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Horizontal Visibility Graphs (HVGs) are a recently developed method to construct networks from
time series. The values of the time series are considered as the nodes of the network and are linked to
each other if there is no larger value between them, such as they can “see” each other. The network
properties reflect the nonlinear dynamics of the time series. For some classes of stochastic processes
and for periodic time series, analytical results can be obtained for network-derived quantities such
as the degree distribution, the local clustering coefficient distribution, the mean path length, and oth-
ers. HVGs have the potential to discern between deterministic-chaotic and correlated-stochastic time
series. Here, we investigate the sensitivity of the HVG methodology to properties and pre-processing
of real-world data, i.e., time series length, the presence of ties, and deseasonalization, using a set
of around 150 runoff time series from managed rivers at daily resolution from Brazil with an aver-
age length of 65 years. We show that an application of HVGs on real-world time series requires a
careful consideration of data pre-processing steps and analysis methodology before robust results
and interpretations can be obtained. For example, one recent analysis of the degree distribution
of runoff records reported pronounced sub-exponential “long-tailed” behavior of North American
rivers, whereas another study of South American rivers showed hyper-exponential “short-tailed”
behavior resembling correlated noise. We demonstrate, using the dataset of Brazilian rivers, that these
apparently contradictory results can be reconciled by minor differences in data-preprocessing (here:
small differences in subtracting the seasonal cycle). Hence, data-preprocessing that is conventional
in hydrology (“deseasonalization”) changes long-term correlations and the overall runoff dynamics
substantially, and we present empirical consequences and extensive simulations to investigate these
issues from a HVG methodological perspective. After carefully accounting for these methodologi-
cal aspects, the HVG analysis reveals that the river runoff dataset shows indeed complex behavior
that appears to stem from a superposition of short-term correlated noise and “long-tailed behaviour,”
i.e., highly connected nodes. Moreover, the construction of a dam along a river tends to increase
short-term correlations in runoff series. In summary, the present study illustrates the (often substan-
tial) effects of methodological and data-preprocessing choices for the interpretation of river runoff
dynamics in the HVG framework and its general applicability for real-world time series. Published
by AIP Publishing. https://doi.org/10.1063/1.5026491

We study the dynamics of water flow, given as time series
of river runoff from long-term measurement stations (up
to 85 years of daily data) in Brazil. The time series are
analyzed using “Horizontal Visibility Graphs.” In this
method, time series are represented as a network: each
value of the time series is a node of the network, and
two nodes are linked to each other if they can “see” each
other in the horizontal direction (no higher values are in
between them), i.e., analogous to horizontal visibility in a
landscape. Properties of the network provide insight into
the temporal structure of the river runoff; in particular,
it can be determined to which extent river runoff resem-
bles certain types of random processes. We demonstrate
that the analysis has to be carried out with great care in
order to avoid misinterpretations and wrong conclusions.

In particular, we show the consequences of the presence of
identical values in the time series, of different versions of
taking out the seasonal trend, and of the finite length of
the series. For the latter, we use computer-generated data
from random processes, where analytical results for infi-
nite length are known. If thoroughly applied, the Horizon-
tal Visibility Graphs are tools for the analysis of time series
providing insights into the dynamics and a presentation of
their behavior not easily obtained otherwise.

I. INTRODUCTION

Complex networks constructed from time series of
(Earth) observations, univariate or multivariate, have become
increasingly popular in recent years.'™ The network approach

dAuthor to  whom  correspondence  should be  addressed: ’ > | . . . 8
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than other methods; they may help for the classification of
systems according to their network structure or topologi-
cal properties,” but also ubiquitous features like the “small-
world”® or the “scale-free”’ properties have been observed.
In this contribution, we focus on a method to generate
a network from a univariate time series which is among the
conceptually most simple analysis techniques: the Horizontal
Visibility Graphs (HVGs).® Every data point (observation) of
a time series x is considered as a node of the network to be
formed; two nodes at observation times #; and a later #; are
connected by a link iff none of the values in between them is
larger than either of the two:

X < inf(x,x) Vk: i<k <], (D
which implies that the two time series values can “see”
each other when looking horizontally. Moreover, there is an
option to consider the links between nodes as arrows (directed
HVGs) or as lines (undirected HVGs). The consideration of
directed graphs opens for the possibility to analyze differences
in the time direction (irreversibility).9

The set of nodes and links constitutes the graph, which
can be visualized or formally expressed as adjacency matrix
A. The simplest choice for A is binary: the entry A; is 1 if
the two nodes i and j are linked, and O otherwise. The alterna-
tive is a weighted adjacency matrix where the matrix elements
are related, e.g., to the difference in time series values of the
nodes linked together,'® or proportional to the temporal dis-
tance between the linked values. Either way, a characteristic
of the adjacency matrix is that it is sparse (many Os) for typical
time series, which is convenient for long time series involving
big matrices.

We investigate time series of river runoff rates at daily
resolution. The runoff at a given location is the result of
interactions between precipitation, air temperature and other
meteorological variables, vegetation, soils, and the geophys-
ical system (catchment) upstream the measurement gauge.
Already since the seminal work of Hurst,!' it has been
known that a typical characteristic of runoff time series is
their persistence, or long-range dependence, indicated, e.g.,
by autocorrelation functions decaying slower than exponen-
tial as a function of the temporal lag. In addition, runoff
data contain periodicities, foremost the annual cycle, but also
multiyear structures and long-term trends, and are not the
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least influenced by human management, e.g., channel reg-
ulation or water power generation. In addition, information
on runoff rates is often economically relevant, as knowledge
about the magnitude of extreme events (droughts and floods)
and the response time to rainfall events guide the construc-
tion of infrastructure for protection and utilization of the water
resources. Thus, time series from river runoff comprise a
relevant domain for data analysis, ecosystem research, risk
analysis, and also climate change research.'?!3

The paper is organized as follows:

In the first part of the analysis, we investigate in detail
methodological and data pre-processing choices that are cru-
cial for an application of the HVG framework to real-world
time series. For this purpose, we analyze (1) artificially
generated time series of varying length and autocorrelation
structure and (2) the Brazilian river runoff dataset as an illus-
trative example. For the artificial time series, we focus on

(1) Sample size effects on HVGs itself and the estima-
tion method of HVG-based summary statistics (i.e., the
“lambda” parameter, explained in Sec. II), which are an
issue for short time series;

(2) The effect of different deseasonalization procedures on
the tail behavior of the degree distributions;

(3) The effect of ties in the time series.

In the second part of the analysis, we apply the HVG frame-
work to the Brazilian runoff dataset with a focus on (1) the
short- vs. long-tailed behavior of these time series and (2) the
effect of dam construction along these rivers on their corre-
sponding HVG-based degree distributions. A flow chart that
illustrates the structure of the paper and the different data,
analyses, and corresponding results is shown in Fig. 1.

Il. MATERIALS AND METHODS
A. Dataset

We analyze river runoff time series (unit m3/s) from
a total of 146 stations, all located in Brazil. They were
obtained from the Brazilian federal institution that con-
trols the electric power production, the Operador Nacional
do Sistema Elétrico (ONS). [The data were obtained from
http://www.ons.org.br/operacao/vazoes_naturais.aspx (web-
page not available as of March 2018).] Hydropower is the

Artificial Time Series:
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noise, AR(1)

/' .
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on mean A and confidence intervals

Effect of ties on HVG inference
* Influence on mean degree
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FIG. 1. Flow chart of different datasets
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in this paper.
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single most important source of electricity in the country, con-
tributing around 75% to the total production, with Brazil being
the third largest hydropower producer world-wide.

The first entries of the data record date back to 1931,
the median length of the daily time series is 27 000 values
(74 years of data), the measurements extend towards the end
of 2014. The catchment sizes vary between 250 km? and just
below 1 x 10°km?. A closely related, slightly shorter dataset
has also been analyzed in Ref. 14.

Each of the 146 time series originates from a river where
a dam was constructed; however, the majority of the dams
were built in more recent years: 87% of the gauges were
impacted by dam construction after 1960, and 61 gauges
(42%) even only after 2000. Thus, the impact of direct man-
agement of water flows, seen on the scale of the whole record
for each gauge, varies significantly. Since the year of dam
construction is known for every gauge, we can quantify the
anthropogenic impact by splitting the time series in the peri-
ods before and after the construction, whenever this is mean-
ingful, and perform the analysis separately for the two parts.

B. Seasonality and its approximate removal

A dominant feature of runoff data is their seasonal-
ity, induced by seasonal patterns in precipitation or (to a
lesser extent in Brazil) the annual cycle of temperatures.
The amplitude of the seasonal cycle (or the fraction of vari-
ance explained by the annual signal) differs a lot between
the gauges; in addition, it is to be expected that the presence
of seasonality could have a profound influence on the results
of a Horizontal Visibility Graph analysis. Following common
practice in hydrology, we therefore construct deseasonalized
datasets from the original one using the following recipe:

Let x,; be a value of the time series, obtained in year
y and on day of the year i. We calculate the mean value for
each given day of the year from all the years, u;, and the
corresponding standard deviation o;, i=1,...,365 (for leap
years, February 29 has been removed from the analyses for
simplicity). Then, the original values of the time series are
transformed according to

deseas __

Xyi — Wi
wio T T g

(o]

@)

However, different methods are used to estimate the mean
runoff and the standard deviation per calendar date. Braga
et al.'"* use the straightforward definition for the arithmetic
mean and standard deviation of a discrete set of values on a
daily scale as described above. Serinaldi and Kilsby,'> on the
other hand, obtain smoothed estimators by applying a LOESS
scatterplot smoothing. This seems to be a tiny detail; we
show later that it can have a decisive impact on the resulting
spectrum of slopes for the degree distribution.

Here, smoothed estimators for the mean value and the
standard deviation are obtained by moving averages given
a window length o. For a given moment, i.e., year and day
within the year y, i, the averaged mean and standard deviation
are obtained from o time series values symmetrically around
this moment, i.e., with the reference moment in the center. We
consider values between o =1 (the standard equations) and
o =181 (roughly a whole year of data is used for smoothing).
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The parameter o resembles the smoothing parameter of a
LOESS estimator. Using this description, the Braga et al.'*
deseasonalization procedure simply uses o = 1.

The result in all cases is a dimensionless series, where
usually a major part of the seasonality is removed, as, e.g.,
spectral analysis shows. Our point here is to investigate the
consequences of the different deseasonalization procedures
for the HVG properties, and whether or not these data prepro-
cessing can be recommended when investigating river runoff
dynamics with visibility graphs.

C. Tied values

Equation (1) implies that exactly identical values (ties)
block the visibility, contrary to values which are smaller by a
negligible amount. This fact is not an issue for artificially gen-
erated series with a continuous value spectrum; for measured
values, it can be an obstacle one has to deal with. In our case,
all runoff values provided (consistently given in unit m*/s) are
integers, and at low flow conditions or for small catchment
areas, identical values occur frequently. This is, however, an
artifact of the accuracy provided or the digitization process
of the runoff records; it is safe to assume that for perennial
streams, identical values have vanishing probability.

Nonetheless, the HVG algorithm reacts sensibly to the
presence of tied values, as will be shown below. The expec-
tation is that removing the ties, e.g., by adding noise of
small amplitude or variance, leads to an increase in the mean
degree k and in general to increased visibility. An interest-
ing approach to get rid of tied values through imputation,
although in the context of ordinal pattern statistics, is provided
elsewhere in this volume.'¢

D. Algorithm

It is straightforward to implement the HVG construction
into a programming environment. For large time series, issues
with memory usage and computation time arise. The first limi-
tation can be overcome through working with sparse matrices,
a property that virtually all adjacency matrices deduced from
HVGs possess. For this paper, we mainly worked in the
R environment but outsourced the proper calculation of the
adjacency matrix to precompiled C++ code.

E. Degree distributions

Given the adjacency matrix from a time series using the
HVG criterion [Eq. (1)], we determine the number of time
series values (nodes) each given node is connected to; this
is the degree of that node. Ignoring the very first and last
entries of the time series, by construction each node has at
least degree =2. It can be shown that for infinitely long,
independent random values, the mean degree is k = 4.5 The
associated degree distribution turns out to be an exponential:

1/2\?* 3 _,,
P(k)zg(g) =2 3)

with A, = In (%) ~ 0.4054 . This result, shown in a lengthy
calculation in Ref. 8, is independent from the probability

distribution of the time series values, as long as it is the
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same and there are no (auto-)correlations present. It has been
suggested!” that the degree distribution of both deterministic-
chaotic and stochastic but correlated series are as well expo-
nential, with A < A, for chaotic time series and A > A. for
correlated noise. This would open for the possibility to dis-
tinguish between the two process classes by determining the
corresponding A from the HVG degree distribution. However,
Ravetti et al.'® provide ample numerical evidence which does
not support this suggestion, and the classification based on the
criterion seems unfeasible. To the best of our knowledge, there
is no analytical expression for the degree distribution of cor-
related noise available, and it thus remains unclear whether it
would be an exponential at all.

Under the hypothesis that the degree distribution is expo-
nential, the mean degree is always between 2 and 4, indepen-
dent of the type of distribution or the presence of correlations.
For periodic time series where no values are repeated within
one given period 7, the mean degree is

12:4(1—i)
2T

as shown in Ref. 19.

F. Estimation of the slope A

In practical situations with time series of finite length,
even when accepting the hypothesis that the degree distribu-
tion is of exponential type, the determination of the slope A is
challenging. The minimum degree is kK = 2, but in many cases,
a peak in the distribution occurs for k =3. The exponential
behavior sets in at higher values of k, but where precisely?
One needs to define a lower limit for the fit to the exponential
function. Similarly, the fit supposedly has to be extended up to
a highest k due to small sample effects. In most cases, this can-
not be the highest degree actually occurring in the time series,
since some of the smaller degrees do not occur at all. A simple
suggestion as in Ref. 18, i.e., use 3 <k <20, or 3 <k < kypy, if
it turns out that k,,,, < 20, does not seem suitable in general.
We will show that different choices for the fit are crucially
affecting the A values obtained. Sensitivity to the choice of
the scaling zone (range of k values) has also been observed
in Ref. 18 and renders the assumption of exponential decay
doubtful at least for real-world applications with limited sam-
ple sizes. For Natural (as opposed to Horizontal) Visibility
Graphs, correlated noise seems to exhibit power-law behavior
instead.?’

The obvious way to perform the fit to obtain A estimates is
using Ordinary Least Squares (OLS). Here, all degrees occur-
ring have the same weight, implying that high values of k
(k> 10, say, for the time series lengths we are dealing with
here), which necessarily come with very small probabilities,
can have an important impact on the resulting slope. This
renders the estimation procedure unstable, in particular for
shorter time series. We consider three alternatives to perform
the fit more reliably: weighted least squares (WLS), a fit to
the exponential distribution using Maximum Likelihood esti-
mator (MLE), and a fit based on the L moments of the degree
distribution (Lmom).
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For WLS, we prescribe weights for the probabilities for
a given k which are simply the expected p(k) for the ran-
dom distribution [Eq. (3)]. Both OLS and WLS fits are based
on the logarithm of the survival function, which exhibits a
straight line with negative slope for a strict exponential. This
is the same approach as in Ref. 14. The estimates for MLE
and Lmom are obtained by considering the set of k values (in
itself a time series) directly, i.e., not using the observed fre-
quencies, and fitting to an exponential distribution. There is
the caveat, however, that all degrees are necessarily integers,
whereas the estimation method expects a continuous set of
values. To analyze whether this mismatch induces biased esti-
mations, we add to each k value a random number uniformly
distributed in the interval [—0.5, 0.5], resembling the removal
of ties discussed above, although now for the degree distribu-
tions. Non-integer degrees also appear when weighted HVGs
are used, where the difference between the values of linked
nodes is used as weights.

So far, no analytical result is known showing that cor-
related stochastic processes lead to an exponential degree
distribution. Such a proof is of course impossible for observed
environmental time series as considered here. We therefore fit
our degree distributions, and also that for known reference
processes, to a flexible class of distributions originating in the
Peak Over Threshold approach, the Generalized Pareto Distri-
bution (GPD). GPD has three parameters—Ilocation, variance,
and shape—and the increased parameter space implies the
potential to obtain better fits. This expectation seems to have
been confirmed by the comparison provided in Ref. 15.

lll. RESULTS

A. HVGs, degree distributions, and the effect of ties for
Brazilian river runoff

1. The determination of the slope ).

If we assume an exponential shape for the degree dis-
tribution [cf. Eq. (3)], the problem of estimating the slope
A reduces to a linear regression in a semi-logarithmic rela-
tionship—between In[p(k)] and k. Using the method of least
squares, we have to define a lower threshold k,,,,, an upper
threshold &, and a regression method.

Fixing universal k,,;,, and k., values for all time series
does not seem suitable, as the linear scaling zone appar-
ently depends on the strength of autocorrelations present. For
the upper threshold, we rather work with a probability cri-
terion: we stop the regression whenever the probability falls
below a critical small value; typical numbers here are ¢~'° to
e~3; for the former limit, the corresponding k.., ranges from
kynax = 16 for red noise, k,,, = 24 for }, noise to k., = 28 for
uncorrelated noise (Fig. 2).

For large values of k, the variance of the probabilities
when repeating the analysis is increasing (note, however,
the logarithmic vertical scale in Fig. 1). Even for the cho-
sen time series length of 10% data points, far exceeding the
length of the bulk of observed time series, degrees k > 50
practically never occur. The slope of the fits gets steeper when
the autocorrelations increase, and in particular for long-range
correlated processes such as the power-law (i.e., with a power
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FIG. 2. Degree distributions from long time series of artificial processes.
The solid line represents the theoretical exponential for uncorrelated random
noise. It is obvious that for 10® data points, the white noise shows devia-
tions from the expectation for k > 40. For small k, all lines collapse into one
but show a curved shape for slightly larger values. Short-ranged [AR(1)] and
long-ranged (1/f) noise are hard to discern at low to medium k; the values
where they really separate are not obtained for short series. The red (1/£%)
noise is clearly different from the former two. It is difficult to find a proper
scaling zone, at least not of the fixed form [k, kmax] across different pro-
cesses. Error bars result from 48 repetitions each. For ease of comparison,
the logarithms of the probabilities are shown both as natural (left axis) and as
decadal (right axis).

spectrum proportional to 1/f%) noise shown here, the results
show a negative curvature for small to medium degrees. For
large degrees, it might be difficult to identify whether this cur-
vature flattens into a straight line [as implied by Eq. (3)] for
1/f% noise, and slope estimation particularly for short series
is difficult. For example, Fig. 3 shows corresponding fits for
time series of length n =365 (one year of data at daily res-
olution) and n=10* which is the order of magnitude for
the length of many runoff records. For the yearly windows,
error bars get large, the white noise degree distribution devi-
ates from the theoretical expectation already for k > 12, and
for all practical purposes short-ranged [AR(1)] and 1/f long-
ranged noise become indistinguishable. For n = 10%, the finite
size effects are less pronounced, e.g., the onset of deviations
from the theoretical curve for white noise is shifted to k > 23,
and the two noise processes are just about discernable.

As the linear scaling regime for the white noise process
stretches out further and further with increasing time series
length, followed by a more and more negatively curved part,
it can be hypothesized that the curvature is an artifact of
the finite length. It is currently unknown how the onset of
the curved part, given a certain time series length, differs
between processes, impeding the ability to conclude on devi-
ations from the exponential form which are fundamental and
not simply related to the finite length of the generated data.

2. Different estimators for the slope of the degree
distribution

The plots of Figs. 2 and 3 can be used to determine the
slope A, assuming from here on that the exponential model is
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a valid description of the observed frequencies of degrees. For
its estimation, we use a suite of different methods: OLS and
WLS based on the survival function, MLE and L-moments
based on the set of degree values directly, and MLE and
Lmom supplemented by noise (to get rid of “k-ties”) of an
amplitude which prevents confusion of k values.

These estimating procedures were applied to time series
of length either n =365, n= 104, or n=10%. In each case, a
number of repetitions were performed, resulting in error bars
for the estimated slopes. Figure 4 shows the results. It is unsur-
prising that the size of the error bars decreases with increasing
time series length; for n = 10® and uncorrelated “white” noise,
all methods except MLE estimate a A value that is very close
to the theoretical expectation [Eq. (3)]. However, time series
of this length are not available for most practical applica-
tions. Hence, for an individual year with daily measurements,
i.e.,, n=2365, a reliable estimation of XA is hardly possible
[Fig. 4(a)]. Moreover, the different methods for estimation
perform differently. For example, MLE has a positive bias
independent of process and data length, indicating that the
addition of uniform noise should be done when using this
method. Adding noise to the degrees before estimating using
Lmom also lowers the estimates for A, although less dramatic.
For stronger autocorrelations, the estimates differ more from
each other, the error bars are larger, and it becomes unfeasible
to determine one “true” expectation value even from artificial
data with n = 108. For the case of red noise, we demonstrate in
Fig. 4 that the lowest degree included in the fitting procedure
also has an impact on the results, giving higher estimates for
the slope for higher cutoff k.

Among the estimators used, the Lmom augmented by
uniform noise provides A values closest to the “asymptotic”
values for long time series of uncorrelated noise, but WLS is
also a reasonable choice.

3. The impact of ties on the degree distribution

For the Brazilian runoff data, low flow conditions
inevitably lead to repeated identical values (ties), not uncom-
mon for runoff data in general. Following the definition
for HVG construction [Eq. (1)], tied values are “obstacles”:
all values “behind” (in both temporal directions) them are
invisible. The repeated values are, however, an artifact of
the limited measurement resolution; the only situation where
exactly identical values would be complete ceasing of the
runoff, which is unlikely for most reasonably sized catch-
ments.

The presence of ties leads to shorter degrees than with-
out them and thus also reduces the mean value of the degree
distribution. For the runoff data, the connection between k
and the fraction of ties is extremely strong and linear (Fig.
5). With increasing fraction of ties, k runs through prac-
tically its whole value spectrum (2 < k < 4). Although in
our case, ties are merely a nuisance, one has to deal with
them.

We, therefore, investigate the consequences of “remov-
ing” the ties for the resulting degree distributions. For all tied
values, we add either uniformly distributed noise from the
interval [—0.001x;, 0.001x,] or red noise with an amplitude
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diminished by the factor 10*. The resulting time series are
visually indistinguishable from the original ones. However,
as can be seen from Fig. 5, the consequences for the mean
degree are dramatic: the dependence on the number of ties
disappears. Another conclusion from Fig. 5 is that for the
Brazilian runoff data, k is close to 4, the theoretical result
for white noise series. Of course, the inverse conclusion that
the runoff time series are thus almost perfect noise would be
erroneous.

Figure 6 shows that these tiny changes have significant
consequences in the case of many ties in the series. Gener-
ally, the noise addition moves the degree distribution towards
the random case (from below, i.e., from steeper slopes); for
around 1% ties, there is hardly any discernible difference, but
for higher fractions, the plots begin to diverge, and also the
two versions of noise addition are separate from each other,
the red noise (or B-noise with § =2) being further away from
the original distribution. The “correct” type of noise is not
obvious to guess. “Long tails” (high values of k) are present
only for series with a small amount of ties, resp. after noise
has been added to them.

After deseasonalization, the problem has disappeared
completely (Fig. 5). The removal of daily means and the
standardization to single-day standard deviations leave no
room for any repeated values; the ties have disappeared.

4. Consequences of deseasonalization for
HVG-derived properties

Although the problem of tied values disappears through
the process of deseasonalization, the details of the recipe to
deseasonalize induce clear impacts on the resulting degree
distribution, a problem which is fully independent from
the presence of tied values. This can be seen in Fig. 7. Here,
the same three river stations as in Fig. 6 have been used, and
two versions for deseasonalization are compared, where only
one includes smoothed estimators. One arbitrary chosen year
has been picked, but the results are similar for other years as
well. The time series graphs are quite similar, although less so
for series with a high number of ties.

The important point is the striking difference between
the degree distributions for unsmoothed ¢ =1 and smoothed
(0 =91) deseasonalization. For small degrees, the details of
obtaining deseasonalized series are unimportant. However, for
larger k's, the distributions differ from each other, to the extent
that for the conventional estimators, the standard exponential
seems to hold with a slightly less steep slope, whereas in the
case of smoothed estimators, the tail of the degree distribution
stretches to much higher values of k, well above the straight
line for the white noise case, possibly implying a better fit
would be obtained by fitting to a power law instead. Figure 8
(upper panel) shows this effect for the entire Brazilian river
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runoff dataset (i.e., HVGs determined for each river individu-
ally—for each degree k, the 5th to 95th quantile across rivers
is shown): The original time series stretch to high values of
k in the degree distribution, i.e., show a “long-tailed” power
law like behavior. A removal of the seasonal cycle with o =1
essentially removes this property from the data, while sea-
sonal cycle removal with o = 91 appears to largely maintain it.
In Fig. S1 (Supplementary material), we show that this effect
is equally important for a United States runoff dataset (the
HCDN runoff data used in Ref. 15), although rivers in the US
runoff dataset show on average slightly longer-tailed behav-
ior. It is worth noting that the US data were selected according
to minimal management (or most “natural conditions”), while
the Brazilian rivers included here are all managed. Nonethe-
less, the different seasonal cycle removal procedures alone
mainly explain the contradicting results obtained in Ref. 14
for Brazilian and in Ref. 15 for United States runoff series.

B. Preprocessing and L moments of the runoff time
series

Since the method of L-moments estimation turned out to
be suitable for estimating the slopes of degree distributions,
we investigate the third and fourth L-moments for the Brazil-
ian river runoff data (Fig. 8, lower panel). The values obtained
for these two quantities depend strongly on the preprocessing
of the data or their simulation. Simple random shuffling of
the time series constrains the L-skewness and L-kurtosis to a
narrow region, indicating that the runoff series are far from
white noise. However, a standard simulation for runoff series,
AR(1) time series where the correlation parameter is empiri-
cally estimated from the lag 1 autocorrelation of each series
separately, is also confined to a small subset of the original
range of values, demonstrating that the AR(1) model derived
from the time series does not retain the key characteristics of
the time series and is thus not suitable for these data. Small
amounts of noise are not deleterious for the L-moments’ dis-
tributions, but deseasonalization, and in particular the direct
unsmoothed estimation of daily mean and standard deviation,
has a strong effect. Runoff dynamics might be seen as a super-
position of short-term correlations with “long-tailed” highly
visible nodes, often flood events.

C. GPD fits to degree distributions

As a flexible alternative to the exponential distribution,
degree distributions might also be fitted to Generalized Pareto
Distributions (GPDs), advocated in Ref. 15 as a superior
method in a Maximum Likelihood sense. Long-tailed GPDs
have a shape parameter £ > 0. Parameter estimation can be
conveniently performed using L-moments again.

Figure 9 compares the & estimates for the river runoff
data in original form, and the same preprocessing or simu-
lation versions just discussed. All shape parameters obtained
are positive, and the addition of small amounts of noise does
not change much. When shuffling the data or producing AR(1)
versions of them, the £ values get close to zero, and are clearly
different from the original ones. Deseasonalization lowers the
estimates, in particular in the unsmoothed case; however, once
we foresee a smoothing for mean and standard deviation, the
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window length for the moving average is unimportant. Thus,
the shape parameter of L-moments based GPD fits to the
degree distributions is a robust property of the runoff records.

D. Connection between the slope of the degree
distribution and mean runoff

We have seen that in virtually all cases, the values for
A obtained with the different methods are larger (the degree
distribution is steeper) than for the random case. But what
determines the value for A for an individual station? One
approach towards this direction is the scatter diagram shown
in Fig. 10. By and large, the catchment size determines the
long-term mean runoff (in absolute units, such as m3/s), so
the horizontal axis of Fig. 10 essentially represents catch-
ment area. When estimating the A values on the vertical
axis through simple OLS, no sensible connection is appar-
ent. However, utilizing WLS instead with a lower cutoff of
k =35, the scatterplot reveals that the slopes are getting steeper
with increasing mean runoff or catchment size. Correlations
in the runoff record thus have the tendency of getting stronger
for larger catchments. This is in accordance with a common
understanding of hydrological processes, as runoff from larger
rivers integrates over a larger catchment and thus an extended
river network and over a wide range of transit times, where,
e.g., localized individual precipitation events are smoothed
out and are less important.

E. The effect of dam construction on the slopes A

A special property of the runoff data from Brazil used
here is that each and every station is currently related to
water power generation. The data are maintained by the ONS,
the federal institution which is in charge of the water power
system in Brazil. The system of water power generation is
expanded since some decades, and the dataset used only con-
tains stations where a dam was constructed during the time
of the record. Although great care and effort was devoted to
the construction of so-called natural discharge (the sum of
observed and consumed water),”! we analyzed the extent of
impact of dam construction on the runoff series in a simple
manner: for each station where sufficient data were available,
a period of 20 years prior to the construction and 20 years
after it was identified [we observe that the obtained result is
very similar if 12-year periods are used, cf. Fig. S2 (Supple-
mentary material)]. A buffer time of 3 years on each side
of the dam construction year was introduced, and from the
remaining 17 years each, the slopes for the degree distribution
were calculated. The procedure left a total of 38 stations. As
Fig. 11 shows, the clear majority of stations exhibits an
increase in the A value across the dam construction year;
stronger correlations in the HVG prevail after completion
of the dam. This result is in principle a confirmation of
that of Ref. 14, which also finds significant positive (lin-
ear) trends in A; however, when calculating the A’s from
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individual years prior to the dam construction, not more than
roughly half of them show an increase, and some changed
positively only in the after-dam construction period. This indi-
cates that the observed positive change is indeed due to the
dam construction.

IV. SUMMARY AND CONCLUSIONS

We have investigated the method of Horizontal Visi-
bility Graphs (HVGs) in the context of a set of Brazilian
river runoff data, focusing on the degree distributions derived
from the networks. We considered the known exponen-
tial distribution for uncorrelated white noise as a bench-
mark for the measured time series. The estimation of the
slope of the logarithmized distribution against degrees turned
out to be surprisingly delicate, and required considerable
care:

* Different deseasonalization procedures induce different
degrees of sub-exponential decay in the degree dis-
tributions; it is likely that this explains the appar-
ently contradictory results of long-tailed behavior of

North American'® vs. short-tailed behavior of Brazilian'*
rivers.

* Real-world time series are typically short; estimation pro-
cedures for HVG-based metrics such as the slope A in the
degree distribution have confidence intervals that can be
broad, and some systematic biases; thus, care is needed in
interpreting different estimators.

* Ties in the data affect the mean degree obtained by HVG
analysis.

For the case of the Brazilian runoff dataset, we show
that

* WLS estimates mostly quantify short-term dynamics (i.e.,
for relatively small k values) and are thus related to the
(short-term) noise behavior. The latter relates to general
catchment characteristics, the degree of management or
climatology. In contrast, metrics related to the tail of the
k-distribution (L-skewness, L-kurtosis, shape parameter of
the GPD) are mostly related to “high visibility events,”
which appear to be largely independent from short-term
noise.
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* Estimates of A for Brazilian runoff show indeed changes in
their short-term characteristics, and these trends are related
to the construction of dams.

On a more general note, HVGs are a useful tool, but sensitive
to short, noisy time series or data preprocessing or transfor-
mations of any kind (here, deseasonalization). An alternative
might be weighted HVGs, as used in Ref. 10, for instance,
where the amplitude information is retained, and the time
series can be fully reconstructed from the HVG network.

SUPPLEMENTARY MATERIAL

See Supplementary material for two additional figures.
The first figure is similar to the upper panel of Fig. 8, but
the runoff time series are taken from the Hydro Climatic Data
Network (HCDN) maintained by the US Geological Survey,
identical to the dataset used by Ref. 15, where the selection
was based on minimal human activity in the respective basins.
The second figure is similar to Fig. 11, but here we used a
window of 12 years before and after the dam construction,
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increasing the number of gauges in the analysis, without
changing the main conclusion.
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