the speed of the aircraft and the focal values. The reader can also notice how the
green colour looks (much closer to reality) in the final result (Figure 8).

2.2.2. Frames Georeferencing

At the end of the image enhancement phase, we inserted the georeferencing procedure
prepared with the data coming from the logbooks of the onboard instruments. The first
critical aspect of this phase is linked to the fact that there was only one point for georefer-
encing the helicopter position from which we had to obtain the coordinates of the point in
the centre of the frame with geometric calculations.

The second critical aspect is related to the frame rotation value derived from the sensor
positioning angle that was not recorded in the flight logbooks. Therefore, every effort was
made to derive this data from the helicopter position values assuming that the helicopter
and sensor moved in unison.

So, we used the following Free and Open Source libraries named Geospatial Data
Abstraction Library (GDAL) [41] and the following python bindings [40]. The main python
modules implemented are osgeo, gdal, osr, math, utm.

The georeferencing of the single video frames in geographic raster takes place through
the creation of a geotransform array that gdal uses to describe a raster position that needs
the following input information: upper left position in x and y coordinates, pixel scale for x
and y directions, values of x and y inclinations and finally the epsg code of the projection.
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Figure 7. The figure represents how to change three of the ten keyframes used to empirically testing how to change three of
the ten keyframes used to set empirically the gamma value based on acquired video files. On the right, the slope of the
curve representing the relationship (in logarithmic terms) between signal and response.

 

a) b) c) 

d) e) f) 

Figure 8. Image enhancement in three different environments: (a–c) the acquired image, (d–f) the same reworked image.

Since there was often wind and consequently the rotation value increased, to perform
a more precise georeferencing we preferred using an Affine Transformation through the
implementation of the affine package and calculating the necessary input parameters
through the gdalinfo and pil packages, helpful retrieving geometric information from the
images. Data from logbooks provided information on the position in the spatial and
temporal moment of the acquisition.
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In essence, an Affine Transformation represents and gives life to a relation between
two images of affine self-similarity to the point of giving life to fractals [52]. Affine trans-
formation can be expressed in matrix multiplication (linear transformation) followed by a
vector addition (translation). We can use an Affine Transformation [53] to express:

1. rotations (linear transformation), if we think to the sensor;
2. translations (vector addition) if we think to the shift due to wind shifts;
3. scale operations (linear transformation), introduced because the wide-angle lens

created a difference in surfaces re-covered by the pixels, i.e. the central pixels cover
less surface than the lateral ones.

In summary, the following parameters were calculated, and some necessary correction
factors were implemented (the onboard instrumentation was still in the testing phase,
and there was no detailed information on the position of the sensor concerning that of the
helicopter) to obtain the correct centimetre georeferencing of the frames can be automatic:

• total framed width as a function of the shooting height;
• average coverage area of the pixel recorded on the monitor;
• calculation of the upper left corner upwards in degrees for final translation;
• semi-diagonal frame calculation;
• calculation of the number of base map pixels involved;
• calculation of the scale parameter between the two maps;
• correction factors for the above reasons.

Once imported into the GIS, each frame was rechecked using different information
layers relating to the most recent years to verify the correct georeferencing and carrying out,
where necessary, a further orthorectification. All the images produced were subsequently
used to create a mosaic, overlapping them from east to west and creating a unique raster
for each captured video. In this way, it was possible to analyse the entire area of interest
and create a shapefile as a union framework (Figure 9a) from a mosaic of more frames
(Figure 9b), appreciable when superimposed on a recent base map, aerial image of Puglia
Region dated 2016 [54].

In addition, operating in this way, it is possible to see in Figure 9c a result of the
superimposition of the georeferenced frames and their relative variability.

This variability is due to the wind, above for the rotation and with the flight paths
that instead seem straight in the very short instant of time.

Unfortunately, despite the introduction of some correction factors and even if the
script created extracts the individual "tiles" from the acquired video and places them in a
reference system thanks to the data contained in the flight route logbooks, sometimes due to
synchrony discrepancies due to instrumental problems, the activity required further manual
corrections for single frames, this correction was made in a Geographical Information
System (GIS) environment with a tool to perform an interactive raster georeferencing [55].
However, the number of frames thus rectified amounts to less than 5%.

More complicated and precise georeferencing algorithms could not be applied; for
example, polynomial algorithms need at least n. 3 points.

Only the framework is shown as the data are reserved for ongoing investigations
aimed at verifying any spaces illegally occupied and being judicial evidence. In the event
of publication the charges, for formal defects provided for by the Italian legislation, would
lapse and therefore cannot be made public.

Through the processing carried out, it was possible to investigate the Mar Piccolo
(I and II inlet) entire basin for all the areas affected by the phenomena under investigation.
Whereas fish farms were not found, the frames were discarded to lighten the files produced
to make them easier to use on each machine.
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Figure 9. (a) phase of the creation of the union framework. Detail of some video tracks during processing, a detail in which
the set of significant individual frames is superimposed for each flight path. (b) Mosaic of two frames of the investigated
study area. The perfect overlap of them is shown with the example of a street; (c) Overlapping of the frames after the
georeferencing phase with the flight route data identified with dots; (d) Example of how a frame, not affected by the
presence of anthropogenic objects, is coloured (right).

This activity was relatively immediate to carry out because, with the implemented proce-
dure in the absence of objects of anthropogenic origin (i.e. buoy) in the sensor’s field of view,
the single frame is coloured in intense green, very easy to find and put aside (Figure 9d).

We did not consider it helpful to use many “machine hours” to create a mosaic of
raster to reduce the visibility of the edges of the frames as this lengthy procedure would
not have added anything useful but could only be applied for aesthetic purposes.

3. Results

For the first time, a complete mapping of the mussel farming plants present, active
and abandoned, in the first and second inlet of the Mar Piccolo of Taranto was carried out.
This achieved result represents a significant milestone to understand the dynamics taking
place in the territory

useful to implement initiatives for the sustainable management of this delicate transi-
tion ecosystem.

In total, over 5000 frames were georeferenced for a total of over 126 GB of files in
Tagged Image File Format (TIFF) format have been produced relating to ultra-detailed
mapping (resolution < 5 cm) of the over 80 videos acquired by the Guardia di Finanza.
Images acquired and processed provided the mapping of each cultivation module of the
mussel farm.

Pole mussel farms, floating buoys and longlines were easily visualised because their
identification on the image is related to the sensor’s spatial resolution. The socks, generally
made of polypropylene, have a length ranging from 5 to 6 m, are located at a distance
of about 1.5 m from each other and have meshes whose size depends on the size of the
mussels. All these details were not possible to map with the aerial images of the Puglia
region in 2016 as they are subject to the influence of waves that confuse the interpretation
of the images, while this does not happen with the LEOSS sensor (Figure 10a).
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a) 

b) c) 

Figure 10. (a) Example of details identifiable with LEOSS unlike the aerial images of Puglia of 2016; (b) Detail of the part of
the overall mosaic of all mussel farms; (c) Magnification of the high degree of detail provided.

Aiming to detect any unauthorised anthropogenic actions that may alter the ecosystem
profile, efforts were made to provide new, highly detailed information.

The long lines identified in each module is located at a distance very variable in the
interval of 10–20 m one to each other (Figure 10b,c).

In addition, through the on-screen interpretation, with GIS Desktop software, it is
possible, for example, to identify variations in the perimeter of mussel farming fields.
These variations, in removal and addition, have been identified in a percentage >20% as a
total number.

Furthermore, old poles mussel farms in wood and galvanised steel alloys (semi-
submerged and submerged), colour (red, blue, yellow, white) of floating polyethene buoys
of varying sizes (generally 1 m in length) were also identified (Figure 11a,b).
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a) b) 

c) d) 

Figure 11. (a) Invisible and submerged poles (red arrows), (First Inlet of the Mar Piccolo, Puglia Region); (b) Abandoned
mussel fields. First Inlet of the Mar Piccolo near Galeso river mouth, Puglia Region (c) Identification of an abandoned
mussel farm. (c) Aerial image of Puglia in 2016; (d) LEOSS recent image on the right after the processing here reported. We
could call it the “luminol” effect.

Thanks to work carried out, it is also possible to identify and recognise those fields
once used and now abandoned (Figure 11c,d) that are not visible with the aerial images
available [54] and not even with the well-known Google services.

On the one hand, in the first inlet, the estimated area dedicated to mussel farming
is 2.8 km2 (on a total area of 8.3 km2), representing 34% coverage. The 13% of the area
dedicated to mussel cultivation (0.38 km2) is affected by ancient abandoned structures.
These structures are mainly located near the Galeso submarine water spring and at the
mouth of the homonymous river.

On the other hand, in the second inlet, the estimated area dedicated to mussel aqua-
culture activities is 6.54 km2 (on a total area of 12.4 km2), representing 53% coverage.
Differently from the first inlet, in the second one, just 2% of the area dedicated to mussel
farms (0.15 km2) is affected by the presence of abandoned structures.

This difference is probably due to the presence of several shipyards active in the first
inlet until a few years ago, which prevented the installation of the mussel facilities to ensure
the navigation of ships.

In addition, lately, water pollution phenomena due to PCBs and dioxins, have led to a
further abandonment of mussel crops by fishermen in the first inlet.

In the second inlet, it was possible to increase the density of farms because no active
shipyards and no pollution phenomena subsist.

The high quality of the images processed, according to the procedures used, also
made it possible to identify other partially submerged structures, bulky waste (wreck)
and/or near “on the surface of the water” (tire) Figure 12. Precision mapping activities are
still ongoing.
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Figure 12. Some waste and wrecks identified by the mapping activities (the photos are related to post-mapping inspections.
First and second inlet of the Mar Piccolo (Puglia Region).

4. Discussion

The video data available were processed for two purposes:

• Mapping of mussel crops (Figure 10) for a comparison with the authorised areas in
the entire study area;

• Identify semi-submerged poles, mussel cemeteries and other significant aspects of the
environmental degradation of the area and ecosystem (Figures 11 and 12).

Based on these objectives, the applied methodology has led to remarkable results
(Figure 10) that can implement the cognitive status of the area of interest due to the higher
resolution acquired than that obtained to date [54].

Given the importance of the ongoing investigations, using images certified by the
Guardia di Finanza, it is possible to capture a picture of the state of the art of the entire
ecosystem at a given moment. Otherwise, using images from free providers, we would
notice that we have no absolute certainty of the acquisition date of the various strips and
that the dates of contiguous strips often have different dates.

Therefore it would not be possible to have a representative image of the entire area
at a given time. In addition, Italian law provides that evidence must be collected by state
police bodies to initiate judicial activities.

In previous studies, mussel farms were often mapped and monitored using images
from Landsat, QuickBird, SPOT, RADARSAT and ENVISAT satellites [11,56]. How-
ever, the limited spatial resolution of satellite images could not provide sufficient in-
formation to map in detail mussel aquaculture systems.

Among the different satellites images, the maximum spatial resolution achievable is
not confrontable with the visible range of LEOSS.

Comparing aerial images with a 20 cm spatial resolution with our images acquired
by LEOSS sensor with a higher resolution (5 cm) (Figure 10), it is possible to observe an
evident improvement of the level of detail of our images, allowing us to distinguish the
mapped buoys farm’s typology and colour, the presence of ventia and pole farm’s shape.
Moreover, it should be considered that detailed aerial images are not freely accessible, and
their retrieval is not so easy even for port authorities.

Analysing the overall results, is it possible to observe a very disordered situation
in the Mar Piccolo of Taranto (Figure 13), resulting from clear overexploitation of the area
also due to the presence of old mussel aquaculture systems. Moreover, different types
of waste, submerged and semi-submerged wrecks and abandoned structures, were also
observed (Figures 11 and 12). All these aspects translate into a real obstacle course that
makes navigation extraordinarily complex and dangerous for boats and local authorities.
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Figure 13. Example of disorder due to overexploitation.

Proper management of the areas of the Mar Piccolo granted in concession for the de-
velopment of mussel farming activities should take into account the load-bearing capacity
of the system to guarantee both the environmental and economic sustainability of the
production site.

However, in the absence of specific studies in this sense, it has not been possible to
give more precise indications on the maximum load for each plant (e.g. the number of
pergolas per farm room) relying on the direct experience of mussel farmers.

In this context, based on our data, manufacturers will have indications on the optimal
load to be respected to have a quality product.

The work carried out has provided important information, which, however, cannot
be fully carried out because of the ongoing investigations by the competent authorities.
Many mussel farms had no authorisation at the time of video acquisition. In addition,
this study made it possible to identify the distance between the different plants and their
location in the two inlets. This aspect is important to quantify the production capacity of
the considering marine area also considering the benefits to the community in terms of
ecosystem services [12].

According to [56], the spatial planning of mussel fields must occur in a specific site
way analysing the different variables that characterise the area of interest. Therefore,
according to current regulations, a specification for the use and management of the areas
granted for mussel farming activities is required considering the studies and the surveys
carried out [25,57].

The single area covered by the state concession, i.e. the water mirror intended for
mussel farming, is assigned by procedure and public evidence.

The spaces that can be granted in the Mar Piccolo of Taranto are located in the First inlet
and the Second inlet only within the areas delimited for this purpose by the Ordinance
of the Port Authority 107/2005 [58]. According to the provisions of the abovementioned
Ordinance, the individual fields suitable for the necessary installation have been identified
within each area consented to mussel farming.
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This assessment took into account the bathymetric development of the seabed, the
presence along the coast of canals and rivers [59], potential landing points, the necessary
safety distances for the navigation of nautical means and their passage through mussel
fields. The individual modules that can be obtained for mussel cultivation, each rectangular,
have an extension of 2 Ha (125 m × 160 m). For the First Inlet, 63 areas are planned, for
a total area of 126 Ha. In the Second Inlet, 238 areas of 2 hectares each are designed, for
a total area of 476 Ha. Therefore, the total number of areas in the Mar Piccolo is equal
to 126 + 476 = 602 Ha. The current spatial planning has a minimum distance of 20 m
between adjacent rows of areas and 5 m from offshore to coast. A minimum distance of 50
m has been provided among the sectors identified, suitably increased at potential landing
areas. Dealers must ensure this minimum distance. Each area granted is characterised by a
unique code consisting of the sector name and an identification number. At each of the
four vertices of the area in use, the dealer must place a yellow bi-conic buoy. Among these,
the one at the S-E summit of the concession must be equipped with a flag and must have
applied an identification plate of the concession. The plant structure consists of a series of
parallel modules, organised according to the “monoventìa” or “biventìa” system, i.e. with
one or two main ropes suspended on the same series of floats.

Each module consists of a polypropylene rope, usually called “ventìa”, whose thick-
ness varies between 40 and 50 mm and the length of which is not less than 6 metres.
The long line consists of a number between 10 and 20 “ventìe” [60]. Floats are PE-HD
buoys for mussel breeding in various colours and generally varying in size (generally
1 m in length). Floats at both ends of the “ventìa” are anchored to the bottom by dead
concrete bodies, having an anchor function, with polyethene or polypropylene cables, the
length of which varies with the bathymetry of the site. The “ventìa” has the function of
supporting the “reste”, tubular socks that act as a support for the mussel growth [25]. The
socks, generally made of polypropylene, have a length ranging from 4 to 6 m, are located
at about 40–50 cm from each other. The mesh size depends on the size of the mussels. The
distance between the floats carrying the parallel “ventìe” is between 10 and 20 m (Figure
14).

 

Figure 14. Scheme of the mussel farm module according to the proposed specification. B = Buoy.

Each concession must adopt floats of the same colour and size (unless otherwise
indicated for any housing areas), taking care to adopt colours other than adjacent con-
cessions, to distinguish the ownership of the area. Finally, particular attention should
be paid to waste that can create problems for the marine ecosystem [30,61]. In this re-
gard, the municipality of Taranto has already signed an agreement protocol for the use of
bioplastics [62].

Possible alternatives to current mussel farming systems could be identified by multi-
purpose structures such as shellfish towers that can be used for mussels and other possible
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candidates as seaweed, lobsters, sponges or tunicates [63,64]. However, these structures
are currently in the prototype phase, and they need deep waters, present only in limited
areas of the Mar Piccolo, to be installed. This is a big deal because the sediment of the Mar
Piccolo is susceptible to remoulding and resuspension due to its very low consistency [36].
Therefore this solution may not be optimal for the reference area.

The possibility of installing mussel farms hooked to the supporting structures of
offshore wind farms appears to be very advantageous [65], but even in this case, we must
consider some aspects. Regarding the positioning of mussel systems in the Puglia region,
the legislation provides that mussel farms must limit the impact on the environment
through mitigation actions locating them far from protected areas. In addition, the solution
proposed by [65] has to take into account the health and hygiene, landscape constraints
and cultural and economic aspects (cost of authorisations) that subsist in the area.

Theoretically, it would not be possible to build mussel farms in the first inlet due to
the proximity to the SIN (currently we go in derogation of the regulations).

Moreover, the role of mussels in water filtering and remediation [66] remains essential
as an ecosystem service for the environment [67].

Lately, mussel farming practices in the first inlet are in decline due to heavy pollution,
which forces farmers to pay higher costs, often to dispose of polluted and unsaleable crops.
Therefore the point on which to focus attention is to remove the pollution sources and
reclaim the area. In addition to this delicate aspect, the right approach is to make the
practice more sustainable by reusing waste products such as mussel shells and recovering
plastic materials, as highlighted by the many project proposals present in the Italian
Recovery and Resilience Plan (NRRP) [68] which are based on studies on hotspots as
evaluation more critical of the life cycle of mussel farms [69].

5. Conclusions

The specific activity carried out supports the interventions to be implemented for the
reduction and/or interruption of contamination flows in the Mar Piccolo as well as the
exploitation of marine resources.

The territorial analysis carried out led to the achievement of an instant and current
cartographic representation of the state of the places in the entire basin of the Mar Piccolo.

The digital cartography produced provides a knowledge database thanks to which
those structures that impact the ecosystem of interest can be identified with high precision
and a large scale of detail.

The results achieved by these activities have led to the definition of detail of all the
mussel farms in the Mar Piccolo sea and the areas affected by illegal mussel cultivation
activities. Therefore, it was possible to map those areas where it was necessary to remove
abusive structures and sanction fishers and lay the groundwork to develop a sustainable
management model in the two inlets of the Mar Piccolo concerning mussel farming. In addi-
tion, the foundations have been laid to implement a specification of use for these activities,
which has become an integral part of the Municipal Coastal Area Management Plan [70].

The level of detail reached with our methodology (airborne sensors and open-source
software) is considerably higher than satellite imagery, allowing us to frame in great detail
the state of mussel farming and propose guidelines for crops for the first time and allowing
the identification of submerged objects up to 1m deep.

Moreover, through the operational workflow developed, it was also possible to identify
different types of marine litter (e.g., out-of-use tires), illegal activities along the banks,
uncontrolled mini landfills and illegal fishing and submerged objects otherwise not visible
(e.g., "ghost nets", wrecked boats and sunken mussel seed capture installations).

The adaptability of open source software to particular and complex contexts has been
widely demonstrated as they can also integrate well with hardware components whose
characteristics are in a certain way little known and sometimes secret.

Finally, during the processing of the images, it was also possible to identify algal
communities; these would not have been identified with sensors operating in the same
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i.e., the visible range. This reveals new research perspectives for developing new sensors
dedicated to the detailed mapping of these biological characteristics of transitional waters
and shallow water bodies.

Other developments that can be hypothesised and on which appropriate investigations
are being made are:

• identification of any illegal activities as the presence of the fishing net Figure 15;
• detailed mapping of all waste (Figure 16, Figure 17);
• algal blooms and species of high ecological interest (phanerogams, biocenosis) that

have been registered in the study area on the days of image acquisition;
• identification of unfavourable locations for mussel farm sites due to turbidity or

potential development of harmful algal blooms (we could perform this also using
historical series of satellite maps);

• identification and mapping of marine biocoenosis and phanerogams of high ecologi-
cal interest

 

Figure 15. Illegal fishing net.

 

Figure 16. Detail of two tires (red arrows) on the beach.
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Figure 17. Inspection in which we verified the presence of waste on the banks. First inlet of the Mar
Piccolo (Puglia Region). September 2019.

Although our most ambitious goal would be to create other aircraft features, such as
real-time counting and mapping, immediate change detection through implementing the
harris algorithm [71].

Finally, it is hoped that this case study will become best practices in the combined
use of open source technologies in previously precluded fields, especially for a valuable
purpose to the community.
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8. Gholizadeh, A.; Kopačková, V. Detecting vegetation stress as a soil contamination proxy: A review of optical proximal and remote

sensing techniques. Int. J. Environ. Sci. Technol. 2019, 16. [CrossRef]
9. Chang, J.; Clay, E.D. Matching ReMatching Remote Sensing to Problems-Remote Sensing to Problems November 2016. In iGrow

Corn: Best Management Practices; Clay, E.D., Clay, S.A., Carlson, C.G., Byamukama, E., Eds.; South Dakota State University:
Brookings, South Dakota, 2016.

10. Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Spaceborne and airborne sensors in water quality assessment. Int. J. Remote Sens.
2016, 37, 3143–3180. [CrossRef]

11. Grant, J.; Bacher, C.; Ferreira, J.G.; Groom, S.; Morales, J.; Rodriguez-Benito, C.; Saitoh, S.-I.; Sathyendranath, S.; Stuart, V. Remote
Sensing Applications in Marine Aquaculture-Remote Sensing in Fisheries and Aquaculture—Chapter 6 Remote Sensing Applications in
Marine Aquaculture; Forget, M.-H., Stuart, V., Platt, T., Eds.; IOCCG: Dartmouth, NS, Canada, 2009.

12. Suplicy, F.M. A review of the multiple benefits of mussel farming. Rev. Aquac. 2020, 12, 204–223. [CrossRef]
13. Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments-A review. Ocean.

Coast. Manag. 2016, 119, 244–266. [CrossRef]
14. Nikolaidis, G.; Koukaras, K.; Aligizaki, K.; Heracleous, A.; Kalopesa, E.; Moschandreou, K.; Tsolaki, E.; Mantoudis, A. Harmful

microalgal episodes in Greek coastal waters. J. Biol. Res. 2005, 3, 77–85.
15. Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. A review of remote sensing for the assessment and management of tropical

coastal resources. Coast. Manag. 1996, 24, 1–40. [CrossRef]
16. Cerruti, A. Le sorgenti sottomarine (Citri) del Mar Grande e Mar Piccolo di Taranto. Ann. Ist. Super. Nav. Di Napoli 1938, 7,

171–196.
17. Spizzico, M.; Tinelli, R. Hydrogeology of Galese spring, Mar Piccolo of Taranto (South Italy). In Proceedings of the 9th Salt Water

Intrusion Meet, Delft, The Netherlands, 12–16 May 1986. Water Manag. Group Delft Univ. Technol.: Delft, The Netherlands, 1986;
pp. 85–97.

18. Massarelli, C.; Matarrese, R.; Uricchio, V.F.; Vurro, M. GRASS GIS processing to detect thermal anomalies with TABI sensor. Conf.
FOSS4G Eur. Como 2015, 1, 477–482.

19. Zuffianò, L.E.; Basso, A.; Casarano, D.; Dragone, V.; Limoni, P.P.; Romanazzi, A.; Santaloia, F.; Polemio, M. Integrated Environ-
mental Characterization of the Contaminated Marine Coastal Area of Taranto, Ionian Sea (Southern Italy)-The RITMARE Project.
Environ. Sci. Pollut. Res. 2016, 12491–12494. [CrossRef]

20. Valenzano, E.; D’Onghia, M.; De Giosa, F.; Demonte, P. Morfologia Delle Sorgenti Sottomarine Dell’area di Taranto (Mar Ionio).
Mem. Descr. Carta Geol. d’It. 2020, 105, 65–69.

21. ARPA-Puglia. Approfondimento Tecnico-Scientifico Sulle Interazioni tra il Sistema Ambientale ed i Flussi di Contaminanti da Fonti
Primarie e Secondarie. Elaborazione di un Modello Concettuale Sito-Specifico; Ecomondo—ReclaimEXPO: Rimini, Italy, 2014.

22. Cardellicchio, N.; Buccolieri, A.; Giandomenico, S.; Lopez, L.; Pizzulli, F.; Spada, L. Organic pollutants (PAHs, PCBs) in sediments
from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 2007, 55, 451–458. [CrossRef]

23. Parenzan, P. Parenzan Il Mar Piccolo e il Mar Grande di Taranto. Thalass. Salentina 1969, 3. [CrossRef]
24. Caroppo, C.; Giordano, L.; Palmieri, N.; Bellio, G.; Bisci, A.P.; Portacci, G.; Sclafani, P.; Hopkins, T.S. Progress toward sustainable

mussel aquaculture in Mar Piccolo, Italy. Ecol. Soc. 2012, 17. [CrossRef]
25. Giordano, L.; Portacci, G.; Caroppo, C. Multidisciplinary tools for sustainable management of an ecosystem service: The case

study of mussel farming in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea). Ocean. Coast. Manag. 2019, 176, 11–23.
[CrossRef]

26. Portacci, G. Contabilizzazione Dei Servizi Ecosistemici: Il Caso Della Molluschicoltura Environmental-Accounting of the Ecosystem
Services; 48◦ Congresso della Societá Italiana di Biologia Marina: Rome, Italy, 2017.

27. Guardia Costiera Taranto. Capitaneria di Porto di Taranto. 2005. Available online: https://www.guardiacostiera.gov.it/Taranto/
Pages/ordinanze.aspx (accessed on 20 June 2021).

28. Regione Pugia. Ordinanza del Presidente Della Giunta Regionale, n. 532: Misure Sanitarie Straordinarie di Controllo del Rischio
Per Diossina e PCB Nelle Produzioni di Mitili di Taranto. BURP: Regione Pugia, Italy, 2018.

29. European Parliament and Council of Europe. Corrigendum to Regulation (EC) No 854/2004 of the European Parliament and of
the Council of 29 April 2004 Laying Down Specific Rules for the Organisation of Official Controls on Products of Animal Origin
Intended for Human Consumption. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:226:
0083:0127:EN:PDF (accessed on 20 June 2021).

205



Remote Sens. 2021, 13, 2985

30. Spirkovski, Z.; Ilik-Boeva, D.; Ritterbusch, D.; Peveling, R.; Pietrock, M. Ghost net removal in ancient Lake Ohrid: A pilot study.
Fish. Res. 2019, 211, 46–50. [CrossRef]

31. Tecniche, A.N.D.I.; Giuseppe, O.A.; Lobasso, V.; Melucci, R.; Fabrizio Manzulli, I. DI NTA PCC. 2020. Available online:
https://www.comune.taranto.it/attachments/article/3378/RELAZIONE%20%20PCC%20TARANTO_DIC_2020.pdf (accessed
on 3 June 2021).

32. Mali, M.; Dell’Anna, M.M.; Notarnicola, M.; Damiani, L.; Mastrorilli, P. Combining chemometric tools for assessing hazard
sources and factors acting simultaneously in contaminated areas. Case study: “Mar Piccolo” Taranto (South Italy). Chemosphere
2017, 184, 784–794. [CrossRef] [PubMed]

33. Di Leo, A.; Cardellicchio, N.; Giandomenico, S.; Spada, L. Mercury and methylmercury contamination in Mytilus galloprovincialis
from Taranto Gulf (Ionian Sea, Southern Italy): Risk evaluation for consumers. Food Chem. Toxicol. 2010, 48, 3131–3136. [CrossRef]

34. Cardellicchio, N.; Buccolieri, A.; Di Leo, A.; Giandomenico, S.; Spada, L. Levels of metals in reared mussels from Taranto Gulf
(Ionian Sea, Southern Italy). Food Chem. 2008, 107, 890–896. [CrossRef]

35. Republic Italian National Law n. 426/1998. In Nuovi Interventi in Campo Ambientale; Gazzetta Ufficiale n. 291del 14 dicembre 1998;
1998. Available online: https://www.mite.gov.it/sites/default/files/archivio/normativa/legge_09121998_426.pdf (accessed on
3 June 2021).

36. Cotecchia, F.; Vitone, C.; Sollecito, F.; Mali, M.; Miccoli, D.; Petti, R.; Milella, D.; Ruggieri, G.; Bottiglieri, O.; Santaloia, F.; et al.
A geo-chemo-mechanical study of a highly polluted marine system (Taranto, Italy) for the enhancement of the conceptual site
model. Sci. Rep. 2021, 11. [CrossRef] [PubMed]

37. Labianca, C.; De Gisi, S.; Todaro, F.; Notarnicola, M. DPSIR Model Applied to the Remediation of Contaminated Sites. A Case
Study: Mar Piccolo Taranto. Appl. Sci. 2020, 10, 5080. [CrossRef]

38. Garen, P.; Robert, S.; Bougrier, S. Comparison of growth of mussel, Mytilus edulis, on longline, pole and bottom culture sites in
the Pertuis Breton, France. Aquaculture 2004, 232, 511–524. [CrossRef]

39. Konstantinou, Z.I.; Kombiadou, K. Rethinking suspended mussel-farming modelling: Combining hydrodynamic and bio-
economic models to support integrated aquaculture management. Aquaculture 2020, 523, 735179. [CrossRef]

40. Welcome to the Python GDAL/OGR Cookbook!—Python GDAL/OGR Cookbook 1.0 Documentation. Available online: http:
//pcjericks.github.io/py-gdalogr-cookbook/index.html# (accessed on 3 June 2021).

41. GDAL—GDAL Documentation. Available online: https://gdal.org/index.html (accessed on 3 June 2021).
42. FFmpeg License and Legal Considerations. Available online: https://ffmpeg.org/legal.html (accessed on 3 June 2021).
43. GNU licenses. Available online: https://www.gnu.org/licenses/lgpl-3.0.txt (accessed on 1 June 2021).
44. Ubuntu Server-for Scale Out Workloads | Ubuntu. Available online: https://ubuntu.com/server (accessed on 3 June 2021).
45. Shi, Y.; Yang, H.; Gong, M.; Liu, X.; Xia, Y. A Fast and Robust Key Frame Extraction Method for Video Copyright Protection. J.

Electr. Comput. Eng. 2017, 2017. [CrossRef]
46. FFmpeg Filters Documentation. Available online: https://ffmpeg.org/ffmpeg-filters.html#crop (accessed on 8 June 2021).
47. The ImageMagick Development Team. Available online: https://imagemagick.org (accessed on 8 June 2021).
48. Apache Licenses. Available online: https://www.apache.org/licenses/ (accessed on 3 June 2021).
49. Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Pearson: London, UK, 2008; ISBN 978-0-13-168728-8.
50. Al-Ameen, Z. Sharpness Improvement for Medical Images Using a New Nimble Filter. 3D Res. 2018, 9, 1–12. [CrossRef]
51. Bull, D.R. Digital Picture Formats and Representations. In Communicating Pictures; Elsevier: Amsterdam, The Netherlands, 2014;

pp. 99–132.
52. Barnsley, M.F. Fractals Everywhere; Elsevier: Amsterdam, The Netherlands, 1993; ISBN 978-0-12-079061-6.
53. Szeliski, R. Computer Vision; Texts in Computer Science; Springer: London, UK, 2011; ISBN 978-1-84882-934-3.
54. Apulia Region Territorial Information System. Available online: http://www.sit.puglia.it/portal/portale_cartografie_tecniche_

tematiche/WMS (accessed on 3 June 2021).
55. GitHub-Gvellut/FreehandRasterGeoreferencer: QGIS Plugin for the Interactive Georeferencing of Rasters. Available online:

https://github.com/gvellut/FreehandRasterGeoreferencer (accessed on 3 June 2021).
56. Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The performance of satellite images in mapping aquacultures.

Ocean Coast. Manag. 2008, 51, 638–644. [CrossRef]
57. Corbelli, V.; Capasso, G.; Velardo, R. Talassografico “A. Cerruti”. In AUSL Taranto-Dipartimento di Prevenzione Disciplinare d’uso e

Gestione Delle Aree Concesse per Attività di Mitilicoltura nel Mar Piccolo e Mar Grande di Taranto; BURP: Puglia Region, Italy, 2019.
58. Guardia Costiera Taranto. Orders nn. 222/2009 and 107/2005; Guardia Costiera Taranto: Taranto, Italy, 2009.
59. Konstantinou, Z.I.; Kombiadou, K.; Krestenitis, Y.N. Effective mussel-farming governance in Greece: Testing the guidelines

through models, to evaluate sustainable management alternatives. Ocean Coast. Manag. 2015, 118, 247–258. [CrossRef]
60. Regione autonoma della Sardegna. Acquacoltura in Sardegna. Tradizioni, Innovazione e ambiente; Laore Sardegna: Cagliari, Italy,

2016.
61. Da Ros, L. LIFE-GHOST Project. Final Report; ISMAR Istituto di Scienze Marine: Venice, Italy, 2016.
62. Retine in Bioplastica per la Mitilicoltura, Firmato un Protocollo D’intesa tra Comune di Taranto e Novamont. Available

online: https://www.comune.taranto.it/index.php/elenco-news/3121-retine-in-bioplastica-per-la-mitilicoltura-firmato-un-
protocollo-d-intesa-tra-comune-di-taranto-e-novamont (accessed on 14 June 2021).

206



Remote Sens. 2021, 13, 2985

63. Heasman, K.G.; Scott, N.; Smeaton, M.; Goseberg, N.; Hildebrandt, A.; Vitasovich, P.; Elliot, A.; Mandeno, M.; Buck, B.H. New
system design for the cultivation of extractive species at exposed sites-Part 1: System design, deployment and first response to
high-energy environments. Appl. Ocean Res. 2021, 110, 102603. [CrossRef]

64. Landmann, J.; Fröhling, L.; Gieschen, R.; Buck, B.H.; Heasman, K.; Scott, N.; Smeaton, M.; Goseberg, N.; Hildebrandt, A. New
system design for the cultivation of extractive species at exposed sites-Part 2: Experimental modelling in waves and currents.
Appl. Ocean Res. 2021, 113, 102749. [CrossRef]

65. Dalton, G.; Bardócz, T.; Blanch, M.; Campbell, D.; Johnson, K.; Lawrence, G.; Lilas, T.; Friis-Madsen, E.; Neumann, F.; Nikitas,
N.; et al. Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel
assessment approach and case studies. Renew. Sustain. Energy Rev. 2019, 107, 338–359. [CrossRef]

66. Montaudouin, X.; de Sandra, E. (Eds.) Shellfish aquaculture and the environment. Environ. Sci. Pollut. Res. 2014, 21, 7781–7783.
[CrossRef]

67. Jansen, H.M.; Van Den Burg, S.; Bolman, B.; Jak, R.G.; Kamermans, P.; Poelman, M.; Stuiver, M. The feasibility of offshore
aquaculture and its potential for multi-use in the North Sea. Aquac. Int. 2016, 24, 735–756. [CrossRef]

68. The National Recovery and Resilience Plan (NRRP)-Ministry of Economy and Finance. Available online: https://www.mef.gov.
it/en/focus/The-National-Recovery-and-Resilience-Plan-NRRP/ (accessed on 22 July 2021).

69. Tamburini, E.; Turolla, E.; Fano, E.A.; Castaldelli, G. Sustainability of Mussel (Mytilus Galloprovincialis) Farming in the Po River
Delta, Northern Italy, Based on a Life Cycle Assessment Approach. Sustainability 2020, 12, 3814. [CrossRef]

70. Comune di Taranto Avviso Pubblico Adozione Piano Comunale Delle Coste. Available online: https://www.comune.taranto.it/
index.php/41-avvisi/3378-avviso-adozione-piano-comunale-delle-coste (accessed on 19 June 2021).

71. Tadonki, C.; Lacassagne, L.; Dadi, E.; El Daoudi, M. Accelerator-based implementation of the Harris algorithm. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin,
Heidelberg, 2012; Volume 7340, pp. 485–492.

207





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Remote Sensing Editorial Office
E-mail: remotesensing@mdpi.com

www.mdpi.com/journal/remotesensing





ISBN 978-3-0365-5756-4 

MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com


	A9R554a7i_1hccxxf_33k.pdf
	[Remote Sensing] Integrated Applications of Geo-Information in Environmental Monitoring.pdf
	A9R554a7i_1hccxxf_33k

