
ABSTRACT

Title of Dissertation: Flexible and Efficient Control of Data Transfers

for Loosely Coupled Components

Shang-Chieh J. Wu, Doctor of Philosophy, 2008

Dissertation directed by: Professor Alan Sussman
Department of Computer Science

Allowing loose coupling between the components of complex applications has many

advantages, such as flexibility in the components that can participate and making it

easier to model multiscale physical phenomena.

To support coupling of parallel and sequential application components, I have de-

signed and implemented a loosely coupled framework which has the following char-

acteristics: (1) connections between participating components are separately identified

from the individual components, (2) all data transfers between data exporting and im-

porting components are determined by a runtime-based low overhead method (approx-

imate match), (3) two runtime-based optimization approaches, collective buffering and

inverse-match cache, are applied to speed up the applications in many common coupling

modes, and (4) a multi-threaded multi-process control protocol that can be systemati-

cally constructed by the composition of sub-tasks protocols.

The proposed framework has been applied to two real world applications, and the

deployment approach and runtime performance are also studied. Currently the frame-

work runs on x86 Linux clusters, and porting strategies for multicore x86 processors

and advanced high performance computer architectures are also explored.

Flexible and Efficient Control of Data Transfers

for Loosely Coupled Components

by

Shang-Chieh J. Wu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:

Professor Alan Sussman, Chairman/Advisor
Professor Jeffrey Hollingsworth
Professor Chau-Wen Tseng
Professor Neil Spring
Professor Neil Goldsman

c©Copyright by

Shang-Chieh J. Wu

2008

DEDICATION

To my parents, my wife, and my two cats

ii

ACKNOWLEDGEMENTS

To whom it may deserve

iii

TABLE OF CONTENTS

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Basic Architecture . 5

1.2 Runtime-Based Optimizations . 5

1.3 Control Protocol . 6

1.4 Application Studies . 7

1.5 Thesis Structure . 7

2 Related Work 9

2.1 Other Parallel Tools . 9

2.2 Coordination Languages . 10

2.3 Collective Operation . 11

2.4 Client-Side Caching . 11

2.5 Protocol Construction . 12

3 Approximate Match 13

3.1 Basic Architecture . 13

3.1.1 System Architecture . 16

iv

3.2 Matching exports to imports . 19

3.2.1 Matching policies . 20

3.2.2 Precision . 21

3.2.3 Supported matching policies 21

3.2.4 Region matchings properties 23

3.2.5 Fast matchings properties . 26

3.3 Experiment 1 . 28

3.4 Experiment 2 . 34

4 Collective Optimization (Buddy Help) 37

4.1 Collective Semantics . 39

4.2 Collective Optimization (Buddy-Help) 40

4.3 Experiment . 44

5 Eager Transfer and Distributed Approximate Match 56

5.1 Approximate Match-based Architecture 57

5.1.1 Eager Transfer Approach . 60

5.2 Distributed Approximate Match . 64

5.2.1 Inverse Approximate Match 66

5.2.2 Range Check . 67

5.3 Experiment 1 . 71

5.4 Experiment 2 . 78

6 Collective Control Protocol 81

6.1 System Outline . 82

6.2 Protocol Operations . 85

6.2.1 Control Flow . 86

v

6.3 Protocol Construction : Composition Approach 89

6.3.1 Correctness . 92

7 Applications Study 100

7.1 MAS and ENLIL . 101

7.1.1 Direct Coupling . 102

7.1.2 Timestamp-Based Coupling 103

7.1.3 Experiments . 105

7.2 LFM-Coupler and TING . 106

7.2.1 Direct Coupling . 107

7.2.2 Timestamp-Based Coupling 108

7.2.3 Experiments . 108

8 Enhanced Architecture and Porting 113

8.1 Enhanced Architecture . 113

8.2 Porting to Other Architectures . 115

8.2.1 Multicore x86 . 116

8.2.2 Cray XT4 . 117

8.2.3 Cray XMT . 119

8.2.4 BlueGene Architecture . 120

9 Conclusion and Future Work 126

9.1 Conclusion . 126

9.1.1 Basic Algorithm and Architecture 126

9.1.2 Collective Optimization . 127

9.1.3 Eager Transfer and Distributed Approximate Match 128

9.1.4 Control Protocol . 129

vi

9.1.5 Applications Study . 129

9.1.6 Enhanced Architecture . 130

9.1.7 Porting to Other Architectures 131

9.2 Future Work . 132

9.2.1 Runtime Connections Management 132

9.2.2 Predictions for Eager Transfer 133

9.2.3 Scalability . 134

Bibliography 135

vii

LIST OF TABLES

3.1 Average execution time (standard deviation), in seconds 32

3.2 Overhead in the slowest process . 32

3.3 Average execution time . 35

5.1 Average Time for App Computation (with StDev), for 32 Data Import

Processes, in ms . 72

5.2 Average execution time . 79

6.1 Validation of State Composition . 94

7.1 Direct Coupling for the MAS and the ENLIL 102

7.2 Stamped-Based Coupling for the MAS and the ENLIL 103

7.3 The Configuration File for the MAS and the ENLIL 104

7.4 The MAS Execution Time (Average/Standard deviation) 106

7.5 The Input File for MAS . 110

7.6 Direct Coupling for the LFM-Coupler and the TING 111

7.7 Stamped-Based Coupling for the LFM-Coupler and the TING 111

7.8 The Configuration File for the LFM-Coupler and the TING 112

7.9 The Execution Time (Average/Standard deviation) 112

7.10 Dissection of LFM-Coupler Execution Time (Average/Standard deviation)112

viii

8.1 AMD and Intel Multi-core Processors 117

ix

LIST OF FIGURES

1.1 Dealing with different spatial resolutions 3

3.1 Example exporter and importer programs 14

3.2 An example configuration file . 15

3.3 Main system components . 18

3.4 Acceptable 6= Matchable . 23

3.5 REG, REGU and REGL . 24

3.6 LUB and GLB . 25

3.7 Collective correct match . 26

3.8 Fast matchings . 27

3.9 Relation between Fast & REGU . 28

3.10 Experimental environment . 29

4.1 Slower Importer . 41

4.2 Slower Exporter . 42

4.3 Coupled with 4 Importer Processes . 46

4.4 Coupled with 8 Importer Processes . 47

4.5 Coupled with 16 Importer Processes 48

4.6 A Typical Buddy-Help Scenario . 49

4.7 A Typical Buddy-Help Scenario . 50

x

4.8 Coupled with 32 Importer Processes 51

4.9 Optimal State . 52

4.10 With Buddy-Help . 54

4.11 Without Buddy-Help . 55

5.1 A Scenario for a Slow Data Import Component, Original Approach . . . 58

5.2 A Scenario for a Slow Data Import Component, Eager Transfer Approach 61

5.3 A Scenario for a Slow Data Import Component, Distributed Match Ap-

proach . 65

5.4 Import Time for OD, ET, and ET+DM 73

5.5 Round Trip Delay and Import Time for OD & ET 74

5.6 One-Way Delay = 20ms . 75

5.7 One-Way Delay = 200ms . 76

6.1 Copies of Distributed Data . 84

6.2 On-Demand Operation . 87

6.3 Eager Transfer Operation . 88

6.4 Priority-based Operation . 89

6.5 On-Demand Operation . 90

6.6 Two Small FSMs . 91

6.7 States for Data Export Processes . 95

6.8 States for Data Import Process . 96

6.9 On-Demand Operation in Data Importer Rep 97

6.10 Eager Operation in Data Importer Rep 97

6.11 States for Data Importer Rep . 98

6.12 States for Data Export Rep . 99

xi

8.1 Data Export Function . 123

8.2 Approximate Match Control Thread 124

8.3 Data Import Function/Import Control Thread 125

xii

Chapter 1

Introduction

Compared to traditional large scale scientific simulations, the new e-Science paradigm,

composed of heterogeneous application components, has many advantages. Integrating

well-tested modules that each best model some part of the physical system being simu-

lated, and deploying them within a loosely coupled framework, rather than developing a

single tightly coupled monolithic code, is a more efficient and flexible ways to develop

large-scale software frameworks.

The loosely coupled approach also makes it easier to investigate an entire physical

system broken down into its various components. An example is discussed by Gom-

bosi et. al. [49]: the magnetohydrodynamics (MHD) equations are used extensively in

numerical-based large-scale space science simulations, and the impact of those different

MHD codes can be investigated more easily in a loosely coupled software framework.

The approach also benefits multiscale, multiresolution simulations and models, which

are able to describe physical phenomena occurring over various space and time scales

such as petroleum reservoir simulation [63], adaptively capturing small-scale noise [5],

complex fluids and dense suspension modeling [102], and patch dynamics [55]. Be-

sides, integrated computational power allows us to explore more thoroughly important

physical phenomena that are so complex that no single research group has the ability

1

to attack the problem alone. For example, the Earth System Modeling Framework [24],

which is composed of several U.S. federal agencies and fifteen universities [7], is a soft-

ware framework for building and coupling weather, climate, and other Earth science

models.

However the integration of those components is not easy. For example, different

components, because of (1) being developed by different people, (2) the unique charac-

teristics of the phenomena being modeled, or (3) the numerical algorithms employed,

might operate on different simulation time and space scales such that the exchange of

the data in overlapped regions or at shared boundaries become a serious issue. To obtain

correct results, those data must be consistent in both time and space .

The spatial resolution problem is shown in Figure 1.1 and one solution is shown

– introducing an agent that performs interpolation on the grids used for the numerical

modeling in the two components. The role of the agent includes transformation be-

tween coordinate systems and proper scattering/gathering of data across shared bound-

aries. The MxN working group in the open Common Component Architecture (CCA)

Forum [6, 67, 12, 113] is addressing similar issues.

Traditionally the temporal issue is handled directly in the source codes of the com-

ponents, through mechanisms such as discarding or merging multiple versions of output

data at different spatial or temporal scales, or sampling of fine scale input data for com-

ponents requiring coarser scale data, and so on. Integration at the source code level has

advantages, including guaranteed availability of data objects across components pro-

duced or needed at different time scales, and good performance because of the tight

coupling among components. Nevertheless, this approach is inflexible, with inherent

limitations. For example, replacing some components of the whole system could force

source code level modifications of all components that must communicate with the new

2

Model A

XP = BuildDescriptor(X)
 ...
Call Export(XP)
 ...
Call Import(XP)

InterComm InterComm

Model B

X[iGridA].receive();
X.interpolate();
Y=sqrt(X);
Y[iGridB].send()

Y[iGridB].receive();
Y.interpolate();
X=Y*Y;
X[iGridA].send();

YP = BuildDescriptor(Y)

MPI, P++, ...

Call Export(YP)

Call Import(YP)
 ...

 ...

 ...

MPI, P++, ...

Overture/P++, ...

Figure 1.1: Dealing with different spatial resolutions

ones, even if the new components and the replaced ones simulate the same phenom-

ena but with different algorithms. When components are large (in terms of code size),

complicated in structure, or perhaps developed by different people or groups, such main-

tenance work becomes quite difficult.

In this dissertation, to support multiple time scale data exchanges, we describe a low-

overhead loosely coupled framework, in which only the following two assumptions are

made and arbitrary coordination between the application components is not necessary.

First, instead of identifying data import and export relationships (connections) be-

tween application source code components, only the specification of the interface to

other components needs to be known by each coupled component. This assumption

makes it easy to replace a component by another with the same interface. Once the

specification of interfaces, such as communication schedules in InterComm [101], is ac-

complished, the framework can make runtime decisions about when data transfers will

3

occur between different components. All that is important in such a loosely coupled

framework is that data that are required by one component must be delivered in a timely

manner from some other component, and the data that are provided by a component but

not needed by any other components should not cause any correctness or performance

problems elsewhere. For example if a component generates data and there is no other

component that requires the data, the unneeded data will be discarded at the framework

level and both the behavior and the performance of the entire framework will not be

affected.

Second, when data imports or exports occur, rather than requiring the associated

simulation timestamps to be periodic, only a monotonically nondecreasing property of

the timestamps is assumed. This assumption, which enables efficient memory manage-

ment in the framework, is based on the common behavior of numerical simulation tech-

niques. Although classical algorithms compute solutions over time at a fixed frequency

(time step), variable-sized intervals (explicit time steps) have theoretical and practical

advantages in some application components, such as solving nonlinear Schröodinger

equation [60]. Visualization of scientific simulation data, for example as shown in [62]

may also benefit from variable-sized time intervals. Rather than ingesting generated

data at fixed intervals, the visualization program can use a loop to fetch the most current

data as the simulation is running, and then generate the visualization data to be viewed.

In this scenario, the interval between data fetches depends on runtime variables such as

the graphics processing speed, the system load where the visualization is running, and

the size of data to be transferred — it does not need to be a constant. This means that a

good solution to the time scale problem would not fix the time when the data exchanges

should be performed in advance, but allows all decisions to be made at runtime based

on the current overall system state.

4

The following outlines the remainder of the dissertation.

1.1 Basic Architecture

To couple different components that use different simulation time scales, two approaches

are described in Chapter 3. First, rather than embedding all coupling information be-

tween export and import components into the application source code, we employ a

framework level configuration file, which contains information about the runtime re-

quirements of the components and the connection information between components.

Second, whenever timestamped import requests are received, a connection-wise approx-

imate match algorithm is used to determine the matched exported data object.

1.2 Runtime-Based Optimizations

Although the basic approach offers flexibility and versatility for building and deploying

large-scale multi-physics simulation systems, due to its runtime-based nature, overall

performance might be a concern. We offer two methods for two causes of load imbal-

ance.

The first approach helps to avoid unnecessary buffering in slower export processes,

when data export components run more slowly than data import components. By taking

advantage of the semantics of collective operations, which ensure that all processes in

a parallel component must make the same sequence of export (or import) operations,

unnecessary data buffering in slower export processes can be identified (and then be

avoided) at runtime.

On the other hands, when data import components run more slowly than data export

components, the second approach overcomes the available bandwidth and end-to-end

5

latency limitations of the network by using two methods: eager transfer and distributed

approximate match.

Transferring data objects that are predicted to be needed in advance, which we call

eager transfer, can effectively solve the bandwidth problem. However eager transfer

does not solve the latency issue because the basic runtime-based approximate match

algorithm needs input data from two different sources (the import and the export com-

ponents) so that latency between these two data sources always plays an important role

in overall performance. We describe a distributed approximate match algorithm that

helps in this situation. By piggybacking intermediate results along with the eagerly

transferred data objects, no extra latency is introduced and overall performance can be

improved significantly.

1.3 Control Protocol

There are two different types of operations in our framework. An on-demand data trans-

fer is initiated by a data import program when a user application issues an (on-demand)

timestamped data request, and an eager data transfer is initiated by a data export pro-

gram when the user application issues an export request and pattern (of consecutive

timestamps on a connection) has been observed. To support both operations simultane-

ously, the construction of the underlying control protocol is a challenge.

The architecture needs to be designed such that control messages can be initiated

by both parties: the import and the export program on a connection. This two-sided

initialization approach makes the framework flexible and efficient, but makes the control

protocol very complex. To handle this issue, we describe a protocol construction method

that is based on validating all possible compositions of smaller protocols for each of the

6

modes.

1.4 Application Studies

Our framework has been applied to two real world coupled simulation scenarios, and

the overall performance is described. The first scenario is for coupling of coronal and

heliospheric regions around the Sun [86]. It is a one-way coupling: the boundary data,

including plasma density, temperature, flow velocity, and magnetic field, are transmitted

from the coronal component to the heliospheric component.

The second scenario is part of the coupling of the Lyon-Fedder-Mobarry (LFM)

magnetosphere model to the thermosphere-ionosphere-nested-grid (TING) model. It is

a two-way coupling: TING receives the electric potential field, the characteristic energy

of precipitating electrons, and the flux of precipitation electrons from the LFM coupler

component and sends the Hall and Pederson conductances back to the LFM coupler [74].

1.5 Thesis Structure

My thesis is that it is possible to provide flexible and efficient mechanisms for control

of data transfers between coupled parallel programs, and my contributions are (1) a

framework to separate coupling information from application domain computations, (2)

a runtime-based approximate match algorithm that uses simulation time stamps, (3) two

runtime-based optimization methods to improve overall performance under two load

imbalance situations, (4) a control protocol for collective data transfers, (5) investigation

of the performance of two real world application in our framework, and (6) porting

strategies for advanced high performance architectures.

My dissertation is organized as follows. Chapter 2 is for the related work. Chap-

7

ter 3 describes an algorithm, approximate match, to determine appropriate versions of

exported data for requests from different time scale components. Chapter 4 presents

a runtime-based optimization method for single program multiple data (SPMD) pro-

grams. Chapter 5 introduces a distributed algorithm, distributed approximate match, to

hide the network latency for eager transfers. Chapter 6 explains the construction of all

the underlying control protocols. Chapter 7 studies the behavior of two real world ap-

plications when they run in our framework. Chapter 8 outlines an enhanced architecture

and investigates the framework architecture on different computational platforms, and

the conclusion and future research directions are in Chapter 9.

8

Chapter 2

Related Work

2.1 Other Parallel Tools

Both Interoperable MPI(IMPI) [46, 47], which is a set of protocols across different MPI

implementations, and MPICH-G2 [79], which is a grid-enabled implementation of the

MPI v1.1 standard, allow one MPI program to run in the heterogeneous environments

which are composed of different architectures and operating systems. These systems

mainly focus on heterogeneous integration, and higher level coupling between applica-

tion components must be handled by the participating components.

Data exchanges between distributed data structures are also offered in other soft-

ware packages, including Meta-Chaos [35], InterComm [66], Parallel Application Work

Space (PAWS) [10, 37], the Model Coupling Toolkit (MCT) [65, 64], Roccom [57],

the Collaborative User Migration User Library for Visualization and Steering (CU-

MULVS) [45], and the MxN working group in the open Common Component Architec-

ture (CCA) Forum [6, 67, 12].

Partitioned Global Array Space (PGAS) language [23, 112, 59] is a programming

languages approach to support parallel environments by extending existing languages,

such as Co-Array Fortran [82, 83], Unified Parallel C [16, 25, 54, 44], and Titanium [11,

9

52, 58, 112] (a Java dialect), or designing new ones, such as Chapel [31, 18, 32], and

X10 [20, 21, 95, 3, 94, 2].

All of them target mapping of the elements of distributed data structures to the pro-

cesses in an application component, as well as distributed data exchange between par-

ticipating (parallel) programs, with the higher level coupling and integration left to the

participating application components.

2.2 Coordination Languages

Coordination model, which creates and coordinates execution threads in distributed

computing environment, was introduced by Linda [4, 17]. This model has been either

spawning new languages like Delirium [73] and Strand [41, 40], or enhancing existing

languages like C-Linda [8] and Fortran M [19], to name a few.

Although coordination languages have been extensively and intensively researched

since the early 1990’s, they has not been widely used for scientific programs. One of

the reasons is that either application programmers need to learn and become familiar

with a new language, or the stable supporting compilers must become widely available.

In addition the inherent complexity of a generalized coordination approach makes the

runtime optimization very hard.

Compared to the approaches based on coordination languages, our methodology

(1) is independent of the languages the application programs are written in, since it is

implemented as a runtime library, and (2) focuses on the general properties of SPMD

scientific programs only (not arbitrary programs), which enables runtime optimization

that can allow for high performance with low overhead.

10

2.3 Collective Operation

Collective operations, which must be invoked by a set of processes in a parallel program

to perform an operation, are widely used in parallel libraries, such as PVM [100] and

MPI [98], either for collective data movement (broadcast, scatter, gather, etc.) or for

collective computation (maximum, summation, etc.).

Rather than using collective operations directly, this work takes advantage of the fact

that collective operations must be performed by all processes to improve performance.

Such optimizations include the functions performed by the representative threads in each

participating (parallel) program, as described in Chapter 3 and the buddy-help optimiza-

tion described in Chapter 4. That is, our framework takes advantage of the semantics

of collective operations to decrease the overheads of performing runtime matches, but

does not address the design or the implementation of collective operations.

2.4 Client-Side Caching

To reduce the data transfer time between source and sink application components, client-

side caching, in which a data object might have multiple copies in the system, is another

method widely used in the distributed environments. One issue with caching is co-

herency between multiple data copies, and various bookkeeping methods have been

designed in, for example, the distributed file systems literature, including the Network

File System v.4 [97], GPFS [88, 96], and Panasas [103].

Although a form of client-side caching is employed in our framework, as discussed

in Chapter 5, coherence is not an issue because our algorithms only move read-only

copies of the data, since once the data is exported by an application component it cannot

be modified. Most important is that bookkeeping overhead can be completely avoided

11

even when our algorithms create multiple copies of the same data object.

2.5 Protocol Construction

The SPIN [53] model checker uses its own meta-language (Protocol Metalanguage

Promela) for system verification, SDL [56] and Cord Calculus [34] offer high-level

abstraction for protocol design, and Protocol Composition Logic [30] focus on proving

security properties of network protocols. Our protocol construction approach has two

distinct properties. First simple tasks are expressed by finite state machines (FSMs), and

are very close to source code implementations. The FSMs are so small that it is easy to

build and implement them correctly. Second, the composition and validation step can

be used to construct larger systems, and interaction between small tasks can be clearly

identified.

12

Chapter 3

Approximate Match

Allowing loose coupling between complex e-Science applications has many advantages,

such as being able to easily incorporate new applications and to flexibly specify how the

applications are connected to transfer data between them. To facilitate efficient, flexible

data transfers between applications, in this chapter we describe an approximate match

method to making decisions at runtime about which version of exported data are desired.

Some properties of approximate match, and our experimental results that measure the

overheads incurred by our approach, are presented.

3.1 Basic Architecture

Many scientific computing programs, for example in a set of coupled programs for a

simulation of a physical system, employ numerical algorithms to solve systems of equa-

tions iteratively. Each iteration is typically composed of two parts: computation on the

domain where that program is relevant and data exchange across physical boundaries

shared with other programs. Our design provides methods for exporting (sending) and

importing (receiving) data between programs, once the relevant (distributed) data struc-

tures are defined.

13

define region Sr12 define region Sr0

define region Sr4 ...

define region Sr5 for(...) {

... import Sr0

for(...) { ...

export Sr12 }

export Sr4

export Sr5

...

}

Exporter Ap0 code Importer Ap1 code

Figure 3.1: Example exporter and importer programs

Although each program must define its contributions (called regions in our frame-

work) to a data transfer, the related counterparts on the other side of the data transfer

do not need to be defined. From the point of view of a data exporting program, the

program defines its regions once, and exports the desired data as often as it desires,

nominally when a new, consistent version of the data across the parallel program is pro-

duced (note that the data for a region can span multiple processes in the program, so the

parallel program must ensure that a consistent version is exported). The program does

not have to concern itself about which and how many programs will receive the data,

or even whether a data transfer will actually occur. Data importing programs also only

define their regions once, and import data as needed, without knowing anything about

the corresponding exporters. The connection between importer and exporter programs

is provided by the framework, and an example is shown in Figure 3.1.

14

Our framework uses a configuration file that is separate from the importing and

exporting programs, and contains information about how to connect imported and ex-

ported regions as well as all the information required to execute the coupled programs.

An example configuration file looks like:

Ap0 cluster0 /home/meou/bin/Ap0 2 ...

Ap1 cluster1 /home/meou/bin/Ap1 4 ...

Ap2 cluster1 /home/meou/bin/Ap2 16 ..

Ap4 cluster1 /home/meou/bin/Ap4 4 ...

#

Ap0.Sr12 Ap1.Sr0 REGL 0.05

Ap0.Sr12 Ap2.Sr0 REGU 0.1

Ap0.Sr4 Ap4.Sr0 REG 1.0

Figure 3.2: An example configuration file

The configuration file contains two parts, The first part describes the required run-

time environment information, including (1) what resource to run each program on, (2)

the file system location of the executable program, and (3) what command and switches

to use to run the program (including how many processors to run on for a parallel pro-

gram). In the example, the parallel program Ap0 will run on machines in cluster cluster0,

its executable is located in /home/user1/bin/Ap0, and it will run on 2 processors in the

cluster. Runtime information is also shown for three other programs that are part of the

coupled set of programs.

The second part of the configuration file describes the mappings between exporter

regions and importer regions, by specifying the data that will be transferred at runtime.

In the example, the first two mappings specify that data must be transferred from region

15

Sr12 in program Ap0 both to region Sr0 in program Ap1, using a matching criterion of

REGL with a precision of 0.05, and to region Sr0 in program Ap2, using a different

matching criterion of REGU with a precision of 0.1. The third mapping specifies that

region Sr4 in program Ap0 transfers data to region Sr0 in program Ap4, with a matching

criterion of REG with a precision of 1.0. Note that even though exporter region Sr5 in

program Ap0 has been defined, as seen in Figure 3.1, that region will not be involved

in any data transfers, because the configuration file does not specify any corresponding

importer regions. The details of the three matching criteria (REGL, REGU, and REG)

will be discussed in Section 3.2.

The design goal of using a separation configuration file is to provide flexibility. By

defining the mappings between source and destination regions separately from each

program, a user can easily change the runtime matching relationships, without modi-

fying the source code in either the source or destination program. Similarly, it becomes

straightforward to replace the source (or destination) program with another program

that provides the same interface, by simply modifying the configuration file. Moreover,

each program can be developed independently and only the author of the configuration

file, who is the one coupling the programs that will run, needs to specify the detailed

information about the runtime data transfers.

3.1.1 System Architecture

The main components of the runtime system that supports the matching process is shown

in Figure 3.3. The configuration file discussed earlier is read in the initialization stage

for each program. As shown on the left side of Figure 3.3, if an exported data object

might get a match, meaning that it might match an import in some other program, a copy

of it is saved by the system. However, if no matching specification exists that requires

16

the exported data object, or the exported data object will not match any potential import,

based on the matching criteria in the configuration file and the imports that have already

been seen by the system, the system does nothing and returns to the caller.

A matching decision is made when an import request is received. Based on saved

data and the matching criteria for that import request, the possible status for the re-

ceived request will be Yes, Never, or Pending. As shown in the middle of Figure 3.3, a

data transfer from the exporter to the importer will be triggered if the request can be sat-

isfied by saved data (a Yes response). If a decision cannot be made yet because possible

candidates will be exported in the future, the answer would be Pending. If the system

can determine that a match can never be made now and in the future, the answer Never

will be returned to the importer. The details of the matching process will be discussed

in Section 3.2.

We now describe how an import request is handled in the importing part of the

runtime system. As shown in the right side of Figure 3.3, when a data object is imported

the system first checks, based on the information obtained from the configuration file,

whether a corresponding exporter exists. If one exists, the system sends a request to the

exporter, and waits for an answer, otherwise the request fails (returns Never) because

no corresponding exporter exists. If the exporter returns Yes, the importing part of the

system issues a receive for the matching data object. If the exporter returns Never,

the system also returns that to the caller. However, there are two options when the

exporter returns Pending. If a blocking import call is made the runtime system in the

importing part of the system will wait until a Yes or Never answer is returned from the

corresponding exporter (as specified in the configuration file). If the importer made a

non-blocking import call, it must test the handle returned by the runtime system until

the import call has either completed or failed (or wait until the operation completes).

17

R
ec

ei
ve

 e
xp

or
t()

 c
al

l

D
is

ca
rd

D

at
are
la

te
d

re
ce

iv
er

?

N
o

S
av

e
a

co
py

of
 d

at
a

Ye
s

P
os

si
bl

e
M

at
ch

?

Y
es

N
o

R
ec

ei
ve

 im
po

rt(
) c

al
l

N
o

S
en

de
r

re
la

te
d

se
nd

er
?

N
o

R
ec

ei
ve

 D
at

a

Y
es

R
eq

ue
st

 D
at

a M
at

ch
?

N
ev

er
 M

at
ch

N
o

Ye
s

Pe
nd

in
g

R
ec

ei
ve

 D
at

a
R

eq
ue

st

R
ep

ly

N
E

VE
R

M
at

ch
?

N
o

R
ep

ly

YE
S

Y
es

R
ep

ly

P
en

di
ng

P
en

di
ng

S
en

d
D

at
a

R
et

ur
n

to
 c

al
le

r
R

et
ur

n
to

 c
al

le
r

Figure 3.3: Main system components

18

Applications may be parallel programs, running as multiple processes on multiple

host machines. For parallel programs (e.g., MPI programs), import and export requests

are collective [98], meaning that all processes in a program must make the same calls in

the same order, with consistent parameters. In our system, one of processes is selected

by the runtime system as the representative process for those parallel programs. The

representative process has three additional responsibilities. First, it forwards requests

and replies from the other processes in this parallel program to other programs. Second,

it exchanges forwarded requests and replies with representative processes of other pro-

grams. Third, the representative in the importer caches matching information obtained

from the exporter program and makes it available to all processes within the importer

program. With the help of those representatives, consistent decisions can be made across

all processes in parallel programs and results are shown in Section 3.3.

3.2 Matching exports to imports

As discussed in Section 3.1, exporters generate time stamped data objects and importers

request such objects. For example, if an exporter produces an array A (i.e., a data object

containing the contents of array A) at time stamp 1.2, the stamped data is composed

of the data from array A and a time stamp 1.2. For simplicity, we use data@stamp to

denote the stamped data. In our example, the stamped data is A@1.2. Also we require

the time stamps in a sequence of export or import calls for the same data object to be an

increasing function of execution time — that is, if the most recently exported data object

is A@1.2, the next data object from the same exporter (or importer) must be A@y with

y > 1.2 (of course, the contents of A may have changed between the two exports).

Data transfers are initiated by an request from an importing component. For each re-

19

quest, the corresponding exporting component must determine which data object matches

the request, if any. In other systems, this issue is solved implicitly — the logic is embed-

ded in the applications. For example, if the importer needs data every 5 time units, the

exporter will send data every 5 time units. This method is a simple and efficient solution

when both the importer and exporter applications are implemented by the same person,

or by the same research group. However, such a scenario becomes a problem when

the importers and exporters are produced by different research groups, for example, as

described in [7]. Similarly, it may be difficult to build the logic in each application

to match exports and imports if time stamps on objects are not generated in a regular

fashion (e.g., the time scale in the importer is not a multiple of the one in the exporter).

3.2.1 Matching policies

We now describe our solution to the matching problem. Consider the following scenario:

the exporter produces a sequence of data objects with time stamps: A@1.1, A@1.2,

A@1.5 and A@1.9, and the importer requests a data object that matches A@1.3. The

question becomes, which exported object matches the request, if any? We define a

matching criterion denoted by a 〈matching policy, precision〉 pair. The matching policy

determines whether and how a match is made between two time stamps. For example,

one matching policy that we call the greatest lower bound (GLB) requires that A@1.2

be the match for the A@1.3 request (the names we use are from the point of view of

the importer request). Another example matching policy is called the least upper bound

(LUB), which for our example would match A@1.5 to the A@1.3 request. From the

viewpoint of the importer, GLB can be viewed as matching the time stamp of the latest

export with time stamp less than or equal to the requested one, and LUB as matching the

earliest export with time stamp greater than or equal to the requested one. Interestingly

20

the same exported data object might be the match for different requests. As in the

previous example, if the matching policy is GLB and the first request is A@1.3, A@1.2

is the match. If the next request is A@1.4, A@1.2 is once again the match.

3.2.2 Precision

Although the LUB and GLB policies offer some flexibility, bounding the time stamp

values that are acceptable can also be useful — an application may not want to get a data

object that has a stamp too far from what it has requested. We allow the specification

of a precision for each matching policy, which enables such control over stamp matches

— the precision determines how far apart the stamps in the exporter and importer are

allowed to be.

More formally, the precision specified for a match is the tolerance allowed between

the stamps specified by the importer and the exporter for the matching data objects. For

example, if the GLB policy is specified with a tolerance of 0.05, the importer request

from our earlier example would return Never for the request A@1.3 because no exporter

object has a stamp in the range [1.25, 1.3]. The A@1.2 in the exporter would be the GLB

match for the importer request A@1.3, but it is not within the specified interval.

3.2.3 Supported matching policies

In addition to the previously described GLB and LUB policies, we also define several

other matching policies that may be useful for coupling some types of applications.

We use x as the requested time stamp from the importer, f (x) as the potential matched

stamps from the exporter, and p as the desired precision.

LUB Least upper bound match — the minimum f (x) such that f (x)≥ x.

21

GLB Greatest lower bound match — the maximum f (x) such that f (x)≤ x.

REG Region match — f (x) minimizes | f (x)− x|, and | f (x)− x| ≤ p.

REGU Region upper match — f (x) minimizes f (x)− x, and 0 ≤ f (x)− x ≤ p.

REGL Region lower match — f (x) minimizes x− f (x), and 0 ≤ x− f (x)≤ p.

FASTR Fast region match — any f (x) such that | f (x)− x| ≤ p.

FASTU Fast upper match — any f (x) such that 0 ≤ f (x)− x ≤ p.

FASTL Fast lower match — any f (x) such that 0 ≤ x− f (x)≤ p.

We enumerate some observations about the various matching policies:

1. Given a requested stamp x, if a corresponding f (x) cannot be found based on the

given matching criteria (i.e., the matching policy and precision), Never would be

returned to the importer.

2. The REGU (REGL) policy is the same as LUB (GLB) with a precision value

added. LUB (GLB) can be viewed as REGU (REGL) with a precision of infinity.

3. For region matchings (LUB, GLB, REG, REGU, and REGL) the matching stamp,

f (x), is selected such that the difference between f (x) and x, called the reference

stamp here, is minimized if more than one stamp falls within the precision. How-

ever if multiple stamps are eligible, and the importer does not care which one is

returned, FASTR, FASTU, and FASTL can be used and the overall performance

would be better than for the more tightly constrained matching policies.

22

GLB

REG

Stamps
t1 t2

Acceptable region

tr t2'

REGL

time

Figure 3.4: Acceptable 6= Matchable

3.2.4 Region matchings properties

Several issues are specific to region matchings. First, for GLB and REGL, the matching

result remains ”Pending” even if the most current exported object stamp is acceptable

— because the next exported object stamp might be the match, as shown in Figure 3.4.

Here we denote exported stamps by filled circles and possibly future stamps by hollow

circles. In this example, A@t1 is the most current exported object in the system and is

also the current match candidate, but it will not be the match if the next exported object

is A@t2. However a final decision that A@t1 is really the match can be made if the

next exported data object is A@t ′2 rather than A@t2. If the most current stamp t1 is also

before the reference stamp tr, the REG matching policy also has a similar property, as

shown in Figure 3.4.

In such situations, a deadlock may occur if the runtime system has only one buffer

to store saved objects with different stamps — because the exporter has no place to save

the second stamped data object, so the status would be ”Pending” forever. Although

using more than one buffer is the simplest solution to this problem, that might not be

23

feasible if the size of the data objects is very large, which may not be uncommon in

scientific applications. In this case, one buffer and one look-ahead can be used — the

look-ahead checks only the stamp of the next exported data object to see if it is better

than the previous one, so that the buffer can be overwritten if needed (the new object

is the match rather than the previously saved one). If the new object is not acceptable,

then the runtime system has determined that the current saved object is the match and

the data transfer of the buffered object can be performed.

REGU

REG

Stamps t3 t4

Acceptable region

tr

REGL

time

Figure 3.5: REG, REGU and REGL

Second, for the REG, REGU, and REGL policies, the match request is for a bounded

interval around the reference stamp which is either inside (REG) or on the boundary of

(REGU, REGL) the interval. In all three cases, match decisions can only be made

after a data object with a stamp value greater than the reference stamp is exported —

otherwise the match cannot be determined for certain. This is not a problem for the

REGU policy, for which that waiting data object is the desired match, but some delay

would be introduced in determining a match for the REGL policy, because the new data

object is not the one that is returned as the match — it is only used to determine that the

24

match can be made. For the REG policy, the additional delay may or may not be extra

overhead — that depends on which stamp is the match, the one just before or after the

reference stamp. In the example in Figure 3.5, tr is the reference stamp and t3 is the most

current stamp. When A@t4 is exported, it would be the match for the REGU policy and

it also assures that A@t3 is the match for the REG and REGL policies.

LUB

Stamps t5 t6

Acceptable region

tr

GLB

time

Figure 3.6: LUB and GLB

Third, there is an interesting connection between the LUB and GLB policies — their

decision making process is very similar. The decision for when a match is made for both

policies can only be made when a data object is exported with a time stamp greater than

the reference stamp. More precisely, the decisions for both the LUB and GLB policies

are made at exactly the same time (when the triggering export occurs), and the matching

results are from two consecutive exports (the one just before the reference stamp and the

one just after). In Figure 3.6, tr is again the reference stamp and t5 is the most current

stamp. Both the matches for the LUB and GLB policies can be determined only after

A@t6 is exported. Here LUB will match A@t6 while GLB will match A@t5.

25

Process 0

Process 1

Process 2

Process 3

Stamps t8 t9 t10

Acceptable region

t7 t11 t12 t13 t14

Figure 3.7: Collective correct match

3.2.5 Fast matchings properties

For all three fast type matchings (FASTR, FASTU, and FASTL), if all processes per-

form the match algorithm independently and no match results are exchange among each

other, to keep collective correctness, the matched stamps should be the earliest stamps

in acceptable regions. The reason is that, when a request being received, if only one

export timestamp ti is in the acceptable region for the process ps, but multiple times-

tamps ti, ti+1, . . . , ti+k are in the acceptable region for some faster process p f , the match

decision by process p f must be the same as the one made by ps, and the only choice

is ti. Figure 3.7 is a snapshot of 4 export processes when a match request is received.

The fastest process p3 has already generated data beyond the acceptable region but the

slowest processor p1 just generates A@t9. Although p3 could choose any data objects,

the answer from p1 would be either A@t8 or A@t9. Besides if p1 chooses A@t9 and

26

another process pvery slow (not shown) has only A@t8 in its acceptable region (such that

the answer from pvery slow is A@t8), processes p1 and pveryslow would make different

match decisions. Namely no matter how many data objects are in the acceptable region,

to keep the collective correctness, all processes should choose the earliest one. To put

in another way, these fast type matchings are really the earliest type matchings from the

collective correctness viewpoint.

<FASTR,δ>

<FASTL,2δ>

<FASTU,2δ>

Acceptable region

tr-δ tr tr+δ
Stamps

Figure 3.8: Fast matchings

The difference between all three fast type matchings is how to identify the request

region based on requested stamps and precisions. For example, the following identifies

the same acceptable region: [tr−δ, tr +δ], as shown in Fig 3.8.

• Request A@tr when the matching criterion is 〈FASTR, δ〉.

• Request A@tr +δ when the matching criterion is 〈FASTL, 2δ〉

• Request A@tr−δ when the matching criterion is 〈FASTU, 2δ〉

27

REGU

Fast Type

Stamps t15

Acceptable region

tr t16 t17

Figure 3.9: Relation between Fast & REGU

There is an interesting relation between those fast type matchings and REGU. If both

have the same acceptable region, the same answer will be chosen. As shown in Fig 3.9

A@t15 will be chosen by both because it is the closest one to base stamp tr for REGU

and is also the earliest stamp in the acceptable region for fast type matchings.

3.3 Experiment 1

Our runtime system is implemented using C++, the C++ Standard Template Library, and

Pthreads, and uses the InterComm library [101] to perform the parallel data transfers. To

investigate the behavior and performance of the matching techniques, we first performed

experiments using a two-dimensional linear partial differential equation solved via the

finite element method. The experimental environment is described as follows:

• The equation is utt = uxx + uyy + f (t,x,y), a two-dimensional diffusion equation

with a forcing function. The forcing function can be viewed as the external input

28

P10 P11

P12 P13

P10 P11

P12 P13

P10 P11

P12 P13

AP1 Case A AP1 Case B AP1 Case C

P00

P01

Forcing
data

AP0

Figure 3.10: Experimental environment

for u.

• u(t,x,y) is a 512×512 array. In addition to its four edges, the following elements

are also zero. u(255,y, t), u(256,y, t), u(x,255, t), and u(x,256, t). So the array is

composed of four 256×256 arrays whose boundaries are set to 0.

• Program Ap0 runs with two processes (P00 and P01), and handles the forcing

function f . Each process is responsible for a 32x256 local array, half of the total

32x512 array.

• Program Ap1 runs with four processes (P10, P11, P12, and P13), and is the nu-

merical code for solving the diffusion equation. Each process contains a 256×256

local array, representing the global 512×512 array.

• Ap0 is the exporting program, and generates data at every basic time unit (for this

example, the time units are arbitrary). Ap1 is the importing program and requests

external data every ten basic time units. The matching criterion specified in the

configuration file is 〈REGL,0.05〉. All the data in the Ap0 array are used as the

exported data object.

29

In this experiment process P00 is the representative for Ap0 and process P10 is the

representative process for Ap1. If we compare them to the other processes, the repre-

sentative processes have extra work to perform. To investigate the performance impli-

cations of the extra work, we consider data transfers into three different data regions in

Ap1, as shown in Figure 3.10, and measure overheads for each case. However we must

first identify where the overhead comes from, which requires looking at a part of Ap1’s

source code:

for (...) {

import region; // step 1

Compute u by finite difference; // step 2

}

In each iteration, Ap1 obtains external data via an import operation, and then com-

putes a new value for u. The import operation (step 1), also shown in the right of

Figure 3.1, has to do two things. First, it must ask the Ap1 representative process to

request a match from the exporter, Ap0. Second, if the request succeeds, Ap1 initiates

the data transfer with exporter Ap0, as shown on the right side of Figure 3.3. Therefore

Ap1 performs the following actions in each iteration, and we can measure the execution

time for each action using the standard POSIX gettimeofday() function:

for (...) {

Request a match; // step 1a

Perform a data transfer; // step 1b

Compute u by finite differences; // step 2

}

Since its computation is much less expensive, Ap0 runs faster than Ap1, so Ap1’s re-

quest is always satisfied immediately. Therefore, our measurements are for the case

30

where there is no extra delay introduced by the exporter not having produced the de-

sired data.

In the traditional approach to transferring data between applications, all matching

information is embedded into the application, so only the data transfer (step 1b) and the

computation (step 2) are needed. Therefore the overhead for doing the matching is the

time spent in the match request (step 1a).

For our experiment, we measure the overhead on 6 processors of a cluster of Pentium-

III 600MHz machines, connected via Fast Ethernet, running the experiment eleven times

and averaging the times for the results for all three cases. In each run, 1001 matches

are requested, and the measured time is the time for the slowest process to finish the

matches. For all three cases for AP1’s import region, the total execution time averaged

across the eleven experimental runs is shown in Table 3.1, with standard deviations

shown in parentheses. The execution time for each step in the slowest process as well as

the time for step 1a in the fastest process is shown in Table 3.2. From the standard devi-

ations seen in Table 3.1, we see that the measured results are consistent so the average

values do indeed represent the actual performance seen for matches by an application.

For case A, most of the data object region in the importer is located in the memory

of P13. and the representative process P10 owns no part of that region. As shown

in Table 3.1, P13 requires the longest time to run, since it is receiving most of the

transferred data.

The overhead actually seen by the whole program can be measured by looking at

the slowest process. By measuring the time for step 1a, we can see the overhead that is

introduced by our techniques. As shown in Table 3.2, although 13% (944µs) of step 1

time is for step 1a, the time transferring the data in step 1b depends on the size of the

data region transferred, while the time for doing the match is independent of the size of

31

P10 P11 P12 P13

Case A 341 (3.5) 336 (4.0) 610 (2.2) 614 (1.5)

Case B 620 (1.5) 618 (1.4) 618 (1.4) 618 (1.4)

Case C 624 (4.1) 612 (3.8) 340 (3.4) 339 (5.0)

Table 3.1: Average execution time (standard deviation), in seconds

the slowest process fastest

step 1a step 1b step 2 Overhead step 1a

Case A 944µs 6.1ms 605ms 13% 4394µs

Case B 708µs 2.9ms 613ms 20% 3468µs

Case C 535µs 6.8ms 614ms 7% 3703µs

Table 3.2: Overhead in the slowest process

the data region. So the overhead would be a smaller percentage of the time for larger

data transfers.

One of the tasks of the representative process is to cache the results of the match

procedures, so that they can be used by other processes in the same parallel program.

This makes it easy to ensure that all processes in the same program will get the same

match, but not necessarily at exactly the same time. In fact, the fastest process (in

this experiment P11) always makes the remote request to the exporter, so the other

processes, including the slowest one (P13), only end up making a local request to the

representative process. Therefore the 944µs overhead seen in P13 is really the cost

for local communication between P13 and P10 within the parallel application and the

expensive remote request (taking 4394µs, as shown in Table 3.2) is hidden behind the

time taken in the slow process.

32

Next we consider an even distribution of the requested data across the processes

(case B). In this case, the data region is equally partitioned across the four processes.

As shown in Table 3.1, P11, P12, and P13 take about the same amount of time, and P10

is somewhat slower because of the extra work for being the representative process. We

again look at the overhead in the slowest process, this time P101. As shown in Table 3.2

the slowest process also makes local match requests, and the expensive remote request

to the exporter, taking 3468µs, is again hidden.

Interestingly, the overhead for case A (944µs) is greater than that for case B (708µs).

In case A, the only work for P10 is as the representative process, but in case B, P10 has

additional work — transferring one quarter of the data. It seems that the overhead in

case A should be smaller than in case B. The reason for this behavior is that a match

request via the local network to the representative process is slower than a request that is

satisfied via local memory. Our implementation of the runtime system is multi-threaded,

and the representative process uses a separate thread to store match results and answer

match requests from other processes in the same application. P10 is the representative

process for both cases. In case A, P13 is the slowest process, and each local match

request is made via the network. However in case B P10 is also the slowest process, so

the match request requires only reading the cached match result from inside the same

process.

The last scenario (case C) is that the representative process P10 receives most of

the requested data. As shown in Table 3.1, P10 is the slowest process. As shown in

Table 3.2, the overhead for the remote request (3703µs) is again hidden behind the work

done in the slowest process, which makes a fast local request. In this case, the overhead

1Case B is faster for step 1b than for Case A because only a quarter of data must be transferred into

the slowest process.

33

is 535µs. If we compare the overhead of case B (708µs) against that of case C (535µs),

the explanation above comparing cases A and B does not apply because P10 is the

slowest process in both cases. The overhead for case C is smaller than for case B due to

network congestion. Although our network has a full duplex Fast Ethernet switch, the

bottleneck is the data sources, P20 and P21, that must send messages to all 4 processes

in case B, but only single messages to process P10 in case C.

3.4 Experiment 2

We use the following experiment, by using (1) different sizes of the array, and (2) dif-

ferent ratios between the number of generated data objects and the number of required

data objects, to see the execution time under different coupling approaches.

• The equation is utt = uxx + uyy + f (t,x,y), a two-dimensional diffusion equation

with a forcing function. The forcing function can be viewed as the external input

for u.

• Ap0, running with two processes, is the exporting program for the forcing function

(t,x,y). It generates data at every basic time unit (the time units can be arbitrary).

Ap1, running with four processes, is the importing program for u(t,x,y). The

matching criterion specified in the configuration file is 〈REGL,0.05〉.

• Both programs run on the same cluster of 2.8GHz Pentium 4 machines connected

via Gigabit Ethernet, and the underlying operating system is Linux 2.4.21-37.

• Three different sizes (192 x 6 , 256 x 8, and 512 x 16) of array are transferred to

program Ap1. In each case, the array is evenly distributed among four processes.

34

Array u Coupling Method
Ratio (|Generated| : |Required|)

1:1 10:1 20:1

192 x 6
Direct 12.3ms 12.6ms 13.1ms

Stamp-Based 13.2ms 13.0ms 13.4ms

256 x 8
Direct 22.8ms 23.4ms 23.6ms

Stamp-Based 24.0ms 23.8ms 23.1ms

512 x 16
Direct 87.2ms 88.3ms 89.7ms

Stamp-Based 88.9ms 91.3ms 91.3ms

Table 3.3: Average execution time

• Two different coupling approaches (direct coupling and the stamp-based coupling)

are used. Also three different ratios (1:1, 10:1, 20:1) between the copies of gen-

erated data (from f (t,x,y)) and the copies of requested data (for u(t,x,y)) are

considered. In each case, the stamp-based coupling approach only transfers the

requested data; however, the direct coupling method transfers all of the exported

data but only uses the desired one to perform the computation.

• For the direct coupling, 100, 1000, and 2000 copies of exported data are trans-

ferred when the ratios are 1:1, 10:1, and 20:1 respectively. For the stamped-based

coupling, 100 copies of exported data are transferred for all three ratios.

• Each configuration was run three times, 100 copies of exported data are used to

perform the computation, and the average execution time per iteration from the

slowest process in program Ap1 is shown in Table 3.3.

We make the following observations. First, for the direct coupling, the execution

time increases very little when the ratio goes from 1:1 to 20:1 for all different array

35

sizes. The difference among them is the time to transfer unrequested data objects under

Gigabit Ethernet. For example, to transfer 19 copies of 512 x 16 arrays, only 2.5ms (89.7

- 87.2) is needed. Also, for the stamp-based coupling, the execution time is almost the

same for all different array sizes. In fact, comparing two different coupling approaches,

we claim the stamp-based approach does not introduce lots overhead for the execution

time for all scenarios.

Second, in this experiment, the execution time is dominated by the domain data

computation for all scenarios. For example, if the ratio is 20:1 and the direct coupling

is used, the execution time is increased from 23.6ms to 89.7ms when the the array size

is increased from 256 x 8 to 512 x 16. By combining with previous result (transfer

19 copies of 512 x 16 arrays need 2.5ms), we know most of the time is spent on the

computation.

36

Chapter 4

Collective Optimization (Buddy Help)

The loosely coupled framework described in Chapter 3 offers flexibility and versatility

for building and deploying large-scale multi-physics simulation systems. It describes

a temporal consistency model in which each exported data object must be buffered by

the runtime system implementing the model, until there is no possibility that an object

will be requested by an importing component. That can be confirmed by determining

that either there is no importing component for objects of that type or because importer

requests that have already been processed can be shown to ensure that the object in

question cannot be requested.

Although this approach ensures the correctness of the data exchange mechanism,

overall system performance may suffer from unnecessary buffering, when one process

in a data exporting (parallel) component performs the collective export operation early

relative to the other processes (i.e. it is the first process to execute the export runtime

library call). In that case, other processes can use the information produced in resolv-

ing the call in one process for later calls in other processes in the exporting parallel

component.

We focus on the the temporal consistency issue here by taking advantage of the se-

mantics of collective operations, which ensure that all processes in a parallel component

37

must make the same sequence of export (or import) operations (similar to the required

behavior of parallel programs that use MPI collective operations [98]).

Collective operations are commonly used in many single program multiple data

(SPMD) parallel program implementations, and require that (1) the same code is run-

ning on all processes, (2) the dataset is partitioned across the multiple processes, and

(3) each process performs computation on the part of the data object it owns. Moreover,

collective operations, such as broadcast, barrier, reduce, etc., require all processes in the

same program to execute the same function with appropriately matching parameters.

These operations are well supported in popular parallel libraries such as PVM [100]

and MPI [98], and play important roles in SPMD programs. Performance studies have

shown that some parallel programs spend more than 80% of their interprocessor com-

munication time in collective operations [89].

Data exchange between shared or overlapping regions in different coupled simula-

tion components can be viewed as a collective operation, where the data to be trans-

ferred spans both multiple processes in a single component and the processes in two

separate components. That is because the exchange is not complete until all involved

processes transfer their share of the data (however it does not require that all processes

transfer data at the same time, meaning no barrier synchronization is required). In ad-

dition, the collective operation semantics guarantee that all processes in the same ex-

porting component must make the same decision about which copies of the generated

data should (and should not) be transferred to the corresponding importing program(s).

When some of the processes in the data exporting component run more slowly than other

others, perhaps because of imperfect load balancing within the component or for other

application-specific reasons, those slower processes can be sped up if the decision about

which transfers to make are performed by the fastest process in the component (the one

38

that executes the export call first).

4.1 Collective Semantics

Compared to traditional collective operations, such as broadcast (copying data from

one to a group of processes) and reduce (aggregating with some binary operation data

supplied by a group of processes) in PVM [100] and MPI [98], data transfers in our

framework also exhibit collective properties. This means that all processes in the same

program must execute the same export (or import) operations in the same order (but not

necessarily at the same time), with appropriately matching parameters. Formally the

following property must always hold in our framework:

Collective Property If one process transfers (exports or imports) data with

timestamps t1, . . . , tn during execution, all other processes in the same pro-

gram must also transfer data with those timestamps, in the same order.

To support and monitor collective behavior at runtime, our framework implemen-

tation still employs an extra process in each program, called the representative (or rep

for short), to act as a low-overhead control gateway [111]. For example when the rep

in an exporting program receives a request from an importing program, it (1) forwards

the request to all processes in the exporting program, (2) collects the responses from all

processes, (3) combines all responses to produce the final answer to the request, and (4)

sends back the final answer to the requester (to the rep of the importing program).

The legal set of responses from all the processes aggregate into one of the following

five cases: all MATCH, all NO MATCH, all PENDING, a mixture of PENDING and MATCH, or

a mixture of PENDING and NO MATCH. Additionally when all or only some responses are

MATCH, all the matched timestamps must be the same.

39

It is incorrect for some of the responses to be MATCH and some to be NO MATCH for the

same request, because only those processes whose responses are MATCH try to transfer

data, which is a clear violation of collective property. It is also incorrect if the matched

timestamps from those MATCH responses are not the same, because those processes will

try to transfer data with different timestamps and collective property would not hold

again.

The collective property is maintained if all responses are the same. Interestingly, it

is still legal if the collective responses are a mixture of PENDING and MATCH or a mix-

ture of PENDING and NO MATCH. This situation means that some processes are running

more slowly than others (e.g., either because of load imbalance or because of other

application-specific properties), such that when receiving forwarded requests the best

match cannot yet be decided (so their responses are PENDINGs.) Based on the guarantee

(because of the collective nature of export and import operations) that those slower pro-

cesses will make the same decisions as their faster peers, the answer sent by the rep is

MATCH if the collective responses are a mixture of PENDING and MATCH and is NO MATCH

if the collective responses are a mixture of PENDING and NO MATCH.

4.2 Collective Optimization (Buddy-Help)

When the collected responses are a mixture of PENDING and MATCH, more can be done

than just determining the rep answer for the MATCH. If the rep then sends the final answer

(MATCH in this case) back to the slower processes in that program, those processes then

know whether or not a data object they will export in the future should be buffered by the

framework (buffered only in the case that it is a match), even before the data is exported

by that process.

40

Because the overall model requires that timestamps for requests form an increasing

sequence, as in many timestep-based numerical algorithms, the generated data objects

are buffered only if the framework cannot decide whether the data objects are needed

or not – either because they already have passed the latest timestamp in the acceptable

region, or because the best match still cannot be decided.

Latest Acceptable Region New Data

Simulation time

Previous Generated Data

Figure 4.1: Slower Importer

When the data importing program runs more slowly than the related exporting coun-

terpart, as shown in Figure 4.1, the timestamp of a newly generated data object will

pass the latest acceptable region which is identified by the last request timestamp and

a user-defined tolerance. Buffering of this generated data object is necessary because

it might be a match for future requests. Although the buffering operation may be time-

consuming when the data size is large, the overall application performance will not be

affected much because the data exporting program is not the slowest component in the

whole system.

When the data exporting program runs more slowly than the related importing coun-

terpart, the buffering of newly generated data is a performance concern. If the timestamp

41

of the newly generated data object is outside all of the acceptable regions, buffering is

not needed because it is beyond the user-defined tolerance.

Acceptable Regions

New Data

Simulation time

Previous Generated Data

Figure 4.2: Slower Exporter

However if the new generated data object, call it A@t, (a distributed array A with

simulation timestamp t), is in one of acceptable regions R, as shown in Figure 4.2, in

general buffering is necessary because A@t might be the match. If the next generated

data object A@t ′ is outside region R, then A@t is confirmed as the match for this region

R, and the buffering step was indeed required. However, if A@t ′ is also located in region

R, A@t ′ would be a better match, and the system could free the buffer for object A@t.

It is no surprise that much unnecessary buffering can occur in the framework if

multiple objects are exported that fall in one acceptable region – which can easily occur

in coupling physical simulation components that act on different time scales. Formally,

if data objects O1, . . . ,On(i) are located in the acceptable region Ri, and the time for

buffering (and freeing) object O j is t j, the time Ti spent on that unnecessary buffering in

42

region Ri is:

Ti =
n(i)−1

∑
k=1

tk (4.1)

If a total of N requests are received (so that the acceptable regions are R1, . . . ,RN)

during the program execution, and all acceptable regions are mutually disjoint (Ri∩R j =

/0, i 6= j), the total time Tub spent on unnecessary buffering is:

Tub =
N

∑
i=1

Ti =
N

∑
i=1

n(i)−1

∑
k=1

tk (4.2)

Compared to currently used ad-hoc tightly coupled approaches, approximate match-

ing and buffering of generated data are two extra tasks that our framework must perform,

and it is clear that Tub plays an important role in overall performance when the data ex-

porting program runs more slowly than the related importing counterpart.

One way to decrease Tub is taking advantage of collective property described pre-

viously. More precisely, if for a given request the collective responses in the rep are

a mixture of MATCH (or NO MATCH) and PENDING, the rep not only sends the final an-

swer (which is MATCH or NO MATCH) to the requester, but also sends it to those processes

whose responses are PENDING (we call this buddy-help.) In this way those slower pro-

cesses can know the right match for this request, and avoid unnecessary buffering of

data objects that cannot possibly be a match, even before the data objects are generated

by export operations in those slower processes.. Decreasing Ti (and therefore Tub) in

those slower processes matters for overall performance, because the processes that ben-

efit from buddy-help are the slowest processes in the slower program – and therefore are

the performance limiting factor for that pair of coupled programs.

One interesting side effect of the buddy-help optimization is that if each time-step

iteration in a data exporting programs performs computational tasks and a slower pro-

cess ps starts to get buddy-help during the jth request, Tk in process ps will form a

43

non-increasing sequence for k ≥ j. We use a micro-benchmark described in the next

section to explain that behavior more completely.

4.3 Experiment

The complexity of the framework makes it difficult to measure the benefits from the

optimization methods we have just described for general scientific programs, so we

have designed a micro-benchmark to measure the potential performance improvements

from the optimizations. The benchmark configuration is as follows:

• Solve utt = uxx +uyy + f (t,x,y), a two dimensional diffusion equation with a forc-

ing function f (t,x,y) which can be viewed as the external input for u(t,x,y).

• Program U , which computes u(t,x,y), owns a 1024 x 1024 array which is evenly

distributed among the participating processes.

• Four configurations are considered. Program U has either 4, 8, 16, or 32 pro-

cesses.

• Program F , which computes f (t,x,y) has four processes p1, p2, p3, and ps, each

of which is responsible for a 512 x 512 array.

• There is no data exchange between process ps and pi with i=1,2, and 3.

• Data of size 1024 x 1024 is transferred from f (t,x,y) to u(t,x,y) with matching

policy REGL and precision 2.5. Program F is the exporter program and program

U is the corresponding importer program.

• Process ps performs extra computational work to make it the slowest process in

program F , and it may also run more slowly than any of processes in program U

44

(with respect to matching export/import calls).

• Processes pi in F with i=1,2, and 3 run faster than any of the processes in program

U for all four configurations of U .

The experiment was performed on a cluster of Pentium 4 2.8GHz machines con-

nected via Gigabit Ethernet. The execution times for exporting data in the slowest pro-

cess ps of program F are shown in Figures 4.3, 4.4, 4.5, and 4.8. Here each run

performed 1001 data exports, and to simulate multi-resolution coupling, one out of ev-

ery twenty exported data objects end up being transferred to program U (those are the

ones that matched). The results are from six runs for each configuration. The time

for exporting data was measured because it shows the effectiveness of the buddy-help

optimization.

Figure 4.3 shows the case when the importer program U has only 4 processes and

is running more slowly than the exporter program F . In this case every exported data

object will be saved in the framework buffer because there is no way to know which

exported data objects might be needed for a match – therefore the execution time for

all 1001 data exports should be similar and Figure 4.3 confirms that, except for early

iterations (where the time is 8% greater) and after 600 iterations (where the time is 4%

less). The extra 8% is a result of initialization of the framework and its underlying data

structures. The 4% decrease in later iterations is likely the result of less congestion in the

network and a lighter workload in the framework, because the times shown in Figure 4.3

are from the slowest process ps in program F , and after 600 iterations all other processes

pi, i = 1, 2, and 3, in program F have already completed.

By keeping the size of the distributed data array fixed (1024 x 1024), the program

U runs faster as the number of importer processes increases – because less computation

is performed for each importing process. Figure 4.4 shows the case when the importer

45

2100

2200

2300

2400

2500

2600

2700

2800

2900

1 101 201 301 401 501 601 701 801 901 1001

Iteration

tim
e

(u
s)

Figure 4.3: Coupled with 4 Importer Processes

program U has 8 processes, but it is still running slower than the exporter program F .

The result is very similar to the case of 4 processes.

The results start to become more interesting when program U has 16 processes, as

shown in Figure 4.5. Here U catches up to process ps in program F , and a typical

scenario is shown in Figures 4.6 and 4.7, where D@t denotes the distributed data D at

the simulation time t. Process ps receives the first data request D@20 after exporting 14

copies of D in line 5. Because the matching policy is REGL (described in Section 3.2.3)

and the tolerance is 2.5, the acceptable region is [17.5, 20] and the reply from process ps

is {D@20, PENDING, D@14.6}, which means that for the request D@20, the answer is

PENDING and the current latest exported data is D@14.6. Once the answer is generated,

46

2100

2200

2300

2400

2500

2600

2700

2800

2900

1 101 201 301 401 501 601 701 801 901 1001

iteration

tim
e

(u
s)

Figure 4.4: Coupled with 8 Importer Processes

process ps knows immediately that any version of D exported with a timestamp less than

17.5, as in lines 10-11, can be discarded it is not in the acceptable region.

Process ps then receives the buddy-help message in line 8, which is the reply MATCH

and the match D@19.6, for the earlier request from the fastest process in F. Once the

match D@19.6 has been determined, even though the export with that timestamp has

not been occurred in process ps yet, any future data exported with a timestamp less than

19.6, as in lines 10-13, can be discarded. This shows the benefit of buddy-help.

This pattern occurs again after the match D@19.6 is produced by process ps. Be-

cause extra memory allocations and deallocations memcpys are performed by process ps,

as shown in the beginning part of Figure 4.5, the processes in program U have a chance

47

0

1000

2000

3000

4000

5000

6000

7000

1 101 201 301 401 501 601 701 801 901 1001

Iteration

tim
e

(u
s)

Figure 4.5: Coupled with 16 Importer Processes

to catch up so that between successive data transfers new data requests will show up

earlier, and the number of skipped data copies increases (so Ti starts to decrease.) For

example 4 memcpys are skipped in lines 10-13 and then 7 memcpys are skipped in lines

26-29 of Figures 4.6 and 4.7. Eventually the optimal state, as shown in Figure 4.9, is

reached and maintained, where only the matched data are buffered in the framework.

The optimal state has the following characteristics:

• For each matched and then transferred data object, a corresponding buddy-help

message will be received early enough by a slow exporter process. (In the exam-

ple, that is process ps.)

48

1 export D@1.6, call memcpy.

2 export D@2.6, call memcpy.

3
...

4 export D@14.6, call memcpy.

5 receive request for D@20,

6 reply {D@20, PENDING, D@14.6}.

7 remove D@1.6, · · ·, D@14.6.

8 receive buddy-help {D@20, YES, D@19.6}.

9 remove D@16.6.

10 export D@15.6, skip memcpy.

11 export D@16.6, skip memcpy.

12 export D@17.6, skip memcpy.

13 export D@18.6, skip memcpy.

14 export D@19.6,

15 call memcpy,

16 send D@19.6 out.

17 export D@20.6, call memcpy.

Figure 4.6: A Typical Buddy-Help Scenario

49

18 export D@21.6, call memcpy.

19
...

20 export D@31.6, call memcpy.

21 receive request for D@40,

22 reply {D@40, PENDING, D@31.6}.

23 remove D@19.6, · · ·, D@30.6.

24 receive buddy-help {D@40, YES, D@39.6}.

25 remove D@31.6.

26 export D@32.6, skip memcpy.

27 export D@33.6, skip memcpy.

28
...

29 export D@38.6, skip memcpy.

30 export D@39.6,

31 call memcpy,

32 send D@39.6 out.

33 export D@40.6, call memcpy.

34
...

Figure 4.7: A Typical Buddy-Help Scenario

50

• For slow exporter processes, the framework can determine which versions (times-

tamps) of exported data objects will be requested by the corresponding importer

program even before those data are exported, and only the matched data objects

are buffered in the framework.

• The remaining exported data that is not a match will not be saved by the frame-

work. Namely Ti is equal to 0 once the optimal state is entered.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 101 201 301 401 501 601 701 801 901 1001

Iteration

tim
e

(u
s)

Figure 4.8: Coupled with 32 Importer Processes

By keeping the exporter program and its participating processes fixed, the exporter

program can reach the optimal state earlier if the importer program is running faster. The

reason is that when the importer program is running faster, the related exporter processes

51

...

export D@tα,

call memcpy,

send D@tα out.

export D@tβ, skip memcpy.
...

export D@tγ, skip memcpy.

export D@tδ,

call memcpy,

send D@tδ out.
...

Figure 4.9: Optimal State

will receive the data requests earlier, and based on the information provided by buddy-

help, unmatchable data can be identified earlier and more memcpys can be skipped (so

Ti starts to decrease.) This claim can be validated from the data in Figures 4.5 and 4.8.

Both configurations have the exact same exporter program and around 400 iterations

are needed to reach the optimal state when the importer program U has 16 processes,

but only around 25 iterations are needed to reach the optimal state when the importer

program U has 32 processes.

The performance benefits of avoiding unnecessary buffering from the buddy-help

optimization depend on the ratio of the size of the acceptable region to the inter-arrival

time between successive importer match requests. Consider the following example. If

the matching policy is REGL and the precision is 5.0, the result with buddy-help is

shown in Figure 4.10. After receiving the request for D@10.0, the acceptable region

would be identified as [5.0, 10.0], and the exported data object D@4.6 in line 8 will not

52

saved because it is outside of the acceptable region. However all exported data in lines

9-11, which are within the acceptable region, are not saved either because they are not

the match, D@9.6, which became known via the buddy-help mechanism. Figure 4.11

shows a different result without buddy-help for the same configuration. In that example,

whenever acceptable data is exported, as shown in lines 9-18, the new exported data

object is the best current candidate for a match, so must be saved, and the previous best

candidate can be safely deleted. The final match will be identified only after a data

object is exported outside the acceptable region, which is D@10.6 in lines 19-21.

The buddy-help message, which is the answer from the fastest process in an exporter

program, plays an important part here – the farther the fastest process progresses, the

more help the slowest process can get. However the processes in most scientific data-

parallel programs will not usually get out of sync by too much, because data exchanges

between the processes within the program occur relatively frequently, loosely synchro-

nizing the processes. But if (1) at least one of the processes p f acts as a data source,

which receives external data and performs its computation without using data from its

peer processes, and (2) non-blocking data transfers (such as MPI Isend) or advanced fa-

cilities such as Remote Direct Memory Access (RDMA) over InfiniBand [72] are used

for intra-program communication such that multiple copies of the computed data objects

(with different timestamps) can be kept in the same program, then the fastest process has

an opportunity to stay ahead and to help other, slower peer processes.

53

1 export D@1.6, call memcpy.

2 export D@2.6, call memcpy.

3 export D@3.6, call memcpy.

4 receive request for D@10.0,

5 reply {D@10.0, PENDING, D@3.6}.

6 remove D@1.6, · · ·, D@3.6.

7 receive buddy-help {D@10.0, YES, D@9.6}.

8 export D@4.6, skip memcpy

9 export D@5.6, skip memcpy.

10
...

11 export D@8.6, skip memcpy.

12 export D@9.6,

13 call memcpy.

14 send D@9.6 out.

15 export D@10.6

16
...

Figure 4.10: With Buddy-Help

54

1 export D@1.6, call memcpy.

2 export D@2.6, call memcpy.

3 export D@3.6, call memcpy.

4 receive request for D@10.0,

5 reply {D@10.0, PENDING, D@3.6}.

6 remove D@1.6, · · ·, D@3.6.

7 export D@4.6, skip memcpy.

8 export D@5.6, call memcpy.

9 export D@6.6,

10 call memcpy,

11 remove D@5.6.

12 export D@7.6,

13 call memcpy,

14 remove D@6.6.

15
...

16 export D@9.6,

17 call memcpy,

18 remove D@8.6.

19 export D@10.6,

20 call memcpy,

21 send D@9.6 out.

22 export D@11.6

23
...

Figure 4.11: Without Buddy-Help

55

Chapter 5

Eager Transfer and Distributed Approximate Match

Earlier we have described a loosely coupled component-based framework that offers

great flexibility and versatility for building and deploying large-scale multi-physics sim-

ulation systems. However, the performance of that framework is very sensitive to the

available bandwidth and end-to-end latency of the network connecting the various com-

ponents of a coupled simulation.

In this chapter, we describe and analyze two methods, eager transfer and distributed

approximate match, to deal with the network bandwidth and latency. Transferring pre-

dicted data in advance, which we call eager transfer, can effectively solve the bandwidth

problem. Our analysis and experiments show that, on average, the lower the available

network bandwidth, the more time is saved by eager transfer.

However, eager transfer does not solve the network latency problem. The reason

is that, although the data transfer time is hidden behind the applications computation, a

round-trip time between components for control messages, to decide which data object is

the one to be transferred, is still needed. In short network latency still plays an important

role in overall performance, even with eager transfer.

The origin of this problem is that the approximate match algorithm has two input

sources – one is from the data export component (history information about previous

56

satisfied requests from an import component) and the other from the data import com-

ponent (the current request). The approximate match algorithm in Section 3.2 runs only

in the data export component, and a round-trip message exchange is needed for each

data request, even if the matched data object has already been eagerly transferred to the

requester.

Running the algorithm only in the import component is not a good approach either,

because whenever a new copy of a data object is exported, a message needs to be sent to

the data import component even if this copy of data is not required. That is, no matter

where the algorithm runs, compared to transferring the requested data as in the direct

coupled approach, extra network latency is always introduced.

Here we introduce another method, distributed approximate match, which is a dis-

tributed version of our previously described approximate match algorithm, to handle the

latency issue. It contains two parts: inverse approximate match and range check. The

inverse approximate match runs in the component that supplies the data, and the range

check runs in the component that consumes the data. The new distributed algorithm has

the same functionality as our previous approximate match algorithm, but does not intro-

duce any extra latency to transfer the required data. Our experimental results show that

by combining both methods, the overall performance of the framework can be improved

significantly.

5.1 Approximate Match-based Architecture

It is often the case that some coupled components run faster than others, and overall

system performance is determined by the slowest component. When data import com-

ponents run more slowly than the corresponding exporters, the runtime performance of

57

our existing framework is very sensitive to both network bandwidth and latency between

participating components.

 Import RepExport Rep

Transfer Matched Data

Request Time Stamp
Approx
Match

T
1

T
2

T
3

Wide Area Network

Domain Data
Computation

Domain Data
Computation

Call
Import()

Figure 5.1: A Scenario for a Slow Data Import Component, Original Approach

A typical scenario for the representative (rep) threads is shown in Figure 5.1, in

which the data import component needs to wait at least one network round-trip time

(T2−T1) before starting to receive the required matching data. More formally, if Texport ,

δie, δei, M and BW are the time spent by the export program, the latency between import

and export components, the latency between export and import components, the size of

the matched data object, and average network bandwidth, respectively, the data import

58

time Timport can be expressed as follows,

Timport = Texport +δie +δei +
M

BW
(5.1)

Normally the time δei + M
BW is required to transfer any data object of size M from the

data export component to the import one via a network with bandwidth BW , and since

the approximate match algorithm runs on the data export components, the extra δie must

be included in Equation 5.1. It is a natural choice to run the algorithm in the data export

component, because the timestamps of multiple export data objects may be required to

make correct matching decisions. On the other hand, if the algorithm runs at the data

import component, whenever a new copy of a data object is exported, its timestamp

needs to be forwarded to the import component, even if the data with this timestamp

might never be requested. When the latency between components is relatively high, as

for components running at two different sites connected via a wide-area network (e.g.,

a Grid computing scenario), the cost could be very high.

More formally, when a data import component runs more slowly than an export

component on the other end of a connection, if Tcompute(i), Timport(i), Texport(i), δie(i),

δei(i), M(i) and BW (i) are the user application computation time, data import time, the

time spent by the export program, the latency between import and export components,

the latency between export and import components, the size of matched data objects,

and average network bandwidth, respectively, the total execution time of the data im-

port component, Ttotal , can be expressed as follows, for each iteration i of the total N

iterations.

Ttotal =
N

∑
i=1

(Tcompute(i)+Timport(i)) (5.2)

=
N

∑
i=1

Tcompute(i)+
N

∑
i=1

Timport(i) (5.3)

59

=
N

∑
i=1

Tcompute(i)+
N

∑
i=1

(Texport(i)+δie(i)+δei(i)+
M(i)

BW (i)
) (5.4)

=
N

∑
i=1

Tcompute(i)+
N

∑
i=1

Texport(i)+
N

∑
i=1

(δie(i)+δei(i))+
N

∑
i=1

M(i)
BW (i)

(5.5)

≥
N

∑
i=1

Tcompute(i) (5.6)

As shown in Equation 5.5, when the data import component runs more slowly than

the export component, the total execution time Ttotal is composed of four parts (1): ap-

plication computation time, (2) the time for performing approximate match in export

programs, (3) round trip delay for the match, and (4) network transfer time for the data.

In addition, as shown in Equation 5.6, Ttotal is bounded from below by the application

computation time, and equality holds for an unattainable network between import and

export components that has infinite bandwidth and zero delay. To approach this theoret-

ical lower bound in a real environment, our framework is enhanced as described in the

following sections.

5.1.1 Eager Transfer Approach

One way to deal with finite network bandwidth is to transfer data objects in advance, if

they can be predicted to be needed (based on the matches already made for that connec-

tion), which is what we call an eager transfer, and Figure 5.2 shows a typical scenario

for this approach.

1. When a new copy of an object with a timestamp that is predicted to be needed

is exported at time T01 (in the export component), a request-response protocol is

used, between both the the reps in the export and import components, as well

as between the import rep and all the processes in the import component, to ap-

prove the eager transfer and allocate memory space in all processes of the import

60

Import RepExport Rep

Transfer Predicted Data

Request Time Stamp
Approx
Match

T
11

T
12

T
13

Wide Area Network

Matched Time Stamp

memcpy

T
14

Eager Transfer Granted

Eager Transfer Request
Gather
Peers
Ans

T
16

T
15

T
01

Domain Data
Computation

T
17

Call
Import()

Figure 5.2: A Scenario for a Slow Data Import Component, Eager Transfer Approach

component.

2. If a data import request is received by the import rep between T11 and T12, the eager

transfer request might be denied or cancelled (not shown in the figure). However,

if an import request is received after T12, because the grant signal has been sent

by the import component, the transfer for the granted eager request data will still

be performed. Additional details about the collective safety properties and related

protocols for this situation can be found in Chapter 6.

61

3. The predicted data object is transferred to the import component after the grant

signal is received by the export component.

4. When the import application executes a later data import request, at time T15, the

request timestamp is sent to the export component, and the approximate match is

performed to identify the exported data object with the matched timestamp.

5. If the matched data object has already been transferred, only the confirmation

signal is sent back to the export component, and memory copies are performed

locally from previously allocated memory to the user application in all import

processes. However, if the matched data are still in the export component, the

matched data object will then be transferred, as shown in Figure 5.1.

6. Our framework now uses a mono-periodic pattern predictor, which claims the fu-

ture request timestamps are periodic with the period of p if the interval p between

successive received request timestamps are kept the same for certain times, and

our framework can support plug-in application-specific predictors.

If we compare Figures 5.1 and 5.2, the time between user application computations

has been reduced from one round-trip delay plus the time for the data transfer to only

the round-trip delay, when the eager transfer prediction is correct. The savings can be

attributed to overlapping of computation with the background data transfers, a common

approach in many parallel and distributed system architectures. More formally, when

a data import component runs more slowly than an export component so that the eager

transfer method can be used, the data import time T E
import and the total execution time

T E
total can be expressed by the following, assuming all predictions are correct and the

required data have been transferred to the import program when executing data import

operations. Here the user application computation time, the time spent by the export

62

program (including to perform the approximate match in each export process and to

collect all answers in the export rep,) and the local memory copy time in each import

component process are denoted by T E
compute(i), Texport , and T E

memcpy(i), respectively, for

each of the N iterations.

T E
import = Texport +δie +δei +T E

memcpy (5.7)

T E
total =

N

∑
i=1

(T E
compute(i)+T E

import(i)) (5.8)

=
N

∑
i=1

T E
compute(i)+

N

∑
i=1

T E
import(i) (5.9)

=
N

∑
i=1

T E
compute(i)+

N

∑
i=1

Texport +
N

∑
i=1

(δie(i)+δei(i))+
N

∑
i=1

T E
memcpy(i)(5.10)

Although the user computation time T E
compute may be greater than the original Tcompute

because of the extra work needed to perform eager data transfers, based on the experi-

ments we will show in Section 5.3, the times are almost the same. Namely the following

equation holds:

T E
total ≈

N

∑
i=1

Tcompute(i)+
N

∑
i=1

(δie(i)+δei(i))+
N

∑
i=1

Texport(i)+
N

∑
i=1

T E
memcpy(i) (5.11)

We observe that, when a data import component runs more slowly than the export

component on a connection, and the prediction is correct for earlier eager transferred

data, (1) the total execution time is independent of the network bandwidth, as shown

in Equation 5.11, and (2) by comparing Equations 5.5 and 5.11, the architecture based

on eager transfer reduces the total execution time by T E
save, which is computed in Equa-

tion 5.12. The effectiveness of eager transfer relies on the available network bandwidth

between components. T E
save, the time saved, and the network bandwidth BW are in-

versely and linearly related, meaning that the lower the network bandwidth is, the more

time is needed to transfer the matched data, so that more time is saved from using an

eager transfer.

63

T E
save = Ttotal −T E

total =
N

∑
i=1

M(i)
BW (i)

−
N

∑
i=1

T E
memcpy(i) (5.12)

5.2 Distributed Approximate Match

Although the eager transfer approach can effectively hide network bandwidth costs, net-

work latency between components is still a concern, especially when those components

run on different machines at different locations (such as in a Grid computing scenario).

To run the approximate match algorithm, both the current requested timestamp from

the data import component, and the exported timestamps, from the data export compo-

nent, are needed. The distinct nature of these input data sources makes the performance

of the match architecture vulnerable to network latency costs, no matter where the al-

gorithm runs. For example, running the approximate match algorithm in the data export

component for eager transfers requires that each data import (Step 4 in Section 5.1.1)

spend time δei +δie to compute the matched timestamp even if the matched data object

has already been transferred to the data import component. This is shown as the time in-

terval T15 to T16 in Figure 5.2. On the other hand, if the match algorithm runs in the data

export component, round-trip control messages can be avoided for each data import, but

the cost incurred for a data export would be very high, since to collect the information

necessary to perform the approximate match algorithm the exported timestamp needs to

be sent to each import component that has a connection to that data object in the export

component, whenever a new data object is exported.

Therefore, rather than running the whole approximate match in either component,

we have designed a distributed approximate match algorithm. The algorithm has two

parts: an inverse approximate match that runs in the export component and a range check

64

that runs in the import component. By attaching the results of the inverse approximate

match part of the algorithm to the data objects that are eagerly transferred, the achieved

total execution time can be close to the lower bound shown in Equation 5.6, for the

case when the import component runs more slowly than the export component and the

correct predictions are made for the eager transfers. We now describe the two parts of

the distributed approximate match algorithm in more detail.

Import RepExport Rep

Matched Time Stamp
Remote
Buffers
Update

T
21

T
22

T
23

Wide Area Network

Range Check
and memcpy

T
24

Eager Transfer Granted

Eager Transfer Request
Gather
Peers
Ans

T
26

T
25

Domain Data
Computation

Inverse
Approx
Match

 Transfer Predicted Data
and Inverse Match Ans

Call
Import()

Figure 5.3: A Scenario for a Slow Data Import Component, Distributed Match Approach

65

5.2.1 Inverse Approximate Match

Given (1) a matching policy f , which is either a user-defined method or one of the pre-

defined policies in Section 3.2, (2) a user-defined, connection specific tolerance value

p, (3) an ordered set of the export timestamps on the connection, ST = {te1, te2, ..., tek},

and (4) a predicted requested timestamp tp, which is the result from either a user-defined

prediction function or a pre-defined function, for example based on simple differences

between previously seen timestamps, we say that an export data object with timestamp

tpm, denoted by D@tpm, is a predicted data object if tpm is the approximate match answer

for a predicted timestamp tp, or more formally,

f (ST , p, tp) = tpm (or more tersely, f (tp) = tpm) (5.13)

Additionally the inverse approximate match G is defined to return a range Rtpm around

tpm such that Rtpm is a collection of elements whose approximate match answers are all

the same, tpm, or more formally

G(f , p, tpm) = Rtpm = {tx| f (tx) = tpm} (5.14)

We observe the following:

• tpm ∈ ST , because tpm is also an export timestamp. Namely ∃ m, s.t. tpm = tem,1≤

m ≤ k.

• tp ∈ Rtpm , because f (tp) = tpm; that is to say, as long as the predicted timestamp tp

can be identified, Rtpm is not empty,

• No information from the export component is required to evaluate G, when the

prediction algorithm runs in the export component.

While seeming complicated, the inverse approximate match G is straightforward to

implement for the pre-defined match policies. The key is to find an appropriate range

66

around tem such that any element in that range returns the approximate match value tem .

For example, if the approximate match f is REGU, as defined in Section 3.2, the inverse

approximate match can be evaluated in the following way:

G(REGU, p, tem) = RREGL
tem

=

 [tem, tem + p] if tem + p < tem+1[
tem, tem+1

)
otherwise

(5.15)

When a data import component runs more slowly than the export component for a

connection, a typical scenario for the inverse approximate match is shown in Figure 5.3.

As soon as a new copy of the data object D@te j is ready, the inverse approximate match

is executed and, similarly to the eager transfer protocol from Chapter 5.1.1, two-way

control signals are sent to get approval and allocate memory space from all processes

in the import component for the data to be transferred. After receiving the grant signal

from the import component, both the range Rte j
and the predicted data object D@te j are

sent to and stored in the data import component. The range check algorithm, described

in the next section, is performed whenever a data import request is performed, using the

range data sent for the inverse approximate match.

5.2.2 Range Check

The range check part of the approximate match algorithm runs in the data import com-

ponent, and complements the inverse approximate match algorithm. Given a requested

timestamp tr on a connection, a previously received Rtei
, and the corresponding cached

data object D@tei , the range check H, identifies whether tr is in the range Rtei
, or more

formally,

H(tr,Rtei
) =

 1 if tr ∈ Rtei

0 otherwise
(5.16)

67

The range check H is simple to implement, runs quickly, and can be evaluated locally

in the data import component. We also note the following observations.

Lemma 5.2.1 Given a requested timestamp tr, if H(tr,Rtei
) = 1, then D@tei is the ap-

proximate match result for tr; otherwise H(tr,Rtei
) = 0, and D@tei is not the match

result.

Proof If H(tr,Rtei
) = 1, then tr is in Rtei

. By the definition of Rtei
in Equation 5.14, we

know f (tr) = tei . Namely the corresponding data object D@tei is the approximate match

result. A similar argument can be applied to the second part.

Lemma 5.2.2 Given a requested timestamp tr, if ranges RT1,RT2, . . . ,RTn , and their cor-

responding data objects D@T1,D@T2,. . . ,D@Tn, are stored in the import component,

the range check H can evaluate to 1 for at most one range RTi .

Proof By contradiction.

Assume RTi 6= RTj and H(tr,RTi) = H(tr,RTj) = 1. By Lemma 5.2.1 both D@Ti and

D@Tj are approximate match results for tr, or f (tr) = Ti and f (tr) = Tj. Because f

cannot have two different values for the one input, Ti = Tj. Therefore RTi = RTj . This is

a contradiction.

Lemma 5.2.1 implies that the approximate match results can be directly obtained

from executing the range check H locally in the data import component, when the pre-

dictions for eager transfers are correct and the corresponding ranges and data objects are

buffered in the data import component, or more formally,

f (ST , p, tp) = tpm ⇐⇒ H(tp,G(f , p, tpm)) = 1. (5.17)

Lemma 5.2.2 says there is no need to evaluate the remaining ranges if the range

check returns 1 already for some range RTk , This implies that for each data import request

68

it is possible to execute the range check H only once, if the predictions for eager transfers

are correct and the received ranges and data objects are buffered in sorted order (by the

ranges).

Equation 5.17 hints at an important point: as long as the timestamp for the predicted

eager transfer is close to the requested timestamp by the data import component, perfect

prediction is not necessary.

Lemma 5.2.3 If the requested timestamp tr is different from the predicted timestamp

tp, as long as both are close enough to have the same approximate match results, the

predicted data object D@tp will be the match for the request tr.

Proof Given f (ST , p, tr) = f (ST , p, tp) = tpm, we know H(tr,G(f , p, tpm)) = 1, by Equa-

tion 5.17.

Figure 5.3 shows a typical scenario for the distributed match algorithm. When a data

import component runs more slowly than the export component on a connection, some

ranges and corresponding data objects will be buffered in the data import component.

If the predictions for the eager transfers are good enough, the data import operations

that occur between times T25 and T26 can be transformed into (1) range checks H to

identify the matched data object, (2) a memory copy for the matched data object from

the framework buffer to the user buffer, and (3) sending a control message to the export

component for remote buffer management and other control mechanisms in the export

component. So as soon as the first two operations are performed locally in each import

process and the control messages are sent to the export component, the data import

function can return to the application, and the execution time for a data import operation

is no longer bounded by the latency of the network. More formally, if Trc(i), T D
memcpy(i),

T D
import(i), and T D

compute(i) denote the time to execute the range check, the time to perform

69

the local memory copy, the data import time, and the user application computation time,

respectively, for each of the i out of the total N iterations, the total execution time T D
total

for a distributed approximate match is:

T D
import = Trc +T D

memcpy (5.18)

≈ T D
memcpy (5.19)

T D
total =

N

∑
i=1

(T D
compute(i)+T D

import(i)) (5.20)

=
N

∑
i=1

T D
compute(i)+

N

∑
i=1

T D
import(i) (5.21)

=
N

∑
i=1

T D
compute(i)+

N

∑
i=1

Trc(i)+
N

∑
i=1

T D
memcpy(i) (5.22)

≈
N

∑
i=1

T D
compute(i)+

N

∑
i=1

T D
memcpy(i) (5.23)

Equations 5.23 and 5.19 hold because the range check H, which is independent of

(1) the user application complexity and (2) the size of the matched data objects, takes

much less time than the other term(s).

As for the eager transfers described in Section 5.1.1, although the user computation

time T D
compute may be greater than the original Tcompute, because of the the eager data

transfers and inverse approximate matches begin performed in the background, the ex-

perimental results in Section 5.3 show that the additional costs are negligible. Namely,

the following equation holds

T D
total ≈

N

∑
i=1

Tcompute(i)+
N

∑
i=1

T D
memcpy(i) (5.24)

By comparing Equations 5.24 and 5.6 from Section 5.1, we see that the execution

time of the distributed algorithm is only higher than the lower bound by ∑
N
i=1 T D

memcpy(i),

which is usually very small compared to the user application computation time, which

is ∑
N
i=1 Tcompute(i). The distributed approach reduces the total execution time by T D

save,

70

as shown in Equation 5.25. T D
save shows that the network costs between coupled compo-

nents, both for bandwidth and latency, have been eliminated in the distributed approach,

with the additional expense of local memory copies.

T D
save = Ttotal −T D

total =
N

∑
i=1

M(i)
BW (i)

+
N

∑
i=1

Texport(i)+
N

∑
i=1

(δie(i)+δei(i))−
N

∑
i=1

T D
memcpy(i)

(5.25)

5.3 Experiment 1

To measure the effectiveness of the proposed architecture, we set up a micro-benchmark

as follows.

• Solve utt = uxx + uyy + f (t,x,y), the two dimensional diffusion equation, with a

forcing function f (t,x,y), which can be viewed as the external input for u(t,x,y).

• Program Ue computes u(t,x,y) and has four processes, each of which is responsi-

ble for a 512×512 array. Program Fe computes f (t,x,y) and owns a 1024×1024

array that is evenly distributed among the participating processes.

• Four configurations are considered. Program Fe has either 4, 8, 16, or 32 pro-

cesses. Three framework architectures, the original one [111] (called on-demand

(OD)), the one using eager transfers only (called ET), and the one using both ea-

ger transfers and distributed approximate match (called ET+DM) are measured.

• Data of size 1024×1024 is transferred from Fe to Ue with matching policy REGU

and precision 0.2. Namely program Fe is the data export component program and

Ue is the corresponding data import component.

• Both Program Ue and Program Fe run on the same cluster of 2.8GHz Pentium 4

71

machines connected via Gigabit Ethernet, and the underlying operating system is

Linux 2.4.21-37.

• To measure the performance of the three architectures with different network la-

tencies between components, delays varying from 0 to 200ms are artificially in-

troduced, in each direction, whenever control messages or data transfers are done

between the two programs. The longer network delays have been chosen based on

measurements of the round trip time from the University of Maryland to a univer-

sity in Taiwan, to model a Grid computing scenario, and the shorter delays model

the delay between clusters inside the University of Maryland.

• For each architecture, each configuration was run three times, and 110 data trans-

fers were done in each run. In addition, the experiment was designed so that the

requested timestamp in the import component and the predicted timestamp pro-

duces the same approximate match result, so the predictions are correct.

• The import program Ue, which is the slower one in this experiment, has a structure

similar to the Import Program P1 in Figure 3.1, and gettimeofday was used

to measure the times for the finite difference computations and the data import

operations.

Delay 0 0.2 2 20 200

OD 876.5 (1.4) 876.5 (1.2) 876.9 (2.0) 876.6 (1.4) 876.4 (1.2)

ET 881.6 (3.8) 881.8 (3.6) 881.6 (3.5) 882.0 (3.8) 877.5 (3.2)

ET+DM 881.4 (3.1) 881.5 (2.8) 882.1 (3.3) 881.9 (3.6) 881.4 (3.8)

Table 5.1: Average Time for App Computation (with StDev), for 32 Data Import Pro-

cesses, in ms

72

Table 5.1 shows the computation time for all three architectures (OD, ET, ET+DM),

when the data export program Fe uses 32 processes and the delays vary from 0 to 200ms.

When Fe uses 4, 8, or 16 processes, the results are similar. Clearly, in all three archi-

tectures, the network delay between components does not affect the computation time

much. In addition, the computation time for the ET and ET+DM architectures is slightly

higher, in both average and standard deviation, than the computation time for the OD

architecture. The reason is that, during the application computations, even if ET and

ET+DM need to transfer predicted data in the background (which OD does not), the

incurred overhead is very small (at most 0.6%) in our machines, which have standard

configurations, due to low overheads in Linux thread scheduling between the applica-

tion thread and the framework threads. Equations 5.11 and 5.24 are derived based on

these results.

 500

 200

 100

 50

 20

 10

 5

 2

 1
 200 100 50 20 10 5 2 1 0.5 0.2 0.1

D
a
ta

 I
m

p
o
rt

 T
im

e
.

U
n
it
:m

s
.

L
o

g
 S

c
a
le

One-Way Delay. Unit:ms. Log Scale

OD
ET

ET+DM

Figure 5.4: Import Time for OD, ET, and ET+DM

73

Figure 5.4 shows the execution time for data import operations in all three architec-

tures when F uses 32 processes (note that both axes are log scale), and the round trip

delays and data import time for the OD and ET architectures are shown in Figure 5.5

(where both axes are linear scale).

First, as shown in Figure 5.4, the ET+DM architecture needs the least time to import

user data, and the required time (around 1.6ms) is independent of the network delay

between components. This result confirms our earlier analysis from Equation 5.23.

That is, when predictions are good enough and the predicted data objects have been

transferred to the import program, the data import operation in each import process is

essentially a local memory copy and its execution time T D
memcpy is independent of the

latencies between components.

 500

 450

 400

 350

 300

 250

 200

 150

 100

 50

 200 100 50 20 10 1

R
o
u
n
d
 T

ri
p
 D

e
la

y
 o

r
D

a
ta

 I
m

p
o
rt

 T
im

e
.

U
n
it
:m

s

One-Way Delay. Unit:ms

OD
ET

Round Trip Delay

Figure 5.5: Round Trip Delay and Import Time for OD & ET

74

Second, as shown in Figure 5.5, the OD architecture needs the most time to import

user data, and the data import time is always around 50ms more than the round trip

network delay. Comparing the result with Equation 5.1, the 50ms is the sum of Texport ,

the data export time, and M
BW , the time to transfer size M data objects over a 0-latency,

BW bandwidth network.

Third, Figure 5.4 shows that the ET architecture only outperforms the OD architec-

ture in measuring data import time when the latencies are small. In fact, as seen clearly

in Figure 5.5, when the latency is 200ms the ET architecture requires more time to im-

port data than the OD architecture does. Figure 5.5 also shows that when the network

latency is smaller than 100ms, the line for the data import time in ET architecture is

parallel to the line for the round trip delays (RTD). The difference between the two lines

is around 10ms, which can be observed when the one-way delay is 0.1ms in Figure 5.4.

 100

 90

 80

 70

 60

 50

 40

 30
 110 100 90 80 70 60 50 40 30 20 10 0

R
o
u
n
d
 T

ri
p

 D
e
la

y
 o

r
D

a
ta

 I
m

p
o
rt

 T
im

e
.
U

n
it
:m

s

Iteration

ET
OD

RTD

Figure 5.6: One-Way Delay = 20ms

75

 560

 500

 450

 400

 110 100 90 80 70 60 50 40 30 20 10 0

R
o
u
n

d
 T

ri
p

 D
e
la

y
 o

r
D

a
ta

 I
m

p
o

rt
 T

im
e

.
U

n
it
:m

s

Iteration

ET
OD

RTD

Figure 5.7: One-Way Delay = 200ms

To explain the behavior when the delay is 200ms, experiment traces and related RTD

are shown in Figures 5.6 and 5.7 when the one-way latency is 20ms and 200ms, respec-

tively. Figure 5.6 shows that, after the prediction pattern is learned, the ET architecture

needs around 50ms to perform data import operations, which is around 10ms more than

the RTD. The experimental results for other configurations (F uses 4, 8, or 16 processes)

and other delays (except 200ms) are similar.

If Equation 5.7 holds, the 10ms difference would be the sum of T E
memcpy, the local

memory copy time for the ET architecture, and T E
export , the time spent on the export

program for the approximate match. Assuming T E
memcpy is similar to T D

memcpy (1.6ms), the

local memory copy time T D
memcpy for the ET+DM architecture, T E

export would be around

8.4ms.

76

Figure 5.7 exhibits different behavior for a very high network latency, showing the

cost of maintaining collective safety (Step 2 discussed in Section 5.1.1) – the eager

transfer request might be denied or cancelled if a new data import request shows up

before the operations for granting earlier eager requests complete. Depending on the

timing of events, the cancellation might happen in one of the import processes, the

import rep, one of the export processes, or the export rep. Details for all possible cases

can be found in Chapter 6. However, if the new import request is received after the grant

signal (for an earlier received eager request) has been sent, the transfer for the granted

eager request data will be performed, and if the new request has a matched data object

that is different from the one for the eager request, the transfer for the matched object

will not start until the data transfer for the eager request finishes.

Figure 5.7 shows that the OD architecture takes about 450ms to perform data import

operations, and most of the data import operations for the ET architecture also take about

450ms. This is because many of the eager transfer requests in this scenario (network

latency 200ms, F uses 32 processes) are cancelled, so the data import operations for the

ET architecture act just like the data import operations for the OD architecture.

A more interesting situation is that sometimes the ET architecture takes around

560ms to perform an import operation Importi, which is around 110ms more than the

450ms needed for import operations in the OD architecture, but then the next import op-

eration Importi+1 takes only around 410ms, which is around 10ms more than the RTD

time of 400ms. The reason is that unlike most import operations in the ET architecture,

the operation Importi is received by the import rep after the grant signal (for an earlier

received eager request) has been sent. Therefore the operation Importi takes extra time,

to wait for the eager request data to be transferred. Because extra time is spent for the

operation Importi, the data for Importi+1 has a chance to be buffered in the import pro-

77

cess before Importi+1 is issued. Therefore only the RTD time, the time for approximate

match, and the local memory copy time T D
memcpy are needed to perform Importi+1. After

that, the buffer for the eager transfer data is empty again, and the next import operation

Importi+2 will be executed as for the OD architecture.

The above scenario is caused mainly by eager transfer cancellation. The more time

the data import operation needs, the more likely it is that an earlier eager request will

be cancelled. That is why this behavior does not occur for lower network latencies,

as seen in Figure 5.6. This behavior indirectly shows the true benefits of the ET+DM

architecture. The data import time is so small that eager requests are rarely cancelled,

for the scenarios shown in the experiments.

5.4 Experiment 2

We use the following experiment, by introducing extra workload for domain data com-

putations, to see the execution time under two different scenarios.

• The equation is utt = uxx + uyy + f (t,x,y), a two-dimensional diffusion equation

with a forcing function. The forcing function can be viewed as the external input

for u.

• Ap0, running with four processes, is the exporting program for the forcing func-

tion (t,x,y). It generates data at every basic time unit (the time units can be arbi-

trary). Ap1, running with sixteen processes, is the importing program for u(t,x,y).

The matching criterion specified in the configuration file is 〈REGL,0.05〉. Both

eager transfers and distributed approximate match (called ET+DM) are used.

• Both programs run on the same cluster of 2.8GHz Pentium 4 machines connected

via Gigabit Ethernet, and the underlying operating system is Linux 2.4.21-37.

78

Extra u : 1024 x 1024 u: 128 x 128

workload delay = 1ms delay = 200ms

0 86ms 428ms

1s 1.08s 1.05s

3s 3.08s 3.05s

Table 5.2: Average execution time

• Two scenarios are considered. The first one is similar to the data exchange in

local area networks: the size of transferred data (u) is large (1024 x 1024) but the

end-to-end delay between programs is small (1ms). The second one is similar to

the data exchange in wide area networks: the size of transferred data (u) is small

(128 x 128) but the end-to-end delay between programs is large (200ms). In each

scenario, three different workloads (origin workload, 1s extra, and 3s extra) are

considered.

• Each configuration was run three times, 200 copies of data objects are exported,

half of them are imported, and the average execution time per iteration from the

slowest process in program Ap1 is shown in Table 5.2.

We make the following observations. First, when u is a 1024 x 1024 array and the

end-to-end delay is 1ms, the execution time is dominated by the workload, which is

composed of the domain computation and the extra workload. By comparing all three

different workloads, we know the time for domain computation is 86ms per iteration,

and the execution time per iteration would be Y s + 86ms if Y s extra workload is intro-

duced.

Second, when u is a 128 x 128 array and end-to-end delay is 200ms, the experimental

result shows the effectiveness of ET+DM. When the extra workload is not introduced,

79

the total execution time per iteration is 428ms, which is composed of two end-to-end

delays (400ms) and domain data computation (28ms). However, when 1s (or 3s) is

introduced as the extra workload, the combined workload (1.048s or 3.048s) is larger

than the round trip delay (400ms). In this situation, ET+DM starts to work such that

the round trip delay disappears completely and the execution time per iteration is nearly

the same as the time for the combined workload, rather than the sum of the combined

workload time and the round trip delay.

80

Chapter 6

Collective Control Protocol

Earlier we suggested a runtime-based framework to control data transfer between loosely

coupled application components. One of important features of this framework is that,

whenever a data object is exported or imported, its associated (simulation) timestamp is

also required to passed to the framework. Those timestamps are keys for the underlying

priority-based control protocol.

Whenever user applications issue (on-demand) timestamped data requests, rather

than directly performing collective communications, as in a traditional tightly coupled

framework [101], control messages are first exchanged between data exporters and im-

porters. If the desired data can neither be found nor be generated, the request will be

denied. However, if requests can be satisfied (by the approximate match algorithm),

matched export timestamps will be used as tags to perform associated collective com-

munication operations.

Eager transfer (with distributed approximate match), as shown earlier in Chapter 5,

improves the runtime performance by a large amount. When the effect of network band-

width and latency can not be ignored. That is a common situation when the components

run on different machines at different locations (as in Grid computing), for various rea-

sons, including concerns about user privileges, security or that the runtime requirements

81

for a component are for special hardware or software packages.

To support both on-demand and eager transfer operations, the underlying architec-

ture is designed such that control messages can be initiated by either parties – control

message for on-demand data requests are initiated by data import components and for

eager transfer are by data export components.

This two-sided initialization approach make the framework flexible and efficient, at

the price of a complicated control protocol, especially for the coverage of all possible in-

teractions between the two modes. To handle this difficulty, we will describe a protocol

construction method, which is based on validating all possible compositions of smaller

protocols for each of the modes.

6.1 System Outline

Our system has several interesting characteristics. First, we target parallel user programs

that use the single program multiple data (SPMD) model. Application data objects

(mainly arrays) may be distributed across multiple processes, and a data decomposition

(e.g., by blocks in each array dimension) is applied to map distributed data elements to

the various processes. Communication between processes is achieved through one of

several methods:

1. Ad-hoc approaches, such as traditional message passing (i.e. send/receive pairs

using the Message Passing Interface (MPI) [98]) between processes, perhaps us-

ing Cartesian topology operations to organize the processes for efficient commu-

nication (e.g., MPI Cart xxx).

2. Programming language extensions. Partitioned Global Array Space (PGAS) lan-

guage [23, 112, 59] is a programming languages approach to support parallel en-

82

vironments by extending existing languages,such as Co-Array Fortran [82, 83],

Unified Parallel C [16, 25, 54, 44], and Titanium [11, 52, 58, 112] (a Java dialect),

or designing new ones, such as Chapel [31, 18, 32], and X10 [20, 21, 95, 3, 94, 2].

3. Language-independent libraries, including InterComm [101], Parallel Application

Work Space (PAWS) [37], and the Model Coupling Toolkit (MCT) [64], for data

exchange between multiple parallel programs.

Second, systems may be able to buffer multiple copies of distributed data objects

D, with each copy associated with an unique tag, or timestamp, t and denoted by D@t.

For example, in Figure 6.1 4 copies of a distributed data objects each span 12 processes.

All tags for the same distributed data object D form an increasing tag sequence, with

ti < t j if the copy D@ti is generated (or requested) before D@t j. Although seemingly

arbitrary, such tags can be naturally found in target user applications. For example, they

can be the simulation timestamps in scientific simulations that solve time dependent

partial differential equations [111], or the timestamps in HTTP 1.1 [39] header fields.

Third, not all distributed data objects that are generated by one program are required

to be transferred to another program, but if such transfers do happen, they must be

collectively consistent. Namely if distributed data object D spans n processes in program

P1, and one of the n processes pk transfers its own part of D@ti, all other processes

of the same program must transfer their part of D@ti, although those transfers do not

need to happen at exactly the same time. Formally, the distributed data transfer must

be collective, but not necessarily synchronous. Moreover, if during program execution

process pk transfers D@ti1 , D@ti2 , . . ., D@tim , all other processes in the same program

P1 must also transfer their own parts of D@ti1 , D@ti2 , . . . , D@tim , and in the same order.

That is, the tag transfer history, which is ti1 , ti2 , . . . , tim for our example, must be the

same for all processes in the same program.

83

Figure 6.1: Copies of Distributed Data

Fourth, data transfers can be initiated by either data export programs or data import

programs for any given transfer. Normally, the control message for a data transfer is

initiated by a data import request from an application program. In this case the data ob-

jects are pulled by the data import program, and we call that an on-demand data transfer.

Additionally when the system observes a pattern in the requests made by a data import

program, the system can then decide to have the data export program push data objects

to the data import program, if the system predicts that they will be (eventually) be re-

quested, and we call the push approach an eager data transfer. If there are simultaneous

on-demand and eager data transfer requests, the on-demand one has a higher priority

since the data import program is waiting for the requested data.

84

Finally, a special execution entity, called the representative, or rep for short, is used

as a control message gateway for each program. The rep combines, forwards, and

caches control messages between all processes in a program, and also communicates

with all relevant reps in other programs. The representative is the central control point

for collective messages and has the following two advantages over a more decentralized

mechanism: (1) collective consistency for all data transfers can be maintained in a rela-

tively straightforward way, and (2) priority-based transfers, on-demand over eager, can

be supported correctly.

6.2 Protocol Operations

In a tightly coupled system distributed data objects are directly transferred whenever a

new copy is generated or requested. In this approach, the data import and export oper-

ations must be carefully matched by the system integrator so that the expected data can

always be generated and requested as required. This approach does not work very well

for a large-scale coupled environment in which each component might be separately

developed, and the participating components might be changed.

Rather than transferring data objects immediately after a new copy is generated or

requested, in our system design the participating process issues a control message in-

stead. The control message is used by the system to decide whether a data transfer

should happen or not, and this approach effectively handles data availability issues in

tightly coupled systems. The following explains the basic operations of our control

protocol. Its construction method and correctness will be mentioned in Section 6.3.

85

6.2.1 Control Flow

In our system design each program is composed of multiple processes, and the processes

run on either a shared memory machine or one or more nodes of a compute cluster.

Each process contains one application execution unit and several system-level units.

Currently each execution unit is implemented as a POSIX thread (Pthread) [80, 15, 36].

In addition, one extra thread running in one process, called the representative, acts as

the control message gateway for all processes in a program.

The system starts in on-demand transfer mode, in which a control message is always

sent to the representative (rep) by the data import process whenever the user thread

executes a data import operation, each of which consists of a tag and the memory address

for the data to be imported. The tag must be unique for each data import operation

inside each process, but because of the requirement for collective consistency, the tag

must be the same for all processes in the same data import program. More specifically,

all processes in a data import program must have exactly the same tag transfer history,

When receiving tagged import requests, the data import representative executes one

of the following two operations:

1. If the received tag is new, a control message requesting a data transfer is sent to

the data export rep. When the data export rep receives the request, it forwards the

request to all processes in the data export program. Then an approximate match

operation [111] is performed by each data export process, and the result is sent

back to the requesting data import process via the data import representative, as

shown in Figure 6.2. In addition, the result of the match operation is cached in the

data import rep.

2. If the received tag has been seen before, the rep sends back the cached result.

86

Figure 6.2: On-Demand Operation

The cached result is no longer needed once the tag has been requested by all data

import processes.

Eager transfer mode is initiated when a pattern of tag requests is identified by the

data export program. In this case an eager request control message will be sent from

the data export process to the data export rep, whenever a data object with a tag that is

predicted to be needed by the data import is generated, but the data export rep will not

forward the request to the data import rep until it receives request messages with that

tag from all data export processes. The data import rep then forwards the eager request

message to all data import processes, and each data import process will grant the request

if adequate memory space is available in that process. If any data import process has

insufficient space available, the eager request is denied. The data import rep sends the

combined reply back to all data export processes via the data export rep. The overall

87

Figure 6.3: Eager Transfer Operation

control flow for eager transfers is shown in Figure 6.3.

Initiation of control messages differs in the two transfer modes (the data import

program initiates in on-demand mode and the data export program initiates in eager

transfer mode), and when those control messages are interleaved in time the ones for

on-demand transfers have higher priority, because those requests require the data import

program to block. For example, as shown in Figure 6.4, if the data export rep receives

an on-demand request from the data import rep after an eager request has been made

but before its outcome has been determined, the eager request is terminated and each

data export process will deal with the on-demand request. Similarly, an eager request

received by the data import rep will be ignored if an on-demand transfer request is

ongoing.

88

Figure 6.4: Priority-based Operation

6.3 Protocol Construction : Composition Approach

One of the challenges in designing the multi-threaded control protocol is completeness

– determining the correctness of all possible states. The well-known finite state ma-

chine (FSM) or extended finite state machine (EFSM) approaches can suffer from state

space explosion, and some high-level approaches such as SDL [56] and its extensions

do not have direct mappings from modeling to implementation. We, however, can take

advantage of two properties of our system. First, both the on-demand and eager trans-

fer modes are not too complex in isolation, so it is easy to construct a correct FSM for

each mode. Second, it is the interaction between the two modes that makes the proto-

col complicated, both in the state spaces and in the state transitions. To have a closer

connection between modeling and implementation, as well as to take advantage of the

above properties we have constructed the overall protocol by composing small FSMs,

89

Figure 6.5: On-Demand Operation

each of which is clearly a correct model for the underlying operations. More specifi-

cally, the simple FSMs are constructed first, then all combinations of states and events

between those FSMs are considered, and only the ones that are valid are included in the

combined FSM.

For example, Figure 6.5 shows the FSM (a Mealy machine) in each producer process

for an on-demand transfer, in which there are only three states (labeled as SED0, SED1,

and SED2 with SEDi meaning State for Exporting data, Demand mode operation # i,

i = 0..2), and six transitions (labeled as Input Signal/Out put Signal pairs). Here the

signal X Y means mode X (Demand mode, Eager transfer mode, or user Export) for

operation Y (Request, Answer or Acknoledge). As shown, this FSM is quite simple

and its correctness can be validated easily. Additionally the mapping from this FSM to

the related multi-threaded implementation is straightforward. Figures 6.6(a) and 6.6(b)

shows the FSMs for the eager transfer operation (SEEi meaning State for Exporting data,

Eager transfer mode operation # i, i = 0..2) and the user application (SEUi meaning State

for Exporting data, User application mode operation # i, i = 0..1), respectively.

90

(a) Eager Operation (b) Foreground Application Thread

Figure 6.6: Two Small FSMs

The states in the combined FSM can be constructed by validating all of the com-

position of states in the small FSMs, as shown in Table 6.1. In our system, 10 of

the 18 composite states are invalid in the context of the system operations, 5 states

are transient states, and the remaining 3 persistent states have special meanings. State

SED0 SEE0 SEU0 denotes computation in the application – it is an idle state from the

viewpoint of the control messages. State SED0 SEE1 SEU0 is waiting for a reply from

an eager transfer request, and state SED2 SEE1 SEU0 is for a self-tuning optimization

operation in which slower processes can avoid some unnecessary memory copies with

the help of the fastest process in the same program as mentioned in Chapter 5.

Once the states have been identified, the overall FSM can be constructed by adding

the transitions between states, which are the validated compositions of the transitions in

each small FSM, as shown in Figure 6.7. The overall FSM for data import processes

can be constructed in the similar way, as shown in Figure 6.8.

One of the advantages of the composition approach is that the relationship between

91

different modes can be covered systematically. For example, the transition D Req,Φ,Φ

/ Φ,Φ,Φ, from state SED0 SE E1 SEU0 to state SED1 SEE0 SEU0, shows that the on-

demand operation has higher priority, as mentioned in Section 6.1 – an eager transfer

request will be canceled whenever an on-demand request arrives.

The composition approach can also help to design an FSM involving multiple dif-

ferent tasks, even if the tasks are implemented with only one thread. For example Fig-

ures 6.9 and 6.10 show the eager transfer FSM and the on-demand FSM for the rep

process for a data import program, respectively. The overall FSM for data import rep,

constructed using the method described previously, is shown in Figure 6.11. Likewise

individual FSMs and the overall FSM for data export rep are shown in Figure 6.12.

6.3.1 Correctness

An important concern for the proposed protocol is its collective correctness. Formally,

the tag transfer histories of all processes in the same program must be the same.

Although the protocol is run by multiple threads and in multiple processes, the rep

in each program acts as the control message gateway; data transfers in each process

cannot start until confirmation messages containing the confirmed tag from the rep are

received. Each process maintains two ordered tag sets: Tc for confirmed tags and Tuc for

pending tags, and operates as follows:

1. Tags are supplied by user programs whenever data object requests are made or

data objects are generated, as shown in Figure 3.1, and each tag must be unique

across all such operations.

2. A tag tu is added to Tuc whenever a user program requests a data object, or when an

eager transfer request arrives because the application generated a new data object.

92

The tags in Tuc do not trigger data transfers. Additionally a control message with

tag tu will be sent to the rep.

3. Based on the tags it receive, the rep selects a unique tag, and a confirmation mes-

sage with the selected tag will be sent to the requesting processes. If the rep cannot

determine the final tag due to misbehavior by the user program (such as inconsis-

tent arguments provided by different processes in the same program,) runtime tag

errors will occur that may not be able to be detected or avoided by the framework.

4. If one process receives a confirmation message with tag tr from its rep, all other

processes in the same program will receive the same confirmation message with

tag tr, but not necessarily at the same time.

5. Whenever a confirmation message is received from the rep, each process puts the

received tag tr into Tc, and removes tr from Tuc if it is there. A distributed data

transfer will then be started with tag tr.

We claim that all processes will have the same Tc, which is the tag transfer history

previously noted, if a runtime tag error did not happen during execution. If Tc(pi) and

Tc(p j) differ after program execution (Tc(p) denotes the tag transfer history of process

p), at least one tag tk would exist in either Tc(pi) or Tc(p j), but not in both. That implies

that during execution the tag tk is received only by pi or p j, but not both. This is a

contradiction.

93

Overall States Validity Note

SED0 SEE0 SEU0 valid Application Computation

SED0 SEE0 SEU1 transit Distributed Data Generated

SED0 SEE1 SEU0 valid Wait for Eager Request Ans

SED0 SEE1 SEU1 transit Receive Data Request

SED0 SEE2 SEU0 transit Process Next Eager Request

SED0 SEE2 SEU1 invalid

SED1 SEE0 SEU0 transit Receive On-Demand Request

SED1 SEE0 SEU1 invalid

SED1 SEE1 SEU0 invalid

SED1 SEE1 SEU1 invalid

SED1 SEE2 SEU0 invalid

SED1 SEE2 SEU1 invalid

SED2 SEE0 SEU0 valid Wait for Group On-DemandAns

SED2 SEE0 SEU1 transit

SED2 SEE1 SEU0 invalid

SED2 SEE1 SEU1 invalid

SED2 SEE2 SEU0 invalid

SED2 SEE2 SEU1 invalid

Table 6.1: Validation of State Composition

94

Figure 6.7: States for Data Export Processes

95

Figure 6.8: States for Data Import Process

96

Figure 6.9: On-Demand Operation in Data Importer Rep

Figure 6.10: Eager Operation in Data Importer Rep

97

Figure 6.11: States for Data Importer Rep

98

Figure 6.12: States for Data Export Rep

99

Chapter 7

Applications Study

Our framework has been applied to two real world coupled simulations, and the de-

ployment and overall performance is studied in this chapter. The first is for coupling of

coronal and heliospheric regions around the Sun [86]. It is an one-way coupling: the

boundary data, including plasma density, temperature, flow velocity, and magnetic field,

are transmitted from the coronal region to the heliospheric region. The second is part of

coupling of Lyon-Fedder-Mobarry (LFM) magnetosphere model and the thermosphere-

ionosphere-nested-grid (TING). It is a two-way coupling: the TING receives the electric

potential field, the characteristic energy of precipitating electrons, and flux of precipi-

tation electrons from LFM coupler and sends the Hall and Pederson conductances back

to LFM coupler [74]. Both codes come from the Center for Integrated Space Weather

Modeling (CISM), an NSF Science and Technology Center, and are part of a larger set

of coupled models for completely characterizing the effects of solar radiation on the

Earth’s magnetic field.

100

7.1 MAS and ENLIL

The physical phenomena occurring in the solar photosphere, corona, and interplanetary

space involves quite different spatial and temporal scales [86], and to have a better un-

derstanding of the underlying physics, the whole system is traditionally dissected into

small pieces and each of them is modeled and investigated separately. However, to

get a whole picture of those phenomena, an integrated approach, which couples related

models together, is needed.

In this section, we compare different simulation approaches for coupling the coronal

region and the heliospheric region. Their interface is located in the super-critical flow

region, usually between 18 and 30 solar radii from the Sun, and the time-dependent

data, including plasma density, temperature, flow velocity, and magnetic field, are trans-

mitted only one way: from the coronal model to the heliospheric model. Besides the

coronal model needs to simulate more complex physical processes over finer spatial and

temporal scales while heliospheric model can use simpler approximation over coarser

scales.

The coronal region is modeled by the Magnetohydrodynamics Around a Sphere

(MAS) code from Science Applications International Corporation (SAIC) which is based

on the resistive magnetohydrodynamics (MHD) equations that are solved by a semi-

implicit finite-difference scheme using staggered mesh [69, 68, 70, 71, 77, 76]. The

heliospheric region is modeled by the ENLIL code from National Oceanic and At-

mospheric Administration (NOAA) which is based on the ideal MHD equations that

are solved by an explicit finite-difference Total Variation Diminishing Lax-Friedrichs

(TVDLF) scheme using cell-centered values [85, 105, 84].

101

7.1.1 Direct Coupling

The first approach is direct coupling. The MAS code computes 32 copies of time-

varied boundary data (one for each simulation time step), and only 6 copies of them are

transmitted to ENLIL code via InterComm [101]. (This is a simplified versoin.) Their

pseudo codes for both models are in Table 7.1.

for ts = 0.01 to 0.32 step 0.01 ts = 0.0

compute domain data

if ts == 0.01 * 2 ** k while(ts != 0.32)

send ts to ENLIL recv ts from MAS

send boundary data to ENLIL recv boundary data from MAS

end if compute domain data

end for end while

The MAS Pseudo Code The ENLIL Pseudo Code

Table 7.1: Direct Coupling for the MAS and the ENLIL

In this approach, the code for modeling the coronal region (the MAS) is designed

to work with the code for heliospheric region (the ENLIL). Because the ENLIL, which

runs on coarser scales, only needs the boundary data at certain simulation time steps,

only 6 (ts = 0.01, 0.02, 0.04, 0.08, 0.16, or 0.32) of 32 copies of boundary data are

transferred from the MAS to the ENLIL, and the decision logic for the time steps is

hard-coded (the if statement) in the MAS source code.

Even if this direct coupling method is very efficient (because no extra data buffering

and data movements are required), this method is very inflexible. If the ENLIL code

needs the boundary data at different simulation time stamps, the MAS source code needs

to be changed and those new time stamps (or their patterns) must be known by the MAS

102

in advance. When the code size is over 20,000 lines, changing the source code all the

time is not a good solution.

7.1.2 Timestamp-Based Coupling

The second approach is timestamp-based coupling. By using the import and export

functions from our framework and writing a configuration file, rather than executing

data transfers directly as in Table 7.1, both the MAS and the ENLIL can perform the

same simulation without completely specifying the exact data transfers to be performed.

Tables 7.2 and 7.3 show the pseudo codes and the related configuration file respectively.

In this approach, the ENLIL explicitly identifies the requested simulation time stamps

and the related boundary data by calling the import function; similarly the MAS calls

the export function when a new copy of boundary data are ready. It is the framework’s

job, based on the time stamps and the configuration file, to perform the match and the

possible data transfers between export and import requests.

for ts = 0.01 to 0.32 step 0.01 for ts in {0.01,0.02,0.04,

0.08,0.16,0.32}

compute domain data import (ts, boundary data)

export (ts, boundary data) compute domain data

end for end for

The MAS Pseudo Code The ENLIL Pseudo Code

Table 7.2: Stamped-Based Coupling for the MAS and the ENLIL

Still only 6 copies of boundary data are transferred from the MAS to the ENLIL,

but in this method those 6 time stamps are identified in the ENLIL source code (the

for ts statement). It means that if the ENLIL needs the boundary data at the different

103

mas cluster0 /home/meou/bin/mas 1

enlil cluster0 /home/meou/bin/enlil 1

mas.bt_out enlil.br_in FASTR 0.0001

mas.bt_out enlil.bt_in FASTR 0.0001

mas.bp_out enlil.bp_in FASTR 0.0001

mas.vr_out enlil.vr_in FASTR 0.0001

mas.vt_out enlil.vt_in FASTR 0.0001

mas.vp_out enlil.vp_in FASTR 0.0001

mas.rho_out enlil.de_in FASTR 0.0001

mas.te_out enlil.te_in FASTR 0.0001

Table 7.3: The Configuration File for the MAS and the ENLIL

simulation time stamps, or if other heliospheric model is used, there is no need to change

the MAS source code.

One overhead of our framework is the buffering of exported data. As mention in

Sections 3.1 and 4.2, if the export data object might be requested in the future, it will

be buffered in the framework, and if the export data are outside the known acceptable

region, which was identified by an earlier received import request, it will be discarded.

In this experiment, no extra buffering is performed because the MAS runs much

more slowly than the ENLIL such that the import request always happens before the

matched export data are generated. It means, for the MAS, the acceptable regions always

show up quite early and most mis-matched export data can be identified and be safely

discarded when they are exported.

104

7.1.3 Experiments

To compare both coupling approaches, an experimental configuration is set as follows:

• The MAS is a sequential Fortran code. The original source code and a data input

file (shown in Table 7.5) is provided by Dr. Zoran Mikić and Dr. Jon A. Linker

in SAIC in San Diego California. The compiler we use is Intel Fortran compiler

version 9.1.040. A parallel MPI version has been developed. It will replace the se-

quential version in the near future once its correctness is validated. The sequential

version and the MPI version has the same export calls.

• The ENLIL is also a sequential Fortran code. Its input data is from the MAS,

and the original source code is provided by Dušan Odstrčil in NOAA in Boulder

Colorado. The compiler we use is GNU G95 version 0.91.

• Eight 300 x 1 arrays are transferred from the MAS to the ENLIL in each data

transfer.

• Two Pentium 4 2.8GHz machines are used. One for the MAS, and the one for the

ENLIL. Both machines are connected via Gigabit Ethernet.

• The match policy is FASTR, and the precision is 0.0001.

• Each coupling configuration runs 12 times, and the execution time of the MAS is

shown in Table 7.4. (The ENLIL is around 10 times faster than the MAS.)

The execution time is very similar for both coupling approaches, although the timestamp-

based one is a little bit faster in average and higher in the standard deviation. The reason

is obvious. First, as mentioned earlier, the buffering overhead of timestamp-based cou-

pling approach does not exist here due to the fact that the MAS runs much more slowly

105

than the ENLIL, therefore the only overhead introduced by our framework is from those

background utility threads. Those background overhead is quite low in general. Sec-

ond, because in our multithreaded framework, one thread is for blocking send/receive

and the user code runs in the foreground thread, the timestamp-based approach’s per-

formance could be better sometimes than the single thread, blocking send/receive, the

direct coupling approach.

Coupling Approach Direct Stamped-Based

MAS Time (in second) 46.48 / 0.189 45.16 / 1.38

Table 7.4: The MAS Execution Time (Average/Standard deviation)

7.2 LFM-Coupler and TING

The Earth’s thermosphere and ionosphere are a dynamically coupled system [108]. This

coupling involves many physical and chemical processes of quite different spatial and

temporal scales, and also heavily interacts with other parts of our atmosphere and in-

terplanetary space. Among them, the magnetosphere plays a significant energy and

momentum source for the thermosphere-ionosphere system, such as the geomagnetic

storms [61].

Traditionally the thermosphere, the ionosphere, and the magnetosphere all were

studied separately, and an empirical model [92] or statistical models from observa-

tions [109, 91] are used for the required input data. However to get more accurate

explanations of certain phenomena, an integrated approach of those three regions is the

way to go.

The Coupled Magnetosphere Ionosphere Thermosphere (CMIT) model [50, 110]

combines the Thermosphere-Ionosphere Nested Grid (TING) [107] and Lyon-Fedder-

106

Mobarry (LFM) global magnetohydrodynamics (MHD) code [38, 75] into a two-way

coupled simulation system. The TING is a high resolution, three-dimensional, time

dependent model for the coupled thermosphere-ionosphere system. It is an extension

of the Thermosphere/Ionosphere General Circulation Model (TIGCM) [93] from the

National Center for Atmospheric Research (NCAR). The LFM global magnetosphere

model solves the ideal MHD equations into a large region around the Earth, and has a

non-uniform, distorted spherical grid that allows better resolution. Due to the complex-

ity of the LFM, a separate model, LFM-Coupler, has been designed to perform necessary

transformations between the LFM and the TING [74].

The LFM-Coupler and the TING is still a two-way coupling: the LFM-Coupler

sends the electric potential field, the characteristic energy of precipitating electrons, as

well as flux of precipitation electrons to the TING, which uses those data to compute

the Hall and Pederson conductances and sends them back to the LFM-Coupler, and two

different coupling approaches are considered in this section.

7.2.1 Direct Coupling

The first approach, as shown in the Table 7.6, is the direct coupling. In this approach,

the simulation time is embedded in the source code (the for ts = 1 to 10 step 1

statements in both codes) such that during iteration i the LFM-Coupler sends the data

with the simulation time step i to the TING. Similarly the TING assumes the ith copies

of received data having the simulation time step i.

Similarly to the coupling for the MAS and the ENLIL in Section 7.1.1, even if this

method is very efficient, embedding the simulation time step into the loop index makes

both codes hard to maintain and very inflexible. For example, lots efforts need to be

spent in changing the LFM-Coupler source code if users want to use other models for

107

the thermosphere-ionosphere system.

7.2.2 Timestamp-Based Coupling

The second approach, as shown in Table 7.7, is a timestamp-based coupling, which

binds the simulation time step and its related data together during data exchanges be-

tween different models. By using the import and export functions from our framework

and using a configuration file (shown in Table 7.8), both models still perform the same

functionality but their simulation time stamps can be untied from the loop iteration in-

dexes. This method makes it easy to compare different models for the same region. For

example, fewer changes are needed in the LFM-Coupler source code if the TING model

is replaced by the TIGCM model from NCAR [93].

7.2.3 Experiments

To compare both coupling approaches, an experimental configuration is set as follows:

• Both the LFM-Coupler and the TING are A++/P++ C++ code and use Overture,

an object-oriented code framework for solving partial differential equation [9],

from the Lawrence Livermore National Laboratory (LLNL).

• To run the LFM-Coupler and the TING without the LFM, the output from the

LFM are used as data files, which are used as the input for the LFM-Coupler. The

original source codes for the LFM-Coupler and the TING, and the LFM output

data file are provided by Dr. Viacheslav G. Merkin in Boston University.

• Three 25 x 33 arrays are transferred from the LFM-Coupler to the TING and one 2

x 25 x 33 array is transferred from the TING to the LFM-Coupler in each iteration.

108

• Two Pentium 4 2.8GHz machines are used. One for the LFM-Coupler, and the

one for the TING. Both machines are connected via Gigabit Ethernet.

• The match policy is FASTR, and the precision is 0.0001.

• Each coupling configuration runs 11 times, and each run has 10 iterations.

Table 7.9 shows total execution time for both the LFM-Coupler and the TING, and

the Table 7.10 shows the computation time and data transfer time for the LFM-Coupler.

The following things can be observed. First, as shown in Table 7.9, the LFM-Coupler

runs slightly more slowly in both coupling approaches, and the timestamp-based ap-

proach has around 20% overhead in both the LFM-Coupler and the TING. Second,

Table 7.10 shows the source of the overhead for executing the LFM-Coupler under

timestamp-based coupling: the computation time is increased by 7% but the data trans-

fer time is increased by 28%. Because this experiment is a two-way coupling and most

of the LFM-Coupler execution time is for data transfers, unlike the situation in Sec-

tion 7.1.3. the multithreaded non-blocking export can not help very much. In fact, the

extra background service threads in our framework affect the foreground computation

performance (by 7%) in this experiment, and the control message exchanges between

two codes really make the foreground thread wait (block) longer for sending or receiving

data.

109

$invars

option=’streamer’ fldtype=’potential’ bingauss=.false. bnfile=’br.offaxis1.dat’

eqtype=’parker’ np1d=130 onedfile=’parker1.8.pw’ b0=0. rhor0=1.

bcr0type=’1dchar’ bcr1type=’1dchar’ tmax=800. ntmax=32 dtmax=.01 dtmin=.005

ifideal=0 slund=1.e5 visc=.002 rsifile=’ ’ rl=29. g0=.823 ifrho=1 iftemp=1

ifvdgv=1 ifpc=1 rfrac=.073,.667,1. drratio=8.,15.,1. nfrmesh=5 tfrac=.5,.67,1.

dtratio=.1,1.,7. nftmesh=5 mmodes=0 ipltxint=0 tpltxint=1.25 ihistint=5 ifprec=1

trsdump=25. upwindv=1. cfl=.4 isitype=1 dformat=’hdf’

plotlist=’vr’,’vt’,’vp’,’br’,’bt’,’bp’,’jr’,’jt’,’jp’,’p’,’rho’,’t’,’ap’

tnode=300.,310.,600.,610. vnode=0.,.004,.004,0. ishearprof=3 dthmax=.15 th0=1.878

ihst=9 jhst=126 khst=1 parchar=.false. ubzero=.true. nfiltub=2 he frac=0.

radloss=0. tcond=0. ifaw=0 tnode ch=0.,500. q0phys ch=0.,0. tbc0=1.8e6 tbc1=0.

upwinda=1. emgflux=.true. tnode ef=650.,700. brfile ef=’br.offaxis1.dat’,

’br.offaxis5.dat’ ncgmax=1500

$end

;

; Run of MAS on a 2D (axisymmetric) streamer.

Table 7.5: The Input File for MAS

110

for ts = 1 to 10 step 1

read input data from LFM for ts = 1 to 10 step 1

perform transformations recv data from LFM-C

send data to TING compute conductances

recv data from TING send data to LFM-C

send data back to LFM end for

end for

The LFM-Coupler Pseudo Code The TING Pseudo Code

Table 7.6: Direct Coupling for the LFM-Coupler and the TING

while (not finish)

import (ts, data) from LFM while (not finish)

perform transformations import (ts, data) from LFM-C

export (ts, data) to TING compute conductances

import (ts, data) from TING export (ts, data) to LFM-C

export (ts, data) to LFM end while

end while

The LFM-Coupler Pseudo Code The TING Pseudo Code

Table 7.7: Stamped-Based Coupling for the LFM-Coupler and the TING

111

LFM-C cluster0 /home/meou/bin/jpara_wrapper 1

TING cluster0 /home/meou/bin/ionosphere 1

LFM-C.current_out TING.current_in FASTR 0.0001

LFM-C.density_out TING.density_in FASTR 0.0001

LFM-C.sspeed_out TING.sspeed_in FASTR 0.0001

TING.conducts_out LFM.conducts_in FASTR 0.0001

Table 7.8: The Configuration File for the LFM-Coupler and the TING

Codes Direct Coupling Stamped-Based Coupling

LFM-Coupler 3.63s / 0.033s 4.34s / 0.038s

TING 3.58s / 0.010s 4.29s / 0.014s

Table 7.9: The Execution Time (Average/Standard deviation)

Coupling Approach Total Time Computation Time Data Transfer Time

Direct Coupling 3.63s / 0.033s 1.58s / 0.033s 2.05s / 0.023s

Stamped-Based 4.34s / 0.038s 1.70s / 0.040s 2.63s / 0.014s

Table 7.10: Dissection of LFM-Coupler Execution Time (Average/Standard deviation)

112

Chapter 8

Enhanced Architecture and Porting

In this chapter, the architecture of our framework will be explained first, and its imple-

mentation in various platforms, including multi-core processors, Cray XT3/XT4, Cray

XMT, and IBM Blue Gene, will be discussed next.

8.1 Enhanced Architecture

Our framework, which is implemented using C++/STL, TCP sockets, as well as POSIX

thread library, and the parallel data transfers between components are performed by the

InterComm [101], has the following components.

Figure 8.1 shows the flowchart for executing data exports. For each data export call,

if related data importer can not be found, the function will return to the user application

immediately. This is an effective approach for the following issue: the data generate

component can export its interface data whenever a consistent version is ready without

worrying about whether the exported data object will be needed.

If related data importers exist, the framework will perform one of the following: If

no pending requests are in the framework, the pattern for eager request will be checked.

If the timestamp of this export data object fits the pattern, a control message for eager

113

requests will be issued, and if the eager request is granted later, the predicted data will

be sent to the request process.

However if earlier pending requests exist in the framework, they will be re-evaluated

(re-approximate match), and if the match answers are Yes or Never, corresponding ac-

tions will perform. If the match answers are still Pending, they will be pushed back to

the pending buffer. Obviously, for those slow data export process, the same pending

request will be re-evaluated again and again, and the buddy-help method, mentioned in

Chapter 4, is an effective approach for this situation.

The approximate match control thread, which is shown in Figure 8.2 and runs on

each data export process, handles data request events. Approximate match will be per-

formed for each received data requests, based on the connection-wise match policy and

tolerance in a framework-level configuration file, and there are three possible answers:

Never, Yes,and Pending.

If the answer is Never, it means, based on user-defined match policy and the related

tolerance, the matched timestamp can neither be found from already exported times-

tamps now nor be generated in the future. In this case, no data transfer will happen and

it is the requester’s responsibility to handle this situation. If the answer is Pending, it

means, based on currently exported timestamps, the matched one can not be decided,

such as the example in Figure 3.4 of Section 3.2. In this case, the requested timestamp

will be saved in the framework and no data transfer will be triggered. If the answer

is Yes, the matched timestamp, will be sent to the request process via a reply control

message, and the matched data object will be transferred to the request process by call-

ing IC Send, which is the function supplied by InterComm for parallel data transfers.

Additionally, if the pattern for eager requests has not be formed, the matched stamp will

be used as an input of learning. If a pattern shows up and a predicted timestamp has

114

already been exported, a control message for eager requests will be issued. (If the eager

request is granted later, the predicted data will be sent to the request process.)

Figure 8.3 shows the flowchart for executing data import. During the execution of

data import functions, if requested data can not be found, either because of no related

import component, or because of receiving Never answer, no data transfer will happen

and the control will be returned to the user application. However if the requested data

can be found, the data will be copies to user space either from framework buffer (if

earlier predictions are right and the data object have been transferred), or from the data

export component. (for the on-demand data transfer)

The import control thread is also shown in Figure 8.3. Compared to the Approximate

Match Control Thread in Figure 8.2, the import control thread is much simpler. After

receiving the eager request, it replies Granted if the available memory can be allocated,

and Not Granted if can not.

To support this collective property at runtime, we employ an extra thread in each

program, called the representative (or rep for short), to act as a low-overhead control

gateway. Not only does the rep forwards, reduces, and caches control messages between

the processes in the same program and the reps in other programs, it also participates

the buddy-help optimization mentioned in Chapter 4. The state diagrams of data import

rep and data export rep are already shown in Figures 6.11 and 6.12 respectively.

8.2 Porting to Other Architectures

Our framework, which is currently implemented for Linux clusters, needs support for

POSIX thread and user-level server sockets from operating systems. Precisely each

process is a multi-threaded process, (the user application is the foreground thread and

115

all control threads mentioned earlier run in the background.) and a user-level server port

is used to accept incoming control messages. Besides, for each program, one process

has to run the representative thread and an extra user-level server port is needed for the

work done by the representative.

The porting strategy for other environments, including x86-based multicore proces-

sors, Cray XT4, Cray XMT, and IBM BlueGene, are discuss as follows.

8.2.1 Multicore x86

The multi-core processor (MCP) is the design choice by Intel, AMD, and many others

for better performance, energy efficiency, and production reliability [14, 51]. In this

architecture, one machine can have multiple processor chips, and one chip can have

more than one computation cores. Besides three layers of cache memory is possible:

the L1 cache is inside the computation core, the L2 cache is outside the cores, but on

the chip, and the L3 cache is between the chips and the main memory. Both AMD and

Intel have quad-core x86 architecture in 2007, and a brief comparison is as shown in

Table 8.1. Main differences are (1) the support for different SIMD instruction sets, (2)

the size of L1 cache, (3) whether the L2 cache is shared or not, and (4) whether L3 cache

exists or not.

One of the challenges for MCP now is how to use those multiple cores. Intel’s

solution is Threading Building Blocks (TBB) [90], which is a mix of shared memory

approach and Pthread library. Our multi-threaded framework is a natural fit for those

multi-core processors. For x86 MCP architecture, control messages can be executed

on one or two cores and the user application computation can run on remaining cores.

However, to improve the runtime performance, the mapping between the hardware cores

and the software threads is an issue should be investigated further, but is outside the

116

Processors AMD Opteron 2300 Series Intel Xeon 5300

SMP Capabilities Up to 2 Sockets/8 Cores Up to 2 Sockets/8 Cores

L1 size per core(max) 64KB (D) + 64KB (I) 32KB (D) + 32KB (I)

L2 size (max) 512KB , per core 4MB (shared) x 2

L3 size (max) 2MB (shared) –

SIMD Set Support SSE, SSE2, SSE3, SSE4A SSE, SSE2, SSE3

Table 8.1: AMD and Intel Multi-core Processors

scope of this dissertation.

8.2.2 Cray XT4

The Cray XT4 [28] is a distributed memory massively parallel supercomputer designed

by Cray Inc. The XT4 is comprised of between 548 and 30508 processing elements

(PEs), where each PE is comprised of one 2.6GHz AMD 64-bit Opteron processor (sin-

gle, dual, or quad core) coupled with a custom SeaStar2 communications chip, and be-

tween 1 and 8 GB of RAM. The PowerPC 440-based SeaStar2 device provides a 6.4 gi-

gabyte per second connection to the processor across HyperTransport, as well as six 7.6

Gigabyte per second links to neighboring PEs. The PEs are arranged in a 3-dimensional

torus topology, with 548 PEs in 6 cabinets. The performance of each XT4 model will

vary with the speed and number of processors installed, and the Cray datasheets de-

scribes a 320 cabinet model as providing 318 teraflops of peak performance.

The XT4 runs an operating system called UNICOS/lc, which has two components:

a full-featured Linux for the service PEs and the Catamount microkernel for compute

PEs. The service PE run a full-featured Linux, and can be configured to provide login,

I/O, system, or network services. The Catamount microkernel in compute PEs is a

117

light-weight computational environment, which minimizes the system overhead and the

following features are not supported [29]:

• Pipes, sockets, remote procedure calls, or other TCP/IP communications.

• Dynamic process control (such as exec(), popen(), and fork()).

• Dynamic loading of executable images.

• Threading.

• The proc files such as cpuinfo and meminfo.

• The ptrace() system call.

• The mmap() function.

• The profil() function.

• Any of the getpwd() family of library calls.

• Terminal control.

• Any functions that requires a daemon.

• Any functions that requires a database, such as ndb().

• Limited support for signals and ioctl().

To port our framework to Cray XT4, the approach used by Dart [33] can be applied.

In this approach, (1) both compute PEs and network service PEs are required, and (2)

our framework is split into two parts: the part for domain computations and the part for

runtime message exchanges. All domain computations are performed by allocated com-

pute PEs, all control message exchanges are performed by allocated network service

118

PEs, and data exchange to/from compute PEs to other programs are through network

service PEs. However the right ratio between the number of compute PEs and the num-

ber of network service PEs is important and would have to be experimented with a real

machine.

8.2.3 Cray XMT

The Cray XMT [26, 81] supercomputing system, the third generation of the Cray MTA

supercomputer architecture originally developed by Tera, is a scalable massively mul-

tithreaded platform with a shared memory architecture for large-scale data analysis. It

scales from 24 to over 8000 processors providing over one million simultaneous threads

and 128 terabytes of shared memory, and an early model has been shipped to Pacific

Northwest National Laboratory on Sep 19 2007 [27].

The design of Cray XMT is based on AMD Torrenza technology to populate the

AMD Opteron sockets with custom Cray Threadstorm chips developed for multithreaded

processing. A single Cray Threadstorm processor can sustain 128 simultaneous threads

and is connected with up to 16 GB of memory that is globally accessible by any other

Cray Threadstorm processor in the system. Each Cray Threadstorm processor is directly

connected to a dedicated Cray SeaStar2 chip, which is also used in Cray XT4. Besides

the Cray XMT platform includes separate AMD Opteron-based service blades that can

be configured for I/O, login, network or system functions.

Support for multi-threading makes the porting our framework to Cray XMT easier –

each process can perform both application computation and control message exchanges;

however the effective usage of threads for domain computation would be an important

issue.

119

8.2.4 BlueGene Architecture

The Blue Gene/L (BG/L) supercomputer [43, 106, 87, 1, 48, 78, 22, 99] is a mas-

sively parallel system developed by IBM in partnership with Lawrence Livermore Na-

tional Laboratory (LLNL). It is designed to reach operating speeds in the PFLOPS

(petaFLOPS) range, and currently (November 2007) reaching peak speeds over 596

TFLOPS (Tera-FLOPS) on the Top500 List [104].

The Blue Gene/L supercomputer is unique in the following aspects [13]:

• Trading the speed of processors for lower power consumption.

• Dual processors are in each compute node. It can operate at one of the two

modes: co-processor (1 user process/node: computation and communication work

is shared by two processors) or virtual node (2 user processes/node)

• System-on-a-chip design.

• A large number of nodes (scalable in increments of 1024 up to at least 212,992).

• Three-dimensional torus interconnect with auxiliary networks for global commu-

nications, I/O, and management.

• Lightweight OS per node for minimum system overhead.

Each Compute or I/O node is an application specific integrated circuit (ASIC) with

associated DRAM memory chips. The ASIC is composed of (1)two 700 MHz Pow-

erPC 440 embedded processors, each of which has a double-pipeline-double-precision

Floating Point Unit (FPU), and (2) a cache sub-system with DRAM controller and the

communication logic sub-systems. The dual FPUs give each BlueGene/L node a theo-

retical peak performance of 5.6 GFLOPS (Giga-FLOPS), and node CPUs are not cache

coherent with one another.

120

Two compute nodes are packaged in each compute card, and each node board has 16

compute cards with up to 2 I/O nodes. There are 32 node boards in each cabinet, and up

to 1024 compute nodes can be put in the standard 19” cabinet. Each Blue Gene/L node

is attached to three parallel communications networks: a 3D toroidal network for peer-

to-peer communication, a collective network for collective communication, and barrier

operations are performed via a global interrupt network.

The operating system in I/O nodes is Linux, which provides communication with

the world via an Ethernet network. The file system operations of the compute nodes is

also performed by the I/O nodes. The compute node in Blue Gene/L runs a minimal

operating system, which can only run one process at a time with limited support of

POSIX system calls. (POSIX threads are not supported.) To run multiple programs

concurrently in a Blue Gene/L system, the system must be partitioned into electronically

isolated sets of nodes. The number of nodes in a partition must be an integer power of

2, and must contain at least 32 nodes.

To port our framework to Blue Gene/L, the method for Cray XT4 can be used. In

this approach, (1) both compute nodes and I/O nodes are required, and (2) our frame-

work can be split into two parts: the part for domain computations and the part for

runtime message exchanges. All domain computations are performed by allocated com-

pute nodes, all control message exchanges are performed by allocated I/O nodes, and

data exchange to/from compute nodes to other programs are through I/O nodes.

IBM unveiled Blue Gene/P, the second generation of the Blue Gene supercomputer,

on June 26 2007. It is designed to run continuously at 1 PFLOPS (petaFLOPS) and can

be configured to reach speeds in excess of 3 PFLOPS. Each Blue Gene/P chip consists of

four 850 MHz PowerPC 450 processors, and the can be scaled to an 884,736-processor,

216-rack cluster to achieve 3-PFLOPS performance. Currently (November 2007) the

121

Jugene in Forschungszentrum Juelich has 65,536 processors and its peak performance is

over 222 TFLOPS [104]. Besides, Blue Gene/P has limited supports for POSIX threads

(Blue Gene/L does not). Each Blue Gene/P chip can have up to four Pthreads [42].

The support for POSIX threads in Blue Gene/P makes the porting of our framework

easier. To use our framework in Blue Gene/P, (1) both compute nodes and I/O nodes

are required, (2) each program runs its rep process on one of the allocated compute

nodes in which one thread is used for the rep process, one thread is used for control

message exchanges, and the other two threads perform domain computations, (3) all

other allocated compute nodes use up to 3 threads to run domain computations, and

the remaining one thread is used to exchange control messages, and (4) data exchange

to/from compute nodes to other programs are through I/O nodes.

122

Call export()

Discard
Data

Any Receiver?

No

Future
 Match ?

Yes

Never

Return

Maybe
Pending

Any Pending Req ?

Reply
NEVER

YES

Match
Pending

Save data
(memcpy)

No

Reply YES
& Send data

Save data
(memcpy)

Yes

NeverEager
Transfer?

Granted

Save &
Send data

Not
Granted

Figure 8.1: Data Export Function

123

Receive Data Request

Reply
NEVER

Match?

Never

Reply
YES

Yes

Pending
Req Saved

Pending

Send Data
(Matched)

Listen for
Match Req

Pattern
Form?

Eager
Transfer?

Send Data
(Predicted)

Yes

Granted

No

Not Granted

Figure 8.2: Approximate Match Control Thread

124

Receive Eager Request

Allocate Buff &
Reply Granted

Listen for Eager Req

Reply Not
Granted

Memory Full?

YesNo

Call import()

Any Sender?

Receive Data

Yes

Request Data

Match?
Never

Yes

No

Return

Copy Data

No

Match

Eager
Cache

Figure 8.3: Data Import Function/Import Control Thread

125

Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this dissertation, I supported the following thesis: it is possible to provide flexible and

efficient mechanisms for control of data transfers between coupled parallel programs,

and conclude the associated work as follows.

9.1.1 Basic Algorithm and Architecture

First, we suggest (1) a runtime-based approximate match algorithm, and (2) an approach

to separating coupling information from applications domain computation, to support

data exchanges between different simulation time scales components.

Once the coupling information is extracted from application source codes, data gen-

erating component can export desired interface data whenever a consistent version of

the data across the parallel component is produced. The component does not have to

concern itself about which and how many components will receive the data, or even

whether data transfers will actually occur. Similarly, data consuming components can

prepare to import a new version of required interface data whenever they are needed

126

without knowing anything about the corresponding exporters.

The connection-wise approximate match algorithm is performed by data export

components whenever timestamped data import requests are received. Based on the

related match criteria, which are composed of match policies and tolerances, approxi-

mate matched timestamps can be decided if exact ones can not be found. Currently eight

different match policies are supported in the framework and it is possible to plug-in user-

defined ones. Experimental results shows that the incurred overhead by approximate

match algorithm is very low.

9.1.2 Collective Optimization

Even the basic framework described earlier offers flexibility and versatility for building

and deploying large-scale multi-physics simulation systems, the overall performance of

this runtime-based approach might be a concern.

Basically the basic framework describes a temporal consistency model in which each

exported data object must be buffered by the runtime system implementing the model,

until there is no possibility that an object will be requested by an importing component.

Although this approach ensures the correctness of the data exchange mechanism,

overall system performance may suffer from unnecessary buffering, when one process

in a data exporting (parallel) component performs the collective export operation early

relative to the other processes (i.e. it is the first process to execute the export runtime

library call). In that case, other processes can use the information, which is the approx-

imate match answer produced by other faster processes in the same exporting parallel

components, to avoid some unnecessary memory copies. In the optimal situation, the

slower processes can only save the requested export data objects and skip the memory

copies for all other unrequested data objects.

127

9.1.3 Eager Transfer and Distributed Approximate Match

The performance of our basic framework is very sensitive to the available bandwidth

and end-to-end latency of the network connecting the various components of a coupled

simulation. To cope with those issues, we describe and analyze two methods, eager

transfer and distributed approximate match, to deal with the network bandwidth and

latency.

Transferring predicted data in advance, which we call eager transfer, can effectively

solve the bandwidth problem. Our analysis and experiments suggested that, on average,

the lower the available network bandwidth, the more time can be saved by eager transfer.

However, eager transfer does not solve the network latency problem. The reason is

that, although the data transfer time is hidden behind the applications computation, a

round-trip time between components for control messages, to decide which data object

is the one to be transferred, is still needed. That is, even with eager transfer, network

latency still plays an important role in overall performance,

Here we introduce another algorithm, distributed approximate match, which is a

distributed version of our basic approximate match algorithm, to handle the latency

issue. It contains two parts: inverse approximate match, running in the component that

supplies the data, and the range check, running in the component that consumes the data.

The new distributed algorithm has the same functionality as our previous approximate

match algorithm, and its performance can be independent to the network latency in the

best case. Our experimental results show that by combining both methods, the overall

performance of the framework can be improved significantly.

128

9.1.4 Control Protocol

One of important features for the above framework is that, whenever a data object is

exported or imported, its associated (simulation) timestamp is also required to passed

to the framework. Those timestamps are keys for the underlining priority-based control

protocol.

Whenever user applications issue (on-demand) timestamped data requests, rather

than directly performing collective communications, as in traditional tightly coupled

frameworks, control messages are first exchanged between data exporters and importers,

and if requests can be satisfied, matched export timestamps will be used as tags to per-

form associated collective communication operations. Eager transfer (with distributed

approximate match), improves the runtime performance lots when the effect by net-

work bandwidth and latency can not be ignored. That is a common situation when the

components run on different machines at different locations (as in Grid computing).

To support both on-demand and eager transfer operations, the underlining architec-

ture is designed such that control messages can be initiated either by both parties – con-

trol message for on-demand data requests are initiated by data import components and

for eager transfer are by data export components. This two-sided initialization approach

make the framework flexible and efficient, by the price of a complicated control proto-

col, especially for the coverage of all possible interactions between two the modes. To

handle this difficulty, we will describe a protocol construction method, which is based

on validating all possible compositions of smaller protocols for each of the modes.

9.1.5 Applications Study

Two real world simulation codes have been applied to our framework. In both cases,

we show it is not hard to port original source codes into our framework, and once the

129

deployment finishes, it is easy to change the participants — only the configuration file

need to be modified and the source codes of related components can be kept untouched.

Besides, in the study for the MAS and the ENLIL, we shows that, for the computation-

based program such as the MAS, the overhead introduced by our framework is very

small and the overall performance of the original direct coupling and that of the stamped-

based coupling is very similar. In the study of the LFM-Coupler and the TING, we

shows that, for the data transfer-based program such as the LFM-Coupler, the intro-

duced overhead is hard to ignore, besides, not only the background data transfer needs

more time, but the performance of the foreground computation is also effected.

9.1.6 Enhanced Architecture

Our framework is implemented using C++/STL, TCP sockets, POSIX thread library, as

well as InterComm, and it contains the following important elements.

For each data export call, if related data importer can not be found, the function will

return to the user application immediately. If related data importers exist, the framework

will perform one of the following: If no pending requests are in the framework, the

pattern for eager request will be checked. If the timestamp of this export data object fits

the pattern, a control message for eager requests will be issued, and if the eager request

is granted later, the predicted data will be sent to the request process.

The approximate match control thread handles data request events. After receiving

data requests, the approximate match will be performed and return possible answers:

Never, Yes,and Pending. If the answer is Never, no data transfer will happen. If the

answer is Pending, the requested timestamp will be saved in the framework and no data

transfer will be triggered. If the answer is Yes, the matched timestamp and data will be

sent to the request process.

130

To support this collective property at runtime, we employ an extra thread in each

program, called the representative (or rep for short), to act as a low-overhead control

gateway. Not only does the rep forwards, reduces,and caches control messages between

the processes in the same program and the reps in other programs, it also participates

the collective optimization.

9.1.7 Porting to Other Architectures

Our framework, which is implemented for Linux clusters now, needs support for POSIX

thread and user-level server sockets from operation systems, and the porting strategy for

other architectures, including multicore x86, Cray XT4, Cray XMT, and IBM BlueGene,

are considered here.

The multi-core processor (MCP) is the design choice by Intel, AMD, and many other

companies. In this architecture, one machine can have multiple processor chips, and

one chip can have more than one computation cores. Our multi-threaded framework is a

nature fit for those multi-core processors. For x86 MCP architecture, control messages

can be executed on one or two cores and the user application computation can run on

remaining cores.

The Cray XT4 [28] is a distributed memory massively parallel supercomputer, and

in compute processing elements (PEs), it runs a light-weighted Catamount microkernel

which has no supports for POSIX threads and TCP/IP sockets. To port our framework to

Cray XT4, we can split our framework into two parts: the part for domain computations

and the part for runtime message exchanges. All domain computations are performed

by allocated compute PEs, all control message exchanges are performed by allocated

network service PEs, and data exchange to/from compute PEs to other programs are

through network service PEs. The Cray XMT supercomputing system is a scalable

131

massively multithreaded platform with a shared memory architecture for large-scale data

analysis. Support for multi-threading makes the porting our framework to Cray XMT

easier – each process can perform both application computation and control message

exchanges.

The Blue Gene/L (BG/L) supercomputer is a massively parallel system developed

by IBM in partnership with Lawrence Livermore National Laboratory (LLNL). As Cray

XT4, is also run a light-weighted operating system (without the support for POSIX

threads) in compute nodes. Therefore the similar approach for porting our framework

to XT4 can also be applied to Blue Gene/L. Blue Gene/P is the second generation of

the Blue Gene supercomputer and has limited supports for POSIX threads. Each Blue

Gene/P chip can have up to four Pthreads, and it makes the porting of our framework

easier. To use our framework in Blue Gene/P, we need to split our framework into three

parts. (1) the rep thread runs on one thread, (2) integrate all other background services

into another threads, (3) leave the reaming two threads for domain data computations,

and (4) data exchange to/from compute nodes to other programs are through I/O nodes.

9.2 Future Work

Our framework has some nice features and properties, such as loosely coupled approach,

low overhead approximate match, runtime-based collective buffering, eager transfer and

distributed approximate match; however there are still some extensions can be made.

9.2.1 Runtime Connections Management

Our framework uses configuration files to identify the connections between exporters

and importers, and as shown in Chapter 3 this method effectively separates coupling

132

information from application source codes.

Currently configuration files are used to establish connections at runtime, and those

connections will be kept open until the framework finishes. However if the runtime

connection management can be provided (by the representative), the applications can

establish/disconnect their connections based on their own requirements, and the runtime

resources can be utilized more efficiently.

Besides this approach really benefits those codes which involves more than one con-

nections but only some of them are used to exchange data at anytime. For example,

some scientific programs save the simulation data in files and use them as the input

for the visualization programs. If the runtime connection management is supported,

those components can establish connections with other simulation components in the

first phase and then switch the connections to the visualization components later.

9.2.2 Predictions for Eager Transfer

When the importer runs more slowly than the exporter and the request pattern has been

identified, the eager transfer will send predicted data and meta-data, which is the out-

put from the inverse approximate match, to the exporter before data import function is

called. As shown in Chapter 5, when the prediction is correct, the overall performance

can be greatly improved.

Currently we only use a simple pattern predictor: if the interval p between succes-

sive request timestamps are kept the same for certain times, which is 3 in default and can

be changed by application programs, we assume future request timestamps are periodic

with the period of p. Clearly this predictor is not good enough in general, an effec-

tive and low overhead prediction algorithm would be a great extension for our current

framework.

133

9.2.3 Scalability

The representative (or rep for short) thread plays an important role in our framework. For

each program, the rep act as a gateway for control messages: it forwards, reduces,and

caches control messages between the processes in the same program and the reps in

other programs. Currently a flat structure is used for exchange messages inside each

program: For example, when an on-demand data request message is received by an

importer rep, the rep forwards the request to all of the processes in the same program,

and receives the response from all of them later.

When the number of processes is hundreds, thousands or more, clearly the flat struc-

ture message passing between the rep and all the processes in the same program is not a

good choice. In this case, a tree-based approach should be considered, and it would be

helpful in performance if some of the processes are also involved in rep’s work.

134

BIBLIOGRAPHY

[1] Narasimha R. Adiga, Matthias A. Blumrich, Dong Chen, Paul Coteus, Alan Gara,

Mark Giampapa, Philip Heidelberger, Sarabjeet Singh, Burkhard D. Steinmacher-

Burow, Todd Takken, Mickey Tsao, and Pavlos Vranas. Blue Gene/L torus inter-

connection network. IBM Journal of Research and Development, 49(2-3):265–

276, 2005.

[2] Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, Rudrapatna K.

Shyamasundar, and Katherine Yelick. Deadlock-free scheduling of X10 computa-

tions with bounded resources. In SPAA ’07: Proceedings of the nineteenth annual

ACM symposium on Parallel algorithms and architectures, pages 229–240, 2007.

[3] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K. Shyama-

sundar. May-happen-in-parallel analysis of X10 programs. In PPoPP ’07: Pro-

ceedings of the 12th ACM SIGPLAN symposium on Principles and practice of

parallel programming, pages 183–193, 2007.

[4] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. IEEE

Computer, 19(8):26–34, 1986.

[5] Francis J. Alexander, Daniel M. Tartakovsky, and Alejandro L. Garcia. Noise in

algorithm refinement methods. IEEE Comput. Sci. Eng., 7(3):32–38, 2005.

135

[6] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois

McInnes, Steve Parker, and Brent Smolinski. Toward a Common Component Ar-

chitecture for high-performance scientific computing. In Proceedings of the The

Eighth IEEE International Symposium on High Performance Distributed Com-

puting (HPDC-8). IEEE Computer Society Press, 1999.

[7] Ghassem R. Asrar. A pathway to decisions on Earth’s environment and natural

resources. IEEE Comput. Sci. Eng., 6(2):13–16, January/Feburary 2004.

[8] Jim Basney. A distributed implementation of the C-Linda programming language,

May 1995. http://www.cs.oberlin.edu/ jbasney/honors/thesis.html.

[9] Federico Bassetti, David Brown, Kei Davis, William Henshaw, and Dan Quinlan.

Overture: an object-oriented framework for high performance scientific comput-

ing. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on

Supercomputing (CDROM), pages 1–9, 1998.

[10] Peter Beckman, Pat Fasel, William Humphrey, and Sue Mniszewski. Efficient

coupling of parallel applications using PAWS. In Proceedings of the Seventh

IEEE International Symposium on High Performance Distributed Computing,

pages 215–222. IEEE Computer Society Press, July 1998.

[11] Christian Bell, Wei-Yu Chen, Dan Bonachea, and Katherine Yelick. Evaluating

support for global address space languages on the cray x1. In ICS ’04: Pro-

ceedings of the 18th annual international conference on Supercomputing, pages

184–195, 2004.

[12] Felipe Bertrand, Randall Bramley, Alan Sussman, David E. Bernholdt, James A.

Kohl, Jay W. Larson, and Kostadin B. Damevski. Data redistribution and remote

136

method invocation in parallel component architectures. In Proceedings of the

2005 IEEE International Parallel and Distributed Processing Symposium (IPDPS

2005). IEEE Computer Society Press, 2005.

[13] Blue Gene. http://en.wikipedia.org/wiki/BlueGene.

[14] Shekhar Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–

29, 1999.

[15] David R. Butenhof. Programming With POSIX Threads. Addison-Wesley Pro-

fessional, USA, 1997.

[16] Francois Cantonnet, Tarek A. El-Ghazawi, Pascal Lorenz, and Jaafer Gaber.

Fast address translation techniques for distributed shared memory compilers. In

IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed

Processing Symposium (IPDPS’05) - Papers, page 52.2, 2005.

[17] Nicholas Carriero and David Gelernter. Linda in context. Commun. ACM,

32(4):444–458, 1989.

[18] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel pro-

grammability and the Chapel language. Int. J. High Perform. Comput. Appl.,

21(3):291–312, 2007.

[19] K. Mani Chandy, Ian Foster, Ken Kennedy, Charles Koelbel, and Chau-Wen

Tseng. Integrated support for task and data parallelism. Journal of Supercomput-

ing Applications, 8(2), 1994. Also available as CRPC Technical Report CRPC-

TR93430.

[20] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-

lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10:

137

an object-oriented approach to non-uniform cluster computing. SIGPLAN Not.,

40(10):519–538, 2005.

[21] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-

lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an

object-oriented approach to non-uniform cluster computing. In OOPSLA ’05:

Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented

programming, systems, languages, and applications, pages 519–538, 2005.

[22] Siddhartha Chatterjee, Leonardo R. Bachega, Peter Bergner, Kenneth A. Dockser,

John A. Gunnels, Manish Gupta, Fred G. Gustavson, Christopher A. Lapkowski,

Gary K. Liu, Mark P. Mendell, Rohini D. Nair, Charles D. Wait, T. J. Christo-

pher Ward, and Peng Wu. Design and exploitation of a high-performance SIMD

floating-point unit for Blue Gene/L. IBM Journal of Research and Development,

49(2-3):377–392, 2005.

[23] Wei-Yu Chen, Arvind Krishnamurthy, and Katherine A. Yelick. Polynomial-time

algorithms for enforcing sequential consistency in spmd programs with arrays. In

LCPC, pages 340–356, 2003.

[24] Nancy Collins, Gerhard Theurich, Cecelia Deluca, Max Suarez, Atanas Trayanov,

V. Balaji, Peggy Li, Weiyu Yang, Chris Hill, and Arlindo Da Silva. Design and

implementation of components in the Earth system modeling framework. Int. J.

High Perform. Comput. Appl., 19(3):341–350, 2005.

[25] Cray C/C++ reference manual. http://www.cray.com/craydoc/manuals/004-2179-

003/html-004-2179-003/.

[26] Cray XMT platform. http://www.cray.com/products/xmt/index.html.

138

[27] Pacific northwest national laboratory acquires cray XMT supercomputer.

http://www.pnl.gov/topstory.asp?id=271.

[28] Cray XT4 and XT3 supercomputers. http://www.cray.com/products/xt4/index.html.

[29] Cray XT series programming environment user’s guide.

http://docs.cray.com/books/S-2396-15/S-2396-15.pdf.

[30] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol Compo-

sition Logic (PCL). Electron. Notes Theor. Comput. Sci., 172:311–358, 2007.

[31] Steven J. Deitz, David Callahan, Bradford L. Chamberlain, and Lawrence Snyder.

Global-view abstractions for user-defined reductions and scans. In PPoPP ’06:

Proceedings of the eleventh ACM SIGPLAN symposium on Principles and prac-

tice of parallel programming, pages 40–47, New York, NY, USA, 2006. ACM.

[32] Roxana E. Diaconescu and Hans P. Zima. An approach to data distributions in

Chapel. Int. J. High Perform. Comput. Appl., 21(3):313–335, 2007.

[33] Ciprian Docan, Manish Parashar, J. Lofstead, K. Schwan, and S. Klasky. Dart: An

infrastructure for high speed asynchronous data transfers, Oct 2007. submitted

for publication.

[34] Nancy Durgin, John Mitchell, and Dusko Pavlovic. A compositional logic for

protocol correctness, 2001.

[35] Guy Edjlali, Alan Sussman, and Joel Saltz. Interoperability of data parallel run-

time libraries. In Proceedings of the Eleventh International Parallel Processing

Symposium. IEEE Computer Society Press, April 1997.

139

[36] Heiko Eifeldt. POSIX: a developer’s view of standards. In ATEC’97: Proceed-

ings of the Annual Technical Conference on Proceedings of the USENIX 1997

Annual Technical Conference, pages 24–24, Berkeley, CA, USA, 1997. USENIX

Association.

[37] Patricia Fasel and Susan Mniszewski. PAWS: Collective interactions and data

transfers. In Proceedings of the 10th IEEE International Symposium on High

Performance Distributed Computing (HPDC-10), Washington, DC, USA, 2001.

IEEE Computer Society.

[38] J. A. Fedder, S.P. Slinker, J.G. Lyon, and R.D. Elphinstone. Global numerical

simulation of the growth phase and the expansion onset for substorm observed by

viking. J. Geophys. Res., 100:19083–19094, 1995.

[39] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry

Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol –

HTTP/1.1, June 1999. RFC 2616.

[40] Ian Foster. Compositional parallel programming languages. ACM Trans. Pro-

gram. Lang. Syst., 18(4):454–476, 1996.

[41] Ian Foster and Stephen Taylor. Strand: New Concepts in Parallel Programming.

Prentice Hall, Englewood Cliffs, NJ, USA, 1990.

[42] Alan Gara. Blue Gene: A next generation supercomputer (BlueGene/P). In

Computing in Atmospheric Sciences Workshop 2007 (CAS2K7), 2007.

[43] Alan Gara, Matthias A. Blumrich, Dong Chen, George L.-T. Chiu, Paul Co-

teus, Mark Giampapa, Ruud A. Haring, Philip Heidelberger, Dirk Hoenicke, Ger-

ard V. Kopcsay, Thomas A. Liebsch, Martin Ohmacht, Burkhard D. Steinmacher-

140

Burow, Todd Takken, and Pavlos Vranas. Overview of the Blue Gene/L system

architecture. IBM Journal of Research and Development, 49(2-3):195–212, 2005.

[44] Intrepid technology, inc. GCC/UPC compiler. http://www.intrepid.com/upc/.

[45] G.A. Geist, J.A. Kohl, and P.M. Papadopoulos. CUMULVS: Providing fault tol-

erance, visualization and steering of parallel applications. Int. J. High-Perform.

Comput. Appl., 11(3):224–235, August 1997.

[46] William L. George, John G. Hagedorn, and Judith E. Devaney. IMPI: Making

MPI interoperable. Journal of Research of the National Institute of Standands

and Technology, 105(3):343–428, 2000.

[47] William L. George, John G. Hagedorn, and Judith E. Devaney. Parallel program-

ming with interoperable MPI. Dr. Dobb’s Journal, (357):49–53, February 2004.

[48] Mark Giampapa, Ralph Bellofatto, Matthias A. Blumrich, Dong Chen,

Marc Boris Dombrowa, Alan Gara, Ruud A. Haring, Philip Heidelberger, Dirk

Hoenicke, Gerard V. Kopcsay, Ben J. Nathanson, Burkhard D. Steinmacher-

Burow, Martin Ohmacht, Valentina Salapura, and Pavlos Vranas. Blue Gene/L

advanced diagnostics environment. IBM Journal of Research and Development,

49(2-3):319–332, 2005.

[49] Tamas I. Gombosi, Kenneth G. Powell, Darren L. De Zeeuw, C. Robert Clauer,

Kenneth C. Hansen, Ward B. Manchester, Aaron J. Ridley, Ilia I. Roussev, Igor V.

Sokolov, Quentin F. Stout, and Gábor Tóth. Solution-adaptive magnetohydrody-

namics for space plasmas: Sun-to-Earth simulations. IEEE Comput. Sci. Eng.,

6(2):14–35, 2004.

141

[50] C.C. Goodrich, A.L. Sussman, J.G. Lyon, M.A. Shay, and P.A. Cassak. The

CISM code coupling strategy. J. Atm. Terr. Phys., 66:1469–1479, 2004.

[51] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantita-

tive Approach. Morgan Kaufmann, USA, 2006. 4th edition.

[52] Paul N. Hilfinger, Dan Bonachea, Kaushik Datta, David Gay, Susan Graham,

Amir Kamil, Ben Liblit, Geoff Pike, Jimmy Su, and Katherine Yelick. Titanium

language reference manual. Technical Report UCB/EECS-2005-15, U.C. Berke-

ley Tech Report, 2005.

[53] Gerard J. Holzmann. The model checker SPIN. Software Engineering,

23(5):279–295, 1997.

[54] HP UPC version 2.0 for Tru64 UNIX. http://h30097.www3.hp.com/upc/.

[55] James M. Hyman. Patch dynamics for multiscale problems. IEEE Comput. Sci.

Eng., 7(3):47–53, 2005.

[56] ITU-T. Specification and Description Language (SDL), 1993. Recommendation

Z.100.

[57] Xiangmin Jiao, Michael T. Campbell, and Michael T. Heath. ROCCOM: an

object-oriented, data-centric software integration framework for multiphysics

simulations. In Proceedings of the 17th Annual International Conference on Su-

percomputing, pages 358–368. ACM Press, 2003.

[58] Amir Kamil, Jimmy Su, and Katherine Yelick. Making sequential consistency

practical in titanium. In SC ’05: Proceedings of the 2005 ACM/IEEE confer-

ence on Supercomputing, page 15, Washington, DC, USA, 2005. IEEE Computer

Society.

142

[59] Amir Kamil and Katherine A. Yelick. Hierarchical pointer analysis for distributed

programs. In SAS, pages 281–297, 2007.

[60] Ohannes Karakashian and Charalambos Makridakis. A space-time finite element

method for the nonlinear Schrödinger equation: The continuous Galerkin method.

SIAM Journal on Numerical Analysis, 36(6):1779–1807, 1999.

[61] T.L. Killeen. Energetics and dynamics of the Earth’s thermosphere. Rev. Geo-

phys, 25:433–454, 1987.

[62] Tahsin Kurc, Umit Catalyurek, Chialin Chang, Alan Sussman, and Joel Saltz.

Visualization of large datasets with the Active Data Repository. IEEE Computer

Graphics and Applications, 21(4):24–33, July/August 2001.

[63] Tahsin Kurc, Umit Catalyurek, Xi Zhang, Joel Saltz, Malgorzata Peszynska,

Ryan Martino, Mary Wheeler, Alan Sussman, Christian Hansen, Mrinal Sen,

Roustam Seifoullaev, Paul Stoffa, Carlos Torres-Verdin, and Manish Parashar.

A simulation and data analysis system for large scale, data-driven oil reservoir

simulation studies. Concurrency and Computation: Practice and Experience,

17(11):1441–1467, 2005.

[64] Jay Larson, Robert Jacob, and Everest Ong. The Model Coupling Toolkit: A

new Fortran90 toolkit for building multiphysics parallel coupled models. Int. J.

High-Perform. Comput. Appl., 19(3):277–292, 2005.

[65] Jay Walter Larson, Robert Jacob, Ian Foster, and Jing Guo. The Model Coupling

Toolkit. In Proceedings of International Conference on Computational Science.

Springer-Verlag, April 2001.

143

[66] Jae-Yong Lee and Alan Sussman. High performance communication between

parallel programs. In Proceedings of 2005 Joint Workshop on High-Performance

Grid Computing and High-Level Parallel Programming Models (HIPS-HPGC

2005). IEEE Computer Society Press, April 2005.

[67] Sophia Lefantzi, Jaideep Ray, and Habib N. Najm. Using the Common Com-

ponent Architecture to design high performance scientific simulation codes. In

Proceedings of the 2003 IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2003). IEEE Computer Society Press, 2003.

[68] Jon A. Linker, Roberto Lionello, Zoran Mikić, and T. Amari. Magnetohydrody-

namic modeling of prominence formation within a helmet streamer. J. Geophys

Res., 106:25165–25176, 2001.

[69] Jon A. Linker and Zoran Mikić. Disruption of a helmet streamer by photospheric

shear. J. Atm. Terr. Phys., 438:L45–L48, 1995.

[70] Jon A. Linker, Zoran Mikić, Roberto Lionelloand, Pete Riley, T. Amari, and

Dušan Odstrčill. Magnetohydrodynamic modeling of prominence formation

within a helmet streamer. J. Geophys Res., 106:25165–25176, 2003.

[71] Roberto Lionello, Zoran Mikić, and Jon A. Linker. Stability of algorithms for

waves with large flows. J. Comput. Phys., 152(1):346–358, 1999.

[72] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High performance

RDMA-based MPI implementation over InfiniBand. Int’l Journal of Parallel

Programming, 32(3), 2004.

[73] Steven Lucco and Oliver Sharp. Delirium: an embedding coordination language.

In Supercomputing ’90: Proceedings of the 1990 ACM/IEEE conference on Su-

144

percomputing, pages 515–524, Washington, DC, USA, 1990. IEEE Computer

Society Press.

[74] Janet G. Luhmann, Stanley C. Solomon, Jon A. Linker, John G. Lyon, Zoran

Mikić, Dušan Odstrčil, Wenbin Wang, and Michael Wiltberger. Coupled model

simulation of a Sun-to-Earth space weather event. J. Atm. Terr. Phys., 66:1243–

1256, 2004.

[75] J.G Lyon, J.A. Fedder, and C.M. Mobarry. The Lyon-Fedde-Mobarry (LFM)

global MHD magnetospheric simulation code. J. Atm. Terr. Phys., 66:1333–1350,

2004.

[76] Zoran Mikić and Jon A. Linker. Disruption of coronal magnetic field arcades.

Astrophysical Journal, 430:898–912, 1994.

[77] Zoran Mikić, Jon A. Linker, Dalton D. Schnack, Roberto Lionello, and Alfonso

Tarditi. Magnetohydrodynamic modeling of the global solar corona. Physics of

Plasmas, 6:2217–2224, 1999.

[78] José E. Moreira, George Almási, Charles Archer, Ralph Bellofatto, Peter Bergner,

José R. Brunheroto, Michael Brutman, José G. Castaños, Paul Crumley, Man-

ish Gupta, Todd Inglett, Derek Lieber, David Limpert, Patrick McCarthy, Mark

Megerian, Mark P. Mendell, Michael Mundy, Don Reed, Ramendra K. Sahoo,

Alda Sanomiya, Richard Shok, Brian Smith, and Greg G. Stewart. Blue Gene/L

programming and operating environment. IBM Journal of Research and Devel-

opment, 49(2-3):367–376, 2005.

[79] MPIG2. http://www3.niu.edu/mpi.

145

[80] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads pro-

gramming. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.

[81] Jarek Nieplocha, Andrés Márquez, John Feo, Daniel Chavarrı́a-Miranda, George

Chin, Chad Scherrer, and Nathaniel Beagley. Evaluating the potential of multi-

threaded platforms for irregular scientific computations. In CF ’07: Proceedings

of the 4th international conference on Computing frontiers, pages 47–58, 2007.

[82] Robert W. Numrich and John Reid. Co-Array Fortran for parallel programming.

SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[83] Robert W. Numrich and John Reid. Co-Arrays in the next Fortran standard. SIG-

PLAN Fortran Forum, 24(2):4–17, 2005.

[84] Dušan Odstrčil, Murray Dryer, and Zdenka Smith. Propagation of an interplan-

etary shock along the heliospheric plasma sheet. J. Geophys. Res., 101:19973–

19984, 1996.

[85] Dušan Odstrčil and Victor J. Pizzo. Distortion of interplanetary magnetic field

by three-dimensional propagation of cmes in a structured solar wind. J. Geophys

Res., 104:28225–28239, 1999.

[86] Dušan Odstrčil, Victor J. Pizzo, Jon A. Linker, Pete Riley, Roberto Lionello, and

Zoran Mikić. Initial coupling of coronal and heliospheric numerical magnetohy-

drodynamic codes. J. Atm. Terr. Phys., 66:1311–1320, 2004.

[87] Martin Ohmacht, Reinaldo A. Bergamaschi, Subhrajit Bhattacharya, Alan Gara,

Mark Giampapa, Balaji Gopalsamy, Ruud A. Haring, Dirk Hoenicke, David J.

Krolak, James A. Marcella, Ben J. Nathanson, Valentina Salapura, and Michael E.

146

Wazlowski. Blue Gene/L compute chip: Memory and Ethernet subsystem. IBM

Journal of Research and Development, 49(2-3):255–264, 2005.

[88] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and Alice

Koniges. MPI-IO/GPFS, an optimized implementation of MPI-IO on top of

GPFS. In Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference

on Supercomputing (CDROM), pages 17–17, New York, NY, USA, 2001. ACM

Press.

[89] Rolf Rabenseifner. Automatic MPI counter profiling of all users: First results on

a CRAY T3E 900-512. In Proceedings of the Message Passing Interface Devel-

oper’s and User’s Conference, pages 77–85, 1999.

[90] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 2007.

[91] A. D. Richmond and Y. Kamide. Mapping electrodynamic features of the high-

latitude ionosphere from localized observations: Technique. J. Geophys Res.,

93:5741–5759, 1988.

[92] R.M. Robinson, R.R. Vondrak, K. Miller, T. Dabbs, and D. Hardy. On calculating

ionospheric conductances from the flux and energy of precipitating electrons. J.

Geophys Res., 92:2565–2569, 1987.

[93] R. G. Roble, E. C. Ridley, A. D. Richmond, and R. E. Dickinson. A coupled ther-

mosphere/ionosphere general circulation model. Geophys. Res. Lett., 15:1325–

1328, 1988.

[94] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10: concurrent

programming for modern architectures. In PPoPP ’07: Proceedings of the 12th

147

ACM SIGPLAN symposium on Principles and practice of parallel programming,

pages 271–271, 2007.

[95] Vivek Sarkar. X10: An object oriented aproach to non-uniform cluster com-

puting. In OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages, and applications,

page 393, 2005.

[96] Frank Schmuck and Roger Haskin. GPFS, a shared-disk file system for large

computing clusters. In Proceedings of the Conference on File and Storage Tech-

nologies (FAST 02). USENIX Press, January 2002.

[97] Spencer Shepler, Carl Beame, Brent Callaghan, Mike Eisler, David Noveck,

David Robinson, and Robert Thurlow. Network File System (NFS) version 4

protocol, April 2003. RFC 3530.

[98] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-

garra. MPI–The Complete Reference, Second Edition. Scientific and Engineering

Computation Series. MIT Press, 1998.

[99] Frank Suits, Michael Pitman, Jed Pitera, William C. Swope, and Robert S. Ger-

main. Overview of molecular dynamics techniques and early scientific results

from the Blue Gene project. IBM Journal of Research and Development, 49(2-

3):475–488, 2005.

[100] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM concur-

rent computing system: evolution, experiences, and trends. Parallel Computing,

20(4):531–545, 1994.

148

[101] Alan Sussman. Building complex coupled physical simulations on the grid with

Intercomm. Eng. with Comput., 22(3):311–323, 2006.

[102] Vasileios Symeonidis, George Em Karniadakis, and Bruce Caswell. A seam-

less approach to multiscale complex fluid simulation. IEEE Comput. Sci. Eng.,

7(3):39–46, 2005.

[103] Hong Tang, Aziz Gulbeden, Jingyu Zhou, William Strathearn, Tao Yang, and

Lingkun Chu. The Panasas activescale storage cluster - delivering scalable high

bandwidth storage. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on

Supercomputing, Washington, DC, USA, 2004. IEEE Computer Society Press.

[104] TOP500 list - Nov 2007. http://top500.org/list/2007/11/100.

[105] Gábor Tóth and Dušan Odstrčil. Comparison of some flux corrected transport

and total variation diminishing numerical schemes for hydrodynamic and mag-

netohydrodynamic problems. J. Comput. Phys., 128(1):82–100, 1996.

[106] Charles D. Wait. IBM PowerPC 440 FPU with complex-arithmetic extensions.

IBM Journal of Research and Development, 49(2-3):249–254, 2005.

[107] W. Wang, T.L. Killeen, A.G. Burns, and R.G. Roble. A high-resolution, three

dimensional, time dependent, nested grid model of the coupled thermosphere-

ionosphere. J. Atm. Terr. Phys., 61:385–397, 1999.

[108] W. Wang, M. Wiltberger, A.G. Burns, S.C. Solomon, T.L. Killeen, N. Maruyama,

and J.G. Lyon. Initial results from the coupled magnetosphere-ionosphere-

thermosphere model: thermosphere-ionosphere responses. J. Atm. Terr. Phys.,

66:1425–1443, 2004.

149

[109] D. R. Weimer. Models of high-latitude electric potentials derived with a least

error fit of spherical harmonic coefficients. J. Geophys Res., 100:19595–19607,

1995.

[110] M. Wiltberger, W. Wang, A.G. Burns, S.C. Solomon, J.G. Lyon,

and C.C. Goodrich. Initial results from the coupled magneto-

sphere.ionosphere.thermosphere model: magnetospheric and ionospheric

responses. J. Atm. Terr. Phys., 66:1411–1423, 2004.

[111] Joe Shang-Chieh Wu and Alan Sussman. Flexible control of data transfers be-

tween parallel programs. In Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, pages 226–234. IEEE Computer Society Press,

November 2004.

[112] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,

Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,

Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and

Tong Wen. Productivity and performance using partitioned global address space

languages. In PASCO ’07: Proceedings of the 2007 international workshop on

Parallel symbolic computation, pages 24–32, 2007.

[113] Li Zhang and Manish Parashar. Enabling efficient and flexible coupling of parallel

scientific applications. In Proceedings of the 2006 IEEE International Parallel

and Distributed Processing Symposium (IPDPS 2006). IEEE Computer Society

Press, 2006.

150

