51 research outputs found

    Large-scale grid-enabled lattice-Boltzmann simulations of complex fluid flow in porous media and under shear

    Get PDF
    Well designed lattice-Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed matter systems. In the present paper, we present some preliminary results on the large scale three-dimensional lattice-Boltzmann simulation of binary immiscible fluid flows through a porous medium derived from digitised x-ray microtomographic data of Bentheimer sandstone, and from the study of the same fluids under shear. Simulations on such scales can benefit considerably from the use of computational steering and we describe our implementation of steering within the lattice-Boltzmann code, called LB3D, making use of the RealityGrid steering library. Our large scale simulations benefit from the new concept of capability computing, designed to prioritise the execution of big jobs on major supercomputing resources. The advent of persistent computational grids promises to provide an optimal environment in which to deploy these mesoscale simulation methods, which can exploit the distributed nature of compute, visualisation and storage resources to reach scientific results rapidly; we discuss our work on the grid-enablement of lattice-Boltzmann methods in this context.Comment: 17 pages, 6 figures, accepted for publication in Phil.Trans.R.Soc.Lond.

    One-Sided Communication for High Performance Computing Applications

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009Parallel programming presents a number of critical challenges to application developers. Traditionally, message passing, in which a process explicitly sends data and another explicitly receives the data, has been used to program parallel applications. With the recent growth in multi-core processors, the level of parallelism necessary for next generation machines is cause for concern in the message passing community. The one-sided programming paradigm, in which only one of the two processes involved in communication actively participates in message transfer, has seen increased interest as a potential replacement for message passing. One-sided communication does not carry the heavy per-message overhead associated with modern message passing libraries. The paradigm offers lower synchronization costs and advanced data manipulation techniques such as remote atomic arithmetic and synchronization operations. These combine to present an appealing interface for applications with random communication patterns, which traditionally present message passing implementations with difficulties. This thesis presents a taxonomy of both the one-sided paradigm and of applications which are ideal for the one-sided interface. Three case studies, based on real-world applications, are used to motivate both taxonomies and verify the applicability of the MPI one-sided communication and Cray SHMEM one-sided interfaces to real-world problems. While our results show a number of short-comings with existing implementations, they also suggest that a number of applications could benefit from the one-sided paradigm. Finally, an implementation of the MPI one-sided interface within Open MPI is presented, which provides a number of unique performance features necessary for efficient use of the one-sided programming paradigm

    Study of Fine-Grained, Irregular Parallel Applications on a Many-Core Processor

    Get PDF
    This dissertation demonstrates the possibility of obtaining strong speedups for a variety of parallel applications versus the best serial and parallel implementations on commodity platforms. These results were obtained using the PRAM-inspired Explicit Multi-Threading (XMT) many-core computing platform, which is designed to efficiently support execution of both serial and parallel code and switching between the two. Biconnectivity: For finding the biconnected components of a graph, we demonstrate speedups of 9x to 33x on XMT relative to the best serial algorithm using a relatively modest silicon budget. Further evidence suggests that speedups of 21x to 48x are possible. For graph connectivity, we demonstrate that XMT outperforms two contemporary NVIDIA GPUs of similar or greater silicon area. Prior studies of parallel biconnectivity algorithms achieved at most a 4x speedup, but we could not find biconnectivity code for GPUs to compare biconnectivity against them. Triconnectivity: We present a parallel solution to the problem of determining the triconnected components of an undirected graph. We obtain significant speedups on XMT over the only published optimal (linear-time) serial implementation of a triconnected components algorithm running on a modern CPU. To our knowledge, no other parallel implementation of a triconnected components algorithm has been published for any platform. Burrows-Wheeler compression: We present novel work-optimal parallel algorithms for Burrows-Wheeler compression and decompression of strings over a constant alphabet and their empirical evaluation. To validate these theoretical algorithms, we implement them on XMT and show speedups of up to 25x for compression, and 13x for decompression, versus bzip2, the de facto standard implementation of Burrows-Wheeler compression. Fast Fourier transform (FFT): Using FFT as an example, we examine the impact that adoption of some enabling technologies, including silicon photonics, would have on the performance of a many-core architecture. The results show that a single-chip many-core processor could potentially outperform a large high-performance computing cluster. Boosted decision trees: This chapter focuses on the hybrid memory architecture of the XMT computer platform, a key part of which is a flexible all-to-all interconnection network that connects processors to shared memory modules. First, to understand some recent advances in GPU memory architecture and how they relate to this hybrid memory architecture, we use microbenchmarks including list ranking. Then, we contrast the scalability of applications with that of routines. In particular, regardless of the scalability needs of full applications, some routines may involve smaller problem sizes, and in particular smaller levels of parallelism, perhaps even serial. To see how a hybrid memory architecture can benefit such applications, we simulate a computer with such an architecture and demonstrate the potential for a speedup of 3.3X over NVIDIA's most powerful GPU to date for XGBoost, an implementation of boosted decision trees, a timely machine learning approach. Boolean satisfiability (SAT): SAT is an important performance-hungry problem with applications in many problem domains. However, most work on parallelizing SAT solvers has focused on coarse-grained, mostly embarrassing parallelism. Here, we study fine-grained parallelism that can speed up existing sequential SAT solvers. We show the potential for speedups of up to 382X across a variety of problem instances. We hope that these results will stimulate future research

    Flexible and Efficient Control of Data Transfers for Loosely Coupled Components

    Get PDF
    Allowing loose coupling between the components of complex applications has many advantages, such as flexibility in the components that can participate and making it easier to model multiscale physical phenomena. To support coupling of parallel and sequential application components, I have designed and implemented a loosely coupled framework which has the following characteristics: (1) connections between participating components are separately identified from the individual components, (2) all data transfers between data exporting and importing components are determined by a runtime-based low overhead method (approximate match), (3) two runtime-based optimization approaches, collective buffering and inverse-match cache, are applied to speed up the applications in many common coupling modes, and (4) a multi-threaded multi-process control protocol that can be systematically constructed by the composition of sub-tasks protocols. The proposed framework has been applied to two real world applications, and the deployment approach and runtime performance are also studied. Currently the framework runs on x86 Linux clusters, and porting strategies for multicore x86 processors and advanced high performance computer architectures are also explored

    Scalable system software for high performance large-scale applications

    Get PDF
    In the last decades, high-performance large-scale systems have been a fundamental tool for scientific discovery and engineering advances. The sustained growth of supercomputing performance and the concurrent reduction in cost have made this technology available for a large number of scientists and engineers working on many different problems. The design of next-generation supercomputers will include traditional HPC requirements as well as the new requirements to handle data-intensive computations. Data intensive applications will hence play an important role in a variety of fields, and are the current focus of several research trends in HPC. Due to the challenges of scalability and power efficiency, next-generation of supercomputers needs a redesign of the whole software stack. Being at the bottom of the software stack, system software is expected to change drastically to support the upcoming hardware and to meet new application requirements. This PhD thesis addresses the scalability of system software. The thesis start at the Operating System level: first studying general-purpose OS (ex. Linux) and then studying lightweight kernels (ex. CNK). Then, we focus on the runtime system: we implement a runtime system for distributed memory systems that includes many of the system services required by next-generation applications. Finally we focus on hardware features that can be exploited at user-level to improve applications performance, and potentially included into our advanced runtime system. The thesis contributions are the following: Operating System Scalability: We provide an accurate study of the scalability problems of modern Operating Systems for HPC. We design and implement a methodology whereby detailed quantitative information may be obtained for each OS noise event. We validate our approach by comparing it to other well-known standard techniques to analyze OS noise, such FTQ (Fixed Time Quantum). Evaluation of the address translation management for a lightweight kernel: we provide a performance evaluation of different TLB management approaches ¿ dynamic memory mapping, static memory mapping with replaceable TLB entries, and static memory mapping with fixed TLB entries (no TLB misses) on a IBM BlueGene/P system. Runtime System Scalability: We show that a runtime system can efficiently incorporate system services and improve scalability for a specific class of applications. We design and implement a full-featured runtime system and programming model to execute irregular appli- cations on a commodity cluster. The runtime library is called Global Memory and Threading library (GMT) and integrates a locality-aware Partitioned Global Address Space communication model with a fork/join program structure. It supports massive lightweight multi-threading, overlapping of communication and computation and small messages aggregation to tolerate network latencies. We compare GMT to other PGAS models, hand-optimized MPI code and custom architectures (Cray XMT) on a set of large scale irregular applications: breadth first search, random walk and concurrent hash map access. Our runtime system shows performance orders of magnitude higher than other solutions on commodity clusters and competitive with custom architectures. User-level Scalability Exploiting Hardware Features: We show the high complexity of low-level hardware optimizations for single applications, as a motivation to incorporate this logic into an adaptive runtime system. We evaluate the effects of controllable hardware-thread priority mechanism that controls the rate at which each hardware-thread decodes instruction on IBM POWER5 and POWER6 processors. Finally, we show how to effectively exploits cache locality and network-on-chip on the Tilera many-core architecture to improve intra-core scalability
    • …
    corecore