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Abstract

Parallel programming presents a number of critical challenges to application developers.

Traditionally, message passing, in which a process explicitly sends data and another ex-

plicitly receives the data, has been used to program parallel applications. With the recent

growth in multi-core processors, the level of parallelism necessary for next generation ma-

chines is cause for concern in the message passing community. The one-sided programming

paradigm, in which only one of the two processes involved in communication actively par-

ticipates in message transfer, has seen increased interest as a potential replacement for

message passing.

One-sided communication does not carry the heavy per-message overhead associated

with modern message passing libraries. The paradigm offers lower synchronization costs

and advanced data manipulation techniques such as remote atomic arithmetic and synchro-

nization operations. These combine to present an appealing interface for applications with

random communication patterns, which traditionally present message passing implementa-

tions with difficulties.

This thesis presents a taxonomy of both the one-sided paradigm and of applications

which are ideal for the one-sided interface. Three case studies, based on real-world ap-

plications, are used to motivate both taxonomies and verify the applicability of the MPI

one-sided communication and Cray SHMEM one-sided interfaces to real-world problems.

While our results show a number of short-comings with existing implementations, they also

suggest that a number of applications could benefit from the one-sided paradigm. Finally,

an implementation of the MPI one-sided interface within Open MPI is presented, which pro-

vides a number of unique performance features necessary for efficient use of the one-sided

programming paradigm.
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CHAPTER 1

Introduction

High performance computing (HPC), the segment of computer science focused on solv-

ing large, complex scientific problems, has long relied on parallel programming techniques

to achieve high application performance. Following the growth of Massively Parallel Pro-

cessor (MPP) machines in the late 1980s, HPC has been dominated by distributed memory

architectures, in which the application developer is responsible for finding and exploiting

parallelism in the application. The Message Passing Interface (MPI) has been the most

common infrastructure used to implement parallel applications since its inception in the

mid-1990s. [31, 37, 61, 84]

Recent changes in the HPC application space, basic processor design, and in MPP

architectures have renewed interest in programming paradigms outside of message pass-

ing. [5, 59] Many in the HPC community believe MPI may not be sufficient for upcoming

HPC platforms due to matching cost, synchronization overhead, and memory usage is-

sues. A number of radically different solutions, from new communication libraries, to new

programming models, to changes in the MPP architecture, have been proposed as viable

alternatives to message passing as machines evolve.

Presently, parallel application developers are generally limited to MPI on large scale

machines, as other interfaces are either not available or not well unsupported. The growth

in potential programming options resulting from recent trends will produce more interface

and paradigm choices for the application programmer. Such a wide range of options moti-

vates the need to categorize both available programming paradigms and their suitability to

particular classes of applications. This thesis begins that work, for a particular segment of

the paradigm space, one-sided communication.

1



1. INTRODUCTION 2

The remainder of this chapter examines the relative stability which has existed in HPC

since the early 1990s (Section 1) and the forces driving the current uncertainty in the field

(Section 2). The one-sided communication paradigm is briefly introduced in Section 3, and

will be discussed in detail in Chapter 2. Finally, Section 4 provides an overview of this

thesis as well as its contributions to the field.

1. Message Passing Reigns

In the mid 1980s and early 1990s, a number of companies, including nCUBE [63],

Intel [46], Meiko [60], Thinking Machines [42], and Kendall Square Research [74], be-

gan marketing machines which connected a (potentially large) number of high speed serial

processors to achieve high overall performance. These machines, frequently referred to as

Massively Parallel Processor (MPP) machines, began to overtake vector machines in ap-

plication performance. The individual processors generally did not share memory with

other processors, and the programmer was forced to explicitly handle data movement tasks

between processors.

Although more difficult to program than the auto-vectorizing Fortran of previous ma-

chines, the message passing paradigm which developed proved quite successful. The success

of the model can largely be traced to its natural fit with HPC applications of the time.

Applications were largely physics based, with static partitioning of physical space. At each

time step, nearest neighbors exchanged information about the borders of the physical space,

using explicit send/receive operations. However, each machine provided a different flavor

of message passing, which made portable application development difficult. Application

writers frequently had to change their code for every new machine.

The success of the message passing model led to the creation of the Message Passing

Interface in 1994, eliminating much of the portability problem with distributed memory

programming. MPI’s ubiquity meant that application developers could develop an applica-

tion on one platform and it would likely run with similar performance on other machines

of the same generation, as well as the next generation of machines. The combination of a
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natural fit to applications and the ubiquity of the message passing interface led to a large

application base, all with similar communication requirements.

Likewise, MPI’s ubiquity led system architects to design platforms which were optimized

to message passing. Because message passing does not necessarily require a tightly coupled

processor and network, system architects were able to leverage commodity processors cou-

pled with specially designed interconnect networks. The Top 500 fastest supercomputers in

Winter 2008 includes one machine which uses vector processors1, while the remainder used

commodity processors and message passing-based networks, showing the prevalence of the

MPP model.

2. Growing Uncertainty

The HPC community has seen a long period of stability in machine architecture and

programming paradigm, which has benefited both application developers and computer

architects. Application developers have been able to concentrate on adding new simulation

capability and optimizing overall performance, rather than porting to the next machine

with its new programming model. Likewise, system architects were able to optimize the

architecture for the relatively stable application workload.

Current trends in both system architecture and application workload, however, are dis-

rupting the stability. New application areas are being explored for use with HPC platforms,

including graph-based informatics applications, which require radically different program-

ming models and network performance than traditional HPC applications. At the same

time, processor architectures have changed to provide greater per-processor performance

by providing more computational cores per processor, rather than through faster clock

rates and serial performance. These multi-core processors shift the burden of increased

per-processor performance to the programmer, who must now exploit both inter- and intra-

processor parallelism.

1The Earth Simulator, which was the fastest machine for much of the 2000s, is the lone vector machine.
While utilizing vector processors, it also provided distributed memory and a custom high-speed network
between individual machines.
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Multi-core processors in HPC are generally programmed by viewing them as a number

of individual, complete processors. Message passing is utilized for communication, whether

between nodes, processors within a node, or cores within a processor. Initial work suggests

that there is a performance penalty for this model, but not significant enough to change

current programs. [40] This is due, in part, to optimizations within the MPI libraries to

exploit the memory hierarchy available in multi-core processors. [23, 57] Future processors,

however, are likely to see the number of cores grow faster than both the memory bandwidth

and outstanding memory operation slots, fueling the debate about programming future

multi-core processors.

At the same time, the graph-based informatics applications are becoming more impor-

tant within the HPC community and have a radically different communication model than

more traditional physics applications. Traditional physics applications exchange messages

at set points in the algorithm, generally at the conclusion of an algorithm’s iteration, at

which point the data which borders a processor’s block of data must be shared with its

neighbors. Informatics applications, however, frequently must communicate based on the

structure of the graph, and a processor may need to talk to every other processor in the

system during a single iteration. In addition, informatics applications generally send many

more messages of a smaller size than do physics applications.

The growing concern over the programming paradigm used in multi-core designs, par-

ticularly as the per-core memory and network bandwidth shrinks with growing core count,

has led many in the HPC field to suggest message passing many no longer be appropriate.

Alternatives such as implicitly parallel languages [21, 52], hybrid message passing/threaded

models [19], and alternative communication paradigms [53, 58] have all been proposed as

solutions to growing performance problems.

3. One-Sided Communication

The one-sided communication paradigm is one of the alternative solutions to uncertainty

in the HPC community. Message passing requires both the sender and receiver to be

involved in communication: the sender describes the data to be sent as well as the target of
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the message, and the receiver specifies the location in memory in which received data will

be delivered. One-sided communication, however, requires only one of the two processes

actively participate in the communication. The process initiating the one-sided transfer

specifies all information that both the sender and receiver would specify with message

passing. The target side of the operation is not directly involved in the communication.2

One-sided communication is seen as a potential solution to the multi-core issue because

it reduces synchronization, discourages the use of bounce buffers which later require memory

copies, and may be a better match to emerging informatics applications. One-sided commu-

nication implementations also have a performance advantage over MPI implementations on

many platforms, due to the complex matching rules in MPI. Even in hardware implemen-

tations of MPI matching, the linear traversal of the posted receive queue combined with an

interlock between posted and unexpected receive queues, means that there is a dependency

between incoming MPI messages. One-sided messages are generally independent, and the

dependencies (ordering requirements between two messages in a memory barrier style) are

explicit in the program and handled without complex dependencies.

In addition to the potential performance advantage, one-sided also supports applications

which have proved to be difficult to implement with message passing. The graph-based

informatics applications emerging in the HPC environment pose a problem for message

passing implementations, as their communication pattern is determined by the underlying

data structure, which is not easily partitioned. Communication with a large number of

random processes is common, and the receiving process frequently can not determine which

peers will send data. Further, unlike physics codes with iterations of well defined compu-

tation and communication phases, many informatics applications do not have well defined

computation/communication phases.

For many classes of applications, the one-sided communication paradigm offers both

improved performance and easier implementation compared to message passing, even on

current hardware with limited performance difference between one-sided implementations

2The community is split as to whether Active Messages, in which the sending process causes code to be
executed on the target side, is a one-sided interface. Because Active Messages require the main processor to
be involved in receiving the message, we do not consider it a one-sided interface.
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and MPI. However, there are also application classes in which there is not an advantage to

using one-sided communication over message passing, and in which one-sided communica-

tion may require more complexity than message passing. Complicating matters further, the

common implementations of the one-sided paradigm each have drastically different perfor-

mance characteristics, and an algorithm which maps well to one implementation may not

map well to another implementation.

Therefore, there are a number of issues which must be understood within the one-sided

paradigm:

• What features must an implementation of the one-sided communication paradigm

provide in order to be useful?

• Which differences between existing one-sided implementations causes one imple-

mentation to be suitable for a given application, but another one-sided implemen-

tation to be unsuitable for the same application?

• Which applications lend themselves to the one-sided communication paradigm?

• Are there applications in which it is not logical to use the one-sided communication

paradigm?

This thesis attempts to answer these questions and provide clarity to a piece of the puzzle

in the search for a better programming model for future systems and applications. If, as the

author believes, there will not be one dominate programming model on future architectures,

but a number of models from which application writers must choose, this thesis is intended

to provide guidelines for the applicability of the one-sided communication paradigm for new

applications.

4. Contributions

This thesis makes a number of contributions to the high performance computing research

area, particularly within the space of communication paradigms. In particular:

• A taxonomy of the one-sided communication space, including the the characteris-

tics which differentiate current one-sided implementations.
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• A taxonomy of the requirements on applications which utilize one-sided communi-

cation.

• Three case studies which verify both the taxonomy of the one-sided communication

space and applications which utilize the one-sided interface.

• A unique, high performance implementation of the MPI one-sided communication

interface, implemented within Open MPI.

The remainder of the thesis is organized as follows. Chapter 2 presents background

information on a number of subjects frequently referenced in this thesis. In particular,

current HPC architectures, popular communication paradigms, the one-side communication

interface, Open MPI, and the Parallel Boost Graph Library are discussed.

Chapter 3 first presents a taxonomy of the one-sided communication space, and dis-

cusses which features differentiate current implementations. It then proposes a taxonomy

of applications which are well suited to the one-sided communication model, which is use-

ful for future application developers in choosing the appropriate communication model.

Chapters 4, 5, and 6 present detailed case studies of three applications with very different

communication characteristics, in terms of the previously discussed taxonomies. The case

studies validate the previous discussion and reveal a number of critical insights into the

communication space.

Chapter 7 discusses Open MPI’s implementation of the MPI one-sided communication

interface, which was developed by the author during early research into this thesis. The

implementation is unique in its handling of high message loads in a single synchronization

period and in taking advantage of the unique synchronization mechanism of MPI’s one-sided

interface.

Chapter 8 presents the conclusion of this thesis. This includes an analysis of the features

required for a complete one-sided communication framework which is suitable for a wide

class of applications, as well as an analysis of other potential message passing replacements

based upon lessons learned from the case studies.



CHAPTER 2

Background and Related Work

A number of communication paradigms have been proposed since the emergence of dis-

tributed memory HPC systems, including message passing, one-sided, and asynchronous

message handling. Each paradigm has a number of trade-offs in performance and usage,

which can vary greatly based on the underlying network topology. This chapter provides

an introduction to each communication paradigm, as well as details on a number of im-

plementations of the one-sided communication paradigm. In particular, the MPI one-sided

communication interface, Cray SHMEM, and ARMCI are presented. Two software pack-

ages used extensively during the development of this thesis, Open MPI and the Parallel

Boost Graph Library, are then described in detail. The chapter begins, however, with an

overview of the current and future state of HPC system architectures.

1. HPC System Architectures

While the commodity HPC market has a wide variety of offerings for processor, memory,

and network configurations, the basic system architecture has a number of similar traits:

• A small number (2–4) of processors, each with a small number of cores, although

the number of cores is growing.

• A high speed communication fabric supporting OS bypass communication.

• A large amount of memory per core (1–4 GB), although the amount of memory

per core is decreasing.

Until recently, a majority of the performance increase in processors has been obtained by

increases in the chip’s clock rate. Fabrication improvements also allowed for improvements

in processor performance through techniques such as pipelining, out-of-order execution, and

8
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superscalar designs. Clock frequencies have largely stabilized due to power and heat con-

straints that are unlikely to be solved in the near future. Numerous studies have shown that

without architectural and programming changes, there is little further to be gained through

ILP. The number of transistors available on a die, however, continues to grow at roughly

Moore’s Law: doubling every 18 months. These constraints have lead processor architects

toward multi-core and chip multi-threading processor designs. Both designs increase the

computational abilities at the processor at a much higher rate than the memory system

improves, leading to an imbalance likely to hurt application performance.

Currently, both Intel and AMD offer quad-core processor designs [1, 47]. In high

performance computing installations, dual socket installations are the most common form

factor, leading to eight computational cores on two sockets. Memory bandwidth has not

been scaling at the same pace as the growth in cores, leading to a processor with large

computational power, but with less ability to access memory not in cache.

High speed communication systems utilized on modern systems share a number of traits.

They generally reside on the PCI Express bus, away from the processor and memory. In

order to bypass the kernel when transferring data, the networks must maintain a copy of

the user process’s virtual to physical memory mapping. It must also ensure that pages are

not swapped out of memory when the pages will be used in data transfer. This causes

a problem for many HPC networks; they must either receive notification from the kernel

whenever the page tables for a process are changed or they must use memory registration to

prevent any page used in communication from being moved [32]. On Linux, the first option

requires a number of hard to maintain modifications to the core of the memory subsystem

in the kernel. The second option is more generally chosen for commodity interconnects.

Some, like InfiniBand [45], require the user to explicitly pin memory before use. Others,

like Myrinet/MX [62], hide the registration of memory behind send/receive semantics and

use a progress thread to handle memory registration and message handshaking. Networks

are beginning to move to the processor bus (QPI or HyperTransport) and the PCI Express

standard is beginning to support many of the coherency features currently lacking, so it is

unclear how these issues will evolve in coming processor and network generations.
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2. Communication Paradigms

Three of the most common explicit communication paradigms are message passing,

one-sided, and asynchronous message handling. Distributed memory systems have been

designed to exploit each of the paradigms, although message passing currently dominates

the HPC environment. There are multiple implementations of each paradigm, and this

section discusses the paradigm rather than details of any one implementation. Ignored in

this section are collective communication routines, which are generally available as part

of any high quality HPC communication environment. To help motivate the discussion, a

nearest neighbor ghost cell exchange for a one-dimensional decomposition is presented in

each paradigm.

2.1. Message Passing. In the message passing communication paradigm, both the

sending and receiving processes are explicitly involved in data transfer. The sender describes

the data to be sent as well as the destination of the message. The receiver describes the

delivery location for incoming messages and can often choose to receive messages out of

order based on a matching criteria. Communication calls may be blocking or non-blocking,

often at the option of the application programmer. When calls are non-blocking, either the

subset of the message which could be transferred is returned to the user or a completion

function must be called later in the application to complete the message. Message passing

interfaces may buffer messages or may require the application provide all buffer space.

The Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) [86] are the

most popular examples of message passing in HPC. Traditional networking protocols such

as TCP [22] and UDP [71] could be considered examples of message passing, although they

lack many of the features found in MPI and PVM. In addition, most high speed networking

programming interfaces, such as Elan [72], Myrinet Express [62], Open Fabrics Enterprise

Distribution [45], and Portals [16] all provide some level of message passing support.

Figure 1 demonstrates a ghost cell exchange using the message passing paradigm. While

the API presented is fictitious, it demonstrates features available in advanced message

passing implementations. Remote endpoints are often specified using identifiers based on the
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double data[data len + 2], ∗local data;
local data = data + 1;

/∗ fill in array with initial values ∗/
while (!done) {

send(local data, 1, sizeof(double), comm world, left tag, my rank − 1)
send(local data + data len − 1, 1, sizeof(double), comm world,

right tag, my rank − 1)
recv(data, 1, sizeof(double), comm world, left tag, my rank − 1);
recv(data + data len + 1, 1, sizeof(double), comm world, left tag, my rank + 1);

/∗ compute on array ∗/
}

Figure 1. Nearest neighbor ghost cell exchange using message passing.

parallel job, rather than physical addressing, making it easier to write applications which can

run on a variety of machines. Communication may be separated based on contexts, or unique

communication channels, which allow different subsets of the application to communicate

without conflicting with each other. Finally, tags are used to ensure messages are delivered

to the correct location, regardless of arrival order.

2.2. One-Sided Communication. In the one-sided communication model, only one

process is directly involved in communication. The process performing communication

(the origin process) can either send (put) or receive (get) data from another process (the

target). Both the origin and target buffers are completely described by the origin process.

From the application writer’s point of view, the target process was never involved in the

communication. A one-sided interface may put restrictions on the remote buffer, either that

it be specially allocated, registered with the communication library, or exist in a specific

part of the memory space. While put/get form the basis of a one-sided interface, most

interfaces also provide atomic synchronization primitives.

Example one-sided interfaces include MPI one-sided communication, Cray SHMEM,

and ARMCI, all of which will be discussed in more detail in Section 3. To implement

without the use of threads or polling progress calls, all three require significant hardware and

operating system support. Figure 2 demonstrates the ghost cell exchange using one-sided
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double data[data len + 2], ∗local data;
local data = data + 1;

/∗ fill in array with initial values ∗/
while (!done) {

put(local data, data, sizeof(double), my rank − 1);
put(local data + data len − 1, data + data len + 1, sizeof(double), my rank + 1);
barrier();

/∗ compute on array ∗/
}

Figure 2. Nearest neighbor ghost cell exchange using one-sided.

communication primitives. In this example, it is assumed that global data members, such as

data, are allocated at the same address on each process. Most implementations have either a

mechanism for making such a guarantee or provide an addressing scheme suitable for global

communication. The barrier() call also varies greatly between implementations, but is

generally available to guarantee the network has completed all started transfers before the

application is able to continue. Unlike the message passing example where synchronization

is implicit in the receiving of messages, synchronization is explicit in one-sided operations.

2.3. Asynchronous Message Handling. Asynchronous message handling is useful

where the data being transferred is irregular and the sender does not know where to deliver

the message. For example, an algorithm walking a dynamic graph structure will send

messages to random neighbors based on graph structure that can not be determined before

execution time. Rather than explicitly receiving each message, as in message passing, a

pre-registered handler is called each time a message arrives. The handler is responsible for

directing the delivery of the message and potentially sending short response messages.

Active Messages [56] is the best known example of the event or callback based commu-

nication paradigm, and is frequently cited as an option for future programming interfaces.

The concept has also been extended into kernel-level delivery handlers with ASHs [91]. Fi-

nally, the GASNet project [13], which is used by the Berkeley UPC [55] and Titanium [41]
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compilers, provides a combination of active messages with relaxed semantics and one-sided

operations.

double data[data len + 2], ∗local data;
local data = data + 1;
volatile int delivered;

void deliver left(double in) { data[0] = in; delivered++; }
void deliver right(double in) { data[data len + 1] = in; delivered++; }

/∗ fill in array with initial values ∗/
while (!done) {

send(my rank − 1, deliver left, local data[0]);
send(my rank + 1, deliver right, local data[data len − 1]);

while (delivered != 2) { ; }
delivered = 0;

/∗ compute on array ∗/
}

Figure 3. Nearest neighbor ghost cell exchange using asynchronous mes-
sage handling.

Figure 3 demonstrates the ghost cell exchange using an asynchronous message handler.

Although two different handlers are used to deliver the left and right peer messages, this

could be reduced to a single handler and an extra data field sent in the message to specify

the delivery location. The example assumes that no progress function is necessary to receive

callbacks from the communication layer. This is true of ASHs, but not necessarily true of

other libraries, which provide a poll function from which callbacks will be triggered.

3. One-Sided Communication Interfaces

As this thesis examines the one-sided communication model, further detail on existing

one-sided communication interfaces is useful. This section presents three interfaces: MPI

one-sided communication, Cray SHMEM, and ARMCI. To help motivate the discussion,

a simplified implementation of the inner loop of the HPCC Random Access benchmark

(Figure 4) is presented for each interface. Random Access performs random updates on a
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large globally distributed array. The kernel is generally considered to perform poorly with

message passing but traditionally performed well on high-quality one-sided interfaces. A

percentage of the answers may be incorrect, allowing for lock-less implementations of the

kernel.

long array[len];

for (i = 0 ; i < num updates ; ++i) {
idx = get next update();
array[idx] |= idx;

}

Figure 4. Serial implementation of the Random Access kernel.

3.1. Cray SHMEM. Cray SHMEM [26, 73] is arguably the first one-sided library,

originally developed for the Cray T3 series of machines. Unlike MPI one-sided, Cray

SHMEM is not an official standard and it has seen numerous changes during its lifetime,

to better match state of the art hardware. SHMEM provides put and get operations with

limited datatype support, as well as compare and swap and fetch and operate atomic opera-

tions. Cray’s original API consisted of blocking calls, although other vendors later extended

the interface to include non-blocking operations. Target memory must either be in the data

section or a special symmetric heap. Considerable hardware and software support is required

to support Cray SHMEM’s loose synchronization rules, and as a result few platforms pro-

vide SHMEM support. Currently the Cray platforms, SGI’s shared memory platforms and

Quadrics-based systems support SHMEM.

Figure 5 presents an implementation of the Random Access kernel using Cray SHMEM.

Calls to put and get are blocking, so no additional synchronization calls are necessary

between the get and put calls. Unlike MPI one-sided, there is no concept of synchronization

epochs, so no synchronization calls are required in the inner loop of the kernel. However, put

communication is not required to have completed on the remote side upon the call’s return.

Two functions, shmem fence and shmem quiet, are available to ensure ordering between put

calls.
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long array[len];

for (i = 0 ; i < num updates ; ++i) {
idx = get next update();
peer = get peer(idx);
offset = get offset(idx);

shmem get(&tmp, 1, peer, array + offset);
tmp |= idx;
shmem put(&tmp, 1, peer, array + offset);

}
shmem quiet();

Figure 5. Random Access kernel using Cray SHMEM.

3.2. The Message Passing Interface. The Message Passing Interface (MPI) is a

standard for parallel communication developed by the MPI Forum, a collaboration of aca-

demic, national laboratory, and industry partners. MPI is actually composed of two stan-

dards, MPI-1 [61, 84], ratified in 1994, and MPI-2 [31, 37], ratified in 1996. MPI-1 provides

send/receive and collective communication, as well as run-time environment interrogation.

MPI-2 added a number of features, including one-sided communication, dynamic process

connectivity, and parallel file I/O. MPI has been implemented for most HPC systems devel-

oped in the last 10 years and is the predominant system for parallel applications. A number

of MPI implementations exist for commodity cluster systems, including LAM/MPI [18, 85],

MPICH2 [4], and Open MPI [29]. These implementations provide excellent performance

on a variety of modern HPC platforms.

The MPI-2 standard includes an interface and programming model for one-sided com-

munication. The interface is based around the concept of windows of memory that remote

processes can access or update. Window creation is a collective operation, and all one-sided

communication and synchronization is relative to a given window. Remote addresses are

specified as offsets from the base of the specified window, removing the need to determine

remote addresses.

MPI one-sided provides three communication calls (put, get, and accumulate) and three

synchronization methods (fence, general active target, and passive target). Accumulate
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implements a remote atomic operation, although unlike SHMEM it does not return the

previous value of the memory location. MPI datatypes are used to describe both the origin

and target buffers used in communication, which must meet MPI’s loose datatype matching

rules. Figure 6 presents an implementation of the Random Access kernel using MPI one-

sided communication. The two lock epochs are required so that the MPI GET operation

completes before the idx variable is used. MPI PUT is then used to update the remote

value.

long array[len];
MPI Win win;

MPI Win create(array, sizeof(long) ∗ len, sizeof(long), MPI INFO NULL,
MPI COMM WORLD, &win);

for (i = 0 ; i < num updates ; ++i) {
idx = get next update();
peer = get peer(idx);
offset = get offset(idx);

MPI Win lock(MPI LOCK EXCLUSIVE, peer, 0, win);
MPI Get(&tmp, 1, MPI LONG, peer, offset, 1, MPI LONG, win);
MPI Win unlock(peer, win);
tmp |= idx;
MPI Win lock(MPI LOCK EXCLUSIVE, peer, 0, win);
MPI Put(&tmp, 1, MPI LONG, peer, offset, 1, MPI LONG, win);
MPI Win unlock(peer, win);

}
MPI Win free(&win);

Figure 6. Random Access kernel using MPI one-sided.

3.2.1. Communication Epochs. MPI one-sided communication uses the concept of epochs

to define when communication can occur and when it completes. All communication calls

acting on a window must occur while the window on the origin process is in a access epoch.

Similarly, the target of those communication calls must be in an exposure epoch. The com-

munication calls do not complete until their respective epochs have completed. Epochs are

started and completed by the MPI one-sided synchronization calls.



2. BACKGROUND AND RELATED WORK 17

3.2.2. Communication Calls. The MPI PUT and MPI GET function calls provide basic

data movement from one process to another. The MPI ACCUMULATE call offers the op-

portunity to perform atomic read-modify-write calls on remote operations using any of the

operations that are valid for MPI REDUCE. For example, MPI SUM can be used to imple-

ment an atomic increment operation. All three calls are non-blocking and are completed by

the synchronization routines described in this section. Local completion is guaranteed at

the end of the local exposure epoch and remote completion is guaranteed at the end of the

remote access epoch. One frequently misunderstood point is that the origin’s buffer does

not need to be in the buffer described by the window argument, as the window is used only

to determine the remote memory location.

3.2.3. Fence Synchronization. MPI WIN FENCE (Figure 7) involves synchronization be-

tween all processes in the given window. No particular synchronization (barrier or otherwise)

is implied by a call to MPI WIN FENCE, only that all communication calls started in the

previous epoch has completed. A call to MPI WIN FENCE completes both an exposure and

access epoch started by a previous call to MPI WIN FENCE. It also starts a new exposure

and access epoch if it is followed by communication and another call to MPI WIN FENCE.

Hints can be used to tell the MPI implementation that the call to MPI WIN FENCE com-

pletes no communication or that no communication will follow the call. Both hints must

be defined globally - if any one process provides the hint, all processes in the window must

provide the same hint.

3.2.4. General Active Target Synchronization. When global synchronization is not needed

because only a small subset of the ranks in a window are involved in communication, general

active target synchronization (also known as Post/Wait/Start/Complete synchronization)

offers more fine-grained control of access and exposure epochs. Figure 8 illustrates the

sequence of events for general active target synchronization. A call to MPI WIN START

starts an access epoch, which is completed by MPI WIN COMPLETE. MPI WIN START will

not return until all processes in the target group have entered their exposure epoch. A

process starts an exposure epoch with a call to MPI WIN POST and completes the expo-

sure epoch with a call to MPI WIN WAIT or can test for completion with MPI WIN TEST.
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Process 0 Process 1 Process 2 Process 3

Fence() Fence()

Fence()

Fence()

Put(0) Put(2)

Put(2)

Fence() Fence()

Fence()

Fence()

Figure 7. Fence Synchronization. All processes are in both an exposure
and access epoch between calls to MPI WIN FENCE and can both be the
origin and target of communication. Solid arrows represent communication
and dashed arrows represent synchronization.

Exposure epoch completion is determined by all processes in the origin group passed to

MPI WIN POST having completed their access epochs and all pending communication hav-

ing been completed.

3.2.5. Passive Synchronization. To implement true one-sided communication, MPI pro-

vides MPI WIN LOCK and MPI WIN UNLOCK. The origin side calls MPI WIN LOCK to

start a local access epoch and request the remote process to start an exposure epoch (Fig-

ure 9). Communication calls can be made as soon as MPI WIN LOCK returns, and are com-

pleted by a call to MPI WIN UNLOCK. Lock/Unlock synchronization provides either shared

or exclusive access to the remote memory region, based on a hint to MPI WIN LOCK. If

shared, it is up to the user to avoid conflicting updates.

3.3. ARMCI. ARMCI [65] is a one-sided interface originally developed as a target for

more advanced protocols and compiler run-times, notably the Global Arrays project [66,

67]. ARMCI is notable for its advanced support for non-contiguous memory regions, which

removes the need for upper layer libraries to pack messages before sending, typically required
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Process 0 Process 1 Process 2 Process 3

Post(1) Post(1,3)

Start(0,2) Start(2)

Put(0) Put(2)

Put(2)

Complete()

Complete()

Wait()Wait()

Figure 8. General Active Target Synchronization. A subset of processes
in the window may individually start a combination of access and exposure
epochs. Solid arrows represent communication and dashed arrows represent
synchronization.

Process 0 Process 1 Process 2

Lock(1, Excl)

Put(1)

Unlock(1)

Lock(1, Excl)

Put(1)

Unlock(1)

Figure 9. Passive synchronization. Communication between the origin and
target can not begin until an acknowledgement is received from the passive
process, although no user interaction is necessary to generate the acknowl-
edgement. Solid arrows represent communication and dashed arrows repre-
sent synchronization.
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to achieve performance in other libraries. Communication calls include put, get, accumulate,

and read-modify-write operations. Upon return from a write call, the local buffer is no

longer in use by ARMCI and may be modified by the application. Data is immediately

available upon return from a read call. A fence operation provides remote completion of

write operations.

long ∗array[nprocs];

ARMCI Malloc(array, sizeof(long) ∗ len);

for (i = 0 ; i < num updates ; ++i) {
idx = get next update();
peer = get peer(idx);
offset = get offset(idx);

tmp = ARMCI GetValueLong(array[peer] + offset, peer);
tmp |= idx;
ARMCI PutValueLong(tmp, array[peer] + offset, peer);

}
ARMCI Barrier();

Figure 10. Random Access kernel using ARMCI.

Figure 10 demonstrates the Random Access kernel in ARMCI. Since there is no oppor-

tunity for non-contiguous transfers in the kernel, the strengths of ARMCI are not shown in

this example. However its true one-sided semantics and low synchronization requirements

lead to a straight-forward implementation of the kernel.

4. Related Software Packages

Two software packages, Open MPI and the Parallel Boost Graph Library, were modified

extensively as part of this thesis. A brief overview of both software packages is presented.

4.1. Open MPI. Open MPI is a recent MPI implementation, tracing its history to the

FT-MPI [28], LAM/MPI [85], LA-MPI [34], and PACX-MPI [50] projects. The project

is developed as a collaboration between a number of academic, government, and commer-

cial institutions, including Indiana University, University of Tennessee, Knoxville, Univer-

sity of Huston, Los Alamos National Laboratory, Cisco Systems, and Sun Microsystems.
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Open MPI is a complete implementation of the MPI-1 and MPI-2 standards designed to be

scalable, fault tolerant, and provide high performance in a variety of HPC environments.

Open MPI supports a variety of platforms, including clusters running Linux, Mac OS X,

and Solaris. It has also been ported to the Cray Red Storm/XT-3/XT-4/XT-5 tightly cou-

pled MPP systems [8]. Open MPI’s performance on commodity Linux clusters with high

speed interconnects is well established [81, 92], with optimization work ongoing.

Open MPI utilizes a low-overhead component architecture, the Modular Component

Architecture (MCA), to provide abstractions for portability and adapting to differing ap-

plication demands. There are component frameworks for everything from printing a stack

trace to encapsulating the MPI point-to-point and collective semantics. In addition to pro-

viding a mechanism for portability, the MCA allows developers to experiment with different

implementation ideas, while minimizing development overhead. This flexibility has already

resulted in the development of an advanced tuned collectives implementation and the ability

to adapt the point-to-point interface to use either network-level or MPI-level match queue

searching for send/receive semantics. As shown in previous work [9], the MCA provides

this flexibility with a minimum overhead, essentially the same as utilizing shared libraries.

MPI communication is layered on a number of component frameworks, as shown in Fig-

ure 11. The PML provides MPI send/receive semantics, including message matching and

ordering. The BML is a very thin layer that maintains the available routes to a particular

peer and handles message scheduling across multiple endpoints to a given peer. The BTL

framework provides communication between two endpoints, where an endpoint is usually

a communication device connecting two processes, such as an Ethernet address or an In-

finiBand port. The design and implementation of the communication layer is described in

detail in [81, 92].

The BML/BTL design is intended to simultaneously support multiple upper-layer pro-

tocols. Presently, this has been shown by supporting both the PML MPI point-to-point

communication and a one-sided component. The use of the BML/BTL interface for ad-

vanced collective implementations is currently under investigation.
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MPI

Point-to-point (PML)

BML

GM BTL

Rcache

GM 
MPool

TCP BTLSM BTL

SM 
MPool

One Sided (OSC)

Figure 11. Component structure for point-to-point communication in Open MPI.

BTL components provide two communication modes: an active-message style send/re-

ceive protocol and a remote memory access (RMA) put/get protocol. All sends are non-

blocking, with a callback on local send completion. Sends can either be zero copy or copied

into BTL-specific memory before transfer. Receives are all into BTL-provided buffers, with a

callback on message arrival. RMA operations provide callbacks on completion on the origin

process and no completion callbacks on the target process. All buffers used on both the

origin and target must be “prepared” for use by calls to the BTL by higher-level components.

4.2. The Parallel Boost Graph Library. The Parallel Boost Graph Library (Paral-

lel BGL) [36] is a high performance generic C++ library for distributed graph computation.

The Parallel BGL builds upon the serial Boost Graph Library (BGL) [82] and utilizes many

of the same algorithms. The parallel abstractions are “lifted” from the serial abstractions

where required. [35]. Unlike previous graph libraries, the Parallel BGL is not tied to a

particular graph data structure but, like the C++ Standard Template Library (STL), is

designed to allow algorithms to operate on a variety of graph representations.

4.2.1. Graph Representations. The Parallel BGL supports a variety of graph data struc-

tures, including adjacency list, adjacency matrix, and a highly space efficient compressed

sparse row (CSR) format. The adjacency list type can further be parametrized to use STL
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lists, vectors, sets, or multisets for both the vertex list and the adjacency list for a given

vertex. Each format offers a different set of performance characteristics, allowing the library

user to choose the most efficient structure for a particular application.

The CSR representation, while the most space efficient and generally offering the best

performance, must have edges added in a sorted order, meaning that modifying the graph

is essentially impossible once it has been created and that generating the graph can be

difficult. For example, generating random graphs which previously required constant space

may now require linear space.

The adjacency list representation offers less space efficiency than the CSR represen-

tation, but is relatively efficient for relatively sparse graphs (dense graphs should use the

adjacency matrix representation). Storing the vertices and their adjacencies in vector format

is relatively space efficient, while utilizing a list structure allows edge or vertex modification

in constant time. A set representation of the adjacency list allows for implicit removal of

duplicate edges.

Partitioning of the graph across a distributed memory architecture is automatic if done

during the graph constructor, but is explicit if the graph is later modified. A vertex may

only be added from the process in which it is to be stored. Similar care must be taken

when adding new edges to the graph. During graph construction, a block distribution is

used by default, although cyclic, block cyclic, and uniformly random distributions are also

available.

4.2.2. Property Maps. Property maps associate information with the vertices and edges

in a graph, in a format that can be decoupled from the graph format itself. For example,

edge weights, rather than being stored in the graph itself, may be stored in an external

property map structure. The properties of a vertex or edge may be set via a put function

or retrieved via a get function.

The property map concept allows many serial algorithms to operate on a distributed

graph through the distributed property map, which implements put and get operations which

operate on both local and remote data. In the common case, when the Parallel BGL is uti-

lizing the MPI process group (process groups are discussed later), the put and get operations
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to remote processes do not complete until the next synchronization phase. A resolver func-

tion may be added by the algorithm author to cope with collisions in updates which may

occur during a synchronization phase. The resolver may contain a significant amount of

logic which directs the next computation phase, such as that found in the parallel search

version of connected components, or it may be used to implement an atomic operation, such

as the summation found in the PageRank algorithm.

As part of our investigation into the one-sided communication paradigm, two property

maps were developed: one based on Cray SHMEM and another based on MPI one-sided.

Both greatly limit the flexibility of the data storage, currently requiring that data be stored

in vectors and that the graph have local vertex identifiers ranging from 0 . . . N − 1. This

limitation will be discussed in detail in Chapters 4 and 5.

4.2.3. Process Groups. The Parallel BGL utilizes a distribution library originally de-

veloped for the Parallel BGL, but which is sufficiently general to be used elsewhere, the

Parallel Processing Library. The Parallel Processing Library is based on the concept of

a Process Group, which encompasses the basic functionality found in most parallel appli-

cations: a concept of the number of parallel entities (processes, threaded, etc.), the id of

“my” entity, and useful collectives in parallel algorithms: all-gather and all-reduce. Fur-

ther specialization, such as the addition of messaging, is added by refinements of the base

concept.

The MPI Process Group refinement exposes send and receive semantics based on the

MPI interface and is loosely based on a relaxed Bulk Synchronous Process (BSP) [83]

model. The immediate process group is currently the most commonly used and default

process group in the Parallel BGL. While maintaining the computation/synchronization

phases of BSP, it also allows for message transfer and reception before the completion of a

computation phase, which can greatly simplify some graph algorithms.

Both a threaded process group, in which the division of parallelism was threads instead

of MPI tasks, and a process group based on MPI one-sided, have also been implemented,

although neither currently sees use. The MPI one-sided process group was part of the

initial work in investigating the one-sided communication paradigm and proved to be too
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inflexible for the Parallel BGL abstractions. The Process Group abstraction is too low

level and hidden by other structures, such as the property map, for applications to directly

take advantage of the one-sided communication paradigm. The MPI one-sided interface

also proved insufficient to implement the MPI process group abstraction due to issues with

unbounded message sizes during a BSP phase. The MPI one-sided property map combined

with the MPI immediate process group has showed much greater promise and is the structure

used for the MPI one-sided results presented in later chapters.



CHAPTER 3

A One-Sided Taxonomy

As discussed in Chapters 1 and 2, recent trends in high performance computing are

opening the door to paradigms other than message passing. This growth in programming

options creates enormous opportunities for programmers to chose the communication par-

adigm and interface best suited to their application, rather than the one, perhaps two,

interfaces previously available on a given platform. Unfortunately, it is not practical for

developers to create multiple implementations of a large scale application, each with a

different communication paradigm and application level communication abstractions are

typically biased towards a particular paradigm. Therefore, it imperative for the high per-

formance computing community to develop a set of guidelines for which application and

paradigm combinations are most likely to lead to success.

Traditionally, the answer to the question of when to use a one-sided communication

paradigm for application development is whenever message passing is a bad fit. Such an

answer is problematic for a number of reasons, not the least of which is that there isn’t a

good definition of when the message passing paradigm is a good fit. Such “I know it when

I see it” methodology may work well for experienced parallel application developers, but

generally requires failing at a message passing design before attempting a one-sided design.

For the purposes of this dissertation, we define the one-sided paradigm somewhat nar-

rowly, to include only those interfaces who’s primary communication method does not

involve any action by the target process. Under such a definition, Active Messages and

interfaces based on Active Messages such as GASNet, are not considered to be one-sided

interfaces. Unlike the motivating platforms for active-message style interfaces, modern pro-

cessor are unable to quickly handle interrupts, requiring active messages to be based on

a polling or threading model. It is our belief that this polling characteristic substantially

26
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changes application programming style and therefore constitutes its own category of parallel

programming paradigms.

We begin by presenting a taxonomy of the one-sided programming paradigm in Sec-

tion 1. While likely incomplete, we believe that it is sufficient for the driving purpose

behind the work: to assist application developers in picking the programming model that

best fits their application. Section 2 expands upon the taxonomy from the previous sec-

tion to discuss the traits which make an application suitable for one-sided communication

paradigms. Finally, we present a discussion of when we believe using one-sided communi-

cation is appropriate, combining the information presented in Sections 1 and 2.

1. One-Sided Paradigm

We assume that all one-sided interfaces provide the most basic one-sided functionality,

put and get operations capable of storing and loading, respectively, data to a remote process.

Similar to the basic store and load instructions of a processor used to interact with local

memory, these two operations form the backbone of the interface for interacting with re-

mote memory. Differentiation characteristics include blocking behavior, atomic operations,

synchronization, memory utilization, and collective operations.

1.1. Blocking vs. Non-Blocking. Put and get operations may be either blocking

or non-blocking. Blocking calls present an easier implementation path for the one-sided

library and require fewer resources from the network interface card and network, as there

can be many fewer operations in flight at any given time. However, a non-blocking inter-

face presents the possibility of overlapping multiple communication operations, particularly

with get operations, which require a round-trip to remote memory to complete. As shown

in Chapter 5, the difference between blocking and non-blocking operations in terms of

application performance can be substantial. However, in addition to the cost of added

implementation complexity, non-blocking interfaces may greatly increase the complexity of

applications, due to the required state management (request tracking, barrier synchroniza-

tion, etc.).
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1.2. Atomic Operations. Local load and store operations, while sufficient for many

serial applications, are insufficient for applications requiring synchronization. Similarly,

while put and get are sufficient for a small number of applications (see the HPCCG case

study in Chapter 6), many applications require a richer set of operations in order to imple-

ment remote synchronization. Four different synchronization mechanisms appear in one-

sided paradigms:

Atomic Operation: A mathematical operation (add, multiply, max, min, etc.)

atomically updates the target memory location.

Atomic Fetch and Operate: A mathematical operation (add, multiply, max, min,

etc.) atomically updates the target memory location, with the original value re-

turned to the origin process.

Compare and Swap: A new value is atomically swapped with the current value of

an address in the target memory if and only if the current value at the target is

equal to a specified value.

Lock/unlock: Similar to a threading mutex, provides blocking synchronization for

a memory region.

Processors often provide one or more of the above synchronization mechanisms for

interacting with local memory. Because the memory system is incapable of performing

mathematical operations, the processor must be involved in the operation and the Atomic

Operation and Atomic Fetch and Operate mechanisms are equivalent. It has been proved

that Atomic Fetch and Operate and Compare and Swap (in addition to Load Locked/Store

Conditional, a mechanism not found in one-sided interfaces) are syntactically equivalent

and evidence suggests that they are also performance equivalent for local updates. [39, 90]

The latency between processor and memory is much smaller than the latency to a re-

mote memory location, and NICs are frequently capable of performing integer mathematical

operations. Because the NIC is capable of performing the operation on the target, a Com-

pare and Swap, an Atomic Operation, and an Atomic Fetch and Operate are frequently

implemented differently, with very different performance characteristics. As will be shown
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in the PageRank case study of Chapter 5, there can be a drastic performance difference

based on which atomic primitives are available in a given one-sided interface.

1.3. Synchronization. One-sided interfaces frequently differ in how they handle com-

munication synchronization. For example, Cray SHMEM applications can be written with

no explicit synchronization calls, but MPI one-sided requires complex epoch synchronization

(See Chapter 2) for all communication calls. To improve performance, one-sided interfaces

which do not require explicit synchronization in the general case frequently relax completion

semantics of operations which do not require a reply (put, Atomic Operation, etc.), such

that completion of the call only guarantees local completion, but not remote completion.

Such interfaces then require a synchronization call to guarantee remote completion.

While there appears to be a general consensus that unsynchronized interfaces such as

Cray SHMEM are more desirable, they lack optimizations such as scheduling and coalesc-

ing, which are available to interfaces in which the synchronization points in the code are

explicit. On platforms with a low relative performance of one-sided to message passing (see

Section 1.5), these optimizations may be critical to application performance. Non-blocking

operations provide similar opportunities, since the completion point for the non-blocking

operations acts as a synchronization point, in that the communication library can rightfully

assume a completion call will be called at some point in the future, before data delivery is

required for application correctness.

1.4. Target-Side Memory. One-sided implementations limit message processing on

the target side of an operation to a specific region of memory. Cray SHMEM, for example,

limits the target addresses to an area known as the symmetric heap, while MPI limits target

addressing to a given Window. In both cases, it is erroneous to send messages which target

memory addresses outside of the specified range.

Allocation of the target side memory region also differs among one-sided interfaces.

Cray SHMEM and ARMCI require a special allocator be used for allocating memory which

will be the target of one-sided operations. The ARMCI allocator can be used in either a

collective or single-process mode, while the Cray SHMEM allocator is pseudo-collective: the
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call itself is not collective, but every process must make the same number of calls with the

same arguments in the same order. This tends to lead to code like that shown in Figure 1.

MPI, on the other hand, uses the concept of a Window to allow communication into a

memory range which has already been allocated.

Allreduce(&nrow, &mnrow, 1);
double ∗r = (double∗) shmalloc(sizeof(double) ∗ mnrow);
Allreduce(&ncol, &mncol, 1);
double ∗p = (double∗) shmalloc(sizeof(double) ∗ mncol);

Figure 1. Memory allocation pattern using Cray SHMEM

Target addresses may be specified as either a virtual address (Cray SHMEM or ARMCI)

or an offset from a starting address (MPI). MPI provides the ability to create many differ-

ent memory regions (Windows). A displacement from the start of the window, multiplied

by a value specified at Window creation time, is used to generate a virtual address on the

target. The use of the symmetric heap and virtual addresses makes Cray SHMEM gener-

ally straight-forward for homogeneous architectures. The MPI design, with displacements

based on a window-creation time constant, offers greater support for heterogeneous appli-

cations. For example, on platforms with different padding rules, the storage of a structure

may require a differing amount of space. By specifying the padded structure size as the

displacement unit during window creation time, this processor-specific artifact is avoided.

1.5. Relative Performance. While generally not a property of a given one-sided

interface or the one-sided paradigm as a whole, performance relative to message passing is

an important property in the success of a given implementation. Latency and, even more

so, message rate, are critical to the usability of a one-sided interface. One-sided interfaces

encourage users to make more communication calls with smaller buffers when compared to

the message passing paradigm. When a given platform is message rate limited and there is

not a considerable difference between the message passing and one-sided message rate, one-

sided implementations suffer in head-to-head comparisons, as they are throttled by their

higher message counts.
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Going forward, one-sided implementations will generally have lower latency and higher

message rates than MPI is capable of delivering. Software MPI implementations are be-

coming constrained by the need to walk a linked list of posted receives on every incoming

message, as well as walk another linked list of unexpected messages whenever a new receive

is posted. Walking a linked list is inherently unfriendly to cache structures, and therefore

takes much longer than a one-sided implementation in which the delivery address is known

without any list walking. Hardware implementations of MPI fair better in comparison,

but still require more processing time per incoming message, because the posted receive

list (now a hardware construct) still must be locked and walked atomically for incoming

messages.

1.6. Collectives. Collective operations, such a broadcast and reduce, are generally

fundamental to at least part of any distributed algorithm. For example, iterative solvers

generally perform a reduction at the end of every step to check if the residual has dropped

below a set threshold and the algorithm has completed. Broadcasts are frequently used

to load initial state during application start-up. While basic collective routines can be

easily implemented using message passing, active messages, or one-sided, high performance

collective routines require a good deal of optimization, including machine-specific tuning. [3,

51, 70]

Therefore, while collective routines are not strictly necessary as part of a one-sided

interface, it is useful for application programmers to rely on the interface to provide collective

operations with clear semantics and which are efficiently implemented for the particular

machine in use. In all case studies we present, we assume that collective routines tuned for

the target machine are available, even when using Cray SHMEM, which does not natively

provide such routines.

1.7. Summary. Table 1 compares the three one-sided interfaces discussed in Chapter 2

based on the taxonomy presented in this section. The interfaces differ in ways not described

in this section, for example in how strided arrays of data would be communicated. However,

we believe for common use cases these details are not critical to the success of an application
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in using any particular one-sided communication interface. Further, while performance is

critical to the success of a particular implementation, it is difficult to compare interface

performance and we therefore make no attempt to do so.

Blocking Atomic Oper-
ations

Synchron-
ization

Target Side
Memory

Collectives

Cray
SHMEM

Blocking,
non-blocking
put

Atomic Fetch
and Operate,
Compare and
Swap, Lock-
/Unlock

Implicit, op-
tional write
barrier

Symmetric
Heap

Barrier and
Broadcast

MPI One-
Sided

Non-blocking Atomic Oper-
ate

Explicit com-
munication
epochs

Windows,
target-
computed
offsets

Complete
MPI collec-
tives

ARMCI Both Fetch and
Operate,
Atomic Fetch
and Operate,
Lock/Unlock

Explicit Special allo-
cators

Generally
provides MPI

Table 1. Analysis of Cray SHMEM, MPI one-sided, and ARMCI according
to proposed taxonomy.

The differences shown in Table 1 can be traced to the original goal of the interfaces.

Cray SHMEM was designed to expose the unique performance characteristics of the Cray

T3D and later the SGI shared memory machines, and focused on exposing the minimalistic

interface for remote memory access. The relative latencies between local and remote mem-

ory access was so small that a blocking interface was sufficient. The MPI one-sided interface

had to be supported on both high-end machines and Ethernet clusters. The interface, par-

ticularly the explicit synchronization epochs, result from this lowest common denominator

design methodology. ARMCI, on the other hand, evolved to support the needs of the Global

Arrays project and the limited set of applications which use Global Arrays. While the ex-

plicit synchronization fulfills many of the same goals of the MPI one-sided, it is seen as less

invasive, as it conforms to the general usage patterns of Global Arrays.

As one-sided interfaces become better supported and more widely used, it is likely

that the interfaces will continue to evolve. Cray SHMEM has evolved as each hardware

platform is released, to best exploit the capabilities of new hardware. MPI one-sided has
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remained relatively static since its introduction in MPI-2, although the MPI Forum is

currently discussing changes for the MPI-3 standards effort. These changes include adding

a richer set of atomic operations, including Atomic Fetch and Operate and Compare and

Swap operations, and are discussed in Chapter 8.

2. One-Sided Applications

Like any other tool, even the best one-sided implementation will not work well if used

incorrectly. It is our belief that there is no silver bullet of communication paradigms, and

therefore not all applications fit a one-sided communication paradigm. This section presents

a number of factors critical in deciding whether the one-sided communication model is

appropriate for a given application. In addition to raw performance, ease of implementation

must be taken into account.

2.1. Addressing Scheme. One-sided communication paradigms use origin generated

addressing for target side buffers. The origin generated address may be an actual virtual

address, as with Cray SHMEM, or a region id and offset, as with MPI one-sided and window-

based addressing. In either situation, the origin must be able to generate the correct address

with a minimal amount of space and addition communication. Sparse data structures, such

as linked lists, may be impractical as targets unless the data stored in each element is much

larger than the combination of a process identifier and pointer (which generally total 12 or

16 bytes).

For example, while the algorithms described in the first two case studies (Chapters 4

and 5) fit the remaining requirements quite well, the graph structure in use may prohibit

reasonable use of a one-sided paradigm. Array-based structures provide an ideal storage

mechanism for both applications when used with one-sided, as the address is a base address

combined with a well-known offset, and the node id and offset can typically be encoded in

8 bytes or less. List-based structures, on the other hand, allow for a much more dynamic

graph, but at a high data storage cost. In the case of page rank, 12 bytes would be required

to store a remote address which contains 8 bytes of interesting data.
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2.2. Completion Semantics. Unlike many other communication paradigms, one-

sided paradigms are unique in that they generally do not provide notification to the target

process that data has arrived (other than the change in the contents of the target memory

location). For many applications, there is a well defined communication phase and a well

defined computation phase. In these cases, the required synchronization calls (Section 1.3)

will generally provide sufficient completion notification. The PageRank and HPCCG case

studies which follow both fall into this category.

On the other hand, many applications are designed to react to incoming messages

(discrete event simulators, database servers, etc.). The one completion semantic available

from one-sided interfaces—data delivery—is often insufficient as it leads to polling memory

for messages. In addition to causing numerous reads from memory due to the inability of

NICs to inject new data into a processor’s cache, polling requires the process to be actively

using the processor. While the performance implications of hard polling for message arrival

are not severe, the power usage is undesirable. Further, due to data arrival ordering issues

within a message and strange interactions with modern cache and memory structures, such

schemes can be fragile and error prone.

2.3. Work / Message Independence. A number of algorithms depend upon struc-

tures such as work queues, stacks, and linked lists. Similar to the problems faced imple-

menting such structures in a multi-threaded environment using lock-less operations (see

Section 1.2), implementing the structures in a one-sided implementation proves difficult.

The structures are generally trivial to implement using an active message paradigm and

relatively straight forward when using message passing. One-sided, however, presents both

design and scalability problems. Because message delivery is based on origin-side address-

ing, the delivery address must be known prior to delivery at the target node. For work

queues, the problem can be solved by per-peer circular buffers, although there are obvious

scaling problems associated with per-peer resources. Stacks could potentially be imple-

mented using a compare and swap, although the performance is likely to suffer if there is

any contention, due to the high cost of multiple round trips for a single message. Linked
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lists are the most problematic, as there are few viable solutions outside of remote locks

protecting the list.

In some cases, such as the connected components algorithm presented in Chapter 4, the

algorithm can be modified to eliminate the use of a work queue, potentially at the cost of

slightly more work. In some cases, such as a command driven data server, a work queue

may be unavoidable. In such cases, it is unlikely that one-sided will be a viable model

for implementation. Such an issue is one of the reasons that existing applications written

using a message passing or active message paradigm have historically been unsuccessfully

converted to using a one-sided paradigm.

2.4. Summary. Three case studies are presented in later chapters verifying the one-

sided taxonomy presented in Section 1 and the application interface requirements presented

in this section. Table 2 presents the three case studies according to the topics discussed in

this section.

Addressing Scheme Completion Semantics Work Independence
Connected
Components

Offset from global ar-
ray start

Single barrier Work follows graph
structure

PageRank Data-structure depen-
dent, generally offset
from global array start

Barrier per iteration Work follows graph
structure

HPCCG Per-peer offset into ar-
ray

Completion with small
set of peers

Work based on data
partitioning

Table 2. Analysis of Connected Components, PageRank, and HPCCG ap-
plications according to proposed taxonomy.

The Connected Components and PageRank problems both involve global communica-

tion: at each iteration of the algorithm, it is likely a process will communicate with a high

percentage of other processes. This communication pattern mitigates the cost of global

synchronization calls, as the impact of such a call is low if synchronization is needed with a

large percentage of processes. If, on the other hand, synchronization is only needed with a

small number of processes, as is the case with HPCCG, the cost of global synchronization

calls is much higher. For interfaces which provide only implicit synchronization, this trait

may pose undue performance problems.
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3. Conclusions

This chapter presents a taxonomy for one-sided interfaces, as well as a set of guidelines

for determining whether an application is suitable to use with a one-sided paradigm. Un-

fortunately, it is unlikely that any one communication paradigm will be sufficient for all

applications, hence the need for a better understanding of the issues associated with any

given model.

Our analysis of the applications and communication interfaces attempts to categorize

implementation issues with a given one-sided interface according to the following breakdown:

Paradigm: Issues occurring at the paradigm level are not related to a particular

interface or library. An example of such an issue is the completion semantics issue

discussed in Section 2.2.

Interface: Interface issues include those related to a particular interface (Cray SHMEM,

MPI one-sided, etc.), and include details like the availability of blocking versus

non-blocking calls or available synchronization primitives.

Implementation: Implementation issues include usability or performance short-

comings due to a given implementation of an interface. The poor performance

of some MPI one-sided implementations, particularly as message load increased, is

one significant implementation issue.

Hardware: Issues related to a particular hardware platform. For example, the Red

Storm platform used for SHMEM results in the case studies have a limited number

of outstanding operations (2048) and a comparable message rate for one-sided and

message passing.

MPI one-sided implementations, in particular, are notoriously immature, which is likely

due to the small user community and poor implementation options available with current

hardware offerings. As part of early work on this dissertation, we have implemented the

MPI one-sided interface within Open MPI, which is described in Chapter 7. Our intention

in categorizing implementation issues using this breakdown is to define the severity of a

particular problem. For example, hardware issues are likely to cause problems on current
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generation hardware, but may very well disappear in the next 12–24 months. Paradigm

issues, however, are so severe as to suggest the one-sided paradigm is permanently unable

to support a given application.

To validate both our one-sided taxonomy and the application evaluation criteria, we

present three case studies in the following chapters: A Connected Components algorithm

implementation (Chapter 4), The ubiquitous PageRank algorithm (Chapter 5), and an

implicit finite element solver (Chapter 6). The MPI message passing interface, the Cray

SHMEM one-sided interface, and the MPI one-sided interface are compared in each case

study, including implementation and performance results where possible.



CHAPTER 4

Case Study: Connected Components

Identifying the connected components, the maximally connected subgraphs, of a graph is

a challenging problem on distributed memory architectures. It is also an important concept

for informatics, both directly to identify connections within data and indirectly to support

other algorithms by breaking data into smaller independent pieces.

Connected components presents scaling and performance challenges to distributed mem-

ory architectures due to the excessive communication needed in most algorithms and, more

importantly, the interdependence of data, making communication overlap difficult. The

random communication patterns and short messages of connected component algorithms

would appear to make it an ideal candidate for one-sided communication models, and results

presented in Section 3.1 support such an assertion.

This chapter begins by presenting an overview of three common parallel algorithms

in Section 1. An analysis of the communication properties and their applicability to the

one-sided communication paradigm is presented in Section 2. Finally, an analysis of the

implementation of a Bully Connected Components algorithm using Cray SHMEM and MPI

one-sided is presented in the context of Section 2 in Section 3.

1. Connected Component Algorithms

Identifying connected components can be efficiently implemented as a series of depth-

first searches, with the visitor identifying the component membership of each newly dis-

covered vertex. While depth-first search is efficient in serial applications, parallel per-

formance is more difficult [35]. A number of distributed memory connected component

algorithms have been proposed, including hook and contract algorithms by Awerbcuh and

Shiloach [6] and Shiloach and Vishkin [79], and random contraction algorithms by Reif [75]

38



4. CASE STUDY: CONNECTED COMPONENTS 39

and Phillips [69]. Kahan’s algorithm utilizes a parallel search1 combined with Shiloach-

Vishkin on multi-threaded shared memory platforms [11]. The Bully algorithm refines

Kahan’s algorithm to remove hot-spots on shared memory platforms.

A simple, high performance distributed memory algorithm based on the Bully algorithm

but influenced by Shiloach-Vishkin and Kahan’s algorithm to reduce communication costs

is used to motivate discussion of one-sided communication paradigms. The Parallel BGL

Parallel Search algorithm, on which the work presented in this chapter is based, is heavily

influenced by both the Kahan and Bully algorithms. All three algorithms are presented in

further detail, to motivate the discussion of one-sided communication in Section 2.

1.1. Kahan. Kahan’s algorithm is designed for massively multi-threaded shared-memory

architectures like the Terra MTA [2, 20] and Cray XMT [25]. The algorithm optimizes for

high levels of parallelism, 5,000 threads for the MTA and upwards of 256,000 threads on

the XMT), over limiting random communication patterns.

Kahan’s algorithm labels the connected components of a graph in three phases:

(1) Parallel searches are started from every vertex in the graph, marking unvisited

vertices as being in the previous vertex’s component. If a vertex has already been

visited and is marked as belonging to another component, the two components are

entered into a hash table of “component collisions”.

(2) The Shiloach-Vishkin algorithm is used to find the connected components of the

graph consisting of all the collision pairs in the hash table generated by the first

step.

(3) Parallel searches are started from the component leader (the vertex that originally

started the given component in step 1) for the “winning” component of all the

collision pairs, marking the vertices in the graph as belonging to the winning

component.

1A parallel search is similar to a breadth-first search, but without the requirement that each “level” of the
graph be visited before moving on to the next level. In general, it scales well on shared memory, distributed
memory, and multi-threaded platforms.
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Kahan’s algorithm is impractical without refinement on distributed memory machines,

due to the need for a global hash table. Such data structures prove impractical at a large

scale for distributed memory machines. The hash table also proved problematic for larger

scale MTA and XMT machines, as collisions when inserting into the hash table caused a high

degree of memory hot-spots, which caused severe performance degradation on the cache-less

platforms. These performance characteristics lead to the Bully algorithm, a refinement of

Kahan’s algorithm.

1.2. Bully. The Bully algorithm starts with the same principle as Kahan’s: a large

number of parallel searches marking component membership. The algorithms diverge in

their handling of a vertex that appears to belong in two different components. Unlike

Kahan’s algorithm, in which resolution of the conflict is deferred and an external global

data structure is used to store the collisions, the Bully algorithm immediately resolves the

collision and allows only the winning parallel search to continue.

When a search discovers a vertex that already belongs to different component, the

components are compared and a “winning” component is selected.2 If the parallel search

was started by the losing component, it stops all further searching. If the parallel search

was started by the winning component, it becomes the “bully” and overwrites the previous

component information with its own and continues searching.

While the Bully algorithm does not utilize a global data structure subject to hot-spotting

like Kahan’s, it does require a rich set of inexpensive synchronization or atomic operations.

The Terra MTA and Cray XMT on which the algorithm was developed use Full-Empty

bits for read and write synchronization at virtually no extra cost over traditional reads and

writes.

1.3. Parallel BGL Parallel Search. The Parallel BGL provides two connected com-

ponents algorithms: an adaption of Shiloach-Vishkin and a parallel search algorithm based

on Kahan’s and the Bully algorithms. The parallel search algorithm was developed by the

author and provides two advantages over the Shiloach-Vishkin algorithm: for power-law

2Components are generally numbered 0 ... N-1, and a numerical comparison can be used to pick the winner.
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graphs with a large number of components it is considerably faster and it is considerably

simpler to implement. The simplicity allowed adaptations for both traditional message

passing and Cray SHMEM to be developed side by side.

The algorithm consists of three phases, similar to Kahan’s algorithm. Unlike Kahan’s,

however, hot-spots are minimized by replication and communication is well controlled, even

for unbalanced graphs.

(1) Parallel searches are used to mark each vertex in the graph as belonging to a

component. Collisions are stored in an ordered list of collisions. Rather than

starting a parallel search at each vertex simultaneously, each process starts a single

parallel search and only starts a new parallel search when the first has completed

and there is no work to be done completing parallel searches started by remote

processes.

(2) The individual collision lists are shared between all processes in a global all-to-all

communication and a table mapping all component names used during the first step

to their final component name is then constructed. Unlike Kahan’s algorithm, in

which there will always be |V | components started, our algorithm limits the number

of “false” components by limiting the number of simultaneous parallel searches.3

(3) Each process iterates through the vertices local to the process and updates the

component name associated with the vertex based on the table generated in step

2. The table look-up is currently implemented using an STL map, and the updates

are completely independent of both the graph structure and vertices on remote

processes. The step is completely independent from the actions of other processes

and no communication takes place during this phase. As long as the vertices in

the graph are evenly distributed, this step will also load balance quite well.

Unlike the multi-threaded implementation of Kahan’s algorithm, the Parallel BGL’s

Parallel Search algorithm does not have an issue with communication hot-spots from the

collision data due to the independent, distributed nature of the collision data structure.

3In a graph with exactly one component, the number of entries in the hash table may be as small as the
number of processes, p.
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While there may be hot-spots in the local data structure during step 1, such hot-spots are

actually beneficial due to the cache-based memory hierarchies found in distributed memory

platforms.

2. One-Sided Communication Properties

The Parallel BGL Parallel Search connected components algorithm discussed in Sec-

tion 1.3 is used to motivate our discussion from Chapter 3 as to the use of one-sided

communication paradigms. As previously discussed, the Parallel Search algorithm has been

implemented utilizing both the Parallel BGL process group abstraction, which provides a

BSP-style communication infrastructure over MPI point-to-point communication, and over

Cray SHMEM. As Cray SHMEM does not provide collectives, step 2 utilizes MPI collective

routines even in the Cray SHMEM implementation.

2.1. Data-dependent Communication. Communication in step 1 of the Parallel

Search algorithm is solely dependent upon the structure of the graph. When a parallel

search encounters an edge to a remote vertex, communication is initiated. While mes-

sages are explicitly bundled when the Parallel BGL MPI process group is used, the pairs

of communicating processes are likely to change from consecutive synchronization steps,

and communication patterns will appear random for interesting graphs. As discussed in

Chapter 3, the irregular communication pattern of majority of the algorithm lends itself to

the use of one-sided communication paradigms.

Communication in step 2 of the Parallel Search algorithm consists of a single all-to-all

message. While it is possible to efficiently implement collectives on top of one-sided commu-

nication, the lack of collective routines for one-sided applications exposes a missing feature

of one-sided paradigms. An naive all-to-all pattern, as would generally be implemented by

application writers to cope with the short-coming in most one-sided paradigms may perform

considerably worse than an optimized collective routine, tuned for the underlying network

structure.
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2.2. Remote Addressing. Unlike the PageRank algorithm, which depend on prop-

erties associated with individual vertices or edges (such as the current ranking in the case

of PageRank), connected components relies only on the graph structure (vertex and edge

lists) and internal data structures of the algorithm’s choice during execution. The Parallel

Search algorithm updates a vector-based property map of current component assignments

in step 1, although this structure can be changed with no loss of generality or impact to

user applications.

Limiting remote addressing to a data structure internal to the algorithm greatly simpli-

fies the addressing problem discussed in Chapter 3, Section 2.1. In the case of Cray SHMEM,

the temporary component map is allocated from the symmetric heap and is indexed based

on the vertex’s local index. An edge to a remote process includes enough information to

resolve the peer process identifier and the local vertex number on that process, allowing

local resolution of the remote address.

2.3. Read-Modify-Write Atomic. Care must be taken when updating the com-

ponent membership of a vertex, to solve the obvious race condition of multiple searches

simultaneously attempting to update the same vertex. In the message passing implemen-

tation, messages are handled serially during a synchronization phase in which the process

is not directly updating the vertex. A one-sided implementation must provide an atomic

read-modify-write primitive in order to implement the algorithm.

The simplest and most efficient implementation of the algorithm utilizes a compare-

and-swap primitive for all component membership updates. The vertex is assumed have an

“invalid” component assignment, which was assigned during initialization. If the compare

and swap succeeds, then the vertex had not yet been assigned to a component. If the

operation failed, the vertex belongs to another component, and the compare and swap

operation will return the vertex’s existing component. The collision can then be added into

the collision table, and resolved during the second and third steps of the algorithm.

Other read-modify-write operations, such as fetch-and-add, may be used to implement

the algorithm, using a second vector to act as lock locations for the component value. The
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implementation suffers from a much higher communication cost than the single round trip of

the compare-and-swap implementation. The algorithm requires three round trip operations,

in addition to the put operation if the component has not been updated. An additional

round-trip for a get to find the initial state of the component assignment may be added

before the lock if it is likely that the vertex has already been assigned a component.

3. One-Sided Algorithm Implementation

Following the previous discussion of the requirements of the Parallel Search connected

components algorithm on one-sided communication paradigms, this section discusses an

implementation of the algorithm for Cray SHMEM, as well as a discussion as to why the

MPI one-sided interface is inadequate for implementing the algorithm. Performance of the

Cray SHMEM implementation relative to the message-passing based implementation is also

presented.

3.1. Cray SHMEM. The Parallel Search connected components algorithm presented

few challenges when implemented in Cray SHMEM. The data-dependent communication

patterns combined with straight-forward remote addressing simplify communication. The

communication operation can be expressed as a word-sized compare-and-swap operation,

one of the primitives available with all versions of Cray SHMEM. Finally, the light-weight

synchronization requirements of Cray SHMEM ensures that step 1 may be implemented

without any global synchronization primitives.

To limit code changes between message passing and SHMEM implementations of the

Parallel Search algorithm, a SHMEM-based property map was implemented as part of the

algorithm development. The SHMEM property map supports local property map put/get

operations, similar to other property maps. Remote put/get operations are implemented

in terms of Cray SHMEM operations and take place immediately. This results in a slight

loss in semantics, as the put is not “resolving” as they are for other property maps; the

put is a direct write, with no opportunity to resolve conflicts. The SHMEM property

map also exposes a start method, which returns the start of the data array stored in the

property map. The data array is allocated in the SHMEM symmetric heap, meaning that



4. CASE STUDY: CONNECTED COMPONENTS 45

all processes will return the same pointer from start. The start method allows algorithms

to directly manipulate the data stored in remote property map instances, as is done in the

Parallel Search algorithm.

q.push(starting vertex);
while (!q.empty()) {

vertex descriptor v = q.front();
q.pop();
BGL FORALL ADJ T(v, peer, g, Graph) {

component value type my component = get(c, v);
component value type their component = max component;
process id type owner = get(owner, peer);

shmem int compare and swap(c.start() + local(peer),
my component,
their component,
owner);

if (their component != max component) {
collisions.add(my component, their component);

} else if (id == owner) {
// if it’s local, start pushing its value early. Can’t
// do this for remote processes, because of the cost of
// multiple−writer queues.
q.push(peer);

}
}
if (q.empty()) {

q.push(next vertex());
}

}

Figure 1. Parallel Search algorithm step 1 using Cray SHMEM.

Step 1 of the algorithm, shown in Figure 1, involves the majority of the communication

and takes the majority of the run-time. The algorithm differs from the message passing

version in that when updating a remote vertex, that vertex is not added to the remote pro-

cess’s work queue. Instead, vertexes are processed in order as the algorithm iterates through

the vertex list. Multiple writer queues or lists are extremely challenging to implement for

Cray SHMEM. The challenges are similar to those found in lock-less shared-memory data

structures, which are frequently very inefficient [54]. It is far simpler and likely far less
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expensive to handle the potential increase in entries in the component collision table than

it is to implement a multiple-writer SHMEM queue.

Because the NIC is atomically modifying the component vector with updates even as

the local processor is locally updating the component vector, local operations must also

use atomic memory operations. SHMEM requires that SHMEM atomic primitives be used,

rather than using the processor’s built-in atomic primitives. The SHMEM-based synchro-

nization is necessary due to the loose synchronization between the processor and NIC,

which are unlikely to be solved in the near future. The extra cost of local synchronization

is unfortunate but necessary for correctness in our unsynchronized model.

They message passing implementation of step 1 is forced to synchronize frequently (gen-

erally whenever the local work queue is empty) to exchange communication messages. This

is an unfortunate side-effect of the data-driven communication patterns, as messages are

only guaranteed to be delivered by the message-passing process group at BSP-like syn-

chronization steps. Because communication in the SHMEM implementation is via atomic

operations, the communication operation has been committed to remote memory upon

return of the SHMEM call, removing the need for any synchronization during step 1.

Step 2 of the Parallel Search algorithm requires an all-to-all collective communication

call to start the step, and then requires no further communication. Each process dupli-

cates the work of resolving the conflicts table, rather than more costly algorithms which

trade duplicate computation (which is relatively cheap) for more communication (which

is relatively expensive). The collective all-to-all does expose a significant short-coming in

Cray SHMEM interface, the lack of collective operations other than a simple barrier. While

efficient collective routines can certainly be implemented over SHMEM, it is unfortunate

that the user is forced to handle such implementations himself. Collective performance

requires careful attention to network structure and often times involves counter-intuitive

performance trade-offs. Fortunately, the Cray XT series of machines used during devel-

opment and benchmarking of the algorithm allows SHMEM and MPI to be used within

the same process with no loss in performance for either interface. Therefore, the MPI
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MPI ALL TO ALL function was used to start step 2. As all-to-all has pseudo-barrier seman-

tics4, the call is used not only to transfer collision data between peers, but also to ensure

that all processes have completed step 1 before any begin hash table resolution in step 2.

Step 3 of the algorithm is entirely local and therefore is unchanged between message

passing and SHMEM implementations. While the authors do not believe it is necessary, it

may be advantageous to synchronize the exit from the Parallel Search algorithm between

the participating processes. In this case, a barrier at the end of step 3 would be necessary.

Cray SHMEM provides a barrier operation, which would be sufficient for this use.

3.2. MPI One-Sided. MPI presents a number of insurmountable barriers for imple-

menting the Parallel Search connected components algorithm. In particular, the interface

lacks a read-modify-write atomic operation and the buffer access restrictions of the stan-

dard impose a heavy synchronization cost. The lack of an appropriate atomic operation

prohibits an implementation of the Parallel Search algorithm, although the heavy synchro-

nization cost would render an implementation impractical.

The MPI one-sided interface provides an atomic update call, MPI ACCUMULATE, which

supports a number of atomic arithmetic operations on both integer and floating point

datatypes. The operation does not, however, return either the previous or updated value.

Further, an MPI ACCUMULATE or MPI PUT followed by an MPI GET to the same memory

address is prohibited by the standard, eliminating the use of MPI LOCK/MPI UNLOCK for

emulating the atomic operation.

Assuming the MPI ACCUMULATE function returned the value in true read-modify-write

fashion, the synchronization and buffer access rules of the MPI standard would still severely

limit the performance of a connected components algorithm. The algorithm depends on im-

mediately determining the remote vertex’s component assignment. Assuming a modified

MPI ACCUMULATE exhibits the same behavior as MPI GET in terms of data availabil-

ity, the algorithm’s implementation would be forced to using lock/unlock synchronization.

4MPI does not actually guarantee full barrier semantics for all-to-all collective calls. However, no process
may leave the all-to-all until it has received every other process’s data. This data dependency provides the
limited barrier semantics we require.
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As discussed in Section 3.2, lock/unlock synchronization requires at least one round-trip

communication. A true one-sided implementation would require three round-trip commu-

nications (one to acquire the lock, one for the communication operation, and finally a third

to release the lock).

3.3. Performance Results. Results of the Parallel BGL’s Parallel Search connected

components algorithm are presented using both MPI send/receive semantics and Cray

SHMEM. As discussed in Section 3.2, there is not an implementation of the algorithm

using the MPI one-sided interface. Both the MPI send/receive and Cray SHMEM imple-

mentations are compared on the Red Storm machine.

3.3.1. Test Environment. Tests were performed on the Red Storm machine at Sandia

National Laboratories. Red Storm is a Massively Parallel Processor machine, which later

became the basis of the Cray XT platform line. In the configuration used, the platform

includes 6,720 dual-core 2.4 GHz AMD Opteron processors with 4 GB of RAM and 6,240

quad-core 2.2 GHz AMD Opteron processors with 8 GB of RAM. Each node contains a

single processor, and nodes are connected by a custom interconnect wired in a semi-torus

topology (two of the three directions are wired in a torus, the other does not wrap around to

allow for red/black switching). Each node is connected to the network via a custom SeaStar

network interface adapter, capable of providing 4.78 µs latency and 9.6 GB/s bandwidth.

UNICOS/lc 2.0.61.1 and the Catamount light-weight kernel were running on the system

during testing. Cray’s XT MPI library, based on MPICH2, and the Cray-provided SHMEM

libraries were used for message passing and SHMEM, respectively.

3.3.2. Test Graph Structures. The structure of a graph can greatly influence the per-

formance of an algorithm, as can be seen in Section 3.3.3. Three graphs with very different

structures are used to compare the two connected component algorithm implementations.

The first is an Erdös-Rényi graph, a uniformly random graph. The other two are based

upon the R-MAT graph generator, which is capable of generating high-order vertices.

The Erdös-Rényi [27] graph model generates a random graph in which each pair of

vertices have equal probability of being connected by an edge. The format does not model
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graphs which tend to occur in real life, but is extremely useful in proving traits about

both graph properties and graph algorithms. Because the out-degree of each vertex is

probabilistically uniform, load balancing of Erdös-Rényi graphs are much easier than other

graph structures. The probability p of an edge between any two vertices in the graph used

for testing is .0000001. The number is low so that the number of edges does not explode as

the number of vertices grows.

The R-MAT (Recursive MATrix) [24] graph generator generates random graphs which

are parametrized to produce a variety of graph structures. Parameters can be chosen which

mimic a variety of real-world data sets. Four parameters, generally referred to as a, b, c,

and d, are used to generate the graph. The generator is recursive, dividing the vertices of

a graph into four partitions, and choosing a partition based on the probabilities a, b, c,

and d, repeating until a vertex is chosen, then the process is repeated to pick its pair. The

procedure then is repeated until the proper number of edges are generated. Duplicate edges

may be generated during the procedure, which are thrown out and a new edge generated.

The parameters a, b, c, and d determine the graph structure. Using a = 0.25, b = 0.25,

c = 0.25, and d = 0.25 will generate an Erdös-Rényi graph. Putting more weight on one

of the quadrants generates an inverse power-law distribution. Two sets of parameters are

used in the tests:

nice: Nice graphs use the parameters a = 0.45, b = 0.15, c = 0.15, and d = 0.25. The

graph generated features two communities at each level of recursion in quadrants

a and d. The maximum vertex degree is roughly 1,000 in graphs with 250,000

vertices. While more difficult to load balance than Erdös-Rényi, the load balancing

issues are still surmountable with little work.

nasty: Nasty graphs use the parameters a = 0.57, b = 0.19, c = 0.19, and d = 0.05.

Due to the heavy weighting of quadrant a, the maximum degree for the 250,000

vertices is closer to 200,000. The load balancing issues with a nasty graph are

much more difficult than with both Erdös-Rényi and R-MAT graphs with nice

parameters.
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During graph generation, the vertex ids generated by the R-MAT graphs are permuted by

a random, uniform permutation vector. Without the permutation, the vertices for each

quadrant would tend to be placed on the same set of processors. With the permutation

vector, it is likely that all nodes will have an equal number of vertices from each quadrant.
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Figure 2. Connected Components completion time, using an Erdös-Rényi
graph with edge probability .0000001.

3.3.3. Analysis. As shown in Figure 2, the Cray SHMEM implementation performs

significantly better than the MPI implementation of the connected components algorithm

for Erdös-Rényi graphs. There is little hot-spotting in the algorithm which would cause

contention at a given node. There are a small number of equally large components in the

graph, which means that there will be small messages sent to a large number of nodes at

every synchronization point in the algorithm.

Unlike the Erdös-Rényi graphs, the nice R-MAT graphs cause significant performance

degradation for the Cray SHMEM implementation, as seen in Figure 3. The nice R-MAT

graph has a number of components, mostly equal in size. There are a number of large

components, which limits the number of messages that must be sent, as a component that

cross a processor boundary requires only one message. The high cost of local updates in

the SHMEM case, which requires a compare and swap, can not be overcome by the lower

communication and synchronization cost.
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The nasty R-MAT graph results, presented in Figure 4, demonstrate the ability of one-

sided communication paradigms to overcome the load balancing issues inherent in graphs

with nasty parameters. The nasty graph has a significant (1,000–2,000) number of com-

ponents. Generally, one component will encompass the majority of the vertices, with the

remainder of components having a small number of vertices (1–10). The small components
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present a problem for the message passing implementation, as the synchronization when

completing the small components present a high performance cost.

4. Conclusions

The Parallel Search Connected Components algorithm is currently the most scalable

connected components algorithm in the Parallel BGL. The algorithm provides a good match

to one-sided communication, based on the parameters discussed in Chapter 3. As discussed

in Section 3, Cray SHMEM supports the connected components algorithm with much sim-

pler code than the MPI implementation, and as shown in Section 3.3 the performance of

the algorithm is better than the message passing implementation. On the other hand, the

MPI one-sided interface presents insurmountable difficulties for implementation.



CHAPTER 5

Case Study: PageRank

PageRank is the algorithm behind Google’s search engine, measuring the “importance”

of a web page based on the number and importance of other pages linking to it. [17]

Various characteristics (web pages, physical connections, etc.) of the Internet are often

modeled as a large graph algorithm, and PageRank can be implemented using such a data

representation. PageRank and slight variations on the original algorithm have found appli-

cability outside of search engines. [94, 12] In addition to graph representations, PageRank

has been successfully implemented using a number of different programming paradigms,

including Map-Reduce and as a traditional sparse linear algebra problem. [76]

1. PageRank Algorithm

The general theory behind PageRank is that “important” pages are linked to by other

“important” pages. Initially, each vertex in the graph has the same importance rank,

generally 1.0. The rank value is traditionally a real number between 0.0 and 1.0, which can

be viewed as the probability a given vertex would be found in a random walk of the graph.

Unlike connected components, which is only applicable to undirected graphs, PageRank is

only applicable to directed graphs.

PageRank consists of a (generally bounded) number of iterations during which the rank

values flow along out-edges in the graph. For each iteration, a vertex v is updated according

to Equation 1.1

(1) PR(vi) =
1 − d

|V |
+

∑
vj∈ADJ(vi)

PR(vj)
OUT (vj)

1The literature is inconsistent as to whether the 1−d term is divided by |V |. In either case, the computational
complexity and communication patterns are identical.

53
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OUT (vJ) is the total number of out-edges for vj , so that no new “rank value” is created

during the algorithm step. ADJ(vi) is the set of vertices adjacent to vi. In a double-buffered

scheme, PR(vj) is generally the page rank of vj as determined by the previous iteration of

the algorithm.

Generally, the algorithm utilizes two rank values for each vertex in a double buffering

scheme. A serial implementation of the algorithm is shown in Figure 1. While not shown in

the code, the rank value should be re-normalized to the 0.0 to 1.0 range at the completion

of each step. Completion of the algorithm is determined either by a fixed number of steps

or when the maximum change in any vertex’s rank between two iterations falls below a

specified threshold.

void page rank step(const Graph& g, RankMap from rank, RankMap to rank,
double damping)

{
// update initial value with damping factor
BGL FORALL VERTICES T(v, g, Graph) put(to rank, v, rank type(1 − damping));

// ‘‘push’’ rank value to adjacent vertices
BGL FORALL VERTICES T(u, g, Graph) {

rank type u rank out = damping ∗ get(from rank, u) / out degree(u, g);
BGL FORALL ADJ T(u, v, g, Graph)

put(to rank, v, get(to rank, v) + u rank out);
}

}

Figure 1. Pseudo-code for a single PageRank iteration step using a push model.

2. One-Sided Communication Properties

2.1. Data-dependent Communication. Unlike the connected components commu-

nication pattern discussed in Chapter 4, PageRank’s communication pattern is determin-

istic. At each step in the algorithm, data must be transferred for each edge in the graph,

as the rank value from the source vertex is pushed to the target vertex of the edge. In

a distributed implementation, assuming the graph does not change during the algorithm

(which is generally the case), the total amount of data to be sent in a given iteration from
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a process to any other process can be determined at any time, including during the initial

“setup” phase of the algorithm.

The communication pattern of PageRank is largely dependent upon the structure of the

underlying graph. Power-law graphs, in which a small percentage of the vertices have high

connectivity and the majority of vertices have a low number of edges, are likely to result in

a small number of processors participating in the majority of the communication. Erdös-

Rényi graphs, on the other hand, are likely to involve communication with a uniformly high

number of remote processes, with more balanced communication sizes.

Although the communication pattern is deterministic, making two-sided communication

easier to organize than with connected components, the high number of remote peers still

presents a challenge. For large problem sizes distributed among a high number of peers, a

simple model which posts a receive from each peer may be insufficient due to performance

issues associated with large posted receive counts. [89]

2.2. Remote Addressing. Similar to connected components in Chapter 4, care must

be taken in the storage of rank value data. If the rank data is stored in the vertex data

structure, the graph is limited to those storage structures in which the address of the remote

vertex can easily be computed from the origin process. This generally eliminates list-based

structures, as encoding a node and address can be space prohibitive. An array based

structure, requiring only a node id and local index be encoded, is much less prohibitive. If

external storage, like Parallel BGL’s property map, is used, similar restrictions are placed

on the property map data structure. Dynamic graphs with vertex rank computations stored

from previous algorithm runs further complicate the issue, as dynamic graphs are generally

stored in list-based representations to allow easier modification of the graph.

2.3. Floating-point Atomic Operation. The push-based PageRank algorithm re-

quires the rank of vi be atomically added to the rank of vj . Unlike connected components,

where the algorithm must know the old target component value, the PageRank algorithm

has no need for the original rank value of vj . A remote atomic addition primitive or locking

mechanism is required to implement the algorithm. Unfortunately, while remote atomic
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integer addition is a common one-sided primitive, PageRank requires floating point addi-

tion operations. In order to be truly one-sided, the library must avoid interrupting the

target’s host process, so a floating point atomic would require a floating point unit on the

network interface card. The update operation may also be implemented using a synchro-

nized update, either a lock followed by a get/put combination or using a get followed by

a compare-and-swap (Figure 2). However, such an operation requires a cost-prohibitive

minimum of two round-trips to the remote processor’s memory.

double start, ret, tmp;
shmem double get(&ret,

to rank.start() + local(v),
1, get(owner, v));

do {
start = ret;
tmp = start + shmem get(from rank, u);
ret = shmem cswap((long int∗) (to rank.start() + local(v)),

∗((long int∗) &start),
∗((long int∗) &tmp),
get(owner, v));

} while (ret != start);

Figure 2. Implementation of remote atomic floating point via compare-
and-swap

3. One-Sided Algorithm Implementation

The graph-based implementation of PageRank can be implemented using both Cray

SHMEM and MPI one-sided. Details of the implementation are discussed, particularly

with a focus on the implementation’s short-comings relative to the taxonomy discussed in

Chapter 3. Performance comparisons between the three implementations are also provided.

3.1. Cray SHMEM. Cray SHMEM has always been designed to closely match the

underlying hardware. As floating-point unites have only recently shrunk to the point where

they can be cost-effectively implemented on a NIC, Cray SHMEM does not provide an

atomic remote floating-point addition. Therefore, the implementation options for Cray

SHMEM are limited to a push model similar to Figure 3, or a pull model (Figure 4). The cost
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of two serialized round-trip network communications is prohibitive, with performance on

the test graph sizes an order of magnitude worse than the bidirectional pull implementation.

The limitation of Cray SHMEM to integer math is a combination of software implementation

choices and hardware deficiencies. The SHMEM paradigm would easily support a floating

point remote add if such an operation was supported without interrupting the host.

BGL FORALL VERTICES T(u, g, Graph) {
put(from rank, u, (damping ∗ get(from rank, u) / out degree(u, g)));
BGL FORALL ADJ T(u, v, g, Graph) {

double start, ret, tmp;;
shmem double get(&ret,

to rank.start() + local(v),
1, get(owner, v));

do {
start = ret;
tmp = start + get(from rank, u);
ret = shmem cswap((long int∗) (to rank.start() + local(v)),

∗((long int∗) &start),
∗((long int∗) &tmp),
get(owner, v));

} while (ret != start);
}

}
shmem barrier all();

BGL FORALL VERTICES T(v, g, Graph) put(from rank, v, rank type(1 − damping));

Figure 3. Cray SHMEM implementation of the PageRank update step,
using a “push” model, which does not require a bi-directional graph.

3.2. MPI One-Sided. MPI one-sided provides a remote atomic operation via the

MPI ACCUMULATE function. MPI ACCUMULATE is capable of operating on any pre-

defined MPI datatype, including floating point numbers. Operations include addition,

subtraction, multiplication, minimum, and maximum. Like all MPI one-sided communi-

cation calls, MPI ACCUMULATE is non-blocking. Unlike MPI PUT and MPI GET’s highly

restrictive prohibition on multiple updates to a single target address in a synchronization

period, multiple MPI ACCUMULATE calls may update the same target address in the same

synchronization phase.
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BGL FORALL VERTICES T(v, g, Graph) {
put(from rank, v, get(from rank, v) / out degree(v, g));

}
shmem barrier all();
BGL FORALL VERTICES T(v, g, Graph) {

rank type rank(0);
BGL FORALL INEDGES T(v, e, g, Graph) {

double ret;
shmem double get(&ret,

from rank.start() + local(source(e, g)),
1, get(owner, source(e, g)));

rank += ret;
}
put(to rank, v, (1 − damping) + damping ∗ rank);

}
shmem barrier all();

Figure 4. Cray SHMEM implementation of the PageRank update step,
using a bi-directional graph and the “pull” algorithm.

Assuming that the graph is well partitioned (or even randomly partitioned), it can be

assumed that communication with the majority of peers in the parallel application will

be required in any single step of the algorithm. Therefore, MPI FENCE synchronization,

which is collective across all communicating processes, is used for synchronization. An ideal

implementation using the MPI one-sided implementation is shown in Figure 5.

BGL FORALL VERTICES T(u, g, Graph) {
put(from rank, u, (damping ∗ get(from rank, u) / out degree(u, g)));
BGL FORALL ADJ T(u, v, g, Graph) {

MPI Accumulate(&(from rank[u]),
1, MPI DOUBLE,
get(owner, v), local(v),
1, MPI DOUBLE, MPI SUM, to win);

}
}
MPI Win fence(0, to win);

// Set new rank maps for map which will be the target in the next step
BGL FORALL VERTICES T(v, g, Graph) put(from rank, v, rank type(1 − damping));

Figure 5. MPI one-sided implementation of the PageRank update step
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Due to inefficiencies in current MPI one-sided implementations, the straight-forward

algorithm does not offer performance comparable to the point-to-point PageRank imple-

mentation. MPI one-sided, due to its use of complicated MPI datatypes 2, must send a

large amount of data, 40 bytes in the case of Open MPI, and buffering all messages be-

tween fence operations exhausts memory resources. In order to prevent message or memory

exhaustion, a call to MPI FENCE is made every 100,000 calls to MPI ACCUMULATE (Fig-

ure 6). In practice, a fence every 100,000 to 500,000 appears to prevent advanced MPI

implementations from exhausting resource, while not greatly impacting performance due to

extra synchronization.

BGL FORALL VERTICES T(u, g, Graph) {
put(from rank, u, (damping ∗ get(from rank, u) / out degree(u, g)));
BGL FORALL ADJ T(u, v, g, Graph) {

MPI Accumulate(&(from rank[u]),
1, MPI DOUBLE,
get(owner, v), local(v),
1, MPI DOUBLE, MPI SUM, to win);

count++;
if ((count % num per fence) == 0) {

MPI Win fence(0, to win);
fcount++;

}
}

}
for (int i = fcount ; i < extra fences ; ++i) {

MPI Win fence(0, to win);
}
MPI Win fence(0, to win);

// Set new rank maps for map which will be the target in the next step
BGL FORALL VERTICES T(v, g, Graph) put(from rank, v, rank type(1 − damping));

Figure 6. MPI one-sided implementation of the PageRank update step,
with added synchronization

3.3. Performance Results. Comparisons of the three implementations of PageRank

are provided in this section. The tests were conducted on the Red Storm platform, which

2User defined datatypes of arbitrary complexity are allowed, as long as they are composed of only one MPI
pre-defined datatype.
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was described in Chapter 4, Section 3.3. The same graph structures previously presented

are used for the PageRank comparisons.
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Figure 7. PageRank completion time, using an Erdös-Rényi graph with
edge probability .0000001.

3.3.1. Analysis. The performance issues due to the blocking get implementation of Cray

SHMEM described in Section 3.1 can clearly be seen in the performance results for all three

graph types. It was initially somewhat surprising that the “nasty” R-MAT parameters in

Figure 9 didn’t produce a different scaling curve for Cray SHMEM than that found in the

“nice” R-MAT parameters (Figure 8) or the Erdös-Rényi graph (Figure 7). The vertex

permutation step prevents a small number of nodes from having the majority of the high

out-degree vertices. The average out-degree of both the “nasty” and “nice” graphs is 8,

even if the distribution of those edges varies widely. The vertex permutation step means

that the average number of edges on a given process for either R-MAT graph is similar, and

the number of blocking get calls is therefore also similar for each processes.

MPI one-sided and the MPI message passing implementations have similar performance

characteristics for all three graph structures. The more partitionable Erdös-Rényi and

“nice” R-MAT graphs show a performance advantage for the one-sided implementations,

although that disappears as the graph becomes more challenging with the “nasty” graphs.

The one-sided implementation within Open MPI is much more capable of handling the
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Figure 8. PageRank completion time, using the “nice” R-MAT parameters,
and average edge out-degree of 8.

usage pattern found in PageRank than other MPI implementations3, although it still has a

difficult time dealing with the high number of outstanding sends.
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3Due to limitations with the Cray MPI implementation, there can only be 2,000 outstanding requests in a
given Epoch, hardly practical for our usage.
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4. Conclusions

In the previous chapter, a weakness in the MPI one-sided interface proved too sub-

stantial for an implementation of the connected components algorithm, but Cray SHMEM

provided an ideal interface for the implementation. In this chapter, the strength of MPI’s

non-blocking atomic operation and explicit synchronization is shown. At the same time,

the blocking get interface and lack of floating-point atomic operations poses both imple-

mentation and performance issues for Cray SHMEM.

The results suggest that non-blocking a communication interface is important for sit-

uations in which a high degree of natural parallelism exists. More importantly, it verifies

our belief from Chapter 3 that the prevailing believe that “universal” atomic operations,

while equivalent semantically, do not have the same performance equivalence in one-sided

as in local memory operations. The atomic addition implemented using compare-and-swap

performed so poorly that results for reasonable sized problems could not be generated. At

the same time, the MPI non-blocking atomic operation was able to perform at a level better

than or comparable to the message-passing implementation. Due to this result, one-sided

interfaces require a much larger set of atomic primitives than a traditional memory system.



CHAPTER 6

Case Study: HPCCG

The previous two case studies examined applications which are centered around graph-

based informatics. More traditional physics-based applications have different communi-

cation patterns and requirements than the informatics codes. This chapter examines a

micro-application designed to exhibit many of the performance characteristics of large-scale

physics codes. Although the performance difference between the various communication

paradigms is practically zero, synchronization issues are problematic for one-sided inter-

faces which provide implicit synchronization.

1. HPCCG Micro-App

The HPCCG Micro-App, part of the Mantevo benchmark suite, is designed to be the

“best approximation to an unstructured implicit finite element or finite volume application

in 800 lines or fewer”. [77] HPCCG provides a small application with many of the same

computation and communication properties found in traditional large scale physics appli-

cations. Unlike graph-based informatics codes, which communicate with a large number

of peers, physics codes generally talk to a small number of peers, and the list of peers

does not change significantly during the lifespan of the application. The message passing

implementation of the HPCCG ghost-cell exchange is shown in Figure 1.

Finite element physics applications generally break down a physical 1, 2, or 3 dimen-

sional space into a number of discrete “points”, then run a calculation simulating some

physical event based on the values at each point. Updates are generally based not only on

the point, but it’s closest neighbors in the space. When the space is partitioned to run on

multiple independent memory spaces, these neighbors must be shared at the conclusion of

each iteration, hence the stable, small number of communication peers.

63
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MPI Request ∗ request = new MPI Request[num neighbors];

// Externals are at end of locals
double ∗x external = (double ∗) x + local nrow;

for (i = 0; i < num neighbors; i++) {
int n recv = recv length[i];
MPI Irecv(x external, n recv, MPI DOUBLE, neighbors[i], MPI MY TAG,

MPI COMM WORLD, request+i);
x external += n recv;

}

// Fill up send buffer
for (i=0; i<total to be sent; i++) send buffer[i] = x[elements to send[i]];

for (i = 0; i < num neighbors; i++) {
int n send = send length[i];
MPI Send(send buffer, n send, MPI DOUBLE, neighbors[i], MPI MY TAG,

MPI COMM WORLD);
send buffer += n send;

}

MPI Waitall(num neighbors, request, MPI STATUSES IGNORE);

delete [] request;

Figure 1. Message passing implementation of the HPCCG ghost-cell exchange.

Message sizes are driven by the size of the shared face, the set of points that adjoin

another process’s data points. In a well partitioned problem, however, a large shared face

implies a larger amount of data without any shared neighbors. This low surface to volume

ratio implies that as the face size grows, the amount of computation in each iteration grows

much faster. Thus, the communication phase will generally be dominated by the compu-

tation phase of physics codes which are limited by memory size more than by processing

power.

Not all codes have the same straight-forward distribution as the HPCCG micro-application.

The physics being modeled may require a much higher ratio of surface to volume, particu-

larly in cases where high energies are involved. In these cases, the communication cost may
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quickly dominate the computation time. We believe that the results presented in this chap-

ter apply to such codes, although the implicit synchronization problem discussed becomes

much more severe in these cases.

2. One-Sided Communication Properties

The ghost cell exchange of the HPCCG application (and similar physics applications)

are based on a partitioning of the data and not the data itself. Unlike the previous two case

studies, communication is to a small number of peers, determined based on the need for

“ghost cells”, or local copies of remote data, for the boundary values which result from the

partitioning. For static decompositions of the data, the only type supported in HPCCG,

the communication pattern is set at the start of the problem.

Unlike the previous two case studies, the HPCCG communication is based solely on a

put primitive, with no atomic requirements. The number of operations in each iteration of

the algorithm is small enough that the effect of non-blocking versus blocking interface is

also minimized. The high computation to communication ratio also helps cover the slight

cost of a blocking implementation, meaning that the small performance increase may not

be worth the added complexity of some non-blocking interfaces.

HPCCG’s synchronization requirements also differ from both the connected components

and PageRank applications. Connected Components required no synchronization during

the core of the algorithm and PageRank required global synchronization to complete each

iteration of the algorithm. In the case of HPCCG, the next iteration can begin as soon as

all ghost cell data has been received. Since the number of peers involved in the ghost cell

exchange is much smaller than the number of processes in the job, a global synchronization

mechanism may be overkill. Instead, synchronization based on a small number of active

processes is needed.

3. One-Sided Algorithm Implementation

Figure 1 demonstrates the message passing implementation of the ghost cell exchange.

Once the initial sparse matrix has been created, the ghost cell exchange is one of two steps
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in the communication phase. The other step is an all-reduce of the residual to check for

completion. The reduction collective is not implemented in one-sided, similar to previous

case studies. Unlike the other case studies, the message passing implementation does not

rely on a large underlying library to hide a complex synchronization and buffering scheme.

3.1. Cray SHMEM. The Cray SHMEM implementation, shown in Figure 2, utilizes

non-blocking put calls to transfer the ghost cell buffer directly into the array on the receiving

process. On platforms with high message rates for one-sided implementations, the copy

into send buffer and the single shmem double put nb to each peer could be replaced with

multiple calls to shmem double put nb. On the receive side, the sparse matrix format stores

the remote data points contiguously at the end of the array, meaning there is no need to

copy data before the computation phase.

for (i=0; i<total to be sent; i++) send buffer[i] = x[elements to send[i]];

for (i = 0; i < num neighbors; i++) {
int n send = send length[i];

shmem double put nb((double∗)x + peer offsets[i], send buffer,
n send, neighbors[i], NULL);

send buffer += n send;
}

shmem barrier all();

Figure 2. Cray SHMEM implementation of the HPCCG ghost cell exchange.

All communication must be complete before the next computation phase. Cray SHMEM’s

synchronization mechanism poses a significant problem for completion, as there is generally

no target-side notification data has arrived. There is, however, a global fence operation in

which all communication from all peers has completed before any process exits the fence.

Given the high ratio of computation to communication found in HPCCG, the performance

of the code with a global synchronization does not appear to be significantly lower than

other implementations. A completion buffer with a local fence between the data put and
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the completion put operation could be used to avoid the global synchronization, although

it requires polling on a number of memory addresses. Such a design is shown in Figure 3.

for (i=0; i<total to be sent; i++) send buffer[i] = x[elements to send[i]];

for (i = 0; i < num neighbors; i++) {
int n send = send length[i];
int tmp = 1;

shmem double put nb((double∗)x + peer offsets[i], send buffer,
n send, neighbors[i], NULL);

shmem fence(neighbors[i]);
shmem put nb(completions[i], &tmp, 1, neighbors[i], NULL);
send buffer += n send;

}

for (i = 0 ; i < num neighbors ; i++) {
while (completions[i] != 1) { ; }
completions[i] = 0;

}

Figure 3. Cray SHMEM implementation of the HPCCG ghost cell ex-
change using polling completion.

3.2. MPI One-Sided. The MPI one-sided implementation of the HPCCG ghost-cell

exchange, shown in Figure 4, avoids the completion problems of the Cray SHMEM imple-

mentation. MPI one-sided provides a generalized explicit synchronization mechanism for

situations like the HPCCG application. The MPI one-sided implementation involves more

network-level communication than the message passing implementation. Even in implemen-

tations which reduce network traffic at the cost of asynchronous communication patterns, a

message is required for every peer in the MPI Win post group, and another is required for all

peers in the MPI Win complete call. Similar to the heavy synchronization of Cray SHMEM,

however, the extra messaging causes no significant impact to application performance.

Similar to the Cray SHMEM implementation, the MPI one-sided implementation can

be converted to sending multiple messages and avoiding the memory copy. However, unless

the message injection rate is high enough to support the transfer without buffering, there

will be no advantage to avoiding the initial copies.
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for (i=0; i<total to be sent; i++) send buffer[i] = x[elements to send[i]];

MPI Win post(wingroup, 0, win);
MPI Win start(wingroup, 0, win);

for (i = 0; i < num neighbors; i++) {
int n send = send length[i];

MPI Put(send buffer, n send, MPI DOUBLE, neighbors[i], peer offsets[i],
n send, MPI DOUBLE, win);

send buffer += n send;
}

MPI Win complete(win);
MPI Win wait(win);

Figure 4. MPI one-sided implementation of the HPCCG ghost cell exchange.

3.3. Performance Results. Comparisons of the three HPCCG communication imple-

mentations were performed on the Red Storm machine described in Chapter 4, Section 3.3.

HPCCG utilizes weak scaling, meaning the size of the problem increases as the number of

processes increases. Figure 5 presents the performance of the three implementations of the

HPCCG ghost cell exchange. The flat performance graph demonstrates linear performance

scaling for all three implementations. The high ratio of computation to communication

means that the slight communication and synchronization overhead of both one-sided inter-

faces does not hinder overall application performance. Further, the unnecessary matching

logic of MPI may help offset the minor performance penalty of the one-sided interfaces.

4. Conclusions

HPCCG presents an interesting case study for the one-sided paradigm in that the para-

digm presents no obvious advantages over message passing. In fact, the one-sided implemen-

tations require more code to implement, are more complex due to the memory allocation

limitations of one-sided implementations, and require more message traffic in all cases than

a message-passing implementation. It is our belief that these limitations are all necessary

to the paradigm, and not an artifact of one or more one-sided implementations. Each
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one of these limitations are small and certainly do not make the one-sided unsuitable for

implementing HPCCG and the physics codes it models.

The limitations of the one-sided paradigm presented in this Chapter, however, do sug-

gest limits on the suitability of the one-sided paradigm for replacing message passing on

heavily multi-core/multi-threaded platforms. The “heavy” synchronization and communi-

cation cost of the message passing paradigm are presented as limitations which can not

be overcome on such resource limited platforms. At the same time, the one-sided para-

digm requires requires a different, but costly, overhead for explicit synchronization which

is naturally required. Although careful application development could likely minimize the

costs associated with the explicit synchronization, it is also likely that careful application

development could also avoid the costly overheads of message passing.



CHAPTER 7

MPI One-Sided Implementation

The MPI specification, with the MPI-2 standardization effort, includes an interface for

one-sided communication, utilizing a rich set of synchronization primitives. Although the

extensive synchronization primitives have been the source of criticism [14], it also ensures

maximum portability, a goal of MPI. The MPI one-sided interface utilizes the concept

of exposure and access epochs to define when communication can be initiated and when

it must be completed. Explicit synchronization calls are used to initiate both epochs, a

feature which presents a number of implementation options, even when networks support

true remote memory access (RMA) operations. This chapter presents two implementations

of the one-sided interface for Open MPI, both of which were developed by the author [7].

1. Related Work

A number of MPI implementations provide support for the MPI one-sided interface.

LAM/MPI [18] provides an implementation layered over point-to-point, which does not

support passive synchronization and performance generally does not compare well with

other MPI implementations. Sun MPI [15] provides a high performance implementation,

although it requires all processes be on the same machine and the use of MPI ALLOC MEM

for optimal performance. The NEC SX-5 MPI implementation includes an optimized im-

plementation utilizing the global shared memory available on the platform [88]. The SCI-

MPICH implementation provides one-sided support using hardware reads and writes [93].

An implementation within MPICH using VIA is presented in [33]. MPICH2 [4] includes

a one-sided implementation implemented over point-to-point and collective communication.

Lock/unlock is supported, although the passive side must enter the library to make progress.

70
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The synchronization primitives in MPICH2 are significantly optimized compared to previ-

ous MPI implementations [87] and influenced this work heavily. MVAPICH2 [44] extends

the MPICH2 one-sided implementation to utilize InfiniBand’s RMA support. MPI PUT and

MPI GET communication calls translate into InfiniBand put and get operations for contigu-

ous datatypes. MVAPICH2 has also examined using native InfiniBand for Lock/Unlock

synchronization [48] and hardware support for atomic operations [78].

2. Implementation Overview

Similar to Open MPI’s Point-to-point Matching Layer(PML), which allows multiple im-

plementations of the MPI point-to-point semantics, the One-Sided Communication (OSC)

framework in Open MPI allows for multiple implementations of the one-sided communica-

tion semantics. Unlike the PML, where only one component may be used for the life of

the process, the OSC framework selects components per window, allowing optimizations

when windows are created on a subset of processes. This allows for optimizations when

processes participating in the window are on the same network, similar to Sun’s shared

memory optimization.

Open MPI 1.2 and later provides two implementations of the OSC framework: pt2pt

and rdma. The pt2pt component is implemented entirely over the point-to-point and col-

lective MPI functions. The original one-sided implementation in Open MPI, it is now

primarily used when a network library does not expose RMA capabilities, such as Myrinet

MX [62]. The rdma component is implemented directly over the BML/BTL interfaces and

supports a variety of protocols, including active-message send/receive and true RMA. Both

components share the similar synchronization designs, although the rdma component starts

communication before the synchronization call to end an epoch, while the pt2pt component

does not.

Sandia National Laboratories has utilized the OSC framework to implement a com-

ponent utilizing the Portals interface directly, rather than through the BTL framework,

allowing the use of Portal’s advanced matching features. The implementation utilizes a

synchronization design similar to that found in the pt2pt and rdma components. As all
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three components duplicated essentially the same code, there was discussion of breaking

the OSC component into two components, one for synchronization and one for commu-

nication. In the end, this idea was rejected as the synchronization routines do differ in

implementation details, such as when communication callbacks occur, that could not easily

be abstracted without a large performance hit.

The implementations can be divided into two parts: communication and synchroniza-

tion. Section 3 details the implementation of communication routines for both the pt2pt

and rdma components. Section 4 then explains the synchronization mechanisms for both

components.

3. Communication

The pt2pt and rdma OSC components differ greatly in how data transfer occurs. The

pt2pt component lacks many of the optimizations later introduced in the rdma compo-

nent, including message buffering and eager transfers. Both components leverage existing

communication frameworks within Open MPI for communication: the PML framework for

pt2pt and the PML, BTL, and BML frameworks for rdma. Both rely on these underlying

frameworks for asynchronous communication.1

3.1. pt2pt Component. The pt2pt component depends on the PML for all commu-

nication features and does not employ the optimizations available in the rdma component

(discussed in Section 3.2). Originally, the pt2pt component was developed as a prototype

to explore the implementation details of the MPI one-sided specification. The specification

is particularly nuanced, and many issues in implementation do not become apparent until

late in the development process. Most Open MPI users will never use the pt2pt component,

as the rdma component is generally the default. However, the CM PML, developed shortly

after the pt2pt component, does not use the BTL framework, meaning that the rdma OSC

1This design is problematic due to the lack of support for threaded communication within Open MPI; it is
impossible for either component to be truly asynchronous without major advancement in the asynchronous
support of the PML and BTL frameworks. The Open MPI community is expanding threaded progress
support, but it will likely take many years to implement properly.
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component is not available. Therefore, the pt2pt component is required in certain circum-

stances.

The pt2pt component translates every MPI PUT, MPI GET, and MPI ACCUMULATE

operation into a request sent to the target using an MPI ISEND. Short put and accumulate

payloads are sent in the same message as the request header. Long put and accumulate

payloads are sent in two messages: the header and the payload. Because the origin process

knows the size of the reply buffer, get operations always send the reply in one message,

regardless of size.

Accumulate is implemented in two separate cases: the case where the operand is

MPI REPLACE, and all other operands. In the MPI REPLACE case, the protocol is the

same as for a standard put, but the window is locked from other accumulate operations

during data delivery. For short messages, where the message body is immediately available

and is delivered via local memory copy, this is not an issue. However, for long messages, the

message body is delivered directly into the user buffer and the window’s accumulate lock

may be locked for an indeterminate amount of time. For other operations, the message is

entirely delivered into an internal buffer. Open MPI’s reduction framework is then used to

reduce the incoming buffer into the existing buffer. The window’s accumulate lock is held

for the duration of the reduction, but does not need to be held during data delivery.

3.2. rdma Component. Three communication protocols are implemented for the rdma

one-sided component: send/recv, buffered, and RMA. For networks which support RMA

operations, all three protocols are available at run-time, and the selection of protocol is

made per-message.

3.2.1. send/recv. The send/recv protocol performs all short message and request com-

munication using the send/receive interface of the BTL, meaning data is copied at both

the sender and receiver for short messages. Control messages for general active target syn-

chronization and passive synchronization are also sent over the BTL send/receive interface.

Long put and accumulate operations use use the PML. Communication is not started until

the user ends the exposure epoch.
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The use of the PML for long messages requires two transfers: one for the header over

the BTL and one for the payload of the PML. The PML will likely then use a rendezvous

protocol for communication, adding latency to the communication. This extra overhead

was deemed acceptable, as the alternative involved duplicating the complex protocols of

the OB1 PML (See [80]).

3.2.2. buffered. The buffered protocol is similar to the send/recv protocol. However,

rather than starting a BTL message for every one-sided operation, messages are buffered

during a given exposure epoch. Data is packed into an eager-sized BTL buffer, which is

generally 1–4 KB in size. Messages are sent either when the buffer is full and the origin

knows the target has entered an access epoch or at the end of the access epoch. Long

messages are sent independently (no coalescing) using the PML protocol, although message

headers are still coalesced.

The one-sided programming paradigm encourages short messages for communication,

and most networks optimized for message passing are optimized for larger message transfers.

Given this disparity, the buffered protocol provides an opportunity to send fewer larger

messages than the send/recv protocol.

3.2.3. RMA. Unlike the send/recv and buffered protocols, the RMA protocol uses the

RMA interface of the BTL for contiguous data transfers. All other data is transferred using

the buffered protocol. MPI ACCUMULATE also falls back to the buffered protocol, as NIC

atomic support is premature and it is generally accepted that a receiver computes model

offers the best performance. [68] Like the buffered protocol, communication is not started

until confirmation is received that the target has entered an access epoch. During this time,

the buffered protocol is utilized.

Due to the lack of remote completion notification for RMA operations, care must be

taken to ensure that an epoch is not completed before all data transfers have been completed.

Because ordering semantics of RMA operations tends to vary widely between network in-

terfaces (especially compared to send/receive operations), the only ordering assumed by the

rdma component is that a message sent after local completion of an RMA operation will
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result in remote completion of the send after the full RMA message has arrived. There-

fore, any completion messages sent during synchronization may only be sent after all RMA

operations to a given peer have completed. This is a limitation in performance for some

networks, but adds to the overall portability of the system.

4. Synchronization

Both the pt2pt and rdma utilize similar synchronization protocols. When a control

message is sent, it is over the PML for pt2pt and the BTL’s send/receive interface for the

rdma component. The rdma component will buffer access epoch start control messages, but

will not buffer access epoch completion control messages or exposure control messages.

4.1. Fence Synchronization. MPI WIN FENCE is implemented as a collective call to

determine how many requests are incoming to complete the given epoch followed by com-

munication to complete all incoming and outgoing requests. The collective operation is a

MPI REDUCE SCATTER call, utilizing Open MPI’s tuned MPI collective implementation.

Each request is then started and two counters (number of outstanding incoming and out-

going requests) are maintained, with the call to MPI WIN FENCE not returning until both

are 0.

If the assert MPI MODE NO PRECEEDE is given to the fence call, it is a promise by the

user that no communication occurred in any process during the last epoch. As it is already

known that there are no incoming requests in this case, no requests need to be started and

the collective operation is not performed. Verifying the number of scheduled operations is

inexpensive, so the assertion is verified before the fence completes.

As mentioned previously, when using the RMA protocol in the rdma component, there

is a completion issue that does not exist with other protocols. The target of an operation

receives no notification that the RMA request has finished, so completing the exposure

epoch is problematic. Ordering is maintained between RMA operations and send/receive

operations in the BTL when specifically requested. A control message is sent to each peer

when all RMA operations to that peer have started, with the number of RMA operations

started to that peer. The count of operations is decremented by the number of RMA
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operations. While the extra message is extra overhead, the other option when using RMA

protocols is a complete barrier, which can be even more expensive.

4.2. General Active Target Synchronization. General active target synchroniza-

tion, also known as Post/Wait/Start/Complete after the calls involved, allows the user to in-

dependently start access and exposure epochs on a subset of the window. MPI WIN START

and MPI WIN COMPLETE start and complete an access epoch, while MPI WIN POST and

either MPI WIN TEST or MPI WIN WAIT start and complete an exposure epoch.

MPI WIN START is not required to block until all remote exposure epochs have started,

instead the implementation returns immediately and starts a local access epoch. Commu-

nication calls are buffered at least until a control message from the target has been received

confirming the target is in an exposure epoch. During MPI WIN COMPLETE, all RMA

operations are completed, then a control message with the number of incoming requests

is sent to all peer processes. MPI WIN COMPLETE returns once the control message has

completed (either by the PML or BTL).

MPI WIN POST sends a short control message to each process in the origin processes

group notifying the process that the exposure epoch has started, then returns. MPI WIN WAIT

blocks until it has received control messages from each process in the specified group and

it has received all expected communication requests. It then completes the exposure epoch

and returns. The call MPI WIN TEST is similar to MPI WIN WAIT, with the exception that

it does not block and instead sets a status flag if the completion requirements have been

met.

4.3. Passive Synchronization. Passive synchronization allows for true one-sided com-

munication. The target process is not directly involved in communication or synchroniza-

tion. In order to progress communication when the target process is not entering the MPI

library, passive synchronization requires an asynchronous agent that can modify the target

process’s memory space. Both the pt2pt and rdma component relies on an the underlying

transport for this asynchronous communication, as discussed in Section 2.
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MPI WIN LOCK sends a control message requesting the target process start an exposure

epoch and the call returns immediately, not waiting for an answer from the target. The

target starts an exposure epoch upon reception of the control message if the lock can be

obtained in the manner defined (either shared or exclusive). If the lock can not be obtained

immediately, the request is queued until it can be satisfied. When the lock can be satisfied,

a control message is sent back to the origin process.

MPI WIN UNLOCK waits for the control message from the target process that the ex-

posure epoch on the target has started. It then sends a count of expected requests to the

target process and starts all queued results. MPI WIN UNLOCK waits for local completion

of communication requests to ensure that it is safe to allow those buffers to be reused, then

returns. The target process will not release the lock and complete the exposure epoch until

all requests are received and processed. At that time, the exposure epoch is ended and an

attempt is made to satisfy any pending lock requests.

5. Performance Evaluation

The performance of both the pt2pt and rdma OSC components is demonstrated using

latency and bandwidth micro-benchmarks, as well as a ghost-cell update kernel. Open MPI

results are generated using the 1.3 release. MVAPICH2 0.9.8 results are also provided

for comparison. Both implementations were compiled with the GNU Compiler Collection

(GCC), version 4.1.2. No configuration or run-time performance options were specified for

MVAPICH2 or Open MPI.

All tests were run on odin.cs.indiana.edu, a 128 node cluster of dual-core dual-socket

2.0 GHz Opteron machines, each with 4 GB of memory and running Red Hat Enterprise

Linux 5. Nodes are connected with both 1 GB Ethernet and InfiniBand. Each node contains

a single Mellanox InfiniHost PCI-X SDR HCA, connected to a 148 port InfiniBand switch.

The InfiniBand drivers are from the Open Fabrics Enterprise Distribution, version 1.3.1.

5.1. Global Synchronization Performance. Figure 1 shows the cost of synchro-

nization using the MPI FENCE global synchronization mechanism. 98% of the cost of

Open MPI’s MPI FENCE is spent in MPI REDUCE SCATTER. Unfortunately, MPI REDUCE SCATTER
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currently has a higher cost in Open MPI than in MPICH2 and MVAPICH2. This is an area

of active development in Open MPI and should be resolved in the near future. LAM/MPI’s

results are not shown because the cost of MPI FENCE is ten times higher than the other

MPI implementations.
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Figure 1. Cost of completing a Fence synchronization epoch, based on
number of processes participating in the window.

5.2. Latency / Bandwidth Micro-benchmarks. The Ohio State benchmarks [64]

were used to analyze both the latency and bandwidth of the the one-sided communication

functions. The suite does not include a bandwidth test for MPI ACCUMULATE, so those

results are not presented here. All tests use generalized active synchronization.

Figure 2 presents the latency and bandwidth of MPI PUT. The buffered protocol presents

the best latency for Open MPI. Although the message coalescing of the buffered protocol

does not improve performance of the latency test, due to only one message pending during

an epoch, the protocol outperforms the send/recv protocol due to starting messages eagerly,

as soon as all post messages are received. The buffered protocol provides lower latency than

the rdma protocol for short messages because of the requirement for portable completion

semantics, described in the previous section. No completion ordering is required for the

buffered protocol, so MPI WIN COMPLETE does not wait for local completion of the data
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Figure 2. Latency and Bandwidth of MPI PUT calls between two peers
using generalized active synchronization.

transfer before sending the completion count message. On the other hand, the rdma protocol

must wait for local completion of the event before sending the completion count control

message, otherwise the control message could overtake the RDMA transfer, resulting in

erroneous results.
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The bandwidth benchmark shows the advantage of the buffered protocol, as the bench-

mark starts many messages in each synchronization phase. The buffered protocol is therefore

able to outperform both the rdma protocol and MVAPICH. Again, the send/recv protocol

suffers compared to the other protocols, due to the extra copy overhead compared to rdma,

the extra transport headers compared to both rdma and buffered, and the delay in starting

data transfer until the end of the synchronization phase. For large messages, where all pro-

tocols are utilizing RMA operations, realized bandwidth is similar for all implementations.

The latency and bandwidth of MPI GET are shown in Figure 3. The rdma protocol has

lower latency than the send/receive based protocols, as the target process does not have to

process requests at the MPI layer. The present buffered protocol does not coalesce reply

messages from the target to the origin, so there is little advantage to using the buffered

protocol over the send/recv protocol. For the majority of the bandwidth curve, all imple-

mentations other than the rdma protocol provide the same bandwidth. The rdma protocol

clearly suffers from a performance issue that the MVAPICH2 implementation does not. For

short messages, we believe the performance lag is due to receiving the data directly into

the user buffer, which requires registration cache look-ups, rather than copying through a

pre-registered “bounce” buffer. The use of a bounce buffer for MPI PUT but not MPI GET

is an artifact of the BTL interface, which will be addressed in the future.

MPI ACCUMULATE, when the operation is not MPI REPLACE, requires target side pro-

cessing for most interconnects, including InfiniBand. For reasons similar to MPI PUT, the

latency of Open MPI’s MPI ACCUMULATE is slightly higher than that of MVAPICH2, as

seen in Figure 4. Similar to MPI PUT, however, the ability to handle a large number of

messages is much greater in Open MPI’s bundling implementation than is MVAPICH2,

which is likely to be much more critical for real applications.

5.3. Ghost-Cell Exchange. The MPI community has not standardized on a set of

“real world” benchmarks for the MPI one-sided interface, but the ghost-cell update was first

used in [87] and later added to the mpptest suite from Argonne National Laboratory [38].
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Figure 3. Latency and Bandwidth of MPI GET calls between two peers
using generalized active synchronization.

An example of the ghost-cell exchange kernel using fence synchronization is shown in Fig-

ure 5. The implementation for general active target synchronization is similar, although

setting up the groups for communication is more complex.

Figures 6 and 7 show the cost of performing an iteration of a ghost cell update sequence.

The tests were run across 32 nodes, one process per node. For both fence and generalized
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Figure 4. Latency of MPI ACCUMULATE calls using MPI SUM over
MPI INT datatypes and generalized active synchronization.

for (i = 0 ; i < ntimes ; i++) {
MPI Win fence(MPI MODE NOPRECEEDE, win);
for (j = 0 ; j < num nbrs ; j++) {

MPI Put(send buf + j ∗ bufsize, bufsize, MPI DOUBLE, nbrs[j],
j, bufsize, MPI DOUBLE, win);

}
MPI Win fence(0, win);

}

Figure 5. Ghost cell update using MPI FENCE

active synchronization, the ghost cell update with large buffers shows relative performance

similar to the put latency shown previously. This is not unexpected, as the benchmarks are

similar with the exception that the ghost cell updates benchmark sends to a small number

of peers rather than to just one peer. Fence results are not shown for MVAPICH2 because

the tests ran significantly slower than expected and we suspect that the result is a side effect

of the testing environment.

When multiple puts are initiated to each peer, the benchmark results show the disad-

vantage of the send/recv and rdma protocol compared to the buffered protocol. The number

of messages injected into the MPI layer grows as the message buffer grows. With larger

buffer sizes, the cost of creating requests, buffers, and the poor message injection rates of
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Figure 6. Ghost cell iteration time at 32 nodes for varying buffer size, using
fence synchronization.

InfiniBand becomes a limiting factor. When using InfiniBand, the buffered protocol is able

to reduce the number of messages injected into the network by over two orders of magnitude.
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Figure 7. Ghost cell iteration time at 32 nodes for varying buffer size, using
generalized active synchronization.

6. Conclusions

As we have shown, there are a number of implementation options for the MPI one-sided

interface. While the general consensus in the MPI community has been to exploit the RMA

interface provided by modern high performance networks, our results appear to indicate that
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such a decision is not necessarily correct. The message coalescing opportunities available

when using send/receive semantics provides much higher realized network bandwidth than

when using RMA due to the higher message rate. The completion semantics imposed by a

portable RMA abstraction also requires ordering that can cause higher latencies for RMA

operations than for send/receive semantics.

Using RMA operations has one significant advantage over send/receive; the target side

of the operation does not need to be involved in the message transfer, so the theoretical

availability of computation/communication overlap is improved. In our tests, we were un-

able to see this in practice, likely due less to any shortcomings of RMA and more due to

the two-sided nature of the MPI one-sided interface. Further, we expected the computa-

tion/communication overlap advantage to become less significant as Open MPI develops a

stronger progress thread model, allowing message unpacking as messages arrive, regardless

of when the application enters the MPI library.



CHAPTER 8

Conclusions

This thesis has demonstrated the applicability of the one-sided paradigm to a large

class of applications. More importantly, it has demonstrated a practical taxonomy of both

one-sided implementations and applications. A number of important conclusions for one-

sided interfaces may be drawn from the previous chapters and are presented in Section 1.

In addition, we believe that these lessons learned are applicable to other programming

paradigms, and we discuss this further in Section 3. Final thoughts are then presented in

Section 4.

1. One-Sided Improvements

The one-sided communication paradigm has a number of advantages for many appli-

cation classes. In addition to high performance, the one-sided paradigm also offers more

straight-forward implementation patterns for the application programmer. If we assume a

correlation between code length and complexity within the same algorithm, this difference in

implementation length suggests the one-sided implementation of the connected components

and PageRank algorithms are simpler than the message passing implementations. While

demonstrably useful, the one-sided paradigm does have a number of shortcomings, many of

which must be addressed in future changes to interfaces and implementations.

Non-blocking operations are critical for high performance when using one-sided com-

munication. Non-blocking provides an ideal method for covering the high relative latency

of modern communication networks, provided there is enough work to allow multiple op-

erations to be outstanding at any given time. The non-blocking interface does introduce

complexity, particularly when programmers must extensively search for available paral-

lelism. Both the connected components and PageRank algorithms provide a high degree

86
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of parallelism via long adjacency lists for interesting graph types. For example, Figure 1

demonstrates the PageRank core from Chapter 5 using non-blocking get calls instead of the

original blocking calls.

BGL FORALL VERTICES T(v, g, Graph) {
put(from rank, v, get(from rank, v) / out degree(v, g));

}
shmem barrier all();
BGL FORALL VERTICES T(v, g, Graph) {

rank type rank(0);
double ∗rets = new double[indegree(v, g)];
double ∗current ret = rets;
BGL FORALL INEDGES T(v, e, g, Graph) {

shmem double get(current ret++,
from rank.start() + local(source(e, g)),
1, get(owner, source(e, g)));

}
shmem fence();
for (int i = 0 ; i < indegree(v, g) ; ++i) {

rank += rets[i];
}
delete [] rets;
put(to rank, v, (1 − damping) + damping ∗ rank);

}
shmem barrier all();

Figure 1. Cray SHMEM implementation of the PageRank update step,
using a bi-directional graph and the “pull” algorithm with a non-blocking
get operation.

The data from Chapters 4 and 5 suggest that the set of atomic operations provided by

an one-sided interface drives its applicability to many problems. In the case of connected

components, MPI one-sided is unusable due to the lack of any calls which atomically return

the value of the updated address. Due to the relatively higher latency and ability of NICs

to perform calculations on the target node, there is not an equivalence between Atomic

Operate and Atomic Fetch and Operate operations, as there is with local memory opera-

tions. Further, the datatypes supported for arithmetic operations is crucial to the general

success of a particular one-sided interface. The PageRank implementations demonstrate the
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importance of a wide set of atomic arithmetic operations, as Cray SHMEM’s performance

is partly limited by the inability to perform floating point atomic operations.

It has also been shown that there is also a performance implication in the choice of

atomic operations which a one-sided interface provides. The body of work proving the

universality of compare-and-swap, fetch-and-add, and load locked/store conditional still

hold from a correctness standpoint. However, the performance of remote atomic operations

involves such a high latency that the correct choice is essential. For example, an Atomic

Fetch and Operate when correctly implemented involves a single round trip to the remote

host (although the remote host may invoke multiple operations to local memory to complete

the operation), but implementing Atomic Fetch and Operate using Compare and Swap may

involve multiple round trip messages between nodes. The high latency of the network round

trip dictates a much difference performance characteristic between the two designs.

These insights lead us to the conclusion that a general one-sided implementation should

provide a rich set of operations if it is to successfully support the widest possible application

set. These operations include both blocking and non-blocking communication calls. It also

includes a richer set of atomic operations than can be found in any existing one-sided

implementation. These include Atomic Operate, Atomic Fetch and Operate, Compare and

Swap, and Atomic Swap, with the arithmetic operations defined for a variety of integer

sizes, as well as single and double precision floating point numbers. Even with the small

application set studied in this thesis, we have seen applications that require such a rich set

of primitives.

While not apparent in the case studies presented, existing one-sided implementations

are limited in the address regions which can be used as the target for communication. This

is unlike current message passing libraries, which are generally able to send or receive from

any valid memory address. MPI one-sided communication is limited to windows, which are

created via a collective operation. Less flexible is Cray SHMEM, which requires communi-

cation be targeted into the symmetric heap. This limitation will be most pronounced when

building libraries which utilize one-sided interfaces, which may not be able to impose such

restrictive memory access patterns on an application.
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Not discussed in the case studies is the benefit of utilizing registers instead of memory

locations for the origin side data. The Cray T3D was able to efficiently support this model

of communication utilizing the e-registers available on the platform, although the Cray

SHMEM interface originally developed for that platform has since shed the ability to use

registers for communication. The ARMCI interface provides API suppose for register-based

communication, although it is unclear how much performance advantage such an API call

currently provides. Modern interconnects are largely designed to use DMA transfers to

move data (even headers) from host memory to network interface, so storing data to memory

before communication is required. Network interfaces may return to using programmed-I/O

style communication in order to improve message rates, however, leading to a return in the

performance advantage to register-targeted communication. If such a situation occurs, it

would be necessary to further extend a general one-sided interface to include sending from

and receiving to registers instead of memory.

2. MPI-3 One-Sided Effort

The MPI Forum, which is responsible for the MPI standardization effort, has recently

begun work on MPI 3.0. It is likely that MPI 3.0 will attempt to update the MPI one-sided

communication specification. Currently, plans including a specification for an atomic fetch

and operate operation, in addition to MPI ACCUMULATE, as well as plans for fixing the

heavy-weight synchronization infrastructure. There has also been discussion about how to

eliminate the collective window creation for applications which need to access large parts

of the virtual address space.

The addition of atomic operations other than MPI ACCUMULATE would solve the prob-

lems with connected components described in Chapter 4. Although an atomic fetch and

operate function would allow implementation of the connected components algorithm, a

compare and swap operation would allow for a straight-forward implementation similar to

the Cray SHMEM implementation. An atomic fetch and operate implementation requires

a much more complex implementation in which the atomic operation is used to mark com-

ponents as visited or not visited, and then further work is performed to handle the proper
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marking of components. This suggests that adding an atomic fetch and operate function is

insufficient and a compare and swap operation is also critical.

Although the active synchronization mechanisms are effective for applications with high

global communication or well known communication patterns, it can be problematic for pure

one-sided applications. At the same time, the passive synchronization mechanism incurs

a high cost. This is because a round-trip is required, even for a single put operation. A

connected components implementation in one-sided with a new compare and swap operation

would also be impacted by the current passive target synchronization, as two round trip

communication calls would be required (one for the lock, one for the compare and swap). A

straight-forward solution would be a passive synchronization call which does not guarantee

any serialization, but does open the required epochs. Epoch serialization is not required if

atomic operations are used, as the atomic operations provide the required serialization.

Finally, the global creation of windows, while straight forward, causes problems for

applications which must communicate with the entire remote address space. A recent

proposal includes the creation of a pre-defined MPI WIN WORLD which encompasses the

entire address space. One disadvantage of such a proposal is that the entire address space is

always available for communication, which complicates the use of communication interfaces

which limit the amount of memory which can be simultaneously used for communication.

Another possibility would be to remove the collective creation requirement, which would

push the problem of communication regions to the upper level, which is likely to have more

knowledge about which memory is to be used for communication.

3. Cross-Paradigm Lessons

A number of the lessons learned in this thesis for the one-sided programming model can

be applied to other programming models. Many paradigms outside of message passing are

based on a similar set of communication primitives, including active messages, work queues,

and one-sided. We first look at the implications of this thesis on the work queue and active

message communication primitives. We then examine the UPC partitioned global address

space language, CHARM++, and ParalleX programming paradigms.
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3.1. Active Messages and Work Queues. Active Messages, initially described in

Chapter 2, provides a sender-directed communication mechanism. The receiver does not

explicitly receive a message, but invokes a function upon reception of a new message. The

designers of Active Messages envisioned hardware support to allow fast interrupt handlers

which could execute message handlers. Current hardware does not provide such a mech-

anism, and interrupts take hundreds of thousands of cycles to process, even when the

kernel/user space boundaries are ignored.

Many recent incarnations of active message style programming, including GASNet, uti-

lize a work queue model to replace the interrupt mechanism. In the work queue model,

the sender inserts the message and context information on the target process’s work queue.

The receiver polls the work queue on a regular basis. Handler functions are then triggered

from the polling loop without an interrupt or context switch. On modern hardware, the

work queue offers much higher performance than interrupt driven handling. In addition to

supporting active messages, the work queue model can also be used directly, as is the case

with ParalleX.

Work queue primitives pose a number of challenges for modern network design not found

in one-sided models. In particular, work queues require a receiver-directed message delivery

or non-scalable memory usage. Therefore, it is unlikely adequate message rates can be

achieved on scalable systems without significant specialized queue management hardware

between the NIC and processor. Further complicating the work queue requirements is

the need for advanced flow control. As the queue must be emptied by the application, it

is possible for a queue to overflow during computation phases. Traditional flow control

methods are either non-scalable (credit based) or bandwidth intensive (NACKs/retries). In

a high message rate environment, current scalable flow control methods make the network

highly susceptible to congestion, which pose additional network design challenges. Potential

solutions include NIC hardware which interrupts the host processor when the work queue

reaches some preset high water mark.



8. CONCLUSIONS 92

3.2. UPC. The most prevalent implementation of the UPC specification is the Berke-

ley UPC compiler. The run-time for Berkeley UPC utilizes the GASNet communication

layer for data movement, and therefore inherits many of the problems faced by both active

messages and one-sided implementations. However, because the compiler, not the user, is

adding explicit communication calls, the overflow problem can be mitigated by polling the

work queue more heavily in areas of the code during which overflow is likely. Communi-

cation hot-spots for high-level constructs such as reductions are still possible, although a

sufficiently advanced compiler should be able to prevent such hot-spots through the use of

transformations to logarithmic communication patterns.

GASNet presents a rich one-sided interface, which is capable of transfers into any valid

virtual address on the target process. Combined with the requirement of an active messages

interface for communication, such an ability presents problems for layering the one-sided

API in GASNet over either MPI one-sided or Cray SHMEM. Both interfaces greatly restrict

the virtual address ranges which are valid for target side communication. Such restrictions

are not unique to MPI or SHMEM, as most low-level device interfaces restrict addresses

which can be used for communication to those which have explicitly been registered before

communication. Significant work was invested in development of an efficient registration

framework within GASNet to reduce the impact of this requirement. [10] It is unclear how

such results could be applied to either MPI one-sided (due to the collective registration call)

or SHMEM (due to the symmetric heap limitation).

3.3. CHARM++. CHARM++ [49] is an object oriented parallel programming par-

adigm based on the C++ language. CHARM++ is based on the concept of chares, parallel

threads of execution which are capable of communicating with other chares. Chares can

communicate either via message passing or via special communication objects. CHARM++

applications must be compiled with the CHARM++ compiler/preprocessor and are linked

against a run-time library which provides communication services. The run-time also pro-

vides CHARM++’s rich set of load balancing features. The AMPI [43] project from the
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authors of CHARM++ provides a multi-threaded, load balancing MPI implementation on

top of CHARM++.

Like Berkeley UPC, CHARM++ is capable of mitigating flow control issues inherent

in the work queue model due to the compiler/preprocessor’s ability to add queue drain-

ing during periods of potential communication. Further, the run-time library’s rich load

balancing features should help mitigate the computation hot-spot issues which are likely

to occur in many unbalanced applications. The communication patterns AMPI is used,

rather than using CHARM++ directly, should be similar to traditional message passing

implementations, meaning that although it will have to perform message matching, it will

also tend to send few, large messages.

3.4. ParalleX. ParalleX [30] is a new model for high performance computing which

offers improved performance, machine efficiency, and easy of programming for a variety of

application domains. ParalleX achieves these goals through a partitioned global address

space combined, multi-threading, and a unique communication model. ParalleX extends

the semantics of Active Messages with a continuation to define what happens after the

action induced by the message occurs. Unlike traditional Active Messages, these Parcels

allow threads of control to migrate throughout the system based both on data locality and

resource availability. Although portions of the ParalleX model have been implemented in

the LITL-X and DistPX projects, the model has not been fully implemented. The remainder

of this section discusses issues intrinsic to the model and not to any one implementation.

ParalleX intrinsically solves a number of problems posed by the one-sided communica-

tion models described in this thesis. The global name space provided by ParalleX solves the

memory addressing problems presented in Chapter 3, and which are likely to become more

severe as data sets become more dynamic through an application lifespan. Light-weight

multi-threading minimizes the effect of blocking communication calls, as new threads of

context are able to cover communication latency. Finally, the migration of thread contexts

to the physical domain of the target memory location simplifies many of the synchronization
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and atomic operation requirements previously discussed. While a rich set of atomic prim-

itives are still likely to be required for application performance, thread migration ensures

that they occur in the same protection domain, moving hardware requirements from the

network to processor.

The Parcels design, however, does raise a number of concerns. The case studies presented

in Chapters 4 and 5 suggest a high message rate is required to satisfy the needs of informatics

applications with the one-sided communication model. If we assume a similar number of

Parcels will be required to migrate thread contexts for remote operations, a similarly high

message rate will be required for ParalleX. Unlike latency, it is unlikely that the light-

weight threading will be able to cover limitations in network message rates. Parcels utilize

a work queue primitive for communication, and are susceptible to many of the work queue

problems. The queue overflow and flow control contention issues likely mean that ParalleX

is susceptible to data hot-spots, a problem which plagues the few custom multi-threaded

informatics machines currently available.

4. Final Thoughts

One-sided communication interfaces rely heavily on underlying hardware for perfor-

mance and features, perhaps more than any other communication paradigm. Many of the

conclusions reached in Section 1 only increase the total feature set required of network hard-

ware. Emulating one-sided communication with a thread running on the main processor

limits performance due to caching effects and limits on the ability of NICs to wake up main

processor threads. Therefore, it is reasonable to conclude that the future of the one-sided

paradigm is tied future hardware designs and their ability to support a complex one-sided

interface.

Future architectures will likely provide a number of communication paradigms, including

message passing and one-sided interfaces. The choice of interface will hopefully be left to

the programmer, based on the particular requirements of an application. While such choice

is ideal, it does place the added burden of making communication paradigm choices on the

application programmer. Therefore, accurate guidance on programming paradigm choices,
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based on research rather than lore, is critical to the future of HPC systems. This thesis seeks

to provide one piece of that puzzle, a detailed examination of the one-sided communication

paradigm from the perspectives of both the communication library and the application.

Literature already provides a fairly rich examination of the message passing paradigm,

although work remains in determining when message passing is the correct choice for a

given application. Similar examinations of developing and future programming paradigms

are likewise necessary to drive future developments in HPC applications.
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Pješivac-Grbović. An Evaluation of Open MPI’s Matching Transport Layer on the Cray
XT. In Proceedings, 14th European PVM/MPI Users’ Group Meeting, Paris, France,
September 2007.

Galen M. Shipman, Ron Brightwell, Brian W. Barrett, Jeffrey M. Squyres, and Gil
Bloch. Investigations on InfiniBand: Efficient Network Buffer Utilization at Scale. In
Proceedings, 14th European PVM/MPI Users’ Group Meeting, Paris, France, Septem-
ber 2007.

Richard L. Graham, Brian W. Barrett, Galen M. Shipman, Timothy S. Woodall and
George Bosilca. Open MPI: A High Performance, Flexible Implementation of MPI
Point-to-Point Communications. In Parallel Processing Letters, Vol. 17, No. 1, March
2007.

Ralph Castain, Tim Woodall, David Daniel, Jeff Squyres, and Brian W. Barrett. The
Open Run-Time Environment (OpenRTE): A Transparent Multi-Cluster Environment
for High-Performance Computing. In Future Generation Computer Systems. Accepted
for publication.

Christopher Gottbrath, Brian Barrett, Bill Gropp, Ewing Rusty Lusk, and Jeff Squyres.
An Interface to Support the Identification of Dynamic MPI 2 Processes for Scalable
Parallel Debugging. In Proceedings, 13th European PVM/MPI Users’ Group Meeting,
Bonn, Germany, September 2006.



Richard L. Graham, Brian W. Barrett, Galen M. Shipman, and Timothy S. Woodall.
Open MPI: A High Performance, Flexible Implementation of MPI Point-To-Point Com-
munications. In Proceedings, Clusters and Computational Grids for cientific Comput-
ing, Flat Rock, North Carolina, September 2006.

Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H. Castain, and
George Bosilca. Open MPI: A High Performance, Heterogeneous MPI. In Proceedings,
Fifth International Workshop on Algorithms, Models and Tools for Parallel Computing
on Heterogeneous Networks, Barcelona, Spain, September 2006.

Brian W. Barrett, Ron Brightwell, Jeffrey M. Squyres, and Andrew Lumsdaine. Im-
plementation of Open MPI on the XT3. Cray Users Group 2006, Lagano, Switzerland,
May 2006.

Brian W. Barrett, Jeffrey M. Squyres, and Andrew Lumsdaine. Implementation of
Open MPI on Red Storm. Technical report LA-UR-05-8307, Los Alamos National
Laboratory, Los Alamos, New Mexico, USA, October 2005.

B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and G. Bosilca. Analysis of
the Component Architecture Overhead in Open MPI. In Proceedings, 12th European
PVM/MPI Users’ Group Meeting, Sorrento, Italy, September 2005.

R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and G. E. Fagg.
The Open Run-Time Environment (OpenRTE): A Transparent Multi-Cluster Envi-
ronment for High-Performance Computing. In Proceedings, 12th European PVM/MPI
Users’ Group Meeting, Sorrento, Italy, September 2005.

Brian Barrett and Thomas Gottschalk. Advanced Message Routing for Scalable Dis-
tributed Simulations. In Proceedings, Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC), Orlando, FL 2004.

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy
S. Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Im-
plementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004.

T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalski, G.E. Fagg,
E. Gabriel, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kam-
badur, B. Barrett, and A. Lumsdaine. Open MPI’s TEG Point-to-Point Communi-
cations Methodology: Comparison to Existing Implementations. In Proceedings, 11th
European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004.

Brian W. Barrett. Return of the MPI Datatypes. ClusterWorld Magazine, MPI Me-
chanic Column, 2(6):34–36, June 2004.

Brian Barrett, Jeff Squyres, and Andrew Lumsdaine. Integration of the LAM/MPI
environment and the PBS scheduling system. In Proceedings, 17th Annual Interna-
tional Symposium on High Performance Computing Systems and Applications, Quebec,
Canada, May 2003.

John Mugler, Thomas Naughton, Stephen L. Scott, Brian Barrett, Andrew Lumsdaine,
Jeffrey M. Squyres, Benoit des Ligneris, Francis Giraldeau, and Chokchai Leangsuksun.



OSCAR Clusters. In Proceedings of the Ottawa Linux Symposium (OLS’03), Ottawa,
Canada, July 23-26, 2003.

Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason Duell,
Paul Hargrove, and Eric Roman. The LAM/MPI Checkpoint/Restart Framework:
System-Initiated Checkpointing. In LACSI Symposium, October 2003.

Thomas Naughton, Stephen L. Scott, Brian Barrett, Jeffrey M. Squyres, Andrew Lums-
daine, Yung-Chin Gang, and Victor Mashayekhi. Looking inside the OSCAR cluster
toolkit. Technical report in PowerSolutions Magazine, chapter HPC Cluster Environ-
ment, Dell Computer Corporation, November 2002.

Software LAM/MPI (http://www.lam-mpi.org/) Open source implementation of the MPI stan-
dard.

Open MPI (http://www.open-mpi.org/) High performance open source implementa-
tion of the MPI standard, developed in collaboration by the developers of LAM/MPI,
LA-MPI, and FT-MPI.

Mesh-based routing infrastructure for the RTI-s implementation of the HLA discrete
event simulation communication infrastructure, providing plug-in replacement to the
existing tree-based routing infrastructure.

Honors and
Awards

Department of Energy High Performance Computer Science fellowship, 2001–2003.

Service Secretary, Computer Science Graduate Student Association, Indiana University, 2002–
2003

President, Notre Dame Linux Users Group, University of Notre Dame, 2000–2001


	Chapter 1. Introduction
	1. Message Passing Reigns
	2. Growing Uncertainty
	3. One-Sided Communication
	4. Contributions

	Chapter 2. Background and Related Work
	1. HPC System Architectures
	2. Communication Paradigms
	3. One-Sided Communication Interfaces
	4. Related Software Packages

	Chapter 3. A One-Sided Taxonomy
	1. One-Sided Paradigm
	2. One-Sided Applications
	3. Conclusions

	Chapter 4. Case Study: Connected Components
	1. Connected Component Algorithms
	2. One-Sided Communication Properties
	3. One-Sided Algorithm Implementation
	4. Conclusions

	Chapter 5. Case Study: PageRank
	1. PageRank Algorithm
	2. One-Sided Communication Properties
	3. One-Sided Algorithm Implementation
	4. Conclusions

	Chapter 6. Case Study: HPCCG
	1. HPCCG Micro-App
	2. One-Sided Communication Properties
	3. One-Sided Algorithm Implementation
	4. Conclusions

	Chapter 7. MPI One-Sided Implementation
	1. Related Work
	2. Implementation Overview
	3. Communication
	4. Synchronization
	5. Performance Evaluation
	6. Conclusions

	Chapter 8. Conclusions
	1. One-Sided Improvements
	2. MPI-3 One-Sided Effort
	3. Cross-Paradigm Lessons
	4. Final Thoughts

	Bibliography

