4,561 research outputs found

    Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed

    Get PDF
    Climate and land use change can influence susceptibility to erosion and consequently land degradation. The aim of this study was to investigate in the baseline and a future period, the land use and climate change effects on soil erosion at an important dam watershed occupying a strategic position on the narrow Strait of Hormuz. The future climate change at the study area was inferred using statistical downscaling and validated by the Canadian earth system model (CanESM2). The future land use change was also simulated using the Markov chain and artificial neural network, and the Revised Universal Soil Loss Equation was adopted to estimate soil loss under climate and land use change scenarios. Results show that rainfall erosivity (R factor) will increase under all Representative Concentration Pathway (RCP) scenarios. The highest amount of R was 40.6 MJ mm ha(-1) h(-1)y(-1) in 2030 under RPC 2.6. Future land use/land cover showed rangelands turning into agricultural lands, vegetation cover degradation and an increased soil cover among others. The change of C and R factors represented most of the increase of soil erosion and sediment production in the study area during the future period. The highest erosion during the future period was predicted to reach 14.5 t ha(-1) y(-1), which will generate 5.52 t ha(-1) y(-1) sediment. The difference between estimated and observed sediment was 1.42 t ha(-1) year(-1) at the baseline period. Among the soil erosion factors, soil cover (C factor) is the one that watershed managers could influence most in order to reduce soil loss and alleviate the negative effects of climate change.FCT-Foundation for Science and Technology - PTDC/GES-URB/31928/2017; FEDER ALG-01-0247-FEDER-037303info:eu-repo/semantics/publishedVersio

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate

    Nonlinear dynamics of river runoff elucidated by horizontal visibility graphs

    Get PDF
    Horizontal Visibility Graphs (HVGs) are a recently developed method to construct networks from time series. The values of the time series are considered as the nodes of the network and are linked to each other if there is no larger value between them, such as they can “see” each other. The network properties reflect the nonlinear dynamics of the time series. For some classes of stochastic processes and for periodic time series, analytical results can be obtained for network-derived quantities such as the degree distribution, the local clustering coefficient distribution, the mean path length, and others. HVGs have the potential to discern between deterministic-chaotic and correlated-stochastic time series. Here, we investigate the sensitivity of the HVG methodology to properties and pre-processing of real-world data, i.e., time series length, the presence of ties, and deseasonalization, using a set of around 150 runoff time series from managed rivers at daily resolution from Brazil with an average length of 65 years. We show that an application of HVGs on real-world time series requires a careful consideration of data pre-processing steps and analysis methodology before robust results and interpretations can be obtained. For example, one recent analysis of the degree distribution of runoff records reported pronounced sub-exponential “long-tailed” behavior of North American rivers, whereas another study of South American rivers showed hyper-exponential “short-tailed” behavior resembling correlated noise. We demonstrate, using the dataset of Brazilian rivers, that these apparently contradictory results can be reconciled by minor differences in data-preprocessing (here: small differences in subtracting the seasonal cycle). Hence, data-preprocessing that is conventional in hydrology (“deseasonalization”) changes long-term correlations and the overall runoff dynamics substantially, and we present empirical consequences and extensive simulations to investigate these issues from a HVG methodological perspective. After carefully accounting for these methodological aspects, the HVG analysis reveals that the river runoff dataset shows indeed complex behavior that appears to stem from a superposition of short-term correlated noise and “long-tailed behaviour,” i.e., highly connected nodes. Moreover, the construction of a dam along a river tends to increase short-term correlations in runoff series. In summary, the present study illustrates the (often substantial) effects of methodological and data-preprocessing choices for the interpretation of river runoff dynamics in the HVG framework and its general applicability for real-world time series.Fil: Lange, Holger. Norwegian Institute of Bioeconomy Research; NoruegaFil: Sippel, Sebastian. Norwegian Institute of Bioeconomy Research; NoruegaFil: Rosso, Osvaldo Aníbal. Instituto Universidad Escuela de Medicina del Hospital Italiano; Argentina. Universidad de Los Andes; Chile. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Analysis of the Effects of Reservoir Operating Scenarios on Downstream Flood Damage Risk Using an Integrated Monte Carlo Modelling Approach

    Get PDF
    The aim of this study is to analyse the effects of reservoir operating scenarios, for flood damage evaluation downstream of a dam, using a Monte Carlo bivariate modelling chain. The proposed methodology involves a stochastic procedure to calculate flood hydrographs and the evaluation of the consequent flood inundation area by applying a 2D hydraulic model. These results are used to estimate the inundation risk and, as consequence, the relative damage evaluation under different water level conditions in an upstream reservoir. The modelling chain can be summarized as follows: single synthetic stochastic rainfall event generation by using a Monte Carlo procedure through a bivariate copulas analysis; synthetic bivariate stochastic inflow hydrograph derivation by using a conceptual fully distributed model starting from synthetic hyetographs above the derived; flood hydrographs routing through the reservoir taking in an account of the initial level in the reservoir; flood inundation mapping by applying a 2D hydraulic simulation and damage evaluation through the use of appropriate depth-damage curves. This allowed for the evaluation of the influence of initial water level on flood risk scenarios. The procedure was applied to the case study of the floodplain downstream from the Castello reservoir, within the Magazzolo river catchment, located in the southwestern part of Sicily (Italy)

    An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain)

    Get PDF
    Flood risk management decisions require the rational assessment of mitigation strategies. This is a complex decision-making process involving many uncertainties. This paper presents a case study where a cost-benefit based methodology is used to define the best intervention measures for flood-risk mitigation in central Spain. Based on different flood hazard scenarios, several structural measures considered by the local Basin Water Authority and others defined by engineering criteria were checked for operability. Non-systematic data derived from dendrogeomorphological analysis of riparian trees were included in the flood frequency analysis. Flood damage was assessed by means of depth-damage functions, and flooded urban areas were obtained by applying a hydraulic model. The best defense strategies were obtained by a cost-benefit procedure, where uncertainties derived from each analytical process were incorporated based on a stochastic approach to estimate expected economic losses. The results showed that large structural solutions are not economically viable when compared with other smaller structural measures, presumably because of the pre-established location of dams in the upper part of the basin which do not laminate the flow generated by the surrounding catchment to Navalueng

    A brief history of long memory: Hurst, Mandelbrot and the road to ARFIMA

    Get PDF
    Long memory plays an important role in many fields by determining the behaviour and predictability of systems; for instance, climate, hydrology, finance, networks and DNA sequencing. In particular, it is important to test if a process is exhibiting long memory since that impacts the accuracy and confidence with which one may predict future events on the basis of a small amount of historical data. A major force in the development and study of long memory was the late Benoit B. Mandelbrot. Here we discuss the original motivation of the development of long memory and Mandelbrot's influence on this fascinating field. We will also elucidate the sometimes contrasting approaches to long memory in different scientific communitiesComment: 40 page

    Advances in Modelling of Rainfall Fields

    Get PDF
    Rainfall is the main input for all hydrological models, such as rainfall–runoff models and the forecasting of landslides triggered by precipitation, with its comprehension being clearly essential for effective water resource management as well. The need to improve the modeling of rainfall fields constitutes a key aspect both for efficiently realizing early warning systems and for carrying out analyses of future scenarios related to occurrences and magnitudes for all induced phenomena. The aim of this Special Issue was hence to provide a collection of innovative contributions for rainfall modeling, focusing on hydrological scales and a context of climate changes. We believe that the contribution from the latest research outcomes presented in this Special Issue can shed novel insights on the comprehension of the hydrological cycle and all the phenomena that are a direct consequence of rainfall. Moreover, all these proposed papers can clearly constitute a valid base of knowledge for improving specific key aspects of rainfall modeling, mainly concerning climate change and how it induces modifications in properties such as magnitude, frequency, duration, and the spatial extension of different types of rainfall fields. The goal should also consider providing useful tools to practitioners for quantifying important design metrics in transient hydrological contexts (quantiles of assigned frequency, hazard functions, intensity–duration–frequency curves, etc.)

    Landslide Risk: Economic Valuation in the North-Eastern Zone of Medellin City

    Get PDF
    Natural disasters of a geodynamic nature can cause enormous economic and human losses. The economic costs of a landslide disaster include relocation of communities and physical repair of urban infrastructure. However, when performing a quantitative risk analysis, generally, the indirect economic consequences of such an event are not taken into account. A probabilistic approach methodology that considers several scenarios of hazard and vulnerability to measure the magnitude of the landslide and to quantify the economic costs is proposed. With this approach, it is possible to carry out a quantitative evaluation of the risk by landslides, allowing the calculation of the economic losses before a potential disaster in an objective, standardized and reproducible way, taking into account the uncertainty of the building costs in the study zone. The possibility of comparing different scenarios facilitates the urban planning process, the optimization of interventions to reduce risk to acceptable levels and an assessment of economic losses according to the magnitude of the damage. For the development and explanation of the proposed methodology, a simple case study is presented, located in north-eastern zone of the city of Medellín. This area has particular geomorphological characteristics, and it is also characterized by the presence of several buildings in bad structural conditions. The proposed methodology permits to obtain an estimative of the probable economic losses by earthquake-induced landslides, taking into account the uncertainty of the building costs in the study zone. The obtained estimative shows that the structural intervention of the buildings produces a reduction the order of 21 % in the total landslide risk. © Published under licence by IOP Publishing Ltd

    The Nile Water-Food-Energy Nexus under Uncertainty: Impacts of the Grand Ethiopian Renaissance Dam

    Get PDF
    This is the author accepted manuscript. The final version is available from ASCE via the DOI in this recordData Availability Statement: All data, models, code that support the findings of this study are available from the corresponding author upon request.Achieving a water, food, and energy (WFE) nexus balance through policy interventions is challenging in a transboundary river basin because of the dynamic nature and intersectoral complexity that may cross borders. The Nile basin is shared by a number of riparian countries and is currently experiencing rapid population and economic growth. This has sparked new developments to meet the growing water, food, and energy demands, alleviate poverty, and improve the livelihood in the basin. Such developments could result in basinwide cooperation or trigger conflicts among the riparian countries. A system dynamics model was developed for the entire Nile basin and integrated with the food and energy sectors in Egypt to investigate the future of the WFE nexus with and without the Grand Ethiopian Renaissance Dam (GERD) during filling and subsequent operation using basinwide stochastically generated flows. Different filling rates from 10% to 100% of the average monthly flow are considered during the filling process. Results suggest that the GERD filling and operation would affect the WFE nexus in Egypt, with the impact likely to be significant if the filling process occurred during a dry period. Food production from irrigated agriculture would be reduced by 9%–19% during filling and by about 4% during GERD operation compared with the case without it. The irrigation water supply and hydropower generation in Sudan will be reduced during the filling phase of the GERD, but this is expected to be improved during the dam operation phase as a result of the regulation afforded by the GERD. Ethiopian hydropower generation is expected to be boosted by the GERD during the filling and operation of the dam, adding an average of 15,000  GWh/year once GERD comes online. Lastly, the results reveal the urgency of cooperation and coordination among the riparian countries to minimize the regional risks and maximize the regional rewards associated with the GERD.Ministry of Higher Education (MoHE), EgyptUniversity of Exete
    • …
    corecore